WO2011129053A1 - Agent for forming electrode protective film and electrolyte solution - Google Patents

Agent for forming electrode protective film and electrolyte solution Download PDF

Info

Publication number
WO2011129053A1
WO2011129053A1 PCT/JP2011/001503 JP2011001503W WO2011129053A1 WO 2011129053 A1 WO2011129053 A1 WO 2011129053A1 JP 2011001503 W JP2011001503 W JP 2011001503W WO 2011129053 A1 WO2011129053 A1 WO 2011129053A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
ether
carbon atoms
hydrogen atom
protective film
Prior art date
Application number
PCT/JP2011/001503
Other languages
French (fr)
Japanese (ja)
Inventor
吉田文平
Original Assignee
三洋化成工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三洋化成工業株式会社 filed Critical 三洋化成工業株式会社
Priority to JP2012510541A priority Critical patent/JPWO2011129053A1/en
Publication of WO2011129053A1 publication Critical patent/WO2011129053A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/26Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/58Liquid electrolytes
    • H01G11/64Liquid electrolytes characterised by additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4235Safety or regulating additives or arrangements in electrodes, separators or electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/46Separators, membranes or diaphragms characterised by their combination with electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Definitions

  • the present invention relates to an electrode protective film forming agent and an electrolytic solution particularly useful for lithium secondary batteries or lithium ion capacitors.
  • Non-aqueous electrolyte secondary batteries such as lithium secondary batteries are characterized by high voltage and high energy density, so they are widely used in the field of portable information equipment, and the demand is rapidly expanding.
  • a position as a standard battery for mobile information devices such as mobile phones and notebook computers has been established.
  • higher performance for example, higher capacity and higher energy density
  • various methods such as higher density by improving the filling rate of electrodes, development of new high-capacity active materials, and the like have been performed. In reality, the capacity of the non-aqueous electrolyte secondary battery is reliably increased by these methods.
  • a cobalt composite oxide which is an active material of a non-aqueous electrolyte secondary battery having an operating voltage of 4.2 V class, has a charge capacity of about 155 mAh / g when charged to 4.3 V based on the current Li standard.
  • LiCoO 2 cobalt composite oxide
  • the utilization rate of a positive electrode active material becomes large by the improvement of a charging voltage.
  • Patent Document 1 and Patent Document 2 propose adding a sulfur compound as an additive to the electrolytic solution. Although it is described that these sulfur compounds are adsorbed on the surface of the positive electrode to suppress oxidative decomposition of the electrolytic solution, even if these sulfur compounds are used, charge / discharge cycle characteristics and high-temperature storage characteristics are not sufficient.
  • JP 7-320779 A Japanese Patent Laid-Open No. 10-64591
  • Electrode protective film forming agent having high voltage, high capacity, excellent charge / discharge cycle performance and high-temperature storage characteristics, electrolyte solution containing the same (in particular, for lithium secondary battery or lithium ion capacitor), and using these
  • An object is to provide a lithium secondary battery or a lithium ion capacitor.
  • the present invention provides an electrode protective film containing at least one compound (A) or (B) selected from the group consisting of the following (A1), (A2), (A3), (B1) and (B2).
  • Forming agent (F) At least one compound (A) or (B) selected from the group consisting of the following (A1), (A2), (A3), (B1) and (B2).
  • Polyoxyalkylene ether having polyhydric alcohol ether (B2) :( b) having at least one substituent (b) selected from the group [T 1 , T 2 and T 3 are a hydrogen atom or an alkyl group having 1 to 3 carbon atoms.
  • R 2 is an alkylene group having 1 to 3 carbon atoms
  • Q 1 , Q 2 and Q 3 are each independently a hydrogen atom, a halogen atom, an alkyl group having 1 to 4 carbon atoms, a carbon number 1 or 2 fluoroalkyl group, phenyl group, cyano group, carboxyl group, alkoxy group having 1 to 3 carbon atoms or alkoxycarbonyl group having 1 to 4 carbon atoms.
  • R 3 is an alkylene group having 1 to 3 carbon atoms
  • Q 4 is a hydrogen atom or a halogen atom
  • Q 5 , Q 6 and Q 7 are each independently a hydrogen atom, a halogen atom or a carbon number.
  • the present invention also provides an electrolytic solution containing the electrode protective film forming agent (F); a lithium secondary battery or a lithium ion capacitor containing the electrolytic solution; and an electrode active coated with the electrode protective film forming agent (F). It is a lithium secondary battery or a lithium ion capacitor having a substance.
  • the electrode protective film forming agent (F) of the present invention can suppress the decomposition of the electrolytic solution on the electrode surface under a high voltage, and can improve the charge / discharge cycle characteristics and the high-temperature storage characteristics.
  • a high-voltage, high-capacity lithium secondary battery or lithium ion capacitor can be obtained, and under these high voltages Charge / discharge cycle performance and high-temperature storage characteristics can be improved.
  • the electrode protective film forming agent (F) of the present invention is used by being contained in an electrolytic solution, but can also be used by other methods such as mixing in an electrode or coating directly on the electrode surface.
  • the electrode protective film-forming agent (F) of the present invention comprises at least one compound (A) or (B selected from the group consisting of the following (A1), (A2), (A3), (B1) and (B2). ).
  • B2 having at least one substituent (b): (b): a polyoxyalkylene ether having (b)
  • Compound (A) functions as a positive electrode protective film forming agent
  • compound (B) functions as a negative electrode protective film forming agent. That is, the compound (A) and the compound (B) form a protective film that suppresses decomposition of the solvent at the positive electrode and the negative electrode, respectively, at the first charge.
  • This protective film suppresses the decomposition of the electrolyte solution on the electrode surface under a high voltage and improves the charge / discharge cycle characteristics.
  • the compound (A) is preferred.
  • the compounds (A) (A1) to (A3) have an alkenyloxy group (a) represented by the general formula (1).
  • T 1 , T 2 and T 3 are a hydrogen atom or an alkyl group having 1 to 3 carbon atoms. Specific examples include a vinyloxy group, a 1-propenyloxy group, a 1-butenyloxy group, and a 1-methylpropenyloxy group. Of these, a vinyloxy group and a 1-propenyloxy group are preferable.
  • Examples of the aliphatic hydrocarbon in (A1) include linear or branched alkanes having 2 to 20 carbon atoms (ethane, propane, butane, pentane, hexane, octane, decane, tridecane, tetradecane, pentadecane, octadecane, eicosane, etc.
  • alkenes having 2 to 20 carbon atoms ethylene, propene, butene, pentene, hexene, octene, decene, undecene, dodecene, tridecene, tetradecene, pentadecene, octadecene, eicosene, etc.
  • Examples of (A1) include compounds in which one or more hydrogen atoms from the above alkane or alkene are substituted with an alkenyloxy group (a) [preferably a vinyloxy group and a 1-propenyloxy group].
  • the polyhydric alcohol in (A2) is a dihydric to hexahydric polyhydric alcohol, specifically ethylene glycol, diethylene glycol, triethylene glycol, propylene glycol, dipropylene glycol, tripropylene glycol, 1,3-butanediol, Examples include 1,4-butanediol, glycerin, trimethylolethane, trimethylolpropane, 2-methylglycerin, diglycerin, triglycerin, tetraglycerin, pentaerythritol, dipentaerythritol, and sorbitol. Ethylene glycol, diethylene glycol and triethylene glycol are preferred.
  • Examples of (A2) include ethers derived from compounds having the above polyhydric alcohols and alkenyloxy groups (a) [preferably vinyloxy groups and 1-propenyloxy groups].
  • (A3) is a polyoxyalkylene ether derived from a compound having an alkenyloxy group (a) [preferably a vinyloxy group and a 1-propenyloxy group].
  • (A3) can be obtained by adding alkylene oxide (hereinafter abbreviated as AO) to a compound having an alkenyloxy group (a).
  • the AO to be added preferably has 2 to 4 carbon atoms, and specifically includes ethylene oxide (hereinafter abbreviated as EO), propylene oxide (hereinafter abbreviated as PO), 1,2-, 2,3. -, 1,3- or iso-butylene oxide, tetrahydrofuran, and combinations of two or more thereof may be mentioned. Of these, EO is preferred.
  • the added mole number of AO is preferably 1 to 10 moles, more preferably 1 to 5 moles.
  • compounds represented by the general formula (4) compounds represented by the general formula (5), and vinyloxy group or 1-propenyloxy group are preferable. It is a cyclohexane derivative having two or more.
  • R 4 and R 5 each independently represent a hydrogen atom or a methyl group, and p is an integer of 1 to 10.
  • R 6 CH ⁇ CH—O— (C 2 H 4 O) q —CH ⁇ CH—R 7 (5)
  • R 6 and R 7 are each independently a hydrogen atom or a methyl group, and q is an integer of 1 to 5.
  • Specific examples of the compound represented by the general formula (4) include 1,4-butanediol divinyl ether, 1,5-pentanediol divinyl ether, 1,6-hexanediol divinyl ether, 1,7-heptanediol divinyl ether.
  • R 4 and R 5 are each a hydrogen atom and p is 6 to 8 from the viewpoint of charge / discharge cycle characteristics.
  • Specific examples of the compound represented by the general formula (5) include ethylene glycol divinyl ether, diethylene glycol divinyl ether, triethylene glycol divinyl ether, tetraethylene glycol divinyl ether, pentaethylene glycol divinyl ether, ethylene glycol (1-propenyl) vinyl ether.
  • Diethylene glycol (1-propenyl) vinyl ether Diethylene glycol (1-propenyl) vinyl ether, triethylene glycol (1-propenyl) vinyl ether, tetraethylene glycol (1-propenyl) vinyl ether, pentaethylene glycol (1-propenyl) vinyl ether, ethylene glycol di (1-propenyl) ether, diethylene glycol Di (1-propenyl) ether, triethylene glycol di (1-propenyl) ether Ether, tetraethylene glycol di (1-propenyl) ether and pentaethylene glycol di (1-propenyl) ether and the like. These can be obtained commercially.
  • R 6 and R 7 are hydrogen atoms and q is 2 or 3 is preferable from the viewpoint of charge / discharge cycle characteristics.
  • cyclohexane derivatives having two or more vinyloxy groups or 1-propenyloxy groups include 1,2-bis (1-propenoxymethyl) cyclohexane and 1,3-bis (1-propenoxymethyl) cyclohexane. 1,4-bis (1-propenoxymethyl) cyclohexane, 1,3,5-tris (1-propenoxymethyl) cyclohexane, 1,2-bis (vinyloxymethyl) cyclohexane, 1,3-bis (Vinyloxymethyl) cyclohexane, 1,4-bis (vinyloxymethyl) cyclohexane, 1,3,5-tris (vinyloxymethyl) cyclohexane and the like. These can be obtained commercially.
  • Examples of the compound (B) include (B1) and (B2).
  • (B1) and (B2) are composed of a substituent represented by the general formula (2), a substituent represented by the general formula (3), a (meth) acryloyloxyalkyl group, and a (meth) acryloylalkyl group. It has at least one substituent (b) selected from the group.
  • substituents (b) the substituents represented by the general formula (2), the substituents represented by the general formula (3), and (meth) acryloyloxy are preferable from the viewpoint of easy formation of the negative electrode protective film. It is an alkyl group.
  • R 2 in the general formula (2) is an alkylene group having 1 to 3 carbon atoms
  • Q 1 , Q 2 and Q 3 are each independently a hydrogen atom, a halogen atom, an alkyl group having 1 to 4 carbon atoms, A fluoroalkyl group having 1 to 2 carbon atoms, a phenyl group, a cyano group, a carboxyl group, an alkoxy group having 1 to 3 carbon atoms, or an alkoxycarbonyl group having 1 to 4 carbon atoms.
  • Examples of the alkylene group having 1 to 3 carbon atoms include a methylene group, an ethylene group, a 1,2-propylene group, and a 1,3-propylene group.
  • a methylene group is preferable from the viewpoint of charge / discharge cycle characteristics.
  • alkyl group having 1 to 4 carbon atoms examples include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group and t-butyl group.
  • halogen atom examples include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
  • fluoroalkyl group having 1 to 2 carbon atoms include those in which 1 to 5 hydrogen atoms on a methyl group or an ethyl group are substituted with fluorine atoms, such as a fluoromethyl group, a difluoromethyl group, and a trifluoromethyl group.
  • Examples of the alkoxy group having 1 to 3 carbon atoms include methoxy group, ethoxy group, n-propoxy group and isopropoxy group.
  • Examples of the alkoxycarbonyl group having 1 to 4 carbon atoms include a methoxycarbonyl group, an ethoxycarbonyl group, an n-propoxycarbonyl group, and an isopropoxycarbonyl group.
  • R 2 , Q 1 , Q 2 and Q 3 include the following (1) to (6).
  • R 3 in the general formula (3) is an alkylene group having 1 to 3 carbon atoms
  • Q 4 is a hydrogen atom or a halogen atom
  • Q 5 , Q 6 and Q 7 are each independently a hydrogen atom, a halogen atom
  • an alkylene group having 1 to 3 carbon atoms, a halogen atom, an alkyl group having 1 to 4 carbon atoms, a fluoroalkyl group having 1 or 2 carbon atoms, an alkoxy group having 1 to 3 carbon atoms, and 1 to 3 carbon atoms Specific examples of the alkoxycarbonyl group 4 are the same as those exemplified in the general formula (2).
  • Q 4 is preferably a hydrogen atom, a fluorine atom or a chlorine atom, more preferably a hydrogen atom, from the viewpoint of the ease of forming a negative electrode protective film and the stability of the substituent represented by the general formula (3). It is.
  • Q 5 is preferably a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, and a halogen atom from the viewpoint of easy formation of the negative electrode protective film, and more preferably a hydrogen atom and an alkyl group having 1 to 4 carbon atoms. Particularly preferred is a hydrogen atom.
  • Q 6 and Q 7 are preferably a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, and a halogen atom from the viewpoint of easy formation of the negative electrode protective film, and more preferably a hydrogen atom and 1 to 4 carbon atoms. Of these, particularly preferred are a hydrogen atom and a methyl group, and most preferred is a hydrogen atom.
  • R 3 , Q 4 , Q 5 , Q 6 and Q 7 include the following (1) to (12).
  • the (meth) acryloyloxyalkyl group is preferably a (meth) acryloyloxyalkyl group having 1 to 2 carbon atoms such as acryloyloxymethyl group, acryloyloxyethyl group, methacryloyloxymethyl group and methacryloyloxyethyl group.
  • the (meth) acryloylalkyl group is preferably a (meth) acryloylalkyl group having 1 to 2 carbon atoms such as acryloylmethyl group, acryloylethyl group, methacryloylmethyl group, and methacryloylethyl group.
  • Examples of the polyhydric alcohol in (B1) include the same as those exemplified in (A2). Ethylene glycol, diethylene glycol and triethylene glycol are preferred.
  • (B1) is an ether derived from a compound having a polyhydric alcohol and the substituent (b). Preferably it is a compound represented by General formula (6). X— (O—R 1 ) r —O—Y (6)
  • X and Y in the general formula (6) are each independently a substituent represented by the general formula (2), a substituent represented by the general formula (3), a (meth) acryloyloxyalkyl group, or a (meth) acryloyl. It is an alkyl group.
  • R 1 in the general formula (6) is an alkylene group having 1 to 3 carbon atoms, and examples thereof include a methylene group, an ethylene group, a 1,2-propylene group, and a 1,3-propylene group. Among these, an ethylene group is preferable from the viewpoint of output characteristics.
  • r is an integer of 1 to 5, preferably from 1 to 4 and more preferably 2 from the viewpoint of charge / discharge cycle characteristics.
  • (B1) examples include ethylene glycol di (2-butenoic acid methyl) ether, diethylene glycol di (2-butenoic acid methyl) ether, triethylene glycol di (2-butenoic acid methyl) ether, tetraethylene glycol di ( 2-butenoic acid methyl) ether, pentaethylene glycol di (2-butenoic acid methyl) ether, ethylene glycol dicinnamyl ether, diethylene glycol dicinnamyl ether, triethylene glycol dicinnamyl ether, tetraethylene glycol dicinnamyl ether, pentaethylene glycol dicine Namyl ether, ethylene glycol di (4-vinylbenzyl) ether, diethylene glycol di (4-vinylbenzyl) ether, triethylene glycol di (4-vinylbenzyl) Di) ether, tetraethylene glycol di (4-vinylbenzyl) ether, pentaethylene glycol di (4-vinyl
  • (B2) is a polyoxyalkylene ether having a substituent (b), and is obtained by adding alkylene oxide (hereinafter abbreviated as AO) to a compound having (b).
  • AO alkylene oxide
  • Examples of the AO to be added include the same ones as exemplified in (A3).
  • EO is preferred.
  • the added mole number of AO is preferably 1 to 10 moles, more preferably 1 to 5 moles.
  • the electrode protective film-forming agent (F) of the present invention comprises at least one compound (A) or (B selected from the group consisting of (A1), (A2), (A3), (B1) and (B2). ).
  • the electrolytic solution of the present invention contains an electrolyte (G), a nonaqueous solvent (H), and an electrode protective film forming agent (F) as essential components.
  • an electrode protective film forming agent (F) is contained in the electrode or the electrolytic solution and a voltage is applied to the electrode, (F) is polymerized on the surface of the active material to form a coating film, which becomes a protective film.
  • the electrode protective film forming agent (F) is included in the electrode or electrolyte of a lithium secondary battery or lithium ion capacitor, the protective film is formed at the first charge, but as an electrode of a lithium secondary battery or lithium ion capacitor.
  • an electrode in which a polymer coating of the electrode protective film (F) is separately formed on the electrode surface (active material surface) can also be used.
  • LiPF 6 is preferable from the viewpoint of battery output and charge / discharge cycle characteristics.
  • non-aqueous solvent (H) those used in ordinary electrolytic solutions can be used, for example, lactone compounds, cyclic or chain carbonates, chain carboxylates, cyclic or chain ethers, phosphate esters. , Nitrile compounds, amide compounds, sulfones, sulfolanes, and the like and mixtures thereof.
  • lactone compound examples include 5-membered rings (such as ⁇ -butyrolactone and ⁇ -valerolactone) and 6-membered lactone compounds (such as ⁇ -valerolactone).
  • Examples of the cyclic carbonate include propylene carbonate, ethylene carbonate and butylene carbonate.
  • Examples of the chain carbonate include dimethyl carbonate, methyl ethyl carbonate, diethyl carbonate, methyl-n-propyl carbonate, ethyl-n-propyl carbonate, and di-n-propyl carbonate.
  • chain carboxylic acid esters include methyl acetate, ethyl acetate, propyl acetate, and methyl propionate.
  • cyclic ether examples include tetrahydrofuran, tetrahydropyran, 1,3-dioxolane, 1,4-dioxane and the like.
  • chain ether examples include dimethoxymethane and 1,2-dimethoxyethane.
  • phosphate esters include trimethyl phosphate, triethyl phosphate, ethyl dimethyl phosphate, diethyl methyl phosphate, tripropyl phosphate, tributyl phosphate, tri (trifluoromethyl) phosphate, tri (trichloromethyl) phosphate, Tri (trifluoroethyl) phosphate, tri (triperfluoroethyl) phosphate, 2-ethoxy-1,3,2-dioxaphosphoran-2-one, 2-trifluoroethoxy-1,3,2- Examples include dioxaphospholan-2-one and 2-methoxyethoxy-1,3,2-dioxaphosphoran-2-one.
  • the nitrile compound include acetonitrile.
  • the amide compound include dimethylformamide.
