WO2012033389A2 - 리튬 이차 전지용 양극 활물질, 이의 제조 방법 및 이를 포함하는 리튬 이차 전지 - Google Patents

리튬 이차 전지용 양극 활물질, 이의 제조 방법 및 이를 포함하는 리튬 이차 전지 Download PDF

Info

Publication number
WO2012033389A2
WO2012033389A2 PCT/KR2011/006740 KR2011006740W WO2012033389A2 WO 2012033389 A2 WO2012033389 A2 WO 2012033389A2 KR 2011006740 W KR2011006740 W KR 2011006740W WO 2012033389 A2 WO2012033389 A2 WO 2012033389A2
Authority
WO
WIPO (PCT)
Prior art keywords
raw material
active material
lithium secondary
secondary battery
positive electrode
Prior art date
Application number
PCT/KR2011/006740
Other languages
English (en)
French (fr)
Other versions
WO2012033389A3 (ko
Inventor
오성우
선희영
도유림
이형복
Original Assignee
에스케이이노베이션 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 에스케이이노베이션 주식회사 filed Critical 에스케이이노베이션 주식회사
Priority to CN201180043727.2A priority Critical patent/CN103098273B/zh
Priority to JP2013528136A priority patent/JP5684915B2/ja
Priority to US13/821,758 priority patent/US9203077B2/en
Priority to EP11823822.9A priority patent/EP2615673B1/en
Publication of WO2012033389A2 publication Critical patent/WO2012033389A2/ko
Publication of WO2012033389A3 publication Critical patent/WO2012033389A3/ko

