WO2012102127A1 - 放射線画像表示装置および方法 - Google Patents

放射線画像表示装置および方法 Download PDF

Info

Publication number
WO2012102127A1
WO2012102127A1 PCT/JP2012/050806 JP2012050806W WO2012102127A1 WO 2012102127 A1 WO2012102127 A1 WO 2012102127A1 JP 2012050806 W JP2012050806 W JP 2012050806W WO 2012102127 A1 WO2012102127 A1 WO 2012102127A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
radiation
radiographic
parallax
stereoscopic
Prior art date
Application number
PCT/JP2012/050806
Other languages
English (en)
French (fr)
Inventor
弘毅 中山
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2012102127A1 publication Critical patent/WO2012102127A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/50Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment specially adapted for specific body parts; specially adapted for specific clinical applications
    • A61B6/502Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment specially adapted for specific body parts; specially adapted for specific clinical applications for diagnosis of breast, i.e. mammography
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/02Arrangements for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
    • A61B6/022Stereoscopic imaging
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/46Arrangements for interfacing with the operator or the patient
    • A61B6/461Displaying means of special interest
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/46Arrangements for interfacing with the operator or the patient
    • A61B6/461Displaying means of special interest
    • A61B6/466Displaying means of special interest adapted to display 3D data

Definitions

  • the present invention relates to a radiation image display apparatus and method for displaying a stereoscopic image of a subject.
  • stereoscopic viewing can be performed using parallax by displaying a combination of a plurality of images.
  • a stereoscopically viewable image hereinafter referred to as a stereoscopic image or stereo image
  • a stereoscopic image or stereo image is generated from a plurality of images obtained by photographing the same subject from different directions.
  • stereoscopic images are used not only in the fields of digital cameras and televisions but also in the field of radiographic imaging.
  • a subject is irradiated with radiation from different imaging directions, the radiation transmitted through the subject is detected by a radiation detector to obtain a plurality of radiation images, and a stereoscopic image is obtained using these radiation images. It has been done to display.
  • a stereoscopic image it is possible to observe a radiographic image with a sense of depth, so that diagnosis can be performed more easily.
  • a tissue piece around a lesion may be collected.
  • a hollow tissue collecting needle hereinafter referred to as a living tissue
  • a biopsy that punctures a patient referred to as a meter reading
  • a stereo biopsy device has been proposed as a device for performing such a biopsy.
  • This stereo biopsy device can specify a three-dimensional position of a lesion while observing a stereoscopic image of a subject, and controls the tip of a biopsy needle to reach the specific position from a desired position. A tissue piece can be collected.
  • a three-dimensional position of a lesion is specified while observing a stereoscopic image of a subject, and a tissue piece is collected. Therefore, in order to accurately identify a lesion and collect a tissue piece, a stereoscopic image is displayed, the position of the lesion is identified in the displayed image, and a region in a predetermined range including the identified lesion is enlarged. It is conceivable to display three-dimensionally.
  • the parallax of the corresponding tissue included in the plurality of radiation images for displaying the stereoscopic image is enlarged, so that the stereoscopic effect becomes very large.
  • Stereoscopic viewing is difficult, and the eyes of the observer are greatly fatigued.
  • stereo biopsy it is necessary to accurately specify a lesion in the depth direction of the stereoscopic image, and thus the stereoscopic effect is larger than that of a normal stereoscopic image. Therefore, when stereo biopsy is performed, eye fatigue becomes very large.
  • Patent Document 1 a method for reducing the stereoscopic effect by adjusting the parallax angle of the camera when a stereoscopic image is enlarged has been proposed.
  • Patent Document 2 a method for reducing the stereoscopic effect by adjusting the shift amount of two images for displaying a stereoscopic image has been proposed.
  • a threshold for stereoscopic viewing is set, and when the stereoscopic viewing time exceeds the threshold, the parallax of the stereoscopic image is reduced, A method of displaying a two-dimensional image that cannot be stereoscopically viewed instead of a stereoscopic image has also been proposed (see Patent Document 3).
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to reduce the eyestrain of an observer when an enlarged stereoscopic image of a radiographic image is displayed.
  • the radiographic image display device displays the stereoscopic image of two radiographic images acquired by imaging a subject from two directions having a predetermined convergence angle in order to display a stereoscopic image.
  • An input unit that receives a change in parallax of a corresponding predetermined object included in the two radiographic images, and when the parallax exceeds a predetermined threshold, either one of the two radiographic images instead of the stereoscopic image, Alternatively, a display control unit that displays two radiation images side by side on the display unit is provided.
  • the “parallax of a predetermined object” among the parallaxes of a plurality of corresponding objects included in two radiographic images, the largest parallax, the smallest parallax, and the statistical values of the parallaxes of the plurality of objects (for example, average value, intermediate Any of (value) etc. can be used.
  • the threshold value may be 70 mm.
  • the display control unit may be a part that sets a predetermined threshold value according to a predetermined convergence angle.
  • the threshold may be set to 70 mm when the predetermined convergence angle is 5 degrees or more.
  • the threshold value may be 60 mm.
  • the threshold value may be 30 mm.
  • the display control unit may be a part that changes a predetermined threshold value according to at least one of the race, age, and personal characteristics of the observer.
  • the radiographic image display method is a method of displaying a predetermined predetermined object included in two radiographic images acquired by imaging a subject from two directions having a predetermined convergence angle in order to display a stereoscopic image. Accept parallax changes, When the parallax exceeds a predetermined threshold value, one of two radiographic images or two radiographic images are arranged and displayed on the display unit instead of the stereoscopic image.
  • the parallax of a predetermined object included in two radiographic images for displaying a stereoscopic image exceeds a predetermined threshold
  • at least one of the two radiographic images is used instead of the stereoscopic image One of them is displayed.
  • the display of the stereoscopic image is stopped. Can be reduced.
  • the distance between human pupils is 60 mm to 70 mm.
  • both eyes need to be crossed according to the parallax, but eye movements that exceed the interpupillary distance particularly lead to eye fatigue. Therefore, by setting the predetermined threshold value to 70 mm based on the interpupillary distance, it is not necessary to move the eyes beyond the human interpupillary distance. Can be surely reduced.
  • the stereoscopic effect of the stereoscopic image depends on the convergence angle when two radiographic images for displaying the stereoscopic image are acquired, by setting a predetermined threshold according to the convergence angle, Depending on the stereoscopic effect of the stereoscopic image, it is possible to switch between displaying either the stereoscopic image or the two radiographic images on the display unit, or displaying the two radiographic images side by side on the display unit.
  • the interpupillary distance varies depending on the person, and also varies depending on the race and age. For example, the pupil distance between children is smaller than the adult pupil distance. For this reason, by changing the predetermined threshold according to at least one of the race's race, age, and individual characteristics, it is possible to appropriately adjust the eye according to the interpupillary distance of the observer performing stereoscopic vision. Fatigue can be reliably reduced.
  • FIG. 1 Schematic configuration diagram of a stereo breast image radiographing display system using an embodiment of the radiation image display apparatus of the present invention
  • the block diagram which shows schematic structure inside the computer of the stereo breast image radiographing display system shown in FIG. A flowchart showing processing performed in the present embodiment Diagram showing stereo image display The figure for demonstrating the change of the parallax by the change of an expansion rate
  • FIG. 1 is a diagram showing a schematic configuration of a mammography display system with a biopsy unit attached.
  • a breast image radiographing display system 1 of the present embodiment includes a mammography apparatus 10, a computer 8 connected to the mammography apparatus 10, a monitor 9 connected to the computer 8, and an input unit. 7.
  • the mammography apparatus 10 includes a base 11, a rotary shaft 12 that can move in the vertical direction (Z direction) with respect to the base 11, and can rotate.
  • the arm part 13 connected with the base 11 is provided.
  • FIG. 2 shows the arm 13 viewed from the right direction in FIG.
