WO2012096224A1 - 放射線画像表示装置および方法 - Google Patents

放射線画像表示装置および方法 Download PDF

Info

Publication number
WO2012096224A1
WO2012096224A1 PCT/JP2012/050152 JP2012050152W WO2012096224A1 WO 2012096224 A1 WO2012096224 A1 WO 2012096224A1 JP 2012050152 W JP2012050152 W JP 2012050152W WO 2012096224 A1 WO2012096224 A1 WO 2012096224A1
Authority
WO
WIPO (PCT)
Prior art keywords
abnormal shadow
radiation
abnormal
image
shadows
Prior art date
Application number
PCT/JP2012/050152
Other languages
English (en)
French (fr)
Inventor
崇史 田島
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to EP12733962.0A priority Critical patent/EP2664279B1/en
Publication of WO2012096224A1 publication Critical patent/WO2012096224A1/ja
Priority to US13/933,364 priority patent/US9117315B2/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T15/003D [Three Dimensional] image rendering
    • G06T15/50Lighting effects
    • G06T15/60Shadow generation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/02Arrangements for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
    • A61B6/022Stereoscopic imaging
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/12Arrangements for detecting or locating foreign bodies
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/46Arrangements for interfacing with the operator or the patient
    • A61B6/461Displaying means of special interest
    • A61B6/463Displaying means of special interest characterised by displaying multiple images or images and diagnostic data on one display
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/46Arrangements for interfacing with the operator or the patient
    • A61B6/461Displaying means of special interest
    • A61B6/466Displaying means of special interest adapted to display 3D data
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/50Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment specially adapted for specific body parts; specially adapted for specific clinical applications
    • A61B6/502Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment specially adapted for specific body parts; specially adapted for specific clinical applications for diagnosis of breast, i.e. mammography