  • Nonaqueous solvent (H) may be used independently and may use 2 or more types together.
  • lactone compounds are preferred from the viewpoint of battery output and charge / discharge recycling characteristics, and more preferred are lactone compounds and chain carbonates.
  • Esters particularly preferred are lactone compounds, most preferred are 5- or 6-membered lactone compounds, and particularly preferred are 5-membered lactone compounds.
  • lactone compounds have a narrow potential window compared to carbonate compounds, they could not be used as non-aqueous solvents in conventional lithium battery applications.
  • the electrolytic solution of the present invention has a protective film formed by the electrode protective film forming agent (F)
  • a lactone compound can also be used as a non-aqueous solvent and is excellent in heat-resistant storage stability as compared with a carbonate compound. Therefore, high temperature storage characteristics can be improved.
  • the electrolytic solution of the present invention preferably further contains a Lewis base (C).
  • the compound (A) having the alkenyloxy group (a) is highly reactive, for example, easily with an acidic compound such as HF generated by a reaction between a minute amount of water mixed in the electrolyte and an electrolyte salt such as LiPF 6. Easy to react.
  • the Lewis base (C) By adding the Lewis base (C) to the electrolytic solution, the stability of (A) in the electrolytic solution can be increased.
  • (C) is an azacrown ether derivative (C1) described later, (C1) forms a negative electrode protective film, so that the charge / discharge cycle characteristics can be further improved.
  • Lewis base (C) examples include an azacrown ether derivative (C1) and a triazole derivative (C2). Of these, (C1) is preferable from the viewpoint of cycle characteristics.
  • the azacrown ether derivative (C1) has a 9- to 24-membered crown ether skeleton having 1 to 4 nitrogen atoms, and a polymerizable unsaturated double bond on one or more of the nitrogen atoms of the skeleton
  • bonded is preferable.
  • Examples of 9- to 24-membered crown ether skeletons having 1 to 4 nitrogen atoms include aza-9-crown-3-ether (4-aza-9-crown-3-ether and 4,7-diaza- 9-crown-3-ether, etc.), aza-12-crown-4-ether (such as 4-aza-12-crown-4-ether and 4,10-diaza-12-crown-4-ether), aza- 14-crown-4-ether (such as 4-aza-14-crown-4-ether and 4,10-diaza-14-crown 4-ether), aza-15-crown-5-ether (4-aza-15) -Crown-5-ether, 4,10-diaza-15-crown-5-ether, 4,14-diaza-15-crown-5 and 4,10,16-triaza-15-crown-5-ether Aza-18-crown-6-ether (4-aza-18-crown 6-ether, 4,10-diaza-18-crown-6-ether and 4,10,16-triaza
  • aza-12-crown-4-ether, aza-14-crown-4-ether, aza-15-crown-5-ether and aza- are preferred from the viewpoint of coordination power with lithium ions.
  • the number of nitrogen atoms in the azacrown ether skeleton is preferably 1 to 3, more preferably 1 or 2, from the viewpoint of coordination power to lithium ions.
  • Examples of the substituent having a polymerizable unsaturated double bond that the azacrown ether derivative (C1) has include a substituent represented by the general formula (2) and a substituent represented by the general formula (3).
  • azacrown ether derivative (C1) examples include N- (methyl 2-butenoate) -4-aza-12-crown-4-ether, N, N-di- (methyl 2-butenoate) -4 , 10-diaza-12-crown-4-ether, N- (methyl 2-butenoate) -4-aza-15-crown-5-ether, N, N-di- (methyl 2-butenoate) -4 , 10-diaza-15-crown-5-ether, N- (cinnamyl) -4-aza-12-crown-4-ether, N, N-di- (cinnamyl) -4,10-diaza-12-crown -4-ether, N- (cinnamyl) -4-aza-15-crown-5-ether, N, N-di- (cinnamyl) -4,10-diaza-15-crown-5-ether, N- ( 4-vinylbenzyl) -4-aza 12-crown-4-ether
  • the azacrown ether derivative (C1) in the present invention can be produced by a usual method.
  • organic solvent examples include nitrile organic solvents (acetonitrile, propiononitrile, benzonitrile, etc.), ketone organic solvents (acetone, methyl ethyl ketone, etc.), amide organic solvents (formamide, acetamide, dimethylformamide, dimethylacetamide, etc.) , Ether organic solvents (such as dimethyl ether, tetrahydrofuran and dioxane), ester organic solvents (such as ethyl acetate and diethyl maleate), sulfur-containing organic solvents (such as dimethyl sulfoxide and sulfolane), halogenated hydrocarbons (such as chloroform and dichloromethane) , Hydrocarbons (hexane, heptane, toluene, xylene, etc.) and mixtures of two or more of these solvents.
  • nitrile organic solvents acetonitrile, propiononitrile, benzonitrile,
  • Catalysts include alkali metal hydroxides (for example, lithium hydroxide, sodium hydroxide and potassium hydroxide), alkali metal carbonates (such as sodium bicarbonate, potassium bicarbonate, sodium carbonate and potassium carbonate) and alkali metal hydrides. (Such as sodium hydride and potassium hydride).
  • the reaction temperature is usually 10 to 150 ° C., and the reaction time is usually 0.5 to 24 hours. After completion of the reaction, if necessary, the catalyst can be neutralized and treated with an adsorbent to remove and purify the catalyst.
  • halogenated alkyl having a polymerizable unsaturated double bond examples include 4-bromo-2-butenoic acid methyl ester, 4-chloro-2-butenoic acid methyl ester, and 1-bromo-4-cyano-2-butene.
  • 1-chloro-4-cyano-2-butene acrylic acid chloromethyl ester, acrylic acid bromomethyl ester, acrylic acid-2-chloroethyl ester, acrylic acid-2-bromoethyl ester, methacrylic acid chloromethyl ester, methacrylic acid
  • examples include acid bromomethyl ester, methacrylic acid-2-chloroethyl ester, methacrylic acid-2-bromoethyl ester, cinnamilk chloride, cinnamyl bromide, 4- (chloromethyl) styrene, and 4- (bromomethyl) styrene.
  • Examples of the triazole derivative (C2) include 1,2,3-benzotriazole, 5-methyl-1,2,3-benzotriazole, 5,6-dimethyl-1,2,3-benzotriazole, 1,2,4 -Triazole, 3-amino-1,2,4-triazole, 3,5-diamino-1,2,4-triazole, 3-amino-5-methyl-1,2,4-triazole, 3-amino-5 -Ethyl-1,2,4-triazole, 3-amino-5-propyl-1,2,4-triazole, 3-amino-5-butyl-1,2,4-triazole and the like. These can be obtained commercially. Of these, 3-amino-1,2,4-triazole is preferable from the viewpoint of charge / discharge cycle characteristics.
  • the electrolytic solution of the present invention can further contain a negative electrode protective film forming agent (D) other than the compounds (A) and (B).
  • a negative electrode protective film forming agent (D) other than the compounds (A) and (B).
  • (D) includes vinylene carbonate, fluoroethylene carbonate, chloroethylene carbonate, ethylene sulfite, propylene sulfite, ⁇ -bromo- ⁇ -butyrolactone, and the like.
  • vinylene carbonate is preferable from the viewpoint of cycle characteristics.
  • the preferred contents or concentrations of the electrode protective film forming agent (F), Lewis base (C), negative electrode protective film forming agent (D), nonaqueous solvent (H) and electrolyte (G) in the electrolytic solution of the present invention are as follows: It is as follows.
  • the content of the compound (A) as the electrode protective film forming agent (F) is preferably 0.01 to 10% by weight based on the weight of the electrolytic solution from the viewpoint of charge / discharge cycle characteristics, battery capacity and high storage characteristics. More preferably, it is 0.05 to 1% by weight.
  • the content of the compound (B) as the electrode protective film forming agent (F) is preferably 0.01 to 10% by weight based on the weight of the electrolytic solution from the viewpoint of battery capacity, battery output and charge / discharge cycle characteristics. More preferably, the content is 0.01 to 1% by weight.
  • the content of (C) is preferably 0 to 10% by weight, more preferably 0.01 to 10% by weight, still more preferably, based on the weight of the electrolytic solution, from the viewpoints of battery capacity, battery output and charge / discharge cycle characteristics. Is 0.05 to 1% by weight.
  • the content of (D) is preferably 0 to 5% by weight, more preferably 0.01 to 5% by weight, still more preferably, based on the weight of the electrolyte, from the viewpoint of battery capacity, battery output and charge / discharge cycle characteristics. Is from 0.01 to 3% by weight.
  • the content of the non-aqueous solvent (H) is preferably 70 to 99% by weight and more preferably 93 to 99% by weight based on the weight of the electrolytic solution from the viewpoint of battery output and charge / discharge cycle characteristics.
  • the concentration of the electrolyte (G) in the electrolytic solution is preferably 0.01 to 3 mol / L, more preferably 0.05 to 1 based on the capacity of the electrolytic solution from the viewpoint of battery output and charge / discharge cycle characteristics. 0.5 mol / L.
  • the electrolytic solution of the present invention may further contain additives such as an overcharge inhibitor, a dehydrating agent and a capacity stabilizer.
  • overcharge inhibitor examples include biphenyl, alkylbiphenyl, terphenyl, partially hydrogenated terphenyl, aromatic compounds such as cyclohexylbenzene, t-butylbenzene, and t-amylbenzene.
  • the amount of the overcharge inhibitor used is usually 0 to 5% by weight, preferably 0 to 3% by weight, based on the total weight of the electrolyte.
  • the dehydrating agent examples include zeolite, silica gel and calcium oxide.
  • the amount of the dehydrating agent used is usually 0 to 5% by weight, preferably 0 to 3% by weight, based on the total weight of the electrolyte for a lithium secondary battery.
  • the capacity stabilizer examples include fluoroethylene carbonate, succinic anhydride, 1-methyl-2-piperidone, heptane and fluorobenzene.
  • the amount of the capacity stabilizer used is usually 0 to 5% by weight, preferably 0 to 3% by weight, based on the total weight of the electrolytic solution.
  • the electrolytic solution of the present invention is particularly useful as an electrolytic solution for a lithium secondary battery.
  • a lithium secondary battery using the electrolytic solution of the present invention is obtained by injecting the electrolytic solution of the present invention into a battery can containing a positive electrode, a negative electrode, and a separator and sealing the battery can.
  • a positive electrode in a lithium secondary battery As a positive electrode in a lithium secondary battery, a positive electrode active material, a conductive agent and a binder dispersed in a solvent and slurried are applied to a positive electrode current collector with a coating device such as a bar coater and dried. Then, the solvent can be removed and, if necessary, a product pressed with a press machine can be used.
  • a coating device such as a bar coater
  • composite oxides of lithium and transition metals for example, LiCoO 2 , LiNiO 2 , LiMnO 2 and LiMn 2 O 4 ), transition metal oxides (for example, MnO 2 and V 2 O 5 ), transition Examples thereof include metal sulfides (for example, MoS 2 and TiS 2 ), and conductive polymers (for example, polyaniline, polyvinylidene fluoride, polypyrrole, polythiophene, polyacetylene, poly-p-phenylene, polycarbazole, and the like).
  • Examples of the conductive agent include graphite (for example, natural graphite and artificial graphite), carbon blacks (for example, carbon black, acetylene black, ketjen black, channel black, furnace black, lamp black, and thermal black), metal powder (for example, aluminum) Powder and nickel powder), conductive metal oxides (such as zinc oxide and titanium oxide), and the like.
  • graphite for example, natural graphite and artificial graphite
  • carbon blacks for example, carbon black, acetylene black, ketjen black, channel black, furnace black, lamp black, and thermal black
  • metal powder for example, aluminum
  • nickel powder conductive metal oxides (such as zinc oxide and titanium oxide), and the like.
  • binder examples include polymer compounds such as starch, polyvinylidene fluoride, polyvinyl alcohol, carboxymethyl cellulose, polyvinyl pyrrolidone, tetrafluoroethylene, polyethylene, and polypropylene.
  • Examples of the solvent include 1-methyl-2-pyrrolidone, methyl ethyl ketone, dimethylformamide, dimethylacetamide, N, N-dimethylaminopropylamine, and tetrahydrofuran.
  • Examples of the current collector for positive electrode include aluminum, titanium, stainless steel, nickel, baked carbon, conductive polymer, conductive glass, and the like.
  • the positive electrode active material is preferably 70 to 98% by weight, more preferably 90 to 98% by weight.
  • the content of the conductive agent is preferably 1 to 29% by weight, more preferably 1 to 10% by weight.
  • the content of the binder is preferably 1 to 29% by weight, more preferably 1 to 10% by weight.
  • the amount of the solvent used in slurrying the positive electrode active material, the conductive agent and the binder is preferably 20 to 70% by weight, more preferably based on the total weight of the positive electrode active material, the conductive agent and the binder. 30 to 60% by weight.
  • a negative electrode in a lithium secondary battery As a negative electrode in a lithium secondary battery, a negative electrode active material, a conductive agent and a binder dispersed in a solvent are applied to a negative electrode current collector with a coating device such as a bar coater and dried. What removed the solvent and pressed with the press if necessary can be used.
  • a coating device such as a bar coater
  • Examples of the negative electrode active material include graphite, polymer compound fired bodies (for example, those obtained by firing and carbonizing phenol resin and furan resin), cokes (for example, pitch coke, needle coke, and petroleum coke), carbon fiber, and conductivity. Examples thereof include polymers (for example, polyacetylene and polypyrrole), metal alloys (for example, lithium-aluminum alloy, lithium-aluminum-manganese alloy), and the like.
  • the conductive agent, the binder and the solvent the same materials as those used for the production of the positive electrode can be used.
  • Examples of the negative electrode current collector include copper, stainless steel, nickel, aluminum, titanium, calcined carbon, conductive polymer, conductive glass, and an aluminum-cadmium alloy.
  • preferable contents of the negative electrode active material, the conductive agent, and the binder based on the total weight of the negative electrode are as follows.
  • the content of the negative electrode active material is preferably 70 to 98% by weight, more preferably 90 to 98% by weight.
  • the contents of the conductive agent and the binder are the same as in the case of the positive electrode.
  • the amount of the solvent used in the slurry formation of the negative electrode active material, the conductive agent and the binder is the same as the amount of the solvent used in the slurry formation of the positive electrode active material, the conductive agent and the binder.
  • polyethylene polypropylene film microporous membrane, porous polyethylene film and multilayer film of polypropylene, polyester fiber, aramid fiber, glass fiber, etc., and silica on the surface thereof , Alumina, titania and other ceramic fine particles attached thereto.
  • the battery can in the lithium secondary battery, metal materials such as stainless steel, iron, aluminum and nickel-plated steel can be used, but plastic materials can also be used depending on the battery application.
  • the battery can be formed into a cylindrical shape, a coin shape, a square shape, or any other shape depending on the application.
  • the electrolytic solution of the present invention is particularly useful as an electrolytic solution for lithium ion capacitors.
  • a lithium ion capacitor using the electrolytic solution of the present invention can be obtained by injecting the electrolytic solution of the present invention into a capacitor can containing a positive electrode, a negative electrode and a separator and sealing the capacitor can.
  • activated carbon positive electrode active material
  • a conductive agent As a positive electrode in a lithium ion capacitor, activated carbon (positive electrode active material), a conductive agent and a binder dispersed in a solvent and applied to a positive electrode current collector with a coating device such as a bar coater, What was dried and removed the solvent, and what was pressed with the press if necessary can be used.
  • Examples of the conductive agent, the binder, the solvent, and the positive electrode current collector are the same as those in the case of the lithium secondary battery.
  • preferable contents of the positive electrode active material, the conductive agent, and the binder based on the total weight of the positive electrode are as follows.
  • the content of the positive electrode active material is preferably 70 to 98% by weight, more preferably 90 to 98% by weight.
  • the content of the conductive agent is preferably 1 to 29% by weight, more preferably 1 to 10% by weight.
  • the content of the binder is preferably 1 to 29% by weight, more preferably 1 to 10% by weight.
  • the amount of the solvent used in slurrying the positive electrode active material, the conductive agent and the binder is preferably 20 to 70% by weight, more preferably based on the total weight of the positive electrode active material, the conductive agent and the binder. 30 to 60% by weight.
  • a negative electrode in a lithium ion capacitor As a negative electrode in a lithium ion capacitor, a negative electrode active material, a conductive agent and a binder dispersed in a solvent are slurried, applied to a negative electrode current collector with a coating device such as a bar coater, and dried to obtain a solvent. Can be used if necessary.
  • Examples of the negative electrode active material include amorphous carbon, graphite, tin and alloys thereof, silicon and alloys thereof.
  • the conductive agent, the binder and the solvent the same materials as those used for the production of the positive electrode can be used.
  • Examples of the negative electrode current collector include copper, stainless steel, nickel, aluminum, titanium, calcined carbon, conductive polymer, conductive glass, and an aluminum-cadmium alloy.
  • preferable contents of the negative electrode active material, the conductive agent, and the binder based on the total weight of the negative electrode are as follows.
  • the content of the negative electrode active material is preferably 70 to 98% by weight, more preferably 90 to 98% by weight.
  • the contents of the conductive agent and the binder are the same as in the case of the positive electrode.
  • the amount of the solvent used in the slurry formation of the negative electrode active material, the conductive agent and the binder is the same as the amount of the solvent used in the slurry formation of the positive electrode active material, the conductive agent and the binder.
  • polyethylene As a separator in a lithium ion capacitor, polyethylene, a microporous film of a polypropylene film, a multilayer film of a porous polyethylene film and polypropylene, a non-woven fabric made of polyester fiber, aramid fiber, glass fiber, etc., and silica on the surface thereof, Examples include those to which ceramic fine particles such as alumina and titania are attached.
  • the battery can in the lithium ion capacitor, metal materials such as stainless steel, iron, aluminum and nickel-plated steel can be used, but plastic materials can also be used depending on the battery application.
  • the battery can be formed into a cylindrical shape, a coin shape, a square shape, or any other shape depending on the application.
  • the electrode protective film forming agent (F) of the present invention can be used by adding to and contained in the positive electrode and / or the negative electrode of a lithium secondary battery or a lithium ion capacitor.
  • (F) is added to a slurry obtained by dispersing a positive electrode active material, a conductive agent and a binder in a solvent, and the positive electrode current collector is applied with a coating device such as a bar coater.
  • a coating device such as a bar coater.
  • (F) is added to a slurry obtained by dispersing a negative electrode active material, a conductive agent and a binder in a solvent, and the negative electrode current collector is coated with a coating device such as a bar coater.
  • a coating device such as a bar coater.
  • the amount of (F) added to the positive electrode is preferably 0.1 to 10% by weight, more preferably 0.5 to 0.5% based on the positive electrode active material from the viewpoints of charge / discharge cycle characteristics, battery capacity and high storage characteristics. 5% by weight.
  • the amount of (F) added to the negative electrode is preferably 0.1 to 10% by weight, more preferably 0.5 to 0.5% based on the negative electrode active material from the viewpoints of charge / discharge cycle characteristics, battery capacity and high storage characteristics. 5% by weight.
  • a part shows a weight part.
  • (AZ-3) is a general formula (2) in which a substituent having a polymerizable unsaturated double bond in which R 2 is a methylene group, Q 1 and Q 2 are hydrogen atoms, and Q 3 is a phenyl group is a nitrogen atom It is a diaza crown ether compound bonded to.
