WO2012043117A1 - 沸騰冷却装置およびそれを用いた電子機器 - Google Patents

沸騰冷却装置およびそれを用いた電子機器 Download PDF

Info

Publication number
WO2012043117A1
WO2012043117A1 PCT/JP2011/069706 JP2011069706W WO2012043117A1 WO 2012043117 A1 WO2012043117 A1 WO 2012043117A1 JP 2011069706 W JP2011069706 W JP 2011069706W WO 2012043117 A1 WO2012043117 A1 WO 2012043117A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
heat radiating
cooling device
radiating portion
refrigerant
Prior art date
Application number
PCT/JP2011/069706
Other languages
English (en)
French (fr)
Inventor
有仁 松永
坂本 仁
吉川 実
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to US13/824,908 priority Critical patent/US9386724B2/en
Priority to JP2012536288A priority patent/JP5828322B2/ja
Publication of WO2012043117A1 publication Critical patent/WO2012043117A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/42Fillings or auxiliary members in containers or encapsulations selected or arranged to facilitate heating or cooling
    • H01L23/427Cooling by change of state, e.g. use of heat pipes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2029Modifications to facilitate cooling, ventilating, or heating using a liquid coolant with phase change in electronic enclosures
    • H05K7/20363Refrigerating circuit comprising a sorber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0233Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes the conduits having a particular shape, e.g. non-circular cross-section, annular
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/025Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes having non-capillary condensate return means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0275Arrangements for coupling heat-pipes together or with other structures, e.g. with base blocks; Heat pipe cores
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/06Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/18Arrangements for modifying heat-transfer, e.g. increasing, decreasing by applying coatings, e.g. radiation-absorbing, radiation-reflecting; by surface treatment, e.g. polishing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/02Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Definitions