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/16Oxyacids of phosphorus; Salts thereof
    • C01B25/26Phosphates
    • C01B25/45Phosphates containing plural metal, or metal and ammonium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/05Preparation or purification of carbon not covered by groups C01B32/15, C01B32/20, C01B32/25, C01B32/30
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1397Processes of manufacture of electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • C01P2004/82Particles consisting of a mixture of two or more inorganic phases two phases having the same anion, e.g. both oxidic phases
    • C01P2004/84Particles consisting of a mixture of two or more inorganic phases two phases having the same anion, e.g. both oxidic phases one phase coated with the other
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a positive electrode active material for a lithium secondary battery, a method for manufacturing the same, and a lithium secondary battery including the same, and more particularly, to a positive electrode active material for a lithium secondary battery exhibiting improved electrochemical properties, a method for manufacturing the same, and a lithium secondary battery including the same. It is about.
  • LiCoO 2 , LiMn 2 O 4 , LiNi x Co y Mn z O 2, and the like were mainly used as positive electrode active materials of a lithium secondary battery.
  • HEV, PHEV, EV medium and large-sized batteries
  • the safety issues of the battery are emerging.
  • the positive electrode active material that is currently commercialized, there is a problem such as high price or safety, and research on a new positive electrode active material is being conducted.
  • LiMPO 4 Fe, Mn, Co and Ni
  • LiFePO 4 has been developed as an energy source of hybrid vehicles and electric vehicles by nano-particle size and carbon coating to improve the problem of low conductivity.
  • LiFePO 4 has a problem that energy density is lower than that of other cathode active materials since the average operating voltage is about 3.5V.
  • the low energy density means that the required number of cells in a battery is insufficient. In other words, to achieve the same capacity, the volume must be larger.
  • Mn 3 + / 4 + (4.1V)
  • Fe 2 + / 3 + (3.5 V).
  • the present invention is to provide a cathode active material for a lithium secondary battery exhibiting excellent electrochemical properties through a low carbon content and a method of manufacturing the same.
  • Still another object of the present invention is to provide a lithium secondary battery including the cathode active material.
  • a first embodiment of the present invention is represented by the following formula (1), and includes a particle having an average size of 200 to 1 ⁇ m, provides a cathode active material for a lithium secondary battery that a carbon coating layer is formed on the surface of the particle.
  • M is any one or a mixture of two or more selected from Mg, Fe, Co, Cr, Ti, Ni, Cu, Zn, Zr, Nb, Mo, wherein a is 0.9 ⁇ a ⁇ 1.1, and x is 0 ⁇ x ⁇ 0.5.
  • a second embodiment of the present invention is represented by the following formula (2), and includes a particle having an average size of 200 to 1 ⁇ m, provides a cathode active material for a lithium secondary battery that a carbon coating layer is formed on the surface of the particle.
  • a third embodiment of the present invention is represented by the following formula (3), and includes a particle having an average size of 200 to 1 ⁇ m, provides a cathode active material for a lithium secondary battery that a carbon coating layer is formed on the surface of the particle.
  • the carbon coating layer has a thickness of 5 to 10 nm.
  • a lithium mixed material, manganese raw material and phosphorus raw material are added to the alcohol to prepare a metal mixed solution;
  • the metal mixed solution may further include a metal raw material, and the metal raw material may be any one or two selected from Mg, Fe, Co, Cr, Ti, Ni, Cu, Zn, Zr, Nb, and Mo. The above mixture can be used.
  • the present invention provides a lithium secondary battery including a positive electrode including the positive electrode active material, a negative electrode including a negative electrode active material, and a nonaqueous electrolyte.
  • the cathode active material of the present invention is a simple synthesis method, consisting of nanoparticles having a uniform carbon coating layer can be obtained a lithium secondary battery cathode active material with improved high rate characteristics as the electrical conductivity is improved.
  • the cathode active material according to the embodiment of the present invention is represented by the following Chemical Formula 1, and uses an average particle diameter of 200 to 1 ⁇ m, and includes secondary particles. At this time, the particles include spherical, elliptical, plate-shaped, but is not limited thereto. In addition, a uniform carbon coating layer is formed on the surface of the particles.
  • M is any one or a mixture of two or more selected from Mg, Fe, Co, Cr, Ti, Ni, Cu, Zn, Zr, Nb, Mo, wherein a is 0.9 ⁇ a ⁇ 1.1, and x is 0 ⁇ x ⁇ 0.5.
  • the cathode active material of the present invention is represented by the following Chemical Formula 2 or Chemical Formula 3, and has an average particle diameter of 200 to 1 ⁇ m, and includes secondary particles.
  • the particles include spherical, elliptical, plate-shaped, but is not limited thereto.
  • a uniform carbon coating layer is formed on the surface of the particles.
  • the carbon coating layer is characterized by being coated with a thickness of 5 ⁇ 10nm.
  • the average particle diameter of the particles in the positive electrode active material is preferably 200nm to 1 ⁇ m, when the average particle diameter is less than 200nm particles are too fine, there is a problem that a lot of binder (Binder) enters during electrode production. There is also a problem of low tap density. When the average particle diameter exceeds 1 ⁇ m, it is difficult to form the carbon coating layer uniformly, and many carbon sources are required to realize a uniform carbon coating layer.
  • the carbon coating layer is formed of amorphous carbon, such as soft carbon (soft carbon: low temperature calcined carbon), pitch carbide, mesophase pitch carbide, calcined coke, sucrose, lucose, PVP, PEG, PVA, nano carbon fiber Etc. can be mentioned.
  • the carbon coating layer may have a thickness of about 5 nm to about 10 nm.
  • the carbon coating layer may be uniformly coated on the particle surface, desorption and insertion of lithium ions may occur appropriately, and thus may exhibit improved electrochemical properties, and between the electrolyte and the particles. Due to the presence of a carbon layer, it is possible to suppress side reactions caused by HF caused by electrolyte decomposition during high temperature measurement.
  • the thickness of the carbon coating layer is less than 5nm, since the carbon coating layer is not uniformly formed on the particles, the portion where the carbon coating layer is not formed causes side reactions by the electrolyte, and a lot of Mn dissolution occurs. The chemical properties are degraded.
  • the thickness of the carbon coating layer is more than 10nm, the coating layer is formed too thick to reduce the diffusion (diffusion) rate of Li + ion.
  • the oxygen-deficient structure lacks an Oxygen (oxygen) site in the crystal structure.
  • the OO binding energy is reduced, which provides a path for Li + ions to be easily removed and inserted in the lattice.
  • the Li + ion is easier to move than Formula 1
  • the content of the carbon source treated to improve the electrical conductivity is reduced, so that the electrode mixture density increases during electrode production, and has an advantageous advantage in electrode production.
  • the positive electrode active material according to the embodiment of the present invention is a nano-sized material having a uniform carbon coating layer, which improves high-rate characteristics, and exhibits a high capacity due to easier oxygen desorption and removal of Li + ions. .
  • a lithium mixed material, manganese raw material and phosphorus raw material are added to the alcohol to prepare a metal mixed solution;
  • a lithium raw material, a manganese raw material and a phosphorus raw material are added to an alcohol to prepare a dispersion mixture.
  • the mixing ratio of the lithium raw material, manganese raw material and phosphorus raw material is adjusted so that Li: Mn: P is 0.95: 1: 1 to 1.1: 1: 1 molar ratio.
  • the content of alcohol when preparing the metal mixture is preferably used in a weight ratio of 1: 1 to 10 based on the total content of lithium raw material, manganese raw material and phosphorus raw material, or 50 to 200 mol% of manganese raw material.
  • the metal mixed solution may further include a metal raw material, and the metal raw material may be any one or two selected from Mg, Fe, Co, Cr, Ti, Ni, Cu, Zn, Zr, Nb, and Mo.
  • M is present in the final product by substituting a part of Mn
  • the amount of the metal (hereinafter referred to as M) -containing raw material is M-containing when the total amount of Mn-containing raw material and M-containing raw material is 100 mol%. It is preferable to use content of a raw material in 0 mol% or more and less than 50 mol%. More preferably, 10-20 mol% is used.
  • M-containing raw material M-containing sulfate, M-containing hydroxide, M-containing nitrate, M-containing acetate or a mixture thereof can be used . More preferably, Fe is used as the metal raw material, and Fe 2 O 3 or the like may be used as the Fe-containing raw material.