Definitions

  • the present invention relates to a radiation image display apparatus and method for displaying a stereoscopic image of a subject.
  • tissue fragments around the lesion may be collected, but in recent years, as a method of collecting tissue fragments without putting a heavy burden on the patient, a needle for collecting hollow tissue (hereinafter referred to as a biopsy needle and There is a focus on biopsies that pierce the patient) and collect the tissue embedded in the needle cavity. And a stereo biopsy apparatus is proposed as an apparatus for performing such a biopsy.
  • the stereo biopsy apparatus irradiates the subject with radiation from mutually different directions to acquire a plurality of radiation images having parallax from one another, and displays a stereoscopic image based on the radiation images.
  • the three-dimensional position of the lesion can be specified while observing the visual image, and by controlling the tip of the biopsy needle to reach that specific position, a piece of tissue can be collected from the desired position. is there.
  • CAD Computer Aided Diagnosis
  • an image processing with an iris filter is performed on a radiation image of a breast or a chest, and a threshold value processing is performed on an output value thereof.
  • Method for automatically detecting a candidate of one form of (1) or image processing using a morphology filter and performing threshold processing on the output value thereof, another form such as breast cancer or the like
  • Patent Document 2 for automatically detecting a candidate for microcalcification shadow (one form of abnormal shadow) is known.
  • the radiation image is a transmission image of the inside of the subject, bones inside the subject, various tissues, and structures such as a lesion such as a mass or calcification are included in an overlapping state. Therefore, when displaying a stereoscopic image of a radiation image, an instruction to specify an abnormal shadow or the like is given on the stereoscopic image using a three-dimensional cursor that can move not only in the plane direction but also in the depth direction. I have to.
  • Patent Document 3 a method of automatically applying a mark such as an arrow to the abnormal shadow has been proposed (see Patent Document 3).
  • a mark such as an arrow is added to the abnormal shadow detected by CAD, and the abnormal shadow of the other image corresponding to the abnormal shadow designated in one image is displayed.
  • Patent Document 4 a method of specifying and warning when an abnormal shadow can not be detected in the other image.
  • JP 10-97624 A Unexamined-Japanese-Patent No. 8-294479 JP 2007-215727 A JP, 2010-137004, A JP 2004-337200 A
  • Patent Document 5 excludes geometrically incompatible abnormal shadows in consideration of the parallax between the radiation images when correlating the detected abnormal shadows between the radiation images, and thereafter, Between the radiation images, the minimum value of the distance between the detected abnormal shadows is calculated, and based on the minimum value, the abnormal shadows that can be regarded as the same are associated with each other.
  • the radiation image GR for the image includes the abnormal shadows BL1 and BL2 and the abnormal shadows BR1 and BR2, respectively, but if the positions of the abnormal shadows B1 and B2 in the vertical direction (Y direction) are the same, It is not possible to specify which of the abnormal shadows BR1 and BR2 the abnormal shadow BL1 corresponds to and which of the abnormal shadows BR1 and BR2 the abnormal shadow BL2 corresponds to.
  • the present invention has been made in view of the above circumstances, and it is an object of the present invention to reduce the burden of the operation of indicating an abnormal shadow with a three-dimensional cursor when displaying a stereoscopic image of a radiation image.
  • the radiation image display apparatus comprises an abnormal shadow detection unit for detecting an abnormal shadow from each of two radiation images acquired by capturing an object from two different directions in order to display a stereoscopic image.
  • an input unit for receiving a change instruction, and the cursor display control unit sequentially moves the cursor to each of a plurality of abnormal shadows according to the change instruction of the cursor position. It is.
  • an abnormal shadow identifying unit for identifying abnormal shadows corresponding to each other among a plurality of abnormal shadows respectively detected in the two radiation images based on the two radiation images. It may be further provided.
  • the abnormal shadow identification unit determines whether or not the corresponding abnormal shadow can be identified based on the two radiation images, and the abnormal shadow detection unit indicates the corresponding anomaly.
  • the abnormal shadow detection unit indicates the corresponding anomaly.
  • an abnormal shadow is detected from a third radiation image different in imaging direction from the two radiation images, and the abnormal shadow identifying unit is used to detect abnormal shadows in the two radiation images and the third radiation image.
  • the corresponding abnormal shadow may be identified based on the positional relationship of
  • the warning unit further performs a warning for prompting acquisition of the third radiation image when the abnormal shadow specification unit can not specify the corresponding abnormal shadow based on the two radiation images. It may be provided.
  • the abnormal shadow identifying unit determines the abnormal shadow within the subject from the position of the abnormal shadow in the two radiation images and the position of the radiation source when the two radiation images are acquired. From the position of the abnormal shadow in the third radiation image and the position of the radiation source when the third radiation image is acquired, the position of the radiation source and the third radiation image are identified. It is also possible to define a straight line connecting the position of the abnormal shadow at and the corresponding abnormal shadow depending on whether or not the position where the abnormal shadow can be present is on the straight line.
  • the third radiation image is obtained by scout imaging of the biopsy. It may be
  • the predetermined abnormal shadow may be an abnormal shadow located at the center of the radiation image, a specific type of abnormal shadow, a plurality of dense abnormal shadows (for example, collective calcification), an abnormal shadow It may be an abnormal shadow that satisfies at least one of the abnormal shadows for which a predetermined detection result has been obtained by the detection unit.
  • the predetermined abnormal shadow is also regarded as an abnormal shadow present in a range where a biopsy by stereobiosis can be obtained. Good.
  • the radiation image display method detects abnormal shadows from each of two radiation images acquired by capturing an object from two different directions in order to display a stereoscopic image, and a plurality of abnormal shadows are detected.
  • the stereoscopic image is displayed, and the cursor is displayed three-dimensionally at the position of a predetermined abnormal shadow among the plurality of abnormal shadows, and the instruction for changing the position of the cursor is received.
  • the cursor is sequentially moved to the respective positions of the plurality of abnormal shadows according to the change instruction.
  • Another radiation image display apparatus has two radiation images acquired by capturing an object from two different directions in order to display a stereoscopic image, and the two radiation images have imaging directions different from each other.
  • An abnormal shadow detection unit that detects an abnormal shadow from each of the different third radiation images, a display unit capable of displaying one of two radiation images and a stereoscopic image, and one of two radiation images Based on the positional relationship between a display control unit that displays one radiation image on the display unit, an input unit that receives specification of a desired abnormal shadow in one radiation image, and two abnormal radiation images and an abnormal shadow in the third abnormal shadow
  • an abnormal shadow identifying unit for identifying an abnormal shadow corresponding to the designated abnormal shadow in the other radiation image different from the one radiation image
  • Control unit is configured to display the stereoscopic image, and characterized in that the three-dimensionally displaying the cursor at the position of the specified abnormal shadow.
  • the abnormal shadow identification unit determines whether or not the corresponding abnormal shadow can be identified based on the two radiation images, and the abnormal shadow detection unit is If the abnormal shadow to be detected can not be identified, the abnormal shadow is detected from the third radiation image, and the abnormal shadow identifying unit is determined based on the positional relationship of the abnormal shadow in the two radiation images and the third radiation image. Abnormal shadows may be identified.
  • the third radiation image is obtained by scout imaging of the biopsy. It may be acquired.
  • a warning unit for giving a warning for prompting acquisition of a third radiation image when the abnormal shadow identification unit can not identify the corresponding abnormal shadow based on the two radiation images. May be further provided.
  • the abnormal shadow identifying unit determines the position of the abnormal shadow in the two radiation images and the position of the radiation source when the two radiation images are acquired. From the position of the abnormal shadow in the third radiation image and the position of the radiation source when the third radiation image is acquired, the position of the radiation source and the third A straight line connecting the position of the abnormal shadow in the radiation image may be defined, and the corresponding abnormal shadow may be specified according to whether or not the position where the abnormal shadow can be present is on the straight line.
  • two radiation images acquired by capturing an object from two different directions in order to display a stereoscopic image and the two radiation images have different imaging directions.
  • An abnormal shadow is detected from each of the third radiation images, and a radiation image of one of the two radiation images is displayed, and designation of a desired abnormal shadow in one radiation image is received, and the two radiation images and the third radiation image are received.
  • the abnormal shadow corresponding to the designated abnormal shadow in the other radiation image different from the one radiation image is specified based on the positional relationship of the abnormal shadow in the radiation image of 1), and the stereoscopic image is displayed and designated.
  • a cursor is displayed three-dimensionally at the position of the abnormal shadow.
  • a predetermined abnormal shadow of the plurality of abnormal shadows is displayed when the stereoscopic image is displayed.
  • the cursor is displayed three-dimensionally at the position of. Then, when an instruction to change the position of the cursor is issued, the cursor is sequentially moved to the respective positions of the plurality of abnormal shadows. Therefore, the operator does not have to perform an operation to move the cursor in both the plane direction and the depth direction in order to specify the abnormal shadow on the stereoscopic image, and as a result, the cursor can be easily moved to the position of the abnormal shadow. You can move to
  • abnormal shadows are detected from a third radiation image different in imaging direction from the two radiation images, and corresponding abnormal shadows are detected based on the positional relationship between the abnormal shadows in the two radiation images and the third radiation image.
  • the positional relationship between the abnormal shadows in the two radiation images and the third radiation image Based on the above, the designated abnormal shadow and the corresponding abnormal shadow in the other radiation image different from the one radiation image are identified. Then, the stereoscopic image is three-dimensionally displayed, and the cursor is three-dimensionally displayed at the designated abnormal shadow position.
  • the two-dimensionally displayed radiation image since it is not necessary to consider the depth direction, it is possible to easily specify an abnormal shadow.
  • the operator does not have to perform an operation to move the cursor in both the planar direction and the depth direction, and as a result, the cursor can be easily moved to the position of the abnormal shadow.
  • abnormal shadows are detected from a third radiation image different in imaging direction from the two radiation images, and corresponding abnormal shadows are detected based on the positional relationship between the abnormal shadows in the two radiation images and the third radiation image.
  • photography display system using one Embodiment of the radiographic image display apparatus of this invention A view of the arm unit of the stereo mammogram display system shown in FIG. 1 as viewed from the right of FIG. A view from above of the imaging table of the stereo mammography display system shown in FIG. 1
  • FIG. 1 is a view showing a schematic configuration of a mammogram display system according to a first embodiment of the present invention in a state where a biopsy unit is attached.
  • a breast imaging and display system 1 includes a breast imaging device 10, a computer 8 connected to the breast imaging device 10, a monitor 9 connected to the computer 8, and the like. And an input unit 7.
  • the mammogram imaging apparatus 10 is capable of moving in the vertical direction (Z direction) with respect to the base 11 and the base 11, and can rotate the rotatable shaft 12 and the rotatable shaft 12.
  • the arm unit 13 is connected to the base 11 by the above.
  • FIG. 2 the arm part 13 seen from the right direction of FIG. 1 is shown.
  • the arm unit 13 is in the shape of an alphabet C, and the radiation irradiating unit 16 is attached to one end of the arm unit 13 so as to face the imaging table 14 at the other end.
  • the rotation and vertical movement of the arm unit 13 are controlled by an arm controller 31 incorporated in the base 11.