  • the present invention relates to a boiling cooling device and an electronic apparatus using the same.
  • Patent Documents 1 and 2 below disclose a boil cooling device that uses the phase change phenomenon of the refrigerant to move heat to another place and cool it at that place.
  • the electronic components are arranged on a vertical surface of the boiling cooling device.
  • the heat generated in the electronic component is transmitted to the refrigerant, causing the refrigerant to change phase (boil) from liquid to gas.
  • the phase of the refrigerant changes to a gas, it moves upward while maintaining heat due to the density difference from the surrounding liquid.
  • a heat radiating portion is disposed above the electronic component, and the phase-change refrigerant flows into the heat radiating portion.
  • the electronic component is cooled by the phase change (condensation) of the refrigerant
  • the boiling cooling device described in Patent Document 1 cannot exhibit a sufficient cooling effect unless it has a predetermined posture.
  • the boiling cooling device may be in a posture other than the predetermined posture depending on the use state of the electronic device.
  • the heat radiating part is not necessarily arranged above the heat receiving part, the boiled refrigerant hardly flows into the heat radiating part, and there is a possibility that the cooling effect cannot be exhibited.
  • the present invention has been made under the above-described circumstances, and sufficiently exhibits the cooling effect of the electronic component even when the electronic component is inclined around the axis perpendicular to the surface on which the electronic component is arranged or is turned sideways. It is an object of the present invention to provide a boiling cooling apparatus capable of performing the above and an electronic apparatus using the same.
  • a boiling cooling device includes: A case in which an electronic component as a heat source is connected to a first surface, which is a vertical outer surface, to include a heat receiving portion that receives heat generated from the electronic component, and an internal space for storing a refrigerant is formed
  • a first heat dissipating part and a second heat dissipating part which are disposed above and below the heat receiving part and release the heat to the outside; Have Both ends in the horizontal direction of the first heat radiating portion and the second heat radiating portion are extended along the first surface from both ends in the horizontal direction of the heat receiving portion.
  • An electronic device is: An electronic component that generates heat by consuming electric power; A boiling cooling device according to a first aspect in which the electronic component and the heat receiving unit are thermally connected; A cooling air supply device for supplying cooling air to the first heat dissipating part and the second heat dissipating part of the boiling cooling device; It is characterized by providing.
  • the first heat radiating portion and the second heat radiating portion are disposed above and below the heat receiving portion, even if the first heat radiating portion and the second heat radiating portion are inclined about an axis perpendicular to the surface on which the electronic component is disposed, A part of either the first heat radiating part or the second heat radiating part is arranged at a position higher than the heat receiving part.
  • both ends of the first heat radiating portion and the second heat radiating portion are extended in the horizontal direction from both ends of the heat receiving portion, even if the boiling cooling device is turned sideways, this extended portion is It arrange
  • FIG. (1) for demonstrating the effect
  • FIG. (2) for demonstrating the effect
  • the XZ plane in the figure is a horizontal plane, and the direction of the Y axis in the figure is the vertical direction.
  • the boiling cooling device 10 is a device for cooling an electronic component 50 that generates heat by consuming electric power.
  • the boiling cooling device 10 is attached to an electronic device including the electronic component 50.
  • the electronic component 50 is not a component which comprises the boiling cooling device 10, it shall show with a solid line fundamentally in the state attached to the boiling cooling device 10 in the attached drawing.
  • the electronic component 50 is, for example, an IC, an LSI, or the like, and is thermally connected to the boiling cooling device 10 with a thermal conductive grease or a thermal conductive sheet (not shown) interposed therebetween.
  • the boiling cooling device 10 includes a housing 11, a heat radiating unit 20 fixed to the surface of the housing 11, and a refrigerant 30 (see FIG. 3) housed in the housing 11.
  • the housing 11 is a rectangular parallelepiped plate-like case whose longitudinal direction is the Y direction, and the electronic component 50 is arranged on a surface (heat conduction plate 14) on the + Z side that is a vertical surface.
  • the casing 11 includes a frame 12 formed in a rectangular frame shape, a sealing plate 13 that closes the ⁇ Z side opening of the frame 12, and a heat conductive plate that closes the + Z side opening. 14 and.
  • the frame 12 is formed of a metal having high thermal conductivity, such as copper or aluminum.
  • a refrigerant inlet 15 is formed at the + Y side end of the frame 12.
  • the refrigerant inlet 15 is provided with a valve (not shown) and is opened and closed by this valve.
  • the sealing plate 13 and the heat conductive plate 14 are formed of a metal having a high thermal conductivity, such as copper or aluminum, like the frame 12. Near the center of the heat conductive plate 14, an electronic component 50 that is a heat source is connected. The vicinity of the connection position of the electronic component 50 on the surface of the heat conducting plate 14 is a portion that receives heat from the electronic component 50. Hereinafter, this portion is referred to as a heat receiving portion 14a.
  • the frame 12, the sealing plate 13, and the heat conduction plate 14 are formed separately. And the sealing board 13 and the heat conductive board 14 are attached to the frame 12 by brazing. By attaching the sealing plate 13 and the heat conducting plate 14, an internal space 11 a is formed in the housing 11. The internal space 11 a communicates with the outside of the housing 11 through a refrigerant inlet 15 formed in the frame 12.
  • the surface of the heat conductive plate 14 (the surface on the -Z side) is processed to a predetermined roughness by a rough surface treatment.
  • the roughness is, for example, an arithmetic average roughness Ra of 1 ⁇ m to 100 ⁇ m.
  • the heat dissipation unit 20 is a member for releasing heat from the electronic component 50 to the outside.
  • the heat dissipating unit 20 includes a first heat dissipating part 21 fixed to the + Y side of the heat receiving part 14a and a second heat dissipating part 22 fixed to the ⁇ Y side of the heat receiving part 14a.
  • the first heat radiating portion 21 and the second heat radiating portion 22 are formed of a metal having high thermal conductivity, such as copper or aluminum.
  • the first heat radiating portion 21 and the second heat radiating portion 22 are fixed to the same surface as the outer surface of the housing 11 on which the electronic component 50 is disposed, for example, by a fixing method such as brazing.
  • the first heat radiating portion 21 and the second heat radiating portion 22 are fixed at substantially symmetrical positions around the electronic component 50.
  • the first heat radiating portion 21 and the second heat radiating portion 22 are both substantially rectangular parallelepiped shapes having the same shape. Further, both ends of the first heat radiating portion 21 in the X direction are extended in the + X direction and ⁇ X direction, respectively, than both ends of the heat receiving portion 14a in the X direction. Similarly, both ends in the X direction of the second heat radiating portion 22 are extended in the + X direction and the ⁇ X direction, respectively, than both ends in the X direction of the heat receiving portion 14a. That is, the relationship between the dimension L1 in the X direction of the first heat radiating part 21 and the second heat radiating part 22 and the dimension L2 in the X direction of the heat receiving part 14a is L1> L2.
  • first heat radiating part 21 and the second heat radiating part 22 are formed with a plurality of fins parallel to the X axis. Similarly, a plurality of fins parallel to the X axis are also formed in the second heat radiating portion 22.
  • a refrigerant 30 that receives heat from the heat receiving portion 14a is enclosed in the internal space 11a of the housing 11.
  • the refrigerant 30 includes a liquid refrigerant 31 and a gas refrigerant 32.
  • the liquid refrigerant 31 and the gas refrigerant 32 are not particularly distinguished, they are simply referred to as the refrigerant 30.
  • the material of the refrigerant 30 is, for example, water or an organic refrigerant having insulation. In the case where an insulating organic refrigerant is used for the refrigerant 30, the electronic component 50 can be reused even if the refrigerant 30 adheres to the electronic component 50 due to damage to the housing 11 or the like. Have.
  • the refrigerant 30 is injected into the internal space 11 a of the housing 11 from the refrigerant inlet 15.
  • evacuation is performed.
  • the refrigerant 30 is sealed in the internal space 11a by closing the valve of the refrigerant inlet 15.
  • the electronic apparatus 1 provided with the electronic component 50 has a cooling air supply device 54 as shown in FIG.
  • the cooling air supply device 54 supplies the cooling air 55 to the heat dissipation unit 20.
  • the cooling air supply device 54 is, for example, an axial fan or a centrifugal fan.
  • the cooling air 55 is supplied along a direction parallel to the fin formation direction so as to pass between the fins.
  • the boiling cooling device 10 described above is attached to the electronic device 1 so that the first heat radiating portion 21 is disposed above the electronic component 50 and is used in this posture.
  • the second heat radiating portion 22 is placed above the electronic component 50, or tilted around the Z axis from the posture shown in FIG. As shown in FIG. 4, it becomes a posture or a horizontal posture.
  • the boiling cooling device 10 When a voltage is applied to a circuit having the electronic component 50, the electronic component 50 generates heat by consuming electric power.
  • the heat generated in the electronic component 50 is conducted to the liquid refrigerant 31 of the refrigerant 30 through the heat receiving portion 14 a of the heat conducting plate 14. Since the surface in contact with the liquid refrigerant 31 of the heat conducting plate 14 is roughened, the heat radiation area is increased. As a result, the heat conducted to the heat conducting plate 14 is efficiently conducted to the liquid refrigerant 31. Due to this heat conduction, the temperature of the liquid refrigerant 31 in the vicinity of the heat receiving portion 14a rises.
  • a first heat radiating portion 21 of the heat radiating unit 20 is disposed above the heat receiving portion 14a. The moved gas refrigerant 32 is deprived of heat on the heat conducting plate 14 by the first heat radiating portion 21.
  • the heat conduction plate 14 Since the surface of the heat conduction plate 14 is roughened, the heat radiation area is increased, and as a result, heat is efficiently conducted to the first heat radiation portion 21.
  • the gas refrigerant 32 deprived of heat undergoes phase change (condensation) to the liquid refrigerant 31 on the heat conducting plate 14.
  • the phase-changed liquid refrigerant 31 flows down along the surface of the heat conducting plate 14 and merges with the lower liquid refrigerant 31.
  • the heat transmitted to the first heat radiating unit 21 is released to the outside of the boiling cooling device 10 by the cooling air 55 supplied by the cooling air supply device 54.
  • the electronic component 50 is cooled by the phase change phenomenon of the refrigerant 30 described above.
  • phase-change gas refrigerant 32 moves upward while maintaining heat.
  • a part of the first heat radiating part 21 is arranged above the heat receiving part 14a.