  • Example 1 Synthesis of diethylene glycol di (2-butenoic acid methyl) ether (B-1); To a flask equipped with a stirrer, thermometer and condenser, diethylene glycol [manufactured by Tokyo Chemical Industry Co., Ltd.] 7.26 parts (68.4 mmol part), 4-bromo-2-butenoic acid methyl ester [Tokyo Chemical Industry Co., Ltd. )] 26.9 parts (150.3 mmol parts), 6.00 parts (150 mmol parts) of sodium hydroxide and 100 parts of toluene were uniformly dissolved with stirring, and then stirred at room temperature for 15 minutes. 1.32 parts (4.1 mmol parts) of butylammonium bromide was added.
  • Example 2 Synthesis of diethylene glycol di (4-vinylbenzyl) ether (B-2); Instead of 26.9 parts (150.3 mmol parts) of 4-bromo-2-butenoic acid methyl ester, 22.9 parts (150.3 mmol parts) of 4-vinylbenzyl chloride [manufactured by Tokyo Chemical Industry Co., Ltd.] was used. Except that, 16.9 parts (49.9 mmol parts) of diethylene glycol di (4-vinylbenzyl) ether (B-2) was obtained in the same manner as in Example 1 (yield 73%).
  • positive electrodes to which the electrode protective film forming agent (F) was added were prepared by the following method. After thoroughly mixing 90.0 parts of LiCoO2 powder, 5 parts of Ketjen black [manufactured by Aldrich], 5 parts of polyvinylidene fluoride [manufactured by Aldrich], and the weight (F) shown in Tables 4 to 7 in a mortar 1-methyl-2-pyrrolidone [manufactured by Tokyo Chemical Industry Co., Ltd.] was added and further mixed well in a mortar to obtain a slurry.
  • the obtained slurry was applied to one side of an aluminum electrolytic foil having a thickness of 20 ⁇ m using a wire bar in the atmosphere, dried at 100 ° C. for 15 minutes, and further under reduced pressure (10 mmHg) at 80 ° C. for 5 minutes. It was dried and punched out to 15.95 mm ⁇ to produce positive electrodes for lithium ion batteries of Examples 36 to 67.
  • negative electrodes to which the electrode protective film forming agent (F) was added were prepared by the following method. 92.5 parts of graphite powder having an average particle size of about 8 to 12 ⁇ m, 7.5 parts of polyvinylidene fluoride, 200 parts of 1-methyl-2-pyrrolidone [manufactured by Tokyo Chemical Industry Co., Ltd.] and the weights shown in Tables 4 to 7 (F) was sufficiently mixed in a mortar to obtain a slurry. The obtained slurry was applied to one side of a 20 ⁇ m thick copper foil, dried at 100 ° C. for 15 minutes to evaporate the solvent, punched to 16.15 mm ⁇ , and made 30 ⁇ m thick with a press machine. ⁇ 67 negative electrodes for lithium ion batteries were prepared.
  • a positive electrode to which an electrode protective film forming agent (F) was added based on the formulation shown in Table 7 was prepared by the following method. 90.0 parts of activated carbon powder, 5.0 parts of Ketjen black [manufactured by Aldrich], 5.0 parts of polyvinylidene fluoride [manufactured by Aldrich], and the weight (F) shown in Tables 4 to 7 are sufficient in a mortar After mixing, 70.0 parts of 1-methyl-2-pyrrolidone [manufactured by Tokyo Chemical Industry Co., Ltd.] was added and further mixed well in a mortar to obtain a slurry.
  • the obtained slurry was applied to one side of an aluminum electrolytic foil having a thickness of 20 ⁇ m using a wire bar in the atmosphere, dried at 100 ° C. for 15 minutes, and further under reduced pressure (10 mmHg) at 80 ° C. for 5 minutes. It was dried and punched out to 15.95 mm ⁇ to produce positive electrodes for lithium ion capacitors of Examples 68 to 71.
  • a negative electrode to which the electrode protective film forming agent (F) was added was prepared by the following method. 92.5 parts of graphite powder having an average particle size of about 8 to 12 ⁇ m, 7.5 parts of polyvinylidene fluoride, 200 parts of 1-methyl-2-pyrrolidone [manufactured by Tokyo Chemical Industry Co., Ltd.] and the weights shown in Tables 4 to 7 (F) was sufficiently mixed in a mortar to obtain a slurry. The obtained slurry was applied to one side of a 20 ⁇ m thick copper foil, dried at 100 ° C.
  • Example 68 The negative electrode for lithium ion capacitors of ⁇ 71 was produced.
  • a positive electrode for a lithium ion battery of Comparative Example 4 was prepared in the same manner as in Examples 36 to 67 except that 1.5 parts of methylsulfone was added instead of the electrode protective film forming agent (F).
  • a negative electrode for a lithium ion battery of Comparative Example 4 was prepared in the same manner as in Examples 36 to 67 except that the electrode protective film forming agent (F) was not added.
  • a positive electrode for a lithium ion battery of Comparative Example 5 was prepared in the same manner as in Examples 36 to 67 except that 1.5 parts of 1,3-propane sultone was added instead of the electrode protective film forming agent (F).
  • a negative electrode for a lithium ion battery of Comparative Example 5 was prepared in the same manner as in Examples 36 to 67 except that the electrode protective film forming agent (F) was not added.
  • a positive electrode for a lithium ion capacitor of Comparative Example 6 was prepared in the same manner as in Examples 68 to 71 except that 1.5 parts of dimethyl sulfone was added instead of the electrode protective film forming agent (F).
  • a negative electrode for a lithium ion capacitor of Comparative Example 6 was prepared in the same manner as in Examples 68 to 71 except that the electrode protective film forming agent (F) was not added.
  • a positive electrode for a lithium ion capacitor of Comparative Example 7 was prepared in the same manner as in Examples 68 to 71 except that 1.5 parts of 1,3-propane sultone was added instead of the electrode protective film forming agent (F).
  • a negative electrode for a lithium ion capacitor of Comparative Example 7 was prepared in the same manner as in Examples 68 to 71 except that the electrode protective film forming agent (F) was not added.
  • the secondary battery cell was produced by arranging the positive electrode and the negative electrode at both ends of the 2032 type coin cell so that the respective coated surfaces face each other.
  • the positive electrode active material activated carbon having a specific surface area obtained by an alkali activation method of about 2200 m 2 / g was used.
  • Activated carbon powder, acetylene black, and polyvinylidene fluoride are mixed at a weight ratio of 80:10:10, and the mixture is added to N-methylpyrrolidone, which is a solvent, and mixed by stirring.
  • N-methylpyrrolidone which is a solvent
  • This slurry was applied onto an aluminum foil having a thickness of 30 ⁇ m by a doctor blade method, temporarily dried, and then cut so that the electrode size was 20 mm ⁇ 30 mm.
  • the electrode thickness was about 50 ⁇ m. Before assembling the cell, it was dried in a vacuum at 120 ° C. for 10 hours to prepare a positive electrode for a lithium ion capacitor.
  • the negative electrode obtained as described above was doped with lithium as follows.
  • the negative electrode and lithium metal foil were sandwiched between separators (polypropylene nonwoven fabric) and set in a beaker cell, and a predetermined amount of lithium ions was occluded in the negative electrode over about 10 hours.
  • the doping amount of lithium was about 75% of the negative electrode theoretical capacity.
  • Capacitor cell assembly A separator (polypropylene nonwoven fabric) is inserted between the positive electrode and the negative electrode obtained as described above, impregnated with an electrolytic solution, and placed in a storage case made of a laminate film. And sealed to make a lithium ion capacitor.
  • Lithium Ion Capacitor A capacitor cell was prepared by arranging the positive and negative electrodes of Examples 68 to 71 and Comparative Examples 6 and 7 so that their coated surfaces face each other in a storage case made of a laminate film. .
  • Table 9 shows the results of evaluating the characteristics and the high temperature storage characteristics.
  • the electrolytic solution using the electrode protective film forming agent (F) of the present invention has excellent cycle characteristics under high voltage and high-temperature storage stability
  • the electrolytic solution for a lithium secondary battery or the electrolytic solution for a lithium ion capacitor is particularly preferable. It is useful as an electric vehicle.

Abstract

Disclosed is a high-voltage, and high-capacity, electrolyte solution for a lithium secondary battery or electrolyte solution for a lithium-ion capacitor, with excellent charging and discharging cycle performance and high-temperature storage characteristics. The invention is an agent (F) for forming an electrode protective film, including at least one type of compound (A) or (B) selected from a group of (A1), (A2), (A3), (B1), and (B2). (A1): Aliphatic hydrocarbon including an alkynyloxy group (a) represented by the general formula (1); (A2): Polyvalent alcohol ether including (a); (A3): Polyoxyalylene ether including (a); (B1): Polyvalent alcohol ether having at least one type of substituent group (b) selected from a group composed of a substituent group represented by the general formula (2), a substituent group represented by a general formula (3), a (meth) acryloyloxyalkyl group, and a (meth) acryloyl alkyl; and (B2): a polyoxyalkylene ether including (b).

Description

電極保護膜形成剤及び電解液Electrode protective film forming agent and electrolyte
 本発明は、特にリチウム二次電池又はリチウムイオンキャパシタに有用な電極保護膜形成剤及び電解液に関する。 The present invention relates to an electrode protective film forming agent and an electrolytic solution particularly useful for lithium secondary batteries or lithium ion capacitors.
 リチウム二次電池等の非水電解液二次電池は、高電圧、高エネルギー密度という特徴を持つことから、携帯情報機器分野等において広く利用され、その需要が急速に拡大しており、現在、携帯電話、ノート型パソコンを始めとするモバイル情報化機器用の標準電池としてのポジションが確立されている。当然ながら、携帯機器等の高性能化と多機能化に伴い、その電源としての非水電解液二次電池に対しても更なる高性能化(例えば、高容量化と高エネルギー密度化)が求められている。この要求に応えるために種々の方法、例えば、電極の充填率の向上による高密度化、新規高容量の活物質の開発等が行われている。そして、現実に非水電解液二次電池がこれらの方法によって確実に高容量化されている。 Non-aqueous electrolyte secondary batteries such as lithium secondary batteries are characterized by high voltage and high energy density, so they are widely used in the field of portable information equipment, and the demand is rapidly expanding. A position as a standard battery for mobile information devices such as mobile phones and notebook computers has been established. Of course, along with the high performance and multi-functionality of portable devices, etc., even higher performance (for example, higher capacity and higher energy density) for non-aqueous electrolyte secondary batteries as its power source It has been demanded. In order to meet this demand, various methods such as higher density by improving the filling rate of electrodes, development of new high-capacity active materials, and the like have been performed. In reality, the capacity of the non-aqueous electrolyte secondary battery is reliably increased by these methods.
 また、非水電解液二次電池の更なる高容量化を図るために、正極活物質の利用率の向上や高電圧材料の開発が求められている。この中で、特に充電電圧の上昇による正極活物質の利用深度の向上が注目されている。例えば、作動電圧が4.2V級の非水電解液二次電池の活物質であるコバルト複合酸化物(LiCoO)は、現在のLi基準で4.3Vまで充電すると充電容量が約155mAh/gであるのに対し、4.5Vまで充電すると約190mAh/g以上である。このように充電電圧の向上で正極活物質の利用率が大きくなる。 Further, in order to further increase the capacity of the non-aqueous electrolyte secondary battery, improvement in the utilization rate of the positive electrode active material and development of a high voltage material are required. Among these, the improvement of the utilization depth of the positive electrode active material due to the increase in the charging voltage has attracted attention. For example, a cobalt composite oxide (LiCoO 2 ), which is an active material of a non-aqueous electrolyte secondary battery having an operating voltage of 4.2 V class, has a charge capacity of about 155 mAh / g when charged to 4.3 V based on the current Li standard. On the other hand, when charged to 4.5V, it is about 190 mAh / g or more. Thus, the utilization rate of a positive electrode active material becomes large by the improvement of a charging voltage.
 しかし、電池の高電圧化に伴って、電池の容量やエネルギー密度が向上する一方で、充放電サイクル特性の低下や、高温貯蔵時における膨れ等の問題が発生する。 However, as the battery voltage increases, the capacity and energy density of the battery improve, while problems such as deterioration of charge / discharge cycle characteristics and swelling during high-temperature storage occur.
 従来、電池の充放電サイクルの低下や電池の膨れ等の問題を解決する技術は種々提案されている。例えば特許文献1及び特許文献2では、電解液に添加剤として硫黄化合物を加えることが提案されている。これらの硫黄化合物が正極表面に吸着することにより電解液の酸化分解を抑制することが記載されているが、これらの硫黄化合物を用いても、充放電サイクル特性や高温貯蔵特性は十分ではない。 Conventionally, various techniques for solving problems such as a decrease in battery charge / discharge cycle and battery swelling have been proposed. For example, Patent Document 1 and Patent Document 2 propose adding a sulfur compound as an additive to the electrolytic solution. Although it is described that these sulfur compounds are adsorbed on the surface of the positive electrode to suppress oxidative decomposition of the electrolytic solution, even if these sulfur compounds are used, charge / discharge cycle characteristics and high-temperature storage characteristics are not sufficient.
特開平7-320779号公報JP 7-320779 A 特開平10-64591号公報Japanese Patent Laid-Open No. 10-64591
 高電圧、高容量であり、充放電サイクル性能及び高温貯蔵特性に優れた電極保護膜形成剤、これを含有する電解液(特に、リチウム二次電池用又はリチウムイオンキャパシタ用)、これらを用いたリチウム二次電池又はリチウムイオンキャパシタを提供することを目的とする。 Electrode protective film forming agent having high voltage, high capacity, excellent charge / discharge cycle performance and high-temperature storage characteristics, electrolyte solution containing the same (in particular, for lithium secondary battery or lithium ion capacitor), and using these An object is to provide a lithium secondary battery or a lithium ion capacitor.
 本発明者は、上記の目的を達成するべく鋭意検討を行った結果、本発明に到達した。即ち、本発明は、下記(A1)、(A2)、(A3)、(B1)及び(B2)からなる群より選ばれる少なくとも1種の化合物(A)又は(B)を含有する電極保護膜形成剤(F)である。
(A1):下記一般式(1)で表されるアルケニルオキシ基(a)を有する脂肪族炭化水素
(A2):(a)を有する多価アルコールのエーテル
(A3):(a)を有するポリオキシアルキレンエーテル
(B1):下記一般式(2)で表される置換基、下記一般式(3)で表される置換基、(メタ)アクリロイルオキシアルキル基、及び(メタ)アクリロイルアルキル基からなる群より選ばれる少なくとも1種の置換基(b)を有する多価アルコールのエーテル
(B2):(b)を有するポリオキシアルキレンエーテル
Figure JPOXMLDOC01-appb-C000001
[T、T及びTは水素原子又は炭素数1~3のアルキル基である。]
Figure JPOXMLDOC01-appb-C000002
[式中、Rは炭素数1~3のアルキレン基であり、Q、Q及びQは、それぞれ独立に水素原子、ハロゲン原子、炭素数1~4のアルキル基、炭素数1若しくは2のフルオロアルキル基、フェニル基、シアノ基、カルボキシル基、炭素数1~3のアルコキシ基又は炭素数1~4のアルコキシカルボニル基である。]
Figure JPOXMLDOC01-appb-C000003
[式中、Rは炭素数1~3のアルキレン基であり、Qは水素原子又はハロゲン原子であり、Q、Q及びQは、それぞれ独立に水素原子、ハロゲン原子、炭素数1~4のアルキル基、炭素数1若しくは2のフルオロアルキル基、フェニル基、シアノ基、カルボキシル基、炭素数1~3のアルコキシ基又は炭素数1~4のアルコキシカルボニル基である。]
また、本発明は該電極保護膜形成剤(F)を含有する電解液;該電解液を含むリチウム二次電池又はリチウムイオンキャパシタ;並びに該電極保護膜形成剤(F)で被覆された電極活物質を有するリチウム二次電池又はリチウムイオンキャパシタである。
The inventor of the present invention has arrived at the present invention as a result of intensive studies to achieve the above object. That is, the present invention provides an electrode protective film containing at least one compound (A) or (B) selected from the group consisting of the following (A1), (A2), (A3), (B1) and (B2). Forming agent (F).
(A1): aliphatic hydrocarbon (A2) having an alkenyloxy group (a) represented by the following general formula (1): polyhydric alcohol ether (A3) having (a): poly having (a) Oxyalkylene ether (B1): consisting of a substituent represented by the following general formula (2), a substituent represented by the following general formula (3), a (meth) acryloyloxyalkyl group, and a (meth) acryloylalkyl group Polyoxyalkylene ether having polyhydric alcohol ether (B2) :( b) having at least one substituent (b) selected from the group
Figure JPOXMLDOC01-appb-C000001
[T 1 , T 2 and T 3 are a hydrogen atom or an alkyl group having 1 to 3 carbon atoms. ]
Figure JPOXMLDOC01-appb-C000002
[Wherein R 2 is an alkylene group having 1 to 3 carbon atoms, and Q 1 , Q 2 and Q 3 are each independently a hydrogen atom, a halogen atom, an alkyl group having 1 to 4 carbon atoms, a carbon number 1 or 2 fluoroalkyl group, phenyl group, cyano group, carboxyl group, alkoxy group having 1 to 3 carbon atoms or alkoxycarbonyl group having 1 to 4 carbon atoms. ]
Figure JPOXMLDOC01-appb-C000003
[Wherein R 3 is an alkylene group having 1 to 3 carbon atoms, Q 4 is a hydrogen atom or a halogen atom, and Q 5 , Q 6 and Q 7 are each independently a hydrogen atom, a halogen atom or a carbon number. An alkyl group having 1 to 4 carbon atoms, a fluoroalkyl group having 1 or 2 carbon atoms, a phenyl group, a cyano group, a carboxyl group, an alkoxy group having 1 to 3 carbon atoms, or an alkoxycarbonyl group having 1 to 4 carbon atoms. ]
The present invention also provides an electrolytic solution containing the electrode protective film forming agent (F); a lithium secondary battery or a lithium ion capacitor containing the electrolytic solution; and an electrode active coated with the electrode protective film forming agent (F). It is a lithium secondary battery or a lithium ion capacitor having a substance.
 本発明の電極保護膜形成剤(F)は、高電圧下の電極表面での電解液の分解を抑制し、充放電サイクル特性及び高温貯蔵特性を向上させることができる。
 本発明の電極保護膜形成剤(F)を含有する電解液を使用することで、特に、高電圧、高容量のリチウム二次電池又はリチウムイオンキャパシタが得られると共に、これらの高電圧下での充放電サイクル性能及び高温貯蔵特性を向上させることができる。
The electrode protective film forming agent (F) of the present invention can suppress the decomposition of the electrolytic solution on the electrode surface under a high voltage, and can improve the charge / discharge cycle characteristics and the high-temperature storage characteristics.
By using the electrolytic solution containing the electrode protective film forming agent (F) of the present invention, in particular, a high-voltage, high-capacity lithium secondary battery or lithium ion capacitor can be obtained, and under these high voltages Charge / discharge cycle performance and high-temperature storage characteristics can be improved.