  • the arm section 13 has an alphabet C shape, and a radiation table 16 is attached to one end of the arm section 13 so as to face the imaging table 14 at the other end.
  • the rotation and vertical movement of the arm unit 13 are controlled by an arm controller 31 incorporated in the base 11.
  • the imaging table 14 includes a charge amplifier that converts a charge signal read from the radiation detector 15 into a voltage signal, a correlated double sampling circuit that samples a voltage signal output from the charge amplifier, a voltage A circuit board or the like provided with an AD conversion unit or the like for converting a signal into a digital signal is also installed.
  • the photographing table 14 is configured to be rotatable with respect to the arm unit 13, and even when the arm unit 13 rotates with respect to the base 11, the direction of the photographing table 14 is fixed to the base 11. can do.
  • the radiation detector 15 can repeatedly perform recording and reading of a radiation image, and may use a so-called direct type radiation detector that directly receives radiation to generate charges, or radiation. May be used as a so-called indirect radiation detector that converts the light into visible light and converts the visible light into a charge signal.
  • a radiation image signal readout method a radiation image signal is read out by turning on and off a TFT (thin film transistor) switch, or a radiation image signal by irradiating reading light.
  • TFT thin film transistor
  • a radiation source 17 and a radiation source controller 32 are accommodated in the radiation irradiation unit 16.
  • the radiation source controller 32 controls the timing of irradiating radiation from the radiation source 17 and the radiation generation conditions (tube current, time, tube current time product, etc.) in the radiation source 17.
  • FIG. 3 is a view of the compression plate 18 shown in FIG. 1 as viewed from above. As shown in the drawing, the compression plate 18 can perform biopsy while the breast is fixed by the imaging table 14 and the compression plate 18. Thus, the opening 5 having a size of about 10 ⁇ 10 cm square is provided.
  • the biopsis unit 2 is mechanically and electrically connected to the mammography display system 1 by inserting the base portion of the biopsy unit 2 into the opening of the support portion 20 of the compression plate 18 and attaching the lower end of the base portion to the arm portion 13. To be connected.
  • the biopsy unit 2 includes a biopsy needle 21 that is punctured into the breast M.
  • the biopsy needle unit 22 is configured to be detachable, a needle support portion 23 that supports the biopsy needle unit 22, and a needle support portion 23.
  • a moving mechanism 24 is provided that moves the biopsy needle unit 22 in the X, Y, and Z directions shown in FIGS. 1 to 3 by moving along the rail or by moving the needle support portion 23 in and out.
  • the position of the tip of the biopsy needle 21 of the biopsy needle unit 22 is recognized and controlled as position coordinates (x, y, z) in a three-dimensional space by a needle position controller 35 provided in the moving mechanism 24.
  • 1 is the X direction
  • the paper vertical direction in FIG. 2 is the Y direction
  • the paper vertical direction in FIG. 3 is the Z direction.
  • the computer 8 includes a central processing unit (CPU) and a storage device such as a semiconductor memory, a hard disk, and an SSD, and the control unit 8a, the radiation image storage unit 8b, and the like shown in FIG.
  • a display control unit 8c is configured.
  • the control unit 8a outputs predetermined control signals to the various controllers 31 to 35 to control the entire system. A specific control method will be described later.
  • the radiation image storage unit 8b stores radiation image signals obtained by the radiation detector 15 and having different imaging directions.
  • the display control unit 8c displays a stereo image using two radiation images on the monitor 9, or displays either one of the two radiation images or two radiation images side by side on the monitor 9.
  • the input unit 7 is composed of a pointing device such as a keyboard and a mouse, for example, and designates the position of an abnormal shadow or the like in the stereo image displayed on the monitor 9 with a cursor or changes the parallax of the stereo image Is configured to be capable of indicating.
  • the input unit 7 receives an input of shooting conditions and an operation instruction by the operator.
  • the monitor 9 displays a stereo image using two radiographic image signals output from the computer 8 according to an instruction from the display control unit 8c, or displays either one of the two radiographic images or two radiographic images side by side. To do.
  • Each of the two radiographic images is a two-dimensional image that cannot be stereoscopically viewed.
  • the monitor 9 display unit
  • radiation images based on two radiation image signals are displayed using two screens, and these are used by using a half mirror, a polarizing glass, or the like. It is possible to adopt a configuration in which a stereo image is displayed by causing the radiographic image of the above to be incident on the right eye of the operator and the other radiographic image to be incident on the left eye of the operator.
  • two radiographic images may be shifted and displayed by being shifted by a predetermined shift amount, and a stereo image may be generated by observing the images with a polarizing glass, or a parallax barrier method and a lenticular method.
  • a 3D liquid crystal capable of displaying a stereo image based on two radiation images may be used.
  • the breast M is installed on the imaging table 14, and the breast is compressed with a predetermined pressure by the compression plate 18 (step ST1).
  • the input unit 7 After various shooting conditions are input by the operator, an instruction to start shooting is input. At this time, the biopsy needle unit 22 is retracted upward, and the breast M is not yet punctured.
  • step ST2 scout imaging is performed prior to imaging of the stereo image of the breast M (step ST2).
  • the control unit 8a outputs a control signal to the radiation source controller 32 and the detector controller 33 so as to perform radiation irradiation and readout of a radiographic image signal in order to perform biopsy scout imaging.
  • the arm unit 13 is in a position where the arm unit 13 is perpendicular to the imaging table 14 in the initial position, radiation is emitted from the radiation source 17 in accordance with this control signal, and the breast is vertically aligned.
  • a radiographic image taken from the direction is detected by the radiation detector 15, a radiographic image signal is read by the detector controller 33, and predetermined radio signal processing is performed on the radiographic image signal. It is stored in the storage unit 8b as a radiation image signal of the scout image GS.
  • the scout image GS acquired by scout shooting is displayed on the monitor 9. While observing the scout image, the operator positions the breast M so that the abnormal shadow visually recognized in the scout image is positioned at the position of the opening 5 of the compression plate 18.
  • the control unit 8 a reads a convergence angle ⁇ for photographing a preset stereo image, and outputs information of the read convergence angle ⁇ to the arm controller 31.
  • the present invention is not limited to this.
  • a stereo image of the breast M is photographed (step ST3).
  • the arm controller 31 receives the information on the convergence angle ⁇ output from the control unit 8a.
  • the arm controller 31 captures the image of the arm unit 13 based on the information on the convergence angle ⁇ as shown in FIG.
  • a control signal is output so as to rotate + ⁇ / 2 degrees with respect to the direction perpendicular to the table 14. That is, in the present embodiment, a control signal is output so that the arm unit 13 is rotated +15 degrees with respect to a direction perpendicular to the imaging table 14.
  • the control unit 8a outputs a control signal to the radiation source controller 32 and the detector controller 33 so as to perform radiation irradiation and readout of the radiation image signal.
  • the control signal radiation is emitted from the radiation source 17, a radiation image obtained by photographing the breast from the +15 degree direction is detected by the radiation detector 15, and a radiation image signal is read out by the detector controller 33.
  • the image signal is stored in the radiation image storage unit 8 b of the computer 8.
  • the radiographic image signal stored in the radiographic image storage unit 8b by this imaging represents the radiographic image GR for the right eye.
  • the arm controller 31 once returns the arm portion to the initial position, and then outputs a control signal to rotate by ⁇ / 2 degrees with respect to the direction perpendicular to the imaging table 14. That is, in the present embodiment, the control signal is output so that the arm unit 13 is rotated by ⁇ 15 degrees with respect to the direction perpendicular to the imaging table 14.
  • the arm 13 rotates by -15 degrees in accordance with the control signal output from the arm controller 31.
  • the control unit 8a outputs a control signal to the radiation source controller 32 and the detector controller 33 so as to perform radiation irradiation and radiation image reading.
  • radiation is emitted from the radiation source 17
  • a radiation image obtained by photographing the breast from the ⁇ 15 degree direction is detected by the radiation detector 15, and a radiation image signal is read out by the detector controller 33.
  • the signal processing is performed, it is stored in the radiation image storage unit 8b of the computer 8.
  • the radiographic image signal stored in the radiographic image storage unit 8b by this imaging represents the radiographic image GL for the left eye.