  • a radiation detector 15 such as a flat panel detector and a detector controller 33 that controls readout of the charge signal from the radiation detector 15 are provided. Further, inside the imaging table 14, a charge amplifier that converts a charge signal read from the radiation detector 15 into a voltage signal, a correlated double sampling circuit that samples a voltage signal output from the charge amplifier, a voltage A circuit board or the like provided with an AD conversion unit or the like that converts a signal into a digital signal is also provided.
  • the imaging table 14 is configured to be rotatable with respect to the arm unit 13, and even when the arm unit 13 rotates with respect to the base 11, the direction of the imaging table 14 is fixed to the base 11. can do.
  • the radiation detector 15 can repeat recording and readout of a radiation image, and may use a so-called direct type radiation detector which directly receives irradiation of radiation to generate electric charge, or radiation May be converted into visible light, and the visible light may be converted into charge signals, so-called indirect radiation detectors may be used. Further, as a method of reading a radiation image signal, a so-called TFT reading method in which a radiation image signal is read by turning on and off a TFT (thin film transistor) switch, a radiation image signal by irradiating a reading light Although it is desirable to use a so-called light reading method in which is read out, the invention is not limited to this, and another one may be used.
  • a radiation source 17 and a radiation source controller 32 are housed in the radiation irradiator 16.
  • the radiation source controller 32 controls the timing of irradiating radiation from the radiation source 17 and radiation generation conditions (tube current, time, tube current time product, etc.) in the radiation source 17.
  • FIG. 3 is a view of the compression plate 18 shown in FIG. 1 as viewed from above, but as shown in the figure, the compression plate 18 can perform biopsy in a state where the breast is fixed by the imaging table 14 and the compression plate 18 As such, it has an opening 5 about 10 ⁇ 10 cm square.
  • the mammography display system 1 mechanically and electrically It is connected.
  • the biopsy unit 2 has a biopsy needle 21 to be punctured in the breast, and the biopsy needle unit 22 configured to be detachable, the needle support 23 for supporting the biopsy needle unit 22, and the needle support 23 And a moving mechanism 24 for moving the biopsy needle unit 22 in the X, Y and Z directions shown in FIGS. 1 to 3 by moving the needle support 23 in and out.
  • the position of the tip of the biopsy needle 21 of the biopsy needle unit 22 is recognized and controlled as position coordinates (x, y, z) in a three-dimensional space by the needle position controller 35 provided in the moving mechanism 24.
  • 1 is the X direction
  • the direction perpendicular to the paper surface in FIG. 2 is the Y direction
  • the direction perpendicular to the paper surface in FIG. 3 is the Z direction.
  • the computer 8 is provided with a central processing unit (CPU) and storage devices such as a semiconductor memory, a hard disk, an SSD, etc., and these hardwares make it possible to use a controller 8a, a radiation image storage 8b as shown in FIG.
  • a shadow detection unit 8c, an abnormal shadow identification unit 8d, and a display control unit 8e are configured.
  • the control unit 8a also functions as a warning unit in the present invention.
  • the control unit 8a outputs predetermined control signals to the various controllers 31 to 35 to control the entire system.
  • the specific control method will be described later.
  • the radiation image storage unit 8 b stores a radiation image signal for each imaging angle acquired by the radiation detector 15.
  • the abnormal shadow detection unit 8c analyzes a radiation image represented by a radiation image signal for each imaging angle, and automatically detects the position of the abnormal shadow in the breast included in the radiation image.
  • the abnormal shadow detection method is to detect based on the characteristics of the abnormal shadow density distribution and the morphological characteristics, and specifically, iris filter processing suitable for mainly detecting a mass shadow (
  • the abnormal shadow may be detected using the above-mentioned patent document 1), morphology filter processing (refer to the above-mentioned patent document 2) or the like suitable mainly for detecting a microcalcification shadow.
  • the abnormal shadow detection unit 8 c determines the order of the abnormal shadows. The determination of the order will be described later.
  • the abnormal shadow identification unit 8 d identifies corresponding abnormal shadows detected in the radiation image signal for each imaging angle among the radiation image signals for each imaging angle.
  • the display control unit 8e displays a stereo image using two radiation images on the monitor 9, or displays a three-dimensional cursor at the position of abnormal shadow in the stereo image as described later.
  • the input unit 7 is composed of, for example, a pointing device such as a keyboard and a mouse, and the position of an abnormal shadow or the like in the stereo image displayed on the monitor 9 and the radiation image displayed as a two-dimensional image It is configured to be specifiable. Further, the input unit 7 receives an input of an imaging condition and the like, an input of an operation instruction, and the like by an operator.
  • the monitor 9 displays a stereo image using two radiation image signals output from the computer 8 in accordance with an instruction from the display control unit 8 e.
  • the configuration thereof is, for example, using two screens.
  • the radiation image based on the two radiation image signals is displayed respectively, and by using a half mirror, a polarizing glass, etc., one radiation image is made to enter the right eye of the observer, and the other radiation image is made the left eye of the observer
  • a configuration in which a stereo image is displayed by being incident can be employed.
  • two radiation images may be superimposed and displayed by being shifted by a predetermined amount, and a stereo image may be generated by observing this with a polarizing glass, or a parallax barrier method and a lenticular method
  • a stereo image may be generated by displaying two radiation images on a stereoscopically visible 3D liquid crystal.
  • the breast M is placed on the imaging table 14, and the breast is compressed by a predetermined pressure by the compression plate 18 (step ST1).
  • the control unit 8a outputs a control signal to the radiation source controller 32 and the detector controller 33 so as to perform radiation irradiation and radiation image signal reading in order to perform biopsy scout imaging.
  • the arm unit 13 is at a position perpendicular to the imaging table 14 in the initial position, so that radiation is emitted from the radiation source 17 according to this control signal, and the breast is vertical
  • the radiation image storage unit 8 b of the computer 8 stores the radiation image signal of the scout image GS.
  • the scout image GS acquired by scout imaging is displayed on the monitor 9. While observing the scout image, the operator positions the breast M such that the abnormal shadow recognized in the scout image is positioned at the opening 5 of the compression plate 18.
  • the control unit 8a reads out a convergence angle ⁇ for photographing a stereo image set in advance, and outputs information of the read convergence angle ⁇ to the arm controller 31.
  • ⁇ 15 degrees is stored in advance as information of the convergence angle ⁇ at this time, but the present invention is not limited to this.
  • step ST3 when an instruction to start imaging is given in the input unit 7, imaging of a stereo image of the breast M is performed (step ST3).
  • the information of the convergence angle ⁇ output from the control unit 8a is received, and as shown in FIG. 2, the arm controller 31 takes a picture based on the information of the convergence angle ⁇ .
  • a control signal is output to rotate by + ⁇ degrees with respect to the direction perpendicular to the table 14. That is, in the present embodiment, a control signal is output so as to rotate the arm unit 13 by +15 degrees with respect to the direction perpendicular to the imaging table 14.
  • the control unit 8a outputs a control signal to the radiation source controller 32 and the detector controller 33 so as to perform irradiation of radiation and readout of a radiation image signal.
  • the control signal radiation is emitted from the radiation source 17, a radiation image of the breast taken from the +15 degree direction is detected by the radiation detector 15, a radiation image signal is read by the detector controller 33, and the radiation is After predetermined signal processing is performed on the image signal, the image signal is stored in the radiation image storage unit 8 b of the computer 8.
  • the radiation image signal stored in the radiation image storage unit 8b by this imaging represents the radiation image GR for the right eye.
  • the arm controller 31 once returns the arm portion to the initial position, and then outputs a control signal so as to rotate by ⁇ degrees in the direction perpendicular to the photographing table 14.
  • a control signal is output to rotate the arm unit 13 by -15 degrees with respect to the direction perpendicular to the photographing table 14.
  • the control unit 8a outputs a control signal to the radiation source controller 32 and the detector controller 33 so as to perform irradiation of radiation and readout of a radiation image.
  • the control signal radiation is emitted from the radiation source 17, a radiation image obtained by imaging the breast from the ⁇ 15 ° direction is detected by the radiation detector 15, and a radiation image signal is read by the detector controller 33.
  • the signal processing of (1) it is stored in the radiation image storage unit 8 b of the computer 8.
  • the radiation image signal stored in the radiation image storage unit 8b by this imaging represents the radiation image GL for the left eye.
  • the breast M is anesthetized, and stereo imaging is performed again. If the placement positions of the breasts M differ between the positioning of the breasts M before anesthesia and the positioning of the breasts M after anesthesia, scout imaging is performed again. On the other hand, if the setting positions of the breasts become substantially the same between the positioning of the breast M before anesthesia and the positioning of the breast M after anesthesia, scout imaging again is performed to reduce the exposure dose to the subject. Not performed.
  • the abnormal shadow detection unit 8c detects abnormal shadows such as calcification and a mass in the breast from the radiation image GL for the left eye and the radiation image GR for the right eye (step ST4).
  • abnormal shadows such as calcification and a mass in the breast from the radiation image GL for the left eye and the radiation image GR for the right eye.
  • the abnormal shadow detection unit 8c determines the order of the plurality of detected abnormal shadows (step ST5). Specifically, as shown in FIG. 6, the center position O1 of the radiation image GL (GR) for the left eye or the right eye is set, and the order is determined in the order of proximity to the center position O1. In addition, the higher the output value of the iris filter or the higher the output value of the morphology filter, the higher the malignancy of the abnormal shadow, so the order may be determined in descending order of malignancy. Also, the order of calcification may be increased, and the order of masses may be increased. In addition, in the case where there is a group calcification in which a plurality of calcifications are densely present, the order of the group calcification may be increased (for example, set to 1).
  • FIG. 8 is a diagram for explaining the identification of the corresponding abnormal shadow.
  • the radiation image GR for the right eye includes four abnormal shadows BR1 to BR4.
  • the Y coordinates of the abnormal shadows BR1 to BR4 and the corresponding abnormal shadows included in the radiation image GL for the left eye Is the same as the Y coordinate of.
  • the abnormal shadow identification unit 8d searches only in the X direction of the left-eye radiation image GL for each of the abnormal shadows BR1 to BR4 included in the radiation image GR for the right eye. If only two abnormal shadows exist, it is determined that the two abnormal radiation images can identify the corresponding abnormal shadow. In this case, the corresponding abnormal shadow is the searched abnormal shadow (step ST7).
  • the abnormal shadow identification unit 8d searches for abnormal shadows included in the radiation image GR for the right eye only in the X direction of the radiation image GL for the left eye, and two or more abnormal shadows in the radiation image GL for the left eye If it exists, it is determined that the corresponding abnormal shadow can not be identified by the two radiation images.
  • the abnormal shadow identification unit 8d identifies the corresponding abnormal shadow using the scout image GS in addition to the two radiation images GL and GR (step ST8).
  • identification of an abnormal shadow using the scout image GS will be described.
  • FIG. 10 is a diagram showing a state in which an abnormal shadow can not be identified.
  • the abnormal shadows B1 and B2 exist in the breast
  • the radiation image GL for the left eye and the radiation image GR for the right eye are included as abnormal shadows BL1 and BL2 and abnormal shadows BR1 and BR2, respectively. If the positions of the abnormal shadows B1 and B2 in the Y direction are the same, which of the abnormal shadows BR1 and BR2 corresponds to the abnormal shadow BL1 on the radiation image, and which of the abnormal shadows BR1 and BR2 is abnormal shadow BL2 It can not be identified that corresponds to
  • FIGS. 11 and 12 are diagrams for explaining the identification of an abnormal shadow using a scout image.
  • the Z coordinate of the detection surface of the radiation detector 15 is zero.
  • the coordinates of abnormal shadows in the radiation image GL for the left eye are PL1 (11, 10) and PL2 (12, 0), and the coordinates of abnormal shadows in the radiation image GR for the right eye are PR1 (r1, 0) and PR2 (r2)
  • the coordinates of the radiation source position PL of ( ⁇ 0, 15) degrees are (aL, bL, cL), and the coordinates of the radiation source position PR of +15 degrees are (aR, bR, cR).
  • the abnormal shadow identification unit 8d is emitted from the radiation path from the source position PL of -15 degrees to the coordinates PL1 and PL2, and from the source position PR of +15 degrees.