本発明の電極保護膜形成剤(F)は電解液に含有させて使用する物であるが、その他にも電極中に混合する、直接電極表面にコーティングする等の方法で使用することもできる。
本発明の電極保護膜形成剤(F)は、下記(A1)、(A2)、(A3)、(B1)及び(B2)からなる群より選ばれる少なくとも1種の化合物(A)又は(B)を含有する。
(A1):一般式(1)で表されるアルケニルオキシ基(a)を有する脂肪族炭化水素
(A2):(a)を有する多価アルコールのエーテル
(A3):(a)を有するポリオキシアルキレンエーテル
(B1):一般式(2)で表される置換基、一般式(3)で表される置換基、(メタ)アクリロイルオキシアルキル基、及び(メタ)アクリロイルアルキル基からなる群より選ばれる少なくとも1種の置換基(b)を有する多価アルコールのエーテル
(B2):(b)を有するポリオキシアルキレンエーテル
The electrode protective film forming agent (F) of the present invention is used by being contained in an electrolytic solution, but can also be used by other methods such as mixing in an electrode or coating directly on the electrode surface.
The electrode protective film-forming agent (F) of the present invention comprises at least one compound (A) or (B selected from the group consisting of the following (A1), (A2), (A3), (B1) and (B2). ).
(A1): aliphatic hydrocarbon having alkenyloxy group (a) represented by general formula (1) (A2): polyhydric alcohol ether having (a) (A3): polyoxy having (a) Alkylene ether (B1): selected from the group consisting of a substituent represented by the general formula (2), a substituent represented by the general formula (3), a (meth) acryloyloxyalkyl group, and a (meth) acryloylalkyl group Polyhydric alcohol ether (B2) having at least one substituent (b): (b): a polyoxyalkylene ether having (b)
 化合物(A)は正極保護膜形成剤として機能し、化合物(B)は負極保護膜形成剤として機能する。即ち、化合物(A)と化合物(B)は初回充電時に、それぞれ正極と負極で溶媒の分解を抑制する保護膜を形成する。この保護膜が、高電圧下の電極表面での電解液の分解を抑制し、充放電サイクル特性を向上させる。 Compound (A) functions as a positive electrode protective film forming agent, and compound (B) functions as a negative electrode protective film forming agent. That is, the compound (A) and the compound (B) form a protective film that suppresses decomposition of the solvent at the positive electrode and the negative electrode, respectively, at the first charge. This protective film suppresses the decomposition of the electrolyte solution on the electrode surface under a high voltage and improves the charge / discharge cycle characteristics.
化合物(A)及び(B)のうち、好ましくは化合物(A)である。 Of the compounds (A) and (B), the compound (A) is preferred.
化合物(A)である(A1)~(A3)は、一般式(1)で表されるアルケニルオキシ基(a)を有する。一般式(1)中、T、T及びTは水素原子又は炭素数1~3のアルキル基である。
具体的には、ビニルオキシ基、1-プロペニルオキシ基、1-ブテニルオキシ基及び1-メチルプロペニルオキシ基等が挙げられる。
 これらのうち、好ましくはビニルオキシ基及び1-プロペニルオキシ基である。
The compounds (A) (A1) to (A3) have an alkenyloxy group (a) represented by the general formula (1). In the general formula (1), T 1 , T 2 and T 3 are a hydrogen atom or an alkyl group having 1 to 3 carbon atoms.
Specific examples include a vinyloxy group, a 1-propenyloxy group, a 1-butenyloxy group, and a 1-methylpropenyloxy group.
Of these, a vinyloxy group and a 1-propenyloxy group are preferable.
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 (A1)における脂肪族炭化水素としては、炭素数2~20の直鎖又は分岐のアルカン(エタン、プロパン、ブタン、ペンタン、ヘキサン、オクタン、デカン、ドデカン、トリデカン、テトラデカン、ペンタデカン、オクタデカン及びエイコサン等)並びに炭素数2~20の直鎖又は分岐のアルケン(エチレン、プロペン、ブテン、ペンテン、ヘキセン、オクテン、デセン、ウンデセン、ドデセン、トリデセン、テトラデセン、ペンタデセン、オクタデセン及びエイコセン等)が挙げられる。
(A1)としては、上記アルカン又はアルケンから1つ以上の水素原子がアルケニルオキシ基(a)[好ましくはビニルオキシ基及び1-プロペニルオキシ基]で置換された化合物が挙げられる。
Examples of the aliphatic hydrocarbon in (A1) include linear or branched alkanes having 2 to 20 carbon atoms (ethane, propane, butane, pentane, hexane, octane, decane, tridecane, tetradecane, pentadecane, octadecane, eicosane, etc. And straight-chain or branched alkenes having 2 to 20 carbon atoms (ethylene, propene, butene, pentene, hexene, octene, decene, undecene, dodecene, tridecene, tetradecene, pentadecene, octadecene, eicosene, etc.).
Examples of (A1) include compounds in which one or more hydrogen atoms from the above alkane or alkene are substituted with an alkenyloxy group (a) [preferably a vinyloxy group and a 1-propenyloxy group].
 (A2)における多価アルコールとしては、2~6価の多価アルコール、具体的にはエチレングリコール、ジエチレングリコール、トリエチレングリコール、プロピレングリコール、ジプロピレングリコール、トリプロピレングリコール、1,3-ブタンジオール、1,4-ブタンジオール、グリセリン、トリメチロールエタン、トリメチロールプロパン、2-メチルグリセリン、ジグリセリン、トリグリセリン、テトラグリセリン、ペンタエリスリトール、ジペンタエリスリトール及びソルビトール等が挙げられる。
好ましくはエチレングリコール、ジエチレングリコール及びトリエチレングリコールである。
(A2)としては、上記多価アルコールとアルケニルオキシ基(a)[好ましくはビニルオキシ基及び1-プロペニルオキシ基]を有する化合物から誘導されるエーテルが挙げられる。
The polyhydric alcohol in (A2) is a dihydric to hexahydric polyhydric alcohol, specifically ethylene glycol, diethylene glycol, triethylene glycol, propylene glycol, dipropylene glycol, tripropylene glycol, 1,3-butanediol, Examples include 1,4-butanediol, glycerin, trimethylolethane, trimethylolpropane, 2-methylglycerin, diglycerin, triglycerin, tetraglycerin, pentaerythritol, dipentaerythritol, and sorbitol.
Ethylene glycol, diethylene glycol and triethylene glycol are preferred.
Examples of (A2) include ethers derived from compounds having the above polyhydric alcohols and alkenyloxy groups (a) [preferably vinyloxy groups and 1-propenyloxy groups].
 (A3)はアルケニルオキシ基(a)[好ましくはビニルオキシ基及び1-プロペニルオキシ基]を有する化合物から誘導されるポリオキシアルキレンエーテルである。
 (A3)はアルケニルオキシ基(a)を有する化合物にアルキレンオキサイド(以下AOと略記する)を付加して得られる。
付加するAOとしては、炭素数が2~4のものが好ましく、具体的には、エチレンオキサイド(以下EOと略記する)、プロピレンオキサイド(以下POと略記する)、1,2-、2,3-、1,3-又はiso-ブチレンオキサイド、テトラヒドロフラン、並びにこれらの2種以上の併用が挙げられる。
これらの中で好ましくはEOである。AOの付加モル数は、好ましくは1~10モル、更に好ましくは1~5モルである。
(A3) is a polyoxyalkylene ether derived from a compound having an alkenyloxy group (a) [preferably a vinyloxy group and a 1-propenyloxy group].
(A3) can be obtained by adding alkylene oxide (hereinafter abbreviated as AO) to a compound having an alkenyloxy group (a).
The AO to be added preferably has 2 to 4 carbon atoms, and specifically includes ethylene oxide (hereinafter abbreviated as EO), propylene oxide (hereinafter abbreviated as PO), 1,2-, 2,3. -, 1,3- or iso-butylene oxide, tetrahydrofuran, and combinations of two or more thereof may be mentioned.
Of these, EO is preferred. The added mole number of AO is preferably 1 to 10 moles, more preferably 1 to 5 moles.
 化合物(A)のうち、充放電サイクル特性の観点から好ましいのは、一般式(4)で表される化合物、一般式(5)で表される化合物及びビニルオキシ基若しくは1-プロペニルオキシ基を2つ以上有するシクロヘキサン誘導体である。
 R-CH=CH-O-(CH-O-CH=CH-R        (4)
[式中、R及びRはそれぞれ独立に水素原子又はメチル基であり、pは1~10の整数である。]
 R-CH=CH-O-(CO)-CH=CH-R        (5)
[式中、R及びRはそれぞれ独立に水素原子又はメチル基であり、qは1~5の整数である。]
Among the compounds (A), from the viewpoint of charge / discharge cycle characteristics, compounds represented by the general formula (4), compounds represented by the general formula (5), and vinyloxy group or 1-propenyloxy group are preferable. It is a cyclohexane derivative having two or more.
R 4 —CH═CH—O— (CH 2 ) p —O—CH═CH—R 5   (4)
[Wherein, R 4 and R 5 each independently represent a hydrogen atom or a methyl group, and p is an integer of 1 to 10. ]
R 6 —CH═CH—O— (C 2 H 4 O) q —CH═CH—R 7 (5)
[Wherein, R 6 and R 7 are each independently a hydrogen atom or a methyl group, and q is an integer of 1 to 5.] ]
 一般式(4)で示される化合物の具体例としては、1,4-ブタンジオールジビニルエーテル、1,5-ペンタンジオールジビニルエーテル、1,6-ヘキサンジオールジビニルエーテル、1,7-ヘプタンジオールジビニルエーテル、1,8-オクタンジオールジビニルエーテル、1,9-ノナンジオールジビニルエーテル、1,10-デカンジオールジビニルエーテル、1,4-ブタンジオール(1-プロペニル)ビニルエーテル、1,5-ペンタンジオール(1-プロペニル)ビニルエーテル、1,6-ヘキサンジオール(1-プロペニル)ビニルエーテル、1,7-ヘプタンジオール(1-プロペニル)ビニルエーテル、1,8-オクタンジオール(1-プロペニル)ビニルエーテル、1,9-ノナンジオール(1-プロペニル)ビニルエーテル、1,10-デカンジオール(1-プロペニル)ビニルエーテル、1,4-ブタンジオールジ(1-プロペニル)エーテル、1,5-ペンタジオールジ(1-プロペニル)エーテル、1,6-ヘキサンジオールジ(1-プロペニル)エーテル、1,7-ヘプタンジオールジ(1-プロペニル)エーテル、1,8-オクタンジオールジ(1-プロペニル)エーテル、1,9-ノナンジオールジ(1-プロペニル)エーテル及び1,10-デカンジオールジ(1-プロペニル)エーテルが挙げられる。これらは市販品を入手することができる。 Specific examples of the compound represented by the general formula (4) include 1,4-butanediol divinyl ether, 1,5-pentanediol divinyl ether, 1,6-hexanediol divinyl ether, 1,7-heptanediol divinyl ether. 1,8-octanediol divinyl ether, 1,9-nonanediol divinyl ether, 1,10-decanediol divinyl ether, 1,4-butanediol (1-propenyl) vinyl ether, 1,5-pentanediol (1- Propenyl) vinyl ether, 1,6-hexanediol (1-propenyl) vinyl ether, 1,7-heptanediol (1-propenyl) vinyl ether, 1,8-octanediol (1-propenyl) vinyl ether, 1,9-nonanediol ( 1-propenyl) Nyl ether, 1,10-decanediol (1-propenyl) vinyl ether, 1,4-butanediol di (1-propenyl) ether, 1,5-pentadiol di (1-propenyl) ether, 1,6-hexanediol di (1-propenyl) ether, 1,7-heptanediol di (1-propenyl) ether, 1,8-octanediol di (1-propenyl) ether, 1,9-nonanediol di (1-propenyl) ether and 1 , 10-decanediol di (1-propenyl) ether. These can be obtained commercially.
 これらの内、充放電サイクル特性の観点から好ましいのは、R及びRがそれぞれ水素原子でpが6~8である化合物である。 Of these, preferred are compounds in which R 4 and R 5 are each a hydrogen atom and p is 6 to 8 from the viewpoint of charge / discharge cycle characteristics.
 一般式(5)で示される化合物の具体例としては、エチレングリコールジビニルエーテル、ジエチレングリコールジビニルエーテル、トリエチレングリコールジビニルエーテル、テトラエチレングリコールジビニルエーテル、ペンタエチレングリコールジビニルエーテル、エチレングリコール(1-プロペニル)ビニルエーテル、ジエチレングリコール(1-プロペニル)ビニルエーテル、トリエチレングリコール(1-プロペニル)ビニルエーテル、テトラエチレングリコール(1-プロペニル)ビニルエーテル、ペンタエチレングリコール(1-プロペニル)ビニルエーテル、エチレングリコールジ(1-プロペニル)エーテル、ジエチレングリコールジ(1-プロペニル)エーテル、トリエチレングリコールジ(1-プロペニル)エーテル、テトラエチレングリコールジ(1-プロペニル)エーテル及びペンタエチレングリコールジ(1-プロペニル)エーテル等が挙げられる。これらは市販品を入手することができる。 Specific examples of the compound represented by the general formula (5) include ethylene glycol divinyl ether, diethylene glycol divinyl ether, triethylene glycol divinyl ether, tetraethylene glycol divinyl ether, pentaethylene glycol divinyl ether, ethylene glycol (1-propenyl) vinyl ether. , Diethylene glycol (1-propenyl) vinyl ether, triethylene glycol (1-propenyl) vinyl ether, tetraethylene glycol (1-propenyl) vinyl ether, pentaethylene glycol (1-propenyl) vinyl ether, ethylene glycol di (1-propenyl) ether, diethylene glycol Di (1-propenyl) ether, triethylene glycol di (1-propenyl) ether Ether, tetraethylene glycol di (1-propenyl) ether and pentaethylene glycol di (1-propenyl) ether and the like. These can be obtained commercially.
 これらの内、充放電サイクル特性の観点から好ましいのは、R及びRが水素原子かつqが2又は3である化合物である。 Among these, a compound in which R 6 and R 7 are hydrogen atoms and q is 2 or 3 is preferable from the viewpoint of charge / discharge cycle characteristics.
 ビニルオキシ基又は1-プロペニルオキシ基を2つ以上有するシクロヘキサン誘導体の具体例としては、1,2-ビス(1-プロペノキシメチル)シクロヘキサン、1,3-ビス(1-プロペノキシメチル)シクロヘキサン、1,4-ビス(1-プロペノキシメチル)シクロヘキサン、1,3,5-トリス(1-プロペノキシメチル)シクロヘキサン、1,2-ビス(ビニロキシメチル)シクロヘキサン、1,3-ビス(ビニロキシメチル)シクロヘキサン、1,4-ビス(ビニロキシメチル)シクロヘキサン及び1,3,5-トリス(ビニロキシメチル)シクロヘキサン等が挙げられる。これらは市販品を入手することができる。 Specific examples of cyclohexane derivatives having two or more vinyloxy groups or 1-propenyloxy groups include 1,2-bis (1-propenoxymethyl) cyclohexane and 1,3-bis (1-propenoxymethyl) cyclohexane. 1,4-bis (1-propenoxymethyl) cyclohexane, 1,3,5-tris (1-propenoxymethyl) cyclohexane, 1,2-bis (vinyloxymethyl) cyclohexane, 1,3-bis (Vinyloxymethyl) cyclohexane, 1,4-bis (vinyloxymethyl) cyclohexane, 1,3,5-tris (vinyloxymethyl) cyclohexane and the like. These can be obtained commercially.
 化合物(B)としては、(B1)及び(B2)が挙げられる。
(B1):上記一般式(2)で表される置換基、上記一般式(3)で表される置換基、(メタ)アクリロイルオキシアルキル基、及び(メタ)アクリロイルアルキル基からなる群より選ばれる少なくとも1種の置換基(b)を有する多価アルコールのエーテル
(B2):(b)を有するポリオキシアルキレンエーテル
Examples of the compound (B) include (B1) and (B2).
(B1): selected from the group consisting of the substituent represented by the general formula (2), the substituent represented by the general formula (3), the (meth) acryloyloxyalkyl group, and the (meth) acryloylalkyl group. Polyhydric alcohol ether (B2) having at least one substituent (b): (b): a polyoxyalkylene ether having (b)
 (B1)及び(B2)は、一般式(2)で表される置換基、一般式(3)で表される置換基、(メタ)アクリロイルオキシアルキル基、及び(メタ)アクリロイルアルキル基からなる群より選ばれる少なくとも1種の置換基(b)を有する。
置換基(b)の内、負極保護膜の形成し易さの観点から好ましいのは、一般式(2)で示される置換基、一般式(3)で示される置換基及び(メタ)アクリロイルオキシアルキル基である。
(B1) and (B2) are composed of a substituent represented by the general formula (2), a substituent represented by the general formula (3), a (meth) acryloyloxyalkyl group, and a (meth) acryloylalkyl group. It has at least one substituent (b) selected from the group.
Among the substituents (b), the substituents represented by the general formula (2), the substituents represented by the general formula (3), and (meth) acryloyloxy are preferable from the viewpoint of easy formation of the negative electrode protective film. It is an alkyl group.
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 一般式(2)におけるRは炭素数1~3のアルキレン基であり、Q、Q及びQは、それぞれ独立に水素原子、ハロゲン原子、炭素数1~4のアルキル基、炭素数1~2のフルオロアルキル基、フェニル基、シアノ基、カルボキシル基、炭素数1~3のアルコキシ基又は炭素数1~4のアルコキシカルボニル基である。 R 2 in the general formula (2) is an alkylene group having 1 to 3 carbon atoms, and Q 1 , Q 2 and Q 3 are each independently a hydrogen atom, a halogen atom, an alkyl group having 1 to 4 carbon atoms, A fluoroalkyl group having 1 to 2 carbon atoms, a phenyl group, a cyano group, a carboxyl group, an alkoxy group having 1 to 3 carbon atoms, or an alkoxycarbonyl group having 1 to 4 carbon atoms.
 炭素数1~3のアルキレン基としては、メチレン基、エチレン基、1,2-プロピレン基及び1,3-プロピレン基が挙げられる。これらの内、充放電サイクル特性の観点から好ましいのはメチレン基である。 Examples of the alkylene group having 1 to 3 carbon atoms include a methylene group, an ethylene group, a 1,2-propylene group, and a 1,3-propylene group. Among these, a methylene group is preferable from the viewpoint of charge / discharge cycle characteristics.
 炭素数1~4のアルキル基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基及びt-ブチル基等が挙げられる。 Examples of the alkyl group having 1 to 4 carbon atoms include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group and t-butyl group.
 ハロゲン原子としては、フッ素原子、塩素原子、臭素原子及びヨウ素原子が挙げられる。
 炭素数1~2のフルオロアルキル基としては、メチル基又はエチル基上の水素原子の1~5個をフッ素原子に置換したものが挙げられ、例えば、フルオロメチル基、ジフルオロメチル基、トリフルオロメチル基、フルオロエチル基、ジフルオロエチル基、トリフルオロエチル基、テトラフルオロエチル基及びペンタフルオロエチル基等が挙げられる。
Examples of the halogen atom include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
Examples of the fluoroalkyl group having 1 to 2 carbon atoms include those in which 1 to 5 hydrogen atoms on a methyl group or an ethyl group are substituted with fluorine atoms, such as a fluoromethyl group, a difluoromethyl group, and a trifluoromethyl group. Group, fluoroethyl group, difluoroethyl group, trifluoroethyl group, tetrafluoroethyl group, pentafluoroethyl group and the like.
 炭素数1~3のアルコキシ基としては、例えば、メトキシ基、エトキシ基、n-プロポキシ基及びイソプロポキシ基が挙げられる。
 炭素数1~4のアルコキシカルボニル基としては、例えば、メトキシカルボニル基、エトキシカルボニル基、n―プロポキシカルボニル基及びイソプロポキシカルボニル基等が挙げられる。
Examples of the alkoxy group having 1 to 3 carbon atoms include methoxy group, ethoxy group, n-propoxy group and isopropoxy group.