  • lithium raw material lithium fluoride, lithium carbonate, lithium hydroxide, lithium nitrate, lithium acetate, or a mixture thereof may be used.
  • the manganese raw material may be used manganese chloride, manganese oxide, manganese sulfate, manganese hydroxide, manganese nitrate, manganese acetate or a mixture thereof.
  • the phosphorus raw material is phosphoric acid, metaphosphoric acid, diphosphoric acid, orthophosphoric acid, orthophosphoric acid, monoammonium phosphate, phosphorus pentoxide or mixtures thereof Can be used.
  • the dispersion mixture is then milled and atomized.
  • Milling time is within 30 to 120 minutes. If the atomization time is less than 30 minutes, the dispersion mixture may not be sufficiently uniformly mixed, and the particles may not be uniformly atomized, thereby making it difficult to obtain particles having a uniform carbon coating layer.
  • the atomization time exceeds 120 minutes, the dispersion mixture is mixed evenly, but the atomized particles are reassembled to become larger than the desired particle size. Even in this case, it becomes difficult to form a uniform carbon coating layer with a small amount of carbon raw material.
  • the carbonaceous material is added and mixed again using a Spex-mill.
  • the carbon raw materials include soft carbon (soft carbon: low temperature calcined carbon), pitch carbide, mesophase pitch carbide, calcined coke, citric acid, ascorbic acid, polyvinyl alcohol, urea, sucrose, glucose, Any one selected from cellulose or a mixture thereof can be used.
  • the carbon raw material may be uniformly mixed and heat treated in an inert atmosphere to obtain a uniform carbon coating layer.
  • the carbon raw material usage may be 5 to 20% by weight based on the weight of the manganese raw material used. If the content of carbon raw material is less than 5% by weight, the amount of carbon is too small to coat evenly around the particles, causing side reactions with the electrolyte on the surface of some uncoated particles. If excessive, the amount of carbon is present too much and evenly coated carbon particles are present, but most of the particles are locally coated thick, which adversely affects the diffusion rate of lithium, and exhibits poor electrochemical properties.
  • the carbon coating layer of the particles after the heat treatment is preferably 5nm to 10nm, by using the content range can satisfy the coating thickness.
  • M is any one or a mixture of two or more selected from Mg, Fe, Co, Cr, Ti, Ni, Cu, Zn, Zr, Nb, Mo, wherein a is 0.9 ⁇ a ⁇ 1.1, and x is 0 ⁇ x ⁇ 0.5.
  • the method for preparing a cathode active material according to an embodiment of the present invention is a method for preparing a dispersion mixture, and is easier to manufacture than a hydrothermal synthesis method, a precipitation method, a sol-gel method, a coprecipitation method, and nanoparticles having a uniform carbon coating layer.
  • Li a Mn 1-x M x PO 4 (M is any one or a mixture of two or more selected from Mg, Fe, Co, Cr, Ti, Ni, Cu, Zn, Zr, Nb, Mo, wherein a is 0.9 ⁇ a ⁇ 1.1, where x is 0 ⁇ x ⁇ 0.5) and Li a MnPO 4 (0.95 ⁇ a ⁇ 1.1) material can be synthesized, and the lithium raw material, manganese raw material and phosphorus raw material are uniform at once. It can be mixed easily so that mass synthesis is possible.
  • the positive electrode active material according to the embodiment of the present invention may be usefully used for the positive electrode of a lithium secondary battery.
  • the lithium secondary battery includes a negative electrode and a nonaqueous electrolyte including a negative electrode active material together with a positive electrode.
  • the positive electrode is prepared by mixing a positive electrode active material, a conductive material, a binder, and a solvent according to an embodiment of the present invention to prepare a positive electrode active material composition, and then directly coating and drying the aluminum current collector.
  • the cathode active material composition may be cast on a separate support, and then the film obtained by peeling from the support may be manufactured by laminating on an aluminum current collector.
  • the conductive material is carbon black, graphite, metal powder
  • the binder is vinylidene fluoride / hexafluoropropylene copolymer, polyvinylidene fluoride, polyacrylonitrile, polymethyl methacrylate, polytetrafluoroethylene And mixtures thereof.
  • N-methylpyrrolidone, acetone, tetrahydrofuran, decane, etc. are used as a solvent.
  • the contents of the positive electrode active material, the conductive material, the binder, and the solvent are used at levels commonly used in a lithium secondary battery.
  • the negative electrode is mixed with a negative electrode active material, a binder, and a solvent to prepare a negative electrode active material composition, which is directly coated on a copper current collector or cast on a separate support and peeled from the support to a copper current collector It is prepared by lamination.
  • the negative electrode active material composition may further contain a conductive material if necessary.
  • the negative electrode active material a material capable of intercalating / deintercalating lithium is used.
  • a material capable of intercalating / deintercalating lithium is used.
  • lithium metal, lithium alloy, lithium titanate, silicon, tin alloy, coke, artificial graphite, natural graphite, organic polymer Compound burners, carbon fibers and the like are used.
  • a conductive material, a binder, and a solvent are used similarly to the case of the positive electrode mentioned above.
  • the separator may be used as long as it is commonly used in lithium secondary batteries.
  • polyethylene, polypropylene, polyvinylidene fluoride or two or more multilayer films thereof may be used, and a polyethylene / polypropylene two-layer separator, It goes without saying that a mixed multilayer film such as polyethylene / polypropylene / polyethylene three-layer separator, polypropylene / polyethylene / polypropylene three-layer separator and the like can be used.
  • a non-aqueous electrolyte or a known solid electrolyte may be used, and a lithium salt is used.
  • the solvent of the said non-aqueous electrolyte is not specifically limited, Cyclic carbonate, such as ethylene carbonate, propylene carbonate, butylene carbonate, vinylene carbonate; Chain carbonates such as dimethyl carbonate, methyl ethyl carbonate and diethyl carbonate; Esters such as methyl acetate, ethyl acetate, propyl acetate, methyl propionate, ethyl propionate and ⁇ -butyrolactone; Ethers such as 1,2-dimethoxyethane, 1,2-diethoxyethane, tetrahydrofuran, 1,2-dioxane and 2-methyltetrahydrofuran; Nitriles such as acetonitrile; Or amides such as dimethylformamide can be used. These can be used individually or in combination of two or more. In particular, a mixed solvent of a cyclic carbonate and a linear carbonate can be preferably used.
  • a gel polymer electrolyte in which an electrolyte solution is impregnated with a polymer electrolyte such as polyethylene oxide or polyacrylonitrile, or an inorganic solid electrolyte such as LiI or Li 3 N can be used.
  • a polymer electrolyte such as polyethylene oxide or polyacrylonitrile
  • an inorganic solid electrolyte such as LiI or Li 3 N
  • the lithium salt is LiPF 6 , LiBF 4 , LiSbF 6 , LiAsF 6 , LiClO 4 , LiCF 3 SO 3 , Li (CF 3 SO 2 ) 2 N, LiC 4 F 9 SO 3 , LiSbF 6 , LiAlO 4 , LiAlCl 4 , One selected from the group consisting of LiCl and LiI is possible.
  • an olivine-based cathode active material in which a manufacturing method is easy, mass production is possible, and a uniform carbon coating layer is formed.
  • a 4V-class olivine-based positive electrode active material having a partially substituted transition metal or an oxygen deficient structure a positive electrode active material having high capacity, high energy density and excellent thermal safety can be obtained.
  • the metal mixture was put into a Spex-mill jar (Spexsamplerprep, 8000M 115 Single Mixer / Mill) and milled at 900 rpm for 100 minutes to prepare fine particles, and 10 wt% of pitch carbide as a carbon raw material was added to 90 wt% of the atomized mixture. Add and mix uniformly.
  • the particle diameter of the secondary particles thus prepared was 1 ⁇ m. 80% by weight of the secondary particles, 10% by weight of carbon black (Super-P, conductive material) and 10% by weight of polyvinylidene fluoride (binder) were added to n-methylpyrrolidone (NMP) to prepare a positive electrode mixture slurry. Prepared. It was coated on one surface of aluminum foil and dried. The results are shown in Table 1 below.
  • Example 2 Except for using pitch carbide 30% by weight as a carbon raw material in Example 2 was prepared in the same manner as in Example 2.
  • Example 10 Except for using a pitch carbide 30% by weight as a carbon raw material in Example 10 was prepared in the same manner as in Example 10.
  • the cathode as a 2032 coin type cell was prepared a half cell using lithium metal, and measured by 0.1C at a charge and discharge voltage of 2.7V-4.4V.
  • the cathode active material according to the embodiment of the present invention exhibits excellent capacity of 150 mAh / g or more even at a carbon coating thickness of 10 nm.
  • the carbon coating thickness is too thick as shown in Comparative Examples 1 and 2, it was confirmed that the capacity is rather reduced.