  • the intersection points B1 and B4 with the path of the radiation reaching the coordinate PR1 to -15 degrees and to the coordinates PL1 and PL2 and from the source position PR at +15 degrees are set.
  • the coordinates PL1 (11, 10) and PL2 (12, 0) of the abnormal shadow in the radiation image GL for the left eye, the coordinates PR1 (r1, 0) and PR2 (r2, 0) in the radiation image GR for the right eye Using the coordinates of the source position PL of -15 degrees (aL, bL, cL) and the coordinates of the source position PR of +15 degrees (aR, bR, cR), the coordinates of the positions of the intersection points B1 to B4 are calculated Do.
  • each of the intersection points B1 to B4 is on two straight lines, and the two straight lines are on the same plane.
  • each straight line can be expressed by the following equation.
  • the Z coordinate of the abnormal shadow is not at a position higher than the lower surface of the compression plate 18 or at a position lower than the upper surface of the imaging table 14. For this reason, the Z coordinate of the calculated intersection points B1 to B4 is confirmed, and the abnormal shadow is displayed at the intersection where the Z coordinate is higher than the lower surface of the compression plate 18 or lower than the upper surface of the imaging table 14. It can be determined that it does not exist. For example, as shown in FIG. 13, when the Z coordinate of the intersection B1 is at a position higher than the lower surface of the compression plate and the Z coordinate of the intersection B2 is at a lower position than the upper surface of the imaging table, the abnormal shadows on the intersections B1 and B2 Does not exist. In this case, the positions of the intersections B3 and B4 can be identified as the positions of abnormal shadows without performing the processing described later.
  • the abnormal shadow identification unit 8d determines the coordinates PS1 (s1, 0), PS2 (s2, 0) of the abnormal shadow in the scout image GS, and the coordinates (aS, bS, cS) of the 0 degree source position P0. From the equation Eq1 representing a straight line L1 connecting the coordinate PS1 (s1,0) and the coordinates (aS, cS), and the equation Eq2 representing a straight line L2 connecting the coordinates PS2 (s2, 0) and the coordinates (aS, cS) Calculate each. The calculations of the equations Eq1 and Eq2 are performed by projecting onto the XZ plane, as in the case of the equation of a straight line passing through the intersection points B1 to B4 described above.
  • the abnormal shadow identification unit 8d finds the intersection points B1 to B4 on the straight lines L1 and L2. Specifically, the X coordinates of the intersection points B1 to B4 are substituted into the equations Eq1 and Eq2, respectively, to calculate the value of the Z coordinate. Then, which one of the intersection points B1 to B4 exists on the straight lines L1 and L2 is specified by whether the calculated Z coordinate coincides with the Z coordinate of the intersection points B1 to B4.
  • the Z coordinates may not completely coincide, it is determined whether or not they coincide with a certain degree of error. Then, the positions of the intersections present on the straight lines L1 and L2 are determined as actual abnormal shadows, and corresponding abnormal shadows are specified in the radiation image GL for the left eye and the radiation image GR for the right eye.
  • the coordinates PR2 of the abnormal shadow on the radiation image GR for the right eye correspond to the coordinates P12 of the abnormal shadow on the radiation image GL for the left eye
  • the radiation image for the right eye The coordinate PR1 of the abnormal shadow on GR and the coordinate Pl1 of the abnormal shadow on the radiation image GL for the left eye correspond to each other.
  • the display control unit 8e reads out the two radiation images GL and GR stored in the radiation image storage unit 2b, and as shown in FIG. 14, the display control unit 8e determines among the abnormal shadows included in the radiation images GL and GR.
  • a cursor is given to the position of the abnormal shadow at the top of the order, and a stereo image of the radiation images GL and GR to which the cursor is given is three-dimensionally displayed on the monitor 9 (step ST9).
  • a three-dimensional cursor having the same three-dimensional effect as the abnormal shadow is displayed at the position of the abnormal shadow (B1 in FIG. 14).
  • the position of the three-dimensional cursor can be changed.
  • the order determined by the abnormal shadow detection unit 8c is B1, B2 and B3, as shown in FIG. 15 according to the operation of the input unit 7.
  • the position of the three-dimensional cursor C1 is sequentially moved to the abnormal shadows B2 and B3 by the display control unit 8e. After the three-dimensional cursor C1 moves to the abnormal shadow B3, the three-dimensional cursor returns to the position of the abnormal shadow B1 again.
  • the position information (x, y, z) of the target is acquired by the control unit 8a, and the control unit 8a The position information is output to the needle position controller 35 of the biopsy unit 2.
  • a control signal for moving the biopsy needle 21 is outputted from the control unit 8a to the needle position controller 35.
  • the needle position controller 35 moves the biopsy needle 21 based on the value of the previously input position information so that the tip of the biopsy needle 21 is located above the position indicated by the coordinates.
  • the observer performs a predetermined operation to instruct puncturing of the biopsy needle 21 in the input unit 7, under the control of the control unit 8a and the needle position controller 35, the position where the tip of the biopsy needle 21 shows the coordinates
  • the biopsy needle 21 is moved so as to be placed in the chest, and the breast is punctured by the biopsy needle 21 (step ST10).
  • the plurality of abnormal shadows are displayed when the stereo image is displayed.
  • the three-dimensional cursor C1 is displayed at the position of a predetermined abnormal shadow of the above, and the three-dimensional cursor C1 is sequentially moved in the specified order to the position of another abnormal shadow by an instruction from the input unit 7 thereafter. It is For this reason, the operator does not have to perform an operation to move the three-dimensional cursor C1 in both the plane direction and the depth direction in order to specify an abnormal shadow on the stereo image, and as a result, The dimensional cursor C1 can be easily moved.
  • the abnormal shadow may not be detected from the radiation image by the abnormal shadow detection unit 8c.
  • notification may be made by displaying on the monitor 9 or the like that an abnormal shadow has not been detected at a predetermined timing such as when displaying a stereo image.
  • the three-dimensional cursor may not be displayed, and may be displayed at a predetermined position such as the center of the image.
  • a cursor is attached to the position of the abnormal shadow, and the cursor position is not changed even if there is an instruction from the input unit 7, or
  • the monitor 9 may indicate that the number of shadows is one.
  • the present invention is not limited thereto.
  • ⁇ 2 Photography may be performed at an arbitrary convergence angle such as degree.
  • step ST6 of the first embodiment is denied, the following processing is performed.
  • this will be described as a second embodiment.
  • FIG. 16 is a flowchart showing the process performed in the second embodiment. Note that FIG. 16 shows only the processing after step ST6 of the flowchart shown in FIG. 5 is negated. If the step ST6 is negative, the control unit 8a causes the third imaging to be performed from the imaging direction which is the third angle different from the convergence angle ⁇ at which the left and right eye radiation images GL and GR are acquired. A warning is issued (step ST21). Note that the warning may be any instruction that causes the monitor 9 to display an instruction to perform the third imaging, but a sound may be used, and both the display on the monitor 9 and the sound may be used.
  • the operator inputs a third imaging start instruction.
  • the third imaging of the breast M is performed (step ST22).
  • the control unit 8a reads an angle for the third imaging and outputs information on the angle to the arm controller 31.
  • the arm controller 31 receives the information of the third angle output from the control unit 8a, and the arm controller 31 determines that the arm unit 13 is perpendicular to the photographing table 14 based on the information of the third angle.
  • a control signal is output to rotate a third angle with respect to the direction.
  • the control unit 8a outputs a control signal to the radiation source controller 32 and the detector controller 33 so as to perform irradiation of radiation and readout of a radiation image signal.
  • the control signal radiation is emitted from the radiation source 17, a radiation image obtained by imaging the breast from a third angular direction is detected by the radiation detector 15, and a radiation image signal is read by the detector controller 33, After predetermined signal processing is performed on the radiation image signal, the radiation image signal is stored in the radiation image storage unit 8 b of the computer 8.
  • the abnormal shadow detection unit 8c detects an abnormal shadow from the radiation image (referred to as a third radiation image) taken from the third angular direction (step ST23), and the abnormal shadow identification unit 8d further detects the third shadow image.
  • An abnormal shadow is specified using a radiation image (step ST24).
  • the process of specifying an abnormal shadow is to use the third radiation image instead of the scout image in the first embodiment, the detailed description is omitted here.
  • step ST9 of the first embodiment a stereo image is displayed together with a three-dimensional cursor (step ST25), and puncture of the breast by the biopsy needle 21 is performed (step ST26).
  • the configuration of the breast imaging and display system according to the third embodiment has the same configuration as that of the breast imaging and display system according to the first embodiment, and only the processing to be performed is different. Is omitted.
  • FIG. 17 is a flowchart showing the process performed in the third embodiment. Note that FIG. 17 shows only the process after step ST4 of the flowchart shown in FIG.
  • the control unit 8a displays one of the two radiation images GL and GR (for example, the radiation image GL for the left eye) on the monitor 9 (for example, Step ST31).
  • the display of this radiation image is a two-dimensional display without a three-dimensional effect.
  • designation of a desired abnormal shadow from a plurality of abnormal shadows is accepted (step ST32).
  • the operator operates the input unit 7 to move the cursor C2 to a desired abnormal shadow position, thereby specifying a desired abnormal shadow.
  • the abnormal shadow identification unit 8d identifies an abnormal shadow corresponding to the abnormal shadow designated by the operator in the other radiation image (the radiation image GR for the right eye).
  • step ST6 of the first embodiment it is determined whether or not the corresponding abnormal shadow can be identified by the two radiation images (step ST33). If the abnormal shadow can be identified, the corresponding abnormal shadow is the abnormal shadow searched as in the first embodiment (step ST34). On the other hand, when the abnormal shadow can not be identified, the abnormal shadow identification unit 8d identifies the abnormal shadow using the scout image (step ST35).
  • the display control unit 8e reads out the two radiation images GL and GR stored in the radiation image storage unit 2b, and applies a cursor to the position of the abnormal shadow designated in the two-dimensionally displayed radiation image, As shown in FIG. 19, the stereo images of the radiation images GL and GR to which the cursor is attached are three-dimensionally displayed on the monitor 9 (step ST36). As a result, the radiation image of the breast is three-dimensionally displayed, and the three-dimensional cursor C3 having the same three-dimensional effect of the abnormal shadow as the abnormal shadow (B2 in FIG. 19) is displayed. The cursor is a three-dimensional cursor.
  • the operator uses the input unit 7 to input an instruction to specify another abnormal shadow (Yes at step ST37). If there is an input of another abnormal shadow instruction, the control unit 8a returns to the process of step ST31.
  • the control unit 8a and the needle position controller 35 control the tip of the biopsy needle 21 to The biopsy needle 21 is moved so as to be disposed at the position indicated by the coordinates, and the breast is punctured by the biopsy needle 21 (step ST38).
  • the positions of the abnormal shadow in the two radiation images and the scout image are identified, and the cursor is positioned at the position of the designated abnormal shadow when displaying the stereo image 3D display.
  • the operator does not have to perform an operation to move the cursor in both the plane direction and the depth direction in order to specify an abnormal shadow on the stereo image, and as a result, The cursor can be easily moved to the position of the abnormal shadow.
  • the corresponding abnormal shadows are specified using the scout image, if only two radiation images are used, even if the corresponding abnormal shadows can not be specified, they correspond to each other. Abnormal shadows can be identified with certainty.
  • the present invention is not limited to this.
  • a biopsy may be performed.
  • the imaging may be performed at an arbitrary convergence angle such as ⁇ 2 degrees.
  • the third imaging is performed as in the second embodiment, and the third image obtained by this is acquired. It may be used to identify abnormal shadows.
  • one embodiment of the radiation image display apparatus of the present invention is applied to a stereo mammogram imaging and display system, but the subject of the present invention is not limited to the breast.
  • the present invention can be applied to a radiation image capturing and displaying system for capturing an image etc.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Medical Informatics (AREA)
  • Physics & Mathematics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • General Health & Medical Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Optics & Photonics (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Human Computer Interaction (AREA)
  • Dentistry (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Computer Graphics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Apparatus For Radiation Diagnosis (AREA)