  • the moved gas refrigerant 32 is deprived of heat on the heat conductive plate 14 by the first heat radiating portion 21.
  • the gas refrigerant 32 deprived of heat undergoes phase change (condensation) into the liquid refrigerant 31.
  • the phase-changed liquid refrigerant 31 flows down along the surface of the heat conducting plate 14 and merges with the lower liquid refrigerant 31.
  • the heat transmitted to the first heat radiating unit 21 is released to the outside of the boiling cooling device 10 by the cooling air supplied from the cooling air supply device 54.
  • the electronic component 50 is cooled by the phase change phenomenon of the refrigerant 30 described above.
  • the boiling cooling device 10 is used in a horizontal posture.
  • a part of the 1st heat radiating part 21 and the 2nd heat radiating part 22 is arrange
  • the gas refrigerant 32 deprived of heat undergoes phase change (condensation) into the liquid refrigerant 31.
  • the phase-changed liquid refrigerant 31 flows down along the surface of the heat conducting plate 14 and merges with the lower liquid refrigerant 31.
  • the electronic component 50 is cooled by the phase change of the refrigerant
  • the first heat radiating part 21 and the second heat radiating part 22 are arranged above and below the heat receiving part 14a. Thereby, even if it inclines around the Z-axis, a part of either the 1st heat radiating part 21 or the 2nd heat radiating part 22 is arrange
  • the surface of the heat conducting plate 14 that contacts the refrigerant 30 is roughened by roughening. Thereby, a heat radiation area becomes large and heat can be efficiently conducted.
  • the refrigerant 30 is enclosed in the internal space 11a by closing the valve of the refrigerant inlet 15.
  • the sealing means of the refrigerant 30 is arbitrary. For example, after injecting the coolant 30 from the coolant inlet 15, the coolant 30 can be sealed by caulking the coolant inlet 15.
  • the frame 12, the sealing plate 13, and the heat conduction plate 14 are formed separately.
  • the present invention is not limited to this, and the frame and the sealing plate may be integrally formed by cutting or the like,
  • the conductive plate may be integrally formed.
  • the sealing plate 13 and the heat conduction plate 14 are attached to the frame 12 by brazing.
  • the present invention is not limited to this, and as shown in FIG. 8, it may be attached to the frame 12 by screwing screws or the like through O-rings 16 and 17. In this case, since the sealing plate 13 and the heat conductive plate 14 can be removed, workability such as maintenance can be improved.
  • the fins of the first heat radiating plate 21 and the second heat radiating plate 22 are formed in parallel to the X axis, but not limited to this, as shown in FIG. You may form in parallel.
  • the electronic component 50 is thermally connected on the heat conduction plate 14 on the right side (+ Z side) on the housing 11 side.
  • the sealing plate 13 on the left side ( ⁇ Z side) on the housing 11 side may be thermally connected.
  • the boiling cooling device 100 includes a heat radiating unit 23 different from the heat radiating unit 20 in addition to the heat radiating unit 20.
  • the heat dissipation unit 23 is fixed on the sealing plate 13.
  • an electronic component 51 is disposed in the boiling cooling device 100.
  • the heat dissipation unit 23 is a member for releasing heat from the electronic components 50 and 51 to the outside.
  • the heat dissipating unit 23 includes a third heat dissipating part 24 fixed on the + Y side and a fourth heat dissipating part 25 fixed on the ⁇ Y side.
  • the shapes, materials, and attachment methods of the third heat radiating part 24 and the fourth heat radiating part 25 are the same as those of the first heat radiating part 21 and the second heat radiating part 22 of the heat radiating unit 20.
  • the surface of the sealing plate 13 is processed to a predetermined roughness by a rough surface treatment, similarly to the surface of the heat conducting plate 14.
  • the roughness is, for example, an arithmetic average roughness Ra of 1 ⁇ m to 100 ⁇ m.
  • the vicinity of the connection position of the electronic component 51 on the surface of the sealing plate 13 is a heat receiving portion 13 a that receives heat from the electronic component 51.
  • the boiling cooling device 100 described above is attached so that, for example, the first heat radiating portion 21 and the third heat radiating portion 24 are disposed above the electronic components 50 and 51, similarly to the boiling cooling device 10 according to the first embodiment. To be used. Further, depending on the usage state of the electronic device 1 to which the boiling cooling device 100 is attached, the boiling cooling device 100 may be inclined around the Z axis from the posture illustrated in FIG. 11 or may be in a horizontal posture.
  • the operation of the boiling cooling device 100 when the first heat radiating part 21 and the third heat radiating part 24 are used in a posture where they are arranged above the electronic components 50 and 51 will be described.
  • the heat is conducted to the liquid refrigerant 31 through the heat conducting plate 14 and the heat receiving portions 14 a and 13 a of the sealing plate 13.
  • the surfaces of the heat conductive plate 14 and the sealing plate 13 that are in contact with the refrigerant 30 are roughened and have a large heat radiation area. Therefore, the heat conducting plate 14 and the sealing plate 13 efficiently conduct heat to the liquid refrigerant 31. Due to this heat conduction, the temperature of the liquid refrigerant 31 in the vicinity of the heat receiving portions 14a and 13a rises.
  • coolant 30 of the heat conductive board 14 and the sealing board 13 is roughened, and the thermal radiation area is large. Therefore, the heat conducting plate 14 and the sealing plate 13 efficiently conduct heat to the first heat radiating portion 21 and the third heat radiating portion 24.
  • the gas refrigerant 32 deprived of heat undergoes phase change (condensation) to the liquid refrigerant 31 on the heat conducting plate 14 and the sealing plate 13.
  • the phase-change liquid refrigerant 31 flows down along the surfaces of the heat conducting plate 14 and the sealing plate 13 and merges with the lower liquid refrigerant 31.
  • the heat transmitted to the first heat radiating unit 21 and the third heat radiating unit 24 is released to the outside of the boiling cooling device 100 by the cooling air 55 supplied by the cooling air supply device 54 as in the first embodiment.
  • the first to fourth heat radiation units 21 and 22 are the same as the boiling cooling device 10 according to the first embodiment. , 24, 25 are arranged at positions higher than the heat receiving portions 14a, 13a. In addition, even when the boiling cooling device 100 is in the horizontal orientation, a part of the first to fourth heat radiating parts 21, 22, 24, 25 is arranged at a position higher than the heat receiving part 14a. Therefore, the boiling cooling device 100 can cool the electronic components 50 and 51 by the phase change phenomenon of the refrigerant 30.
  • the boiling cooling device 100 includes the two heat radiating units 20 and 23. Therefore, the cooling effect can be enhanced, for example, by cooling electronic components that generate a large amount of heat or by simultaneously cooling many electronic components.
  • the heat radiating units 20 and 23 are respectively fixed to opposing surfaces of the housing 11. As a result, even if the boiling cooling device 10 is arranged in a posture rotated not only in the Z axis but also in any of the X axis and the Y axis from the posture shown in FIG. A part of any one of 22, 24, and 25 is disposed at a position higher than the electronic components 50 and 51. Therefore, the phase change (boiling) gaseous refrigerant 32 moves to the vicinity of any one of the heat dissipation units 20 and 23, so that the electronic components 50 and 51 can be cooled by the phase change phenomenon.
  • two electronic components 50 and 51 are arranged.
  • the present invention is not limited to this, and one electronic component may be arranged, or three or more electronic components may be arranged. May be.
  • the first heat radiating part 21 and the third heat radiating part 24 are both arranged on the + Y side of the heat receiving parts 14a and 13a.
  • the second heat radiating part 22 and the fourth heat radiating part 25 are both arranged on the ⁇ Y side of the heat receiving parts 14a and 13a. That is, the direction in which the third heat radiating part 24 and the fourth heat radiating part 25 face each other is the same direction (Y direction) as the direction in which the first heat radiating part 21 and the second heat radiating part 22 face each other.
  • the direction in which the third heat radiating part 24 and the fourth heat radiating part 25 face each other, the direction in which the first heat radiating part 21 and the second heat radiating part 22 face each other May be orthogonal.
  • the fins of the first heat radiating portion 21 and the second heat radiating portion 22 of the heat radiating unit 20 are formed in parallel to the X axis, and the fins of the third heat radiating portion 24 and the fourth heat radiating portion 25 of the heat radiating unit 23 are defined as Y.
  • the directions of the fins may be orthogonal.
  • a partition 60 that defines the flow path of the boiling refrigerant 30 is formed.
  • This partition part 60 is for improving the cooling effect and the rectification effect by guiding the refrigerant 30 boiled by receiving heat to the first heat radiating part 21 or the second heat radiating part 22.
  • the partition portion 60 is formed by projecting a part of the heat conducting plate 14 to which the electronic component 50 is attached, and in the direction (Y direction) in which the first heat radiating portion 21 and the second heat radiating portion 22 face each other. They are formed in parallel. Moreover, the partition part 60 is formed in the both sides of the heat receiving part 14a. If the width of the partition portions 60 is too narrow, pressure loss increases, and if it is too wide, the rectifying effect is reduced. For example, the width of the partition 60 is about 1 to 2 times the dimension of the electronic component 50 in the X-axis direction. is there.
  • the operation of the boiling cooling device 110 when the first heat radiating part 21 is used in a posture arranged above the electronic component 50 included in the electronic device 101 will be described.
  • the heat is conducted to the liquid refrigerant 31 via the heat receiving portion 14 a of the heat conducting plate 14.
  • coolant 30 rises by conduction of this heat.
  • a part of the liquid refrigerant 31 undergoes a phase change (boiling) to the gas refrigerant 32 while taking heat away. Then, the phase-changed gas refrigerant 32 moves upward through the partition portions 60 while maintaining heat.
  • the first heat radiating portion 21 is disposed above the heat receiving portion 14 a, and the moved gas refrigerant 32 is deprived of heat by the first heat radiating portion 21.
  • the gas refrigerant 32 deprived of heat undergoes phase change (condensation) into the liquid refrigerant 31.
  • the phase-change liquid refrigerant 31 flows down the wall surface of the heat conduction plate 14 outside the partition portions 60, moves downward, and merges with the lower liquid refrigerant 31.
  • the electronic component 50 is cooled by repeating the phase change phenomenon of the refrigerant 30 described above.
  • the boiling cooling device 110 described above has a posture inclined around the Z axis or a horizontal posture from the posture shown in FIG. 13, as in the first and second embodiments, 2 A part of the heat radiating part 22 is disposed at a position higher than the heat receiving part 14a, and thus the electronic component 50 can be cooled.
  • the partition portion 60 is formed in the internal space 11a of the casing 11 of the boiling cooling device 110 according to the third embodiment. Therefore, the gas refrigerant 32 boiled in the vicinity of the heat receiving portion 14a moves upward through the space between the partition portions 60. Thereby, the flow path of the gas refrigerant 32 boiled in the vicinity of the heat receiving portion 14a and the flow path of the liquid refrigerant 31 condensed in the vicinity of the heat dissipation unit 20 are separated, and the rectifying effect can be enhanced.