Abstract

본 발명은 열적 안전성이 향상된 리튬 이차 전지용 양극 활물질, 이의 제조 방법 및 이를 포함하는 리튬 이차 전지에 관한 것으로, 상기 양극 활물질은 하기 화학식 1로 표현되고, 평균입경이 200 nm 에서 1㎛ 의 입자를 포함하며, 상기 입자의 표면에는 균일한 탄소 코팅층이 형성된 것이다. [화학식 1] LiaMn1-xMxPO4 (상기 식에서, M은 Mg, Fe, Co, Cr, Ti, Ni, Cu, Zn, Zr, Nb, Mo 에서 선택되는 어느 하나 또는 둘 이상의 혼합물이고, 상기 a는 0.9 ≤ a ≤1.1, 상기 x는 0 ≤ x < 0.5 이다.)

Description

리튬 이차 전지용 양극 활물질, 이의 제조 방법 및 이를 포함하는 리튬 이차 전지
본 발명은 리튬 이차 전지용 양극 활물질, 이의 제조 방법 및 이를 포함하는 리튬 이차 전지에 관한 것으로서, 더욱 상세하게는 향상된 전기화학특성을 나타내는 리튬 이차 전지용 양극 활물질, 이의 제조 방법 및 이를 포함하는 리튬 이차 전지에 관한 것이다.
리튬 이차 전지의 양극 활물질로는 LiCoO2, LiMn2O4, LiNixCoyMnzO2 등이 주로 사용되었다. 하지만, 중대형 전지(HEV, PHEV, EV)의 개발에 따라 전지의 안전성 문제가 대두되고 있다. 현재 상용화되고 있는 양극 활물질의 경우 고가이거나, 안전성 등의 문제가 있어, 새로운 양극 활물질에 대한 연구가 진행되고 있다.
많은 후보 물질 중 독성이 없고, 경제적이며, 안전성이 뛰어난 올리빈형 LiMPO4 (M=Fe, Mn, Co and Ni) 양극 활물질에 대한 연구가 활발하게 진행되고 있다. 특히, LiFePO4 의 경우 낮은 전도도의 문제점을 향상시키기 위해 입자의 크기를 나노화 하고, 카본을 코팅 함으로써 현재 하이브리드 자동차 및 전기자동차의 에너지원으로 개발되고 있다. (일본 공개특허 제2002-015735호, 제2004-259470호 참조)
그러나 LiFePO4는 평균 작동전압이 3.5V 정도이므로 다른 양극 활물질 보다 에너지 밀도가 낮다는 문제점을 가지고 있다. 에너지 밀도가 낮다는 것은 한정된 부피내에 필요한 전지의 Cell 수가 부족하게 들어간다는 것이다. 즉 같은 용량을 내기 위해선 부피가 더 커져야 하는 것이다. 이를 극복하기 위해서 방전전압이 Fe2+/3+(3.5 V)보다 높은 Mn3+/4+(4.1V)에 대해서 연구가 진행되고 있다.
본 발명은 낮은 카본함량을 통해 우수한 전기화학특성을 나타내는 리튬 이차 전지용 양극 활물질 및 이의 제조방법을 제공하고자 한다.
본 발명의 또 다른 목적은 상기 양극 활물질을 포함하는 리튬 이차 전지를 제공하는 것이다.
본 발명이 이루고자 하는 기술적 과제들은 이상에서 언급한 기술적 과제들로 제한되지 않으며, 언급되지 않은 또 다른 기술적 과제들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.
본 발명의 제1 구현예는 하기 화학식 1로 표현되고, 200 내지 1㎛의 평균 크기를 갖는 입자를 포함하며, 상기 입자의 표면에 탄소 코팅층이 형성된 것인 리튬 이차 전지용 양극 활물질을 제공한다.
[화학식 1]
LiaMn1-xMxPO4
(상기 식에서, M은 Mg, Fe, Co, Cr, Ti, Ni, Cu, Zn, Zr, Nb, Mo 에서 선택되는 어느 하나 또는 둘 이상의 혼합물이고, 상기 a는 0.9 ≤ a ≤1.1, 상기 x는 0 ≤ x < 0.5 이다.)
본 발명의 제 2 구현예는 하기 화학식 2로 표현되고, 200 내지 1㎛의 평균 크기를 갖는 입자를 포함하며, 상기 입자의 표면에 탄소 코팅층이 형성된 것인 리튬 이차 전지용 양극 활물질을 제공한다.
[화학식 2]
LiaMnPO4
(상기 식에서, a는 0.9 ≤ a ≤1.1이다.)
본 발명의 제 3 구현예는 하기 화학식 3으로 표현되고, 200 내지 1㎛의 평균 크기를 갖는 입자를 포함하며, 상기 입자의 표면에 탄소 코팅층이 형성된 것인 리튬 이차 전지용 양극 활물질을 제공한다.
[화학식 3]
LiaMn1-xMxPO4
(상기 식에서, M은 Fe이고, 상기 a는 0.9 ≤ a ≤1.1, 상기 x는 0.1 ≤ x ≤0.2이다.)
본 발명의 상기 제 1 구현예 내지 제 3 구현예에서 상기 탄소 코팅층의 두께는 5 ~ 10nm인 것을 특징으로 한다.
본 발명의 양극 활물질을 제조하는 방법은
리튬 원료 물질, 망간 원료 물질 및 인 원료 물질을 알코올에 첨가하여 금속 혼합액을 제조하고;
상기 금속 혼합액을 밀링하여 미립자로 제조하고;
상기 미립화된 혼합액에 탄소원료 물질을 넣고 균일하게 혼합하고;
상기 혼합물을 비활성 분위기에서 열처리하는 공정을 포함한다.
또한, 상기 금속 혼합액 제조 시 금속 원료물질을 더 포함할 수 있으며, 상기 금속 원료물질은 Mg, Fe, Co, Cr, Ti, Ni, Cu, Zn, Zr, Nb, Mo 에서 선택되는 어느 하나 또는 둘 이상의 혼합물을 사용할 수 있다.
본 발명은 상기 양극 활물질을 포함하는 양극, 음극 활물질을 포함하는 음극 및 비수 전해질을 포함하는 리튬 이차 전지를 제공하는 것이다.
본 발명의 양극 활물질은 합성방법이 간단하며, 균일한 카본 코팅층을 가진 나노입자로 구성되어 있어 전기전도도가 향상됨에 따라 고율특성이 향상된 리튬이차전지 양극 활물질을 얻을 수 있다.
이하, 본 발명의 구현예를 상세히 설명하기로 한다. 다만, 이는 예시로서 제시되는 것으로, 이에 의해 본 발명이 제한되지는 않는다.
본 발명의 일 구현예에 따른 양극 활물질은 하기 화학식 1 로 표시되며, 200 내지 1㎛의 평균 입경을 갖는 것을 사용하며, 이때 2차 입자를 포함한다. 이때, 입자는 구형, 타원형, 판상형을 포함하며, 이에 한정되는 것은 아니다. 또한, 입자의 표면에는 균일한 탄소 코팅층이 형성되어 있다.
[화학식 1]
LiaMn1-xMxPO4
(상기 식에서, M은 Mg, Fe, Co, Cr, Ti, Ni, Cu, Zn, Zr, Nb, Mo 에서 선택되는 어느 하나 또는 둘 이상의 혼합물이고, 상기 a는 0.9 ≤ a ≤1.1, 상기 x는 0 ≤ x < 0.5 이다.)
보다 구체적으로 본 발명의 양극 활물질은 하기 화학식 2 또는 화학식 3으로 표시되며, 200 내지 1㎛의 평균 입경을 갖는 것을 사용하며, 이때 2차 입자를 포함한다. 이때, 입자는 구형, 타원형, 판상형을 포함하며, 이에 한정되는 것은 아니다. 또한, 입자의 표면에는 균일한 탄소 코팅층이 형성되어 있다. 이때 상기 탄소 코팅층은 5 ~ 10nm두께로 코팅되는데 특징이 있다.
[화학식 2]
LiaMnPO4
(상기 식에서, a는 0.9 ≤ a ≤1.1이다.)
[화학식 3]
LiaMn1-xMxPO4
(상기 식에서, M은 Fe이고, 상기 a는 0.9 ≤ a ≤1.1, 상기 x는 0.1 ≤ x ≤0.2이다.)
상기 양극 활물질에서 입자의 평균 입경은 200nm 내지 1㎛인 것이 바람직하며, 평균 입경이 200 nm 미만인 경우 입자가 너무 미세하여 전극제조 시 많은 바인더(Binder)가 들어가는 문제점이 생긴다. 또한 탭밀도가 낮은 문제점이 있다. 평균입경이 1㎛를 초과하는 경우 탄소 코팅층을 균일하게 형성하기 어려우며 균일한 탄소 코팅층을 구현하기 위해서는 많은 카본 소스를 필요하게 된다.
상기 탄소 코팅층은 비정질 탄소로 형성된 것으로서, 그 예로는 소프트 카본(soft carbon: 저온 소성 탄소), 피치탄화물, 메조페이스 피치 탄화물, 소성된 코크스, 수크로오스, 클루코오스, PVP, PEG, PVA, 나노 탄소 섬유 등을 들 수 있다.
상기 탄소 코팅층의 두께는 5 내지 10nm일 수 있다. 탄소 코팅층의 두께가 이 범위에 포함되는 경우, 탄소 코팅층이 입자 표면에 균일하게 코팅될 수 있고, 리튬 이온의 탈리 및 삽입이 적절하게 일어날 수 있어 향상된 전기화학 특성을 나타낼 수 있으며, 전해액과 입자 사이에 카본층이 존재 하기 때문에 고온 측정 시 전해질 분해로 인해 발생되는 HF에 의한 부반응을 억제 할 수 있다. 상기 탄소 코팅층의 두께가 5nm미만의 경우는 입자에 균일하게 탄소 코팅층이 형성되지 않기 때문에 탄소 코팅층이 형성되지 않은 부분은 전해액에 의해 부반응을 일으키게 되며 Mn dissolution(용출) 현상이 많이 일어나게 되며 이로 인해 전기화학적 특성이 떨어지게 된다. 또한, 탄소 코팅층의 두께가 10nm 초과일 경우 너무 두껍게 코팅층이 형성 되어 Li+ ion 의 diffusion(확산) 속도를 감소 시킨다.