  • anesthesia is performed on the breast M, and stereo imaging is performed again.
  • scout imaging is performed again.
  • a second scout imaging is performed to reduce the exposure dose to the subject. Not performed.
  • the two radiographic image signals stored in the radiographic image storage unit 8 b of the computer 8 are read from the radiographic image storage unit 8 b, subjected to predetermined signal processing, and output to the monitor 9.
  • a stereo image of the breast is displayed (step ST4).
  • FIG. 6 is a diagram showing a display of a stereo image.
  • the radiation image GL for the left eye and the radiation image GR for the right eye include tissue in the breast, and the tissue in the breast has a parallax based on the convergence angle ⁇ at the time of imaging. Yes.
  • the tissue on the compression plate 18 side in the breast has a large parallax
  • the tissue on the imaging table 14 side has a small parallax.
  • a stereo image having a stereoscopic effect based on the convergence angle at the time of radiographing the breast tissue in the left-eye and right-eye radiographic images GL and GR is displayed.
  • the left-eye and right-eye radiographic images GL and GR, and the breast in the stereo image include abnormal shadows B1 to B4 such as calcifications and tumors.
  • the stereo image has a stereoscopic effect such that the left-right and right-eye radiographic images GL and GR have a portion in which the parallax in the left-right direction is zero on the display screen of the monitor 9. That is, the portion where the parallax is 0 is positioned on the adjustment distance between the eyes of the observer who observes the stereo image.
  • a portion that appears to jump out from the display screen of the monitor 9 is indicated by a solid line, and a portion that appears to be recessed from the display screen is indicated by a broken line.
  • enlarging the stereo image means enlarging both of the two radiographic images GL and GR.
  • the parallax of the objects included in the two radiographic images GL and GR increases. For example, as shown in FIG. 7, the parallax ⁇ t1 of the corresponding abnormal shadow B4 included in the two radiographic images GL and GR becomes ⁇ t2 larger than ⁇ t1 by enlarging the two radiographic images GL and GR.
  • the parallax of the corresponding objects included in the two radiation images GL and GR is increased, so that the stereoscopic effect of the stereo image is increased.
  • the change of the enlargement ratio is synonymous with the change of the parallax of the objects included in the two radiation images GL and GR.
  • step ST5 when the size of the stereo image is changed by the instructed enlargement ratio by the display control unit 8c, the parallax of the object included in the radiation images GL and GR sets the threshold value Th1. It is determined whether or not it exceeds (step ST6).
  • the parallax of the object may be the largest parallax among the parallaxes of the corresponding abnormal shadows B1 to B4 included in the two radiation images GL and GR, but is not limited thereto, and is the smallest.
  • Statistical values for example, average values and intermediate values
  • the threshold value Th1 is determined in advance in consideration of the convergence angle ⁇ at the time of shooting and is stored in the storage unit of the computer 8. Specifically, when the convergence angle ⁇ is 5 degrees or more, Is set to 70 mm, and when the convergence angle ⁇ is 3 degrees or more and less than 5 degrees, it is set to 60 mm, and when it is less than 3 degrees, it is set to 30 mm. The upper limit of the convergence angle ⁇ is 60 degrees.
  • the distance between human pupils is 60 mm to 70 mm.
  • the maximum value of the threshold value Th1 is set to 70 mm that can be regarded as the maximum value of the human interpupillary distance.
  • step ST6 If the determination in step ST6 is negative, the size of the stereo image is changed by the instructed enlargement ratio (step ST7), the process returns to step ST4, and the processes after step ST4 are repeated.
  • step ST6 is affirmed, the display control unit 8c stops displaying the stereo image, and at least one of the two radiation images GL and GR is displayed on the monitor 9 with a size corresponding to the specified magnification. (Display of two-dimensional image, step ST8), the process returns to step ST5.
  • step ST8 there is a change instruction for reducing the enlargement ratio in step ST5.
  • step ST6 is negative, the stereo image is displayed with the instructed enlargement ratio instead of the two-dimensional image.
  • the image size is changed, and a stereo image is displayed in step ST4.
  • the radiation image GR for the right eye is displayed.
  • the radiation image GL for the left eye may be displayed, or the two radiation images GL and GR may be displayed side by side. Good.
  • step ST5 If step ST5 is denied, an abnormal shadow such as calcification or mass in the breast is discovered by the operator in a stereo image or a two-dimensional image, and the tissue is subsequently collected by the biopsy unit 2 or the like. Then, on the stereo image or two-dimensional image displayed on the monitor 9, it is determined whether or not the target of the abnormal shadow has been designated by the operator (step ST9). If step ST9 is negative, the process returns to step ST4, and the processes after step ST4 are repeated.
  • an abnormal shadow such as calcification or mass in the breast is discovered by the operator in a stereo image or a two-dimensional image, and the tissue is subsequently collected by the biopsy unit 2 or the like. Then, on the stereo image or two-dimensional image displayed on the monitor 9, it is determined whether or not the target of the abnormal shadow has been designated by the operator (step ST9). If step ST9 is negative, the process returns to step ST4, and the processes after step ST4 are repeated.
  • the target designation may be performed by a pointing device such as a mouse in the input unit 7, for example.
  • a pointing device such as a mouse in the input unit 7, for example.
  • an indicator for a three-dimensional cursor is displayed in each of two radiographic images constituting a stereo image, and a three-dimensional cursor that is a stereoscopic image composed of the two indicators is displayed by the input unit 7.
  • the target may be specified by moving it.
  • the position of the index in each of the radiographic images GL and GR is assumed to have the coordinate position set according to the shooting direction when the stereo image is shot so as to indicate the same position.
  • a target may be specified by moving a two-dimensional cursor in the displayed radiation image.
  • step ST8 When the target is specified by the operator and step ST8 is affirmed, the position information (x, y, z) of the specified target is acquired by the control unit 8a, and the control unit 8a uses the position information as a biopsy unit. 2 to the needle position controller 35.
  • a control signal for moving the biopsy needle 21 is output from the control unit 8a to the needle position controller 35.
  • the needle position controller 35 moves the biopsy needle 21 so that the tip of the biopsy needle 21 is positioned above the position indicated by the coordinates based on the position information value input previously.
  • the position indicated by the coordinates of the tip of the biopsy needle 21 is controlled by the control unit 8 a and the needle position controller 35.
  • the biopsy needle 21 is moved so that the biopsy needle 21 is placed in the breast, and the biopsy needle 21 punctures the breast (step ST10).
  • the two radiations are used instead of the stereo image.
  • a two-dimensional image of at least one of the images GL and GR is displayed.
  • the stereoscopic effect of the stereo image is determined according to the convergence angle ⁇ when the two radiographic images are acquired, the stereoscopic effect of the stereo image is set by setting the threshold value Th1 according to the convergence angle ⁇ . Accordingly, the display between the stereo image and at least one of the two radiation images can be switched.
  • the interpupillary distance varies from person to person, and the interpupillary distance varies with different races and ages. For this reason, you may make it change threshold value Th1 according to an observer's race and / or age.
  • the threshold value Th1 corresponding to the race and / or age of the observer is stored in the storage unit of the computer 8, and the operator inputs the race and / or age from the input unit 7.
  • the threshold value Th1 may be set according to race and / or age.
  • the interpupillary distance is measured in advance for each operator to determine the threshold value Th1, and is stored in the storage unit of the computer 8 in association with the operator's ID. You may do it.
  • the threshold value Th1 corresponding to the operator may be set by the operator inputting the personal ID.
  • the threshold value Th1 may be changed according to the race and / or age of the observer together with the personal ID.
  • one embodiment of the radiographic image display apparatus of the present invention is applied to a stereo mammography imaging display system.
  • the subject of the present invention is not limited to the breast, and for example, the chest and the head.
  • the present invention can also be applied to a radiographic imaging display system that images a part or the like.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Medical Informatics (AREA)
  • Pathology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Physics & Mathematics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Optics & Photonics (AREA)
  • Veterinary Medicine (AREA)
  • Radiology & Medical Imaging (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Human Computer Interaction (AREA)
  • Dentistry (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Apparatus For Radiation Diagnosis (AREA)