  • the partition 60 is formed on the heat conductive plate 14, but is not limited thereto, and may be formed on the sealing plate 13. Moreover, although the partition part 60 is formed by protruding a part of the heat conductive plate 14, it is not restricted to this, You may form as a different body from the heat conductive plate 14. FIG. In this case, the partition portion can be fixed to the heat conducting plate 14 or the sealing plate 13 by a fixing method such as brazing.
  • the partition 60 is a part of the heat conductive plate 14 and is made of a material such as copper or aluminum having high heat conductivity.
  • the conductive plate 14 may be formed of a material having lower conductivity than that of the conductive plate 14. In this case, since heat exchange between the flow paths divided by the partitioning portion 60 is difficult, the rectifying effect can be further enhanced.
  • the boiling cooling device 120 includes a partition portion 61 that is inclined with respect to the Y direction in addition to the partition portion 60. Further, the cooling air 55 is supplied in the ⁇ X direction from the cooling air supply device 54 to the heat radiation unit 20 of the boiling cooling device 120.
  • the cooling air 55 is supplied in the ⁇ X direction, the temperature of the end portion on the windward side (+ X side) of the heat radiating unit 20 is the lowest among the temperatures of the heat radiating unit 20. The inventor confirmed through experiments that the windward end temperature of the heat dissipation unit 20 was the lowest.
  • the boiling cooling device 120 includes a partition 61 for guiding the boiled gaseous refrigerant 32 to the leeward side ( ⁇ X side) based on the experimental result.
  • the partition part 61 is formed by protruding a part of the heat conducting plate 14 to which the electronic component 50 is attached, like the partition part 60. Further, it is formed on the + Y side and the ⁇ Y side of the partition part 60.
  • the operation of the boiling cooling device 120 when the first heat radiating unit 21 is used in a posture arranged above the electronic component 50 included in the electronic device 201 will be described.
  • the heat is conducted to the liquid refrigerant 31 through the heat receiving portion 14 a of the heat conducting plate 14. And the temperature of the liquid refrigerant 31 rises by this heat conduction.
  • a part of the liquid refrigerant 31 undergoes a phase change (boiling) to the gas refrigerant 32 while taking heat away.
  • the phase-changed gas refrigerant 32 moves upward while being guided by the partition 60 while maintaining heat.
  • the gas refrigerant 32 that has been guided upward by the partition 60 and moved upward is further moved along the upper partition 61 and guided to the leeward side ( ⁇ X side) of the cooling air.
  • the moved gas refrigerant 32 is deprived of heat by the first heat radiating part 21.
  • the gas refrigerant 32 deprived of heat undergoes phase change (condensation) into the liquid refrigerant 31.
  • the phase-change liquid refrigerant 31 merges with the liquid refrigerant 31 along the wall surface of the heat conducting plate 14.
  • the electronic component 50 is cooled by repeating the phase change phenomenon of the refrigerant 30 described above.
  • the above-described boiling cooling device 120 changes from the posture shown in FIG. 14 to a posture inclined around the Z axis or a horizontal posture, the first heat radiating unit 21 and the first 2 Since a part of the heat radiation part 22 is disposed at a position higher than the heat receiving part 14a, the electronic component 50 can be cooled.
  • the supply direction of the cooling air 55 is reduced.
  • An inclined partition 61 is formed. Thereby, it is possible to prevent the boiled gas refrigerant 32 from concentrating and flowing in the vicinity of the windward side of the heat radiating unit 20, and as a result, the cooling efficiency can be improved.
  • the partition 61 is formed on the heat conductive plate 14, but is not limited thereto, and may be formed on the sealing plate 13. Moreover, although the partition part 61 is formed by making a part of heat conductive plate 14 protrude, you may form not only this but the heat conductive plate 14 separately. In this case, the partition part 61 can be fixed to the heat conducting plate 14 or the sealing plate 13 by a fixing method such as brazing.
  • the partition 61 is a part of the heat conducting plate 14 and is made of a material such as copper or aluminum having high heat conductivity. However, the partition 61 is formed separately from the heat conducting plate 14 and then heated.
  • the conductive plate 14 may be formed of a material having lower conductivity than that of the conductive plate 14.
  • a partition portion 62 parallel to the X direction is formed.
  • the partition 62 is formed by projecting a part of the heat conducting plate 14 to which the electronic component 50 is attached, and is formed on the + Y side and the ⁇ Y side of the heat receiving part 14a.
  • an inlet 63 which is a gap between the end portion of the partition portion 62 on the ⁇ X side (downward side of the cooling air 55) and the frame 12 is provided. Is formed.
  • the inflow port 63 is formed so that its opening area is larger than the opening area of the outflow port 64.
  • the boiling cooling device 130 when the first heat radiating unit 21 is used in a posture arranged above the electronic component 50 included in the electronic device 301 will be described.
  • the heat is conducted to the liquid refrigerant 31 through the heat receiving portion 14 a of the heat conducting plate 14. And the temperature of the liquid refrigerant 31 rises by this heat conduction.
  • a part of the liquid refrigerant 31 undergoes a phase change (boiling) to the gas refrigerant 32 while taking heat away. Then, the phase-change gas refrigerant 32 moves upward through the inlet 63 while maintaining heat.
  • the gas refrigerant 32 moved upward is deprived of heat by the first heat radiating section 21 while flowing to the right side, which is the windward side.
  • the gas refrigerant 32 deprived of heat undergoes phase change (condensation) into the liquid refrigerant 31.
  • the phase-change liquid refrigerant 31 moves downward through the outlet 64 and merges with the liquid refrigerant 31 below.
  • the electronic component 50 is cooled by repeating the phase change phenomenon of the refrigerant 30 described above.
  • the first heat radiating portion 21 and the first heat radiation portion 21 are arranged in the same manner as in the first to fourth embodiments. 2 Since a part of the heat radiation part 22 is disposed at a position higher than the heat receiving part 14a, the electronic component 50 can be cooled.
  • the partition portion 62 parallel to the X direction is formed in the internal space 11a of the casing 11 of the boiling cooling device 130 according to the fifth embodiment, and both end portions of the partition portion 62 are formed.
  • a gap is formed between the frame 12 and the frame 12, and an inflow port 63 is formed on the left side and an outflow port 64 is formed on the right side.
  • the inflow port 63 is formed so that its opening area is larger than the opening area of the outflow port 64. Thereby, the phase change (boiling) gaseous refrigerant 32 is easily guided upward through the inflow port 63, and the rectification effect of the refrigerant 30 can be enhanced.
  • the partition 62 is formed on the heat conductive plate 14, but is not limited thereto, and may be formed on the sealing plate 13.
  • the partition 62 is formed by projecting a part of the heat conducting plate 14.
  • the present invention is not limited thereto, and is formed separately from the heat conducting plate 14. Also good.
  • the partition portion can be fixed to the heat conductive plate 14 or the sealing plate 13 by a fixing method such as brazing.
  • the partition 62 is a part of the heat conduction plate 14 and is made of a material having high heat conductivity, such as copper, for example, aluminum. However, the partition 62 is formed separately from the heat conduction plate 14. Alternatively, it may be formed of a material having lower conductivity than the material of the heat conductive plate 14.
  • the partition part 62 is formed horizontally, not only this but a cross section may be substantially V-shaped as shown in FIG. Further, the corner portion 65 of the partition 62 corresponding to the substantially V-shaped apex is shifted by a predetermined length (length B) in the windward direction (+ X direction) from the center A in the X direction of the partition 62. Also good. Accordingly, a large amount of the boiled gas refrigerant 32 can be guided to the inflow port 63 along the side on the ⁇ X side from the corner portion 65 of the partition portion 62.
  • an internal heat radiating portion 70 composed of a plurality of fins protruding into the internal space 11a is formed. Each fin of the internal heat radiating portion 70 is formed in parallel to the Y axis.
  • the internal heat radiating portion 70 is thermally connected to the heat receiving portion 14a. Due to the internal heat radiating portion 70, the heat radiating area is increased and the heat of the electronic component 50 is easily transmitted to the liquid refrigerant 31.
  • the internal thermal radiation part 70 is comprised from the several fin, as shown in FIG. 18, it may comprise from the several pin protruded to the internal space 11a. Good. Also in this case, the internal heat radiating portion 71 composed of a plurality of pins increases the heat radiating area, and the effect that the heat of the electronic component 50 is easily transmitted to the liquid refrigerant 31 is obtained.
  • Appendix 2 The shape of the housing is a substantially rectangular parallelepiped, The boiling cooling device according to appendix 1, wherein the first heat radiating portion and the second heat radiating portion are disposed on the first surface.
  • the surface defining the internal space further includes a first partition formed in a direction parallel to a direction in which the first heat radiating portion and the second heat radiating portion are opposed to each other,
  • the said 1st partition part guides the said refrigerant
  • the boiling cooling apparatus as described in any one of the supplementary notes 1 thru
  • a boiling cooling device in which cooling air is supplied from a predetermined direction to the first heat radiating portion and the second heat radiating portion, The surface defining the internal space further has a second partition portion inclined with respect to the cooling air supply direction, The boiling cooling device according to appendix 6, wherein the second partitioning part guides the refrigerant guided by the first partitioning part further in the leeward direction of the cooling air.
  • a boiling cooling device in which cooling air is supplied from a predetermined direction to the first heat radiating portion and the second heat radiating portion,
  • the surface that defines the internal space further includes a third partition formed in parallel along the cooling air supply direction, Openings are formed at the windward and leeward ends of the third partition, respectively.
  • the boiling cooling device according to any one of appendices 1 to 5, wherein an area of the opening on the leeward side is larger than an area of the opening on the leeward side.
  • An electronic component that generates heat by consuming electric power;
  • the boiling cooling device according to any one of appendices 1 to 9, wherein the electronic component and the heat receiving unit are thermally connected;
  • a cooling air supply device for supplying cooling air to the first heat dissipating part and the second heat dissipating part of the boiling cooling device;
  • An electronic device comprising:
  • Appendix 12 The boiling cooling device according to appendix 11, wherein the corner portion is located on the windward side of the center position of the surface on which the third partition portion is provided.
  • the boiling cooling device and electronic device according to the present invention are suitable for cooling a heated electronic component.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