Abstract

放射線画像の立体視画像を表示するに際し、3次元カーソルにより異常陰影を指示する作業の煩わしさを低減する。異常陰影検出部8cが、立体視画像を表示するための左目用および右目用の放射線画像から異常陰影を検出する。複数の異常陰影が検出されると、異常陰影特定部8dが、2つの放射線画像において互いに対応する異常陰影を特定する。表示制御部8eが、複数の異常陰影のうちの所定の異常陰影に3次元カーソルを付与して、左目用および右目用の放射線画像を用いて立体視画像を表示する。

Description

放射線画像表示装置および方法
 本発明は、被検体の立体視画像を表示する放射線画像表示装置および方法に関するものである。
 病院の検査では病変周辺の組織片を採取することがあるが、近年、患者に大きな負担をかけずに組織片を採取する方法として、中が空洞の組織採取用の針(以下、生検針と称する)を患者に刺し、針の空洞に埋め込まれた組織を採取するバイオプシが注目されている。そして、このようなバイオプシを行うための装置としてステレオバイオプシ装置が提案されている。
 このステレオバイオプシ装置は、被験者に対して互いに異なる方向から放射線を照射して互いに視差のある複数の放射線画像を取得し、これらの放射線画像に基づいて立体視画像を表示するものであり、この立体視画像を観察しながら病変の3次元的な位置を特定することができ、生検針の先端をその特定位置に到達するよう制御することによって所望の位置から組織片を採取することができるものである。
 一方、医療分野においては、画像中の異常陰影を自動的に検出し、検出された異常陰影の強調表示等を行うコンピュータ支援画像診断システム(CAD: Computer Aided Diagnosis)が知られている。医師は、このCADシステムによって検出された異常陰影を含む画像を読影し、画像中の異常陰影が腫瘤や石灰化等の病変を表す異常陰影であるかどうかを最終的に判断するようにしている。
 異常陰影の検出手法としては、例えば、***や胸部の放射線画像に対して、アイリスフィルタによる画像処理を行い、その出力値を閾値処理することによって、ガン等の一形態である腫瘤陰影(異常陰影の一形態)の候補を自動的に検出する手法(特許文献1参照)や、モフォロジーフィルタを用いた画像処理を行い、その出力値を閾値処理することによって、乳ガン等の他の一形態である微小石灰化陰影(異常陰影の一形態)の候補を自動的に検出する手法(特許文献2参照)が知られている。
 ところで、放射線画像は被検体内部の透過画像であることから、被検体の内部にある骨、各種組織および腫瘤や石灰化等の病変等の構造物が重なり合った状態で含まれている。このため、放射線画像の立体視画像を表示する場合、平面方向のみならず奥行き方向にも移動可能な3次元カーソルを用いて、異常陰影を指定する等の指示を、立体視画像上において行うようにしている。
 ここで、検出された異常陰影を視認しやすくするために、異常陰影に矢印等のマークを自動で付与する手法が提案されている(特許文献3参照)。また、立体視画像を表示するための複数の放射線画像において、CADで検出した異常陰影に矢印等のマークを付与するとともに、一方の画像で指定した異常陰影に対応する他方の画像の異常陰影を特定し、さらに他方の画像に異常陰影が検出できない場合に警告する手法が提案されている(特許文献4参照)。また、3次元表示するための複数の放射線画像から異常陰影を検出し、検出した異常陰影を対応づけてマークを付与するに際し、複数の放射線画像に対して視差をつけて、マークを立体視可能に付与する手法も提案されている(特許文献5参照)。
特開平10-97624号公報 特開平8-294479号公報 特開2007-215727号公報 特開2010-137004号公報 特開2004-337200号公報
 立体視画像を表示するための放射線画像から複数の異常陰影が検出された場合、特許文献4,5に記載された手法を用いることにより、複数の異常陰影にマークを付与してマークとともに立体視画像を表示できる。ここで、マークに変えて3次元カーソルを用いて異常陰影を指定する場合、操作者は、異常陰影の平面方向の位置とともに奥行き方向の位置を合わせる必要がある。しかしながら、3次元カーソルの奥行き感を、立体視画像における異常陰影の奥行き感と一致するように合わせる作業は非常に煩わしい。
 とくに、ステレオバイオプシの場合、立体視画像の立体感は、通常の立体視画像の立体感よりも大きいため、3次元カーソルの立体感を異常陰影の立体感と合わせるために、そのような大きい立体感の立体視画像を見続けることは、操作者の目を大きく疲労させる。
 また、特許文献5に記載された手法は、検出した異常陰影を放射線画像間において対応づける際に、放射線画像間の視差を考慮して、幾何学的に対応しない異常陰影同士を排除し、その後、放射線画像間において、検出された異常陰影同士の距離の最小値を算出し、最小値に基づいて、最も等しいと見なせる異常陰影同士を対応づけている。
 しかしながら、特許文献5に記載された手法では、図10に示すように異常陰影B1,B2が存在する場合、2つの線源位置PL,PRのそれぞれにおいて取得された左目用の放射線画像GLおよび右目用の放射線画像GRには、それぞれ異常陰影BL1,BL2、異常陰影BR1,BR2として含まれるが、異常陰影B1,B2の紙面に垂直方向(Y方向)の位置が同一であると、画像上において、異常陰影BL1が異常陰影BR1,BR2のいずれに対応するのか、また異常陰影BL2が異常陰影BR1,BR2のいずれに対応するのかを特定することができない。
 このように、異常陰影を対応づけることができないと、対応する異常陰影同士に同一のマークを付与することができないため、とくにステレオバイオプシにおいて、生検針の先端を異常陰影の位置に精度良く到達させることができない。
 本発明は上記事情に鑑みなされたものであり、放射線画像の立体視画像を表示するに際し、3次元カーソルにより異常陰影を指示する作業の煩わしさを低減することを目的とする。
 本発明による放射線画像表示装置は、立体視画像を表示するために異なる2方向から被検体を撮影することにより取得された、2つの放射線画像のそれぞれから異常陰影を検出する異常陰影検出部と、立体視画像を表示する表示部と、複数の異常陰影が検出された場合において、複数の異常陰影のうちの所定の異常陰影の位置にカーソルを3次元表示する表示制御部と、カーソルの位置の変更の指示を受け付ける入力部とを備え、カーソル表示制御部は、カーソルの位置の変更の指示により、複数の異常陰影のそれぞれの位置に、順次カーソルを移動させるものであることを特徴とするものである。
 なお、本発明による放射線画像表示装置においては、2つの放射線画像に基づいて、その2つの放射線画像においてそれぞれ検出された複数の異常陰影間において、互いに対応する異常陰影を特定する異常陰影特定部をさらに備えるものとしてもよい。
 また、本発明による放射線画像表示装置においては、異常陰影特定部を、2つの放射線画像に基づいて対応する異常陰影が特定できるか否かを判定するものとし、異常陰影検出部を、対応する異常陰影が特定できない場合に、2つの放射線画像とは撮影方向が異なる第3の放射線画像から異常陰影を検出するものとし、異常陰影特定部を、2つの放射線画像および第3の放射線画像における異常陰影の位置関係に基づいて、対応する異常陰影を特定するものとしてもよい。
 また、本発明による放射線画像表示装置においては、異常陰影特定部が2つの放射線画像に基づいて対応する異常陰影が特定できない場合に、第3の放射線画像の取得を促す警告を行う警告部をさらに備えるものとしてもよい。
 また、本発明による放射線画像表示装置においては、異常陰影特定部を、2つの放射線画像における異常陰影の位置および、この2つの放射線画像を取得した際の放射線源の位置から、被検体内における異常陰影が存在しうる位置を特定し、第3の放射線画像における異常陰影の位置および、この第3の放射線画像を取得した際の放射線源の位置から、この放射線源の位置と第3の放射線画像における異常陰影の位置とを結ぶ直線を規定し、異常陰影が存在しうる位置が直線上に存在するか否かに応じて、対応する異常陰影を特定するものとしてもよい。
 また、本発明による放射線画像表示装置においては、2つの放射線画像が、ステレオバイオプシを行うために撮影された***の放射線画像である場合において、第3の放射線画像を、バイオプシのスカウト撮影により取得されたものとしてもよい。
 また、本発明による放射線画像表示装置においては、所定の異常陰影を、放射線画像の中央に位置する異常陰影、特定種類の異常陰影、複数の密集した異常陰影(例えば集族石灰化)、異常陰影検出部により所定の検出結果が得られた異常陰影のうちの少なくとも1つの条件を満たす異常陰影としてもよい。
 この場合において、2つの放射線画像が、ステレオバイオプシを行うために撮影された***の放射線画像である場合、所定の異常陰影を、ステレオバイオプシによる生検を取得可能な範囲に存在する異常陰影としてもよい。
 本発明による放射線画像表示方法は、立体視画像を表示するために異なる2方向から被検体を撮影することにより取得された、2つの放射線画像のそれぞれから異常陰影を検出し、複数の異常陰影が検出された場合において、立体視画像を表示するとともに、この複数の異常陰影のうちの所定の異常陰影の位置にカーソルを3次元表示し、カーソルの位置の変更の指示を受け、カーソルの位置の変更の指示により、複数の異常陰影のそれぞれの位置に、順次カーソルを移動させることを特徴とするものである。
 本発明による他の放射線画像表示装置は、立体視画像を表示するために異なる2方向から被検体を撮影することにより取得された2つの放射線画像、および、この2つの放射線画像とは撮影方向が異なる第3の放射線画像のそれぞれから異常陰影を検出する異常陰影検出部と、2つの放射線画像のいずれか一方および立体視画像の表示が可能な表示部と、2つの放射線画像のうちのいずれか一方の放射線画像を表示部に表示する表示制御部と、一方の放射線画像における所望の異常陰影の指定を受け付ける入力部と、2つの放射線画像および第3の異常陰影における異常陰影の位置関係に基づいて、一方の放射線画像とは異なる他方の放射線画像における、指定された異常陰影に対応する異常陰影を特定する異常陰影特定部とを備え、表示制御部は、立体視画像を表示するとともに、指定された異常陰影の位置にカーソルを3次元表示するものであることを特徴とするものである。
 なお、本発明による他の放射線画像表示装置においては、異常陰影特定部を、2つの放射線画像に基づいて対応する異常陰影が特定できるか否かを判定するものとし、異常陰影検出部を、対応する異常陰影が特定できない場合に、第3の放射線画像から異常陰影を検出するものとし、異常陰影特定部を、2つの放射線画像および第3の放射線画像における異常陰影の位置関係に基づいて、対応する異常陰影を特定するものとしてもよい。
 また、本発明による他の放射線画像表示装置においては、2つの放射線画像が、ステレオバイオプシを行うために撮影された***の放射線画像である場合において、第3の放射線画像を、バイオプシのスカウト撮影により取得されたものとしてもよい。
 また、本発明による他の放射線画像表示装置においては、異常陰影特定部が2つの放射線画像に基づいて対応する異常陰影が特定できない場合に、第3の放射線画像の取得を促す警告を行う警告部をさらに備えるものとしてもよい。
 また、本発明による他の放射線画像表示装置においては、異常陰影特定部を、2つの放射線画像における異常陰影の位置および、この2つの放射線画像を取得した際の放射線源の位置から、被検体内における異常陰影が存在しうる位置を特定し、第3の放射線画像における異常陰影の位置および、この第3の放射線画像を取得した際の放射線源の位置から、この放射線源の位置と第3の放射線画像における異常陰影の位置とを結ぶ直線を規定し、異常陰影が存在しうる位置が直線上に存在するか否かに応じて、対応する異常陰影を特定するものとしてもよい。
 本発明による他の放射線画像表示方法は、立体視画像を表示するために異なる2方向から被検体を撮影することにより取得された2つの放射線画像、および該2つの放射線画像とは撮影方向が異なる第3の放射線画像のそれぞれから異常陰影を検出し、2つの放射線画像のいずれか一方の放射線画像を表示し、一方の放射線画像における所望の異常陰影の指定を受け付け、2つの放射線画像および第3の放射線画像における異常陰影の位置関係に基づいて、一方の放射線画像とは異なる他方の放射線画像における、指定された異常陰影に対応する異常陰影を特定し、立体視画像を表示するとともに、指定された異常陰影の位置にカーソルを3次元表示することを特徴とするものである。
 本発明によれば、立体視画像を表示するための2つの放射線画像において、複数の異常陰影が検出された場合、立体視画像を表示する際に、複数の異常陰影のうちの所定の異常陰影の位置にカーソルが3次元表示される。そして、カーソルの位置の変更の指示がなされると、複数の異常陰影のそれぞれの位置に、順次カーソルが移動される。このため、操作者は、立体視画像上において異常陰影を指定するために、カーソルを平面方向および奥行き方向の双方に移動する操作を行う必要が無くなり、その結果、異常陰影の位置にカーソルを容易に移動することができる。
 また、3次元カーソルの奥行き感を異常陰影の奥行き感に合わせるために、立体視画像を長時間見続ける必要が無くなるため、操作者の目の疲労感を軽減できる。
 また、複数の異常陰影において、互いに対応する異常陰影を特定することにより、立体視画像を表示した際に、1つの異常陰影に確実にカーソルを移動させることができる。
 また、2つの放射線画像とは撮影方向が異なる第3の放射線画像から異常陰影を検出し、2つの放射線画像および第3の放射線画像における異常陰影の位置関係に基づいて、互いに対応する異常陰影を特定することにより、2つの放射線画像のみを用いたのでは、互いに対応する異常陰影を特定することができない場合であっても、互いに対応する異常陰影を確実に特定することができる。
 また、本発明の他の態様によれば、2次元表示された一方の放射線画像において、所望の異常陰影の指定が受け付けられると、2つの放射線画像および第3の放射線画像における異常陰影の位置関係に基づいて、一方の放射線画像とは異なる他方の放射線画像における、指定された異常陰影と対応する異常陰影が特定される。そして、立体視画像が3次元表示されるとともに、指定された異常陰影の位置にカーソルが3次元表示される。ここで、2次元表示された放射線画像においては、奥行き方向を考慮する必要がないため、異常陰影の指定を容易に行うことができる。
 したがって、本発明の他の態様によれば、操作者は、カーソルを平面方向および奥行き方向の双方に移動する操作を行う必要が無くなり、その結果、異常陰影の位置にカーソルを容易に移動することができる。また、2つの放射線画像とは撮影方向が異なる第3の放射線画像から異常陰影を検出し、2つの放射線画像および第3の放射線画像における異常陰影の位置関係に基づいて、互いに対応する異常陰影を特定することにより、2つの放射線画像のみを用いたのでは、互いに対応する異常陰影を特定することができない場合であっても、互いに対応する異常陰影を確実に特定することができる。
本発明の放射線画像表示装置の一実施形態を用いたステレオ***画像撮影表示システムの概略構成図 図1に示すステレオ***画像撮影表示システムのアーム部を図1の右方向から見た図 図1に示すステレオ***画像撮影表示システムの撮影台を上方から見た図 図1に示すステレオ***画像撮影表示システムのコンピュータ内部の概略構成を示すブロック図 第1の実施形態において行われる処理を示すフローチャート 複数の異常陰影の順序の決定を説明するための図 複数の異常陰影の順序の決定を説明するための図 対応する異常陰影の特定を説明するための図 対応する異常陰影が特定できない状態を示す図 対応する異常陰影が特定できない状態を示す図 スカウト画像を用いての異常陰影の特定を説明するための図 スカウト画像を用いての異常陰影の特定を説明するための図 対応する異常陰影が特定できる状態を示す図 放射線画像およびモニタに表示されるステレオ画像を示す模式図 3次元カーソルの移動を説明するための図 第2の実施形態において行われる処理を示すフローチャート 第3の実施形態において行われる処理を示すフローチャート 第3の実施形態における異常陰影の指定を説明するための図 第3の実施形態においてモニタに表示されるステレオ画像を示す模式図