Abstract

放射線画像の立体視画像を拡大して表示するに際し、観察者の目の疲労を軽減できるようにする。入力部7より拡大率の変更が指示されると、表示制御部8cがステレオ画像を表示するための2つの放射線画像に含まれる物体の視差がしきい値を超えるか否かを判定する。しきい値を超える場合、2つの放射線画像のいずれか一方、または2つの放射線画像を並べて表示部に表示する。これにより、ステレオ画像を観察する観察者の目の疲労を軽減できる。

Description

放射線画像表示装置および方法
 本発明は、被検体の立体視画像を表示する放射線画像表示装置および方法に関するものである。
 従来、複数の画像を組み合わせて表示することにより、視差を利用して立体視できることが知られている。このような立体視できる画像(以下、立体視画像またはステレオ像という)は、同一の被写体を異なる方向から撮影して取得された複数の画像から生成される。
 一方、このような立体視画像は、デジタルカメラやテレビ等の分野だけでなく、放射線画像撮影の分野においても利用されている。すなわち、被検体に対して異なる撮影方向から放射線を照射し、その被検体を透過した放射線を放射線検出器によりそれぞれ検出して複数の放射線画像を取得し、これらの放射線画像を用いて立体視画像を表示することが行われている。このような立体視画像を用いることにより、奥行き感のある放射線画像を観察することができるため、診断をより行いやすくすることができる。
 ところで、病院の検査では病変周辺の組織片を採取することがあるが、近年、患者に大きな負担をかけずに組織片を採取する方法として、中が空洞の組織採取用の針(以下、生検針と称する)を患者に刺し、針の空洞に埋め込まれた組織を採取するバイオプシが注目されている。そして、このようなバイオプシを行うための装置としてステレオバイオプシ装置が提案されている。
 このステレオバイオプシ装置は、被検体の立体視画像を観察しながら病変の3次元的な位置を特定することができ、生検針の先端をその特定位置に到達するよう制御することによって所望の位置から組織片を採取することができるものである。
 このようなステレオバイオプシを行う場合、被検体の立体視画像を観察しながら病変の3次元的な位置を特定して組織片を採取している。このため、病変を正確に特定して組織片を採取するためには、立体視画像を表示し、表示された画像において病変の位置を特定し、特定した病変を含む所定範囲の領域を拡大して3次元表示することが考えられる。
 しかしながら、設定された領域を拡大して3次元表示すると、立体視画像を表示するための複数の放射線画像に含まれる、対応する組織の視差が拡大されるため、立体感が非常に大きくなって立体視がしにくくなり、観察者の目が大きく疲労することとなる。特にステレオバイオプシを行う場合、立体視画像の奥行き方向において病変を精度よく指定する必要があるため、通常の立体視画像よりも立体感が大きい。したがって、ステレオバイオプシを行う場合、目の疲労は非常に大きいものとなる。
 このため、立体視画像を拡大した際に、カメラの視差角を調整して立体感を小さくする手法が提案されている(特許文献1参照)。また、立体視画像を表示するための2つの画像のシフト量を調整して立体感を小さくする手法も提案されている(特許文献2参照)。さらに、立体視画像の立体感の強さに応じて、立体視する時間のしきい値を設定し、立体視を行う時間がしきい値を超えると、立体視画像の視差を小さくしたり、立体視画像に代えて立体視を行うことができない2次元画像を表示する手法も提案されている(特許文献3参照)。
特開2010-187916号公報 特開平10-51813号公報 特開2004-207773号公報
 特許文献1,2に記載された手法においては、立体視画像を拡大して立体感が強くなると、立体感が小さくなるように視差量またはシフト量が調整されるため、観察者の目の疲労を軽減できる。しかしながら、立体視画像の立体感は、撮影時の2つの撮影方向がなす輻輳角に応じて異なるため、立体視画像が元々有する立体感を考慮せずに視差量またはシフト量を変更するのみでは、拡大された立体視画像を適切に立体視することができなくなるおそれがある。また、特許文献3に記載された手法は、立体視する時間がしきい値を超えた場合に立体視画像を2次元画像に切り替えるものであり、立体視画像を拡大した場合に、2次元画像に表示を切り替えるものではない。
 本発明は上記事情に鑑みなされたものであり、放射線画像の立体視画像を拡大して表示するに際し、観察者の目の疲労を軽減できるようにすることを目的とする。
 本発明による放射線画像表示装置は、立体視画像を表示するために所定の輻輳角となる2方向から被検体を撮影することにより取得された、2つの放射線画像の前記立体視画像を表示する表示部と、
 2つの放射線画像に含まれる対応する所定の物体の視差の変更を受け付ける入力部と、視差が所定のしきい値を超えた場合に、立体視画像に代えて2つの放射線画像のいずれか一方、または2つの放射線画像を並べて表示部に表示する表示制御部とを備えたことを特徴とするものである。
 「所定の物体の視差」としては、2つの放射線画像に含まれる対応する複数の物体の視差うちの、最も大きい視差、最も小さい視差、複数の物体の視差の統計値(例えば、平均値、中間値)等のいずれかを用いることができる。
 なお、本発明による放射線画像表示装置においては、しきい値を70mmとしてもよい。
 また、本発明による放射線画像表示装置においては、表示制御部を、所定の輻輳角に応じて所定のしきい値を設定する部分としてもよい。
 また、本発明による放射線画像表示装置においては、所定の輻輳角が5度以上の場合、しきい値を70mmとしてもよい。
 また、所定の輻輳角が3度以上5度未満の場合、しきい値を60mmとしてもよい。
 また、所定の輻輳角が3度未満の場合、しきい値を30mmとしてもよい。
 また、本発明による放射線画像表示装置においては、表示制御部を、観察者の人種、年齢および個人の特性の少なくとも1つに応じて、所定のしきい値を変更する部分としてもよい。
 本発明による放射線画像表示方法は、立体視画像を表示するために所定の輻輳角となる2方向から被検体を撮影することにより取得された、2つの放射線画像に含まれる対応する所定の物体の視差の変更を受け付け、
 視差が所定のしきい値を超えた場合に、立体視画像に代えて2つの放射線画像のいずれか一方、または2つの放射線画像を並べて表示部に表示することを特徴とするものである。
 本発明は、立体視画像を表示するための2つの放射線画像に含まれる所定の物体の視差が所定のしきい値を超えた場合に、立体視画像に代えて2つの放射線画像のうちの少なくとも一方を表示するようにしたものである。このため、視差が大きくなり、立体視画像の立体感が大きくなって立体視がしにくくなる場合に、立体視画像の表示が停止されることから、立体視を行う観察者の目の疲労を軽減することができる。
 ここで、人間の瞳孔の間隔(瞳孔間距離)は60mm~70mmある。立体視を行う場合、両目を視差に応じて寄り目とする必要があるが、瞳孔間距離を超えるような目の動きは、とくに目の疲労に繋がる。このため、瞳孔間距離に基づいて、所定のしきい値を70mmと設定することにより、人間の瞳孔間距離を超えるような目の動きをする必要がなくなるため、立体視を行う観察者の目の疲労を確実に軽減することができる。
 また、立体視画像の立体感は、立体視画像を表示するための2つの放射線画像を取得した際の輻輳角に依存するため、輻輳角に応じて所定のしきい値を設定することにより、立体視画像の立体感に応じて、立体視画像と2つの放射線画像のいずれか一方を表示部に表示、または2つの放射線画像を並べて表示部に表示するように切り替えることが可能となる。