沸騰冷却装置(10)は、鉛直な外面である+Z側の面に発熱源である電子部品(50)が接続されることで、電子部品(50)から発生した熱を受ける受熱部(14a)を備え、冷媒を収納するための内部空間が形成された筐体(11)と、電子部品(50)の+Y側及び-Y側に配置され、熱を外部に放出する第1放熱部(21)及び第2放熱部(22)と、を有し、第1放熱部(21)及び第2放熱部(22)のX方向における両端は、受熱部(14a)のX方向における両端よりも、+Z側の面に沿って延設されていることを特徴とする。

Description

沸騰冷却装置およびそれを用いた電子機器
 本発明は、沸騰冷却装置およびそれを用いた電子機器に関する。
 近年、コンピュータなどの電子機器に利用される電子部品(例えば、ICやLSI等)の集積度は高くなっており、それに伴い、電子機器の小型化、薄型化も進んでいる。しかしながら、電子機器が小型化、薄型化すると、筐体の内部空間が小さくなるため、電子部品近傍に冷却装置を配置しにくくなる。特に、発熱量の大きな電子部品の場合、その発熱量に見合ったサイズの大きい冷却装置が必要になり、より大きい配置スペースを確保する必要がある。そこで、冷媒の相変化現象を利用することによって、熱を別の場所に移動させ、その場所で冷却する沸騰冷却装置が下記特許文献1及び2に開示されている。
 この特許文献1及び2に開示されている沸騰冷却装置においては、電子部品は、沸騰冷却装置の鉛直な面に配置されている。そして、電子部品が発熱すると、電子部品に生じた熱は冷媒に伝わり、冷媒を液体から気体に相変化(沸騰)させる。冷媒が気体に相変化すると、周囲の液体との密度差により、熱を保持したまま上方に移動する。電子部品の上方には放熱部が配置されており、相変化した冷媒はこの放熱部内に流入する。そして、流入した冷媒が、この放熱部内で再び気体から液体に相変化(凝縮)することにより、電子部品は冷却される。
特開2004-349652号公報 特開2001-077259号公報
 しかしながら、特許文献1に記載の沸騰冷却装置は、ある所定の姿勢でなければ、十分な冷却効果を発揮することはできなかった。例えば、沸騰冷却装置を備えた電子機器が可動するものである場合、この電子機器の使用状況によっては、沸騰冷却装置が上記所定の姿勢以外の姿勢となってしまう。この場合、必ずしも放熱部が受熱部の上方に配置されないため、沸騰した冷媒は放熱部内に流入しにくくなり、冷却効果を発揮できないおそれがあった。
 また、特許文献2に記載の沸騰冷却装置は、受熱部の上方及び下方に放熱部が配置されている。そのため、上下に逆様の姿勢となった場合にでも、冷却効果を発揮することができる。しかしながら、電子部品が配置された面と垂直な軸回りに傾いたり、横向きとなったりした場合には、いずれの放熱部も受熱部よりも高い位置に配置されないことがあり、十分な冷却効果を発揮することができなくなるおそれがあった。
 本発明は、上述の事情の下になされたもので、電子部品が配置された面と垂直な軸回りに傾いたり、横向きとなったりした場合でも、電子部品の冷却効果を十分に発揮することができる沸騰冷却装置及びそれを用いた電子機器を提供することを目的とする。
 上述の目的を達成するために、本発明の第1の観点に係る沸騰冷却装置は、
 鉛直な外面である第1面に発熱源である電子部品が接続されることで、前記電子部品から発生した熱を受ける受熱部を備え、冷媒を収納するための内部空間が形成された筐体と、
 前記受熱部の上方及び下方に配置され、前記熱を外部に放出する第1放熱部及び第2放熱部と、
 を有し、
 前記第1放熱部及び前記第2放熱部の水平方向における両端は、前記受熱部の水平方向における両端よりも、前記第1面に沿って延設されていることを特徴とする。
 本発明の第2の観点に係る電子機器は、
 電力を消費することにより発熱源となる電子部品と、
 前記電子部品と受熱部とが熱的に接続された第1の観点に係る沸騰冷却装置と、
 前記沸騰冷却装置の第1放熱部及び第2放熱部に冷却風を供給する冷却風供給装置と、
 を備えることを特徴とする。
 本発明によれば、第1放熱部及び第2放熱部は、受熱部の上方及び下方に配置されていることから、電子部品が配置された面に対して垂直な軸回りに傾いても、第1放熱部、第2放熱部のいずれかの一部は、受熱部よりも高い位置に配置される。また、第1放熱部及び第2放熱部の両端は、受熱部の両端よりも水平方向に延設されていることから、沸騰冷却装置が横向きになっても、この延設された部分が、受熱部よりも高い位置に配置される。そのため、電子部品の冷却効果を発揮することができる。
本発明の第1実施形態に係る沸騰冷却装置の斜視図である。 第1実施形態に係る沸騰冷却装置の分解斜視図である。 (a)は、第1実施形態に係る沸騰冷却装置の断面図(その1)であり、(b)は、第1実施形態に係る沸騰冷却装置の断面図(その2)である。 第1実施形態に係る沸騰冷却装置の使用状況を説明するための斜視図である。 第1実施形態に係る沸騰冷却装置の作用を説明するための図(その1)である。 第1実施形態に係る沸騰冷却装置の作用を説明するための図(その2)である。 第1実施形態に係る沸騰冷却装置の作用を説明するための図(その3)である。 第1実施形態の変形例(その1)に係る沸騰冷却装置の分解斜視図である。 第1実施形態の変形例(その2)に係る沸騰冷却装置の斜視図である。 第1実施形態の変形例(その3)に係る沸騰冷却装置の断面図である。 本発明の第2実施形態に係る沸騰冷却装置の断面図である。 第2実施形態の変形例に係る沸騰冷却装置の斜視図である。 本発明の第3実施形態に係る沸騰冷却装置の断面図である。 本発明の第4実施形態に係る沸騰冷却装置の断面図である。 本発明の第5実施形態に係る沸騰冷却装置の断面図である。 第5実施形態の変形例に係る沸騰冷却装置の断面図である。 本発明の第6実施形態に係る沸騰冷却装置の断面図である。 第6実施形態の変形例に係る沸騰冷却装置の断面図である。
《第1実施形態》
 以下、本発明の第1実施形態について、図1~図10を参照しながら説明する。なお、図中のXZ平面は水平な面であり、図中のY軸の方向は鉛直方向である。
 沸騰冷却装置10は、図1に示すように、電力を消費することにより発熱する電子部品50を冷却するための装置である。沸騰冷却装置10は、電子部品50を備える電子機器に取り付けられる。なお、電子部品50は、沸騰冷却装置10を構成する部品ではないが、添付の図面では沸騰冷却装置10に取り付けられた状態で基本的に実線を用いて示すものとする。電子部品50は、例えば、ICやLSI等であり、図示しない熱伝導グリースや熱伝導シートを介在させて、沸騰冷却装置10に熱的に接続される。沸騰冷却装置10は、筐体11と、筐体11の表面に固定された放熱ユニット20と、筐体11内に収納された冷媒30(図3参照)と、を有する。
 筐体11は、Y方向を長手方向とする直方体板状のケースであり、鉛直な面である+Z側の面(熱伝導板14)に電子部品50が配置される。この筐体11は、図2に示すように、四角形枠形状に形成された枠12と、この枠12の-Z側の開口を塞ぐ封止板13と、+Z側の開口を塞ぐ熱伝導板14と、を有する。
 枠12は、熱伝導率の高い金属、例えば、銅やアルミニウム等で形成されている。枠12の+Y側の端部には、冷媒注入口15が形成されている。この冷媒注入口15は、図示しないバルブを備えており、このバルブにより、開閉する。
 封止板13及び熱伝導板14は、枠12と同様に、熱伝導率の高い金属、例えば、銅やアルミニウム等で形成されている。熱伝導板14の中央近傍には、発熱源である電子部品50が接続される。熱伝導板14の面上における電子部品50の接続位置近傍は、電子部品50からの熱を受ける部分である。以下、この部分を受熱部14aと称する。
 枠12、封止板13、熱伝導板14は、それぞれ別々に形成される。そして、封止板13及び熱伝導板14は、ろう付けによって、枠12に取り付けられる。封止板13及び熱伝導板14を取り付けることによって、筐体11内に内部空間11aが形成される。この内部空間11aは、枠12に形成された冷媒注入口15を介して、筐体11の外部と通じている。
 筐体11の内部空間11aを規定する面のうちの熱伝導板14の面(-Z側の面)は、粗面処理により、所定の粗さに加工されている。この粗さは、例えば、算術平均粗さRaで1μm~100μmである。
 放熱ユニット20は、電子部品50からの熱を外部に放出するための部材である。放熱ユニット20は、受熱部14aの+Y側に固定された第1放熱部21と、受熱部14aの-Y側に固定された第2放熱部22と、を有する。第1放熱部21及び第2放熱部22は、熱伝導率の高い金属、例えば、銅やアルミニウム等で形成されている。第1放熱部21及び第2放熱部22は、電子部品50が配置される筐体11の外面と同じ面に、例えば、ろう付け等の固定手法により固定されている。また、第1放熱部21及び第2放熱部22は、電子部品50を中心にほぼ対称な位置に固定されている。
 これら第1放熱部21及び第2放熱部22は、いずれも同等の形状の略直方体形状である。また、第1放熱部21のX方向の両端は、受熱部14aのX方向の両端よりも、それぞれ+X方向及び-X方向に延設されている。同様に、第2放熱部22のX方向の両端は、受熱部14aのX方向の両端よりも、それぞれ+X方向及び-X方向に延設されている。すなわち、第1放熱部21及び第2放熱部22のX方向における寸法L1と、受熱部14aのX方向における寸法L2との関係は、L1>L2となる。
 また、第1放熱部21及び第2放熱部22は、X軸に平行な複数のフィンが形成されている。同様に、第2放熱部22にも、同様に、X軸に平行な複数のフィンが形成されている。
 筐体11の内部空間11aには、図3(a)及び図3(b)に示すように、受熱部14aからの熱を受熱する冷媒30が封入されている。冷媒30は液体冷媒31と気体冷媒32とから構成される。以下、液体冷媒31と気体冷媒32とを特に区別しない場合は、単に冷媒30と記す。冷媒30の素材は、例えば、水や絶縁性を備えた有機冷媒等である。冷媒30に絶縁性を備えた有機冷媒を用いた場合には、筐体11の破損等により、冷媒30が電子部品50に付着しても、電子部品50の再利用が可能になるという利点を有する。
 冷媒30は、冷媒注入口15から筐体11の内部空間11aに注入される。そして、冷媒30が内部空間11aに注入されると、真空引きが行われる。最後に、冷媒注入口15のバルブを閉めることで、冷媒30は、内部空間11a内に封入される。
 電子部品50を備える電子機器1は、図3(b)に示すように、冷却風供給装置54を有している。この冷却風供給装置54によって、放熱ユニット20に冷却風55が供給される。冷却風供給装置54は、例えば、軸流ファンや遠心ファンなどである。冷却風55は、フィン同士の間を通過するように、フィンの形成方向と平行な方向に沿って供給される。
 上述した沸騰冷却装置10は、例えば、図1に示すように、第1放熱部21が電子部品50の上方に配置されるように、電子機器1に取り付けられ、この姿勢のままで使用される。また、沸騰冷却装置10が取り付けられた電子機器1の使用状況により、第2放熱部22が電子部品50の上方に配置される姿勢となったり、図1に示す姿勢からZ軸回りに傾いた姿勢となったり、図4に示すように、横向きの姿勢となったりする。
 次に、図5~図7を参照して、沸騰冷却装置10の作用を説明する。
 先ず、沸騰冷却装置10が、電子部品50の上方に第1放熱部21が配置される姿勢で使用される場合について、図5を参照して説明する。電子部品50を有する回路に電圧が印加されると、電力を消費することによって、電子部品50は発熱する。電子部品50に生じた熱は、熱伝導板14の受熱部14aを介して、冷媒30の液体冷媒31に伝導される。熱伝導板14の液体冷媒31と接する面は粗面化されているため、放熱面積が大きくなる。この結果、熱伝導板14に伝導した熱は、効率的に液体冷媒31に伝導される。この熱の伝導により、受熱部14a近傍の液体冷媒31の温度は上昇する。
 液体冷媒31の温度が上昇し、沸点に達すると、液体冷媒31中の一部は、熱を奪いながら気体冷媒32に相変化(沸騰)する。液体から気体に相変化すると、体積が数百倍におおきくなり、密度が小さくなる。そのため、液体冷媒31中の気体冷媒32が、熱を保持しつつ、上方に移動して、上方の気体冷媒32と合流する。受熱部14aの上方には放熱ユニット20の第1放熱部21が配置されている。そして、移動した気体冷媒32は、この第1放熱部21によって熱伝導板14上で熱を奪われる。熱伝導板14の面は粗面化されているため、放熱面積が大きくなり、この結果、熱は効率的に第1放熱部21に伝導される。熱を奪われた気体冷媒32は、熱伝導板14上で液体冷媒31に相変化(凝縮)する。相変化した液体冷媒31は、熱伝導板14の面に沿って下方に流れ落ち、下方の液体冷媒31と合流する。
 一方、第1放熱部21に伝わった熱は、冷却風供給装置54により供給された冷却風55によって、沸騰冷却装置10の外部に放出される。以上の冷媒30の相変化現象によって、電子部品50は冷却される。
 なお、沸騰冷却装置10を、第2放熱部22が電子部品50の上方に配置されるように取り付けた場合においても、上記と同様の相変化現象によって、電子部品50は冷却される。