 以下、図面を参照して本発明の放射線画像表示装置の一実施形態を用いたステレオ***画像撮影表示システムについて説明する。本発明の第1の実施形態による***画像撮影表示システムは、着脱可能なバイオプシユニットを取り付けることにより***用のステレオバイオプシ装置としても動作するシステムである。まず、本実施形態の***画像撮影表示システム全体の概略構成について説明する。図1は、バイオプシユニットが取り付けられた状態の本発明の第1の実施形態における***画像撮影表示システムの概略構成を示す図である。
 第1の実施形態の***画像撮影表示システム1は、図1に示すように、***画像撮影装置10と、***画像撮影装置10に接続されたコンピュータ8と、コンピュータ8に接続されたモニタ9および入力部7とを備えている。
 そして、***画像撮影装置10は、図1に示すように、基台11と、基台11に対し上下方向(Z方向)に移動可能であり、かつ回転可能な回転軸12と、回転軸12により基台11と連結されたアーム部13を備えている。なお、図2には、図1の右方向から見たアーム部13を示している。
 アーム部13はアルファベットのCの形をしており、その一端には撮影台14が、その他端には撮影台14と対向するように放射線照射部16が取り付けられている。アーム部13の回転および上下方向の移動は、基台11に組み込まれたアームコントローラ31により制御される。
 撮影台14の内部には、フラットパネルディテクタ等の放射線検出器15と、放射線検出器15からの電荷信号の読み出しを制御する検出器コントローラ33が備えられている。また、撮影台14の内部には、放射線検出器15から読み出された電荷信号を電圧信号に変換するチャージアンプや、チャージアンプから出力された電圧信号をサンプリングする相関2重サンプリング回路や、電圧信号をデジタル信号に変換するAD変換部等が設けられた回路基板等も設置されている。
 また、撮影台14はアーム部13に対し回転可能に構成されており、基台11に対してアーム部13が回転したときでも、撮影台14の向きは基台11に対し固定された向きとすることができる。
 放射線検出器15は、放射線画像の記録と読み出しを繰り返して行うことができるものであり、放射線の照射を直接受けて電荷を発生する、いわゆる直接型の放射線検出器を用いてもよいし、放射線を一旦可視光に変換し、その可視光を電荷信号に変換する、いわゆる間接型の放射線検出器を用いるようにしてもよい。また、放射線画像信号の読出方式としては、TFT(thin film transistor)スイッチをオン・オフさせることによって放射線画像信号が読み出される、いわゆるTFT読出方式のものや、読取光を照射することによって放射線画像信号が読み出される、いわゆる光読出方式のものを用いることが望ましいが、これに限らずその他のものを用いるようにしてもよい。
 放射線照射部16の中には放射線源17と、放射線源コントローラ32が収納されている。放射線源コントローラ32は、放射線源17から放射線を照射するタイミングと、放射線源17における放射線発生条件(管電流、時間、管電流時間積等)を制御するものである。
 また、アーム部13の中央部には、撮影台14の上方に配置されて***を押さえつけて圧迫する圧迫板18と、その圧迫板18を支持する支持部20と、支持部20を上下方向(Z方向)に移動させる移動機構19が設けられている。圧迫板18の位置、圧迫圧は、圧迫板コントローラ34により制御される。図3は、図1に示す圧迫板18を上方から見た図であるが、同図に示すように、圧迫板18は、撮影台14と圧迫板18により***を固定した状態でバイオプシを行えるよう、約10×10cm四方の大きさの開口部5を備えている。
 バイオプシユニット2は、その基体部分が圧迫板18の支持部20の開口部に差し込まれ、基体部分の下端がアーム部13に取り付けられることによって、***画像撮影表示システム1と機械的、電気的に接続されるものである。
 そして、バイオプシユニット2は、***に穿刺される生検針21を有し、着脱可能に構成された生検針ユニット22と、生検針ユニット22を支持する針支持部23と、針支持部23をレールに沿って移動させ、あるいは針支持部23を出し入れさせることにより、生検針ユニット22を図1から図3に示すX、YおよびZ方向に移動させる移動機構24とを備える。生検針ユニット22の生検針21の先端の位置は、移動機構24が備える針位置コントローラ35により、3次元空間における位置座標(x,y,z)として認識され、制御される。なお、図1における紙面垂直方向がX方向、図2における紙面垂直方向がY方向、図3における紙面垂直方向がZ方向である。
 コンピュータ8は、中央処理装置(CPU)および半導体メモリやハードディスクやSSD等のストレージデバイス等を備えており、これらのハードウェアによって、図4に示すような制御部8a、放射線画像記憶部8b、異常陰影検出部8c、異常陰影特定部8dおよび表示制御部8eが構成されている。なお、制御部8aは、本発明における警告部としても機能する。
 制御部8aは、各種のコントローラ31~35に対して所定の制御信号を出力し、システム全体の制御を行うものである。具体的な制御方法については後述する。
 放射線画像記憶部8bは、放射線検出器15によって取得された撮影角度毎の放射線画像信号を記憶するものである。
 異常陰影検出部8cは、撮影角度毎の放射線画像信号により表される放射線画像を解析し、放射線画像に含まれる***内における異常陰影の位置を自動的に検出するものである。なお、異常陰影の検出方法は、異常陰影の濃度分布の特徴や形態的な特徴に基づいて検出するようにすればく、具体的には、主として腫瘤陰影を検出するのに適したアイリスフィルタ処理(上記特許文献1参照)や、主として微小石灰化陰影を検出するのに適したモフォロジーフィルタ処理等(上記特許文献2参照)を利用して異常陰影を検出するようにすればよい。また、異常陰影検出部8cは、複数の異常陰影が検出された場合、異常陰影の順序を決定する。順序の決定については後述する。
 異常陰影特定部8dは、撮影角度毎の放射線画像信号において検出された、対応する異常陰影同士を、撮影角度毎の放射線画像信号間において特定する。
 表示制御部8eは、2つの放射線画像を用いたステレオ画像をモニタ9に表示したり、ステレオ画像における異常陰影の位置に、後述するように3次元カーソルを表示するものである。
 入力部7は、例えば、キーボードやマウス等のポインティングデバイスから構成されるものであり、モニタ9に表示されたステレオ画像および2次元画像として表示された放射線画像内の異常陰影等の位置をカーソルにより指定可能に構成されたものである。また、入力部7は、操作者による撮影条件等の入力や操作指示の入力等を受け付けるものである。
 モニタ9は、表示制御部8eからの指示により、コンピュータ8から出力された2つの放射線画像信号を用いてステレオ画像を表示するものであるが、その構成としては、例えば、2つの画面を用いて2つの放射線画像信号に基づく放射線画像をそれぞれ表示させて、これらをハーフミラーや偏光グラス等を用いることで一方の放射線画像は観察者の右目に入射させ、他方の放射線画像は観察者の左目に入射させることによってステレオ画像を表示する構成を採用することができる。または、例えば、2つの放射線画像を所定のずれ量だけずらして重ね合わせて表示し、これを偏光グラスで観察することでステレオ画像を生成する構成としてもよいし、もしくはパララックスバリア方式およびレンチキュラー方式のように、2つの放射線画像を立体視可能な3D液晶に表示することによってステレオ画像を生成する構成としてもよい。
 次に、第1の実施形態の***画像撮影表示システムの作用について、図5に示すフローチャートを参照しながら説明する。
 まず、撮影台14の上に***Mが設置され、圧迫板18により***が所定の圧力によって圧迫される(ステップST1)。
 次に、入力部7おいて、操作者によって種々の撮影条件が入力された後、撮影開始の指示が入力される。なお、このとき生検針ユニット22は上方に待避しており、まだ***には穿刺されていないものとする。
 そして、入力部7において撮影開始の指示があると、***Mのステレオ画像の撮影に先だって、スカウト撮影が行われる(ステップST2)。具体的には、まず制御部8aが、バイオプシのスカウト撮影を行うべく、放射線源コントローラ32および検出器コントローラ33に対して放射線の照射と放射線画像信号の読み出しを行うよう制御信号を出力する。ここで、アーム部13は初期位置においては、アーム部13が撮影台14に対して垂直となる位置にあることから、この制御信号に応じて、放射線源17から放射線が射出され、***を垂直方向(θ=0度)方向から撮影した放射線画像が放射線検出器15によって検出され、検出器コントローラ33によって放射線画像信号が読み出され、その放射線画像信号に対して所定の信号処理が施された後、コンピュータ8の放射線画像記憶部8bに、スカウト画像GSの放射線画像信号として記憶される。
 スカウト撮影により取得されたスカウト画像GSはモニタ9に表示される。操作者はスカウト画像を観察しながら、スカウト画像において視認される異常陰影が圧迫板18の開口5の位置に位置するように、***Mの位置決めを行う。
 次いで制御部8aは、予め設定されたステレオ画像の撮影のための輻輳角θを読み出し、その読み出した輻輳角θの情報をアームコントローラ31に出力する。なお、本実施形態においては、バイオプシを行うものであることから、このときの輻輳角θの情報としてθ=±15度が予め記憶されているものとするが、これに限らず、例えば、バイオプシを行わない場合には、立体視を良好に行うことが可能な±2度以上±5度以下の任意の角度を用いてもよい。
 次に、入力部7において撮影開始の指示があると、***Mのステレオ画像の撮影が行われる(ステップST3)。そして、アームコントローラ31において、制御部8aから出力された輻輳角θの情報が受け付けられ、アームコントローラ31は、この輻輳角θの情報に基づいて、図2に示すように、アーム部13が撮影台14に垂直な方向に対して+θ度回転するよう制御信号を出力する。すなわち、本実施形態においては、アーム部13を撮影台14に垂直な方向に対して+15度回転するよう制御信号を出力する。
 そして、このアームコントローラ31から出力された制御信号に応じてアーム部13が+15度回転する。続いて制御部8aは、放射線源コントローラ32および検出器コントローラ33に対して放射線の照射と放射線画像信号の読み出しを行うよう制御信号を出力する。この制御信号に応じて、放射線源17から放射線が射出され、***を+15度方向から撮影した放射線画像が放射線検出器15によって検出され、検出器コントローラ33によって放射線画像信号が読み出され、その放射線画像信号に対して所定の信号処理が施された後、コンピュータ8の放射線画像記憶部8bに記憶される。なお、この撮影により放射線画像記憶部8bに記憶される放射線画像信号は、右目用の放射線画像GRを表す。
 次に、アームコントローラ31は、図2に示すように、アーム部を初期位置に一旦戻した後、撮影台14に垂直な方向に対して-θ度回転するよう制御信号を出力する。本実施形態においては、アーム部13を撮影台14に垂直な方向に対して-15度回転するよう制御信号を出力する。
 そして、このアームコントローラ31から出力された制御信号に応じてアーム部13が-15度回転する。続いて制御部8aは、放射線源コントローラ32および検出器コントローラ33に対して放射線の照射と放射線画像の読み出しを行うよう制御信号を出力する。この制御信号に応じて、放射線源17から放射線が射出され、***を-15度方向から撮影した放射線画像が放射線検出器15によって検出され、検出器コントローラ33によって放射線画像信号が読み出され、所定の信号処理が施された後、コンピュータ8の放射線画像記憶部8bに記憶される。なお、この撮影により放射線画像記憶部8bに記憶される放射線画像信号は、左目用の放射線画像GLを表す。
 そして、***Mへの麻酔が行われ、再度ステレオ撮影が行われる。麻酔前の***Mの位置決めと、麻酔後の***Mの位置決めとで、***Mの設置位置が異なるものとなった場合には、再度のスカウト撮影を行う。一方、麻酔前の***Mの位置決めと麻酔後の***Mの位置決めとで、***の設置位置が略同一となった場合には、被検体への被曝量低減のために、再度のスカウト撮影は行わない。
 次に、異常陰影検出部8cにより、左目用の放射線画像GLおよび右目用の放射線画像GRから、***における石灰化や腫瘤等の異常陰影が検出される(ステップST4)。なお、本実施形態においては、複数の異常陰影が検出されたものとする。
 さらに、異常陰影検出部8cは、検出された複数の異常陰影の順序を決定する(ステップST5)。具体的には、図6に示すように、左目用または右目用の放射線画像GL(GR)の中心位置O1を設定し、中心位置O1から近い順に順序を決定する。また、アイリスフィルタの出力値あるいはモフォロジーフィルタの出力値が高いほど、異常陰影の悪性度は高くなることから、悪性度の高い順に順序を決定してもよい。また、石灰化の順序を上げるようにしてもよく、逆に腫瘤の順序を上げるようにしてもよい。また、複数の石灰化が密集している集族石灰化が存在する場合には、集族石灰化の順序を上げる(例えば1番にする)ようにしてもよい。
 なお、本実施形態においては、バイオプシを行うものであるため、図7に示すように、放射線画像GL(GR)における圧迫板18の開口部5に対応する領域5′に存在する複数の異常陰影についてのみ、順序を決定するようにしてもよい。
 そして、異常陰影特定部8dは、2つの放射線画像により対応する異常陰影を特定できるか否かを判断する(ステップST6)。以下、対応する異常陰影の特定について説明する。図8は対応する異常陰影の特定を説明するための図である。図8に示すように、右目用の放射線画像GRには、4つの異常陰影BR1~BR4が含まれている。ここで、本実施形態においては、放射線源17の移動方向が、図2に示すX方向であるため、異常陰影BR1~BR4のY座標と、左目用の放射線画像GLに含まれる対応する異常陰影のY座標とは同一となる。このため、異常陰影特定部8dは、右目用の放射線画像GRに含まれる異常陰影BR1~BR4のそれぞれについて、左目用放射線画像GLのX方向にのみ探索を行い、左目用放射線画像GLにおいて、1つの異常陰影のみしか存在しない場合、2つの放射線画像により対応する異常陰影を特定できると判断する。この場合、対応する異常陰影は探索された異常陰影となる(ステップST7)。
 一方、図9に示すように、右目用の放射線画像GRに2つの異常陰影BR1,BR2が含まれており、かつそのY座標が等しい場合、異常陰影BR1について、左目用の放射線画像GLに存在する2つの異常陰影のいずれが対応するのかが分からない。このため、異常陰影特定部8dは、右目用の放射線画像GRに含まれる異常陰影について、左目用放射線画像GLのX方向にのみ探索を行い、左目用放射線画像GLにおいて、2以上の異常陰影が存在する場合、2つの放射線画像により対応する異常陰影を特定できないと判断する。この場合、異常陰影特定部8dは、2つの放射線画像GL,GRに加えて、スカウト画像GSを用いて、対応する異常陰影を特定する(ステップST8)。以下、スカウト画像GSを用いての異常陰影の特定について説明する。
 図10は異常陰影が特定できない状態を示す図である。図10に示すように***に異常陰影B1,B2が存在する場合、左目用の放射線画像GLおよび右目用の放射線画像GRには、それぞれ異常陰影BL1,BL2、異常陰影BR1,BR2として含まれるが、異常陰影B1,B2のY方向の位置が同一であると、放射線画像上において、異常陰影BL1が異常陰影BR1,BR2のいずれに対応するのか、また異常陰影BL2が異常陰影BR1,BR2のいずれに対応するのかを特定することができない。