 なお、瞳孔間距離は、人によって異なり、また人種、年齢によっても異なるものとなる。例えば、子供の瞳孔間距離は大人の瞳孔間距離よりも小さい。このため、観察者の人種、年齢および個人の特性の少なくとも1つに応じて所定のしきい値を変更することにより、立体視を行う観察者の瞳孔間距離に応じて、適切に目の疲労を確実に軽減することができる。
本発明の放射線画像表示装置の一実施形態を用いたステレオ***画像撮影表示システムの概略構成図 図1に示すステレオ***画像撮影表示システムのアーム部を図1の右方向から見た図 図1に示すステレオ***画像撮影表示システムの撮影台を上方から見た図 図1に示すステレオ***画像撮影表示システムのコンピュータ内部の概略構成を示すブロック図 本実施形態において行われる処理を示すフローチャート ステレオ画像の表示を示す図 拡大率の変更による視差の変更を説明するための図
 以下、図面を参照して本発明の放射線画像表示装置の一実施形態を用いたステレオ***画像撮影表示システムについて説明する。本発明の実施形態による***画像撮影表示システムは、着脱可能なバイオプシユニットを取り付けることにより***用のステレオバイオプシ装置としても動作するシステムである。まず、本実施形態の***画像撮影表示システム全体の概略構成について説明する。図1は、バイオプシユニットが取り付けられた状態の***画像撮影表示システムの概略構成を示す図である。
 本実施形態の***画像撮影表示システム1は、図1に示すように、***画像撮影装置10と、***画像撮影装置10に接続されたコンピュータ8と、コンピュータ8に接続されたモニタ9および入力部7とを備えている。
 そして、***画像撮影装置10は、図1に示すように、基台11と、基台11に対し上下方向(Z方向)に移動可能であり、かつ回転可能な回転軸12と、回転軸12により基台11と連結されたアーム部13を備えている。なお、図2には、図1の右方向から見たアーム部13を示している。
 アーム部13はアルファベットのCの形をしており、その一端には撮影台14が、その他端には撮影台14と対向するように放射線照射部16が取り付けられている。アーム部13の回転および上下方向の移動は、基台11に組み込まれたアームコントローラ31により制御される。
 撮影台14の内部には、フラットパネルディテクタ等の放射線検出器15と、放射線検出器15からの電荷信号の読み出しを制御する検出器コントローラ33が備えられている。また、撮影台14の内部には、放射線検出器15から読み出された電荷信号を電圧信号に変換するチャージアンプや、チャージアンプから出力された電圧信号をサンプリングする相関2重サンプリング回路や、電圧信号をデジタル信号に変換するAD変換部等が設けられた回路基板等も設置されている。
 また、撮影台14はアーム部13に対し回転可能に構成されており、基台11に対してアーム部13が回転したときでも、撮影台14の向きは基台11に対し固定された向きとすることができる。
 放射線検出器15は、放射線画像の記録と読み出しを繰り返して行うことができるものであり、放射線の照射を直接受けて電荷を発生する、いわゆる直接型の放射線検出器を用いてもよいし、放射線を一旦可視光に変換し、その可視光を電荷信号に変換する、いわゆる間接型の放射線検出器を用いるようにしてもよい。また、放射線画像信号の読出方式としては、TFT(thin film transistor)スイッチをオン・オフさせることによって放射線画像信号が読み出される、いわゆるTFT読出方式のものや、読取光を照射することによって放射線画像信号が読み出される、いわゆる光読出方式のものを用いることが望ましいが、これに限らずその他のものを用いるようにしてもよい。
 放射線照射部16の中には放射線源17と、放射線源コントローラ32が収納されている。放射線源コントローラ32は、放射線源17から放射線を照射するタイミングと、放射線源17における放射線発生条件(管電流、時間、管電流時間積等)を制御するものである。
 また、アーム部13の中央部には、撮影台14の上方に配置されて***Mを押さえつけて圧迫する圧迫板18と、その圧迫板18を支持する支持部20と、支持部20を上下方向(Z方向)に移動させる移動機構19が設けられている。圧迫板18の位置、圧迫圧は、圧迫板コントローラ34により制御される。図3は、図1に示す圧迫板18を上方から見た図であるが、同図に示すように、圧迫板18は、撮影台14と圧迫板18により***を固定した状態でバイオプシを行えるよう、約10×10cm四方の大きさの開口部5を備えている。
 バイオプシユニット2は、その基体部分が圧迫板18の支持部20の開口部に差し込まれ、基体部分の下端がアーム部13に取り付けられることによって、***画像撮影表示システム1と機械的、電気的に接続されるものである。
 そして、バイオプシユニット2は、***Mに穿刺される生検針21を有し、着脱可能に構成された生検針ユニット22と、生検針ユニット22を支持する針支持部23と、針支持部23をレールに沿って移動させ、あるいは針支持部23を出し入れさせることにより、生検針ユニット22を図1から図3に示すX、YおよびZ方向に移動させる移動機構24とを備える。生検針ユニット22の生検針21の先端の位置は、移動機構24が備える針位置コントローラ35により、3次元空間における位置座標(x,y,z)として認識され、制御される。なお、図1における紙面垂直方向がX方向、図2における紙面垂直方向がY方向、図3における紙面垂直方向がZ方向である。
 コンピュータ8は、中央処理装置(CPU)および半導体メモリやハードディスクやSSD等のストレージデバイス等を備えており、これらのハードウェアによって、図4に示すような制御部8a、放射線画像記憶部8b、および表示制御部8cが構成されている。
 制御部8aは、各種のコントローラ31~35に対して所定の制御信号を出力し、システム全体の制御を行うものである。具体的な制御方法については後述する。
 放射線画像記憶部8bは、放射線検出器15によって取得された撮影方向が異なる放射線画像信号を記憶するものである。
 表示制御部8cは、2つの放射線画像を用いたステレオ画像をモニタ9に表示したり、2つの放射線画像のいずれか一方、または2つの放射線画像を並べてモニタ9に表示したりするものである。
 入力部7は、例えば、キーボードやマウス等のポインティングデバイスから構成されるものであり、モニタ9に表示されたステレオ画像内の異常陰影等の位置をカーソルにより指定したり、ステレオ画像の視差の変更を指示可能に構成されたものである。また、入力部7は、操作者による撮影条件等の入力や操作指示の入力等を受け付けるものである。
 モニタ9は、表示制御部8cの指示により、コンピュータ8から出力された2つの放射線画像信号を用いてステレオ画像を表示したり、2つの放射線画像のいずれか一方、または2つの放射線画像を並べて表示するものである。なお、2つの放射線画像のそれぞれは、立体視を行うことができない2次元画像である。ここで、モニタ9(表示部)の構成としては、例えば、2つの画面を用いて2つの放射線画像信号に基づく放射線画像をそれぞれ表示させて、これらをハーフミラーや偏光グラス等を用いることで一方の放射線画像は操作者の右目に入射させ、他方の放射線画像は操作者の左目に入射させることによってステレオ画像を表示する構成を採用することができる。または、例えば、2つの放射線画像を所定のずれ量だけずらして重ね合わせて表示し、これを偏光グラスで観察することでステレオ画像を生成する構成としてもよいし、もしくはパララックスバリア方式およびレンチキュラー方式のように、2つの放射線画像に基づくステレオ画像を表示可能な3D液晶としてもよい。