 次に、沸騰冷却装置10が、図1に示す姿勢からZ軸回りに45°傾いた姿勢で使用される場合について、図6を参照して説明する。この場合、電子部品50が発熱すると、電子部品50に生じた熱は、熱伝導板14の受熱部14aを介して液体冷媒31に伝導される。そして、この熱の伝導により、液体冷媒31の温度は上昇する。
 液体冷媒31の温度が上昇し、沸点に達すると、液体冷媒31中の一部が、熱を奪いながら気体冷媒32に相変化(沸騰)する。そして、相変化した気体冷媒32は、熱を保持しつつ、上方に移動する。受熱部14aの上方には第1放熱部21の一部が配置されている。そして、移動した気体冷媒32は、第1放熱部21によって熱伝導板14上で熱を奪われる。熱を奪われた気体冷媒32は、液体冷媒31に相変化(凝縮)する。相変化した液体冷媒31は、熱伝導板14の面に沿って下方に流れ落ち、下方の液体冷媒31と合流する。
 一方、第1放熱部21に伝わった熱は、冷却風供給装置54により供給された冷却風によって、沸騰冷却装置10の外部に放出される。以上の冷媒30の相変化現象によって、電子部品50は冷却される。
 次に、沸騰冷却装置10が横向きの姿勢で使用される場合について、図7を参照して説明する。この場合、受熱部14aよりも高い位置に、第1放熱部21及び第2放熱部22の一部が配置される。そのため、上方に移動した気体冷媒32は、第1放熱部21及び第2放熱部22によって熱を奪われる。そして、熱を奪われた気体冷媒32は、液体冷媒31に相変化(凝縮)する。相変化した液体冷媒31は、熱伝導板14の面に沿って下方に流れ落ち、下方の液体冷媒31と合流する。そして、冷媒30の相変化が繰り返されることによって、電子部品50は冷却される。
 以上、説明したように、本第1実施形態に係る沸騰冷却装置10によれば、第1放熱部21及び第2放熱部22は、受熱部14aの上方及び下方に配置されている。これにより、Z軸回りに傾いても、第1放熱部21、第2放熱部22のいずれかの一部は、受熱部14aよりも高い位置に配置される。また、第1放熱部21及び第2放熱部22の両端は、受熱部14aの両端よりも延設されている。これにより、沸騰冷却装置10が横向きになっても、この延設部分が、受熱部14aよりも高い位置に配置される。そのため、電子部品50の冷却効果を発揮することができる。
 また、熱伝導板14の冷媒30と接する面は、粗面処理により粗面となっている。これにより、放熱面積が大きくなり、効率的に熱を伝導することができる。
 また、本第1実施形態においては、冷媒30は、冷媒注入口15のバルブを閉とすることで、内部空間11aに封入されている。しかしながら、冷媒30の封入手段は、任意である。例えば、冷媒30を冷媒注入口15から注入した後に、冷媒注入口15をかしめることにより、冷媒30を封入することも可能である。
 また、枠12、封止板13、熱伝導板14は、それぞれ別々に形成されているが、これに限らず、枠と封止板とを切削加工等で一体に成形したり、枠と熱伝導板とを一体に成形したりしてもよい。
 また、封止板13及び熱伝導板14は、ろう付けによって、枠12に取り付けられている。しかしながら、これに限らず、図8に示すように、Oリング16,17を介して、ねじ等のねじ込みによって、枠12に取り付けてもよい。この場合、封止板13及び熱伝導板14を取り外すことが可能となるため、メンテナンス等の作業性を向上させることができる。
 また、第1放熱板21及び第2放熱板22のフィンは、図1に示すように、X軸に平行に形成されているが、これに限らず、図9に示すように、Y軸に平行に形成してもよい。
 また、電子部品50は、図3(a)に示すように、筐体11側の右側(+Z側)の熱伝導板14上に熱的に接続されているが、これに限らず、図10に示すように、筐体11側の左側(-Z側)の封止板13上に熱的に接続してもよい。
《第2実施形態》
 次に、本発明の第2実施形態について、図11及び図12を参照しながら説明する。なお、第1実施形態と同一又は同等の構成については、同一の符号を用いる。
 第2実施形態に係る沸騰冷却装置100は、図11に示すように、放熱ユニット20に加えて、放熱ユニット20とは別の放熱ユニット23を有している。この放熱ユニット23は、封止板13上に固定されている。また、この沸騰冷却装置100には、電子部品50に加えて、電子部品51が配置されている。
 放熱ユニット23は、放熱ユニット20と同様に、電子部品50,51からの熱を外部に放出するための部材である。放熱ユニット23は、+Y側に固定された第3放熱部24と、-Y側に固定された第4放熱部25と、を有する。第3放熱部24及び第4放熱部25の形状、素材、取り付け方法は、放熱ユニット20の第1放熱部21及び第2放熱部22と同等である。
 筐体11の内部空間11aを規定する面のうちの封止板13の面は、熱伝導板14の面と同様に、粗面処理により所定の粗さに加工されている。粗さは、例えば、算術平均粗さRaで1μm~100μmである。また、封止板13の面上における電子部品51の接続位置近傍は、電子部品51からの熱を受ける受熱部13aである。
 上述した沸騰冷却装置100は、第1実施形態に係る沸騰冷却装置10と同様に、例えば、第1放熱部21及び第3放熱部24が電子部品50,51の上方に配置されるように取り付けられて、使用される。また、沸騰冷却装置100が取り付けられた電子機器1の使用状況により、沸騰冷却装置100は、図11に示す姿勢からZ軸回りに傾いた姿勢となったり、横向きの姿勢となったりする。
 次に、第1放熱部21及び第3放熱部24が電子部品50,51の上方に配置される姿勢で使用される場合の沸騰冷却装置100の作用を説明する。電子部品50,51が発熱すると、熱は、熱伝導板14及び封止板13の受熱部14a,13aを介して、液体冷媒31に伝導する。このとき、熱伝導板14及び封止板13の冷媒30と接する面は、粗面処理がなされており、放熱面積が大きい。そのため、熱伝導板14及び封止板13は、効率的に熱を液体冷媒31に伝導する。この熱の伝導により、受熱部14a,13a近傍の液体冷媒31の温度は上昇する。
 液体冷媒31の温度が上昇し、沸点に達すると、液体冷媒31中の一部は、熱を奪いながら気体冷媒32に相変化(沸騰)する。液体から気体に相変化すると、体積が数百倍に大きくなり、密度が小さくなる。そのため、液体冷媒31中の気体冷媒32が、熱を保持しつつ、上方に移動して、上方の気体冷媒32と合流する。受熱部14a,13aの上方には放熱ユニット20の第1放熱部21及び放熱ユニット23の第3放熱部24が配置されている。そして、移動した気体冷媒32は、第1放熱部21及び第3放熱部24によって熱を奪われる。なお、熱伝導板14及び封止板13の冷媒30と接する面は、粗面処理がなされており、放熱面積が大きい。そのため、熱伝導板14及び封止板13は、効率的に熱を第1放熱部21及び第3放熱部24に伝導する。熱を奪われた気体冷媒32は、熱伝導板14及び封止板13上で液体冷媒31に相変化(凝縮)する。相変化した液体冷媒31は、熱伝導板14及び封止板13の面に沿って下方に流れ落ち、下方の液体冷媒31と合流する。
 一方、第1放熱部21及び第3放熱部24に伝わった熱は、第1実施形態と同様に、冷却風供給装置54により供給された冷却風55によって、沸騰冷却装置100の外部に放出される。以上の冷媒30の相変化現象によって、沸騰冷却装置100は電子部品50,51を冷却する。
 上述した沸騰冷却装置100は、図11に示す姿勢からZ軸回りに傾いた姿勢となっても、第1実施形態に係る沸騰冷却装置10と同様に、第1~第4放熱部21,22,24,25のいずれか一部が、受熱部14a,13aよりも高い位置に配置される。また、沸騰冷却装置100が、横向きの姿勢となっても、受熱部14aよりも高い位置に第1~第4放熱部21,22,24,25の一部が配置される。したがって、冷媒30の相変化現象によって、沸騰冷却装置100は電子部品50,51を冷却することができる。
 以上、説明したように、本第2実施形態に係る沸騰冷却装置100は、2つの放熱ユニット20,23を有している。そのため、大きく発熱する電子部品を冷却したり、多くの電子部品を同時に冷却したりするなど、冷却効果を高めることができる。
 また、放熱ユニット20,23は、それぞれ筐体11の対向する面に固定されている。これにより、沸騰冷却装置10が、図11に示す姿勢からZ軸だけではなく、X軸及びY軸のいずれの軸回りに回転した姿勢で配置されても、第1~第4放熱部21,22,24,25のうちのいずれかの一部が、電子部品50,51よりも高い位置に配置される。したがって、相変化(沸騰)した気体冷媒32は、放熱ユニット20,23のいずれかの一部近傍に移動するため、相変化現象により、電子部品50,51を冷却することができる。
 また、本第2実施形態においては、2つの電子部品50,51が配置されているが、これに限らず、1つの電子部品を配置してもよいし、3つ以上の電子部品を配置してもよい。
 また、本第2実施形態においては、第1放熱部21及び第3放熱部24は、いずれも受熱部14a,13aの+Y側に配置されている。また、第2放熱部22及び第4放熱部25は、いずれも受熱部14a,13aの-Y側に配置されている。すなわち、第3放熱部24と第4放熱部25とが対向する方向は、第1放熱部21と第2放熱部22とが対向する方向と同じ方向(Y方向)である。しかしながら、これに限らず、図12に示すように、第3放熱部24と第4放熱部25とが対向する方向と、第1放熱部21と第2放熱部22とが対向する方向と、が直交していてもよい。
 また、この場合、放熱ユニット20の第1放熱部21及び第2放熱部22のフィンをX軸に平行に形成し、放熱ユニット23の第3放熱部24及び第4放熱部25のフィンをY軸に平行に形成することによって、それぞれのフィンの向きを直交させてもよい。
《第3実施形態》
 次に、本発明の第3実施形態について、図13を参照しながら説明する。なお、第1実施形態及び第2実施形態と同一又は同等の構成については、同一の符号を用いる。
 本第3実施形態に係る沸騰冷却装置110の筐体11の内部空間11aには、図13に示すように、沸騰した冷媒30の流路を規定する仕切部60が形成されている。この仕切部60は、受熱することによって沸騰した冷媒30を、第1放熱部21又は第2放熱部22に案内することによって冷却効果及び整流効果を高めるためのものである。
 仕切部60は、電子部品50が取り付けられた熱伝導板14の一部を突出させて形成されているとともに、第1放熱部21と第2放熱部22とが対向する方向(Y方向)に平行に形成されている。また、仕切部60は、受熱部14aの両側に形成されている。この仕切部60同士の幅は、狭すぎると圧力損失が大きくなり、広すぎると整流効果が低くなるため、例えば、電子部品50のX軸方向の寸法の1倍~2倍程度の長さである。
 次に、第1放熱部21が、電子機器101が備える電子部品50の上方に配置される姿勢で使用される場合の沸騰冷却装置110の作用を説明する。電子部品50が発熱すると、熱は、熱伝導板14の受熱部14aを介して、液体冷媒31に伝導される。そして、この熱の伝導により、冷媒30の液体冷媒31の温度は上昇する。液体冷媒31の温度が上昇し、沸点に達すると、液体冷媒31中の一部が、熱を奪いながら気体冷媒32に相変化(沸騰)する。そして、相変化した気体冷媒32は、熱を保持しつつ、仕切部60同士の間を通って上方に移動する。受熱部14aの上方には第1放熱部21が配置されており、移動した気体冷媒32は、第1放熱部21によって熱を奪われる。熱を奪われた気体冷媒32は、液体冷媒31に相変化(凝縮)する。相変化した液体冷媒31は、仕切部60同士の外側の熱伝導板14の壁面を流れ落ちて、下方に移動し、下方の液体冷媒31と合流する。以上の冷媒30の相変化現象が繰り返されることによって、電子部品50は冷却される。
 上述した沸騰冷却装置110は、図13に示す姿勢からZ軸回りに傾いた姿勢や横向きの姿勢となっても、第1実施形態、第2実施形態と同様に、第1放熱部21又は第2放熱部22の一部は、受熱部14aよりも高い位置に配置されるため、電子部品50を冷却することができる。
 以上、説明したように、本第3実施形態に係る沸騰冷却装置110の筐体11の内部空間11aには、仕切部60が形成されている。そのため、受熱部14a近傍で沸騰した気体冷媒32は、仕切部60同士の間を通って上方に移動する。これにより、受熱部14a近傍で沸騰した気体冷媒32の流路と、放熱ユニット20近傍で凝縮した液体冷媒31の流路とが区分されており、整流効果を高めることができる。
 また、本第3実施形態においては、仕切部60は、熱伝導板14に形成されているが、これに限らず、封止板13に形成してもよい。また、仕切部60は、熱伝導板14の一部を突出させることにより形成されているが、これに限らず、熱伝導板14とは別体として形成してもよい。この場合、仕切部をろう付け等の固定手法により熱伝導板14又は封止板13に固定することができる。
 また、仕切部60は、熱伝導板14の一部であり、熱伝導性の高い銅、アルミニウム等の素材からなるが、仕切部60を熱伝導板14とは別々に形成したうえで、熱伝導板14の素材よりも伝導性の低い素材で形成してもよい。この場合、仕切部60によって分けられる流路同士の間の熱交換がされにくくなるため、整流効果をより高めることができる。
《第4実施形態》
 次に、本発明の第4実施形態について、図14を参照しながら説明する。なお、第1実施形態乃至第3実施形態と同一又は同等の構成については、同一の符号を用いる。