Examples of the alkoxycarbonyl group having 1 to 4 carbon atoms include a methoxycarbonyl group, an ethoxycarbonyl group, an n-propoxycarbonyl group, and an isopropoxycarbonyl group.
 R、Q、Q及びQの好ましい組み合わせとしては、以下の(1)~(6)が挙げられる。
(1)R=メチレン基、Q=水素原子、Q=水素原子、Q=フェニル基
(2)R=メチレン基、Q=水素原子、Q=水素原子、Q=アルコキシカルボニル基
(3)R=メチレン基、Q=フェニル基、Q=水素原子、Q=フェニル基
(4)R=メチレン基、Q=フェニル基、Q=水素原子、Q=アルコキシカルボニル基
(5)R=メチレン基、Q=アルコキシカルボニル基、Q=水素原子、Q=フェニル基
(6)R=メチレン基、Q=アルコキシカルボニル基、Q=水素原子、Q=アルコキシカルボニル基
 これらの組み合わせの内、更に好ましいのは(2)の組み合わせである。
Preferred combinations of R 2 , Q 1 , Q 2 and Q 3 include the following (1) to (6).
(1) R 2 = methylene group, Q 1 = hydrogen atom, Q 2 = hydrogen atom, Q 3 = phenyl group (2) R 2 = methylene group, Q 1 = hydrogen atom, Q 2 = hydrogen atom, Q 3 = Alkoxycarbonyl group (3) R 2 = methylene group, Q 1 = phenyl group, Q 2 = hydrogen atom, Q 3 = phenyl group (4) R 2 = methylene group, Q 1 = phenyl group, Q 2 = hydrogen atom, Q 3 = alkoxycarbonyl group (5) R 2 = methylene group, Q 1 = alkoxycarbonyl group, Q 2 = hydrogen atom, Q 3 = phenyl group (6) R 2 = methylene group, Q 1 = alkoxycarbonyl group, Q 2 = hydrogen atom, Q 3 = alkoxycarbonyl group Among these combinations, the combination of (2) is more preferable.
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
 一般式(3)におけるRは炭素数1~3のアルキレン基であり、Qは水素原子又はハロゲン原子であり、Q、Q及びQは、それぞれ独立に水素原子、ハロゲン原子、炭素数1~4のアルキル基、炭素数1若しくは2のフルオロアルキル基、フェニル基、シアノ基、カルボキシル基、炭素数1~3のアルコキシ基又は炭素数1~4のアルコキシカルボニル基である。          R 3 in the general formula (3) is an alkylene group having 1 to 3 carbon atoms, Q 4 is a hydrogen atom or a halogen atom, Q 5 , Q 6 and Q 7 are each independently a hydrogen atom, a halogen atom, An alkyl group having 1 to 4 carbon atoms, a fluoroalkyl group having 1 or 2 carbon atoms, a phenyl group, a cyano group, a carboxyl group, an alkoxy group having 1 to 3 carbon atoms, or an alkoxycarbonyl group having 1 to 4 carbon atoms.
 一般式(3)における炭素数1~3のアルキレン基、ハロゲン原子、炭素数1~4のアルキル基、炭素数1又は2のフルオロアルキル基、炭素数1~3のアルコキシ基及び炭素数1~4のアルコキシカルボニル基の具体例としては、一般式(2)において例示したものと同様のものが挙げられる。 In general formula (3), an alkylene group having 1 to 3 carbon atoms, a halogen atom, an alkyl group having 1 to 4 carbon atoms, a fluoroalkyl group having 1 or 2 carbon atoms, an alkoxy group having 1 to 3 carbon atoms, and 1 to 3 carbon atoms Specific examples of the alkoxycarbonyl group 4 are the same as those exemplified in the general formula (2).
 Qとして、負極保護膜の形成し易さ及び一般式(3)で表される置換基の安定性の観点から好ましいのは水素原子、フッ素原子及び塩素原子であり、更に好ましいのは水素原子である。
 Qとして、負極保護膜の形成し易さの観点から好ましいのは水素原子、炭素数1~4のアルキル基及びハロゲン原子であり、更に好ましいのは水素原子及び炭素数1~4のアルキル基、特に好ましいのは水素原子である。
 Q及びQとして、負極保護膜の形成し易さの観点から好ましいのは水素原子、炭素数1~4のアルキル基及びハロゲン原子であり、更に好ましいのは水素原子及び炭素数1~4のアルキル基、特に好ましいのは水素原子及びメチル基、最も好ましいのは水素原子である。
Q 4 is preferably a hydrogen atom, a fluorine atom or a chlorine atom, more preferably a hydrogen atom, from the viewpoint of the ease of forming a negative electrode protective film and the stability of the substituent represented by the general formula (3). It is.
Q 5 is preferably a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, and a halogen atom from the viewpoint of easy formation of the negative electrode protective film, and more preferably a hydrogen atom and an alkyl group having 1 to 4 carbon atoms. Particularly preferred is a hydrogen atom.
Q 6 and Q 7 are preferably a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, and a halogen atom from the viewpoint of easy formation of the negative electrode protective film, and more preferably a hydrogen atom and 1 to 4 carbon atoms. Of these, particularly preferred are a hydrogen atom and a methyl group, and most preferred is a hydrogen atom.
、Q、Q、Q及びQの好ましい組み合わせとしては、以下の(1)~(12)が挙げられる。
(1)R=メチレン基、Q=水素原子、Q=水素原子、Q=水素原子、Q=水素原子
(2)R=メチレン基、Q=フッ素原子、Q=水素原子、Q=水素原子、Q=水素原子
(3)R=メチレン基、Q=塩素原子、Q=水素原子、Q=水素原子、Q=水素原子
(4)R=メチレン基、Q=水素原子、Q=水素原子、Q=メチル基、Q=水素原子
(5)R=メチレン基、Q=フッ素原子、Q=水素原子、Q=メチル基、Q=水素原子
(6)R=メチレン基、Q=塩素原子、Q=水素原子、Q=メチル基、Q=水素原子
(7)R=メチレン基、Q=水素原子、Q=水素原子、Q=水素原子、Q=メチル基
(8)R=メチレン基、Q=フッ素原子、Q=水素原子、Q=水素原子、Q=メチル基
(9)R=メチレン基、Q=塩素原子、Q=水素原子、Q=水素原子、Q=メチル基
(10)R=メチレン基、Q=水素原子、Q=水素原子、Q=メチル基、Q=メチル基
(11)R=メチレン基、Q=フッ素原子、Q=水素原子、Q=メチル基、Q=メチル基
(12)R=メチレン基、Q=塩素原子、Q=水素原子、Q=メチル基、Q=メチル基
 これらの組み合わせの内、更に好ましくは(1)の組み合わせである。
Preferred combinations of R 3 , Q 4 , Q 5 , Q 6 and Q 7 include the following (1) to (12).
(1) R 3 = methylene group, Q 4 = hydrogen atom, Q 5 = hydrogen atom, Q 6 = hydrogen atom, Q 7 = hydrogen atom (2) R 3 = methylene group, Q 4 = fluorine atom, Q 5 = Hydrogen atom, Q 6 = hydrogen atom, Q 7 = hydrogen atom (3) R 3 = methylene group, Q 4 = chlorine atom, Q 5 = hydrogen atom, Q 6 = hydrogen atom, Q 7 = hydrogen atom (4) R 3 = methylene group, Q 4 = hydrogen atom, Q 5 = hydrogen atom, Q 6 = methyl group, Q 7 = hydrogen atom (5) R 3 = methylene group, Q 4 = fluorine atom, Q 5 = hydrogen atom, Q 6 = methyl group, Q 7 = hydrogen atom (6) R 3 = methylene group, Q 4 = chlorine atom, Q 5 = hydrogen atom, Q 6 = methyl group, Q 7 = hydrogen atom (7) R 3 = methylene group , Q 4 = a hydrogen atom, Q 5 = hydrogen atom, Q 6 = hydrogen atom, Q 7 = methyl group (8) R 3 = methylene Q 4 = fluorine atom, Q 5 = hydrogen atom, Q 6 = hydrogen atom, Q 7 = methyl group (9) R 3 = methylene group, Q 4 = a chlorine atom, Q 5 = hydrogen atom, Q 6 = hydrogen atom, Q 7 = methyl group (10) R 3 = methylene group, Q 4 = hydrogen atom, Q 5 = hydrogen atom, Q 6 = methyl group, Q 7 = methyl group (11) R 3 = methylene group, Q 4 = fluorine Atom, Q 5 = hydrogen atom, Q 6 = methyl group, Q 7 = methyl group (12) R 3 = methylene group, Q 4 = chlorine atom, Q 5 = hydrogen atom, Q 6 = methyl group, Q 7 = methyl Group Among these combinations, the combination (1) is more preferable.
 (メタ)アクリロイルオキシアルキル基としては、アクリロイルオキシメチル基、アクリロイルオキシエチル基、メタクリロイルオキシメチル基及びメタクリロイルオキシエチル基等のアルキルの炭素数1~2の(メタ)アクリロイルオキシアルキル基が好ましい。 The (meth) acryloyloxyalkyl group is preferably a (meth) acryloyloxyalkyl group having 1 to 2 carbon atoms such as acryloyloxymethyl group, acryloyloxyethyl group, methacryloyloxymethyl group and methacryloyloxyethyl group.
 (メタ)アクリロイルアルキル基としては、アクリロイルメチル基、アクリロイルエチル基、メタクリロイルメチル基及びメタクリロイルエチル基等のアルキルの炭素数が1~2の(メタ)アクリロイルアルキル基が好ましい。 The (meth) acryloylalkyl group is preferably a (meth) acryloylalkyl group having 1 to 2 carbon atoms such as acryloylmethyl group, acryloylethyl group, methacryloylmethyl group, and methacryloylethyl group.
 (B1)における多価アルコールとしては、(A2)において例示したものと同様のものが挙げられる。好ましくはエチレングリコール、ジエチレングリコール及びトリエチレングリコールである。
(B1)は、多価アルコールと上記置換基(b)を有する化合物から誘導されるエーテルである。
好ましくは一般式(6)で表される化合物である。
     X-(O-R-O-Y              (6)
Examples of the polyhydric alcohol in (B1) include the same as those exemplified in (A2). Ethylene glycol, diethylene glycol and triethylene glycol are preferred.
(B1) is an ether derived from a compound having a polyhydric alcohol and the substituent (b).
Preferably it is a compound represented by General formula (6).
X— (O—R 1 ) r —O—Y (6)
 一般式(6)におけるX及びYは、それぞれ独立に一般式(2)で表される置換基、一般式(3)で表される置換基、(メタ)アクリロイルオキシアルキル基又は(メタ)アクリロイルアルキル基である。
 一般式(6)におけるRは炭素数1~3のアルキレン基であり、メチレン基、エチレン基、1,2-プロピレン基及び1,3-プロピレン基が挙げられる。これらの内、出力特性の観点からエチレン基が好ましい。
 一般式(6)におけるrは1~5の整数であり、充放電サイクル特性の観点から好ましくは1~4の整数であり更に好ましくは2である。
X and Y in the general formula (6) are each independently a substituent represented by the general formula (2), a substituent represented by the general formula (3), a (meth) acryloyloxyalkyl group, or a (meth) acryloyl. It is an alkyl group.
R 1 in the general formula (6) is an alkylene group having 1 to 3 carbon atoms, and examples thereof include a methylene group, an ethylene group, a 1,2-propylene group, and a 1,3-propylene group. Among these, an ethylene group is preferable from the viewpoint of output characteristics.
In the general formula (6), r is an integer of 1 to 5, preferably from 1 to 4 and more preferably 2 from the viewpoint of charge / discharge cycle characteristics.
 (B1)の具体例としては、エチレングリコールジ(2-ブテン酸メチル)エーテル、ジエチレングリコールジ(2-ブテン酸メチル)エーテル、トリエチレングリコールジ(2-ブテン酸メチル)エーテル、テトラエチレングリコールジ(2-ブテン酸メチル)エーテル、ペンタエチレングリコールジ(2-ブテン酸メチル)エーテル、エチレングリコールジシンナミルエーテル、ジエチレングリコールジシンナミルエーテル、トリエチレングリコールジシンナミルエーテル、テトラエチレングリコールジシンナミルエーテル、ペンタエチレングリコールジシンナミルエーテル、エチレングリコールジ(4-ビニルベンジル)エーテル、ジエチレングリコールジ(4-ビニルベンジル)エーテル、トリエチレングリコールジ(4-ビニルベンジル)エーテル、テトラエチレングリコールジ(4-ビニルベンジル)エーテル、ペンタエチレングリコールジ(4-ビニルベンジル)エーテル、エチレングリコールジ(1-アクリロイルオキシエチル)エーテル、ジエチレングリコールジ(1-アクリロイルオキシエチル)エーテル、トリエチレングリコールジ(1-アクリロイルオキシエチル)エーテル、テトラエチレングリコールジ(1-アクリロイルオキシエチル)エーテル、ペンタエチレングリコールジ(1-アクリロイルオキシエチル)エーテル、ジエチレングリコール(2-ペンテン酸エチル)エーテル、トリエチレングリコール(2-ペンテン酸エチル)エーテル等が挙げられる。
これらは市販品を入手するか公知の方法で合成することができる。
Specific examples of (B1) include ethylene glycol di (2-butenoic acid methyl) ether, diethylene glycol di (2-butenoic acid methyl) ether, triethylene glycol di (2-butenoic acid methyl) ether, tetraethylene glycol di ( 2-butenoic acid methyl) ether, pentaethylene glycol di (2-butenoic acid methyl) ether, ethylene glycol dicinnamyl ether, diethylene glycol dicinnamyl ether, triethylene glycol dicinnamyl ether, tetraethylene glycol dicinnamyl ether, pentaethylene glycol dicine Namyl ether, ethylene glycol di (4-vinylbenzyl) ether, diethylene glycol di (4-vinylbenzyl) ether, triethylene glycol di (4-vinylbenzyl) Di) ether, tetraethylene glycol di (4-vinylbenzyl) ether, pentaethylene glycol di (4-vinylbenzyl) ether, ethylene glycol di (1-acryloyloxyethyl) ether, diethylene glycol di (1-acryloyloxyethyl) ether Triethylene glycol di (1-acryloyloxyethyl) ether, tetraethylene glycol di (1-acryloyloxyethyl) ether, pentaethylene glycol di (1-acryloyloxyethyl) ether, diethylene glycol (ethyl 2-pentenoate) ether, And triethylene glycol (ethyl 2-pentenoate) ether.
These can be obtained commercially or synthesized by known methods.
(B2)は、置換基(b)を有するポリオキシアルキレンエーテルであり、(b)を有する化合物にアルキレンオキサイド(以下AOと略記する)を付加して得られる。
付加するAOは、(A3)において例示したものと同様のものが挙げられる。好ましくはEOである。AOの付加モル数は、好ましくは1~10モル、更に好ましくは1~5モルである。
(B2) is a polyoxyalkylene ether having a substituent (b), and is obtained by adding alkylene oxide (hereinafter abbreviated as AO) to a compound having (b).
Examples of the AO to be added include the same ones as exemplified in (A3). EO is preferred. The added mole number of AO is preferably 1 to 10 moles, more preferably 1 to 5 moles.
 本発明の電極保護膜形成剤(F)は、上記(A1)、(A2)、(A3)、(B1)及び(B2)からなる群より選ばれる少なくとも1種の化合物(A)又は(B)を含有する。 The electrode protective film-forming agent (F) of the present invention comprises at least one compound (A) or (B selected from the group consisting of (A1), (A2), (A3), (B1) and (B2). ).
本発明の電解液は、電解質(G)、非水溶媒(H)及び電極保護膜形成剤(F)を必須として含有する。
電極保護膜形成剤(F)を電極や電解液に含有させて、電極に電圧を印加することにより(F)が活物質表面で重合し被膜を形成し保護膜となる。
 リチウム二次電池やリチウムイオンキャパシタの電極又は電解質に電極保護膜形成剤(F)を含有させた場合、初回充電時に上記保護膜が形成されるが、リチウム二次電池やリチウムイオンキャパシタの電極として、別途電極表面(活物質表面)に電極保護膜(F)の重合被膜を形成させた電極を使用することもできる。
The electrolytic solution of the present invention contains an electrolyte (G), a nonaqueous solvent (H), and an electrode protective film forming agent (F) as essential components.
When the electrode protective film forming agent (F) is contained in the electrode or the electrolytic solution and a voltage is applied to the electrode, (F) is polymerized on the surface of the active material to form a coating film, which becomes a protective film.
When the electrode protective film forming agent (F) is included in the electrode or electrolyte of a lithium secondary battery or lithium ion capacitor, the protective film is formed at the first charge, but as an electrode of a lithium secondary battery or lithium ion capacitor. Alternatively, an electrode in which a polymer coating of the electrode protective film (F) is separately formed on the electrode surface (active material surface) can also be used.
 電解質(G)としては、通常の電解液に用いられているものが使用でき、例えば、LiPF、LiBF、LiSbF、LiAsF及びLiClO等の無機酸のリチウム塩、LiN(CFSO、LiN(CSO、LiC(CFSO等の有機酸のリチウム塩が挙げられる。これらの内、電池出力及び充放電サイクル特性の観点から好ましいのはLiPFである。 The electrolyte (G), normal is can be used those used in the electrolytic solution, for example, LiPF 6, LiBF 4, LiSbF 6, LiAsF 6 , and lithium salts of inorganic acids LiClO 4, etc., LiN (CF 3 SO 2 ) 2 , LiN (C 2 F 5 SO 2 ) 2 , LiC (CF 3 SO 2 ) 3 and other organic acid lithium salts. Among these, LiPF 6 is preferable from the viewpoint of battery output and charge / discharge cycle characteristics.
 非水溶媒(H)としては、通常の電解液に用いられているものが使用でき、例えば、ラクトン化合物、環状又は鎖状炭酸エステル、鎖状カルボン酸エステル、環状又は鎖状エーテル、リン酸エステル、ニトリル化合物、アミド化合物、スルホン、スルホラン等及びこれらの混合物を用いることができる。 As the non-aqueous solvent (H), those used in ordinary electrolytic solutions can be used, for example, lactone compounds, cyclic or chain carbonates, chain carboxylates, cyclic or chain ethers, phosphate esters. , Nitrile compounds, amide compounds, sulfones, sulfolanes, and the like and mixtures thereof.
 ラクトン化合物としては、5員環(γ-ブチロラクトン及びγ-バレロラクトン等)及び6員環のラクトン化合物(δ-バレロラクトン等)等を挙げることができる。 Examples of the lactone compound include 5-membered rings (such as γ-butyrolactone and γ-valerolactone) and 6-membered lactone compounds (such as δ-valerolactone).
 環状炭酸エステルとしては、プロピレンカーボネート、エチレンカーボネート及びブチレンカーボネート等が挙げられる。
 鎖状炭酸エステルとしては、ジメチルカーボネート、メチルエチルカーボネート、ジエチルカーボネート、メチル-n-プロピルカーボネート、エチル-n-プロピルカーボネート及びジ-n-プロピルカーボネート等が挙げられる。
Examples of the cyclic carbonate include propylene carbonate, ethylene carbonate and butylene carbonate.
Examples of the chain carbonate include dimethyl carbonate, methyl ethyl carbonate, diethyl carbonate, methyl-n-propyl carbonate, ethyl-n-propyl carbonate, and di-n-propyl carbonate.
 鎖状カルボン酸エステルとしては、酢酸メチル、酢酸エチル、酢酸プロピル及びプロピオン酸メチル等が挙げられる。
 環状エーテルとしては、テトラヒドロフラン、テトラヒドロピラン、1,3-ジオキソラン及び1,4-ジオキサン等が挙げられる。
 鎖状エーテルとしては、ジメトキシメタン及び1,2-ジメトキシエタン等が挙げられる。
Examples of chain carboxylic acid esters include methyl acetate, ethyl acetate, propyl acetate, and methyl propionate.
Examples of the cyclic ether include tetrahydrofuran, tetrahydropyran, 1,3-dioxolane, 1,4-dioxane and the like.
Examples of the chain ether include dimethoxymethane and 1,2-dimethoxyethane.
 リン酸エステルとしては、リン酸トリメチル、リン酸トリエチル、リン酸エチルジメチル、リン酸ジエチルメチル、リン酸トリプロピル、リン酸トリブチル、リン酸トリ(トリフルオロメチル)、リン酸トリ(トリクロロメチル)、リン酸トリ(トリフルオロエチル)、リン酸トリ(トリパーフルオロエチル)、2-エトキシ-1,3,2-ジオキサホスホラン-2-オン、2-トリフルオロエトキシ-1,3,2-ジオキサホスホラン-2-オン、2-メトキシエトキシ-1,3,2-ジオキサホスホラン-2-オン等が挙げられる。
 ニトリル化合物としては、アセトニトリル等が挙げられる。アミド化合物としては、ジメチルホルムアミド等が挙げられる。
 非水溶媒(H)は単独で用いてもよいし、2種以上を併用してもよい。
Examples of phosphate esters include trimethyl phosphate, triethyl phosphate, ethyl dimethyl phosphate, diethyl methyl phosphate, tripropyl phosphate, tributyl phosphate, tri (trifluoromethyl) phosphate, tri (trichloromethyl) phosphate, Tri (trifluoroethyl) phosphate, tri (triperfluoroethyl) phosphate, 2-ethoxy-1,3,2-dioxaphosphoran-2-one, 2-trifluoroethoxy-1,3,2- Examples include dioxaphospholan-2-one and 2-methoxyethoxy-1,3,2-dioxaphosphoran-2-one.
Examples of the nitrile compound include acetonitrile. Examples of the amide compound include dimethylformamide.
Nonaqueous solvent (H) may be used independently and may use 2 or more types together.
 非水溶媒(H)の内、電池出力及び充放電リサイクル特性の観点から好ましいのは、ラクトン化合物、鎖状炭酸エステル、鎖状炭酸エステル及びリン酸エステル、更に好ましいのはラクトン化合物及び鎖状炭酸エステル、特に好ましいのはラクトン化合物、最も好ましいのは5員環又は6員環のラクトン化合物、とりわけ好ましいのは5員環のラクトン化合物である。 Among nonaqueous solvents (H), lactone compounds, chain carbonates, chain carbonates and phosphates are preferred from the viewpoint of battery output and charge / discharge recycling characteristics, and more preferred are lactone compounds and chain carbonates. Esters, particularly preferred are lactone compounds, most preferred are 5- or 6-membered lactone compounds, and particularly preferred are 5-membered lactone compounds.
 ラクトン化合物は炭酸エステル化合物に比べ電位窓が狭いため、従来リチウム電池用途における非水溶媒としては使用できなかった。しかしながら、本発明の電解液は電極保護膜形成剤(F)による保護膜が存在するため、ラクトン化合物も非水溶媒として使用することができ、炭酸エステル化合物と比較して耐熱保存安定性に優れるため、高温貯蔵特性を向上させることができる。 Since lactone compounds have a narrow potential window compared to carbonate compounds, they could not be used as non-aqueous solvents in conventional lithium battery applications. However, since the electrolytic solution of the present invention has a protective film formed by the electrode protective film forming agent (F), a lactone compound can also be used as a non-aqueous solvent and is excellent in heat-resistant storage stability as compared with a carbonate compound. Therefore, high temperature storage characteristics can be improved.
 本発明の電解液は、更にルイス塩基(C)を含有することが好ましい。前記アルケニルオキシ基(a)を有する化合物(A)は反応性が高く、例えば電解液中に微量に混在する水分とLiPF等の電解質塩が反応して発生するHF等の酸性化合物と容易に反応しやすい。電解液中にルイス塩基(C)を添加することにより、(A)の電解液中での安定性を増すことができる。また、(C)が後述のアザクラウンエーテル誘導体(C1)である場合、(C1)が負極保護膜を形成することから、充放電サイクル特性を更に向上させることができる。 The electrolytic solution of the present invention preferably further contains a Lewis base (C). The compound (A) having the alkenyloxy group (a) is highly reactive, for example, easily with an acidic compound such as HF generated by a reaction between a minute amount of water mixed in the electrolyte and an electrolyte salt such as LiPF 6. Easy to react. By adding the Lewis base (C) to the electrolytic solution, the stability of (A) in the electrolytic solution can be increased. Further, when (C) is an azacrown ether derivative (C1) described later, (C1) forms a negative electrode protective film, so that the charge / discharge cycle characteristics can be further improved.
 ルイス塩基(C)としては、アザクラウンエーテル誘導体(C1)及びトリアゾール誘導体(C2)等が挙げられる。これらのうち、サイクル特性の観点から好ましいのは(C1)である。 Examples of the Lewis base (C) include an azacrown ether derivative (C1) and a triazole derivative (C2). Of these, (C1) is preferable from the viewpoint of cycle characteristics.
 アザクラウンエーテル誘導体(C1)としては、窒素原子を1~4個有する9員環~24員環のクラウンエーテル骨格を有し、該骨格の窒素原子の1個以上に重合性不飽和二重結合を有する置換基が結合しているものが好ましい。  The azacrown ether derivative (C1) has a 9- to 24-membered crown ether skeleton having 1 to 4 nitrogen atoms, and a polymerizable unsaturated double bond on one or more of the nitrogen atoms of the skeleton The thing which the substituent which has this has couple | bonded is preferable. *
 窒素原子を1~4個有する9員環~24員環のクラウンエーテル骨格としては、アザ-9-クラウン-3-エーテル(4-アザ-9-クラウン-3-エーテル及び4,7-ジアザ-9-クラウン-3-エーテル等)、アザ-12-クラウン-4-エーテル(4-アザ-12-クラウン-4-エーテル及び4,10-ジアザ-12-クラウン-4-エーテル等)、アザ-14-クラウン-4-エーテル(4-アザ-14-クラウン-4-エーテル及び4,10-ジアザ-14-クラウン4-エーテル等)、アザ-15-クラウン-5-エーテル(4-アザ-15-クラウン-5-エーテル、4,10-ジアザ-15-クラウン-5-エーテル、4,14-ジアザ-15-クラウン-5及び4,10,16-トリアザ-15-クラウン-5-エーテル等)、アザ-18-クラウン-6-エーテル(4-アザ-18-クラウン6-エーテル、4,10-ジアザ-18-クラウン-6-エーテル及び4,10,16-トリアザ-18-クラウン-6-エーテル等)、アザ-21-クラウン-7-エーテル(4-アザ-21-クラウン-7-エーテル、4,10-ジアザ-21-クラウン-7-エーテル及び4,10,16-トリアザ-21-クラウン-7-エーテル等)及びアザ-24-クラウン-8-エーテル(4-アザ-24-クラウン-8-エーテル、4,10-ジアザ-24-クラウン-8-エーテル及び4,10,16-トリアザ-24-クラウン-8-エーテル等)等が挙げられる。
 これらのうち、リチウムイオンとの配位力の観点から、好ましいのはアザ-12-クラウン-4-エーテル、アザ-14-クラウン-4-エーテル、アザ-15-クラウン-5-エーテル及びアザ-18-クラウン-6-エーテルであり、更に好ましいのは4-アザ-12-クラウン-4-エーテル、4,10-ジアザ-12-クラウン-4-エーテル、4-アザ-15-クラウン-5-エーテル及び4,10-ジアザ-15-クラウン-5エーテルである。
Examples of 9- to 24-membered crown ether skeletons having 1 to 4 nitrogen atoms include aza-9-crown-3-ether (4-aza-9-crown-3-ether and 4,7-diaza- 9-crown-3-ether, etc.), aza-12-crown-4-ether (such as 4-aza-12-crown-4-ether and 4,10-diaza-12-crown-4-ether), aza- 14-crown-4-ether (such as 4-aza-14-crown-4-ether and 4,10-diaza-14-crown 4-ether), aza-15-crown-5-ether (4-aza-15) -Crown-5-ether, 4,10-diaza-15-crown-5-ether, 4,14-diaza-15-crown-5 and 4,10,16-triaza-15-crown-5-ether Aza-18-crown-6-ether (4-aza-18-crown 6-ether, 4,10-diaza-18-crown-6-ether and 4,10,16-triaza-18-crown) -6-ether, etc.), aza-21-crown-7-ether (4-aza-21-crown-7-ether, 4,10-diaza-21-crown-7-ether and 4,10,16-triaza -21-crown-7-ether and the like) and aza-24-crown-8-ether (4-aza-24-crown-8-ether, 4,10-diaza-24-crown-8-ether and 4,10 , 16-triaza-24-crown-8-ether, etc.).
Of these, aza-12-crown-4-ether, aza-14-crown-4-ether, aza-15-crown-5-ether and aza- are preferred from the viewpoint of coordination power with lithium ions. 18-crown-6-ether, more preferably 4-aza-12-crown-4-ether, 4,10-diaza-12-crown-4-ether, 4-aza-15-crown-5 Ether and 4,10-diaza-15-crown-5 ether.
 アザクラウンエーテル骨格における窒素原子の数は、リチウムイオンに対する配位力の観点から好ましくは1~3個であり、更に好ましくは1又は2個である。 The number of nitrogen atoms in the azacrown ether skeleton is preferably 1 to 3, more preferably 1 or 2, from the viewpoint of coordination power to lithium ions.
 アザクラウンエーテル誘導体(C1)が有する、重合性不飽和二重結合を有する置換基としては、例えば、前述の一般式(2)で表される置換基、一般式(3)で表される置換基、(メタ)アクリロイルオキシアルキル基及び(メタ)アクリロイルアルキル基等が挙げられ、好ましいものも同様である。 Examples of the substituent having a polymerizable unsaturated double bond that the azacrown ether derivative (C1) has include a substituent represented by the general formula (2) and a substituent represented by the general formula (3). Group, a (meth) acryloyloxyalkyl group, a (meth) acryloylalkyl group and the like, and preferable examples are also the same.
 アザクラウンエーテル誘導体(C1)の具体例としては、N-(2-ブテン酸メチル)-4-アザ-12-クラウン-4-エーテル、N,N-ジ-(2-ブテン酸メチル)-4,10-ジアザ-12-クラウン-4-エーテル、N-(2-ブテン酸メチル)-4-アザ-15-クラウン-5-エーテル、N,N-ジ-(2-ブテン酸メチル)-4,10-ジアザ-15-クラウン-5-エーテル、N-(シンナミル)-4-アザ-12-クラウン-4-エーテル、N,N-ジ-(シンナミル)-4,10-ジアザ-12-クラウン-4-エーテル、N-(シンナミル)-4-アザ-15-クラウン-5-エーテル、N,N-ジ-(シンナミル)-4,10-ジアザ-15-クラウン-5-エーテル、N-(4-ビニルベンジル)-4-アザ-12-クラウン-4-エーテル、N,N-ジ-(4-ビニルベンジル)-4,10-ジアザ-12-クラウン-4-エーテル、N-(4-ビニルベンジル)-4-アザ-15-クラウン-5-エーテル、N,N-ジ-(4-ビニルベンジル)-4,10-ジアザ-15-クラウン-5-エーテル、N,N-ジ-(1-アクリロイルオキシエチル)-4,10-ジアザ-15-クラウン-5-エーテル、N-(1-アクリロイルオキシエチル)-4-アザ-14-クラウン-4-エーテル、N-(2-ペンテン酸エチル)-4-アザ-18-クラウン-6-エーテル及びN,N-ジ-(2-ペンテン酸メチル)-4,14-ジアザ-18-クラウン-6-エーテル等が挙げられる。 Specific examples of the azacrown ether derivative (C1) include N- (methyl 2-butenoate) -4-aza-12-crown-4-ether, N, N-di- (methyl 2-butenoate) -4 , 10-diaza-12-crown-4-ether, N- (methyl 2-butenoate) -4-aza-15-crown-5-ether, N, N-di- (methyl 2-butenoate) -4 , 10-diaza-15-crown-5-ether, N- (cinnamyl) -4-aza-12-crown-4-ether, N, N-di- (cinnamyl) -4,10-diaza-12-crown -4-ether, N- (cinnamyl) -4-aza-15-crown-5-ether, N, N-di- (cinnamyl) -4,10-diaza-15-crown-5-ether, N- ( 4-vinylbenzyl) -4-aza 12-crown-4-ether, N, N-di- (4-vinylbenzyl) -4,10-diaza-12-crown-4-ether, N- (4-vinylbenzyl) -4-aza-15 Crown-5-ether, N, N-di- (4-vinylbenzyl) -4,10-diaza-15-crown-5-ether, N, N-di- (1-acryloyloxyethyl) -4,10 -Diaza-15-crown-5-ether, N- (1-acryloyloxyethyl) -4-aza-14-crown-4-ether, N- (ethyl 2-pentenoate) -4-aza-18-crown -6-ether and N, N-di- (2-pentenoic acid methyl) -4,14-diaza-18-crown-6-ether.
 本発明におけるアザクラウンエーテル誘導体(C1)は、通常の方法で製造することができる。例えば、有機溶媒中で、無触媒又は触媒の存在下、無置換のアザクラウンエーテルと、重合性不飽和二重結合を有するハロゲン化アルキルを反応させる方法が挙げられる。
有機溶媒としては、例えば、ニトリル系有機溶媒(アセトニトリル、プロピオノニトリル及びベンゾニトリル等)、ケトン系有機溶媒(アセトン及びメチルエチルケトン等)、アミド系有機溶媒(ホルムアミド、アセトアミド、ジメチルホルムアミド及びジメチルアセトアミド等)、エーテル系有機溶媒(ジメチルエーテル、テトラヒドロフラン及びジオキサン等)、エステル系有機溶媒(酢酸エチル及びマレイン酸ジエチル等)、硫黄含有有機溶剤(ジメチルスルホキシド及びスルホラン等)、ハロゲン化炭化水素(クロロホルム及びジクロロメタン等)、炭化水素(ヘキサン、ヘプタン、トルエン及びキシレン等)及びこれらの溶媒の二種以上の混合物が挙げられる。
触媒としては、アルカリ金属水酸化物(例えば水酸化リチウム、水酸化ナトリウム及び水酸化カリウム等)、アルカリ金属炭酸塩(炭酸水素ナトリウム、炭酸水素カリウム、炭酸ナトリウム及び炭酸カリウム等)及びアルカリ金属水素化物(水素化ナトリウム及び水素化カリウム等)等が挙げられる。反応温度は通常10~150℃、反応時間は通常0.5~24時間である。反応終了後は、必要により触媒を中和し、吸着剤で処理して触媒を除去・精製することができる。
The azacrown ether derivative (C1) in the present invention can be produced by a usual method. For example, a method of reacting an unsubstituted azacrown ether with an alkyl halide having a polymerizable unsaturated double bond in an organic solvent in the absence of a catalyst or in the presence of a catalyst.
Examples of the organic solvent include nitrile organic solvents (acetonitrile, propiononitrile, benzonitrile, etc.), ketone organic solvents (acetone, methyl ethyl ketone, etc.), amide organic solvents (formamide, acetamide, dimethylformamide, dimethylacetamide, etc.) , Ether organic solvents (such as dimethyl ether, tetrahydrofuran and dioxane), ester organic solvents (such as ethyl acetate and diethyl maleate), sulfur-containing organic solvents (such as dimethyl sulfoxide and sulfolane), halogenated hydrocarbons (such as chloroform and dichloromethane) , Hydrocarbons (hexane, heptane, toluene, xylene, etc.) and mixtures of two or more of these solvents.
Catalysts include alkali metal hydroxides (for example, lithium hydroxide, sodium hydroxide and potassium hydroxide), alkali metal carbonates (such as sodium bicarbonate, potassium bicarbonate, sodium carbonate and potassium carbonate) and alkali metal hydrides. (Such as sodium hydride and potassium hydride). The reaction temperature is usually 10 to 150 ° C., and the reaction time is usually 0.5 to 24 hours. After completion of the reaction, if necessary, the catalyst can be neutralized and treated with an adsorbent to remove and purify the catalyst.
 重合性不飽和二重結合を有するハロゲン化アルキルとしては、例えば、4-ブロモ-2-ブテン酸メチルエステル、4-クロロ-2-ブテン酸メチルエステル、1-ブロモ-4-シアノ-2-ブテン、1-クロロ-4-シアノ-2-ブテン、アクリル酸クロロメチルエステル、アクリル酸ブロモメチルエステル、アクリル酸-2-クロロエチルエステル、アクリル酸-2-ブロモエチルエステル、メタクリル酸クロロメチルエステル、メタクリル酸ブロモメチルエステル、メタクリル酸-2-クロロエチルエステル、メタクリル酸-2-ブロモエチルエステル、シンナミルクロリド、シンナミルブロミド、4-(クロロメチル)スチレン及び4-(ブロモメチル)スチレンが挙げられる。 Examples of the halogenated alkyl having a polymerizable unsaturated double bond include 4-bromo-2-butenoic acid methyl ester, 4-chloro-2-butenoic acid methyl ester, and 1-bromo-4-cyano-2-butene. 1-chloro-4-cyano-2-butene, acrylic acid chloromethyl ester, acrylic acid bromomethyl ester, acrylic acid-2-chloroethyl ester, acrylic acid-2-bromoethyl ester, methacrylic acid chloromethyl ester, methacrylic acid Examples include acid bromomethyl ester, methacrylic acid-2-chloroethyl ester, methacrylic acid-2-bromoethyl ester, cinnamilk chloride, cinnamyl bromide, 4- (chloromethyl) styrene, and 4- (bromomethyl) styrene.
 トリアゾール誘導体(C2)としては、1,2,3-ベンゾトリアゾール、5-メチル-1,2,3-ベンゾトリアゾール、5,6-ジメチル-1,2,3-ベンゾトリアゾール、1,2,4-トリアゾール、3-アミノ-1,2,4-トリアゾール、3,5-ジアミノ-1,2,4-トリアゾール、3-アミノ-5-メチル-1,2,4-トリアゾール、3-アミノ-5-エチル-1,2,4-トリアゾール、3-アミノ-5-プロピル-1,2,4-トリアゾール及び3-アミノ-5-ブチル-1,2,4-トリアゾール等が挙げられる。これらは市販品を入手することが出来る。これらのうち、充放電サイクル特性の観点から好ましいのは、3-アミノ-1,2,4-トリアゾールである。 Examples of the triazole derivative (C2) include 1,2,3-benzotriazole, 5-methyl-1,2,3-benzotriazole, 5,6-dimethyl-1,2,3-benzotriazole, 1,2,4 -Triazole, 3-amino-1,2,4-triazole, 3,5-diamino-1,2,4-triazole, 3-amino-5-methyl-1,2,4-triazole, 3-amino-5 -Ethyl-1,2,4-triazole, 3-amino-5-propyl-1,2,4-triazole, 3-amino-5-butyl-1,2,4-triazole and the like. These can be obtained commercially. Of these, 3-amino-1,2,4-triazole is preferable from the viewpoint of charge / discharge cycle characteristics.