 図11および図12はスカウト画像を用いての異常陰影の特定を説明するための図である。なお、以降の説明においては、放射線検出器15の検出面のZ座標を0とする。また、左目用の放射線画像GLにおける異常陰影の座標をPL1(l1,0)、PL2(l2,0)、右目用の放射線画像GRにおける異常陰影の座標をPR1(r1,0)、PR2(r2,0)、-15度の線源位置PLの座標を(aL、bL,cL)、+15度の線源位置PRの座標を(aR,bR,cR)とする。まず、異常陰影特定部8dは、図11に示すように、-15度の線源位置PLから発せられて座標PL1,PL2に到る放射線の経路と、+15度の線源位置PRから発せられて座標PR1に到る放射線の経路との交点B1,B4、および-15度の線源位置PLから発せられて座標PL1,PL2に到る放射線の経路と、+15度の線源位置PRから発せられて座標PR2に到る放射線の経路との交点B2,B3を設定する。そして、左目用の放射線画像GLにおける異常陰影の座標PL1(l1,0)、PL2(l2,0)、右目用の放射線画像GRにおける異常陰影の座標PR1(r1,0)、PR2(r2,0)、-15度の線源位置PLの座標(aL、bL,cL)および+15度の線源位置PRの座標(aR,bR,cR)を用いて、交点B1~B4の位置の座標を算出する。
 ここで、各交点B1~B4はそれぞれ2つの直線上にあり、その2つの直線は同一平面上にある。図11に示すように、各交点B1~B4を通る直線は、直線PL-PL1、直線PL-PL2、直線PR-PR1、および直線PR-PR2の4本あり、各直線を図11のX-Z平面に射影すると、各直線は下記の式により表すことができる。
 直線PL-PL1:z=cL/(aL-l1)*(x-l1)
 直線PL-PL2:z=cL/(aR-l2)*(x-l2)
 直線PR-PR1:z=cR/(aR-r1)*(x-r1)
 直線PR-PR2:z=cR/(aR-r2)*(x-r2)
 4つの直線の式において、xおよびz以外のパラメータは既知である。したがって、上記4つの式の交点の座標を算出することができ、算出した4つの交点の座標が交点B1~B4の位置の座標となる。
 なお、異常陰影のZ座標は、圧迫板18の下面より高い位置となったり、撮影台14の上面より低い位置となったりすることはない。このため、算出した交点B1~B4のZ座標を確認し、Z座標が圧迫板18の下面より高い位置となったり、撮影台14の上面より低い位置となったりする交点には、異常陰影は存在しないと判断することができる。例えば、図13に示すように、交点B1のZ座標が圧迫板下面よりも高い位置にあり、交点B2のZ座標が撮影台上面よりも低い位置にある場合、交点B1,B2には異常陰影は存在しない。この場合、後述する処理を行うことなく、交点B3,B4の位置を異常陰影の位置と特定することができる。
 次いで、異常陰影特定部8dは、スカウト画像GSにおける異常陰影の座標PS1(s1,0)、PS2(s2,0)、および0度の線源位置P0の座標(aS,bS,cS)の座標から、座標PS1(s1,0)と座標(aS,cS)とを結ぶ直線L1を表す式Eq1、および座標PS2(s2,0)と座標(aS,cS)とを結ぶ直線L2を表す式Eq2をそれぞれ算出する。なお、式Eq1,Eq2の算出は、上述した交点B1~B4を通る直線の式の場合と同様に、X-Z平面へ射影して行われる。
 z=cS/(aS-s1)×(x-s1) Eq1
 z=cS/(aS-s2)×(x-s2) Eq2
 そして、異常陰影特定部8dは、交点B1~B4について、直線L1,L2上にあるものを求める。具体的には、交点B1~B4のX座標を式Eq1,Eq2にそれぞれ代入して、Z座標の値を算出する。そして、算出されたZ座標が、交点B1~B4のZ座標と一致しているか否かにより、交点B1~B4のいずれが直線L1,L2上に存在するかを特定する。なお、Z座標は完全に一致しない場合があるため、ある程度の誤差を持って一致するか否かを判断するようにする。そして、直線L1,L2上に存在する交点の位置を実際の異常陰影と判断し、左目用の放射線画像GLおよび右目用の放射線画像GRにおいて、対応する異常陰影を特定する。例えば、交点B2が直線L1上にある場合、右目用の放射線画像GR上の異常陰影の座標PR2と、左目用の放射線画像GL上の異常陰影の座標Pl2とが対応し、右目用の放射線画像GR上の異常陰影の座標PR1と、左目用の放射線画像GL上の異常陰影の座標Pl1とが対応する。
 次に、表示制御部8eは、放射線画像記憶部2bに記憶された2つの放射線画像GL,GRを読み出し、図14に示すように放射線画像GL,GRに含まれる異常陰影のうち、決定された順序が先頭の異常陰影の位置にカーソルをそれぞれ付与し、カーソルが付与された放射線画像GL,GRのステレオ画像をモニタ9に3次元表示する(ステップST9)。これにより、モニタ9に表示されたステレオ画像には、異常陰影(図14においてはB1)の位置に、異常陰影の同様の立体感を有する3次元カーソルが表示される。
 この後、操作者が入力部7を操作することにより、3次元カーソルの位置を変更することができる。例えば、図14に示す3つの異常陰影B1~B3について、異常陰影検出部8cが決定した順序がB1,B2,B3であったとすると、入力部7の操作に応じて、図15に示すように、3次元カーソルC1の位置が、表示制御部8eにより、異常陰影B2,B3へと順次移動される。なお、異常陰影B3に3次元カーソルC1が移動した後は、再度異常陰影B1の位置に3次元カーソルが戻る。
 このように3次元カーソルC1を移動させることにより、バイオプシのターゲットとする異常陰影が指定されると、ターゲットの位置情報(x,y,z)が制御部8aによって取得され、制御部8aはその位置情報をバイオプシユニット2の針位置コントローラ35に出力する。
 この状態で、入力部7において所定の操作ボタンが押されると、制御部8aから針位置コントローラ35に対し、生検針21を移動させる制御信号が出力される。針位置コントローラ35は、先に入力された位置情報の値に基づき、生検針21の先端が、その座標が示す位置の上方に配置されるように、生検針21を移動する。
 その後、観察者により、生検針21の穿刺を指示する所定の操作が入力部7において行われると、制御部8aと針位置コントローラ35の制御の下で、生検針21の先端が座標の示す位置に配置されるように生検針21が移動させられて、生検針21による***の穿刺が行われる(ステップST10)。
 このように、第1の実施形態によれば、ステレオ画像を表示するための2つの放射線画像GL,GRにおいて複数の異常陰影が検出された場合、ステレオ画像を表示する際に、複数の異常陰影のうちの所定の異常陰影の位置に3次元カーソルC1を表示し、その後の入力部7からの指示により、他の異常陰影の位置に、特定した順序により順次3次元カーソルC1を移動するようにしたものである。このため、操作者は、ステレオ画像上において異常陰影を指定するために、3次元カーソルC1を平面方向および奥行き方向の双方に移動する操作を行う必要が無くなり、その結果、異常陰影の位置に3次元カーソルC1を容易に移動することができる。
 また、3次元カーソルの奥行き感を異常陰影の奥行き感に合わせるために、ステレオ画像を長時間見続ける必要が無くなるため、操作者の目の疲労感を軽減できる。
 なお、上記第1の実施形態において、異常陰影検出部8cにより、放射線画像から異常陰影が検出されない場合がある。この場合、ステレオ画像の表示時等の所定のタイミングにより、異常陰影が検出されなかったことをモニタ9に表示する等して通知するようにすればよい。異常陰影が検出されなかった場合には、3次元カーソルは表示しないようにしてもよく、画像の中央等の予め定められた位置に表示するようにしてもよい。また、異常陰影検出部8cにより一つのみ異常陰影が検出された場合は、その異常陰影の位置にカーソルを付与し、入力部7からの指示があってもカーソルの位置を変えない、または異常陰影の数が一つであることをモニタ9に表示してもよい。
 また、上記第1の実施形態においては、輻輳角θ=±15度で撮影された放射線画像信号を用いるようにしたが、これに限らず、例えばバイオプシを行わないような場合には、±2度等の任意の輻輳角により撮影を行うようにしてもよい。この場合、バイオプシのようにスカウト撮影を行わないため、第1の実施形態のステップST6が否定された場合は以下のように処理を行う。以下、これを第2の実施形態として説明する。
 図16は第2の実施形態において行われる処理を示すフローチャートである。なお、図16においては、図5に示すフローチャートのステップST6が否定された以降の処理についてのみ示している。ステップST6が否定されると、制御部8aは、左目用および右目用の放射線画像GL,GRを取得した輻輳角θとは異なる第3の角度となる撮影方向から、第3の撮影を行わせるための警告を行う(ステップST21)。なお、警告は第3の撮影を行わせる指示をモニタ9に表示するものであればよいが、音声を用いてもよく、モニタ9への表示および音声の双方を用いるようにしてもよい。
 これにより、入力部7おいて、操作者によって第3の撮影開始の指示が入力される。そして、入力部7において撮影開始の指示があると、***Mの第3の撮影が行われる(ステップST22)。第3の撮影は、制御部8aが第3の撮影のための角度を読み出し、その角度の情報をアームコントローラ31に出力する。そして、アームコントローラ31において、制御部8aから出力された第3の角度の情報が受け付けられ、アームコントローラ31は、この第3の角度の情報に基づいて、アーム部13が撮影台14に垂直な方向に対して第3の角度回転するよう制御信号を出力する。
 そして、このアームコントローラ31から出力された制御信号に応じてアーム部13が第3の角度回転する。続いて制御部8aは、放射線源コントローラ32および検出器コントローラ33に対して放射線の照射と放射線画像信号の読み出しを行うよう制御信号を出力する。この制御信号に応じて、放射線源17から放射線が射出され、***を第3の角度方向から撮影した放射線画像が放射線検出器15によって検出され、検出器コントローラ33によって放射線画像信号が読み出され、その放射線画像信号に対して所定の信号処理が施された後、コンピュータ8の放射線画像記憶部8bに記憶される。
 そして、異常陰影検出部8cが、第3の角度方向から撮影した放射線画像(第3の放射線画像とする)から異常陰影を検出し(ステップST23)、さらに異常陰影特定部8dが、第3の放射線画像を用いて異常陰影を特定する(ステップST24)。なお、異常陰影の特定の処理は、上記第1の実施形態において、スカウト画像に変えて第3の放射線画像を用いるものであるため、ここでは詳細な説明は省略する。
 その後、第1の実施形態のステップST9と同様に、ステレオ画像が3次元カーソルとともに表示され(ステップST25)、さらに生検針21による***の穿刺が行われる(ステップST26)。
 次いで、本発明の第3の実施形態について説明する。第3の実施形態による***画像撮影表示システムの構成は、第1の実施形態による***画像撮影表示システムと同一の構成を有し、行われる処理のみが異なるため、ここでは構成についての詳細な説明は省略する。
 図17は第3の実施形態において行われる処理を示すフローチャートである。なお、図17においては、図5に示すフローチャートのステップST4以降の処理についてのみ示している。
 異常陰影検出部8cにより異常陰影が検出されると、制御部8aはモニタ9に2つの放射線画像GL,GRのうちのいずれか一方の放射線画像(例えば左目用の放射線画像GL)を表示する(ステップST31)。なお、この放射線画像の表示は、立体感のない2次元表示となる。次に、図18に示すように、操作者による入力部7を用いて、複数の異常陰影から所望とする異常陰影の指定が受け付けられる(ステップST32)。なお、操作者は入力部7を操作してカーソルC2を所望とする異常陰影の位置に移動させることにより、所望の異常陰影の指定を行う。
 そして、異常陰影特定部8dにより、他方の放射線画像(右目用の放射線画像GR)において、操作者により指定された異常陰影に対応する異常陰影を特定する。
 具体的には、第1の実施形態のステップST6と同様に、2つの放射線画像により、対応する異常陰影を特定できるか否かを判断する(ステップST33)。異常陰影を特定できる場合、対応する異常陰影は、第1の実施形態と同様に探索された異常陰影となる(ステップST34)。一方、異常陰影を特定できない場合、異常陰影特定部8dは、スカウト画像を用いて異常陰影を特定する(ステップST35)。
 次に、表示制御部8eは、放射線画像記憶部2bに記憶された2つの放射線画像GL,GRを読み出し、2次元表示された放射線画像において指定された異常陰影の位置にカーソルをそれぞれ付与し、図19に示すように、カーソルが付与された放射線画像GL,GRのステレオ画像をモニタ9に3次元表示する(ステップST36)。これにより、***の放射線画像が3次元表示されるとともに、異常陰影(図19においてはB2)に異常陰影の同様の立体感を有する3次元カーソルC3が表示される。なお、カーソルは3次元カーソルとなる。
 この状態で、他の異常陰影を指定したい場合には、操作者は入力部7を用いて、他の異常陰影の指定の指示の入力を行う(ステップST37肯定)。他の異常陰影の指示の入力があると、制御部8aは、ステップST31の処理に戻る。
 これにより、操作者は、すでに指定した異常陰影以外の他の異常陰影を指定することができる。一方、指示なき場合、観察者により、生検針21の穿刺を指示する所定の操作が入力部7において行われると、制御部8aと針位置コントローラ35の制御の下で、生検針21の先端が座標の示す位置に配置されるように生検針21が移動させられて、生検針21による***の穿刺が行われる(ステップST38)。
 このように第3の実施形態では、2次元表示された一方の放射線画像において、所望とする異常陰影の指定が受け付けられると、2つの放射線画像および必要な場合にはスカウト画像における異常陰影の位置関係に基づいて、2次元表示された放射線画像とは異なる他方の放射線画像における指定された異常陰影と対応する異常陰影を特定し、ステレオ画像を表示する際に指定された異常陰影の位置にカーソルを3次元表示する。
 このため、第3の実施形態によれば、操作者は、ステレオ画像上において異常陰影を指定するために、カーソルを平面方向および奥行き方向の双方に移動する操作を行う必要が無くなり、その結果、異常陰影の位置にカーソルを容易に移動することができる。
 また、スカウト画像を用いて、互いに対応する異常陰影を特定しているため、2つの放射線画像のみを用いたのでは、互いに対応する異常陰影を特定することができない場合であっても、互いに対応する異常陰影を確実に特定することができる。
 なお、上記第3の実施形態においては、第1の実施形態と同様に、輻輳角θ=±15度で撮影された放射線画像信号を用いるようにしたが、これに限らず、例えばバイオプシを行わない場合には、第2の実施形態と同様に、±2度等の任意の輻輳角により撮影を行うようにしてもよい。この場合、スカウト撮影を行わないため、第3の実施形態のステップST33が否定された場合は、第2の実施形態と同様に、第3の撮影を行い、これにより取得した第3の画像を用いて異常陰影を特定するようにすればよい。
 なお、上記実施形態は、本発明の放射線画像表示装置の一実施形態をステレオ***画像撮影表示システムに適用したものであるが、本発明の被写体としては***に限らず、例えば、胸部や頭部等を撮影する放射線画像撮影表示システムにも本発明を適用することができる。
   1  ***画像撮影表示システム
   2  バイオプシユニット
   7  入力部
   8  コンピュータ
   8a  制御部
   8b  放射線画像記憶部
   8c  異常陰影検出部
   8d  異常陰影特定部
   8e  表示制御部
   9  モニタ
   10  ***画像撮影装置
   13  アーム部
   14  撮影台
   15  放射線検出器
   17  放射線源
   18  圧迫板
   21  生検針
   22  生検針ユニット
   31  アームコントローラ
   32  放射線源コントローラ
   33  検出器コントローラ
   34  圧迫板コントローラ
   35  針位置コントローラ