 次に、本実施形態の***画像撮影表示システムの作用について、図5に示すフローチャートを参照しながら説明する。
 まず、撮影台14の上に***Mが設置され、圧迫板18により***が所定の圧力によって圧迫される(ステップST1)。
 次に、入力部7おいて、操作者によって種々の撮影条件が入力された後、撮影開始の指示が入力される。なお、このとき生検針ユニット22は上方に待避しており、まだ***Mには穿刺されていないものとする。
 そして、入力部7において撮影開始の指示があると、***Mのステレオ画像の撮影に先だって、スカウト撮影が行われる(ステップST2)。具体的には、まず制御部8aが、バイオプシのスカウト撮影を行うべく、放射線源コントローラ32および検出器コントローラ33に対して放射線の照射と放射線画像信号の読み出しを行うよう制御信号を出力する。ここで、アーム部13は初期位置においては、アーム部13が撮影台14に対して垂直となる位置にあることから、この制御信号に応じて、放射線源17から放射線が射出され、***を垂直方向から撮影した放射線画像が放射線検出器15によって検出され、検出器コントローラ33によって放射線画像信号が読み出され、その放射線画像信号に対して所定の信号処理が施された後、コンピュータ8の放射線画像記憶部8bに、スカウト画像GSの放射線画像信号として記憶される。
 スカウト撮影により取得されたスカウト画像GSはモニタ9に表示される。操作者はスカウト画像を観察しながら、スカウト画像において視認される異常陰影が圧迫板18の開口5の位置に位置するように、***Mの位置決めを行う。
 次いで制御部8aは、予め設定されたステレオ画像の撮影のための輻輳角θを読み出し、その読み出した輻輳角θの情報をアームコントローラ31に出力する。なお、本実施形態においては、バイオプシを行うものであることから、このときの輻輳角θの情報としてθ/2=±15度(すなわち輻輳角θ=30度)が予め記憶されているものとするが、これに限らず、例えば、θ/2=±10度の角度(輻輳角θ=20度)を用いてもよく、バイオプシを行わない場合には、立体視を良好に行うことが可能なθ/2=±2度以上±5度以下(輻輳角θ=4度以上10度以下)の任意の角度を用いてもよい。
 次に、入力部7において撮影開始の指示があると、***Mのステレオ画像の撮影が行われる(ステップST3)。そして、アームコントローラ31において、制御部8aから出力された輻輳角θの情報が受け付けられ、アームコントローラ31は、この輻輳角θの情報に基づいて、図2に示すように、アーム部13が撮影台14に垂直な方向に対して、+θ/2度回転するよう制御信号を出力する。すなわち、本実施形態においては、アーム部13を撮影台14に垂直な方向に対して+15度回転するよう制御信号を出力する。
 そして、このアームコントローラ31から出力された制御信号に応じてアーム部13が+15度回転する。続いて制御部8aは、放射線源コントローラ32および検出器コントローラ33に対して放射線の照射と放射線画像信号の読み出しを行うよう制御信号を出力する。この制御信号に応じて、放射線源17から放射線が射出され、***を+15度方向から撮影した放射線画像が放射線検出器15によって検出され、検出器コントローラ33によって放射線画像信号が読み出され、その放射線画像信号に対して所定の信号処理が施された後、コンピュータ8の放射線画像記憶部8bに記憶される。なお、この撮影により放射線画像記憶部8bに記憶される放射線画像信号は、右目用の放射線画像GRを表すものとなる。
 次に、アームコントローラ31は、図2に示すように、アーム部を初期位置に一旦戻した後、撮影台14に垂直な方向に対して-θ/2度回転するよう制御信号を出力する。すなわち、本実施形態においては、アーム部13を撮影台14に垂直な方向に対して-15度回転するよう制御信号を出力する。
 そして、このアームコントローラ31から出力された制御信号に応じてアーム部13が-15度回転する。続いて制御部8aは、放射線源コントローラ32および検出器コントローラ33に対して放射線の照射と放射線画像の読み出しを行うよう制御信号を出力する。この制御信号に応じて、放射線源17から放射線が射出され、***を-15度方向から撮影した放射線画像が放射線検出器15によって検出され、検出器コントローラ33によって放射線画像信号が読み出され、所定の信号処理が施された後、コンピュータ8の放射線画像記憶部8bに記憶される。なお、この撮影により放射線画像記憶部8bに記憶される放射線画像信号は、左目用の放射線画像GLを表すものとなる。
 そして、***Mへの麻酔が行われ、再度ステレオ撮影が行われる。なお、麻酔前の***Mの位置決めと、麻酔後の***Mの位置決めとで、***Mの設置位置が異なるものとなった場合には、再度のスカウト撮影を行う。一方、麻酔前の***Mの位置決めと麻酔後の***Mの位置決めとで、***の設置位置が略同一となった場合には、被検体への被曝量低減のために、再度のスカウト撮影は行わない。
 次いで、コンピュータ8の放射線画像記憶部8bに記憶された2つの放射線画像信号は、放射線画像記憶部8bから読み出された後、所定の信号処理が施されてモニタ9に出力され、モニタ9において***のステレオ画像が表示される(ステップST4)。
 図6はステレオ画像の表示を示す図である。図6に示すように、左目用の放射線画像GLおよび右目用の放射線画像GRには***内の組織が含まれており、***内の組織は撮影時の輻輳角θに基づく視差を有している。例えば、***内において圧迫板18側にある組織は視差が大きく、撮影台14側にある組織は視差が小さい。本実施形態においては、初期状態においては、左目用および右目用の放射線画像GL,GR内の***の組織が撮影時の輻輳角に基づく立体感を有するステレオ画像が表示される。ここで、左目用および右目用の放射線画像GL,GR、さらにはステレオ画像内の***には、石灰化や腫瘤等の異常陰影B1~B4が含まれているものとする。
 なお、ステレオ画像は、左目用および右目用の放射線画像GL,GRにおいて、左右方向の視差が0となる部分が、モニタ9の表示画面上に位置するような立体感を有するものとなる。すなわち、視差が0となる部分が、ステレオ画像を観察する観察者の両目の調整距離上に位置することとなる。また、図6において、モニタ9の表示画面から手前に飛び出して見える部分を実線で、表示画面から奥まって見える部分を破線で示している。また、本実施形態においては、ステレオバイオプシを行うものであり、輻輳角が30度(θ/2=±15度)と大きいため、ステレオ画像の立体感が非常に強いものとなっている。
 次いで、制御部8aにより、ステレオ画像の拡大率の変更の指示が行われたか否かが判定される(ステップST5)。ここで、ステレオ画像を拡大すると言うことは、2つの放射線画像GL,GRの双方を拡大することである。そして、2つの放射線画像GL,GRを拡大すると、2つの放射線画像GL,GRに含まれる物体の視差は大きくなる。例えば、図7に示すように、2つの放射線画像GL,GRに含まれる対応する異常陰影B4の視差Δt1は、2つの放射線画像GL,GRを拡大することにより、Δt1よりも大きいΔt2となる。このように、ステレオ画像を拡大することにより、2つの放射線画像GL,GRに含まれる対応する物体の視差が大きくなるため、ステレオ画像の立体感は大きくなる。逆に、ステレオ画像を縮小すると、2つの放射線画像GL,GRに含まれる対応する物体の視差が小さくなるため、ステレオ画像の立体感は小さくなる。したがって、拡大率の変更は、2つの放射線画像GL,GRに含まれる物体の視差の変更と同義である。
 このため、ステップST5が肯定されると、表示制御部8cにより、指示された拡大率によりステレオ画像のサイズを変更した場合に、放射線画像GL,GRに含まれる物体の視差がしきい値Th1を超えるか否かが判定される(ステップST6)。なお、物体の視差としては、2つの放射線画像GL,GRに含まれる対応する異常陰影B1~B4の視差のうちの最も大きい視差とすればよいが、これに限定されるものではなく、最も小さい視差、異常陰影B1~B4の視差の統計値(例えば平均値、中間値)を用いてもよい。また、しきい値Th1は、撮影時の輻輳角θを考慮して予め決定されてコンピュータ8の記憶部に記憶されてなるものであり、具体的には、輻輳角θが5度以上の場合には70mm、輻輳角θが3度以上5度未満の場合には60mm、3度未満の場合には30mmに設定されている。なお、輻輳角θの上限は60度である。
 ここで、人間の瞳孔の間隔(瞳孔間距離)は60mm~70mmある。立体視を行う場合、両目を視差に応じて寄り目とする必要があるが、瞳孔間距離を超えるような目の動きは、とくに目の疲労に繋がる。このため、本実施形態においては、しきい値Th1の最大値を人間の瞳孔間距離の最大値と見なせる70mmに設定している。
 ステップST6が否定されると、指示された拡大率によりステレオ画像のサイズを変更し(ステップST7)、ステップST4に戻り、ステップST4以降の処理が繰り返される。ステップST6が肯定されると、表示制御部8cによりステレオ画像の表示が停止され、2つの放射線画像GL,GRのうちの少なくとも一方が、指示された拡大率に対応するサイズによりモニタ9に表示され(2次元画像の表示、ステップST8)、ステップST5の処理に戻る。なお、ステップST8において2次元画像表示がされた後に、ステップST5において拡大率を減少させる変更指示があり、ステップST6が否定された場合は、2次元画像に代えて、指示された拡大率によりステレオ画像のサイズが変更されて、ステップST4においてステレオ画像が表示される。なお、本実施形態においては、右目用の放射線画像GRを表示するものとするが、左目用の放射線画像GLを表示してもよく、2つの放射線画像GL,GRを並べて表示するようにしてもよい。
 ステップST5が否定されると、ステレオ画像または2次元画像において、操作者によって、***における石灰化や腫瘤等の異常陰影が発見され、引き続いてバイオプシユニット2によってそれらの組織を採取したい場合等には、モニタ9に表示されたステレオ画像または2次元画像上において、操作者によって異常陰影のターゲットが指定されたか否かが判定される(ステップST9)。ステップST9が否定されるとステップST4に戻り、ステップST4以降の処理が繰り返される。
 ここで、ターゲットの指定については、例えば、入力部7におけるマウス等のポインティングデバイスによって行うようにすればよい。具体的には、例えば、ステレオ画像を構成する2つの放射線画像内にそれぞれ3次元カーソル用の指標を表示させ、この2つの指標から構成される立体視画像である3次元カーソルを入力部7によって動かすことによってターゲットを指定するようにすればよい。なお、各放射線画像GL,GR内における指標の位置は、それぞれ同じ位置を示すように、ステレオ画像を撮影した際の撮影方向に応じてその座標位置が設定されているものとする。一方、2次元画像の場合は、表示した放射線画像内において、2次元のカーソルを移動させることにより、ターゲットを指定すればよい。
 そして、操作者によってターゲットが指定されてステップST8が肯定されると、指定されたターゲットの位置情報(x,y,z)が制御部8aによって取得され、制御部8aはその位置情報をバイオプシユニット2の針位置コントローラ35に出力する。
 この状態で、入力部7において所定の操作ボタンが押されると、制御部8aから針位置コントローラ35に対し、生検針21を移動させる制御信号が出力される。針位置コントローラ35は、先に入力された位置情報の値に基づき、生検針21の先端が、その座標が示す位置の上方に配置されるように、生検針21を移動する。
 その後、操作者により、生検針21の穿刺を指示する所定の操作が入力部7において行われると、制御部8aと針位置コントローラ35の制御の下で、生検針21の先端が座標が示す位置に配置されるように生検針21が移動させられて、生検針21による***の穿刺が行われる(ステップST10)。
 このように、本実施形態によれば、ステレオ画像を表示するための2つの放射線画像GL,GRに含まれる物体の視差がしきい値Th1を超えた場合に、ステレオ画像に代えて2つの放射線画像GL,GRのうちの少なくとも一方の2次元画像を表示するようにしたものである。このため、ステレオ画像を拡大することによって視差が大きくなり、ステレオ画像の立体感が大きくなって立体視がしにくくなる場合に、瞳孔間距離に基づいてステレオ画像の表示が停止されることとなり、その結果、立体視を行う観察者の目の疲労を適切に軽減することができる。
 また、ステレオ画像の立体感は、2つの放射線画像を取得した際の輻輳角θに応じて決定されるため、輻輳角θに応じてしきい値Th1を設定することにより、ステレオ画像の立体感に応じて、ステレオ画像と2つの放射線画像の少なくとも一方との表示を切り替えることが可能となる。
 ここで、瞳孔間距離は、人によって異なり、とくに人種、年齢が異なると瞳孔間距離は異なるものとなる。このため、観察者の人種および/または年齢に応じて、しきい値Th1を変更するようにしてもよい。この場合、コンピュータ8の記憶部に、観察者の人種および/または年齢に応じたしきい値Th1を記憶しておき、入力部7から操作者が人種および/または年齢を入力することにより、人種および/または年齢に応じたしきい値Th1を設定するようにしてもよい。
 また、瞳孔間距離は個人毎に異なるため、操作者毎に予め瞳孔間距離を計測してしきい値Th1を決定し、操作者のIDと対応づけてコンピュータ8の記憶部に記憶しておくようにしてもよい。この場合、操作者が個人のIDを入力することにより、操作者に応じたしきい値Th1を設定すればよい。また、個人のIDとともに、観察者の人種および/または年齢に応じてしきい値Th1を変更するようにしてもよいことはもちろんである。
 なお、上記実施形態においては、本発明の放射線画像表示装置の一実施形態をステレオ***画像撮影表示システムに適用したものであるが、本発明の被写体としては***に限らず、例えば、胸部や頭部等を撮影する放射線画像撮影表示システムにも本発明を適用することができる。
   1  ***画像撮影表示システム
   2  バイオプシユニット
   7  入力部
   8  コンピュータ
   8a  制御部
   8b  放射線画像記憶部
   8c  表示制御部
   9  モニタ
   10  ***画像撮影装置
   13  アーム部
   14  撮影台
   15  放射線検出器
   17  放射線源
   18  圧迫板
   21  生検針
   22  生検針ユニット
   31  アームコントローラ
   32  放射線源コントローラ
   33  検出器コントローラ
   34  圧迫板コントローラ
   35  針位置コントローラ

Claims (8)

  1.  立体視画像を表示するために所定の輻輳角となる2方向から被検体を撮影することにより取得された、2つの放射線画像の前記立体視画像を表示する表示部と、
     前記2つの放射線画像に含まれる対応する所定の物体の視差の変更を受け付ける入力部と、
     前記視差が所定のしきい値を超えた場合に、前記立体視画像に代えて前記2つの放射線画像のいずれか一方、または前記2つの放射線画像を並べて前記表示部に表示する表示制御部とを備えたことを特徴とする放射線画像表示装置。
  2.  前記しきい値が70mmであることを特徴とする請求項1記載の放射線画像表示装置。
  3.  前記表示制御部は、前記所定の輻輳角に応じて前記所定のしきい値を設定する部分であることを特徴とする請求項1または2記載の放射線画像表示装置。
  4.  前記所定の輻輳角が5度以上60度以下の場合、前記しきい値が70mmであることを特徴とする請求項3記載の放射線画像表示装置。
  5.  前記所定の輻輳角が3度以上5度未満の場合、前記しきい値が60mmであることを特徴とする請求項3または4記載の放射線画像表示装置。
  6.  前記所定の輻輳角が3度未満の場合、前記しきい値が30mmであることを特徴とする請求項3から5のいずれか1項記載の放射線画像表示装置。
  7.  前記表示制御部は、観察者の人種、年齢および個人の特性の少なくとも1つに応じて、前記所定のしきい値を変更する部分であることを特徴とする請求項1から6のいずれか1項記載の放射線画像表示装置。
  8.  立体視画像を表示するために所定の輻輳角となる2方向から被検体を撮影することにより取得された、2つの放射線画像に含まれる対応する所定の物体の視差の変更を受け付け、
     前記視差が所定のしきい値を超えた場合に、前記立体視画像に代えて前記2つの放射線画像のいずれか一方、または前記2つの放射線画像を並べて表示部に表示することを特徴とする放射線画像表示方法。
PCT/JP2012/050806 2011-01-28 2012-01-17 放射線画像表示装置および方法 WO2012102127A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-016647 2011-01-28
JP2011016647A JP2012152511A (ja) 2011-01-28 2011-01-28 放射線画像表示装置および方法

Publications (1)

Publication Number Publication Date
WO2012102127A1 true WO2012102127A1 (ja) 2012-08-02

Family

ID=46580699

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/050806 WO2012102127A1 (ja) 2011-01-28 2012-01-17 放射線画像表示装置および方法

Country Status (2)

Country Link
JP (1) JP2012152511A (ja)
WO (1) WO2012102127A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09187447A (ja) * 1996-01-09 1997-07-22 Toshiba Corp ステレオx線管
JP2005349127A (ja) * 2004-06-14 2005-12-22 Canon Inc 立体画像生成システムおよびその制御方法
JP2006212056A (ja) * 2005-02-01 2006-08-17 Canon Inc 撮影装置及び立体画像生成装置
JP2010187916A (ja) * 2009-02-18 2010-09-02 Fujifilm Corp 画像処理装置、画像処理システム及びプログラム

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09187447A (ja) * 1996-01-09 1997-07-22 Toshiba Corp ステレオx線管
JP2005349127A (ja) * 2004-06-14 2005-12-22 Canon Inc 立体画像生成システムおよびその制御方法
JP2006212056A (ja) * 2005-02-01 2006-08-17 Canon Inc 撮影装置及び立体画像生成装置
JP2010187916A (ja) * 2009-02-18 2010-09-02 Fujifilm Corp 画像処理装置、画像処理システム及びプログラム

Also Published As

Publication number Publication date
JP2012152511A (ja) 2012-08-16

Similar Documents

Publication Publication Date Title
US10664969B2 (en) Radiological image radiographing display method and system thereof
JP5486437B2 (ja) 立体視画像表示方法および装置
JP5815038B2 (ja) 放射線画像表示方法および装置
US20120069957A1 (en) Radiological image displaying device and method
WO2012105347A1 (ja) 放射線画像撮影装置および方法
JP5514127B2 (ja) 放射線画像表示装置および方法
WO2012102127A1 (ja) 放射線画像表示装置および方法
WO2012096221A1 (ja) 放射線画像表示装置および方法
WO2012127819A1 (ja) 3次元放射線撮影装置および方法
WO2012102184A1 (ja) 放射線画像表示装置および方法
WO2012115074A1 (ja) 放射線画像表示装置および方法
JP2012115380A (ja) 立体視画像取得方法および装置
JP2012245192A (ja) 放射線画像表示装置および方法
WO2012066753A1 (ja) 立体視画像表示方法および装置
US20120082298A1 (en) Radiological image displaying device and method
JP2013070727A (ja) 立体視画像表示方法および装置
WO2012132321A1 (ja) 放射線画像撮影システムおよびその制御方法
WO2012105188A1 (ja) 立体視画像表示装置および方法並びにプログラム
WO2011161972A1 (ja) 放射線画像撮影表示方法およびシステム
WO2012117721A1 (ja) 立体視画像表示装置及び立体視画像表示方法
JP2013106695A (ja) 放射線画像表示装置および方法
JP2012005728A (ja) 放射線画像撮影方法およびステレオバイオプシ装置
WO2012132466A1 (ja) 放射線画像撮影表示方法およびシステム
WO2012132298A1 (ja) 立体視画像表示装置及び立体視画像表示方法
JP2013202058A (ja) 放射線撮影表示システムおよびその方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12739297

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12739297

Country of ref document: EP

Kind code of ref document: A1