 本発明の電解液は、更に化合物(A)及び(B)以外の負極保護膜形成剤(D)を含有することができる。電解液が(D)を含有することにより、負極保護膜の安定性が更に向上し充放電サイクル特性を更に向上させることができる。 The electrolytic solution of the present invention can further contain a negative electrode protective film forming agent (D) other than the compounds (A) and (B). When the electrolytic solution contains (D), the stability of the negative electrode protective film is further improved, and the charge / discharge cycle characteristics can be further improved.
 (D)としては、ビニレンカーボネート、フルオロエチレンカーボネート、クロロエチレンカーボネート、エチレンサルファイト、プロピレンサルファイト及びα-ブロモ-γ-ブチロラクトン等が挙げられる。これらのうちサイクル特性の観点から好ましいのはビニレンカーボネートである。 (D) includes vinylene carbonate, fluoroethylene carbonate, chloroethylene carbonate, ethylene sulfite, propylene sulfite, α-bromo-γ-butyrolactone, and the like. Among these, vinylene carbonate is preferable from the viewpoint of cycle characteristics.
 本発明の電解液における、電極保護膜形成剤(F)、ルイス塩基(C)、負極保護膜形成剤(D)、非水溶媒(H)及び電解質(G)のそれぞれ好ましい含有量又は濃度は以下の通りである。 The preferred contents or concentrations of the electrode protective film forming agent (F), Lewis base (C), negative electrode protective film forming agent (D), nonaqueous solvent (H) and electrolyte (G) in the electrolytic solution of the present invention are as follows: It is as follows.
 電極保護膜形成剤(F)としての化合物(A)の含有量は、充放電サイクル特性、電池容量及び高貯蔵特性の観点から、電解液の重量に基づいて好ましくは0.01~10重量%、更に好ましくは0.05~1重量%である。
 電極保護膜形成剤(F)としての化合物(B)の含有量は、電池容量、電池出力及び充放電サイクル特性の観点から、電解液の重量に基づいて好ましくは0.01~10重量%、更に好ましくは0.01~1重量%である。
 (C)の含有量は、電池容量、電池出力及び充放電サイクル特性の観点から、電解液の重量に基づいて好ましくは0~10重量%、より好ましくは0.01~10重量%、更に好ましくは0.05~1重量%である。
 (D)の含有量は、電池容量、電池出力及び充放電サイクル特性の観点から、電解液の重量に基づいて好ましくは0~5重量%、より好ましくは0.01~5重量%、更に好ましくは0.01~3重量%である。
The content of the compound (A) as the electrode protective film forming agent (F) is preferably 0.01 to 10% by weight based on the weight of the electrolytic solution from the viewpoint of charge / discharge cycle characteristics, battery capacity and high storage characteristics. More preferably, it is 0.05 to 1% by weight.
The content of the compound (B) as the electrode protective film forming agent (F) is preferably 0.01 to 10% by weight based on the weight of the electrolytic solution from the viewpoint of battery capacity, battery output and charge / discharge cycle characteristics. More preferably, the content is 0.01 to 1% by weight.
The content of (C) is preferably 0 to 10% by weight, more preferably 0.01 to 10% by weight, still more preferably, based on the weight of the electrolytic solution, from the viewpoints of battery capacity, battery output and charge / discharge cycle characteristics. Is 0.05 to 1% by weight.
The content of (D) is preferably 0 to 5% by weight, more preferably 0.01 to 5% by weight, still more preferably, based on the weight of the electrolyte, from the viewpoint of battery capacity, battery output and charge / discharge cycle characteristics. Is from 0.01 to 3% by weight.
 非水溶媒(H)の含有量は、電解液の重量に基づいて、電池出力及び充放電サイクル特性の観点から好ましくは70~99重量%であり、更に好ましくは93~99重量%である。
 電解液中の電解質(G)の濃度は、電解液の容量に基づいて、電池出力及び充放電サイクル特性の観点から好ましくは0.01~3mol/Lであり、更に好ましくは0.05~1.5mol/Lである。
The content of the non-aqueous solvent (H) is preferably 70 to 99% by weight and more preferably 93 to 99% by weight based on the weight of the electrolytic solution from the viewpoint of battery output and charge / discharge cycle characteristics.
The concentration of the electrolyte (G) in the electrolytic solution is preferably 0.01 to 3 mol / L, more preferably 0.05 to 1 based on the capacity of the electrolytic solution from the viewpoint of battery output and charge / discharge cycle characteristics. 0.5 mol / L.
 本発明の電解液は、更に過充電防止剤、脱水剤及び容量安定化剤等の添加剤を含有してもよい。 The electrolytic solution of the present invention may further contain additives such as an overcharge inhibitor, a dehydrating agent and a capacity stabilizer.
 過充電防止剤としては、ビフェニル、アルキルビフェニル、ターフェニル、ターフェニルの部分水素化体、シクロヘキシルベンゼン、t-ブチルベンゼン及びt-アミルベンゼン等の芳香族化合物等が挙げられる。過充電防止剤の使用量は、電解液の全重量に基づいて、通常0~5重量%、好ましくは0~3重量%である。 Examples of the overcharge inhibitor include biphenyl, alkylbiphenyl, terphenyl, partially hydrogenated terphenyl, aromatic compounds such as cyclohexylbenzene, t-butylbenzene, and t-amylbenzene. The amount of the overcharge inhibitor used is usually 0 to 5% by weight, preferably 0 to 3% by weight, based on the total weight of the electrolyte.
 脱水剤としては、ゼオライト、シリカゲル及び酸化カルシウム等が挙げられる。脱水剤の使用量は、リチウム二次電池用電解液の全重量に基づいて、通常0~5重量%、好ましくは0~3重量%である。 Examples of the dehydrating agent include zeolite, silica gel and calcium oxide. The amount of the dehydrating agent used is usually 0 to 5% by weight, preferably 0 to 3% by weight, based on the total weight of the electrolyte for a lithium secondary battery.
 容量安定化剤としては、フルオロエチレンカーボネート、無水コハク酸、1-メチル-2-ピペリドン、ヘプタン及びフルオロベンゼン等が挙げられる。容量安定化剤の使用量は、電解液の全重量に基づいて、通常0~5重量%、好ましくは0~3重量%である。 Examples of the capacity stabilizer include fluoroethylene carbonate, succinic anhydride, 1-methyl-2-piperidone, heptane and fluorobenzene. The amount of the capacity stabilizer used is usually 0 to 5% by weight, preferably 0 to 3% by weight, based on the total weight of the electrolytic solution.
 本発明の電解液は、特にリチウム二次電池用の電解液として有用である。
 本発明の電解液を用いたリチウム二次電池は、正極、負極及びセパレーターを収納した電池缶内に、本発明の電解液を注入し、電池缶を密封することで得られる。
The electrolytic solution of the present invention is particularly useful as an electrolytic solution for a lithium secondary battery.
A lithium secondary battery using the electrolytic solution of the present invention is obtained by injecting the electrolytic solution of the present invention into a battery can containing a positive electrode, a negative electrode, and a separator and sealing the battery can.
 リチウム二次電池における正極としては、正極活物質、導電剤及び結着剤を溶媒に分散してスラリー化したものを、正極用集電体にバーコーター等の塗工装置で塗布し、乾燥して溶媒を除去し、必要によりプレス機でプレスしたもの等が使用できる。 As a positive electrode in a lithium secondary battery, a positive electrode active material, a conductive agent and a binder dispersed in a solvent and slurried are applied to a positive electrode current collector with a coating device such as a bar coater and dried. Then, the solvent can be removed and, if necessary, a product pressed with a press machine can be used.
 正極活物質としては、リチウムと遷移金属との複合酸化物(例えばLiCoO、LiNiO、LiMnO及びLiMn等)、遷移金属酸化物(例えばMnO及びV等)、遷移金属硫化物(例えばMoS及びTiS等)、及び導電性高分子(例えばポリアニリン、ポリフッ化ビニリデン、ポリピロール、ポリチオフェン、ポリアセチレン、ポリ-p-フェニレン及びポリカルバゾール等)等が挙げられる。 As the positive electrode active material, composite oxides of lithium and transition metals (for example, LiCoO 2 , LiNiO 2 , LiMnO 2 and LiMn 2 O 4 ), transition metal oxides (for example, MnO 2 and V 2 O 5 ), transition Examples thereof include metal sulfides (for example, MoS 2 and TiS 2 ), and conductive polymers (for example, polyaniline, polyvinylidene fluoride, polypyrrole, polythiophene, polyacetylene, poly-p-phenylene, polycarbazole, and the like).
 導電剤としては、黒鉛(例えば天然黒鉛及び人工黒鉛等)、カーボンブラック類(例えばカーボンブラック、アセチレンブラック、ケッチェンブラック、チャンネルブラック、ファーネスブラック、ランプブラック及びサーマルブラック等)、金属粉末(例えばアルミニウム粉及びニッケル粉等)、導電性金属酸化物(例えば酸化亜鉛及び酸化チタン等)等が挙げられる。 Examples of the conductive agent include graphite (for example, natural graphite and artificial graphite), carbon blacks (for example, carbon black, acetylene black, ketjen black, channel black, furnace black, lamp black, and thermal black), metal powder (for example, aluminum) Powder and nickel powder), conductive metal oxides (such as zinc oxide and titanium oxide), and the like.
 結着剤としては、例えば、デンプン、ポリフッ化ビニリデン、ポリビニルアルコール、カルボキシメチルセルロース、ポリビニルピロリドン、テトラフロオロエチレン、ポリエチレン及びポリプロピレン等の高分子化合物が挙げられる。 Examples of the binder include polymer compounds such as starch, polyvinylidene fluoride, polyvinyl alcohol, carboxymethyl cellulose, polyvinyl pyrrolidone, tetrafluoroethylene, polyethylene, and polypropylene.
 溶媒としては、例えば1-メチル-2-ピロリドン、メチルエチルケトン、ジメチルホルムアミド、ジメチルアセトアミド、N,N-ジメチルアミノプロピルアミン及びテトラヒドロフラン等が挙げられる。
 正極用集電体としては、アルミニウム、チタン、ステンレス鋼、ニッケル、焼成炭素、導電性高分子及び導電性ガラス等が挙げられる。
Examples of the solvent include 1-methyl-2-pyrrolidone, methyl ethyl ketone, dimethylformamide, dimethylacetamide, N, N-dimethylaminopropylamine, and tetrahydrofuran.
Examples of the current collector for positive electrode include aluminum, titanium, stainless steel, nickel, baked carbon, conductive polymer, conductive glass, and the like.
 リチウム二次電池において、正極の全重量に基づく正極活物質、導電剤及び結着剤のそれぞれの好ましい含有量は以下の通りである。
 正極活物質の含有量は、好ましくは70~98重量%であり、更に好ましくは90~98重量%である。導電剤の含有量は、好ましくは1~29重量%であり、更に好ましくは1~10重量%である。結着剤の含有量は、好ましくは1~29重量%であり、更に好ましくは1~10重量%である。
In the lithium secondary battery, preferred contents of the positive electrode active material, the conductive agent, and the binder based on the total weight of the positive electrode are as follows.
The content of the positive electrode active material is preferably 70 to 98% by weight, more preferably 90 to 98% by weight. The content of the conductive agent is preferably 1 to 29% by weight, more preferably 1 to 10% by weight. The content of the binder is preferably 1 to 29% by weight, more preferably 1 to 10% by weight.
 正極活物質、導電剤及び結着剤のスラリー化における溶媒の使用量としては、正極活物質、導電剤及び結着剤の全重量に基づいて好ましくは20~70重量%であり、更に好ましくは30~60重量%である。 The amount of the solvent used in slurrying the positive electrode active material, the conductive agent and the binder is preferably 20 to 70% by weight, more preferably based on the total weight of the positive electrode active material, the conductive agent and the binder. 30 to 60% by weight.
 リチウム二次電池における負極としては、負極活物質、導電剤及び結着剤を溶媒に分散してスラリー化したものを負極用集電体にバーコーター等の塗工装置で塗布し、乾燥して溶媒を除去し、必要によりプレス機でプレスしたもの等が使用できる。 As a negative electrode in a lithium secondary battery, a negative electrode active material, a conductive agent and a binder dispersed in a solvent are applied to a negative electrode current collector with a coating device such as a bar coater and dried. What removed the solvent and pressed with the press if necessary can be used.
 負極活物質としては、黒鉛、高分子化合物焼成体(例えばフェノール樹脂及びフラン樹脂等を焼成し炭素化したもの)、コークス類(例えばピッチコークス、ニードルコークス及び石油コークス等)、炭素繊維、導電性高分子(例えばポリアセチレン及びポリピロール等)、金属合金(例えばリチウム-アルミニウム合金、リチウム-アルミニウム-マンガン合金等)等が挙げられる。
 導電剤、結着剤及び溶媒は、正極の製造に用いられるものと同様のものが使用できる。
 負極用集電体としては、銅、ステンレス鋼、ニッケル、アルミニウム、チタン、焼成炭素、導電性高分子、導電性ガラス及びアルミニウム-カドミウム合金等が挙げられる。
Examples of the negative electrode active material include graphite, polymer compound fired bodies (for example, those obtained by firing and carbonizing phenol resin and furan resin), cokes (for example, pitch coke, needle coke, and petroleum coke), carbon fiber, and conductivity. Examples thereof include polymers (for example, polyacetylene and polypyrrole), metal alloys (for example, lithium-aluminum alloy, lithium-aluminum-manganese alloy), and the like.
As the conductive agent, the binder and the solvent, the same materials as those used for the production of the positive electrode can be used.
Examples of the negative electrode current collector include copper, stainless steel, nickel, aluminum, titanium, calcined carbon, conductive polymer, conductive glass, and an aluminum-cadmium alloy.
 リチウム二次電池において、負極の全重量に基づく負極活物質、導電剤及び結着剤のそれぞれの好ましい含有量は以下の通りである。
 負極活物質の含有量は、好ましくは70~98重量%であり、更に好ましくは90~98重量%である。導電剤及び結着剤の含有量は、正極の場合と同様である。
In the lithium secondary battery, preferable contents of the negative electrode active material, the conductive agent, and the binder based on the total weight of the negative electrode are as follows.
The content of the negative electrode active material is preferably 70 to 98% by weight, more preferably 90 to 98% by weight. The contents of the conductive agent and the binder are the same as in the case of the positive electrode.
 負極活物質、導電剤及び結着剤のスラリー化における溶媒の使用量としては、正極活物質、導電剤及び結着剤のスラリー化における溶媒の使用量と同様である。 The amount of the solvent used in the slurry formation of the negative electrode active material, the conductive agent and the binder is the same as the amount of the solvent used in the slurry formation of the positive electrode active material, the conductive agent and the binder.
 リチウム二次電池におけるセパレーターとしては、ポリエチレン、ポリプロピレン製フィルムの微多孔膜、多孔性のポリエチレンフィルムとポリプロピレンとの多層フィルム、ポリエステル繊維、アラミド繊維、ガラス繊維等からなる不織布、及びそれらの表面にシリカ、アルミナ、チタニア等のセラミック微粒子を付着させたものが挙げられる。 As separators in lithium secondary batteries, polyethylene, polypropylene film microporous membrane, porous polyethylene film and multilayer film of polypropylene, polyester fiber, aramid fiber, glass fiber, etc., and silica on the surface thereof , Alumina, titania and other ceramic fine particles attached thereto.
 リチウム二次電池における電池缶としては、ステンレススチール、鉄、アルミニウム及びニッケルメッキスチール等の金属材料を用いることができるが、電池用途に応じてプラスチック材料を用いることもできる。また電池缶は、用途に応じて円筒型、コイン型、角型、その他任意の形状にすることができる。 As the battery can in the lithium secondary battery, metal materials such as stainless steel, iron, aluminum and nickel-plated steel can be used, but plastic materials can also be used depending on the battery application. The battery can can be formed into a cylindrical shape, a coin shape, a square shape, or any other shape depending on the application.
 本発明の電解液は、特にリチウムイオンキャパシタ用の電解液としても有用である。
 本発明の電解液を用いたリチウムイオンキャパシタは、正極、負極及びセパレーターを収納したキャパシタ缶内に、本発明の電解液を注入し、キャパシタ缶を密封することで得られる。
The electrolytic solution of the present invention is particularly useful as an electrolytic solution for lithium ion capacitors.
A lithium ion capacitor using the electrolytic solution of the present invention can be obtained by injecting the electrolytic solution of the present invention into a capacitor can containing a positive electrode, a negative electrode and a separator and sealing the capacitor can.
 リチウムイオンキャパシタにおける正極としては、活性炭(正極活物質)、導電剤及び結着剤を溶媒に分散してスラリー化したものを、正極用集電体にバーコーター等の塗工装置で塗布し、乾燥して溶媒を除去し、必要によりプレス機でプレスしたもの等が使用できる。 As a positive electrode in a lithium ion capacitor, activated carbon (positive electrode active material), a conductive agent and a binder dispersed in a solvent and applied to a positive electrode current collector with a coating device such as a bar coater, What was dried and removed the solvent, and what was pressed with the press if necessary can be used.
 導電剤、結着剤、溶媒及び正極用集電体としては、リチウム二次電池の場合と同様のものが挙げられる。 Examples of the conductive agent, the binder, the solvent, and the positive electrode current collector are the same as those in the case of the lithium secondary battery.
 リチウムイオンキャパシタにおいて、正極の全重量に基づく正極活物質、導電剤及び結着剤のそれぞれの好ましい含有量は以下の通りである。
 正極活物質の含有量は、好ましくは70~98重量%であり、更に好ましくは90~98重量%である。導電剤の含有量は、好ましくは1~29重量%であり、更に好ましくは1~10重量%である。結着剤の含有量は、好ましくは1~29重量%であり、更に好ましくは1~10重量%である。
In the lithium ion capacitor, preferable contents of the positive electrode active material, the conductive agent, and the binder based on the total weight of the positive electrode are as follows.
The content of the positive electrode active material is preferably 70 to 98% by weight, more preferably 90 to 98% by weight. The content of the conductive agent is preferably 1 to 29% by weight, more preferably 1 to 10% by weight. The content of the binder is preferably 1 to 29% by weight, more preferably 1 to 10% by weight.
 正極活物質、導電剤及び結着剤のスラリー化における溶媒の使用量としては、正極活物質、導電剤及び結着剤の全重量に基づいて好ましくは20~70重量%であり、更に好ましくは30~60重量%である。 The amount of the solvent used in slurrying the positive electrode active material, the conductive agent and the binder is preferably 20 to 70% by weight, more preferably based on the total weight of the positive electrode active material, the conductive agent and the binder. 30 to 60% by weight.
 リチウムイオンキャパシタにおける負極としては、負極活物質、導電剤及び結着剤を溶媒に分散してスラリー化したものを負極用集電体にバーコーター等の塗工装置で塗布し、乾燥して溶媒を除去し、必要によりプレス機でプレスしたもの等が使用できる。 As a negative electrode in a lithium ion capacitor, a negative electrode active material, a conductive agent and a binder dispersed in a solvent are slurried, applied to a negative electrode current collector with a coating device such as a bar coater, and dried to obtain a solvent. Can be used if necessary.
負極活物質としては、アモルファス炭素、グラファイト、スズおよびその合金、シリコンおよびその合金等が挙げられる。
 導電剤、結着剤及び溶媒は、正極の製造に用いられるものと同様のものが使用できる。
 負極用集電体としては、銅、ステンレス鋼、ニッケル、アルミニウム、チタン、焼成炭素、導電性高分子、導電性ガラス及びアルミニウム-カドミウム合金等が挙げられる。
Examples of the negative electrode active material include amorphous carbon, graphite, tin and alloys thereof, silicon and alloys thereof.