 第4実施形態に係る沸騰冷却装置120は、図14に示すように、仕切部60に加えて、Y方向に対して傾斜した仕切部61を有している。また、沸騰冷却装置120の放熱ユニット20には、冷却風供給装置54から、-X方向に冷却風55が供給されている。ここで、冷却風55が-X方向に供給されていることから、放熱ユニット20の風上側(+X側)の端部の温度が、放熱ユニット20の温度の中で、最も低くなる。発明者は、実験により、放熱ユニット20の風上側の端部温度が、最も低くなることを確認した。そして、この温度低下により気体冷媒32の圧力が低下し、放熱ユニット20の風上側に気体冷媒32が流動しやすくなることを確認した。本第4実施形態に係る沸騰冷却装置120は、この実験結果に基づいて、沸騰した気体冷媒32を風下側(-X側)に導くための仕切部61を備える。
 仕切部61は、仕切部60と同様に、電子部品50が取り付けられた熱伝導板14の一部を突出させて形成されている。また、仕切部60の+Y側及び-Y側に形成されている。
 次に、第1放熱部21が、電子機器201が備える電子部品50の上方に配置される姿勢で使用される場合の沸騰冷却装置120の作用を説明する。電子部品50が発熱すると、熱は、熱伝導板14の受熱部14aを介して、液体冷媒31に伝導する。そして、この熱の伝導により、液体冷媒31の温度は上昇する。液体冷媒31の温度が上昇し、沸点に達すると、液体冷媒31中の一部が、熱を奪いながら気体冷媒32に相変化(沸騰)する。そして、相変化した気体冷媒32は、熱を保持しつつ、仕切部60に案内されながら上方に移動する。そして、仕切部60に案内されて上方に移動した気体冷媒32は、さらに上方の仕切部61に沿って移動し、冷却風の風下側(-X側)に案内される。
 受熱部14aの上方には第1放熱部21が配置されているため、移動した気体冷媒32は、第1放熱部21によって熱を奪われる。熱を奪われた気体冷媒32は、液体冷媒31に相変化(凝縮)する。相変化した液体冷媒31は、熱伝導板14の壁面に沿って、液体冷媒31と合流する。以上の冷媒30の相変化現象が繰り返されることによって、電子部品50は冷却される。
 上述した沸騰冷却装置120は、図14に示す姿勢からZ軸回りに傾いた姿勢や横向きの姿勢となっても、第1実施形態~第3実施形態と同様に、第1放熱部21及び第2放熱部22の一部が、受熱部14aよりも高い位置に配置されるため、電子部品50を冷却することができる。
 以上、説明したように、本第4実施形態に係る沸騰冷却装置120の筐体11の内部空間11aには、沸騰した気体冷媒32を風下側に導くために、冷却風55の供給方向に対して傾斜した仕切部61が形成されている。これにより、沸騰した気体冷媒32が、放熱ユニット20の風上側近傍に集中して流動することを防ぐことができ、その結果、冷却効率を高めることができる。
 また、本第4実施形態においては、仕切部61は、熱伝導板14に形成されているが、これに限らず、封止板13に形成してもよい。また、仕切部61は、熱伝導板14の一部を突出させることにより形成されているが、これに限らず、熱伝導板14とは別体として形成してもよい。この場合、仕切部61をろう付け等の固定手法により熱伝導板14又は封止板13に固定することができる。
 また、仕切部61は、熱伝導板14の一部であり、熱伝導性の高い銅、アルミニウム等の素材からなるが、仕切部61を熱伝導板14とは別々に形成したうえで、熱伝導板14の素材よりも伝導性の低い素材で形成してもよい。
《第5実施形態》
 次に、本発明の第5実施形態について、図15及び図16を参照しながら説明する。なお、第1実施形態乃至第4実施形態と同一又は同等の構成については、同一の符号を用いる。
 本第5実施形態に係る沸騰冷却装置130の筐体11の内部空間11aには、図15に示すように、X方向に平行な仕切部62が形成されている。仕切部62は、電子部品50が取り付けられた熱伝導板14の一部を突出させて形成されているとともに、受熱部14aの+Y側及び-Y側に形成されている。また、沸騰した気体冷媒32を第1放熱部21近傍に導くため、仕切部62の-X側(冷却風55の風下側)の端部と枠12との間の隙間である流入口63が形成されている。また、第1放熱部21によって凝縮された液体冷媒31を受熱部14a近傍に導くため、仕切部62の+X側(冷却風55の風上側)の端部と枠12との間の隙間である流出口64が形成されている。流入口63は、その開口面積が流出口64の開口面積よりも大きくなるように形成されている。
 次に、第1放熱部21が、電子機器301が備える電子部品50の上方に配置される姿勢で使用される場合の沸騰冷却装置130の作用を説明する。この沸騰冷却装置130において、電子部品50が発熱すると、熱は、熱伝導板14の受熱部14aを介して、液体冷媒31に伝導される。そして、この熱の伝導により、液体冷媒31の温度は上昇する。液体冷媒31の温度が上昇し、沸点に達すると、液体冷媒31中の一部が、熱を奪いながら気体冷媒32に相変化(沸騰)する。そして、相変化した気体冷媒32は、熱を保持しつつ流入口63を通って上方に移動する。
 上方に移動した気体冷媒32は、風上側である右側に流動しながら、第1放熱部21によって熱を奪われる。熱を奪われた気体冷媒32は、液体冷媒31に相変化(凝縮)する。相変化した液体冷媒31は、流出口64を通って、下方に移動し、下方の液体冷媒31と合流する。以上の冷媒30の相変化現象が繰り返されることによって、電子部品50は冷却される。
 上述した沸騰冷却装置130は、図15に示す姿勢からZ軸回りに傾いた姿勢や横向きの姿勢となっても、第1実施形態~第4実施形態と同様に、第1放熱部21及び第2放熱部22の一部が、受熱部14aよりも高い位置に配置されるため、電子部品50を冷却することができる。
 以上、説明したように、本第5実施形態に係る沸騰冷却装置130の筐体11の内部空間11aには、X方向に平行な仕切部62が形成されているとともに、仕切部62の両端部と枠12との間に隙間が設けられて左側には流入口63が、右側には流出口64がそれぞれ形成されている。これにより、流入口63から流入した気体冷媒32を冷却風55の風下側から風上側に流動させることができ、その結果、冷却効率を高めることができる。
 また、流入口63は、その開口面積が流出口64の開口面積よりも大きくなるように形成されている。これにより、相変化(沸騰)した気体冷媒32が、流入口63を通って上方に導かれやすくなり、冷媒30の整流効果を高めることができる。
 また、本第5実施形態においては、仕切部62は、熱伝導板14に形成されているが、これに限らず、封止板13に形成してもよい。また、本第5実施形態においては、仕切部62は、熱伝導板14の一部を突出させることにより形成されているが、これに限らず、熱伝導板14とは別体として形成してもよい。この場合、仕切部をろう付け等固定手法によって熱伝導板14又は封止板13に固定することができる。
 また、仕切部62は、熱伝導板14の一部であり、熱伝導性の高い銅、例えば、アルミニウム等の素材からなるが、仕切部62を熱伝導板14とは別々に形成したうえで、熱伝導板14の素材よりも伝導性の低い素材で形成してもよい。
 また、仕切部62は、水平に形成されているが、これに限らず、図16に示すように、断面が略V字状であってもよい。また、略V字の頂点に相当する仕切部62の角部65を、仕切部62のX方向における中心Aよりも、風上方向(+X方向)に所定の長さ(長さB)ずらしてもよい。これにより、多くの沸騰した気体冷媒32を、仕切部62の角部65より-X側の辺に沿って、流入口63に案内させることができる。
《第6実施形態》
 次に、本発明の第6実施形態について、図17及び図18を参照しながら説明する。なお、第1実施形態乃至第5実施形態と同一又は同等の構成については、同一の符号を用いる。
 本第6実施形態に係る沸騰冷却装置140の筐体11の内部空間11aには、図17に示すように、内部空間11aに突出した複数のフィンからなる内部放熱部70が形成されている。この内部放熱部70のそれぞれのフィンは、Y軸に平行に形成されている。そして、内部放熱部70は、受熱部14aに熱的に接続されている。この内部放熱部70により、放熱面積が大きくなり、電子部品50の熱が液体冷媒31へ伝わりやすくなる。
 また、本実施形態においては、内部放熱部70は、複数のフィンから構成されているが、これに限らず、図18に示すように、内部空間11aに突出した複数のピンから構成してもよい。この場合も、複数のピンからなる内部放熱部71により、放熱面積が大きくなり、電子部品50の熱が液体冷媒31へ伝わりやすくなる効果が得られる。
 本発明は、本発明の広義の精神と範囲を逸脱することなく、様々な実施形態及び変形が可能とされるものである。上述した実施形態は、本発明を説明するためのものであり、本発明の範囲を限定するものではない。
 上記の実施形態の一部又は全部は、以下の付記のようにも記載されうるが、以下には限られない。
 (付記1)
 鉛直な外面である第1面に発熱源である電子部品が接続されることで、前記電子部品から発生した熱を受ける受熱部を備え、冷媒を収納するための内部空間が形成された筐体と、
 前記受熱部の上方及び下方に配置され、前記熱を外部に放出する第1放熱部及び第2放熱部と、
 を有し、
 前記第1放熱部及び前記第2放熱部の水平方向における両端は、前記受熱部の水平方向における両端よりも、前記第1面に沿って延設されていることを特徴とする沸騰冷却装置。
 (付記2)
 前記筐体の形状は、略直方体であり、
 前記第1放熱部及び前記第2放熱部は、前記第1面に配置されていることを特徴とする付記1に記載の沸騰冷却装置。
 (付記3)
 前記筐体の外面であり前記第1面の反対側の第2面に配置され、外部に前記熱を放出する第3放熱部及び第4放熱部を更に有することを特徴とする付記2に記載の沸騰冷却装置。
 (付記4)
 前記第1放熱部と前記第2放熱部とが対向する方向と、前記第3放熱部と前記第4放熱部とが対向する方向と、は直交することを特徴とする付記3に記載の沸騰冷却装置。
 (付記5)
 前記内部空間を規定する面は、粗面処理が施されていることを特徴とする付記1乃至4のいずれか一つに記載の沸騰冷却装置。
 (付記6)
 前記内部空間を規定する面に、前記第1放熱部と前記第2放熱部とが対向する方向と平行な方向に形成された第1仕切部を更に有し、
 前記第1仕切部は、前記熱により沸騰した前記冷媒を前記第1放熱部又は前記第2放熱部近傍に案内することを特徴とする付記1乃至5のいずれか一つに記載の沸騰冷却装置。
 (付記7)
 前記第1放熱部及び前記第2放熱部に、所定方向から冷却風が供給される沸騰冷却装置であって、
 前記内部空間を規定する面に、前記冷却風の供給方向に対して傾斜した第2仕切部を更に有し、
 前記第2仕切部は、前記第1仕切部によって案内された前記冷媒を、更に前記冷却風の風下方向に案内することを特徴とする付記6に記載の沸騰冷却装置。
 (付記8)
 前記第1放熱部及び前記第2放熱部に、所定方向から冷却風が供給される沸騰冷却装置であって、
 前記内部空間を規定する面に、前記冷却風の供給方向に沿って平行に形成された第3仕切部を更に有し、
 前記第3仕切部の風上側及び風下側の端部には、それぞれ開口が形成され、
 前記風下側の前記開口の面積は、前記風上側の前記開口の面積よりも大きいことを特徴とする付記1乃至5のいずれか一つに記載の沸騰冷却装置。
 (付記9)
 前記内部空間を規定する面に配置され、前記受熱部からの熱を前記冷媒に伝える第5放熱部を有することを特徴とする付記1乃至8のいずれか一つに記載の沸騰冷却装置。
 (付記10)
 電力を消費することにより発熱源となる電子部品と、
 前記電子部品と受熱部とが熱的に接続された付記1乃至9のいずれか一つに記載の沸騰冷却装置と、
 前記沸騰冷却装置の第1放熱部及び第2放熱部に冷却風を供給する冷却風供給装置と、
 を備えることを特徴とする電子機器。
 (付記11)
 前記第3仕切部は、1つの角部を有する略V字状であることを特徴とする付記8に記載の沸騰冷却装置。
 (付記12)
 前記角部は、前記第3仕切部が設けられた面の中心位置よりも風上側に位置していることを特徴とする付記11に記載の沸騰冷却装置。
 本出願は、2010年9月30日に出願された日本出願特願2010-222514号に基づく。本明細書中に、その明細書、特許請求の範囲、図面全体を参照して取り込むものとする。
 本発明に係る沸騰冷却装置及び電子機器は、発熱した電子部品の冷却に適している。
  1,101,201,301,301A,401,401A 電子機器
 10,10A,10B,10C,100,100A,110,120,130,130A,140,140A 沸騰冷却装置
 11 筐体
 11a 内部空間
 12 枠
 13 封止板
 13a,14a 受熱部
 14 熱伝導板
 15 冷媒注入口
 16,17 Oリング
 20,23 放熱ユニット
 21 第1放熱部
 22 第2放熱部
 24 第3放熱部
 25 第4放熱部
 30 冷媒
 31 液体冷媒
 32 気体冷媒
 50,51 電子部品
 54 冷却風供給装置
 55 冷却風
 60,61,62 仕切部(第1仕切部、第2仕切部、第3仕切部)
 63 流入口(開口)
 64 流出口(開口)
 70,71 内部放熱部(第5放熱部)