Claims (9)

  1.  立体視画像を表示するために異なる2方向から被検体を撮影することにより取得された、2つの放射線画像のそれぞれから異常陰影を検出する異常陰影検出部と、
     前記立体視画像を表示する表示部と、
     複数の前記異常陰影が検出された場合において、該複数の異常陰影のうちの所定の異常陰影の位置にカーソルを3次元表示する表示制御部と、
     前記カーソルの位置の変更の指示を受け付ける入力部とを備え、
     前記表示制御部は、前記カーソルの位置の変更の指示により、前記複数の異常陰影のそれぞれの位置に、順次前記カーソルを移動させるものであることを特徴とする放射線画像表示装置。
  2.  前記2つの放射線画像に基づいて、前記2つの放射線画像においてそれぞれ検出された前記複数の異常陰影間において、互いに対応する異常陰影を特定する異常陰影特定部をさらに備えたことを特徴とする請求項1記載の放射線画像表示装置。
  3.  前記異常陰影特定部は、前記2つの放射線画像に基づいて前記対応する異常陰影が特定できるか否かを判定するものであり、
     前記異常陰影検出部は、前記対応する異常陰影が特定できない場合に、前記2つの放射線画像とは撮影方向が異なる第3の放射線画像から異常陰影を検出するものであり、
     前記異常陰影特定部は、前記2つの放射線画像および前記第3の放射線画像における異常陰影の位置関係に基づいて、前記対応する異常陰影を特定するものであることを特徴とする請求項1または2記載の放射線画像表示装置。
  4.  前記異常陰影特定部が前記2つの放射線画像に基づいて前記対応する異常陰影が特定できない場合に、前記第3の放射線画像の取得を促す警告を行う警告部をさらに備えたことを特徴とする請求項3記載の放射線画像表示装置。
  5.  前記異常陰影特定部は、前記2つの放射線画像における異常陰影の位置および該2つの放射線画像を取得した際の放射線源の位置から、前記被検体内における前記異常陰影が存在しうる位置を特定し、前記第3の放射線画像における異常陰影の位置および該第3の放射線画像を取得した際の放射線源の位置から、該放射線源の位置と前記第3の放射線画像における異常陰影の位置とを結ぶ直線を規定し、前記直線上に前記異常陰影が存在しうる位置が存在するか否かに応じて、前記対応する異常陰影を特定するものであることを特徴とする請求項3または4記載の放射線画像表示装置。
  6.  前記2つの放射線画像が、ステレオバイオプシを行うために撮影された***の放射線画像である場合において、前記第3の放射線画像は、バイオプシのスカウト撮影により取得されたものであることを特徴とする請求項3から5のいずれか1項記載の放射線画像表示装置。
  7.  前記所定の異常陰影は、前記放射線画像の中央に位置する異常陰影、特定種類の異常陰影、複数の密集した異常陰影、前記異常陰影検出部により所定の検出結果が得られた異常陰影のうちの少なくとも1つの条件を満たす異常陰影であることを特徴とする請求項1から6のいずれか1項記載の放射線画像表示装置。
  8.  前記2つの放射線画像が、ステレオバイオプシを行うために撮影された***の放射線画像である場合において、前記所定の異常陰影は、前記ステレオバイオプシによる生検を取得可能な範囲に存在する異常陰影であることを特徴とする請求項7記載の放射線画像表示装置。
  9.  立体視画像を表示するために異なる2方向から被検体を撮影することにより取得された、2つの放射線画像のそれぞれから異常陰影を検出し、
     複数の前記異常陰影が検出された場合において、前記立体視画像を表示するとともに、該複数の異常陰影のうちの所定の異常陰影の位置にカーソルを3次元表示し、
     前記カーソルの位置の変更の指示を受け、
     前記カーソルの位置の変更の指示により、前記複数の異常陰影のそれぞれの位置に、順次前記カーソルを移動させることを特徴とする放射線画像表示方法。
PCT/JP2012/050152 2011-01-13 2012-01-06 放射線画像表示装置および方法 WO2012096224A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP12733962.0A EP2664279B1 (en) 2011-01-13 2012-01-06 Radiograph display apparatus and method
US13/933,364 US9117315B2 (en) 2011-01-13 2013-07-02 Radiographic image display device and method for displaying radiographic image

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-004453 2011-01-13
JP2011004453A JP5514127B2 (ja) 2011-01-13 2011-01-13 放射線画像表示装置および方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/933,364 Continuation US9117315B2 (en) 2011-01-13 2013-07-02 Radiographic image display device and method for displaying radiographic image

Publications (1)

Publication Number Publication Date
WO2012096224A1 true WO2012096224A1 (ja) 2012-07-19

Family

ID=46507124

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/050152 WO2012096224A1 (ja) 2011-01-13 2012-01-06 放射線画像表示装置および方法

Country Status (4)

Country Link
US (1) US9117315B2 (ja)
EP (1) EP2664279B1 (ja)
JP (1) JP5514127B2 (ja)
WO (1) WO2012096224A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6126058B2 (ja) * 2014-09-30 2017-05-10 富士フイルム株式会社 画像表示装置、画像処理装置、放射線画像撮影システム、断層画像表示方法、及び断層画像表示プログラム。
US10542951B2 (en) * 2015-07-23 2020-01-28 General Electric Company Systems, methods, and devices for simplified high quality imaging of biopsy samples on a mammography machine
EP3595529A1 (en) * 2017-03-15 2020-01-22 Hologic, Inc. Techniques for patient positioning quality assurance prior to mammographic image acquisition

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0416896A (ja) * 1990-05-10 1992-01-21 Toshiba Corp 三次元カーソル及び三次元カーソルを用いた画像表示方法
JPH08294479A (ja) 1995-01-23 1996-11-12 Fuji Photo Film Co Ltd 計算機支援画像診断装置
JPH09187446A (ja) * 1996-01-12 1997-07-22 Toshiba Corp 手術支援用透視画像表示装置
JPH1097624A (ja) 1996-09-20 1998-04-14 Fuji Photo Film Co Ltd 異常陰影候補の検出方法および装置
JP2000350722A (ja) * 1999-04-22 2000-12-19 Ge Medical Syst Sa 器官の注目する要素の配置および三次元表現の方法
JP2004337200A (ja) 2003-05-13 2004-12-02 Canon Inc 画像処理装置
JP2005136726A (ja) * 2003-10-30 2005-05-26 Canon Inc 立体画像表示装置、立体画像表示システム、立体画像表示方法及びプログラム
JP2007215727A (ja) 2006-02-16 2007-08-30 Matsushita Electric Ind Co Ltd 酸素富化装置
JP2010131171A (ja) * 2008-12-04 2010-06-17 Fujifilm Corp バイオプシー装置
JP2010137004A (ja) 2008-12-15 2010-06-24 Fujifilm Corp 放射線画像処理システム及び処理方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005185560A (ja) * 2003-12-25 2005-07-14 Konica Minolta Medical & Graphic Inc 医用画像処理装置及び医用画像処理システム
JP2005198970A (ja) * 2004-01-19 2005-07-28 Konica Minolta Medical & Graphic Inc 医用画像処理装置
US20060177115A1 (en) * 2005-02-04 2006-08-10 Gifu University Medical image processing apparatus and program
JP3779982B1 (ja) * 2005-02-04 2006-05-31 国立大学法人岐阜大学 医用画像処理装置及びプログラム
WO2006126384A1 (ja) * 2005-05-23 2006-11-30 Konica Minolta Medical & Graphic, Inc. 異常陰影候補の表示方法及び医用画像処理システム
JPWO2007029467A1 (ja) * 2005-09-05 2009-03-19 コニカミノルタエムジー株式会社 画像処理方法及び画像処理装置
US8411816B2 (en) * 2007-02-21 2013-04-02 Konica Minolta Medical & Graphic, Inc. Radiological image capturing apparatus and radiological image capturing system
US8493437B2 (en) * 2007-12-11 2013-07-23 Raytheon Bbn Technologies Corp. Methods and systems for marking stereo pairs of images
JP2010187916A (ja) * 2009-02-18 2010-09-02 Fujifilm Corp 画像処理装置、画像処理システム及びプログラム
US8995614B2 (en) * 2010-09-29 2015-03-31 Konica Minolta Medical & Graphic, Inc. Method for displaying medical images and medical image display system
US9001326B2 (en) * 2011-12-13 2015-04-07 Welch Allyn, Inc. Method and apparatus for observing subsurfaces of a target material

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0416896A (ja) * 1990-05-10 1992-01-21 Toshiba Corp 三次元カーソル及び三次元カーソルを用いた画像表示方法
JPH08294479A (ja) 1995-01-23 1996-11-12 Fuji Photo Film Co Ltd 計算機支援画像診断装置
JPH09187446A (ja) * 1996-01-12 1997-07-22 Toshiba Corp 手術支援用透視画像表示装置
JPH1097624A (ja) 1996-09-20 1998-04-14 Fuji Photo Film Co Ltd 異常陰影候補の検出方法および装置
JP2000350722A (ja) * 1999-04-22 2000-12-19 Ge Medical Syst Sa 器官の注目する要素の配置および三次元表現の方法
JP2004337200A (ja) 2003-05-13 2004-12-02 Canon Inc 画像処理装置
JP2005136726A (ja) * 2003-10-30 2005-05-26 Canon Inc 立体画像表示装置、立体画像表示システム、立体画像表示方法及びプログラム
JP2007215727A (ja) 2006-02-16 2007-08-30 Matsushita Electric Ind Co Ltd 酸素富化装置
JP2010131171A (ja) * 2008-12-04 2010-06-17 Fujifilm Corp バイオプシー装置
JP2010137004A (ja) 2008-12-15 2010-06-24 Fujifilm Corp 放射線画像処理システム及び処理方法

Also Published As

Publication number Publication date
JP5514127B2 (ja) 2014-06-04
EP2664279B1 (en) 2019-11-06
US20130293464A1 (en) 2013-11-07
EP2664279A1 (en) 2013-11-20
JP2012143419A (ja) 2012-08-02
US9117315B2 (en) 2015-08-25
EP2664279A4 (en) 2017-03-22

Similar Documents

Publication Publication Date Title
US10664969B2 (en) Radiological image radiographing display method and system thereof
JP5486437B2 (ja) 立体視画像表示方法および装置
JP5815038B2 (ja) 放射線画像表示方法および装置
WO2012096224A1 (ja) 放射線画像表示装置および方法
US20120051613A1 (en) Mammography displaying method and system
JP5613094B2 (ja) 放射線画像表示装置および方法
WO2012096221A1 (ja) 放射線画像表示装置および方法
WO2012102184A1 (ja) 放射線画像表示装置および方法
WO2012115074A1 (ja) 放射線画像表示装置および方法
WO2012066753A1 (ja) 立体視画像表示方法および装置
JP2013070727A (ja) 立体視画像表示方法および装置
JP2013202058A (ja) 放射線撮影表示システムおよびその方法
JP2012245192A (ja) 放射線画像表示装置および方法
JP2012005728A (ja) 放射線画像撮影方法およびステレオバイオプシ装置
JP2013106695A (ja) 放射線画像表示装置および方法
WO2012117721A1 (ja) 立体視画像表示装置及び立体視画像表示方法
WO2012102127A1 (ja) 放射線画像表示装置および方法
WO2012132298A1 (ja) 立体視画像表示装置及び立体視画像表示方法
WO2012039138A1 (ja) 異常陰影候補の検出装置、検出方法およびプログラム並びに***画像診断システム
WO2011161972A1 (ja) 放射線画像撮影表示方法およびシステム
JP2012045024A (ja) ステレオバイオプシ装置およびその3次元ターゲットの位置取得方法
JP2012245193A (ja) 放射線画像表示装置および方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12733962

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012733962

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE