WO2012060251A1 - カラーフィルタの製造方法 - Google Patents

カラーフィルタの製造方法 Download PDF

Info

Publication number
WO2012060251A1
WO2012060251A1 PCT/JP2011/074558 JP2011074558W WO2012060251A1 WO 2012060251 A1 WO2012060251 A1 WO 2012060251A1 JP 2011074558 W JP2011074558 W JP 2011074558W WO 2012060251 A1 WO2012060251 A1 WO 2012060251A1
Authority
WO
WIPO (PCT)
Prior art keywords
colored layer
drying
color filter
colored
film thickness
Prior art date
Application number
PCT/JP2011/074558
Other languages
English (en)
French (fr)
Inventor
美穂子 倉重
知則 西田
正人 手塚
真紀子 白土
玲美 大城
龍太郎 原田
貴之 田崎
Original Assignee
大日本印刷株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大日本印刷株式会社 filed Critical 大日本印刷株式会社
Priority to CN201180052282.4A priority Critical patent/CN103210324B/zh
Priority to US13/879,174 priority patent/US20130196059A1/en
Priority to KR1020137011494A priority patent/KR101609035B1/ko
Publication of WO2012060251A1 publication Critical patent/WO2012060251A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D5/00Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures
    • B05D5/06Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures to obtain multicolour or other optical effects
    • B05D5/061Special surface effect
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/201Filters in the form of arrays
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133514Colour filters
    • G02F1/133516Methods for their manufacture, e.g. printing, electro-deposition or photolithography