Claims (10)

  1.  鉛直な外面である第1面に発熱源である電子部品が接続されることで、前記電子部品から発生した熱を受ける受熱部を備え、冷媒を収納するための内部空間が形成された筐体と、
     前記受熱部の上方及び下方に配置され、前記熱を外部に放出する第1放熱部及び第2放熱部と、
     を有し、
     前記第1放熱部及び前記第2放熱部の水平方向における両端は、前記受熱部の水平方向における両端よりも、前記第1面に沿って延設されていることを特徴とする沸騰冷却装置。
  2.  前記筐体の形状は、略直方体であり、
     前記第1放熱部及び前記第2放熱部は、前記第1面に配置されていることを特徴とする請求項1に記載の沸騰冷却装置。
  3.  前記筐体の外面であり前記第1面の反対側の第2面に配置され、外部に前記熱を放出する第3放熱部及び第4放熱部を更に有することを特徴とする請求項2に記載の沸騰冷却装置。
  4.  前記第1放熱部と前記第2放熱部とが対向する方向と、前記第3放熱部と前記第4放熱部とが対向する方向と、は直交することを特徴とする請求項3に記載の沸騰冷却装置。
  5.  前記内部空間を規定する面は、粗面処理が施されていることを特徴とする請求項1乃至4のいずれか一項に記載の沸騰冷却装置。
  6.  前記内部空間を規定する面に、前記第1放熱部と前記第2放熱部とが対向する方向と平行な方向に形成された第1仕切部を更に有し、
     前記第1仕切部は、前記熱により沸騰した前記冷媒を前記第1放熱部又は前記第2放熱部近傍に案内することを特徴とする請求項1乃至5のいずれか一項に記載の沸騰冷却装置。
  7.  前記第1放熱部及び前記第2放熱部に、所定方向から冷却風が供給される沸騰冷却装置であって、
     前記内部空間を規定する面に、前記冷却風の供給方向に対して傾斜した第2仕切部を更に有し、
     前記第2仕切部は、前記第1仕切部によって案内された前記冷媒を、更に前記冷却風の風下方向に案内することを特徴とする請求項6に記載の沸騰冷却装置。
  8.  前記第1放熱部及び前記第2放熱部に、所定方向から冷却風が供給される沸騰冷却装置であって、
     前記内部空間を規定する面に、前記冷却風の供給方向に沿って平行に形成された第3仕切部を更に有し、
     前記第3仕切部の風上側及び風下側の端部には、それぞれ開口が形成され、
     前記風下側の前記開口の面積は、前記風上側の前記開口の面積よりも大きいことを特徴とする請求項1乃至5のいずれか一項に記載の沸騰冷却装置。
  9.  前記内部空間を規定する面に配置され、前記受熱部からの熱を前記冷媒に伝える第5放熱部を有することを特徴とする請求項1乃至8のいずれか一項に記載の沸騰冷却装置。
  10.  電力を消費することにより発熱源となる電子部品と、
     前記電子部品と受熱部とが熱的に接続された請求項1乃至9のいずれか一項に記載の沸騰冷却装置と、
     前記沸騰冷却装置の第1放熱部及び第2放熱部に冷却風を供給する冷却風供給装置と、
     を備えることを特徴とする電子機器。
PCT/JP2011/069706 2010-09-30 2011-08-31 沸騰冷却装置およびそれを用いた電子機器 WO2012043117A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US13/824,908 US9386724B2 (en) 2010-09-30 2011-08-31 Vapor phase cooling apparatus and electronic equipment using same
JP2012536288A JP5828322B2 (ja) 2010-09-30 2011-08-31 沸騰冷却装置およびそれを用いた電子機器

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-222514 2010-09-30
JP2010222514 2010-09-30

Publications (1)

Publication Number Publication Date
WO2012043117A1 true WO2012043117A1 (ja) 2012-04-05

Family

ID=45892591

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/069706 WO2012043117A1 (ja) 2010-09-30 2011-08-31 沸騰冷却装置およびそれを用いた電子機器

Country Status (3)

Country Link
US (1) US9386724B2 (ja)
JP (1) JP5828322B2 (ja)
WO (1) WO2012043117A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019120416A (ja) * 2017-12-28 2019-07-22 古河電気工業株式会社 平面型ヒートパイプ

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016178208A (ja) * 2015-03-20 2016-10-06 日本電気株式会社 ヒートシンク、放熱構造、冷却構造及び装置
JP6649854B2 (ja) * 2016-07-21 2020-02-19 レノボ・シンガポール・プライベート・リミテッド 電子機器
US20190357378A1 (en) * 2018-05-18 2019-11-21 Tas Energy Inc. Two-phase immersion cooling system and method with enhanced circulation of vapor flow through a condenser

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50116283A (ja) * 1974-02-27 1975-09-11
JPS57101293A (en) * 1980-12-16 1982-06-23 Furukawa Electric Co Ltd:The Heat pipe type radiator
JPH10128531A (ja) * 1996-10-31 1998-05-19 Showa Alum Corp ヒートパイプ式ヒートシンクの製造方法
JP2003258475A (ja) * 2002-02-28 2003-09-12 Denso Corp 沸騰冷却装置
JP2007109695A (ja) * 2005-10-11 2007-04-26 Sumitomo Precision Prod Co Ltd 起動特性に優れる素子冷却器
WO2010084717A1 (ja) * 2009-01-23 2010-07-29 日本電気株式会社 冷却装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001077259A (ja) 1999-09-01 2001-03-23 Denso Corp 沸騰冷却器
JP2004349652A (ja) 2003-05-26 2004-12-09 Denso Corp 沸騰冷却装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50116283A (ja) * 1974-02-27 1975-09-11
JPS57101293A (en) * 1980-12-16 1982-06-23 Furukawa Electric Co Ltd:The Heat pipe type radiator
JPH10128531A (ja) * 1996-10-31 1998-05-19 Showa Alum Corp ヒートパイプ式ヒートシンクの製造方法
JP2003258475A (ja) * 2002-02-28 2003-09-12 Denso Corp 沸騰冷却装置
JP2007109695A (ja) * 2005-10-11 2007-04-26 Sumitomo Precision Prod Co Ltd 起動特性に優れる素子冷却器
WO2010084717A1 (ja) * 2009-01-23 2010-07-29 日本電気株式会社 冷却装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019120416A (ja) * 2017-12-28 2019-07-22 古河電気工業株式会社 平面型ヒートパイプ
JP7028637B2 (ja) 2017-12-28 2022-03-02 古河電気工業株式会社 平面型ヒートパイプ

Also Published As

Publication number Publication date
US9386724B2 (en) 2016-07-05
US20130188314A1 (en) 2013-07-25
JP5828322B2 (ja) 2015-12-02
JPWO2012043117A1 (ja) 2014-02-06

Similar Documents

Publication Publication Date Title
JP5644767B2 (ja) 電子機器装置の熱輸送構造
US8130497B2 (en) Blade server
TWI663903B (zh) 熱電致冷模組與包含熱電致冷模組的散熱裝置
WO2011145618A1 (ja) 沸騰冷却器
US20100252238A1 (en) Two-phase-flow, panel-cooled, battery apparatus and method
WO2017148050A1 (zh) 用于数据中心机柜的冷却装置、机柜和冷却***
JP2007533944A (ja) コンピュータおよび他の電子機器用の熱サイフォンベースの薄型冷却システム
TW201251591A (en) Computer case
WO2010084717A1 (ja) 冷却装置
US20170332514A1 (en) Cooling system and cooling method for electronic equipment
US20100032141A1 (en) cooling system utilizing carbon nanotubes for cooling of electrical systems
JP5828322B2 (ja) 沸騰冷却装置およびそれを用いた電子機器
JP2012501019A (ja) 複数のモジュール式シグナルコンピュータユニットを有する航空機シグナルコンピュータシステム
JP5874935B2 (ja) 平板型冷却装置及びその使用方法
WO2013166933A1 (zh) 一种热管水冷组合散热设备
TW200428927A (en) Heat-dissipating module structure for electronic apparatus
Kadum et al. Heat transfer in electronic systems printed circuit board: A review
JP2007081375A (ja) 冷却装置
JP2011096983A (ja) 冷却装置
US20060236717A1 (en) Heat disspiating system and device
CN216451715U (zh) 一种风冷导冷组合散热式机箱结构
US20230147067A1 (en) Cooling device having a boiling chamber with submerged condensation and method
TWI837610B (zh) 電子元件之熱面拉出裝置
Huang et al. Experimental study of a two-phase immersion cooling system for the CPU in a PC and a 2U server operated at the overclocking frequency
TWI834351B (zh) 冷卻系統

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11828678

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012536288

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13824908

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11828678

Country of ref document: EP

Kind code of ref document: A1