화학식 2에서 보면, 산소 결핍 구조로 결정 구조 내에 Oxygen(산소) 자리가 부족하게 된다. 이럴 경우 O-O binding에너지가 작아져 Li+ ion이 격자 내에서 쉽게 탈·삽입이 가능한 통로를 제공해 주게 된다. 화학식 2의 경우는 화학식 1보다 Li+ ion의 이동이 용이함으로 전기전도도를 향상시키기 위해 처리해 주는 카본소스의 함량이 적어짐으로써 전극제조 시 전극합제 밀도가 높아지며 전극제조 시 유리한 장점이 있다.
본 발명의 일 구현예에 따른 양극 활물질은 균일한 탄소 코팅층이 형성된 나노크기의 물질로써 고율 특성이 향상되며, 산소 결핍구조로써 보다 쉬운 Li+ ion의 탈·살입이 이루어 지기 때문에 고용량을 나타낼 수 있다.
본 발명의 일 구현예에 따른 양극 활물질의 제조 방법은
리튬 원료 물질, 망간 원료 물질 및 인 원료 물질을 알코올에 첨가하여 금속 혼합액을 제조하고;
상기 금속 혼합액을 밀링하여 미립자로 제조하고;
상기 미립화된 혼합액에 탄소원료 물질을 넣고 균일하게 혼합하고;
상기 혼합물을 비활성 분위기에서 열처리하는 공정을 포함한다.
보다 구체적으로 먼저, 리튬 원료 물질, 망간 원료 물질 및 인 원료 물질을 알코올에 첨가하여 분산 혼합액을 제조한다. 이때, 상기 리튬 원료 물질, 망간 원료 물질 및 인 원료 물질의 혼합비율은 Li : Mn : P가 0.95 : 1 : 1 내지 1.1 : 1 : 1 몰비가 되도록 조절한다.
상기 금속 혼합액 제조 시 알코올의 함량은 리튬 원료 물질, 망간 원료 물질 및 인 원료 물질의 총 함량 대비 1 : 1 ~ 10 중량비로 사용하거나 망간원료 대비 50 내지 200 몰%로 사용하는 것이 바람직하다.
또한, 상기 금속 혼합액 제조 시 금속 원료물질을 더 포함할 수 있으며, 상기 금속 원료물질은 Mg, Fe, Co, Cr, Ti, Ni, Cu, Zn, Zr, Nb, Mo 에서 선택되는 어느 하나 또는 둘 이상의 혼합물을 사용할 수 있다. 최종 생성물에서 M이 Mn의 일부를 치환하여 존재하는 것이므로, 금속(이하, M이라 함) 함유 원료 물질의 사용량은 Mn 함유 원료 물질과 M 함유 원료 물질의 총량을 100몰%로 하였을 때, M 함유 원료 물질의 함량은 0 몰% 이상 50 몰% 미만으로 사용하는 것이 바람직하다. 보다 바람직하게는 10 ~ 20몰%를 사용하는 것이 바람직하다. 상기 M 함유 원료 물질로는 M 함유 설페이트, M 함유 하이드록사이드, M 함유 나이트레이트, M 함유 아세테이트 또는 이들의 혼합물을 사용할 수 있다. 보다 바람직하게는 상기 금속 원료물질로 Fe을 사용하는 것이 바람직하며, Fe함유 원료 물질로, Fe2O3 등을 이용할 수 있다.
상기 리튬 원료 물질로는 리튬 플로라이드, 리튬 카보네이트, 리튬 하이드록사이드, 리튬 나이트레이트, 리튬 아세테이트 또는 이들의 혼합물을 사용할 수 있다.
상기 망간 원료 물질로는 망간 클로라이드, 망간옥사이드, 망간 설페이트, 망간 하이드록사이드, 망간 나이트레이트, 망간 아세테이트 또는 이들의 혼합물을 사용할 수 있다.
또한, 상기 인 원료 물질로는 인산, 메타인산(metaphosphoric acid), 피로인산(diphosphoric acid), 오르토인산(orthophosphoric acid), 인산이수소암모늄( monoammonium phosphate), 오산화인(phosphorus pentoxide) 또는 이들의 혼합물을 사용할 수 있다.
이어서, 상기 분산 혼합액을 밀링하여 미립화 한다. 이때 밀링은 Spex-mill을 사용하는 것이 바람직하다. 밀링(milling)시간은 30분 내지 120분 이내로 한다. 미립화 시간이 30분 미만이면 분산혼합액이 충분히 균일하게 혼합될 수 없고 또한 입자가 균일하게 미립화가 되지 않아 균일한 카본 코팅층을 갖는 입자를 얻기 어렵다. 미립화 시간이 120분이 초과되면 분산혼합액은 균일하게 섞이지만 미립화된 입자들이 다시 조립화가 되어 원하는 입자 크기보다 커지게 된다. 이 경우에도 소량의 탄소원료로 균일한 카본 코팅층을 형성하기 어렵게 된다.
미립화 한 후, 탄소원료 물질을 첨가한 후 다시 Spex-mill을 사용하여 혼합한다. 상기 탄소원료로는 소프트 카본(soft carbon: 저온 소성 탄소), 피치탄화물, 메조페이스 피치 탄화물, 소성된 코크스, 시트린산, 아스코르빈산(ascorbic acid), 폴리비닐알코올, 우레아, 수크로스, 글루코오스, 셀루로오스에서 선택되는 어느 하나 또는 이들의 혼합물을 사용할 수 있다. 탄소 원료 물질을 첨가한 후 미립화 과정을 통하면, 균일하게 원료 물질들이 혼합되어 비활성 분위기에서 열처리 후, 균일한 카본 코팅층을 얻을 수 있다.
상기 탄소원료 사용량은 망간 원료 물질 사용 중량에 대하여 5 내지 20 중량%일 수 있다. 탄소원료물질의 함량이 5 중량% 미만이면 카본양이 너무 적어 입자 주위에 고르게 코팅이 되기 힘들어 일부 코팅이 되지 않은 입자의 표면에서 전해액과 부반응을 일으켜 고온 수명특성 및 고율특성이 현저히 떨어지며 20 중량% 초과이면 카본양이 너무 많이 존재하게 되어 입자에 고르게 카본코팅이 되어 있는 부분도 존재하지만 대부분의 입자에 국부적으로 두껍게 코팅이 되어 리튬의 확산속도에 악영향을 미쳐 전기화학특성이 나빠지는 특성을 나타낸다. 열처리 후 입자의 탄소 코팅 층은 5nm 내지 10nm 인 것이 바람직하며, 상기 함량범위로 사용함으로써 상기 코팅두께를 만족할 수 있다.
상기 비활성 분위기(N2, Ar, H2/Ar=95:5 또는 90:10)하에서 열처리 시 500 내지 800℃에서 3 내지 10시간 동안 실시하는 것이 좋고, 열처리 공정의 온도가 상기 범위에 포함되면, 200 nm 내지 1㎛의 균일한 입자를 제조 할 수 있다. 제조된 1차 입자들은 결정성을 가지며, 하기 화학식 1 로 표현될 수 있다.
[화학식 1]
LiaMn1-xMxPO4
(상기 식에서, M은 Mg, Fe, Co, Cr, Ti, Ni, Cu, Zn, Zr, Nb, Mo 에서 선택되는 어느 하나 또는 둘 이상의 혼합물이고, 상기 a는 0.9 ≤ a ≤1.1, 상기 x는 0 ≤ x < 0.5 이다.)
이러한 본 발명의 일 구현예에 따른 양극 활물질의 제조 방법은 분산 혼합액 제조 방법으로써, 수열합성법, 침전법, 졸-겔법, 공침법 등에 비하여, 제조 방법이 용이 하며, 균일한 카본 코팅층이 형성된 나노 입자의 LiaMn1-xMxPO4 (M은 Mg, Fe, Co, Cr, Ti, Ni, Cu, Zn, Zr, Nb, Mo 에서 선택되는 어느 하나 또는 둘 이상의 혼합물이고, 상기 a는 0.9 ≤ a ≤1.1, 상기 x는 0 ≤ x < 0.5 이다.)과 LiaMnPO4(0.95 ≤ a ≤1.1 임) 물질을 합성할 수 있으며, 리튬 원료 물질, 망간 원료 물질 및 인 원료 물질을 한번에 균일하게 혼합할 수 있어 대량 합성이 가능하다.
본 발명의 일 구현예에 따른 양극 활물질은 리튬 이차 전지의 양극에 유용하게 사용될 수 있다. 상기 리튬 이차 전지는 양극과 함께 음극 활물질을 포함하는 음극 및 비수 전해질을 포함한다.
상기 양극은 본 발명의 일 구현예에 따른 양극 활물질과, 도전재, 결합재 및 용매를 혼합하여 양극 활물질 조성물을 제조한 다음, 알루미늄 집전체 상에 직접 코팅 및 건조하여 제조한다. 또는 상기 양극 활물질 조성물을 별도의 지지체 상에 캐스팅한 다음, 이 지지체로부터 박리하여 얻은 필름을 알루미늄 집전체 상에 라미네이션하여 제조가 가능하다.
이때 도전재는 카본 블랙, 흑연, 금속 분말을 사용하며, 결합재는 비닐리덴플루오라이드/헥사플루오로프로필렌 코폴리머, 폴리비닐리덴플루오라이드, 폴리아크릴로니트릴, 폴리메틸메타크릴레이트, 폴리테트라플루오로에틸렌 및 그 혼합물이 가능하다. 또한 용매는 N-메틸피롤리돈, 아세톤, 테트라하이드로퓨란, 데칸 등을 사용한다. 이때 양극 활물질, 도전재, 결합재 및 용매의 함량은 리튬 이차 전지에서 통상적으로 사용하는 수준으로 사용된다.
상기 음극은 양극과 마찬가지로 음극 활물질, 결합제 및 용매를 혼합하여 음극 활물질 조성물을 제조하며, 이를 구리 집전체에 직접 코팅하거나 별도의 지지체 상에 캐스팅하고 이 지지체로부터 박리시킨 음극 활물질 필름을 구리 집전체에 라미네이션하여 제조한다. 이때 음극 활물질 조성물에는 필요한 경우에는 도전재를 더욱 함유할 수 있다.
상기 음극 활물질로는 리튬을 인터칼레이션/디인터칼레이션할 수 있는 재료가 사용되고, 예컨대, 리튬 금속이나 리튬 합금, 리튬 타이타네이트, 실리콘, 주석 합금, 코크스, 인조 흑연, 천연 흑연, 유기 고분자 화합물 연소체, 탄소 섬유 등을 사용한다. 또한 도전재, 결합제 및 용매는 전술한 양극의 경우와 동일하게 사용된다.
상기 세퍼레이터는 리튬 이차 전지에서 통상적으로 사용되는 것이라면 모두 다 사용가능하며, 일예로 폴리에틸렌, 폴리프로필렌, 폴리비닐리덴 플루오라이드 또는 이들의 2층 이상의 다층막이 사용될 수 있으며, 폴리에틸렌/폴리프로필렌 2층 세퍼레이터, 폴리에틸렌/폴리프로필렌/폴리에틸렌 3층 세퍼레이터, 폴리프로필렌/폴리에틸렌/폴리프로필렌 3층 세퍼레이터 등과 같은 혼합 다층막이 사용될 수 있음은 물론이다.
상기 리튬 이차 전지에 충전되는 전해질로는 비수성 전해질 또는 공지된 고체 전해질 등이 사용 가능하며, 리튬염이 용해된 것을 사용한다.
상기 비수성 전해질의 용매는 특별히 한정되는 것은 아니지만, 에틸렌카보네이트, 프로필렌카보네이트, 부틸렌카보네이트, 비닐렌카보네이트 등의 환상 카보네이트; 디메틸카보네이트, 메틸에틸카보네이트, 디에틸카보네이트 등의 쇄상 카보네이트; 아세트산메틸, 아세트산에틸, 아세트산프로필, 프로피온산메틸, 프로피온산에틸, γ-부티로락톤 등의 에스테르류; 1,2-디메톡시에탄, 1,2-디에톡시에탄, 테트라히드로퓨란, 1,2-디옥산, 2-메틸테트라히드로퓨란 등의 에테르류; 아세토니트릴 등의 니트릴류; 또는 디메틸포름아미드 등의 아미드류 등을 사용할 수 있다. 이들을 단독 또는 복수개 조합하여 사용할 수 있다. 특히, 환상 카보네이트와 쇄상 카보네이트와의 혼합 용매를 바람직하게 사용할 수 있다.
또한 전해질로서, 폴리에틸렌옥시드, 폴리아크릴로니트릴 등의 중합체 전해질에 전해액을 함침한 겔상 중합체 전해질이나, LiI, Li3N 등의 무기 고체 전해질이 가능하다.
이때 리튬염은 LiPF6, LiBF4, LiSbF6, LiAsF6, LiClO4, LiCF3SO3, Li(CF3SO2)2N, LiC4F9SO3, LiSbF6, LiAlO4, LiAlCl4, LiCl, 및 LiI로 이루어진 군에서 선택된 1종이 가능하다.
이상에서 설명한 바와 같이, 본 발명에 따르면, 제조 방법이 용이하며, 대량생산이 가능하고, 균일한 카본 코팅층이 형성된 올리빈계 양극활물질을 얻을 수 있다. 또한 전이금속이 일부 치환되거나 산소 결핍 구조의 4V급 올리빈계 양극 활물질을 제조 함으로써, 고용량, 고에너지 밀도를 가지며, 열적 안전성이 우수한 양극 활물질이 얻어질 수 있다.
본 발명의 단순한 변형 또는 변경은 모두 이 분야의 통상의 지식을 가진 자에 의하여 용이하게 실시될 수 있으며 이러한 변형이나 변경은 모두 본 발명의 영역에 포함되는 것으로 볼 수 있다.
이하는 본 발명의 구체적인 설명을 위하여 실시예를 들어 설명하는 바, 본 발명이 하기 실시예에 한정되는 것은 아니다.
[실시예 1]
Li2CO3, Fe2O3, MnO2, (NH4)2HPO4 을 Li:Mn:Fe:P=0.9:0.8:0.2:1 몰비가 되도록 혼합하고, 상기 혼합물 10g을 알코올(무수에탄올) 30g에 첨가하여 금속 혼합액을 제조하였다.
상기 금속혼합액을 Spex-mill jar(Spexsamplerprep, 8000M 115 Single Mixer/Mill)에 넣고 900rpm으로 100분간 밀링하여 미립자로 제조한 후, 상기 미립화된 혼합액 90중량%에 탄소원료물질로 피치탄화물 10 중량%를 첨가하여 균일하게 혼합하였다.
상기 혼합물을 비활성분위기(H2/Ar=95:5)하에서 750℃에서 10시간 열처리를 진행하였다.
이렇게 제조된 2차 입자의 입경은 1㎛이었다. 상기 2차 입자 80 중량%, 카본블랙(Super-P, 도전재) 10 중량% 및 폴리비닐리덴플루오라이드(결합재) 10 중량%를 n-메틸피롤리돈(NMP)에 첨가하여 양극 혼합물 슬러리를 제조하였다. 이를 알루미늄 호일의 일면에 코팅한 후 건조하였다. 그 결과를 하기 표 1에 나타내었다.
[실시예 2]
상기 실시예 1에서 원료물질의 몰비를 변경한 것을 제외하고 동일한 방법으로 제조하였다. Li:Mn:Fe:P=0.9:0.85:0.15:1 몰비로 하였다.
[실시예 3]
상기 실시예 1에서 원료물질의 몰비를 변경한 것을 제외하고 동일한 방법으로 제조하였다. Li:Mn:Fe:P=0.9:0.9:0.1:1 몰비로 하였다.
[실시예 4]
상기 실시예 1에서 원료물질의 몰비를 변경한 것을 제외하고 동일한 방법으로 제조하였다. Li:Mn:Fe:P=1.0:0.8:0.2:1 몰비로 하였다.
[실시예 5]
상기 실시예 1에서 원료물질의 몰비를 변경한 것을 제외하고 동일한 방법으로 제조하였다. Li:Mn:Fe:P=1.0:0.85:0.15:1 몰비로 하였다.
[실시예 6]
상기 실시예 1에서 원료물질의 몰비를 변경한 것을 제외하고 동일한 방법으로 제조하였다. Li:Mn:Fe:P=1.0:0.9:0.1:1 몰비로 하였다.
[실시예 7]
상기 실시예 1에서 원료물질의 몰비를 변경한 것을 제외하고 동일한 방법으로 제조하였다. Li:Mn:Fe:P=1.1:0.8:0.2:1 몰비로 하였다.
[실시예 8]
상기 실시예 1에서 원료물질의 몰비를 변경한 것을 제외하고 동일한 방법으로 제조하였다. Li:Mn:Fe:P=1.1:0.85:0.15:1 몰비로 하였다.
[실시예 9]
상기 실시예 1에서 원료물질의 몰비를 변경한 것을 제외하고 동일한 방법으로 제조하였다. Li:Mn:Fe:P=1.1:0.9:0.1:1 몰비로 하였다.
[실시예 10]
상기 실시예 1에서 원료물질의 몰비를 변경한 것을 제외하고 동일한 방법으로 제조하였다. Li:Mn:P=0.9:1:1 몰비로 하였다.
[실시예 11]
상기 실시예 1에서 원료물질의 몰비를 변경한 것을 제외하고 동일한 방법으로 제조하였다. Li:Mn:P=1.0:1:1 몰비로 하였다.
[실시예 12]
상기 실시예 1에서 원료물질의 몰비를 변경한 것을 제외하고 동일한 방법으로 제조하였다. Li:Mn:P=1.1:1:1 몰비로 하였다.
[비교예 1]
상기 실시예 2에서 탄소원료물질로 피치탄화물 30 중량%를 사용한 것을 제외하고는 실시예 2와 동일한 방법으로 제조하였다.
[비교예 2]
상기 실시예 10에서 탄소원료물질로 피치탄화물 30 중량%를 사용한 것을 제외하고는 실시예 10과 동일한 방법으로 제조하였다.
상기 실시예 1 ~12 및 비교예 1 ~2 의 물성을 측정하여 하기 표 1에 나타내었다.
물성은 다음의 측정방법으로 측정하였다.
1) Capacity(mAh/g)
2032 coin type cell로 음극은 리튬메탈을 사용한 반쪽전지(half cell)를 제조하고, 충방전 전압 2.7V-4.4V 에서 0.1C로 측정하여 얻은 값을 나타내었다.
2) 카본코팅두께
TEM(JEOL 2010, Japan)으로 측정하였다.
[표 1]
Figure PCTKR2011006740-appb-I000001
상기 표에서 보이는 바와 같이, 본 발명의 실시예에 따른 양극활물질은 탄소코팅두께 10nm에서도 150 mAh/g 이상의 우수한 용량을 나타내는 것을 알 수 있었다. 또한, 비교예 1 및 2에서 보이는 바와 같이 탄소코팅두께가 너무 두꺼운 경우는 오히려 용량이 감소되는 것을 확인하였다.

Claims (13)

  1. 평균입경이 200nm ~ 1㎛인 하기 화학식 1의 입자와, 이의 표면에 5 ~ 10nm 두께의 탄소코팅층을 갖는 리튬 이차 전지용 양극 활물질.
    [화학식 1]
    LiaMn1-xMxPO4
    (상기 식에서, M은 Mg, Fe, Co, Cr, Ti, Ni, Cu, Zn, Zr, Nb, Mo 에서 선택되는 어느 하나 또는 둘 이상의 혼합물이고, 상기 a는 0.9 ≤ a ≤1.1, 상기 x는 0 ≤ x < 0.5 이다.)
  2. 제1항에 있어서,
    상기 화학식 1은 하기 화학식 2 또는 화학식 3인 리튬 이차 전지용 양극 활물질.
    [화학식 2]
    LiaMnPO4
    (상기 식에서, a는 0.9 ≤ a ≤1.1이다.)
    [화학식 3]
    LiaMn1-xMxPO4
    (상기 식에서, M은 Fe이고, 상기 a는 0.9 ≤ a ≤1.1, 상기 x는 0.1 ≤ x ≤0.2이다.)
  3. 제1항에 있어서,
    상기 탄소 코팅층은 비정질 탄소로 형성된 것인 리튬 이차 전지용 양극 활물질.
  4. 제 1항 내지 제 3항 중 어느 한 항의 양극 활물질을 포함하는 양극;
    음극 활물질을 포함하는 음극; 및
    비수 전해액
    을 포함하는 리튬 이차 전지.
  5. 리튬 원료 물질, 망간 원료 물질 및 인 원료 물질을 알코올에 첨가하여 금속 혼합액을 제조하고;
    상기 금속 혼합액을 밀링하여 미립자로 제조하고;
    상기 미립화된 혼합액에 탄소원료 물질을 넣고 균일하게 혼합하고;
    상기 혼합물을 비활성 분위기에서 열처리하는 공정을 포함하는 리튬 이차 전지용 양극 활물질의 제조 방법.
  6. 제5항에 있어서,
    상기 금속 혼합액 제조 시 알코올의 함량은 리튬 원료 물질, 망간 원료 물질 및 인 원료 물질의 총 함량 대비 1 : 1 ~ 10 중량비로 사용하거나 망간원료 대비 50 내지 200 몰%로 사용하는 것인 리튬 이차 전지용 양극 활물질의 제조 방법.
  7. 제5항에 있어서,
    상기 리튬 원료 물질, 망간 원료 물질 및 인 원료 물질의 혼합비율은 Li : Mn : P가 0.9 내지 1.1 : 1 : 1 몰비가 되도록 조절하는 것인 리튬 이차 전지용 양극 활물질의 제조 방법.
  8. 제5항에 있어서,
    상기 금속 혼합액 제조 시 금속 원료물질을 더 첨가하는 것인 리튬 이차 전지용 양극 활물질의 제조 방법.
  9. 제8항에 있어서,
    상기 금속 원료물질은 Mg, Fe, Co, Cr, Ti, Ni, Cu, Zn, Zr, Nb, Mo 에서 선택되는 어느 하나 또는 둘 이상의 혼합물인 리튬 이차 전지용 양극 활물질의 제조 방법.
  10. 제 9항에 있어서,
    상기 금속 원료 물질은 망간원료물질과 금속 원료물질의 총량을 100몰%로 하였을 때, 0 몰% 이상 50 몰% 미만으로 사용하는 리튬 이차 전지용 양극 활물질의 제조 방법.
  11. 제 10항에 있어서,
    상기 금속 원료 물질은 망간원료물질과 금속 원료물질의 총량을 100몰%로 하였을 때, 10 몰% 이상 20 몰% 미만으로 사용하는 리튬 이차 전지용 양극 활물질의 제조 방법.
  12. 제5항에 있어서,
    상기 탄소 원료 물질은 소프트 카본(soft carbon: 저온 소성 탄소), 피치탄화물, 메조페이스 피치 탄화물, 소성된 코크스, 시트린산, 아스코르빈산, 폴리비닐알코올, 우레아, 수크로스, 글루코오스, 셀루로오스에서 선택되는 어느 하나 또는 둘 이상의 혼합물인 리튬 이차 전지용 양극 활물질의 제조 방법.
  13. 제5항에 있어서,
    상기 비활성 분위기 열처리는 500 내지 800℃에서 실시하는 것인 리튬 이차 전지용 양극 활물질의 제조 방법.
PCT/KR2011/006740 2010-09-09 2011-09-09 리튬 이차 전지용 양극 활물질, 이의 제조 방법 및 이를 포함하는 리튬 이차 전지 WO2012033389A2 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201180043727.2A CN103098273B (zh) 2010-09-09 2011-09-09 锂二次电池的正电极活性材料、其生产方法和包含其的锂二次电池
JP2013528136A JP5684915B2 (ja) 2010-09-09 2011-09-09 リチウム2次電池用の陽極活物質とその製造方法およびそれを含むリチウム2次電池
US13/821,758 US9203077B2 (en) 2010-09-09 2011-09-09 Positive electrode active material for a lithium secondary battery, method for producing same, and lithium secondary battery comprising same
EP11823822.9A EP2615673B1 (en) 2010-09-09 2011-09-09 Positive electrode active material for a lithium secondary battery, method for producing same, and lithium secondary battery comprising same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2010-0088236 2010-09-09
KR20100088236 2010-09-09
KR10-2011-0091771 2011-09-09
KR1020110091771A KR101473171B1 (ko) 2010-09-09 2011-09-09 리튬 이차 전지용 양극 활물질, 이의 제조 방법 및 이를 포함하는 리튬 이차 전지

Publications (2)

Publication Number Publication Date
WO2012033389A2 true WO2012033389A2 (ko) 2012-03-15
WO2012033389A3 WO2012033389A3 (ko) 2012-06-28

Family

ID=46132347

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2011/006740 WO2012033389A2 (ko) 2010-09-09 2011-09-09 리튬 이차 전지용 양극 활물질, 이의 제조 방법 및 이를 포함하는 리튬 이차 전지

Country Status (6)

Country Link
US (1) US9203077B2 (ko)
EP (1) EP2615673B1 (ko)
JP (1) JP5684915B2 (ko)
KR (1) KR101473171B1 (ko)
CN (1) CN103098273B (ko)
WO (1) WO2012033389A2 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140127575A1 (en) * 2012-11-06 2014-05-08 Industry-University Cooperation Foundation Hanyang University Positive active material for lithium sulfur battery and lithium sulfur battery comprising same

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101490294B1 (ko) * 2013-03-27 2015-02-06 국립대학법인 울산과학기술대학교 산학협력단 양극 활물질, 및 이의 제조 방법, 그리고 상기 양극을 포함하는 전기 화학 소자
CA2918670C (en) * 2013-08-21 2022-02-01 Hydro-Quebec Positive electrode material for lithium secondary battery
CN103474254B (zh) * 2013-09-26 2016-05-04 哈尔滨工程大学 含有MnCo2O4.5的超级电容器电极材料的制备方法
CN104752719B (zh) * 2013-12-27 2017-10-13 比亚迪股份有限公司 一种LiMnxFe1‑xPO4正极活性材料及其制备方法
CN104091951A (zh) * 2014-07-23 2014-10-08 中国科学技术大学苏州研究院 一种用混合碳源合成LiMnPO4/C的方法
WO2016052407A1 (ja) * 2014-09-29 2016-04-07 積水化学工業株式会社 リチウムイオン電池用正極活物質
US10256470B2 (en) * 2014-12-26 2019-04-09 Semiconductor Energy Laboratory Co., Ltd. Electrode, power storage device, electronic device, and manufacturing method of electrode
JP6447720B2 (ja) * 2015-05-14 2019-01-09 株式会社村田製作所 非水電解質二次電池
CN105110310B (zh) * 2015-08-13 2018-06-19 天津巴莫科技股份有限公司 锂离子动力电池用磷酸锰锂的制备方法
CN106816581B (zh) * 2015-11-30 2019-06-21 比亚迪股份有限公司 一种磷酸锰铁锂类材料及其制备方法以及电池浆料和正极与锂电池
TWI672856B (zh) * 2016-01-28 2019-09-21 日商積水化學工業股份有限公司 鋰離子電池用正極活性物質
WO2018199265A1 (ja) * 2017-04-28 2018-11-01 積水化学工業株式会社 リチウムイオン電池用負極活物質
KR102143101B1 (ko) 2017-09-29 2020-08-10 주식회사 엘지화학 이차전지용 양극 활물질의 제조방법, 이와 같이 제조된 양극 활물질 및 이를 포함하는 리튬 이차전지
CN107706402B (zh) * 2017-11-16 2020-09-18 东北大学秦皇岛分校 一种金属元素共掺杂的磷酸锰锂/碳复合正极材料及其制备方法
CN109216704A (zh) * 2018-09-12 2019-01-15 肇庆市华师大光电产业研究院 一种应用于锂硫电池中的正极改性隔层的制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002015735A (ja) 2000-06-29 2002-01-18 Toyota Central Res & Dev Lab Inc リチウム二次電池正極活物質用リチウム鉄複合酸化物、その製造方法およびそれを用いたリチウム二次電池
JP2004259470A (ja) 2003-02-24 2004-09-16 Sumitomo Osaka Cement Co Ltd リチウムイオン電池用正極活物質及びそれを有するリチウムイオン電池

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060085132A (ko) 2005-01-22 2006-07-26 삼성전자주식회사 코드분할다중접속 시스템에서 파일럿 동기 획득 장치 및방법
JP2007035358A (ja) 2005-07-25 2007-02-08 Toyota Central Res & Dev Lab Inc 正極活物質及びその製造方法、並びにリチウムイオン二次電池
CA2623629C (en) * 2005-09-21 2015-08-04 Kanto Denka Kogyo Co. Ltd. Positive electrode active material and method of producing the same and nonaqueous electrolyte battery having positive electrode containing positive electrode active material
WO2007034823A1 (ja) 2005-09-21 2007-03-29 Kanto Denka Kogyo Co., Ltd. 正極活物質の製造方法およびそれを用いた非水電解質電池
TWI352066B (en) * 2006-02-17 2011-11-11 Lg Chemical Ltd Preparation method of lithium-metal composite oxid
CN100390052C (zh) * 2006-02-28 2008-05-28 北大先行科技产业有限公司 一种合成类球形磷酸金属锂盐的方法
WO2007113624A1 (en) * 2006-04-06 2007-10-11 High Power Lithium S.A. Synthesis of nanoparticles of lithium metal phosphate positive material for lithium secondary battery
US7920508B2 (en) 2006-08-11 2011-04-05 Samsung Electronics Co., Ltd. Apparatus and method for generating synchronization channel for relay station in wireless communication system
JP5479106B2 (ja) * 2006-12-22 2014-04-23 ユミコア ソシエテ アノニム 結晶性ナノLiFeMPO4の合成
BRPI0811359A2 (pt) 2007-06-06 2019-09-24 Interdigital Tech Corp método e dispositivo para indicar um bloqueio temporário de fluxo ao qual um campo ack/ nack de carona é endereçado
EP2015382A1 (en) 2007-07-13 2009-01-14 High Power Lithium S.A. Carbon coated lithium manganese phosphate cathode material
US20090155689A1 (en) * 2007-12-14 2009-06-18 Karim Zaghib Lithium iron phosphate cathode materials with enhanced energy density and power performance
CN101540398A (zh) * 2008-03-17 2009-09-23 中国科学院物理研究所 一种用于锂二次电池的介孔结构磷酸盐材料及其制备方法
CN101320809B (zh) * 2008-07-17 2011-02-09 深圳市贝特瑞新能源材料股份有限公司 锂离子电池正极材料磷酸锰锂及其制备方法
JP2010108603A (ja) * 2008-10-28 2010-05-13 Tayca Corp リチウムイオン電池用負極活物質の製造方法
JP5376399B2 (ja) 2009-06-12 2013-12-25 株式会社Gsユアサ リチウム二次電池用正極活物質及びリチウム二次電池
CN101673821B (zh) * 2009-09-25 2012-02-08 清华大学 一种以磷酸氢锰制备磷酸锰锂/碳复合材料的方法
CN101673820A (zh) * 2009-09-25 2010-03-17 清华大学 一种固液结合制备磷酸锰锂/碳复合材料的方法
JP2011076820A (ja) 2009-09-30 2011-04-14 Hitachi Vehicle Energy Ltd リチウム二次電池及びリチウム二次電池用正極
KR101384197B1 (ko) 2009-10-01 2014-04-11 한양대학교 산학협력단 리튬 이차 전지용 양극 활물질, 이의 제조 방법 및 이를 포함하는 리튬 이차 전지
CN102142557A (zh) 2010-01-29 2011-08-03 比亚迪股份有限公司 一种正极活性材料及其制备方法
JP2011238594A (ja) 2010-04-13 2011-11-24 Nippon Electric Glass Co Ltd リチウムイオン二次電池正極材料およびその製造方法
WO2011132931A2 (ko) 2010-04-21 2011-10-27 주식회사 엘지화학 탄소가 코팅된 올리빈 결정구조의 리튬 철인산화물 및 이를 이용한 리튬 이차전지

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002015735A (ja) 2000-06-29 2002-01-18 Toyota Central Res & Dev Lab Inc リチウム二次電池正極活物質用リチウム鉄複合酸化物、その製造方法およびそれを用いたリチウム二次電池
JP2004259470A (ja) 2003-02-24 2004-09-16 Sumitomo Osaka Cement Co Ltd リチウムイオン電池用正極活物質及びそれを有するリチウムイオン電池

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2615673A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140127575A1 (en) * 2012-11-06 2014-05-08 Industry-University Cooperation Foundation Hanyang University Positive active material for lithium sulfur battery and lithium sulfur battery comprising same

Also Published As

Publication number Publication date
EP2615673A2 (en) 2013-07-17
KR101473171B1 (ko) 2014-12-17
EP2615673B1 (en) 2019-05-15
KR20120026466A (ko) 2012-03-19
WO2012033389A3 (ko) 2012-06-28
US9203077B2 (en) 2015-12-01
JP2013541142A (ja) 2013-11-07
EP2615673A4 (en) 2017-02-01
US20130244112A1 (en) 2013-09-19
CN103098273A (zh) 2013-05-08
JP5684915B2 (ja) 2015-03-18
CN103098273B (zh) 2016-03-02

Similar Documents

Publication Publication Date Title
WO2012033389A2 (ko) 리튬 이차 전지용 양극 활물질, 이의 제조 방법 및 이를 포함하는 리튬 이차 전지
WO2019151813A1 (ko) 음극 활물질, 이를 포함하는 음극 및 리튬 이차전지
WO2016175597A1 (ko) 이차전지용 양극활물질, 이의 제조방법 및 이를 포함하는 이차전지
WO2011132930A2 (ko) 이차전지용 양극 활물질 및 이를 포함하는 리튬 이차전지
WO2016108384A1 (ko) 리튬이온 이차전지용 양극 활물질, 그의 제조방법 및 이것을 포함하는 리튬이온 이차전지
WO2010047524A2 (ko) 올리빈 구조의 리튬 철인산화물 및 이의 제조방법
WO2019151814A1 (ko) 음극 활물질, 이를 포함하는 음극 및 리튬 이차전지
WO2011132931A2 (ko) 탄소가 코팅된 올리빈 결정구조의 리튬 철인산화물 및 이를 이용한 리튬 이차전지
WO2010047525A2 (ko) 올리빈 구조의 리튬 철인산화물 및 이의 분석 방법
WO2011132961A2 (ko) 올리빈 결정구조의 리튬 철인산화물 및 이를 이용한 리튬 이차전지
WO2013162086A1 (ko) 출력 향상을 위한 리튬이차전지 복합 전극용 활물질 및 이를 포함하는 리튬이차전지
WO2011105833A2 (ko) 출력 향상을 위한 양극 활물질 및 이를 포함하는 리튬 이차전지
WO2012138127A2 (ko) 출력 향상을 위한 리튬이차전지용 양극재 및 이를 포함하는 리튬이차전지
WO2011132959A2 (ko) 탄소가 코팅된 올리빈 결정구조의 리튬 철인산화물 및 이를 이용한 리튬 이차전지
WO2012161476A2 (ko) 에너지 밀도 특성이 향상된 고에너지 밀도의 리튬 이차전지
WO2011132965A2 (ko) 설파이드 결합의 황 화합물을 포함하고 있는 리튬 철인산화물 및 이를 이용한 리튬 이차전지
WO2020130434A1 (ko) 음극 활물질, 그의 제조 방법 및 그를 포함하는 리튬이차전지
WO2017095081A1 (ko) 이차전지용 양극활물질, 이를 포함하는 이차전지용 양극 및 이차전지
WO2019212321A1 (ko) 양극 활물질의 세정 방법, 이를 포함하는 양극 활물질의 제조 방법 및 이에 의해 제조된 양극 활물질
WO2014081254A1 (ko) 리튬 이차전지용 전해액 및 이를 포함하는 리튬 이차전지
WO2019013511A2 (ko) 리튬 이차전지용 양극, 그 제조방법 및 이를 포함하는 리튬 이차전지
WO2014081221A1 (ko) 리튬 이차전지
WO2012141503A2 (ko) 양극 활물질, 그 제조 방법 및 이를 채용한 양극 및 리튬 전지
WO2021112607A1 (ko) 이차전지용 양극재의 제조방법
WO2021025464A1 (ko) 이차전지용 양극 활물질의 제조방법

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180043727.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11823822

Country of ref document: EP

Kind code of ref document: A2

ENP Entry into the national phase

Ref document number: 2013528136

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011823822

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13821758

Country of ref document: US