Definitions

  • the present invention relates to a method of manufacturing a color filter that can easily manufacture a color filter with good display quality when a liquid crystal display device is used.
  • a color filter used for a general liquid crystal display is usually a substrate, a light-shielding portion formed on the substrate and having a plurality of openings, and red (R) and green formed in the openings. (G) and a colored layer of each color of blue (B). Then, by turning on and off the electrodes corresponding to the R, G, and B colors of the color filter, the liquid crystal operates as a backlight shutter, and light passes through the R, G, and B pixels. Color display.
  • Patent Document 1 As a method for producing the color filter, conventional methods include a production method using a dyeing method, a pigment dispersion method, etc., but a color filter is produced at a higher productivity and at a lower cost than these methods.
  • Patent Document 1 a method for producing a color filter using an ink-jet method has attracted attention as a method that can be used (Patent Document 1).
  • a method for producing a color filter using such an ink jet method first, a colored layer forming coating solution containing a solvent is applied to an opening of a light shielding portion on a substrate by using an ink jet device, and then dried. A previous colored layer is formed. Then, after drying and removing the solvent contained in the colored layer before drying, the colored layer is formed by heating.
  • Patent Documents 2 to 6 a reduced pressure drying apparatus that dries the colored layer in a reduced pressure environment has been used in the drying and removal step.
  • the affinity between the colored layer forming coating liquid and the surface of the light shielding part, the height of the light shielding part, the coloring layer forming coating liquid discharged from the ink jet apparatus From the relationship of quantity etc., the shape of the colored layer in the opening surrounded by the light shielding part is such that the film thickness at the end of the colored layer is small and the film thickness at the center of the colored layer is large. It may become. And when the film thickness difference between the maximum film thickness and the minimum film thickness of the colored layer is large, there is a problem that the display quality may be adversely affected when the liquid crystal display device is used.
  • the colored layer is not completely dried, but the drying is stopped in the middle of drying, and the reduced-pressure drying treatment
  • a method of reducing and flattening the film thickness difference by heating a later colored layer (hereinafter sometimes referred to as a colored layer after drying) with some fluidity is studied.
  • the content of the solvent contained in the colored layer after drying varies depending on the degree of drying under reduced pressure, and when the content of the solvent in the colored layer after drying is too large or too small, There was a possibility that the following problem might occur.
  • the color filter is usually formed by three colored layers of red, green, and blue.
  • the cell gap of each color is optimal.
  • it may be required to increase the thickness of the blue colored layer.
  • it is necessary to increase the amount of the coating liquid for forming the blue colored layer.
  • a coating liquid for forming a blue colored layer for forming a blue colored layer may be one having a low pigment concentration and high fluidity.
  • the colored layer forming step using the ink jet method described above has to be performed at least twice, which makes it difficult to increase the production efficiency.
  • the present invention has been made in view of the above circumstances, and provides a method for producing a color filter capable of efficiently forming a colored layer having high flatness even when an inkjet method is used. Is the main purpose.
  • the present inventors can impart desired flatness to the colored layer to be formed, by adding the solvent content in the colored layer after drying, and The present inventors have found a vacuum drying treatment condition that allows a pre-bake treatment to be performed in a short time and can be a minimum content.
  • the present inventors use the above-described conditions for the drying under reduced pressure, so that even when a plurality of colored layers having different film thicknesses are simultaneously formed using the inkjet method, each colored layer is desired. It is found that the color filter can be provided with flatness and no color mixing occurs in the colored layers of each color. As a result, the film thickness can be obtained by performing the colored layer forming process using the ink jet method only once. Since a plurality of colored layers having different values can be formed, it has been found that the production efficiency of the color filter can be greatly improved, and the present invention has been completed.
  • the present invention applies a colored layer forming coating solution by an inkjet method to the transparent substrate and the opening of the black matrix substrate having a light-shielding portion formed on the transparent substrate and having an opening.
  • An inkjet process for forming a colored layer before drying, a reduced-pressure drying process for forming a color filter substrate on which the colored layer after drying is formed by subjecting the colored layer before drying to reduced-pressure drying, and the color filter substrate On the other hand, after performing the pre-baking process, a post-baking process is performed to obtain a color filter in which a colored layer is formed.
  • the end of the colored layer after drying A method for producing a color filter, characterized by subjecting the colored layer before drying to a reduced-pressure drying treatment so that the film thickness is not smaller than the film thickness of the light-shielding part. Subjected to.
  • the colored layer before drying is subjected to reduced-pressure drying treatment so that the thickness of the end portion of the colored layer after drying is not smaller than the thickness of the light-shielding portion.
  • the flatness of the colored layer of the color filter produced by the production method of the present invention can be made high. Further, since the pre-baking process can be performed in a short time, the production efficiency of the color filter can be increased.
  • the present invention provides a coating solution for forming a colored layer by an inkjet method on the transparent substrate and the opening of the black matrix substrate having a light-shielding portion formed on the transparent substrate and having an opening.
  • An inkjet process for forming a colored layer a reduced-pressure drying process for forming a color filter substrate on which the colored layer before drying is formed by subjecting the colored layer before drying to reduced-pressure drying, and the color filter substrate
  • the post-bake treatment is performed to obtain a color filter in which a colored layer is formed, and in the reduced-pressure drying treatment step, the maximum thickness of the colored layer after drying and the above-mentioned
  • the pre-drying colored layer is adjusted so that the ratio to the width of the opening is within the range of 7.8 ⁇ 10 ⁇ 3 to 2.3 ⁇ 10 ⁇ 1 when the width of the opening is 1. Decrease Provided is a method for producing a color filter, characterized by performing pressure drying treatment.
  • the colored layer before drying is subjected to reduced-pressure drying treatment so that the ratio between the maximum thickness of the colored layer after drying and the width of the opening is within the above range.
  • the flatness of the colored layer of the color filter manufactured by the manufacturing method of this invention can be made high.
  • the pre-baking process can be performed in a short time, the production efficiency of the color filter can be increased.
  • the present invention has a transparent substrate, a black matrix substrate formed on the transparent substrate and having a light-shielding portion having an opening, and a plurality of colored layers formed in the opening on the black matrix substrate.
  • the manufacturing method of the color filter formed so that the film thickness of the colored layer of at least one color among the colored layers of the plurality of colors is smaller than the film thickness of the colored layer of the other color,
  • a drying process is performed to form a color filter substrate on which a colored layer is formed after drying, and a pre-baking process is performed on the color filter substrate. And a baking process step for obtaining a color filter in which a plurality of colored layers are formed.
  • the end of the colored layer after drying is the smallest.
  • a method for producing a color filter wherein the pre-drying colored layers of the plurality of colors are subjected to reduced-pressure drying so that the film thickness of the part does not become smaller than the film thickness of the light-shielding part.
  • the content of the solvent in the dried colored layer having the smallest film thickness can be imparted with desired flatness to the formed colored layer, And it becomes possible to set it as the minimum content which can perform a prebaking process in a short time. Therefore, for colored layers having other film thicknesses, the coating for forming the colored layer so as to be a colored layer after drying having such a film thickness that the solvent in the colored layer after drying does not suddenly boil under the above-described prebaking conditions. Since the liquid can be applied to a thick film, even if multiple colored layers with different thicknesses are formed simultaneously by the inkjet method, the desired flatness is imparted to each colored layer. And color mixing of the colored layers of the respective colors does not occur.
  • the present invention has a transparent substrate, a black matrix substrate formed on the transparent substrate and having a light-shielding portion having an opening, and a plurality of colored layers formed in the opening on the black matrix substrate.
  • the manufacturing method of the color filter formed so that the film thickness of the colored layer of at least one color among the colored layers of the plurality of colors is smaller than the film thickness of the colored layer of the other color,
  • the maximum film thickness of the post-drying colored layer is the smallest.
  • the plurality of colors so that the ratio between the thickness and the width of the opening is within a range of 7.8 ⁇ 10 ⁇ 3 to 2.3 ⁇ 10 ⁇ 1 when the width of the opening is 1.
  • a method for producing a color filter is provided, wherein the pre-drying colored layer is dried under reduced pressure.
  • the content of the solvent in the dried colored layer having the smallest film thickness among the colored layers of the plurality of colors is desired in the formed colored layer.
  • Flatness can be imparted, and the minimum content can be achieved so that the pre-baking process can be performed in a short time. Therefore, for colored layers having other film thicknesses, the coating for forming the colored layer so as to be a colored layer after drying having such a film thickness that the solvent in the colored layer after drying does not suddenly boil under the above-described prebaking conditions. Since the liquid can be applied to a thick film, even if multiple colored layers with different thicknesses are formed simultaneously by the inkjet method, the desired flatness is imparted to each colored layer. And color mixing of the colored layers of the respective colors does not occur.
  • the colored layers of the plurality of colors have a red colored layer, a green colored layer, and a blue colored layer
  • the red colored layer and the green colored layer have equivalent film thicknesses, and It is preferably smaller than the film thickness of the blue colored layer.
  • the pre-baking process is preferably performed within a range of 70 ° C to 110 ° C. This is because by performing the pre-bake treatment at a temperature in the above-described range, the flatness of the colored layer can be made higher.
  • the color filter manufacturing method of the present invention can provide desired flatness to the colored layer to be formed, and can perform the pre-bake treatment in a short time, so that the manufacturing efficiency is high. There exists an effect that the manufacturing method of a color filter can be provided.
  • the content of the solvent in the colored layer after drying can be imparted with desired flatness to the formed colored layer, and prebaking treatment is performed.
  • This is a manufacturing method characterized by subjecting the pre-drying colored layer to a reduced pressure treatment using conditions of a reduced pressure drying treatment that can be performed in a short time and capable of a minimum content.
  • the fact that the colored layer has the desired flatness means that a satisfactory image display can be performed when the color filter is used in a liquid crystal display device.
  • the difference in thickness between the maximum thickness of the colored layer and the minimum thickness of the colored layer is 0.6 ⁇ m or less.
  • the maximum thickness of the colored layer refers to the maximum thickness of the colored layer formed in the opening of the light shielding portion, and the minimum thickness of the colored layer is formed in the opening of the light shielding portion.
  • the minimum film thickness in the thickness of the colored layer formed.
  • the maximum film thickness and the minimum film thickness in the present invention are values measured by a light interference type three-dimensional non-contact surface shape measuring apparatus (for example, product name Micromap 557N manufactured by US Micromap).
  • the fact that the pre-baking process can be performed in a short time means that when the pre-baking process is performed at the processing temperature and the processing time in the pre-baking process performed when a general color filter is manufactured, the drying is performed. It shows that the solvent in the post-colored layer does not bump.
  • the solvent in the colored layer after drying does not bump suddenly when the boiling point of the solvent used in the colored layer forming coating solution of the color filter is in the range of 150 ° C. to 300 ° C.
  • the pre-bake treatment is performed at a temperature in the range of 70 ° C. to 110 ° C., it means that the solvent in the colored layer after the drying bumps and the adjacent colored layers do not mix.
  • description here is abbreviate
  • omitted since it mentions later in detail about prebaking process temperature, description here is abbreviate
  • the conditions for the above-mentioned reduced-pressure drying treatment specifically, it is set to a dry state in which the film thickness at the end of the colored layer after the reduced-pressure drying is not smaller than the film thickness of the light-shielding part, or after the reduced-pressure drying
  • two conditions for the reduced-pressure drying treatment in which the ratio between the maximum thickness of the colored layer and the width of the opening forming the colored layer is within a predetermined range.
  • the color filter manufacturing method applies a coating solution for forming a colored layer by an inkjet method to the transparent substrate and the opening of the black matrix substrate formed on the transparent substrate and having a light-shielding portion having an opening.
  • the post-drying colored layer The pre-drying colored layer is dried under reduced pressure so that the film thickness at the end of the film does not become smaller than the film thickness of the light shielding part. .
  • FIG. 1 is a process diagram showing an example of a method for producing a color filter of this embodiment.
  • FIG. 1 shows an example in which a red colored layer, a green colored layer, and a blue colored layer having the same film thickness are formed simultaneously.
  • the transparent substrate 1 and the opening of the black matrix substrate 10a formed on the transparent substrate 1 and having the light-shielding portion 2 having the opening are provided.
  • the colored layer forming coating solution by the inkjet method the colored layer 3a before drying (in FIG.
  • FIG. 1A colored layer 3Ra before red drying, colored layer 3Ga before green drying, colored layer before blue drying
  • An ink jet process (FIG. 1A) for forming 3Ba) is performed.
  • the colored layer 3a before drying is dried under reduced pressure, and the colored layer 3b after drying (in FIG. 1B, the colored layer 3Rb after red drying, the colored layer 3Gb after green drying, the colored layer 3Bb after blue drying)
  • a reduced-pressure drying process (FIG. 1 (b)) is performed to form the color filter substrate 10b on which is formed.
  • post-baking is performed, and in the colored layer 3 (in FIG.
  • the red colored layer 3R the red colored layer 3R, green A baking process (FIG. 1D) for obtaining the color filter 10 on which the colored layer 3G and the blue colored layer 3B) are formed is performed.
  • the color filter 10 is manufactured through the above steps.
  • this aspect is characterized in that, in the reduced-pressure drying treatment step, the colored layer before drying is subjected to reduced-pressure drying treatment so that the film thickness of the end portion of the colored layer after drying is not smaller than the film thickness of the light-shielding portion.
  • the film thickness of the end portion of the colored layer after drying refers to the film thickness of the portion in contact with the light shielding portion in the colored layer after drying formed in the opening section defined by the light shielding portion.
  • the “film thickness of the light shielding portion” refers to the film thickness of the light shielding portion before the baking process.
  • the film thickness at the end of the colored layer after drying is not smaller than the film thickness of the light shielding part” means that the film thickness at the end of the colored layer after drying and the film thickness of the light shielding part
  • the difference in film thickness is 0.1 ⁇ m or less, preferably 0.05 ⁇ m or less, particularly 0 ⁇ m.
  • the film thickness at the end of the colored layer after drying and the film thickness of the light-shielding portion are values measured by a light interference type three-dimensional non-contact surface shape measuring device (for example, product name Micromap 557N manufactured by US Micromap). We will use it.
  • the film thickness at the end of the colored layer after drying is determined by the degree of the drying under reduced pressure, that is, the content of the solvent in the colored layer after drying.
  • the content of the solvent in the colored layer after drying formed in the opening having a certain area defined by the width of the certain opening is correlated to some extent with the maximum film thickness of the colored layer after drying.
  • the maximum film thickness increases as the content of the solvent in the colored layer after drying increases, and the maximum film thickness decreases as the content of the solvent decreases. Therefore, in the present embodiment, “the film thickness at the end of the colored layer after drying is not smaller than the film thickness of the light-shielding part” is the maximum film thickness of the colored layer after drying and the width of the opening. It can also be expressed using a ratio.
  • the ratio of the maximum thickness of the colored layer after drying and the width of the opening is in the range of 7.8 ⁇ 10 ⁇ 3 to 2.3 ⁇ 10 ⁇ 1 where the width of the opening is 1 . Of these, it is preferable to be within the range of 1.3 ⁇ 10 ⁇ 2 to 1.8 ⁇ 10 ⁇ 1 , particularly within the range of 1.8 ⁇ 10 ⁇ 2 to 1.6 ⁇ 10 ⁇ 1 .
  • the ratio of the maximum thickness of the colored layer after drying and the width of the opening is expressed by t / u, where t is the maximum thickness of the colored layer after drying and u is the width of the opening. Value.
  • the maximum thickness t of the colored layer after drying and the width u of the opening are values measured by a light interference type three-dimensional non-contact surface shape measuring device (for example, product name Micromap 557N manufactured by US Micromap). Shall be used.
  • the thickness of the light shielding portion before shrinking before the baking process is 2.7 ⁇ m
  • the width u1 of the opening shown in FIG. 3 is in the range of 100 ⁇ m to 480 ⁇ m, and the width of the opening.
  • the “maximum film thickness of the colored layer after drying” in this embodiment refers to the maximum film thickness of the colored layer after drying after the reduced-pressure drying treatment, and refers to the distance indicated by t in FIG.
  • the “width of the opening” refers to the width of the opening partitioned by the light shielding portion, and in FIG. 2, indicates the distance indicated by u.
  • the “width of the opening” in the present embodiment refers to the short side u1 or the long side u2 when the shape of the opening of the light shielding portion in the color filter is rectangular as shown in FIG.
  • the opening part of the said light-shielding part has a notch part, the distance in the area
  • FIG. 2 is a schematic cross-sectional view showing an example of a color filter substrate formed in the reduced-pressure drying process in this embodiment
  • FIG. 3 shows an example of a color filter manufactured by the manufacturing method of this embodiment. It is a schematic plan view. Also, reference numerals not described in FIGS. 2 and 3 can be the same as those in FIG.
  • the content of the solvent in the colored layer after drying can be reduced to a minimum content that allows the colored layer to be formed to have a desired flatness.
  • the present invention is characterized in that it has been found that the film thickness of the end portion of the colored layer after drying does not become smaller than the film thickness of the light shielding portion.
  • FIGS. 4 and 5 are process diagrams showing an example of the pre-baking process in the color filter manufacturing method.
  • 4 (a) and 5 (a) show the color filter substrate before the pre-baking process
  • FIGS. 4 (b) and 5 (b) show the color filter substrate after the pre-baking process. Show. Note that reference numerals not described in FIGS. 4 and 5 can be the same as those in FIG. 1, and are not described here.
  • FIG. 4A when the film thickness t1 at the end of the colored layer 3b after drying is formed so as not to be smaller than the film thickness of the light shielding portion 2, the colored layer 3b after drying.
  • a minute colored layer after drying having a minute film thickness (hereinafter referred to as a light shielding part upper surface minute colored layer) is formed on the upper surface of the light shielding part 2 in contact with the light shielding part. Further, in this case, even during the process of reducing the film thickness of the colored layer 3b after drying due to volatilization of the solvent during the pre-baking process, the light shielding part 2 is formed on the upper surface of the light shielding part 2 in contact with the colored layer 3b after drying. Since the part upper surface micro-colored layer exists, the end of the colored layer 3b after drying is located on the light-shielding part 2, and the colored layer 3b after drying finally obtained after the pre-baking process is shown in FIG. As shown in FIG. 2, it is considered that the film thickness t1 at the end of the colored layer 3b after drying and the film thickness of the light shielding portion 2 have almost no film thickness difference.
  • the thickness t1 at the end of the colored layer 3b after drying is small, and the thickness difference between the thickness t1 at the end of the colored layer 3b after drying and the thickness of the light shielding portion 2 is considered to be large. It is done.
  • the colored layer forming coating liquid discharged to the opening section partitioned by the light shielding section 2 contains a certain amount of solid content, and the solvent is removed to some extent after the drying under reduced pressure.
  • the amount of the solid content contained in the colored layer after drying does not change. Therefore, when the volume of the colored layer after drying is the same, as shown in FIG. 4 (b), the smaller the film thickness difference between the film thickness at the end of the colored layer 3b after drying and the film thickness of the light shielding portion, That is, as the film thickness t1 at the end of the colored layer 3b after drying is larger, the film thickness of the colored layer after drying divided by the light-shielding part becomes more uniform, resulting in higher flatness.
  • the colored layer before drying is subjected to reduced-pressure drying treatment so that the thickness of the end portion of the colored layer after drying does not become smaller than the thickness of the light-shielding portion.
  • the flatness of the colored layer of the color filter manufactured by the manufacturing method of this aspect can be made high.
  • the pre-baking process can be performed in a short time, the production efficiency of the color filter can be increased.
  • each process in the manufacturing method of the color filter of this aspect is each demonstrated.
  • a colored layer forming coating solution is applied to the opening of the black matrix substrate having a transparent substrate and a light-shielding part formed on the transparent substrate and having an opening by an inkjet method.
  • This is a step of forming a pre-drying colored layer.
  • the black matrix substrate used in this step, the colored layer forming coating solution, and the pre-drying colored layer formed in this step will be described.
  • the black matrix substrate has a transparent substrate and a light-shielding portion formed on the transparent substrate and having an opening.
  • the transparent substrate may be the same as that used for a general color filter.
  • inflexible transparent inorganic substrates such as quartz glass, Pyrex (registered trademark) glass, and synthetic quartz plates, and transparent transparent resins such as transparent resin films and optical resin plates
  • transparent transparent resins such as transparent resin films and optical resin plates
  • an inorganic substrate it is preferable to use an inorganic substrate in this step.
  • the light-shielding part has liquid repellency, and as a method for making the light-shielding part liquid-repellent, a method of making the resin light-shielding part liquid-repellent using fluorine plasma treatment is suitably used. Because.
  • the glass substrate among the inorganic substrates it is preferable to use a glass substrate among the inorganic substrates, and it is preferable to use an alkali-free type glass substrate among the glass substrates.
  • the alkali-free glass substrate is excellent in dimensional stability and workability in high-temperature heat treatment, and contains no alkali component in the glass, so it is suitable for color filters for color liquid crystal display devices using an active matrix method. This is because it can be used.
  • the light shielding part is formed on the above-described transparent substrate and has an opening.
  • the light-shielding portion used in this step those having openings regularly formed at regular intervals are usually used.
  • the specific shape and the arrangement form of the opening are not particularly limited, and can be arbitrarily determined according to the use of the color filter manufactured according to this aspect.
  • it is more preferable that the shape of the opening is rectangular.
  • the shape of the said opening part is a rectangular shape, as shown in FIG. 3, you may have a notch part.
  • the width of the opening is appropriately selected depending on the use of the color filter to be manufactured.
  • the opening has a rectangular shape and, as shown in FIG.
  • it is preferably in the range of 100 ⁇ m to 480 ⁇ m, more preferably in the range of 120 ⁇ m to 350 ⁇ m, particularly in the range of 145 ⁇ m to 250 ⁇ m.
  • the width of the opening is within the range of 130 ⁇ m to 600 ⁇ m, particularly within the range of 150 ⁇ m to 520 ⁇ m, particularly 170 ⁇ m. It is preferably in the range of ⁇ 450 ⁇ m.
  • the width of the opening is less than the above range, or exceeds the above range, a color filter that can perform good image display even when the color filter manufacturing method of this aspect is used. This is because it may be difficult to manufacture.
  • the thickness of the light-shielding portion is not particularly limited as long as it is a thickness that can partition the opening and form a colored layer having a desired thickness using an inkjet method.
  • the film thickness of the light-shielding part is a light-shielding part that does not cause shrinkage by the baking process described later, it is within the range of 1.0 ⁇ m to 3.5 ⁇ m, especially within the range of 1.5 ⁇ m to 3.0 ⁇ m, especially 2.0 ⁇ m. It is preferably in the range of ⁇ 2.5 ⁇ m. This is because when the film thickness of the light shielding part is less than the above range, it may be difficult to form a colored layer using the inkjet method, and the film thickness of the light shielding part exceeds the above range.
  • the film thickness of the light-shielding part before the baking process is in the above numerical range.
  • Such a light-shielding part is not particularly limited as long as it has a desired light-shielding property, and specifically, a material composed of a light-shielding material and a resin is used.
  • a material used for a resin light shielding portion of a general color filter can be used.
  • Examples of such a light-shielding material include light-shielding particles such as carbon fine particles, metal oxides, inorganic pigments, and organic pigments.
  • the resin examples include ethylene-vinyl acetate copolymer, ethylene-vinyl chloride copolymer, ethylene-vinyl copolymer, polystyrene, acrylonitrile-styrene copolymer, ABS resin, polymethacrylic acid resin, ethylene -Methacrylic acid resin, polyvinyl chloride resin, chlorinated vinyl chloride, polyvinyl alcohol, cellulose acetate propionate, cellulose acetate butyrate, nylon 6, nylon 66, nylon 12, polyethylene terephthalate, polybutylene terephthalate, polycarbonate, polyvinyl acetal, Polyether ether ketone, polyether sulfone, polyphenylene sulfide, polyarylate, polyvinyl butyral, epoxy resin, phenoxy resin, polyimide resin, poly Doimido resin, polyamic acid resin, polyether imide resin, phenol resin, a urea resin or the like.
  • the method for forming the light shielding part is not particularly limited as long as it can form the light shielding part in which the opening is arranged in a desired manner.
  • Examples thereof include a photolithography method using a resin composition containing light-shielding particles, a thermal transfer method using the resin composition, and the like.
  • a specific method for forming such a light-shielding portion a method similar to the method for forming the light-shielding portion generally used for color filters can be used, and thus detailed description thereof is omitted here.
  • Liquid repellent means The light shielding part is preferably liquid repellent. This prevents color mixing between adjacent colored layers before drying when a colored layer forming coating solution is applied onto a black matrix substrate by an inkjet method to form a colored layer before drying. This is because it becomes possible.
  • the means for making the liquid repellent in this step is not particularly limited as long as it can make the liquid repellent with respect to the light shielding portion of the black matrix substrate.
  • the liquid repellent layer having a liquid repellency is formed only on the light-shielding portion, a method of forming a liquid-repellent layer by a photolithographic method or the like, or a plasma treatment using a metal mask or the like to perform the plasma treatment on It may be a liquid repellent method or the like.
  • the light shielding part can be made liquid repellent easily and with high accuracy, it is preferable to perform a fluorine plasma process in which the light shielding part is made liquid repellent by fluorine plasma treatment which is a plasma treatment using fluorine as an introduction gas.
  • fluorine plasma treatment which is a plasma treatment using fluorine as an introduction gas.
  • the fluorine plasma treatment can selectively attach fluorine to an organic substance.
  • examples of the fluorine compound used in the introduced gas include CF 4 , SF 6 , CHF 3 , C 2 F 6 , C 3 H 8 , and C 5 F 8 .
  • the introduced gas may be a mixture of the fluorine gas and another gas.
  • the other gas include nitrogen, oxygen, argon, helium, etc. Among them, nitrogen is preferably used. Further, when nitrogen is used as the other gas, the mixing ratio of nitrogen is preferably 50% or more.
  • the method of performing the plasma irradiation is not particularly limited as long as it can improve the liquid repellency of the light shielding portion.
  • the plasma irradiation may be performed under reduced pressure, or the atmospheric pressure Plasma irradiation may be performed below.
  • this step it is particularly preferable to perform plasma irradiation under atmospheric pressure. This is because an apparatus for decompression or the like is not necessary, which is advantageous in terms of cost, manufacturing efficiency, and the like.
  • the presence of fluorine in the light-shielding part after the plasma irradiation is detected from the surface of the light-shielding part in the analysis with an X-ray photoelectron spectrometer (XPS ⁇ : for example, ESCALAB 220i-XL manufactured by VGScientific) This can be confirmed by measuring the proportion of fluorine element in all the elements to be measured.
  • XPS ⁇ for example, ESCALAB 220i-XL manufactured by VGScientific
  • any contact angle may be used as long as the contact angle between the surface of the light-shielding portion and the coating liquid for forming the colored layer is larger than the contact angle of the substrate surface.
  • the contact angle of the surface of the light-shielding part with a liquid of 40 mN / m is 10 ° or more, and particularly the contact angle of a liquid with a surface tension of 30 mN / m is 10 °. It is preferable that the above is achieved, and it is further preferable that the contact angle with a liquid having a surface tension of 20 mN / m is 10 ° or more. Moreover, it is preferable that the contact angle with pure water is about 11 ° or more.
  • the colored layer forming coating solution used in this step is not particularly limited as long as it can be discharged by an ink jet apparatus. Usually, a coating solution for forming a red colored layer, a coating solution for forming a green colored layer, a coating solution for forming a blue colored layer, and the like are used, but a coating solution for forming a colored layer other than the above colors is used. It is also possible.
  • a solution containing a solvent, a colorant, a curing component and the like is usually used.
  • the solvent may be a single solvent or a mixed solvent in which two or more solvents are mixed.
  • the solvent is not particularly limited as long as it can dissolve the colorant and the curing component contained in the ink at a desired concentration.
  • the boiling point of the solvent is colored before drying so that the film thickness at the end of the colored layer after drying is not smaller than the film thickness of the light-shielding part in the vacuum drying treatment step described later.
  • the solvent which can perform the prebaking process mentioned later in a short time is selected.
  • the boiling point of such a solvent is preferably in the range of 150 ° C. to 300 ° C., more preferably in the range of 180 ° C. to 280 ° C., and particularly preferably in the range of 200 ° C. to 250 ° C. This is because when the boiling point of the solvent is less than the above range, it takes a long pre-bake treatment time, and a solvent whose boiling point exceeds the above range is usually not used.
  • diethylene glycol monobutyl ether acetate diethylene glycol monoethyl ether acetate, dipropylene glycol monomethyl ether acetate, ethyl 3-ethoxypropionate, dimethyl malonate or the like as such a solvent.
  • the colorant is not particularly limited as long as it can absorb light having a desired wavelength.
  • a colorant may be a dye-based material or a pigment-based material. Specific examples of such colorants are the same as those generally used for color filters, and thus detailed description thereof is omitted here.
  • the curing component cures the colorant when forming the colored layer, and a crosslinkable monomer or the like is usually used.
  • a crosslinkable monomer or the like examples include acrylic resins having substituents such as hydroxyl groups, carboxyl groups, alkoxy groups, epoxy groups, amide groups; silicone resins, epoxy resins or hydroxypropyl cellulose, hydroxyethyl cellulose, methyl cellulose, carboxymethyl cellulose, and the like. Cellulose derivatives or modified products thereof; vinyl polymers such as polyvinyl pyrrolidone, polyvinyl alcohol, and polyvinyl acetal. Moreover, you may use two or more types of such hardening components in this process.
  • necessary components can be appropriately selected and added in addition to the above-described solvent, colorant, and curing component.
  • suitable components include reaction initiators and surfactants.
  • the solid content concentration of the colored layer forming coating solution may be the same as the solid content concentration of the colored layer forming coating solution used in forming the colored layer using a general ink jet method. Therefore, explanation here is omitted.
  • solid content concentration represents the density
  • the viscosity of the colored layer forming coating solution is not particularly limited as long as it is a viscosity capable of forming a pre-drying colored layer having a predetermined thickness in the opening on the black matrix substrate using an inkjet method. However, since it can be the same as the viscosity of the coating liquid for forming a colored layer used in a general method for producing a color filter using an ink jet method, description thereof is omitted here.
  • the surface tension of the coating liquid for forming the colored layer particularly if it is a surface tension capable of forming a pre-drying colored layer having a predetermined film thickness on the black matrix substrate using an inkjet method, It is not limited, and since it can be the same as the surface tension of the coating liquid for forming a colored layer used in a general method for producing a color filter using an ink jet method, description thereof is omitted here.
  • the average film thickness of the pre-drying colored layer formed in this step is appropriately selected and determined depending on the use of the color filter produced by the production method of this embodiment.
  • the average film thickness of the colored layer before drying is a film that can prevent the film thickness at the end of the colored layer after drying after the vacuum drying process described later from being smaller than the film thickness of the light-shielding part. Although it will not specifically limit if it is thickness, It is preferable that it is 4.7 micrometers or more especially 7.6 micrometers or more, especially 8.9 micrometers or more.
  • the maximum film thickness at the end of the colored layer after drying after the vacuum drying treatment step described later can be smaller than the film thickness of the light shielding portion. Because there is sex.
  • the upper limit of the average thickness of the colored layer before drying is appropriately selected depending on the size of the opening where the colored layer before drying is formed, the coating liquid for forming the colored layer, and the like.
  • the film thickness is such that the pre-drying colored layer formed in the opening does not break.
  • the “average thickness of the colored layer before drying” refers to a value obtained by dividing the coating amount of the colored layer forming coating solution applied to the opening by the area of the opening.
  • the formation method of the pre-drying colored layer is not particularly limited as long as it is a formation method using an inkjet method.
  • the ink jet method used in this step may be any method that can accurately discharge the colored layer forming coating solution to the opening, and is usually a nozzle that can apply the colored layer forming coating solution.
  • Inkjet heads having a plurality of are used.
  • the discharge method in which the inkjet head used in this step discharges the colored layer forming coating solution is not particularly limited as long as it can discharge a predetermined amount of the colored layer forming coating solution.
  • Examples of such a discharge method include a method in which a charged colored layer forming coating solution is continuously discharged and the discharge amount is controlled by a magnetic field, and a colored layer forming coating solution is intermittently formed using a piezoelectric element.
  • Examples thereof include a method of discharging, a method of heating a colored layer forming coating liquid, and intermittently discharging using the foaming phenomenon.
  • Vacuum drying treatment step This step is a step of subjecting the pre-drying colored layer to a vacuum drying treatment to form a color filter substrate on which the post-drying colored layer has been formed. This is a step of subjecting the pre-drying colored layer to a drying process under reduced pressure so that the film thickness does not become smaller than the film thickness of the light shielding part.
  • the “color filter substrate” refers to a black matrix substrate on which a colored layer after drying that has been subjected to reduced-pressure drying treatment is formed.
  • the black matrix substrate during the vacuum drying process may also be described as a color filter substrate.
  • the colored layer before drying is subjected to reduced-pressure drying treatment so that the film thickness at the edge of the colored layer after drying does not become smaller than the film thickness of the light-shielding portion. It is not particularly limited if possible. More specifically, the drying is performed so that the film thickness difference between the film thickness of the end portion of the colored layer after drying and the film thickness of the light-shielding portion is 0.1 ⁇ m or less, preferably 0.05 ⁇ m or less, particularly 0 ⁇ m.
  • the pre-colored layer is dried under reduced pressure. It is because it becomes difficult to give desired flatness to the colored layer formed when the film thickness difference exceeds the above range.
  • the pre-drying colored layer is dried under reduced pressure so that the ratio between the maximum thickness of the colored layer after drying and the width of the opening is within the above-described range.
  • the ratio of the maximum thickness of the colored layer after drying and the width of the opening in the present invention satisfies both the values calculated using the widths u1 and u2 of the opening shown in FIG. It is a numerical value.
  • the maximum film thickness of the colored layer after drying formed in this step is particularly limited as long as the film thickness at the end of the colored layer after drying is not smaller than the film thickness of the light shielding part.
  • the width of the opening of the light-shielding portion is in the numerical range described above, it is within the range of 4.7 ⁇ m to 22.7 ⁇ m, and particularly within the range of 4.7 ⁇ m to 17.7 ⁇ m. It is preferable.
  • the film thickness at the end of the colored layer after drying may be smaller than the thickness of the light shielding portion. This is because it may be difficult to impart the desired flatness to the colored layer.
  • the upper limit of the maximum thickness of the colored layer after drying is not particularly limited as long as the solvent in the colored layer after drying is a thick film that does not bump in the pre-baking process described later.
  • the pre-baking treatment time is preferably short, the maximum film thickness of the colored layer after drying does not exceed the above range. Preferably there is.
  • a preferable treatment temperature in this step is preferably within a range of 30 ° C. to 60 ° C., more preferably within a range of 35 ° C. to 55 ° C., and particularly preferably within a range of 40 ° C. to 50 ° C.
  • the processing time of the reduced-pressure drying process is appropriately determined depending on the size of the color filter manufactured by the manufacturing method of this aspect.
  • the colored layer before drying is used so that the thickness of the end portion of the colored layer after drying formed in this step is not smaller than the thickness of the light-shielding portion.
  • the method is not particularly limited as long as it can be determined under such conditions that can be dried under reduced pressure.
  • the film thickness difference between the film thickness at the end of the colored layer after drying and the film thickness of the light-shielding part is described above It is possible to suitably use a method of setting various conditions that satisfy the relationship and using this in this step.
  • (B) Reduced pressure drying apparatus Next, the reduced pressure drying apparatus used in this step will be described.
  • the reduced-pressure drying treatment apparatus used in this step those generally used for the production of color filters can be used. Specifically, a heating means for heating the color filter, a chamber for storing the heating means, and a decompression means for reducing the pressure in the chamber to a desired pressure can be given.
  • Heating means Any heating means may be used as long as it can heat the color filter substrate to a desired temperature.
  • heating means include a hot plate, a heating wire, a lamp, and an infrared radiation device.
  • a hot plate is particularly preferable. Since the entire hot plate is heated, there is no specific location with a low temperature as in other heating means, and the volatilized solvent is rapidly cooled in that portion, resulting in condensation. This is because there is no inconvenience such as dripping onto the color filter substrate, causing the colored layer formed in the opening to break and cause color mixing. Furthermore, it is easy to heat the color filter substrate uniformly in plan view, and the colored layer formed by drying the pre-drying colored layer can be made to have excellent flatness. .
  • the heating capability of the heating means used in the reduced-pressure drying apparatus is not particularly limited as long as the color filter substrate can be heated to a desired temperature.
  • the color filter substrate can be heated within a range of 30 ° C. to 60 ° C., particularly within a range of 35 ° C. to 55 ° C., particularly within a range of 40 ° C. to 50 ° C. It is preferable. It is because the said solvent can be removed efficiently by being in the said range.
  • the above temperature does not indicate the temperature of the color filter substrate itself, but indicates the processing temperature by the heating means.
  • the heating means may be arranged with respect to the color filter substrate so that the heating means is arranged below the color filter substrate so as to heat the color filter substrate from below.
  • the heating means may be disposed above the color filter substrate so as to heat the color filter substrate from above.
  • the colored layer is excellent in flatness by having no troubles such as causing color breakage and causing color mixture and further heating the color filter substrate uniformly in plan view. Because it can be done.
  • the chamber may be any chamber as long as the heating means can be accommodated in the chamber and can be highly sealed when dried.
  • the shape and size of the chamber are appropriately set according to the size of the color filter substrate to be dried.
  • (Iii) Depressurizing means The depressurizing means in the vacuum drying apparatus depressurizes the inside of the chamber.
  • a general pressure reducing device such as a vacuum pump can be used.
  • the depressurization ability of the depressurization means used in the depressurization drying processing apparatus is not particularly limited as long as the pressure in the chamber can be set to a pressure at which the color filter substrate can be dried at a desired speed.
  • the steady pressure under reduced pressure in the chamber is preferably one that can be set to a range of less than 4 Pa, and particularly preferably one that can be set to a range of less than 1 Pa. It is because the said solvent can be easily removed because it is the said range.
  • the steady pressure under reduced pressure refers to the equilibrium pressure that is reached when vacuum drying is performed in a state where the chamber of the vacuum drying apparatus is emptied, that is, without any color filter substrate or condensed solvent. It is. Further, the equilibrium pressure is a pressure that is in a constant state, and more specifically, in a state in which the pressure for 90 seconds is included within 10% above and below the average pressure based on the average pressure for 90 seconds. It means the average pressure.
  • Baking process is a process of obtaining the color filter in which the colored layer was formed by performing a post-baking process after performing the pre-baking process with respect to the said board
  • pre-bake process and the post-bake process in this process will be described.
  • the prebaking process in this process is a process which removes the solvent remaining in the colored layer after drying, and at the same time, planarizes the colored layer as described above.
  • the fact that the solvent in the colored layer after drying does not bump suddenly means that the pre-baking treatment is performed when the boiling point of the solvent used in the coating solution for forming the colored layer of the color filter is in the range of 150 ° C. to 300 ° C.
  • prebaking is performed at a temperature in the range of 70 ° C. to 110 ° C., it means that the solvent in the colored layer after the drying bumps and the adjacent colored layers do not mix.
  • the prebaking temperature is more preferably in the range of 80 ° C to 100 ° C.
  • the processing time in the pre-baking process is appropriately selected depending on the size of the color filter substrate and the like, but is preferably in the range of 5 minutes to 60 minutes.
  • the pre-baking process it is preferable to perform the pre-baking process at a lower temperature for a longer time within the range of the above-described pre-baking process temperature and processing time.
  • a colored layer to be formed can have higher flatness by performing pre-baking treatment at a low temperature for a long time.
  • the reason for this is not clear, but can be considered as follows.
  • the pre-baking process in the colored layer after drying formed in the opening, the colored layer after drying is caused to flow from the center of the colored layer after drying to the end of the colored layer after drying having a small thickness.
  • the colored layer is flattened. Therefore, the lower the processing temperature in the pre-baking process and the longer the processing time, the longer the time for the colored layer to flow after drying can be, so the flatness of the formed colored layer can be improved. It is possible.
  • Such a pre-bake treatment is usually performed using a clean oven or the like.
  • the post-bake process in this process is performed in order to harden the colored layer from which the solvent was completely removed by the pre-bake process. In this process, a certain degree of flattening is performed.
  • the post-bake treatment in this step is the same as the normal post-bake treatment, and specifically, preferably in the range of 160 ° C. to 250 ° C., particularly in the range of 200 ° C. to 240 ° C.
  • the treatment time is preferably in the range of 10 minutes to 120 minutes, particularly in the range of 20 minutes to 80 minutes.
  • a clean oven or the like is usually used for such post-bake treatment.
  • the average film thickness of the colored layer formed by this step is appropriately selected depending on the use of the color filter produced by the production method of this embodiment, but is within the range of 1.5 ⁇ m to 3.0 ⁇ m. However, it is preferably in the range of 1.8 ⁇ m to 2.7 ⁇ m. If the thickness of the colored layer is less than the above range, it is difficult to form a colored layer with high flatness even when the color filter manufacturing method of this aspect is used. This is because when the thickness of the colored layer exceeds the above range, it is difficult to form the color filter into a thin film.
  • the average thickness of the colored layer is a value measured by a light interference type three-dimensional non-contact surface shape measuring device (for example, product name Micromap 557N manufactured by Micromap USA).
  • a water washing step may be performed before the liquid repellency treatment step.
  • the ITO film formation process for forming a transparent electrode may be performed after the said baking process.
  • the process etc. which form the protective layer and columnar spacer which are formed on a colored layer may be performed.
  • Color filter manufacturing method The color filter manufactured by the color filter manufacturing method of this aspect is particularly limited as long as at least one colored layer is formed through the above-described steps. Instead, all of the colored layers of the color filter may be formed in the above-described steps.
  • the color filter manufacturing method according to the present aspect includes, for example, a color filter having a red colored layer, a green colored layer, and a blue colored layer, wherein the red colored layer and the green colored layer are formed so that the blue colored layer is also small.
  • the present invention can also be used to manufacture a color filter having a semi-multi gap structure, or a color filter having a multi-gap structure in which the red colored layer, the green colored layer, and the blue colored layer have different thicknesses.
  • aspect A an aspect in which the method for producing a color filter according to this aspect is applied when producing a color filter having a plurality of colored layers having different film thicknesses will be described.
  • the color filter manufacturing method includes a transparent substrate, a black matrix substrate formed on the transparent substrate and having a light shielding portion having an opening, and a plurality of colors formed in the opening on the black matrix substrate.
  • a transparent substrate a transparent substrate
  • a black matrix substrate formed on the transparent substrate and having a light shielding portion having an opening
  • a plurality of colors formed in the opening on the black matrix substrate.
  • the film thickness of at least one color layer among the color layers of the plurality of colors is smaller than the film thickness of the color layers of the other colors.
  • a method of manufacturing wherein an ink-jet process for forming a colored layer before drying by applying a coating solution for forming a colored layer to the openings of the black matrix substrate by an ink-jet method; and A reduced-pressure drying treatment process for forming a color filter substrate on which a colored layer after drying is formed by subjecting the pre-drying colored layer to a reduced-pressure drying treatment; And after the pre-baking process, the post-baking process is performed to obtain a color filter in which the colored layers of the plurality of colors are formed.
  • the colored layers before drying of the plurality of colors are subjected to reduced-pressure drying treatment so that the thickness of the end portion of the colored layer after drying does not become smaller than the thickness of the light shielding portion.
  • FIG. 6 is a process diagram showing an example of a method for producing a color filter of this aspect.
  • FIG. 6 shows an example of manufacturing a color filter having a semi-multi gap structure in which the red colored layer and the green colored layer are formed to be smaller than the blue colored layer.
  • a plurality of colors are formed by applying a colored layer forming coating solution to the openings of the black matrix substrate 10a formed of the transparent substrate 1 and the light-shielding portion 2 by an inkjet method.
  • the ink-jet process (FIG. 6A) for forming the colored layer 3a before drying (in FIG.
  • a baking process for obtaining the color filter 10 on which the colored layer 3R, the colored layer 3G after green drying, and the colored layer 3B after blue drying) are formed is performed.
  • the film thickness of the colored layer 3Rb after red drying and the colored layer 3Gb after green drying is not smaller than the film thickness of the light shielding part 2.
  • the colored layer 3Ra before red drying and the colored layer 3Ga before green drying are dried under reduced pressure.
  • the content of the solvent in the dried colored layer having the smallest film thickness can be imparted with desired flatness to the formed colored layer, And it becomes possible to set it as the minimum content which can perform a prebaking process in a short time. Therefore, for colored layers having other film thicknesses, the coating for forming the colored layer so as to be a colored layer after drying having such a film thickness that the solvent in the colored layer after drying does not suddenly boil under the above-described prebaking conditions. Since the liquid can be formed by applying a thick film, even if a plurality of colored layers having different film thicknesses are formed at the same time, desired flatness can be imparted to each colored layer.
  • the colored layer having the smallest film thickness can be formed by applying the above-described method for manufacturing a color filter. Further, in this embodiment, the desired flatness can be obtained for the colored layers having other thicknesses in the same environment as the reduced-pressure drying process and the baking process performed when the colored layer having the smallest film thickness is formed. It is necessary to prevent color mixing in the colored layer of each color.
  • a method for forming a colored layer having another thickness will be described.
  • the formation conditions which are not demonstrated below since it can be the same as that of the formation method of the coloring layer with the smallest film thickness mentioned above, it abbreviate
  • the maximum film thickness of the colored layer after drying after the reduced-pressure drying process is such that the solvent in the colored layer after drying does not bump in the prebaking process.
  • the thickness is not particularly limited as long as the film thickness can be set, and is preferably 7.7 ⁇ m or more, particularly preferably 10.0 ⁇ m or more.
  • the film thickness of the colored layer before drying is less than the above range, it may be difficult to form a desired film thickness difference between the formed colored layer and the above-described colored layer having the smallest film thickness. This is because if the thickness of the pre-drying colored layer exceeds the above range, it may be difficult to form the colored layer.
  • the maximum film thickness of the colored layer after drying formed in the reduced-pressure drying treatment step in this embodiment is such that the solvent in the colored layer after drying bumps in the pre-baking process and color mixing between the colored layers does not occur.
  • it is not particularly limited if possible, specifically, it is preferably in the range of 7.7 ⁇ m to 22.7 ⁇ m.
  • the film thickness of the colored layer after drying is less than the above range, it may be difficult to form a desired film thickness difference between the formed colored layer and the above-described colored layer having the smallest film thickness. This is because, if the thickness of the colored layer after drying exceeds the above range, the content of the solvent in the colored layer after drying is large, and thus there is a possibility of color mixing between the colored layers during prebaking treatment. Because there is.
  • the color filter manufactured by the manufacturing method of the aspect A is not particularly limited as long as it has a plurality of colored layers having different film thicknesses, but the film thicknesses of the red colored layer and the green colored layer are not limited. Is preferably a color filter having a semi-multi gap structure formed so as to be smaller than the film thickness of the blue colored layer. This is because, when the color filter having the above configuration is used in a liquid crystal display device, the luminance of the blue pixel region can be increased, so that a good image display can be performed.
  • the ratio of the maximum film thickness of the colored layer after drying to the width of the opening is 7 in the reduced-pressure drying treatment step when the width of the opening is 1.
  • the production method is characterized in that the pre-drying colored layer is dried under reduced pressure so as to be within a range of .8 ⁇ 10 ⁇ 3 to 2.3 ⁇ 10 ⁇ 1 .
  • the film thickness at the end of the colored layer after drying is the maximum film thickness of the colored layer after drying and the above-described thickness. This correlates with the ratio with the width of the opening. Therefore, in this embodiment, the content of the solvent in the colored layer after drying can be reduced to a minimum content that allows the formed colored layer to have a desired flatness.
  • the processing conditions are expressed using the ratio between the maximum thickness of the colored layer after drying and the width of the opening.
  • the color filter manufacturing method of this aspect can also be suitably used when manufacturing a color filter having a plurality of colored layers having different film thicknesses, similar to the color filter manufacturing method of the first aspect described above. is there.
  • an aspect hereinafter referred to as aspect B in which the method for producing a color filter according to this aspect is applied when producing a color filter having a plurality of colored layers having different film thicknesses will be described.
  • the color filter manufacturing method includes a transparent substrate, a black matrix substrate formed on the transparent substrate and having a light shielding portion having an opening, and a plurality of colors formed in the opening on the black matrix substrate.
  • a color filter formed so that the thickness of at least one color layer among the plurality of color layers is smaller than the thickness of the color layers of other colors A method of forming a plurality of pre-drying colored layers by applying a coating solution for forming a colored layer to the openings of the black matrix substrate by an inkjet method; and drying the plurality of colors
  • a pre-colored layer is dried under reduced pressure to form a color filter substrate on which a colored layer after drying of multiple colors is formed, and the above-mentioned color filter substrate ,
  • the post-bake treatment is performed to obtain a color filter in which the colored layers of the plurality of colors are formed.
  • the drying with the smallest film thickness is performed.
  • the ratio between the maximum film thickness of the post-colored layer and the width of the opening is in the range of 7.8 ⁇ 10 ⁇ 3 to 2.3 ⁇ 10 ⁇ 1 when the width of the opening is 1.
  • the above-mentioned pre-drying colored layer is dried under reduced pressure.
  • the colored layer with the smallest film thickness can be formed by using the above-described method for manufacturing a color filter.
  • the formation method of the colored layer of another film thickness it is the same as that of the method of forming colored layers other than the colored layer of the smallest film thickness demonstrated in the term of the manufacturing method of the color filter of the aspect of A mentioned above. The explanation here is omitted.
  • the ratio between the maximum thickness of the colored layer after drying having the smallest thickness and the width of the opening is 7.8 ⁇ 10 ⁇ 3 when the width of the opening is 1.
  • the pre-drying colored layers of the plurality of colors are subjected to a reduced-pressure drying treatment so as to be in a range of ⁇ 1.8 ⁇ 10 ⁇ 1 .
  • the numerical range can be calculated as follows, for example.
  • the film thickness of the light-shielding part before shrinking before the baking process is 2.7 ⁇ m, the width u1 of the opening shown in FIG.
  • the width u2 of the opening is in the range of 130 ⁇ m to 600 ⁇ m.
  • the present invention is not limited to the above embodiment.
  • the above-described embodiment is an exemplification, and the present invention has any configuration that has substantially the same configuration as the technical idea described in the claims of the present invention and exhibits the same function and effect. Are included in the technical scope.
  • BM substrate black matrix substrate
  • shading of light shielding part Using a photosensitive resin composition containing a light-shielding black pigment on a glass substrate (horizontal length 2850 mm ⁇ vertical length 3050 mm ⁇ thickness 0.7 mm manufactured by Corning Japan) (transparent substrate), a light-shielding portion is formed by a photolithography method. 18 screens of 40 inch size were formed.
  • Each pixel is formed so that one pixel has a horizontal pitch of 115 ⁇ m, a vertical pitch of 465 ⁇ m, an opening size of 100 ⁇ m ⁇ 450 ⁇ m, and a light shielding portion line width of 15 ⁇ m, and a horizontal direction of 5525 pixels at a pitch of 115 ⁇ m.
  • the thickness of the light-shielding portion is 2.7 ⁇ m in a state where no shrinkage before the baking process is caused, and the thickness of the light-shielding portion finally obtained when the color filter is formed is 2.4 ⁇ m on an average of 20 pixels. Met. Further, the width of the opening was 100 ⁇ m for u1 and 450 ⁇ m for u2 in FIG.
  • the surface of the light-shielding portion of the transparent substrate was subjected to atmospheric pressure plasma treatment in which fluorine gas was introduced to make the surface of the light-shielding portion layer liquid-repellent and the glass surface portion lyophilic.
  • the atmospheric pressure plasma treatment was performed under the following conditions. In this way, a BM substrate was produced.
  • the contact angle with the 40 mN / m liquid of the obtained color filter forming substrate was 60 ° on the average of 20 measured values on the surface of the light shielding layer, and 10 ° on the glass surface. This contact angle was measured using a contact angle measuring device (CA-Z type, manufactured by Kyowa Interface Science Co., Ltd.) (30 seconds after dropping a droplet from a microsyringe), and obtained from the result. It is.
  • CA-Z type manufactured by Kyowa Interface Science Co., Ltd.
  • Red, green, and blue colored layer forming coating solutions were prepared according to the following formulation.
  • Example 1 A red colored layer is formed using a coating solution for forming a red colored layer, and the height of the colored layer after drying after the reduced-pressure drying treatment is +2 ⁇ m (maximum film) The colored layer before red drying was dried under reduced pressure until the thickness became 4.7 ⁇ m. As a result, a color filter substrate was obtained.
  • Example 2 Except that the colored layer before red drying was subjected to reduced-pressure drying treatment until the height of the colored layer after drying after the reduced-pressure drying treatment was +6 ⁇ m (maximum film thickness: 8.7 ⁇ m) with respect to the light-shielding portion.
  • a color filter substrate was obtained in the same manner as in Example 1.
  • Example 3 Except that the colored layer before red drying was subjected to vacuum drying treatment until the height of the colored layer after drying after the vacuum drying treatment reached a height of +8 ⁇ m (maximum film thickness 10.7 ⁇ m) with respect to the light-shielding portion.
  • a color filter substrate was obtained in the same manner as in Example 1.
  • Example 4 Except that the colored layer before red drying was subjected to vacuum drying treatment until the height of the colored layer after drying after the vacuum drying treatment reached a height of +15 ⁇ m (maximum film thickness of 17.7 ⁇ m) with respect to the light shielding part.
  • a color filter substrate was obtained in the same manner as in Example 1.
  • Example 5 A green colored layer forming coating layer is formed using the green colored layer forming coating solution, and the height of the colored layer after drying after the reduced pressure drying treatment is +2 ⁇ m (maximum film thickness: 4. The colored layer before green drying was dried under reduced pressure until the height reached 7 ⁇ m). As a result, a color filter substrate was obtained.
  • Example 6 Except that the colored layer before green drying was dried under reduced pressure until the height of the colored layer after drying after the reduced pressure drying treatment was +6 ⁇ m (maximum film thickness: 8.7 ⁇ m) with respect to the light shielding part. A color filter substrate was obtained in the same manner as in Example 5.
  • Example 7 Except that the colored layer before drying was dried under reduced pressure until the height of the dried colored layer after drying under reduced pressure was +8 ⁇ m (maximum film thickness 10.7 ⁇ m) with respect to the light-shielding part.
  • a color filter substrate was obtained in the same manner as in Example 5.
  • Example 8 Except that the colored layer before green drying was subjected to reduced-pressure drying treatment until the height of the colored layer after drying after the reduced-pressure drying treatment was +15 ⁇ m (maximum film thickness 17.7 ⁇ m) with respect to the light-shielding portion.
  • a color filter substrate was obtained in the same manner as in Example 5.
  • Example 9 Using the blue colored layer forming coating solution, a colored layer before blue drying is formed, and the height of the colored layer after blue drying after the vacuum drying treatment is +5 ⁇ m (maximum film thickness 7 The colored layer before blue drying was dried under reduced pressure until it reached a height of 0.7 ⁇ m). As a result, a color filter substrate was obtained.
  • Example 10 A colored layer before blue drying is formed using a coating liquid for forming a blue colored layer, and the height of the colored layer after blue drying after reduced pressure drying is +7 ⁇ m (maximum film thickness 9 The colored layer before blue drying was dried under reduced pressure until it reached a height of 0.7 ⁇ m). As a result, a color filter substrate was obtained.
  • Example 11 Other than that the colored layer before blue drying was dried under reduced pressure until the height of the colored layer after blue drying after vacuum drying was +12 ⁇ m (maximum film thickness 14.7 ⁇ m) with respect to the light-shielding part Obtained a color filter substrate in the same manner as in Example 9.
  • Example 12 Other than that the colored layer before blue drying was subjected to vacuum drying treatment until the height of the colored layer after blue drying after the vacuum drying treatment reached a height of +15 ⁇ m (maximum film thickness 17.7 ⁇ m) with respect to the light shielding part Obtained a color filter substrate in the same manner as in Example 9.
  • Example 13 Other than that the colored layer before blue drying was subjected to vacuum drying treatment until the height of the colored layer after blue drying after the vacuum drying treatment reached a height of +20 ⁇ m (maximum film thickness 22.7 ⁇ m) with respect to the light shielding part Obtained a color filter substrate in the same manner as in Example 9.
  • the thickness of the end portion of the colored layer before drying was not smaller than the thickness of the light shielding portion.
  • the coating liquid for colored layer formation of each color mentioned above is discharged, the colored layer before red drying, the colored layer before green drying, and A colored layer before blue drying was formed.
  • the coating amount at this time was such that the red and green colored layers were 2.1 ⁇ m and the blue colored layer was 2.4 ⁇ m as the thickness of the colored layer after the final post-baking treatment.
  • the color filter substrates of Examples 14 to 16 and Reference Examples 1 and 2 were formed, and as shown in Table 2, the temperature conditions of the pre-bake treatment were changed in a clean oven for 20 minutes. Thereafter, a post-baking process was performed at 230 ° C. for 40 minutes in a clean oven to obtain a color filter.
  • the color filters of Examples 14 to 16 and Reference Examples 1 and 2 were examined for the presence or absence of color mixing defects and the difference between the maximum film thickness and the minimum film thickness.
  • the evaluation method is the same as that of the color filter of the first embodiment described above. The results are shown in Table 2.
  • the difference between the maximum film thickness and the minimum film thickness of the colored layers of the respective colors can be small, and the flatness of the colored layers is high. A color filter could be obtained.
  • the blue colored layer broke during the post-baking process.
  • the blue colored layer broke during pre-baking.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Optical Filters (AREA)
  • Liquid Crystal (AREA)

Abstract

 本発明は、インクジェット法を用いた場合であっても、平坦性の高い着色層を効率良く形成することが可能なカラーフィルタの製造方法を提供することを主目的とするものである。本発明は、透明基板、および上記透明基板上に形成され開口部を備える遮光部を有するブラックマトリクス基板の上記開口部に、インクジェット法により着色層形成用塗工液を塗布することにより、乾燥前着色層を形成するインクジェット工程と、上記乾燥前着色層を減圧乾燥処理して、乾燥後着色層が形成されたカラーフィルタ用基板を形成する減圧乾燥処理工程と、上記カラーフィルタ用基板に対して、プリベーク処理を行った後、ポストベーク処理を行い、着色層が形成されたカラーフィルタを得るベーク処理工程とを有し、上記減圧乾燥処理工程では、上記乾燥後着色層の端部の膜厚が上記遮光部の膜厚よりも小さくならないように、上記乾燥前着色層を減圧乾燥処理することを特徴とするカラーフィルタの製造方法を提供することにより、上記目的を達成する。

Description

カラーフィルタの製造方法
 本発明は、液晶表示装置とした際に表示品質の良好なカラーフィルタを容易に製造することができるカラーフィルタの製造方法に関するものである。
 近年、パーソナルコンピューターの発達、特に携帯用パーソナルコンピューターの発達に伴って、液晶ディスプレイの需要が増加している。また、最近においては家庭用の液晶テレビの普及率も高まっており、益々液晶ディスプレイの市場は拡大する状況にある。さらに近年普及している液晶ディスプレイは大画面化の傾向があり、特に家庭用の液晶テレビに関してはその傾向が強くなってきている。
 このような状況において、液晶ディスプレイを構成する部材については、より低コストで高品質なものを製造することが望まれている。特に液晶ディスプレイをカラー表示化させる機能を有するカラーフィルタは、従来高コストであったことからこのような要望が高まっている。
 ここで、一般的な液晶ディスプレイに用いられるカラーフィルタは、通常、基板と、上記基板上に形成され、複数の開口部を備える遮光部と、上記開口部内に形成された赤色(R)、緑色(G)、および青色(B)の各色の着色層とを有するものである。
 そして、このようなカラーフィルタのR、G、Bの各色に対応する電極をON、OFFさせることで液晶がバックライトのシャッタとして作動し、R、G、Bのそれぞれの画素を光が通過してカラー表示が行われるものである。
 上記カラーフィルタを製造する方法として、従来からの方法としては染色法、顔料分散法等を用いた製造方法が挙げられるが、これらの方法に比べ、高生産性、かつ低コストでカラーフィルタを製造することが可能な方法として、近年では、インクジェット法を用いたカラーフィルタの製造方法が注目されている(特許文献1)。
 このようなインクジェット法を用いたカラーフィルタの製造方法としては、まず、基板上の遮光部の開口部に、溶媒を含む着色層形成用塗工液をインクジェット装置を用いて塗布することにより、乾燥前の着色層が形成される。その後、上記乾燥前の着色層に含まれる溶媒を乾燥除去した後、加熱することにより着色層が形成される。
 また、近年では、上記乾燥除去の工程においては、上記着色層を減圧環境下で乾燥させる減圧乾燥装置が用いられている(特許文献2~6)。
 しかしながら、上記インクジェット法で形成されたカラーフィルタにおいては、着色層形成用塗工液と遮光部表面との親和性や遮光部の高さ、インクジェット装置から吐出される着色層形成用塗工液の量等の関係から、遮光部に囲まれた開口部における着色層の形状が、上記着色層の端部の膜厚が小さくなり、かつ上記着色層の中心部の膜厚が大きくなるような形状となる場合がある。そして、上記着色層の最大膜厚と最小膜厚との膜厚差が大きい場合は、液晶表示装置とした場合に、表示品質に悪影響を及ぼすおそれがあるといった問題があった。
 このような問題を解決する方法として、減圧環境下で乾燥する減圧乾燥装置を用いた場合では、上記着色層を完全に乾燥させるのではなく、乾燥の中途段階で乾燥を中止し、減圧乾燥処理後の着色層(以下、乾燥後着色層と称して説明する場合がある。)にある程度流動性を持たせた状態で加熱することにより上記膜厚差を減少させ、平坦化させる方法が検討されている。
 しかしながら、上記乾燥後着色層に含有される溶媒の含有量については、減圧乾燥処理の程度により異なり、上記乾燥後着色層中の溶媒の含有量が多すぎる場合、もしくは少なすぎる場合には、以下のような問題が生じる可能性があった。
 上記乾燥後着色層中の溶媒の含有量が多い場合は、加熱工程であるプリベーク処理において、上記乾燥後着色層中に含有される溶媒が突沸することにより、それぞれ遮光部により区画された開口部を越えて着色層同士が混色してしまうおそれがあった。また、この問題を解決するには、従来のプリベーク処理における温度よりも低温で長時間かけて処理を行うことも考えられるが、この場合は、カラーフィルタの製造効率を大幅に低下させてしまうといった問題があった。
 また、上記乾燥後着色層中の溶媒の含有量が少ない場合には、形成される着色層に所望の平坦性を付与することが困難となる可能性があるといった問題があった。
 そこで、形成される着色層に所望の平坦性を付与することが可能であり、かつ、プリベーク処理を短時間で行うことが可能な減圧乾燥処理の条件が求められている。
 また、上述した方法で膜厚の異なる複数色の着色層を同時に形成した場合には、以下のような問題が生じる可能性がある。
 すなわち、カラーフィルタは、通常、上述したように、赤色、緑色、および青色の3色の着色層で形成されるものであるが、用いられる液晶表示装置の種類によっては、各色のセルギャップを最適化する必要があり、特に青色着色層の膜厚を高くすることが求められる場合がある。このような場合には、上述したような平坦化を行った場合は、青色着色層形成用塗工液の盛り量を多くする必要があるため、他色の着色層と同様の条件で、減圧乾燥処理およびプリベーク処理を行った場合は、青色乾燥後着色層中に含有される溶媒は、他色の乾燥後着色層中に含有される溶媒よりも多くなることから、プリベーク処理時に青色乾燥後着色層中に含有される溶媒が突沸して、他色の着色層と混色してしまうといった問題が生じる可能性がある。また、一般に青色着色層を形成するための青色着色層形成用塗工液には、顔料濃度が低く流動性の高いものが用いられる場合があり、このような場合も同様に上述した平坦化の処理を行った場合には、他色の着色層と混色してしまうといった問題が生じる可能性がある。
 上述した問題があったことから、従来、高さの異なる複数色の着色層をインクジェット法を用いて同時に形成することは困難であり、膜厚の異なる着色層については別々に形成する必要があったことから、上述したインクジェット法を用いた着色層の形成工程を少なくとも2回以上行わなければならず、製造効率を高いものとすることが困難であった。
 そこで、高さの異なる複数色の着色層をインクジェット法を用いて同時に形成する場合においては、形成される複数色の着色層にそれぞれ所望の平坦性を付与することが可能であり、かつ各色の着色層が混色しないような減圧乾燥処理の条件が求められている。
特開2000-187111号公報 特開2000-111252号公報 特開平10-2665号公報 特開平9-320949号公報 特開平7-8704号公報 特開平6-97061号公報
 本発明は、上記実情に鑑みてなされたものであり、インクジェット法を用いた場合であっても、平坦性の高い着色層を効率良く形成することが可能なカラーフィルタの製造方法を提供することを主目的とするものである。
 本発明者らは、上記課題を解決すべく、鋭意研究を重ねた結果、乾燥後着色層中の溶媒の含有量を、形成される着色層に所望の平坦性を付与することができ、かつ、プリベーク処理を短時間で行うことができる、最小限の含有量とすることが可能な減圧乾燥処理の条件を見出した。
 また、本発明者らは、上述した減圧乾燥処理の条件を用いることにより、膜厚の異なる複数色の着色層をインクジェット法を用いて同時に形成した場合であっても、それぞれの着色層に所望の平坦性を付与し、かつ、各色の着色層に混色を生じないカラーフィルタとすることができることを見出し、その結果、インクジェット法を用いた着色層の形成工程を1回行うだけで、膜厚の異なる複数の着色層を形成することができることから、カラーフィルタの製造効率を大幅に向上させることができることを見出し、本発明を完成させるに至ったのである。
 すなわち、本発明は、透明基板、および上記透明基板上に形成され開口部を備える遮光部を有するブラックマトリクス基板の上記開口部に、インクジェット法により着色層形成用塗工液を塗布することにより、乾燥前着色層を形成するインクジェット工程と、上記乾燥前着色層を減圧乾燥処理して、乾燥後着色層が形成されたカラーフィルタ用基板を形成する減圧乾燥処理工程と、上記カラーフィルタ用基板に対して、プリベーク処理を行った後、ポストベーク処理を行い、着色層が形成されたカラーフィルタを得るベーク処理工程とを有し、上記減圧乾燥処理工程では、上記乾燥後着色層の端部の膜厚が上記遮光部の膜厚よりも小さくならないように、上記乾燥前着色層を減圧乾燥処理することを特徴とするカラーフィルタの製造方法を提供する。
 本発明によれば、上記減圧乾燥処理工程において、上記乾燥後着色層の端部の膜厚が上記遮光部の膜厚よりも小さくならないように、上記乾燥前着色層を減圧乾燥処理することにより、本発明の製造方法により製造されるカラーフィルタの着色層の平坦性を高いものとすることができる。また、プリベーク処理を短時間で行うことができることから、カラーフィルタの製造効率を高いものとすることが可能となる。
 本発明は、透明基板、および上記透明基板上に形成され開口部を備える遮光部を有するブラックマトリクス基板の上記開口部に、インクジェット法により着色層形成用塗工液を塗布することにより、乾燥前着色層を形成するインクジェット工程と、上記乾燥前着色層を減圧乾燥処理して、乾燥後着色層が形成されたカラーフィルタ用基板を形成する減圧乾燥処理工程と、上記カラーフィルタ用基板に対して、プリベーク処理を行った後、ポストベーク処理を行い、着色層が形成されたカラーフィルタを得るベーク処理工程とを有し、上記減圧乾燥処理工程では、上記乾燥後着色層の最大膜厚と上記開口部の幅との比率が、上記開口部の幅を1とした場合に、7.8×10-3~2.3×10-1の範囲内となるように、上記乾燥前着色層を減圧乾燥処理することを特徴とするカラーフィルタの製造方法を提供する。
 本発明によれば、上記減圧乾燥処理工程において、上記乾燥後着色層の最大膜厚および上記開口部の幅の比率が上記範囲内となるように、上記乾燥前着色層を減圧乾燥処理することにより、本発明の製造方法により製造されるカラーフィルタの着色層の平坦性を高いものとすることができる。また、プリベーク処理を短時間で行うことができることから、カラーフィルタの製造効率を高いものとすることが可能となる。
 本発明は、透明基板、および上記透明基板上に形成され、開口部を備える遮光部を有するブラックマトリクス基板と、上記ブラックマトリクス基板上の上記開口部に形成された複数色の着色層とを有し、上記複数色の着色層のうち、少なくとも1色の着色層の膜厚が、他の色の着色層の膜厚よりも小さくなるように形成されているカラーフィルタの製造方法であって、上記ブラックマトリクス基板の上記開口部に、インクジェット法により着色層形成用塗工液を塗布することにより、複数色の乾燥前着色層を形成するインクジェット工程と、上記複数色の乾燥前着色層を減圧乾燥処理して、複数色の乾燥後着色層が形成されたカラーフィルタ用基板を形成する減圧乾燥処理工程と、上記カラーフィルタ用基板に対して、プリベーク処理を行った後、ポストベーク処理を行い、上記複数色の着色層が形成されたカラーフィルタを得るベーク処理工程とを有し、上記減圧乾燥処理工程では、最も膜厚の小さい上記乾燥後着色層の端部の膜厚が上記遮光部の膜厚よりも小さくならないように、上記複数色の乾燥前着色層を減圧乾燥処理することを特徴とするカラーフィルタの製造方法を提供する。
 本発明によれば、複数色の着色層のうち、最も膜厚の小さい乾燥後着色層中の溶媒の含有量を、形成される着色層に所望の平坦性を付与することが可能であり、かつ、プリベーク処理を短時間で行うことができる、最小限の含有量とすることが可能となる。よって、他の膜厚を有する着色層については、上記プリベーク処理の条件で乾燥後着色層中の溶媒が突沸しない程度の膜厚を有する乾燥後着色層となるように、着色層形成用塗工液を厚膜に塗布して形成することが可能となるため、膜厚の異なる複数色の着色層をインクジェット法で同時に形成した場合であっても、それぞれの着色層に所望の平坦性を付与することが可能となり、かつ、各色の着色層の混色が生じないものとすることができる。
 本発明は、透明基板、および上記透明基板上に形成され、開口部を備える遮光部を有するブラックマトリクス基板と、上記ブラックマトリクス基板上の上記開口部に形成された複数色の着色層とを有し、上記複数色の着色層のうち、少なくとも1色の着色層の膜厚が、他の色の着色層の膜厚よりも小さくなるように形成されているカラーフィルタの製造方法であって、上記ブラックマトリクス基板の上記開口部に、インクジェット法により着色層形成用塗工液を塗布することにより、複数色の乾燥前着色層を形成するインクジェット工程と、上記複数色の乾燥前着色層を減圧乾燥処理して、複数色の乾燥後着色層が形成されたカラーフィルタ用基板を形成する減圧乾燥処理工程と、上記カラーフィルタ用基板に対して、プリベーク処理を行った後、ポストベーク処理を行い、上記複数色の着色層が形成されたカラーフィルタを得るベーク処理工程とを有し、上記減圧乾燥処理工程では、最も膜厚の小さい上記乾燥後着色層の最大膜厚と上記開口部の幅との比率が、上記開口部の幅を1とした場合に、7.8×10-3~2.3×10-1の範囲内となるように、上記複数色の乾燥前着色層を減圧乾燥処理することを特徴とするカラーフィルタの製造方法を提供する。
 本発明によれば、上述した減圧乾燥処理工程を有することにより、複数色の着色層のうち、最も膜厚の小さい乾燥後着色層中の溶媒の含有量を、形成される着色層に所望の平坦性を付与することが可能であり、かつ、プリベーク処理を短時間で行うことができる、最小限の含有量とすることが可能となる。よって、他の膜厚を有する着色層については、上記プリベーク処理の条件で乾燥後着色層中の溶媒が突沸しない程度の膜厚を有する乾燥後着色層となるように、着色層形成用塗工液を厚膜に塗布して形成することが可能となるため、膜厚の異なる複数色の着色層をインクジェット法で同時に形成した場合であっても、それぞれの着色層に所望の平坦性を付与することが可能となり、かつ、各色の着色層の混色が生じないものとすることができる。
 本発明においては、上記複数色の着色層が、赤色着色層、緑色着色層、および青色着色層を有し、上記赤色着色層および上記緑色着色層が同等の膜厚を有し、かつ、上記青色着色層の膜厚よりも小さいことが好ましい。上記構成とすることにより、液晶表示装置に用いた際、青色画素領域の輝度を高いものとすることが可能なカラーフィルタとすることができる。
 本発明においては、上記ベーク処理工程では、上記プリベーク処理が、70℃~110℃の範囲内で行われることが好ましい。上記プリベーク処理を上述した範囲の温度で行うことにより、着色層の平坦性をより高いものとすることが可能となるからである。
 本発明のカラーフィルタの製造方法は、形成される着色層に所望の平坦性を付与することが可能であり、かつ、プリベーク処理を短時間で行うことが可能となることから、製造効率の高いカラーフィルタの製造方法を提供することができるといった作用効果を奏する。
本発明のカラーフィルタの製造方法の一例を示す工程図である。 本発明のカラーフィルタの製造方法において形成されるカラーフィルタ基板の一例を示す概略断面図である。 本発明のカラーフィルタの製造方法により製造されるカラーフィルタの一例を示す概略平面図である。 本発明のカラーフィルタの製造方法におけるプリベーク処理の一例を示す工程図であるである。 カラーフィルタの製造方法におけるプリベーク処理の一例を示す工程図であるである。 本発明のカラーフィルタの製造方法の他の例を示す工程図である。
 以下、本発明のカラーフィルタの製造方法について詳細に説明する。
 本発明のカラーフィルタの製造方法は、減圧乾燥処理工程において、乾燥後着色層中の溶媒の含有量を、形成される着色層に所望の平坦性を付与することができ、かつ、プリベーク処理を短時間で行うことができる、最小限の含有量とすることが可能な減圧乾燥処理の条件を用いて、乾燥前着色層を減圧処理することを特徴とする製造方法である。
 本発明の製造方法により製造されるカラーフィルタにおいて、着色層が所望の平坦性を有するとは、上記カラーフィルタを液晶表示装置に用いた際に、良好な画像表示を行うことが可能となる程度の平坦性を有することを示し、具体的には、着色層の最大膜厚と着色層の最小膜厚との膜厚差が、0.6μm以下であることを示すものとする。
 なお、着色層の最大膜厚とは、遮光部の開口部に形成された着色層の膜厚において最大となる膜厚を指し、着色層の最小膜厚とは、遮光部の開口部に形成された着色層の膜厚において最小となる膜厚を指す。
 なお、本発明における最大膜厚および最小膜厚は、光干渉方式の三次元非接触表面形状測定装置(例えば、米国マイクロマップ製 製品名Micromap 557N)により測定した値を用いるものとする。
 また、本発明において、プリベーク処理を短時間で行うことができるとは、一般的なカラーフィルタを製造する際に行われるプリベーク処理における処理温度、および処理時間でプリベーク処理を行った際に、乾燥後着色層中の溶媒が突沸しないことを示す。
 ここで、乾燥後着色層中の溶媒が突沸しないとは、カラーフィルタの着色層形成用塗工液に用いられる溶媒の沸点が150℃~300℃の範囲内であるとき、プリベーク処理の処理温度として70℃~110℃の範囲内の温度でプリベーク処理を行った場合、乾燥後着色層中の溶媒が突沸して隣接する着色層同士が混色しないことを指す。なお、プリベーク処理温度について詳しくは後述するので、ここでの記載は省略する。
 上記減圧乾燥処理の条件としては、具体的には、減圧乾燥後の着色層の端部の膜厚が遮光部の膜厚よりも小さくならないような乾燥状態とすること、もしくは、減圧乾燥後の着色層の最大膜厚と着色層を形成する開口部の幅との比率が所定の範囲内となるような乾燥状態とすることの2つの減圧乾燥処理の条件を挙げることができる。
 以下、本発明のカラーフィルタの製造方法については、上述した減圧乾燥処理の条件の違いから、2つの態様に分けて説明する。
 1.第1態様のカラーフィルタの製造方法
 本発明のカラーフィルタの製造方法の第1態様について説明する。
 本態様のカラーフィルタの製造方法は、透明基板、および上記透明基板上に形成され開口部を備える遮光部を有するブラックマトリクス基板の上記開口部に、インクジェット法により着色層形成用塗工液を塗布することにより、乾燥前着色層を形成するインクジェット工程と、上記乾燥前着色層を減圧乾燥処理して、乾燥後着色層が形成されたカラーフィルタ用基板を形成する減圧乾燥処理工程と、上記カラーフィルタ用基板に対して、プリベーク処理を行った後、ポストベーク処理を行い、着色層が形成されたカラーフィルタを得るベーク処理工程とを有し、上記減圧乾燥処理工程では、上記乾燥後着色層の端部の膜厚が上記遮光部の膜厚よりも小さくならないように、上記乾燥前着色層を減圧乾燥処理することを特徴とする製造方法である。
 本態様のカラーフィルタの製造方法について図を用いて説明する。図1は、本態様のカラーフィルタの製造方法の一例を示す工程図である。ここで、図1においては、膜厚が同等の赤色着色層、緑色着色層、および青色着色層を同時に形成する例について示している。図1に示すように、本態様のカラーフィルタの製造方法においては、まず、透明基板1および透明基板1上に形成され、開口部を備える遮光部2を有するブラックマトリクス基板10aの上記開口部に、インクジェット法により着色層形成用塗工液を塗布することにより、乾燥前着色層3a(図1(a)中では、赤色乾燥前着色層3Ra、緑色乾燥前着色層3Ga、青色乾燥前着色層3Ba)を形成するインクジェット工程(図1(a))が行われる。次に、乾燥前着色層3aを減圧乾燥処理して、乾燥後着色層3b(図1(b)中では、赤色乾燥後着色層3Rb、緑色乾燥後着色層3Gb、青色乾燥後着色層3Bb)が形成されたカラーフィルタ用基板10bを形成する減圧乾燥処理工程(図1(b))が行われる。次に、カラーフィルタ用基板10bに対して、プリベーク処理を行った後(図1(c))、ポストベーク処理を行い、着色層3(図1(d)中では、赤色着色層3R、緑色着色層3G、青色着色層3B)が形成されたカラーフィルタ10を得るベーク処理工程(図1(d))が行われる。本態様においては、以上の工程を経てカラーフィルタ10が製造される。
 また、本態様は、減圧乾燥処理工程において、上記乾燥後着色層の端部の膜厚が上記遮光部の膜厚よりも小さくならないように、上記乾燥前着色層を減圧乾燥処理することを特徴とする製造方法である。
 ここで、「上記乾燥後着色層の端部の膜厚」とは、遮光部で区画された開口部に形成される乾燥後着色層において、遮光部に接触している部分の膜厚を示すものとする。
 また、「遮光部の膜厚」とは、ベーク処理工程前の遮光部の膜厚を指すものである。
 また、「上記乾燥後着色層の端部の膜厚が、上記遮光部の膜厚よりも小さくならない」とは、上記乾燥後着色層の端部の膜厚と、上記遮光部の膜厚との膜厚差が0.1μm以下、好ましくは0.05μm以下、特に0μmであることを指すものとする。
 なお、上記乾燥後着色層の端部の膜厚および遮光部の膜厚は、光干渉方式の三次元非接触表面形状測定装置(例えば、米国マイクロマップ製 製品名Micromap 557N)により測定した値を用いることとする。
 上記乾燥後着色層の端部の膜厚は、減圧乾燥処理の程度、すなわち上記乾燥後着色層の溶媒の含有量により決定されるものである。ここで、一定の開口部の幅により規定される一定の面積の開口部に形成される乾燥後着色層中の溶媒の含有量は、乾燥後着色層の最大膜厚とある程度相関するものであり、乾燥後着色層中の溶媒の含有量が多い程、その最大膜厚は大きくなり、上記溶媒の含有量が少ないほど、その最大膜厚は小さくなるものである。よって、本態様における「上記乾燥後着色層の端部の膜厚が、上記遮光部の膜厚よりも小さくならない」ことについては、上記乾燥後着色層の最大膜厚および上記開口部の幅の比率を用いても表すことが可能である。
 このような乾燥後着色層の最大膜厚および上記開口部の幅の比率としては、上記開口部の幅を1としたとき、7.8×10-3~2.3×10-1の範囲内、好ましくは、1.3×10-2~1.8×10-1の範囲内、特に、1.8×10-2~1.6×10-1の範囲内であるものとする。
 なお、上記乾燥後着色層の最大膜厚および上記開口部の幅の比率は、上記乾燥後着色層の最大膜厚をt、上記開口部の幅をuとした場合、t/uで示される値である。
 また、乾燥後着色層の最大膜厚t、および開口部の幅uについては、光干渉方式の三次元非接触表面形状測定装置(例えば、米国マイクロマップ製 製品名Micromap 557N)により測定した値を用いるものとする。
 上記比率の算出方法の具体例としては、ベーク処理工程前のシュリンク前の遮光部膜厚を2.7μm、図3に示される開口部の幅u1を100μm~480μmの範囲内、開口部の幅u2を130μm~600μmの範囲内とし、減圧乾燥後の乾燥後着色層の最大膜厚を遮光部の膜厚を基準として+2μm~+20μm、中でも+5μm~+15μm、特に+8μm~+13μmとした場合、上記数値範囲を算出することができる。なお、図3については後述する。
 ここで、本態様における「乾燥後着色層の最大膜厚」とは、減圧乾燥処理後の乾燥後着色層の最大膜厚を指し、図2において、tで示される距離を指すものとする。
 また、「開口部の幅」とは、遮光部で区画された開口部の幅をいい、図2においては、uで示される距離を指すものとする。また、本態様における「開口部の幅」とは、カラーフィルタにおいて遮光部の開口部の形状が、図3に示されるように矩形状である場合は、短辺u1、または長辺u2を指すものとし、さらに上記遮光部の開口部が切り欠き部を有する場合は、切り欠き部を有さない領域での距離を指すものとする。
 また、本発明において、乾燥後着色層の最大膜厚tおよび開口部の幅uの比率t/uについては、t/u1およびt/u2の両方が上述した数値範囲を満たすものとする。
 なお、図2は、本態様における減圧乾燥処理工程において形成されるカラーフィルタ用基板の一例を示す概略断面図であり、図3は、本態様の製造方法により製造されるカラーフィルタの一例を示す概略平面図である。また、図2および図3において説明していない符号については、図1と同様とすることができるので、ここでの説明は省略する。
 ここで本態様は、上記乾燥後着色層中の溶媒の含有量を、形成される着色層に所望の平坦性を付与することが可能となる、最小限の含有量とすることができる減圧乾燥処理条件として、乾燥後着色層の端部の膜厚が遮光部の膜厚よりも小さくならないようにすることを見出した点に特徴を有するものである。
 上記乾燥後着色層の端部の膜厚が遮光部の膜厚よりも小さくならないようにすることにより、形成される着色層に所望の平坦性を付与することができる理由については明らかではないが、次のように考えることができる。
 図4および図5は、カラーフィルタの製造方法におけるプリベーク処理の一例を示す工程図である。また、図4(a)および図5(a)は、プリベーク処理前のカラーフィルタ用基板を示しており、図4(b)および図5(b)は、プリベーク処理後のカラーフィルタ用基板を示している。なお、図4および図5において説明していない符号については図1と同様とすることができるので、ここでの記載は省略する。
 ここで、図4(a)に示すように、乾燥後着色層3bの端部の膜厚t1が遮光部2の膜厚よりも小さくならないように形成されている場合は、乾燥後着色層3bに接する遮光部2の上面に、微小膜厚を有する微小な乾燥後着色層(以下、遮光部上面微小着色層とする。)が形成されるものと考えられる。また、この場合、プリベーク処理時において、溶剤が揮発することにより乾燥後着色層3bの膜厚が減少していく過程においても、乾燥後着色層3bに接する遮光部2の上面には、上記遮光部上面微小着色層が存在するため、乾燥後着色層3bの端部は遮光部2上に位置することになり、プリベーク処理後に最終的に得られる乾燥後着色層3bは、図4(b)に示すように、乾燥後着色層3bの端部の膜厚t1と遮光部2の膜厚との膜厚差がほぼ無い形状となるものと考えられる。
 一方、図5(a)に示すように、乾燥後着色層3bの端部の膜厚t1が遮光部2よりも小さく形成されている場合は、乾燥後着色層3bと接している遮光部2上面に、上述した遮光部上面微小着色層が形成されないものと考えられる。この場合、プリベーク処理時において、溶剤が揮発することにより乾燥後着色層3bの膜厚が減少していく過程においては、乾燥後着色層3bに接する遮光部2の上面には、上記遮光部上面微小着色層が存在しないことから、乾燥後着色層3bの端部についてもその膜厚は減少してしまい、プリベーク処理後に最終的に得られる乾燥後着色層3bは、図5(b)に示すように、乾燥後着色層3bの端部の膜厚t1が小さく、乾燥後着色層3bの端部の膜厚t1と遮光部2の膜厚との膜厚差が大きい形状となるものと考えられる。
 ここで、遮光部2に区画された開口部に吐出される着色層形成用塗工液には、一定量の固形分が含まれており、減圧乾燥処理後にある程度溶剤が除去された場合であっても、乾燥後着色層に含有される上記固形分の量は変化しないものである。したがって、乾燥後着色層の体積が同じである場合は、図4(b)に示すように、乾燥後着色層3bの端部の膜厚および遮光部の膜厚の膜厚差が小さいほど、すなわち乾燥後着色層3bの端部の膜厚t1が大きいほど、遮光部により区画された乾燥後着色層の膜厚は均一なものとなることから、平坦性の高いものとなり、図5(b)に示すように、乾燥後着色層3bの端部の膜厚および遮光部2の膜厚の膜厚差が大きいほど、すなわち乾燥後着色層3bの端部t1の膜厚が小さいほど、乾燥後着色層3bの中心部の膜厚は大きくなり、乾燥後着色層の中心部および端部に膜厚差を生じ、平坦性の低いものとなることが推測される。
 よって、本態様によれば、上記減圧乾燥処理工程において、上記乾燥後着色層の端部の膜厚が上記遮光部の膜厚よりも小さくならないように、上記乾燥前着色層を減圧乾燥処理することにより、本態様の製造方法により製造されるカラーフィルタの着色層の平坦性を高いものとすることができる。また、プリベーク処理を短時間で行うことができることから、カラーフィルタの製造効率を高いものとすることが可能となる。
 以下、本態様のカラーフィルタの製造方法における各工程についてそれぞれ説明する。
 (1)インクジェット工程
 本工程は、透明基板、および上記透明基板上に形成され開口部を備える遮光部を有するブラックマトリクス基板の上記開口部に、インクジェット法により着色層形成用塗工液を塗布することにより、乾燥前着色層を形成する工程である。
 以下、本工程に用いられるブラックマトリクス基板、着色層形成用塗工液、および本工程により形成される乾燥前着色層についてそれぞれ説明する。
 (a)ブラックマトリクス基板
 上記ブラックマトリクス基板は、透明基板、および上記透明基板上に形成され開口部を備える遮光部を有するものである。
 (i)透明基板
 上記透明基板としては、一般的なカラーフィルタに用いられるものと同様のものを用いることができる。具体的には、石英ガラス、パイレックス(登録商標)ガラス、合成石英板等の可撓性のない透明な無機基板、および、透明樹脂フィルム、光学用樹脂板等の可撓性を有する透明な樹脂基板の表面にSiO等の無機膜が形成されたもの等を挙げることができる。なかでも本工程においては無機基板を用いることが好ましい。上記ブラックマトリクス基板においては、遮光部が撥液性を有することが好ましく、上記遮光部を撥液化する方法としては、フッ素プラズマ処理を用いて樹脂製遮光部を撥液化する方法が好適に用いられるからである。
 さらに、本工程においては上記無機基板のなかでもガラス基板を用いることが好ましく、上記ガラス基板のなかでも無アルカリタイプのガラス基板を用いることが好ましい。上記無アルカリタイプのガラス基板は寸度安定性および高温加熱処理における作業性に優れ、かつ、ガラス中にアルカリ成分を含まないことから、アクティブマトリックス方式によるカラー液晶表示装置用のカラーフィルタに好適に用いることができるからである。
 (ii)遮光部
 上記遮光部は、上述した透明基板上に形成されるものであり、開口部を備えるものである。
 本工程に用いられる上記遮光部としては、通常、開口部が等間隔で規則的に形成されたものが用いられる。ここで、上記開口部の具体的な形状等や配置態様は特に限定されるものではなく、本態様により製造されるカラーフィルタの用途等に応じて任意に決定することができる。本態様においては、上記開口部の形状が矩形状であることがより好ましい。また、上記開口部の形状が矩形状である場合は、図3に示すように、切り欠き部を有していてもよい。
 上記開口部の幅としては、製造されるカラーフィルタの用途等により適宜選択されるものであるが、上記開口部が矩形状であって、図3に示すように、短辺u1を開口部の幅とした場合は、100μm~480μmの範囲内、なかでも120μm~350μmの範囲内、特に145μm~250μmの範囲内とすることが好ましい。
 一方、上記開口部が矩形状であって、図3に示すように、長辺u2を開口部の幅とした場合は、130μm~600μmの範囲内、なかでも150μm~520μmの範囲内、特に170μm~450μmの範囲内であることが好ましい。上記開口部の幅が上記範囲に満たない場合、もしくは上記範囲を超える場合は、本態様のカラーフィルタの製造方法を用いた場合であっても、良好な画像表示を行うことができるカラーフィルタを製造することが困難となる可能性があるからである。
 上記遮光部の膜厚としては、上記開口部を区画し、所望する膜厚の着色層をインクジェット法を用いて形成することができる程度の膜厚であれば特に限定されるものではないが、後述するベーク処理工程により、遮光部膜厚がシュリンクを起こさない遮光部である場合、1.0μm~3.5μmの範囲内、なかでも1.5μm~3.0μmの範囲内、特に2.0μm~2.5μmの範囲内であることが好ましい。上記遮光部の膜厚が上記範囲に満たない場合は、インクジェット法を用いて着色層を形成することが困難となる可能性があるからであり、上記遮光部の膜厚が上記範囲を超える場合は、カラーフィルタを薄膜に形成することが困難となる可能性があるからである。
 なお、後述するベーク処理工程により、遮光部膜厚がシュリンクを起こす遮光部である場合は、ベーク処理工程前の遮光部の膜厚が上記数値範囲となることが好ましい。
 このような上記遮光部としては、所望の遮光性を有するものであれば特に限定されるものではないが、具体的には、遮光性材料および樹脂から構成されるものが用いられる。
 上記遮光性材料としては、一般的なカラーフィルタの樹脂製遮光部に用いられる材料を用いることができる。このような遮光性材料としては、例えば、カーボン微粒子、金属酸化物、無機顔料、有機顔料等の遮光性粒子等を挙げることができる。
 また、上記樹脂としては、例えば、エチレン-酢酸ビニル共重合体、エチレン-塩化ビニル共重合体、エチレン-ビニル共重合体、ポリスチレン、アクリロニトリル-スチレン共重合体、ABS樹脂、ポリメタクリル酸樹脂、エチレン-メタクリル酸樹脂、ポリ塩化ビニル樹脂、塩素化塩化ビニル、ポリビニルアルコール、セルロースアセテートプロピオネート、セルロースアセテートブチレート、ナイロン6、ナイロン66、ナイロン12、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリカーボネート、ポリビニルアセタール、ポリエーテルエーテルケトン、ポリエーテルサルフォン、ポリフェニレンサルファイド、ポリアリレート、ポリビニルブチラール、エポキシ樹脂、フェノキシ樹脂、ポリイミド樹脂、ポリアミドイミド樹脂、ポリアミック酸樹脂、ポリエーテルイミド樹脂、フェノール樹脂、ユリア樹脂等を用いることができる。
 上記遮光部を形成する方法としては、上記開口部が所望の態様で配置された遮光部を形成できる方法であれば特に限定されるものではない。遮光性粒子を含有させた樹脂組成物を用いたフォトリソグラフィー法、および、上記樹脂組成物を用いた熱転写法等を挙げることができる。このような遮光部を形成する具体的な方法としては、一般的にカラーフィルタに用いられる遮光部を形成する方法と同様の方法を用いることができるため、ここでの詳しい説明は省略する。
 (iii)撥液化手段
 上記遮光部は、撥液化されていることが好ましい。これにより、インクジェット法により、着色層形成用塗工液をブラックマトリクス基板上に塗布して乾燥前着色層を形成した際に、隣接する乾燥前着色層同士で混色が発生することを防止することが可能となるからである。
 本工程における撥液化の手段としては、上記ブラックマトリクス基板の遮光部に対して撥液化を行うことができる手段であれば特に限定されるものではない。例えば、遮光部上にのみ撥液性を有する撥液層が形成されるようにパターン状にフォトリソ法等により撥液層を形成する方法やメタルマスク等を用いプラズマ処理を行い遮光部上のみを撥液化する方法等であってもよい。
 本態様においては、容易にかつ高精度に遮光部を撥液化できることから、フッ素を導入ガスとして用いたプラズマ処理であるフッ素プラズマ処理により遮光部の撥液化を行うフッ素プラズマ工程を行うことが好ましい。このフッ素プラズマ処理は有機物に選択的にフッ素を付着させることができるからである。このようなフッ素プラズマ処理において、上記導入ガスに用いられるフッ素化合物としては、例えばCF、SF、CHF、C、C、C等を挙げることができる。
 また、上記導入ガスとしては、上記フッ素ガスと他のガスとが混合されたものであってもよい。上記他のガスとしては、例えば、窒素、酸素、アルゴン、ヘリウム等を挙げることができるが、なかでも窒素を用いることが好ましい。さらに上記他のガスとして窒素を用いる場合、窒素の混合比率は50%以上であることが好ましい。
 また、上記プラズマ照射を実施する方法としては、上記遮光部の撥液性を向上できる方法であれば特に限定されるものではなく、例えば、減圧下でプラズマ照射してもよく、または、大気圧下でプラズマ照射してもよい。なかでも、本工程においては特に大気圧下でプラズマ照射を行うことが好ましい。これにより、減圧用の装置等が必要なく、コストや製造効率等の面おいて有利になるからである。なお、上記プラズマ照射を行った後の、上記遮光部等におけるフッ素の存在は、X線光電子分光分析装置(XPS : 例えばV.G.Scientific社製 ESCALAB 220i-XL)による分析において、遮光部の表面より検出される全元素中のフッ素元素の割合を測定することにより確認することができる。なお、上記「撥液性」とは、後述する着色層形成用塗工液との接触角が大きいことを意味するものである。
 具体的には、上記遮光部の表面の上記着色層形成用塗工液との接触角が、上記基板表面の接触角よりも大きいものとすることができるものであれば良い。なかでも本工程においては、上記遮光部表面の、40mN/mの液体との接触角が10°以上となる程度であることが好ましく、特に表面張力30mN/mの液体との接触角が10°以上となる程度であることが好ましく、さらには表面張力20mN/mの液体との接触角が10°以上となる程度であることが好ましい。また、純水との接触角が11°以上となる程度であることが好ましい。
 (b)着色層形成用塗工液
 次に本工程に用いられる着色層形成用塗工液について説明する。
 本工程に用いられる着色層形成用塗工液としては、インクジェット装置により吐出可能なものであれば特に限定されるものではない。通常は、赤色着色層形成用塗工液、緑色着色層形成用塗工液、および青色着色層形成用塗工液等が用いられるが、上記の色以外の着色層形成用塗工液を用いることも可能である。
 上記着色層形成用塗工液としては、通常、溶媒、着色剤、および硬化成分等を含有するものが用いられる。
 上記溶媒としては、単一溶媒であっても良く、2種以上の溶媒を混合した混合溶媒であっても良い。
 上記溶媒としては、インクに含有されている着色剤と硬化成分を所望の濃度で溶解できるものであれば特に限定されるものではない。
 ここで、本態様において、上記溶媒の沸点については、後述する減圧乾燥処理工程において、上記乾燥後着色層の端部の膜厚が遮光部の膜厚よりも小さくならないように、上記乾燥前着色層を減圧乾燥処理することが出来る程度の沸点であれば特に限定されるものではないが、通常は、後述するプリベーク処理を短時間で行うことができる溶媒が選択されるものである。このような溶媒の沸点としては、具体的には、150℃~300℃の範囲内、なかでも180℃~280℃の範囲内、特に200℃~250℃の範囲内であることが好ましい。上記溶媒の沸点が上記範囲に満たない場合は、後述するプリベーク処理の処理時間が多くかかるからであり、上記溶媒の沸点が上記範囲を超えるような溶媒は通常用いられないからである。
 上記溶媒の沸点を考慮すると、このような溶媒としては、ジエチレングリコールモノブチルエーテルアセテート、ジエチレングリコールモノエチルエーテルアセテート、ジプロピレングリコールモノメチルエーテルアセテート、3-エトキシプロピオン酸エチル、マロン酸ジメチル等を用いることが好ましい。
 上記着色剤としては、所望の波長の光を吸収することができるものであれば特に限定されるものではない。このような着色剤は染料系材料であってもよく、または、顔料系材料であってもよい。このような着色剤の具体例としては、一般的にカラーフィルタに用いられる着色剤と同様であるため、ここでの詳細な説明は省略する。
 上記硬化成分は、着色層を形成する際に上記着色剤を硬化させるものであり、通常、架橋可能なモノマー等が用いられる。このような硬化成分としては、例えば、水酸基、カルボキシル基、アルコキシ基、エポキシ基、アミド基等の置換基を有するアクリル樹脂;シリコーン樹脂、エポキシ樹脂またはヒドロキシプロピルセルロース、ヒドロキシエチルセルロース、メチルセルロース、カルボキシメチルセルロース等のセルロース誘導体、または、それらの変性物;ポリビニルピロリドン、ポリビニルアルコール、ポリビニルアセタール等のビニル系ポリマー等を挙げることができる。
 また、本工程においてはこのような硬化成分を2種類以上用いてもよい。
 また、本工程に用いられる着色層形成用塗工液としては、上述した溶媒、着色剤、および硬化成分以外にも、必要な成分を適宜選択して追加することが可能である。このような成分としては、反応開始剤、界面活性剤等を挙げることができる。
 上記着色層形成用塗工液の固形分濃度としては、一般的なインクジェット法を用いた着色層の形成の際に用いられる着色層形成用塗工液の固形分濃度と同様とすることができるので、ここでの説明は省略する。なお、固形分濃度とは、着色層形成用塗工液中の溶媒を除いたその他の成分の濃度を表すものである。
 上記着色層形成用塗工液の粘度としては、インクジェット法を用いて上記ブラックマトリクス基板上の開口部に所定の厚みを有する乾燥前着色層を形成することが可能な粘度であれば特に限定されるものではなく、インクジェット法を用いた一般的なカラーフィルタの製造方法において用いられる着色層形成用塗工液の粘度と同様とすることができるので、ここでの説明は省略する。
 上記着色層形成用塗工液の表面張力としては、インクジェット法を用いて、上記ブラックマトリクス基板上に所定の膜厚を有する乾燥前着色層を形成することが可能な表面張力であれば、特に限定されるものではなく、インクジェット法を用いた一般的なカラーフィルタの製造方法において用いられる着色層形成用塗工液の表面張力と同様とすることができるので、ここでの説明は省略する。
 (c)乾燥前着色層
 本工程により形成される乾燥前着色層の平均膜厚としては、本態様の製造方法により製造されるカラーフィルタの用途により、適宜選択して決定されるものである。
 上記乾燥前着色層の平均膜厚としては、後述する減圧乾燥処理工程後の乾燥後着色層の端部の膜厚が上記遮光部の膜厚よりも小さくならないようにすることができる程度の膜厚であれば特に限定されるものではないが、4.7μm以上、なかでも7.6μm以上、特に8.9μm以上であることが好ましい。上記乾燥前着色層の平均膜厚が上記範囲に満たない場合は、後述する減圧乾燥処理工程後の乾燥後着色層の端部の最大膜厚が、上記遮光部の膜厚よりも小さくなる可能性があるからである。また、上記乾燥前着色層の平均膜厚の上限については、乾燥前着色層が形成される開口部の大きさや、用いられる着色層形成用塗工液等により適宜選択されるものであるが、上記開口部に形成された乾燥前着色層が決壊しない程度の膜厚とされる。
 なお、「乾燥前着色層の平均膜厚」とは、上記開口部に塗布される着色層形成用塗工液の塗工量を開口部の面積で割った値を指す。
 上記乾燥前着色層の形成方法としては、インクジェット法を用いた形成方法であれば特に限定されるものではない。
 本工程に用いられるインクジェット法としては、上記開口部に対し着色層形成用塗工液を正確に吐出できる方法であれば良く、通常、上記着色層形成用塗工液を塗布することができるノズルを複数備えるインクジェットヘッドが用いられる。
 本工程に用いられるインクジェットヘッドが着色層形成用塗工液を吐出する吐出方式としては、所定量の着色層形成用塗工液を吐出できる方式であれば特に限定されるものではない。このような吐出方式としては、例えば、帯電した着色層形成用塗工液を連続的に吐出し磁場によって吐出量を制御する方式、圧電素子を用いて間欠的に着色層形成用塗工液を吐出する方式、着色層形成用塗工液を加熱しその発泡現象を利用して間欠的に吐出する方式等を挙げることができる。なかでも本工程においては、上記吐出方式として圧電素子を用いて間欠的に着色層形成用塗工液を吐出する方式を用いることが好ましい。このような吐出方式は微量な吐出量を比較的精度よく制御することができるからである。
 (2)減圧乾燥処理工程
 本工程は、上記乾燥前着色層を減圧乾燥処理して、乾燥後着色層が形成されたカラーフィルタ用基板を形成する工程であり、上記乾燥後着色層の端部の膜厚が上記遮光部の膜厚よりも小さくならないように、上記乾燥前着色層を減圧乾燥処理する工程である。
 なお、本態様において、「カラーフィルタ用基板」とは、減圧乾燥処理が行われた乾燥後着色層が形成されたブラックマトリクス基板を指すものであるが、本工程においては、減圧乾燥処理前および減圧乾燥処理中のブラックマトリクス基板についても、カラーフィルタ用基板と称して説明する場合がある。
 以下、減圧乾燥処理の条件、および減圧乾燥処理に用いられる減圧乾燥処理装置についてそれぞれ説明する。
 (a)減圧乾燥処理の条件
 本工程においては、上記乾燥後着色層の端部の膜厚が上記遮光部の膜厚よりも小さくならないように、上記乾燥前着色層を減圧乾燥処理することが可能であれば特に限定されるものではない。より具体的には、上記乾燥後着色層の端部の膜厚と上記遮光部の膜厚との膜厚差が0.1μm以下、好ましくは0.05μm以下、特に0μmとなるように、乾燥前着色層を減圧乾燥処理するものである。上記膜厚差が上記範囲を超える場合は、形成される着色層に所望の平坦性を付与することが困難となるからである。
 また、本工程においては、上記乾燥後着色層の最大膜厚と上記開口部の幅との比率が上述した範囲内となるように、乾燥前着色層を減圧乾燥処理するものである。なお、上述したように、本発明における乾燥後着色層の最大膜厚および開口部の幅の比率は、図3に示す開口部の幅u1およびu2を用いて算出された値の両方ともを満たす数値である。
 本工程により形成される乾燥後着色層の最大膜厚としては、上記乾燥後着色層の端部の膜厚が上記遮光部の膜厚よりも小さくならない程度の膜厚であれば特に限定されるものではなく、具体的には、遮光部の開口部の幅が上述した数値範囲である場合において4.7μm~22.7μmの範囲内、なかでも4.7μm~17.7μmの範囲内とすることが好ましい。上記乾燥後着色層の最大膜厚が上記範囲に満たない場合は、上記乾燥後着色層の端部の膜厚が上記遮光部の膜厚よりも小さくなる可能性があることから、形成される着色層に所望する平坦性を付与することが困難となる可能性があるからである。
 また、本工程においては、上記乾燥後着色層の最大膜厚の上限については、上記乾燥後着色層中の溶媒が後述するプリベーク処理において突沸しない程度の厚膜であれば特に限定されるものではないが、本態様のカラーフィルタの製造方法においては、上記プリベーク処理の処理時間については短時間であることが好ましいことから、上記乾燥後着色層の最大膜厚については上記範囲を超えないものであることが好ましい。
 本工程における減圧乾燥処理の処理温度としては、減圧乾燥処理後の乾燥後着色層の端部の膜厚が上記遮光部の膜厚よりも小さくならないように、上記乾燥前着色層を減圧乾燥処理することができる温度であれば特に限定されるものではないが、低温であると減圧乾燥処理に時間がかかるため、製造効率が低下するおそれがあり、高温であると溶媒除去が一気に生じるため、好ましくない。したがって、本工程における好ましい処理温度としては、30℃~60℃の範囲内が好ましく、なかでも35℃~55℃の範囲内、特に40℃~50℃の範囲内であることがより好ましい。
 上記減圧乾燥処理の処理時間としては、本態様の製造方法により製造されるカラーフィルタの大きさ等により適宜決定されるものである。
 本工程に用いられる減圧乾燥処理の条件の決定方法としては、本工程により形成される乾燥後着色層の端部の膜厚が上記遮光部の膜厚よりも小さくならないように、乾燥前着色層を減圧乾燥処理することができるような条件に決定することができる方法であれば特に限定されるものではない。例えば、予め設計用のブラックマトリクス基板に乾燥前着色層を形成し、これを減圧乾燥処理することで、乾燥後着色層の端部の膜厚および遮光部の膜厚の膜厚差が上述した関係を満たすような種々の条件を設定し、これを本工程に用いる方法等を好適に用いることが可能である。
 (b)減圧乾燥処理装置
 次に、本工程に用いられる減圧乾燥処理装置について説明する。
 本工程に用いられる減圧乾燥処理装置としては、カラーフィルタの製造に一般的に用いられるものを使用することができる。
 具体的には、上記カラーフィルタを加熱する加熱手段と、上記加熱手段を収納するチャンバーと、上記チャンバー内を所望の圧力まで減圧する減圧手段とを有するものを挙げることができる。
(i)加熱手段
 上記加熱手段としては、上記カラーフィルタ用基板を所望の温度に加熱することができるものであれば良い。
 このような加熱手段としては、ホットプレート、電熱線、ランプ、赤外線放射装置等を挙げることができる。本態様においては、なかでも、ホットプレートであることが好ましい。ホットプレート全体が加熱されるものであることから、他の加熱手段にあるような温度が低い特定箇所が存在せず、揮発した溶媒がその部分で急激に冷やされて結露が生じ、当該結露がカラーフィルタ用基板に滴下して、上記開口部に形成された着色層に決壊を生じ混色を引き起こす等の不具合がないからである。さらに、カラーフィルタ用基板を平面視上均一に加熱することが容易であり、上記乾燥前着色層を乾燥することにより形成される着色層を平坦性に優れたものとすることができるからである。
 減圧乾燥処理装置に用いられる加熱手段の加熱能力としては、上記カラーフィルタ用基板を所望の温度に加熱することができるものであれば良い。具体的には、上記カラーフィルタ用基板を、30℃~60℃の範囲内、なかでも35℃~55℃の範囲内、特に40℃~50℃の範囲内に加熱することができるものであることが好ましい。上記範囲内であることにより、上記溶媒を効率よく除去することができるからである。なお、上記温度は、カラーフィルタ用基板自体の温度を示すものではなく、加熱手段による処理温度を示すものである。
 また、上記加熱手段の上記カラーフィルタ用基板に対する配置としては、上記カラーフィルタ用基板を下方から加熱するように、上記加熱手段が上記カラーフィルタ用基板の下方に配置されるものであっても良く、上記カラーフィルタ用基板を上方から加熱するように、上記加熱手段が上記カラーフィルタ用基板の上方に配置されるものであっても良い。本態様においては、なかでも、上記カラーフィルタ用基板を上下の両面から加熱するように、上記カラーフィルタ用基板の下方と上方とに配置されるものであることが好ましい。上述したように、着色層に決壊を生じて混色を引き起こす等の不具合がなく、さらに上記カラーフィルタ用基板を平面視上均一に加熱することができることにより、着色層を平坦性に優れたものとすることができるからである。
(ii)チャンバー
 上記チャンバーとしては、その内部に、上記加熱手段を収容することができ、乾燥時に密閉性が高いものとすることができるものであれば良い。
 上記チャンバーの形状およびサイズとしては、乾燥するカラーフィルタ用基板のサイズ等に応じて適宜設定するものである。
(iii)減圧手段
 減圧乾燥処理装置における減圧手段は、上記チャンバー内を減圧するものである。このような減圧手段としては、真空ポンプ等の一般的な減圧装置を用いることができる。
 減圧乾燥処理装置に用いられる減圧手段の減圧能力としては、上記チャンバー内を、上記カラーフィルタ用基板を所望の速度で乾燥することができる圧力とすることができるものであれば良い。具体的には、上記チャンバー内の減圧下定常圧力を、4Pa未満の範囲とすることができるものであることが好ましく、なかでも1Pa未満の範囲とすることができるものであることが好ましい。上記範囲であることにより、上記溶媒を容易に除去することができるからである。
 なお、減圧下定常圧力は、上記減圧乾燥装置のチャンバー内を空にした状態、すなわち、カラーフィルタ用基板や、結露した溶媒が全くない状態で、減圧乾燥した際に到達する平衡圧力をいうものである。また、平衡圧力とは、一定状態となった圧力であり、より具体的には、90秒間の圧力が、90秒間の平均圧力を基準として、上記平均圧力の上下10%以内に含まれる状態における上記平均圧力をいうものである。
 (3)ベーク処理工程
 本工程は、上記カラーフィルタ用基板に対して、プリベーク処理を行った後、ポストベーク処理を行い、着色層が形成されたカラーフィルタを得る工程である。以下、本工程におけるプリベーク工程およびポストベーク工程についてそれぞれ説明する。
 (a)プリベーク処理
 本工程におけるプリベーク処理とは、乾燥後着色層内に残存する溶媒を除去すると同時に、上述したように、着色層の平坦化を行う処理である。
 ここで、乾燥後着色層中の溶媒が突沸しないとは、カラーフィルタの着色層形成用塗工液に用いられる溶媒の沸点が150℃~300℃の範囲内である場合に、プリベーク処理の処理温度として70℃~110℃の範囲内の温度でプリベーク処理を行った場合、乾燥後着色層中の溶媒が突沸して隣接する着色層同士が混色しないことを指す。上記プリベーク処理の温度としては、より好ましくは80℃~100℃の範囲内である。上記温度範囲より処理温度が低い場合は、着色層中の溶媒除去不足によりポストベーク処理工程での突沸混色が発生しやすく、また上記処理温度より高い場合は、着色層中の急激な溶媒揮発によりプリベーク処理工程での突沸による混色が発生しやすく、着色層の形状も悪化する傾向にあるからである。
 また、上記プリベーク処理における処理時間としては、カラーフィルタ基板の大きさ等により適宜選択されるものであるが、5分~60分の範囲内が好ましい。
 本態様においては、上述したプリベーク処理の温度および処理時間の範囲内においては、より低温で長時間かけてプリベーク処理を施すことが好ましい。低温で長時間かけてプリベーク処理を施すことにより、形成される着色層をより平坦性の高いものとすることが可能となるからである。
 この理由については、明らかではないが、次のように考えることができる。
 プリベーク処理においては、開口部に形成された乾燥後着色層において、膜厚の大きい乾燥後着色層の中心部から膜厚の小さい乾燥後着色層の端部へと乾燥後着色層を流動させることにより着色層の平坦化が行われるものと考えられる。そのため、プリベーク処理における処理温度を低くし、処理時間を長くするほど、乾燥後着色層が流動する時間を長くすることができることから、形成される着色層の平坦性を向上させることが可能となることが考えられる。
 このようなプリベーク処理は、通常、クリーンオーブン等が用いられる。
 (b)ポストベーク処理
 本工程におけるポストベーク処理は、上記プリベーク処理により溶媒が完全に除去された着色層を硬化させるために行うものであり、この処理においてもある程度の平坦化がなされる。
 本工程におけるポストベーク処理は、通常のポストベーク処理と同様で、具体的には、160℃~250℃の範囲内、特に200℃~240℃の範囲内が好ましい。また、処理時間としては、10分~120分の範囲内、特に20分~80分の範囲内が好ましい。
 このようなポストベーク処理も、通常、クリーンオーブン等が用いられる。
 本工程により形成される着色層の平均膜厚としては、本態様の製造方法により製造されるカラーフィルタの用途により適宜選択されるものであるが、1.5μm~3.0μmの範囲内、なかでも1.8μm~2.7μmの範囲内であることが好ましい。上記着色層の膜厚が上記範囲に満たない場合は、本態様のカラーフィルタの製造方法を用いた場合であっても、平坦性の高い着色層を形成することが困難であるからであり、上記着色層の膜厚が上記範囲を超える場合は、カラーフィルタを薄膜に形成することが困難となるからである。
 なお、着色層の平均膜厚は、光干渉方式の三次元非接触表面形状測定装置(例えば、米国マイクロマップ製 製品名Micromap 557N)により測定した値を用いるものとする。
 (4)その他の工程
本態様においては、必要に応じてその他の工程を行ってもよい。具体的には、上記撥液化処理工程の前に、水洗工程が施されてもよい。また、上記ベーク工程の後に、透明電極を形成するためのITO膜形成工程が行われてもよい。さらに、着色層上に形成される保護層や柱状スペーサを形成する工程等が行われてもよい。
 (5)カラーフィルタの製造方法
 本態様のカラーフィルタの製造方法により製造されるカラーフィルタとしては、少なくとも1色の着色層が上述した各工程を経て形成されたものであれば特に限定されるものではなく、カラーフィルタが有する着色層の全てが、上述した各工程で形成されたものであってもよい。
 また、本態様のカラーフィルタの製造方法は、例えば赤色着色層、緑色着色層、および青色着色層を有するカラーフィルタにおいて、赤色着色層および緑色着色層の膜厚が青色着色層も小さく形成されている、セミマルチギャップ構造を有するカラーフィルタや、赤色着色層、緑色着色層、および青色着色層の膜厚が全て異なるマルチギャップ構造を有するカラーフィルタを製造する際にも用いることが可能である。
 ここで、膜厚の異なる複数色の着色層を有するカラーフィルタを製造する際に、本態様のカラーフィルタの製造方法を用いた場合は、1回の形成工程により、膜厚の異なる複数色の着色層を同時に形成することが可能となることから、カラーフィルタの製造効率を大幅に向上させることができるため有効である。
 以下、本態様のカラーフィルタの製造方法を、膜厚の異なる複数色の着色層を有するカラーフィルタを製造する場合に適用した態様(以下、Aの態様とする)について説明する。
 (Aの態様)
 本態様のカラーフィルタの製造方法は、透明基板、および上記透明基板上に形成され、開口部を備える遮光部を有するブラックマトリクス基板と、上記ブラックマトリクス基板上の上記開口部に形成された複数色の着色層とを有し、上記複数色の着色層のうち、少なくとも1色の着色層の膜厚が、他の色の着色層の膜厚よりも小さくなるように形成されているカラーフィルタの製造方法であって、上記ブラックマトリクス基板の上記開口部に、インクジェット法により着色層形成用塗工液を塗布することにより、複数色の乾燥前着色層を形成するインクジェット工程と、上記複数色の乾燥前着色層を減圧乾燥処理して、複数色の乾燥後着色層が形成されたカラーフィルタ用基板を形成する減圧乾燥処理工程と、上記カラーフィルタ用基板に対して、プリベーク処理を行った後、ポストベーク処理を行い、上記複数色の着色層が形成されたカラーフィルタを得るベーク処理工程とを有し、上記減圧乾燥処理工程では、最も膜厚の小さい上記乾燥後着色層の端部の膜厚が上記遮光部の膜厚よりも小さくならないように、上記複数色の乾燥前着色層を減圧乾燥処理することを特徴とする製造方法である。
 本態様のカラーフィルタの製造方法について図を用いて説明する。図6は、本態様のカラーフィルタの製造方法の一例を示す工程図である。また、図6においては、赤色着色層および緑色着色層が青色着色層よりも小さくなるように形成される、セミマルチギャップ構造を有するカラーフィルタを製造する例について示している。
 本態様のカラーフィルタの製造方法においては、まず、透明基板1および遮光部2からなるブラックマトリクス基板10aの上記開口部に、インクジェット法により着色層形成用塗工液を塗布することにより、複数色の乾燥前着色層3a(図6(a)においては、赤色乾燥前着色層3Ra、緑色乾燥前着色層3Ga、および青色乾燥前着色層3Ba)を形成するインクジェット工程(図6(a))が行われる。次に、複数色の乾燥前着色層3aを減圧乾燥処理して、複数色の乾燥後着色層3b(図6(b)においては、赤色乾燥後着色層3Rb、緑色乾燥後着色層3Gb、および青色乾燥後着色層3Bb)が形成されたカラーフィルタ用基板10bを形成する減圧乾燥処理工程(図6(b))が行われる。次に、カラーフィルタ用基板10bに対して、プリベーク処理を行った後(図6(c))、ポストベーク処理を行い、複数色の着色層3(図6(d)においては、赤色乾燥後着色層3R、緑色乾燥後着色層3G、および青色乾燥後着色層3B)が形成されたカラーフィルタ10を得るベーク処理工程(図6(c)~(d))が行われる。また、減圧乾燥処理工程では、図6(b)に示されるように、赤色乾燥後着色層3Rbおよび緑色乾燥後着色層3Gbの膜厚が、遮光部2の膜厚よりも小さくならないように、赤色乾燥前着色層3Raおよび緑色乾燥前着色層3Gaが減圧乾燥処理される。
 本発明によれば、複数色の着色層のうち、最も膜厚の小さい乾燥後着色層中の溶媒の含有量を、形成される着色層に所望の平坦性を付与することが可能であり、かつ、プリベーク処理を短時間で行うことができる、最小限の含有量とすることが可能となる。よって、他の膜厚を有する着色層については、上記プリベーク処理の条件で乾燥後着色層中の溶媒が突沸しない程度の膜厚を有する乾燥後着色層となるように、着色層形成用塗工液を厚膜に塗布して形成することが可能となるため、膜厚の異なる複数色の着色層を同時に形成した場合であっても、それぞれの着色層に所望の平坦性を付与することが可能となり、かつ、各色の着色層の混色が生じないものとすることができる。よって、膜厚の異なる複数の着色層ごとに形成工程を分けて形成する必要がなく、1回の形成工程で形成することが可能となることから、製造効率を大幅に向上させることが可能となる。
 ここで、本態様においては、最も膜厚の小さい着色層については、上述したカラーフィルタの製造方法を適用して形成することができる。また、本態様においては、上記最も膜厚の小さい着色層を形成する際に行われる減圧乾燥処理工程およびベーク処理工程と同様の環境において、他の膜厚の着色層についても、所望の平坦性を有し、かつ、各色の着色層に混色が生じないようにする必要がある。以下、上記他の膜厚の着色層を形成する方法について説明する。
 なお、以下に説明しない形成条件については、上述した最も膜厚の小さい着色層の形成方法と同様とすることができるので、その記載については省略する。
 上記インクジェット工程において形成される乾燥前着色層の平均膜厚としては、減圧乾燥処理工程後の乾燥後着色層の最大膜厚が、プリベーク処理において上記乾燥後着色層中の溶媒が突沸しないような膜厚とすることが可能であれば特に限定されるものではなく、7.7μm以上、特に10.0μm以上であることが好ましい。上記乾燥前着色層の膜厚が上記範囲に満たない場合は、形成される着色層と、上述した最も膜厚の小さい着色層とに所望の膜厚差を形成することが困難となる可能性があるからであり、上記乾燥前着色層の膜厚が上記範囲を超える場合は着色層を形成することが困難となる可能性があるからである。
 本態様における減圧乾燥処理工程において形成される乾燥後着色層の最大膜厚としては、プリベーク処理において乾燥後着色層中の溶媒が突沸し、着色層同士の混色が生じないような膜厚とすることが可能であれば特に限定されるものではないが、具体的には、7.7μm~22.7μmの範囲内であることが好ましい。乾燥後着色層の膜厚が上記範囲に満たない場合は、形成される着色層と、上述した最も膜厚の小さい着色層とに所望の膜厚差を形成することが困難となる可能性があるからであり、上記乾燥後着色層の膜厚が上記範囲を超える場合は、乾燥後着色層中の溶媒の含有量が多いことから、プリベーク処理の際に着色層同士の混色が生じる可能性があるからである。
 Aの態様の製造方法により製造されるカラーフィルタとしては、膜厚の異なる複数色の着色層を有するものであれば、特に限定されるものではないが、赤色着色層および緑色着色層の膜厚が青色着色層の膜厚よりも小さくなるように形成された、セミマルチギャップ構造を有するカラーフィルタであることが好ましい。上記構成のカラーフィルタは、液晶表示装置に用いた場合に、青色画素領域の輝度を高いものとすることができることから、良好な画像表示を行うことができるからである。
 2.第2態様のカラーフィルタの製造方法
 次に、本発明のカラーフィルタの製造方法の第2態様について説明する。
 本態様のカラーフィルタの製造方法は、上記減圧乾燥処理工程では、上記乾燥後着色層の最大膜厚と上記開口部の幅との比率が、上記開口部の幅を1とした場合に、7.8×10-3~2.3×10-1の範囲内となるように、上記乾燥前着色層を減圧乾燥処理することを特徴とする製造方法である。
 ここで、上述した「1.第1態様のカラーフィルタの製造方法」の項で説明したように、乾燥後着色層の端部の膜厚については、上記乾燥後着色層の最大膜厚と上記開口部の幅との比率と相関するものである。そこで、本態様は、上記乾燥後着色層中の溶媒の含有量を、形成される着色層に所望の平坦性を付与することが可能となる、最小限の含有量とすることができる減圧乾燥処理条件を、上記乾燥後着色層の最大膜厚と上記開口部の幅との比率を用いて表したものである。
 なお、本態様のカラーフィルタの製造方法における各工程については、上述した第1態様のカラーフィルタの製造方法と同様とすることができるので、ここでの説明は省略する。
 本態様のカラーフィルタの製造方法も、上述した第1態様のカラーフィルタの製造方法と同様に、膜厚の異なる複数色の着色層を有するカラーフィルタを製造する際に好適に用いることが可能である。
 以下、本態様のカラーフィルタの製造方法を、膜厚の異なる複数色の着色層を有するカラーフィルタを製造する場合に適用した態様(以下、Bの態様とする)について説明する。
 (Bの態様)
 本態様のカラーフィルタの製造方法は、透明基板、および上記透明基板上に形成され、開口部を備える遮光部を有するブラックマトリクス基板と、上記ブラックマトリクス基板上の上記開口部に形成された複数色の着色層を有し、上記複数色の着色層のうち、少なくとも1色の着色層の膜厚が、他の色の着色層の膜厚よりも小さくなるように形成されているカラーフィルタの製造方法であって、上記ブラックマトリクス基板の上記開口部に、インクジェット法により着色層形成用塗工液を塗布することにより、複数色の乾燥前着色層を形成するインクジェット工程と、上記複数色の乾燥前着色層を減圧乾燥処理して、複数色の乾燥後着色層が形成されたカラーフィルタ用基板を形成する減圧乾燥処理工程と、上記カラーフィルタ用基板に対して、プリベーク処理を行った後、ポストベーク処理を行い、上記複数色の着色層が形成されたカラーフィルタを得るベーク処理工程とを有し、上記減圧乾燥処理工程では、最も膜厚の小さい上記乾燥後着色層の最大膜厚と上記開口部の幅との比率が、上記開口部の幅を1とした場合に、7.8×10-3~2.3×10-1の範囲内となるように、上記複数色の乾燥前着色層を減圧乾燥処理することを特徴とする製造方法である。
 ここで、本態様においても、最も膜厚の小さい着色層については、上述したカラーフィルタの製造方法を用いて形成することができる。また、他の膜厚の着色層の形成方法については、上述したAの態様のカラーフィルタの製造方法の項で説明した、最も小さい膜厚の着色層以外の着色層を形成する方法と同様とすることができるので、ここでの説明は省略する。
 なお、本態様においては、赤色着色層および緑色着色層の膜厚が青色着色層の膜厚よりも小さく形成されているセミマルチギャップ構造のカラーフィルタを製造することが好ましい。また、その際は、最も膜厚の小さい上記乾燥後着色層の最大膜厚と上記開口部の幅との比率が、上記開口部の幅を1とした場合に、7.8×10-3~1.8×10-1の範囲内となるように、上記複数色の乾燥前着色層を減圧乾燥処理することがより好ましい。
 なお、上記数値範囲については例えば次のように算出することができる。
 ベーク処理工程前のシュリンク前の遮光部膜厚を2.7μm、図3に示される開口部の幅u1を100μm~480μmの範囲内、開口部の幅u2を130μm~600μmの範囲内とし、減圧乾燥後の乾燥後着色層の最大膜厚を遮光部の膜厚を基準として+2μm~+15μmとした場合、上記数値範囲を算出することができる。
 本発明は、上記実施形態に限定されるものではない。上記実施形態は例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。
以下、本発明について実施例および比較例を用いて具体的に説明する。
 I.減圧乾燥処理の条件について
 1.ブラックマトリクス基板(BM基板)の作製
 (遮光部の形成)
 ガラス基板(横長さ2850mm×縦長さ3050mm×厚み0.7mmコーニングジャパン社製)(透明基板)上に遮光性黒色顔料を含む感光性樹脂組成物を用い、フォトリソグラフィー法により遮光部を形成して、40インチサイズの画面を18面形成した。1面あたり、1画素が横方向ピッチ115μm、縦方向ピッチ465μmで開口部寸法が100μm×450μm、遮光部線幅が15μmとなるように形成し、横方向に115μmピッチで5525画素、縦方向に465μmピッチで1070画素並ぶように配置した画素パターン(チップ)を形成した。また、上記遮光部の厚みは、ベーク処理工程前のシュリンクを起こしていない状態で2.7μm、カラーフィルタとした際に最終的に得られる遮光部の厚みは、20画素の平均で2.4μmであった。また、上記開口部の幅は図3のu1が100μm、u2が450μmであった。
 (水洗工程)
 上記遮光部が形成された透明基板を搬送しながら高圧スプレーにより純水を吹き付ける洗浄装置を使用し、水噴き付け後にはエアーナイフを使用し、上記透明基板上の水を吹き流した。
 (撥水化処理工程)
 次いで、上記透明基板の遮光部側表面に対して、フッ素ガスを導入した大気圧プラズマ処理を行うことにより、遮光部層表面を撥液性にガラス表面部分を親液性とした。大気圧プラズマ処理は以下の条件で行った。このようにして、BM基板を作製した。また、得られたカラーフィルタ形成用基板の、40mN/mの液体との接触角は、遮光層表面の20箇所の測定値の平均で60°、ガラス表面上で10°であった。なお、この接触角は、接触角測定器(協和界面科学(株)製CA-Z型)を用いて測定(マイクロシリンジから液滴を滴下して30秒後)し、その結果から得たものである。
 <プラズマ照射条件>
・導入ガス:CF…17.1L/min、N…97.3L/min
・周波数:29Hz
・電源出力:420V-5a
 2.インクジェット工程および減圧乾燥処理工程
 (着色層形成用塗工液の調製)
 赤色、緑色、および青色の着色層形成用塗工液を下記の処方で調製した。
 <赤色着色層形成用塗工液>
・顔料:R254/R242/Y150…7.04質量部
・分散剤:アジスパーPb821(味の素ファインケミカル)…4.22質量部
・主溶媒:ジエチレングリコールモノブチルエーテルアセテート…73.20質量部
・副溶媒:3-エトキシプロピオン酸エチル…10.00質量部
・バインダ:GMAアクリル系樹脂…5.54質量部
・レべリング剤:LHP-90(楠本化成)…0.09質量部
 P/V比は0.73、固形分濃度は16.8%、粘度は9.8CPSであった。なお、粘度は、落球式粘度計を用い、室温(23℃)で測定した値である。
 <緑色着色層形成用塗工液>
・顔料:G36/Y150/R254…8.11質量部
・分散剤:アジスパーPb821(味の素ファインケミカル)…4.87質量部
・主溶媒:ジエチレングリコールモノブチルエーテルアセテート…65.30質量部
・副溶媒:3-エトキシプロピオン酸エチル…15.00質量部
・バインダ:GMAアクリル系樹脂…6.72質量部
・レべリング剤:LHP-90(楠本化成)…0.09質量部
 P/V比は0.70、固形分濃度は21.0%、粘度は9.8CPSであった。なお、粘度は、落球式粘度計を用い、室温(23℃)で測定した値である。
 <青色着色層形成用塗工液>
・顔料:B156/V23…2.85質量部
・分散剤:アジスパーPb821(味の素ファインケミカル)…1.71質量部
・主溶媒:ジエチレングリコールモノブチルエーテルアセテート…69.00質量部
・副溶媒:3-エトキシプロピオン酸エチル…10.00質量部
・バインダ:GMAアクリル系樹脂…16.45質量部
・レべリング剤:LHP-90(楠本化成)…0.06質量部
 P/V比は0.20、固形分濃度は21.0%、粘度は10.0CPSであった。なお、粘度は、落球式粘度計を用い、室温(23℃)で測定した値である。
 (インクジェット工程および減圧乾燥処理工程)
 以下、実施例1~13および比較例1~6に示すように、上記BM基板上にインクジェット装置を用いて各色の着色層形成用塗工液を吐出して乾燥前着色層を形成し、ホットプレートを用いた加熱減圧乾燥装置を用いて、それぞれの減圧乾燥処理の条件で減圧乾燥処理を行った。なお、以下に示す各色の着色層形成用塗工液の塗布量は、いずれもポストベーク処理後の着色層の膜厚として、赤色着色層および緑色着色層の膜厚が2.1μm、青色着色層の膜厚が2.4μmとなる塗布量である。
 また、減圧乾燥処理の温度はいずれも40℃であった。
 [実施例1]
 赤色着色層形成用塗工液を用いて、赤色乾燥前着色層を形成し、減圧乾燥処理後の乾燥後着色層の高さが、遮光部を基準としたときに+2μmの高さ(最大膜厚4.7μm)となるまで、赤色乾燥前着色層を減圧乾燥処理した。これによりカラーフィルタ基板を得た。
 [実施例2]
 減圧乾燥処理後の乾燥後着色層の高さが、遮光部を基準としたときに+6μm(最大膜厚8.7μm)の高さとなるまで、赤色乾燥前着色層を減圧乾燥処理したこと以外は、実施例1と同様にカラーフィルタ基板を得た。
 [実施例3]
 減圧乾燥処理後の乾燥後着色層の高さが、遮光部を基準としたときに+8μm(最大膜厚10.7μm)の高さとなるまで、赤色乾燥前着色層を減圧乾燥処理したこと以外は、実施例1と同様にカラーフィルタ基板を得た。
 [実施例4]
 減圧乾燥処理後の乾燥後着色層の高さが、遮光部を基準としたときに+15μm(最大膜厚17.7μm)の高さとなるまで、赤色乾燥前着色層を減圧乾燥処理したこと以外は、実施例1と同様にカラーフィルタ基板を得た。
 [実施例5]
 緑色着色層形成用塗工液を用いて、緑色乾燥前着色層を形成し、減圧乾燥処理後の乾燥後着色層の高さが、遮光部を基準としたときに+2μm(最大膜厚4.7μm)の高さとなるまで、緑色乾燥前着色層を減圧乾燥処理した。これによりカラーフィルタ基板を得た。
 [実施例6]
 減圧乾燥処理後の乾燥後着色層の高さが、遮光部を基準としたときに+6μm(最大膜厚8.7μm)の高さとなるまで、緑色乾燥前着色層を減圧乾燥処理したこと以外は、実施例5と同様にカラーフィルタ基板を得た。
 [実施例7]
 減圧乾燥処理後の乾燥後着色層の高さが、遮光部を基準としたときに+8μm(最大膜厚10.7μm)の高さとなるまで、緑色乾燥前着色層を減圧乾燥処理したこと以外は、実施例5と同様にカラーフィルタ基板を得た。
 [実施例8]
 減圧乾燥処理後の乾燥後着色層の高さが、遮光部を基準としたときに+15μm(最大膜厚17.7μm)の高さとなるまで、緑色乾燥前着色層を減圧乾燥処理したこと以外は、実施例5と同様にカラーフィルタ基板を得た。
 [実施例9]
 青色着色層形成用塗工液を用いて、青色乾燥前着色層を形成し、減圧乾燥処理後の青色乾燥後着色層の高さが、遮光部を基準としたときに+5μm(最大膜厚7.7μm)の高さとなるまで、青色乾燥前着色層を減圧乾燥処理した。これによりカラーフィルタ基板を得た。
 [実施例10]
 青色着色層形成用塗工液を用いて、青色乾燥前着色層を形成し、減圧乾燥処理後の青色乾燥後着色層の高さが、遮光部を基準としたときに+7μm(最大膜厚9.7μm)の高さとなるまで、青色乾燥前着色層を減圧乾燥処理した。これによりカラーフィルタ基板を得た。
 [実施例11]
 減圧乾燥処理後の青色乾燥後着色層の高さが、遮光部を基準としたときに+12μm(最大膜厚14.7μm)の高さとなるまで、青色乾燥前着色層を減圧乾燥処理したこと以外は、実施例9と同様にカラーフィルタ基板を得た。
 [実施例12]
 減圧乾燥処理後の青色乾燥後着色層の高さが、遮光部を基準としたときに+15μm(最大膜厚17.7μm)の高さとなるまで、青色乾燥前着色層を減圧乾燥処理したこと以外は、実施例9と同様にカラーフィルタ基板を得た。
 [実施例13]
 減圧乾燥処理後の青色乾燥後着色層の高さが、遮光部を基準としたときに+20μm(最大膜厚22.7μm)の高さとなるまで、青色乾燥前着色層を減圧乾燥処理したこと以外は、実施例9と同様にカラーフィルタ基板を得た。
 なお、実施例1~13においては、いずれも乾燥前着色層の端部の膜厚は遮光部の膜厚より小さくなっていなかった。
 [比較例1]
 減圧乾燥処理後の赤色乾燥後着色層の高さが、遮光部を基準としたときに-0.2μmの高さ(最大膜厚2.5μm)となるまで、赤色乾燥前着色層を減圧乾燥処理したこと以外は、実施例1と同様にカラーフィルタ基板を得た。
 [比較例2]
 減圧乾燥処理後の緑色乾燥後着色層の高さが、遮光部を基準としたときに-0.2μmの高さ(最大膜厚2.5μm)となるまで、緑色乾燥前着色層を減圧乾燥処理したこと以外は、実施例5と同様にカラーフィルタ基板を得た。
 [比較例3]
 減圧乾燥処理後の青色乾燥後着色層の高さが、遮光部を基準としたときに+0.5μmの高さ(最大膜厚3.2μm)となるまで、青色乾燥前着色層を減圧乾燥処理したこと以外は、実施例9と同様にカラーフィルタ基板を得た。なお、青色乾燥後着色層の端部の膜厚は、遮光部の膜厚よりも小さいものとなった。
 [比較例4]
 減圧乾燥処理後の赤色乾燥後着色層の高さが、遮光部を基準としたときに+21μm(最大膜厚23.7μm)の高さとなるまで、赤色乾燥前着色層を減圧乾燥処理したこと以外は、実施例1と同様にカラーフィルタ基板を得た。
 [比較例5]
 減圧乾燥処理後の緑色乾燥後着色層の高さが、遮光部を基準としたときに+21μm(最大膜厚23.7μm)の高さとなるまで、緑色乾燥前着色層を減圧乾燥処理したこと以外は、実施例5と同様にカラーフィルタ基板を得た。
 [比較例6]
 減圧乾燥処理後の青色乾燥後着色層の高さが、遮光部を基準としたときに+24μm(最大膜厚26.7μm)の高さとなるまで、青色乾燥前着色層を減圧乾燥処理したこと以外は、実施例9と同様にカラーフィルタ基板を得た。
3.ベーク処理工程
 実施例1~13および比較例1~6で得られたカラーフィルタ用基板に、クリーンオーブンにて、100℃で20分間プリベーク処理を行い、次いで、クリーンオーブンにて、230℃で40分間ポストベーク処理を行い、カラーフィルタを得た。
4.評価
 実施例1~13および比較例1~6で得られたカラーフィルタについて、着色層の決壊混色の有無、および着色層の最大膜厚および最小膜厚の差についてそれぞれ調べた。結果を表1に示す。なお、決壊混色とは、各色の着色層が遮光部を越えて混色することを指す。また、上記着色層の最大膜厚および最小膜厚の差については、光干渉方式の三次元非接触表面形状計測装置(米国マイクロマップ製 製品名Micromap557N)にて測定した。
 結果を表1に示す。なお、表1中、t(μm)は乾燥後着色層の最大膜厚、t/uは、乾燥後着色層の最大膜厚と上記開口部の幅との比率(開口部の幅を1とした場合)を示すものである。
Figure JPOXMLDOC01-appb-T000001
 実施例1~13のカラーフィルタにおいては、決壊混色が発生せず、各色の着色層の膜厚差についても、比較例1~3に対して小さなものとすることができた。
 また、比較例4~6においては、それぞれベーク処理時に着色層が決壊してしまい、隣接する着色層との間で混色が発生した。
 II.プリベーク処理およびポストベーク処理の温度について
 上述したBM基板上に、インクジェット装置を用いて、上述した各色の着色層形成用塗工液を吐出し、赤色乾燥前着色層、緑色乾燥前着色層、および青色乾燥前着色層を形成した。なお、このときの塗布量は、最終的なポストベーク処理後の着色層の膜厚として、赤色着色層および緑色着色層が2.1μm、青色着色層が2.4μmとなる量とした。ついで、ホットプレートを用いた加熱減圧乾燥装置を用いて、減圧乾燥後の乾燥後着色層の膜厚として、赤色乾燥後着色層、および緑色乾燥後の膜厚が遮光部を基準とした場合に+6μm(最大膜厚8.7μm)、青色乾燥後着色層の膜厚が、遮光部を基準とした場合に+12μm(最大膜厚14.7μm)となるように、各色の乾燥前着色層を減圧乾燥処理して、カラーフィルタ用基板を得た。なお、減圧乾燥処理の温度は40℃とした。
 上記のようにして実施例14~16および参考例1~2のカラーフィルタ用基板を形成し、表2に示すように、クリーンオーブンにてプリベーク処理の温度条件を変えて20分間処理を行った後、クリーンオーブンにて230℃で40分間ポストベーク処理を行い、カラーフィルタを得た。
 実施例14~16および参考例1~2のカラーフィルタについて、それぞれ混色欠陥の有無および最大膜厚および最小膜厚の差について調べた。なお、評価方法については、上述した実施例1等のカラーフィルタと同様である。
 結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 実施例14~16のカラーフィルタにおいては、決壊混色が発生せず、また、各色の着色層の最大膜厚および最小膜厚の差も小さいものとすることができ、着色層の平坦性の高いカラーフィルタを得ることができた。
 一方、参考例1のカラーフィルタにおいては、ポストベーク処理時に青色着色層に決壊が生じた。また、参考例2のカラーフィルタにおいては、プリベーク処理時に青色着色層に決壊が生じた。
 1 … 透明基板
 2 … 遮光部
 3a … 乾燥前着色層
 3b … 乾燥後着色層
 10a … ブラックマトリクス基板
 10b … カラーフィルタ基板
 10 … カラーフィルタ
 t … 乾燥後着色層の最大膜厚
 u … 開口部の幅

Claims (6)

  1.  透明基板、および前記透明基板上に形成され開口部を備える遮光部を有するブラックマトリクス基板の前記開口部に、インクジェット法により着色層形成用塗工液を塗布することにより、乾燥前着色層を形成するインクジェット工程と、
     前記乾燥前着色層を減圧乾燥処理して、乾燥後着色層が形成されたカラーフィルタ用基板を形成する減圧乾燥処理工程と、
     前記カラーフィルタ用基板に対して、プリベーク処理を行った後、ポストベーク処理を行い、着色層が形成されたカラーフィルタを得るベーク処理工程とを有し、
     前記減圧乾燥処理工程では、前記乾燥後着色層の端部の膜厚が前記遮光部の膜厚よりも小さくならないように、前記乾燥前着色層を減圧乾燥処理することを特徴とするカラーフィルタの製造方法。
  2.  透明基板、および前記透明基板上に形成され開口部を備える遮光部を有するブラックマトリクス基板の前記開口部に、インクジェット法により着色層形成用塗工液を塗布することにより、乾燥前着色層を形成するインクジェット工程と、
     前記乾燥前着色層を減圧乾燥処理して、乾燥後着色層が形成されたカラーフィルタ用基板を形成する減圧乾燥処理工程と、
     前記カラーフィルタ用基板に対して、プリベーク処理を行った後、ポストベーク処理を行い、着色層が形成されたカラーフィルタを得るベーク処理工程とを有し、
     前記減圧乾燥処理工程では、前記乾燥後着色層の最大膜厚と前記開口部の幅との比率が、前記開口部の幅を1とした場合に、7.8×10-3~2.3×10-1の範囲内となるように、前記乾燥前着色層を減圧乾燥処理することを特徴とするカラーフィルタの製造方法。
  3.  透明基板、および前記透明基板上に形成され、開口部を備える遮光部を有するブラックマトリクス基板と、前記ブラックマトリクス基板上の前記開口部に形成された複数色の着色層とを有し、前記複数色の着色層のうち、少なくとも1色の着色層の膜厚が、他の色の着色層の膜厚よりも小さくなるように形成されているカラーフィルタの製造方法であって、
     前記ブラックマトリクス基板の前記開口部に、インクジェット法により着色層形成用塗工液を塗布することにより、複数色の乾燥前着色層を形成するインクジェット工程と、
     前記複数色の乾燥前着色層を減圧乾燥処理して、複数色の乾燥後着色層が形成されたカラーフィルタ用基板を形成する減圧乾燥処理工程と、
     前記カラーフィルタ用基板に対して、プリベーク処理を行った後、ポストベーク処理を行い、前記複数色の着色層が形成されたカラーフィルタを得るベーク処理工程とを有し、
     前記減圧乾燥処理工程では、最も膜厚の小さい前記乾燥後着色層の端部の膜厚が前記遮光部の膜厚よりも小さくならないように、前記複数色の乾燥前着色層を減圧乾燥処理することを特徴とするカラーフィルタの製造方法。
  4.  透明基板、および前記透明基板上に形成され、開口部を備える遮光部を有するブラックマトリクス基板と、前記ブラックマトリクス基板上の前記開口部に形成された複数色の着色層とを有し、前記複数色の着色層のうち、少なくとも1色の着色層の膜厚が、他の色の着色層の膜厚よりも小さくなるように形成されているカラーフィルタの製造方法であって、
     前記ブラックマトリクス基板の前記開口部に、インクジェット法により着色層形成用塗工液を塗布することにより、複数色の乾燥前着色層を形成するインクジェット工程と、
     前記複数色の乾燥前着色層を減圧乾燥処理して、複数色の乾燥後着色層が形成されたカラーフィルタ用基板を形成する減圧乾燥処理工程と、
     前記カラーフィルタ用基板に対して、プリベーク処理を行った後、ポストベーク処理を行い、前記複数色の着色層が形成されたカラーフィルタを得るベーク処理工程とを有し、
     前記減圧乾燥処理工程では、最も膜厚の小さい前記乾燥後着色層の最大膜厚と前記開口部の幅との比率が、前記開口部の幅を1とした場合に、7.8×10-3~2.3×10-1の範囲内となるように、前記複数色の乾燥前着色層を減圧乾燥処理することを特徴とするカラーフィルタの製造方法。
  5.  前記複数色の着色層が、赤色着色層、緑色着色層、および青色着色層を有し、前記赤色着色層および前記緑色着色層が同等の膜厚を有し、かつ、前記青色着色層の膜厚よりも小さいことを特徴とする請求の範囲第3項または請求の範囲第4項に記載のカラーフィルタの製造方法。
  6.  前記ベーク処理工程では、前記プリベーク処理が、70℃~110℃の範囲内で行われることを特徴とする請求の範囲第1項から請求の範囲第5項までのいずれかに記載のカラーフィルタの製造方法。
PCT/JP2011/074558 2010-11-04 2011-10-25 カラーフィルタの製造方法 WO2012060251A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201180052282.4A CN103210324B (zh) 2010-11-04 2011-10-25 彩色滤光片的制造方法
US13/879,174 US20130196059A1 (en) 2010-11-04 2011-10-25 Method for producing color filter
KR1020137011494A KR101609035B1 (ko) 2010-11-04 2011-10-25 컬러 필터의 제조 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-247851 2010-11-04
JP2010247851A JP2012098627A (ja) 2010-11-04 2010-11-04 カラーフィルタの製造方法

Publications (1)

Publication Number Publication Date
WO2012060251A1 true WO2012060251A1 (ja) 2012-05-10

Family

ID=46024368

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/074558 WO2012060251A1 (ja) 2010-11-04 2011-10-25 カラーフィルタの製造方法

Country Status (6)

Country Link
US (1) US20130196059A1 (ja)
JP (1) JP2012098627A (ja)
KR (1) KR101609035B1 (ja)
CN (1) CN103210324B (ja)
TW (1) TWI461752B (ja)
WO (1) WO2012060251A1 (ja)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9653291B2 (en) * 2014-11-13 2017-05-16 Applied Materials, Inc. Method for removing native oxide and residue from a III-V group containing surface
CN105445991A (zh) * 2014-12-26 2016-03-30 深圳市华星光电技术有限公司 彩色滤光片的制作方法
KR102407761B1 (ko) * 2015-02-02 2022-06-13 삼성디스플레이 주식회사 액정 표시 장치
WO2017110077A1 (ja) * 2015-12-22 2017-06-29 凸版印刷株式会社 反射型表示パネル及びその製造方法
CN106405923A (zh) * 2016-10-28 2017-02-15 京东方科技集团股份有限公司 彩膜基板的制造方法、彩膜基板和显示装置
CN107991726A (zh) * 2017-12-29 2018-05-04 深圳市华星光电技术有限公司 一种喷墨打印制造彩色滤光片的方法及彩色滤光片
CN108957836A (zh) * 2018-07-27 2018-12-07 京东方科技集团股份有限公司 一种彩膜基板及其制作方法、显示器件
CN109556831A (zh) * 2018-11-27 2019-04-02 惠科股份有限公司 彩色滤光片的检测方法及其装置和计算机可读存储介质
KR102408710B1 (ko) * 2021-07-23 2022-06-14 동우 화인켐 주식회사 반사방지 필름 및 이를 포함하는 유기발광 표시장치

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009053371A (ja) * 2007-08-24 2009-03-12 Dainippon Printing Co Ltd カラーフィルタおよびこれを備える液晶表示装置、カラーフィルタの製造方法
JP2009237132A (ja) * 2008-03-26 2009-10-15 Dainippon Printing Co Ltd カラーフィルター、カラーフィルターの製造方法、及び液晶表示装置
WO2010038669A1 (ja) * 2008-09-30 2010-04-08 大日本印刷株式会社 カラーフィルター用インクジェットインク組成物、カラーフィルター、カラーフィルターの製造方法、及び液晶表示装置
JP2010085685A (ja) * 2008-09-30 2010-04-15 Dainippon Printing Co Ltd カラーフィルタ用インクジェットインク組成物のp/v比決定方法、カラーフィルタの製造方法、及び液晶表示装置
JP2010102226A (ja) * 2008-10-27 2010-05-06 Toppan Printing Co Ltd カラーフィルタの製造方法およびカラーフィルタ
JP2010244006A (ja) * 2009-03-18 2010-10-28 Toppan Printing Co Ltd インキジェット法カラーフィルタの製造方法、およびインキジェット法カラーフィルタ

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100533184C (zh) * 2005-03-25 2009-08-26 大日本印刷株式会社 滤色片用喷墨墨液组合物、滤色片的制造方法以及滤色片
JP2007069098A (ja) * 2005-09-06 2007-03-22 Toray Ind Inc 塗膜の減圧乾燥方法
US8329067B2 (en) * 2006-04-03 2012-12-11 Dai Nippon Printing Co., Ltd. Method of producing color filter and color filter
CN100495084C (zh) * 2007-08-21 2009-06-03 友达光电股份有限公司 滤光片以及彩色滤光片的制造方法
JP5544760B2 (ja) * 2008-06-27 2014-07-09 凸版印刷株式会社 赤色着色組成物及びそれを用いたカラーフィルタ基板並びにその製造方法
KR101196592B1 (ko) * 2008-07-04 2012-11-02 도판 인사츠 가부시키가이샤 컬러 필터 및 액정 표시 장치
KR20110079900A (ko) * 2008-10-17 2011-07-11 코닌클리즈케 필립스 일렉트로닉스 엔.브이. 발광 장치

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009053371A (ja) * 2007-08-24 2009-03-12 Dainippon Printing Co Ltd カラーフィルタおよびこれを備える液晶表示装置、カラーフィルタの製造方法
JP2009237132A (ja) * 2008-03-26 2009-10-15 Dainippon Printing Co Ltd カラーフィルター、カラーフィルターの製造方法、及び液晶表示装置
WO2010038669A1 (ja) * 2008-09-30 2010-04-08 大日本印刷株式会社 カラーフィルター用インクジェットインク組成物、カラーフィルター、カラーフィルターの製造方法、及び液晶表示装置
JP2010085685A (ja) * 2008-09-30 2010-04-15 Dainippon Printing Co Ltd カラーフィルタ用インクジェットインク組成物のp/v比決定方法、カラーフィルタの製造方法、及び液晶表示装置
JP2010102226A (ja) * 2008-10-27 2010-05-06 Toppan Printing Co Ltd カラーフィルタの製造方法およびカラーフィルタ
JP2010244006A (ja) * 2009-03-18 2010-10-28 Toppan Printing Co Ltd インキジェット法カラーフィルタの製造方法、およびインキジェット法カラーフィルタ

Also Published As

Publication number Publication date
JP2012098627A (ja) 2012-05-24
KR101609035B1 (ko) 2016-04-04
TWI461752B (zh) 2014-11-21
US20130196059A1 (en) 2013-08-01
KR20130113468A (ko) 2013-10-15
CN103210324B (zh) 2015-11-25
TW201229573A (en) 2012-07-16
CN103210324A (zh) 2013-07-17

Similar Documents

Publication Publication Date Title
WO2012060251A1 (ja) カラーフィルタの製造方法
CN111458947A (zh) 反射型显示面板及其制造方法
JP5381605B2 (ja) カラーフィルタの製造方法およびカラーフィルタ
JP5002936B2 (ja) カラーフィルタおよび液晶表示装置
JP2008225082A (ja) カラーフィルタ用基板、およびその製造方法
JP2007219482A (ja) カラーフィルターの製造方法
JP2010102226A (ja) カラーフィルタの製造方法およびカラーフィルタ
JP2007271811A (ja) カラーフィルターの製造方法
JP5292966B2 (ja) カラーフィルタの製造方法
JP2008074937A (ja) カラーフィルタ用インクジェットインク、カラーフィルタ、カラーフィルタの製造方法、及び表示装置
JP2007271812A (ja) カラーフィルター製造用インクジェットヘッド、および、これを用いたカラーフィルターの製造方法
JP2007272181A (ja) カラーフィルターの製造方法
JP5771931B2 (ja) カラーフィルタ、それを用いた液晶表示装置及びカラーフィルタの製造方法
JP2008064960A (ja) カラーフィルタ及び表示装置
JP2010026229A (ja) カラーフィルタの製造方法
JP2009025764A (ja) カラーフィルタ用基板の製造方法、カラーフィルタの製造方法
JP2007114423A (ja) スペーサ部形成用塗工液およびカラーフィルタの製造方法
JP4788281B2 (ja) カラーフィルタおよび液晶表示装置
JP2008298887A (ja) カラーフィルタ、および液晶表示装置
JP2011069996A (ja) カラーフィルタの製造方法
JP2011064944A (ja) カラーフィルタの製造方法及びカラーフィルタ
JP5098670B2 (ja) カラーフィルタの製造方法
JP2014071296A (ja) カラーフィルタ
JP2012073507A (ja) カラーフィルタの製造方法
JP2008076828A (ja) カラーフィルタの製造方法及びそのカラーフィルタ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11837902

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13879174

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20137011494

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11837902

Country of ref document: EP

Kind code of ref document: A1