As the conductive agent, the binder and the solvent, the same materials as those used for the production of the positive electrode can be used.
Examples of the negative electrode current collector include copper, stainless steel, nickel, aluminum, titanium, calcined carbon, conductive polymer, conductive glass, and an aluminum-cadmium alloy.
 リチウムイオンキャパシタにおいて、負極の全重量に基づく負極活物質、導電剤及び結着剤のそれぞれの好ましい含有量は以下の通りである。
 負極活物質の含有量は、好ましくは70~98重量%であり、更に好ましくは90~98重量%である。導電剤及び結着剤の含有量は、正極の場合と同様である。
In the lithium ion capacitor, preferable contents of the negative electrode active material, the conductive agent, and the binder based on the total weight of the negative electrode are as follows.
The content of the negative electrode active material is preferably 70 to 98% by weight, more preferably 90 to 98% by weight. The contents of the conductive agent and the binder are the same as in the case of the positive electrode.
 負極活物質、導電剤及び結着剤のスラリー化における溶媒の使用量としては、正極活物質、導電剤及び結着剤のスラリー化における溶媒の使用量と同様である。 The amount of the solvent used in the slurry formation of the negative electrode active material, the conductive agent and the binder is the same as the amount of the solvent used in the slurry formation of the positive electrode active material, the conductive agent and the binder.
 リチウムイオンキャパシタにおけるセパレーターとしては、ポリエチレン、ポリプロピレン製フィルムの微多孔膜、多孔性のポリエチレンフィルムとポリプロピレンとの多層フィルム、ポリエステル繊維、アラミド繊維、ガラス繊維等からなる不織布、及びそれらの表面にシリカ、アルミナ、チタニア等のセラミック微粒子を付着させたものが挙げられる。 As a separator in a lithium ion capacitor, polyethylene, a microporous film of a polypropylene film, a multilayer film of a porous polyethylene film and polypropylene, a non-woven fabric made of polyester fiber, aramid fiber, glass fiber, etc., and silica on the surface thereof, Examples include those to which ceramic fine particles such as alumina and titania are attached.
 リチウムイオンキャパシタにおける電池缶としては、ステンレススチール、鉄、アルミニウム及びニッケルメッキスチール等の金属材料を用いることができるが、電池用途に応じてプラスチック材料を用いることもできる。また電池缶は、用途に応じて円筒型、コイン型、角型、その他任意の形状にすることができる。 As the battery can in the lithium ion capacitor, metal materials such as stainless steel, iron, aluminum and nickel-plated steel can be used, but plastic materials can also be used depending on the battery application. The battery can can be formed into a cylindrical shape, a coin shape, a square shape, or any other shape depending on the application.
本発明の電極保護膜形成剤(F)は、リチウム二次電池又はリチウムイオンキャパシタの正極及び/又は負極に添加し、含有させて使用する事ができる。 The electrode protective film forming agent (F) of the present invention can be used by adding to and contained in the positive electrode and / or the negative electrode of a lithium secondary battery or a lithium ion capacitor.
 正極に添加する方法としては、正極活物質、導電剤及び結着剤を溶媒に分散してスラリー化したものに(F)を添加し、正極用集電体にバーコーター等の塗工装置で塗布し、乾燥して溶媒を除去し、必要によりプレス機でプレスする方法等が挙げられる。 As a method of adding to the positive electrode, (F) is added to a slurry obtained by dispersing a positive electrode active material, a conductive agent and a binder in a solvent, and the positive electrode current collector is applied with a coating device such as a bar coater. The method of apply | coating, drying, removing a solvent, and pressing with a press machine as needed is mentioned.
負極に添加する方法としては、負極活物質、導電剤及び結着剤を溶媒に分散してスラリー化したものに(F)を添加し、負極用集電体にバーコーター等の塗工装置で塗布し、乾燥して溶媒を除去し、必要によりプレス機でプレスする方法等が挙げられる。 As a method of adding to the negative electrode, (F) is added to a slurry obtained by dispersing a negative electrode active material, a conductive agent and a binder in a solvent, and the negative electrode current collector is coated with a coating device such as a bar coater. The method of apply | coating, drying, removing a solvent, and pressing with a press machine as needed is mentioned.
 正極に添加する場合の(F)の添加量は充放電サイクル特性、電池容量及び高貯蔵特性の観点から正極活物質に基づいて好ましくは0.1~10重量%、更に好ましくは0.5~5重量%である。
 負極に添加する場合の(F)の添加量は充放電サイクル特性、電池容量及び高貯蔵特性の観点から負極活物質に基づいて好ましくは0.1~10重量%、更に好ましくは0.5~5重量%である。
The amount of (F) added to the positive electrode is preferably 0.1 to 10% by weight, more preferably 0.5 to 0.5% based on the positive electrode active material from the viewpoints of charge / discharge cycle characteristics, battery capacity and high storage characteristics. 5% by weight.
The amount of (F) added to the negative electrode is preferably 0.1 to 10% by weight, more preferably 0.5 to 0.5% based on the negative electrode active material from the viewpoints of charge / discharge cycle characteristics, battery capacity and high storage characteristics. 5% by weight.
 以下、実施例により本発明を更に説明するが、本発明はこれらに限定されるものではない。以下において部は重量部を示す。 Hereinafter, the present invention will be further described with reference to examples, but the present invention is not limited thereto. Below, a part shows a weight part.
[ルイス塩基(C)の合成]
<製造例1>
N,N-ジ-(2-ブテン酸メチル)-4,10-ジアザ-15-クラウン-5-エーテル(AZ-1)の合成;
 攪拌機、温度計及び冷却管を取り付けたフラスコに、4,10-ジアザ-15-クラウン-5-エーテル[東京化成工業(株)製]0.61部(2.8mmol部)、4-ブロモ-2-ブテン酸メチルエステル[東京化成工業(株)製]1部(5.6mmol部)及びアセトニトリル10部を仕込み、攪拌しながら均一に溶解させた後、攪拌下室温で24時間反応させた。アセトニトリルを減圧(10mmHg)下に除去後、アセトンを溶剤としたアルミナカラム[150mesh、Brockman1,standard grade、アルドリッチ(株)製]によって反応物を精製し、N,N-ジ-(2-ブテン酸メチル)-4,10-ジアザ-15-クラウン-5-エーテル(AZ-1)0.85部(2.0mmol部)を得た(収率71%)。(AZ-1)は、一般式(2)において、Rがメチレン基、Q及びQが水素原子、Qがメトキシカルボニル基である重合性不飽和二重結合を有する置換基が窒素原子に結合したジアザクラウンエーテル化合物である。
[Synthesis of Lewis base (C)]
<Production Example 1>
Synthesis of N, N-di- (2-butenoate methyl) -4,10-diaza-15-crown-5-ether (AZ-1);
In a flask equipped with a stirrer, a thermometer and a condenser, 4,10-diaza-15-crown-5-ether (Tokyo Chemical Industry Co., Ltd.) 0.61 part (2.8 mmol part), 4-bromo- 1 part (5.6 mmol part) of 2-butenoic acid methyl ester [manufactured by Tokyo Chemical Industry Co., Ltd.] and 10 parts of acetonitrile were charged and dissolved uniformly with stirring, and then reacted at room temperature for 24 hours with stirring. After removing acetonitrile under reduced pressure (10 mmHg), the reaction product was purified by an alumina column [150 mesh, Blockman1, standard grade, manufactured by Aldrich Co., Ltd.] using acetone as a solvent, and N, N-di- (2-butenoic acid) was obtained. Methyl) -4,10-diaza-15-crown-5-ether (AZ-1) 0.85 part (2.0 mmol part) was obtained (yield 71%). (AZ-1) is a group having a polymerizable unsaturated double bond in which R 2 is a methylene group, Q 1 and Q 2 are hydrogen atoms, and Q 3 is a methoxycarbonyl group in the general formula (2). A diaza crown ether compound bonded to an atom.
<製造例2>
N,N-ジ-(1-アクリロイルオキシエチル)-4,10-ジアザ-15-クラウン-5-エーテル(AZ-2)の合成;
 4-ブロモ-2-ブテン酸メチルエステル1部の代わりにアクリル酸-2-クロロエチルエステル[東京化成工業(株)製]0.76部(5.6mmol部)を使用したこと以外は製造例1と同様にしてN,N-ジ-(1-アクリロイルオキシエチル)-4,10-ジアザ-15-クラウン-5-エーテル(AZ-2)0.60部(1.9mmol部)を得た(収率68%)。
 尚、4-ブロモ-2-ブテン酸メチルエステル1部をアクリル酸-2-クロロエチルエステル0.76部に変更するに際して、反応成分のモル比及び非反応成分(溶剤等)の重量比が、製造例1における場合と同等となるように各原料の量を調整して操作を行った。以下の製造例3についても同様に行った。
 (AZ-2)は、重合性不飽和二重結合を有する置換基としてアクリロイルオキシエチル基が窒素原子に結合したジアザクラウンエーテル化合物である。
<Production Example 2>
Synthesis of N, N-di- (1-acryloyloxyethyl) -4,10-diaza-15-crown-5-ether (AZ-2);
Production Example except that 0.76 part (5.6 mmol part) of acrylic acid-2-chloroethyl ester (manufactured by Tokyo Chemical Industry Co., Ltd.) was used instead of 1 part of 4-bromo-2-butenoic acid methyl ester In the same manner as in Example 1, 0.60 part (1.9 mmol part) of N, N-di- (1-acryloyloxyethyl) -4,10-diaza-15-crown-5-ether (AZ-2) was obtained. (Yield 68%).
When changing 1 part of 4-bromo-2-butenoic acid methyl ester to 0.76 part of acrylic acid-2-chloroethyl ester, the molar ratio of reactive components and the weight ratio of non-reactive components (solvent, etc.) were The operation was performed by adjusting the amount of each raw material so as to be equivalent to that in Production Example 1. It carried out similarly about the following manufacture examples 3.
(AZ-2) is a diaza crown ether compound in which an acryloyloxyethyl group is bonded to a nitrogen atom as a substituent having a polymerizable unsaturated double bond.
<製造例3>
N,N-ジシンナミル-4,10-ジアザ-15-クラウン-5-エーテル(AZ-3)の合成;
 4-ブロモ-2-ブテン酸メチルエステル1部の代わりにシンナミルクロリド[東京化成工業(株)製]0.85部(5.6mmol部)を使用したこと以外は製造例1と同様にしてN,N-ジシンナミル-4,10-ジアザ-15-クラウン-5-エーテル(C1-3)0.92部(2.0mmol部)を得た(収率73%)。(AZ-3)は、一般式(2)において、Rがメチレン基、Q及びQが水素原子、Qがフェニル基である重合性不飽和二重結合を有する置換基が窒素原子に結合したジアザクラウンエーテル化合物である。
<Production Example 3>
Synthesis of N, N-dicinnamyl-4,10-diaza-15-crown-5-ether (AZ-3);
In the same manner as in Production Example 1, except that 0.85 part (5.6 mmol part) of cinnamilk chloride (manufactured by Tokyo Chemical Industry Co., Ltd.) was used instead of 1 part of 4-bromo-2-butenoic acid methyl ester. 0.92 part (2.0 mmol part) of N, N-dicinnamyl-4,10-diaza-15-crown-5-ether (C1-3) was obtained (yield 73%). (AZ-3) is a general formula (2) in which a substituent having a polymerizable unsaturated double bond in which R 2 is a methylene group, Q 1 and Q 2 are hydrogen atoms, and Q 3 is a phenyl group is a nitrogen atom It is a diaza crown ether compound bonded to.
<実施例1>
ジエチレングリコールジ(2-ブテン酸メチル)エーテル(B-1)の合成;
 攪拌機、温度計及び冷却管を取り付けたフラスコに、ジエチレングリコール[東京化成工業(株)製]7.26部(68.4mmol部)、4-ブロモ-2-ブテン酸メチルエステル[東京化成工業(株)製]26.9部(150.3mmol部)、水酸化ナトリウム6.00部(150mmol部)及びトルエン100部を仕込み、攪拌しながら均一に溶解させた後、室温で15分間撹拌後、テトラブチルアンモニウムブロマイド1.32部(4.1mmol部)を加えた。65℃まで昇温した後、4時間攪拌して、エーテル化反応を行った。放冷後、水200部を加え、水層を分離した。更に有機層を水200部で洗浄した。トルエンを減圧(10mmHg)によって除去後、ヘキサンを溶剤としたアルミナカラム[150mesh、Brockman1,standard grade、アルドリッチ(株)製]によって反応物を精製し、ジエチレングリコールジ(2-ブテン酸メチル)エーテル(B-1)15.5部(51.3mmol部)を得た(収率75%)
<Example 1>
Synthesis of diethylene glycol di (2-butenoic acid methyl) ether (B-1);
To a flask equipped with a stirrer, thermometer and condenser, diethylene glycol [manufactured by Tokyo Chemical Industry Co., Ltd.] 7.26 parts (68.4 mmol part), 4-bromo-2-butenoic acid methyl ester [Tokyo Chemical Industry Co., Ltd. )] 26.9 parts (150.3 mmol parts), 6.00 parts (150 mmol parts) of sodium hydroxide and 100 parts of toluene were uniformly dissolved with stirring, and then stirred at room temperature for 15 minutes. 1.32 parts (4.1 mmol parts) of butylammonium bromide was added. After heating up to 65 degreeC, it stirred for 4 hours and performed etherification reaction. After allowing to cool, 200 parts of water was added and the aqueous layer was separated. Further, the organic layer was washed with 200 parts of water. After removing toluene by reduced pressure (10 mmHg), the reaction product was purified by an alumina column [150 mesh, Blockman1, standard grade, manufactured by Aldrich Co., Ltd.] using hexane as a solvent, and diethylene glycol di (2-butenoic acid methyl) ether (B -1) 15.5 parts (51.3 mmol parts) were obtained (yield 75%)
<実施例2>
ジエチレングリコールジ(4-ビニルベンジル)エーテル(B-2)の合成;
 4-ブロモ-2-ブテン酸メチルエステル26.9部(150.3mmol部)の代わりに4-ビニルベンジルクロライド[東京化成工業(株)製]22.9部(150.3mmol部)を使用したこと以外は実施例1と同様にしてジエチレングリコールジ(4-ビニルベンジル)エーテル(B-2)16.9部(49.9mmol部)を得た(収率73%)。
<Example 2>
Synthesis of diethylene glycol di (4-vinylbenzyl) ether (B-2);
Instead of 26.9 parts (150.3 mmol parts) of 4-bromo-2-butenoic acid methyl ester, 22.9 parts (150.3 mmol parts) of 4-vinylbenzyl chloride [manufactured by Tokyo Chemical Industry Co., Ltd.] was used. Except that, 16.9 parts (49.9 mmol parts) of diethylene glycol di (4-vinylbenzyl) ether (B-2) was obtained in the same manner as in Example 1 (yield 73%).
<実施例3>
1,4-ビス(1-プロペノキシメチル)シクロヘキサン(A-1)の合成;
 攪拌機、温度計及び冷却管を取り付けたフラスコに、1,4-シクロヘキサンジメタノール[東京化成工業(株)製]9.86部(68.4mmol部)、塩化アリル[東京化成工業(株)製]11.51部(150.3mmol部)、水酸化ナトリウム6.00部(150mmol部)及びトルエン100部を仕込み、攪拌しながら均一に溶解させた後、室温で15分間撹拌後、テトラブチルアンモニウムブロマイド1.32部(4.1mmol部)を加えた。2時間かけて65℃まで昇温し更に4時間攪拌して、エーテル化反応及び転位反応を行った。放冷後、水200部を加え水層を分離した。更に有機層を水200部で洗浄した。トルエンを減圧(10mmHg)によって除去後、ヘキサンを溶剤としたアルミナカラム[150mesh、Brockman1,standard grade、アルドリッチ(株)製]によって反応物を精製し、1,4-ビス(1-プロペノキシメチル)シクロヘキサン(A-1)10.9部(48.6mmol部)を得た(収率71%)。
 尚、表1~3に記載の化合物(A)における1,4-ビス(ビニロキシメチル)シクロヘキサン、1,4-ブタンジオールジビニルエーテル及びトリエチレングリコールジビニルエーテルは、市販品[日本カーバイド工業(株)製]を使用した。
<Example 3>
Synthesis of 1,4-bis (1-propenoxymethyl) cyclohexane (A-1);
In a flask equipped with a stirrer, a thermometer and a condenser, 1,4-cyclohexanedimethanol [Tokyo Chemical Industry Co., Ltd.] 9.86 parts (68.4 mmol), allyl chloride [Tokyo Chemical Industry Co., Ltd. ] 11.51 parts (150.3 mmol parts), 6.00 parts (150 mmol parts) of sodium hydroxide and 100 parts of toluene were uniformly dissolved with stirring, and then stirred at room temperature for 15 minutes, followed by tetrabutylammonium. 1.32 parts (4.1 mmol parts) bromide was added. The temperature was raised to 65 ° C. over 2 hours and further stirred for 4 hours to carry out an etherification reaction and a rearrangement reaction. After allowing to cool, 200 parts of water was added and the aqueous layer was separated. Further, the organic layer was washed with 200 parts of water. After removing toluene by reduced pressure (10 mmHg), the reaction product was purified by an alumina column [150 mesh, Blockman 1, standard grade, manufactured by Aldrich Co., Ltd.] using hexane as a solvent, and 1,4-bis (1-propenoxymethyl) was purified. ) 10.9 parts (48.6 mmol parts) of cyclohexane (A-1) were obtained (yield 71%).
In addition, 1,4-bis (vinyloxymethyl) cyclohexane, 1,4-butanediol divinyl ether and triethylene glycol divinyl ether in the compounds (A) listed in Tables 1 to 3 are commercially available products [Nippon Carbide Industries, Ltd. ) Made].
[電解液の調製]
<実施例4~35>
 表1~3に示した重量割合で化合物(A)、(B)、(C)、(D)及び非水溶媒(H)を配合し、そこに1mol/Lの濃度になるようにLiPFを溶解させ実施例4~35の電解液を調整した。
[Preparation of electrolyte]
<Examples 4 to 35>
Compounds (A), (B), (C), (D) and a non-aqueous solvent (H) are blended in the weight ratios shown in Tables 1 to 3, and LiPF 6 is added thereto so as to have a concentration of 1 mol / L. Were dissolved to prepare electrolytes of Examples 4 to 35.
<比較例1>
 エチレンカーボネートとジエチルカーボネートの混合溶媒(体積比率3:7)に、LiPFを1mol/Lの割合で溶解させた後、ビニレンカーボネートを2重量%の割合で混合して比較例1の電解液を調整した。
<Comparative Example 1>
LiPF 6 was dissolved at a rate of 1 mol / L in a mixed solvent of ethylene carbonate and diethyl carbonate (volume ratio 3: 7), and then vinylene carbonate was mixed at a rate of 2% by weight to prepare the electrolyte solution of Comparative Example 1. It was adjusted.
<比較例2>
 エチレンカーボネートとジメチルカーボネートの混合溶媒(体積比率1:2)に、LiPFを1mol/Lの割合で溶解させた後、ジメチルスルホンを0.1mol/Lとなるように混合し、比較例2の電解液を調整した。
<Comparative Example 2>
In a mixed solvent of ethylene carbonate and dimethyl carbonate (volume ratio 1: 2), LiPF 6 was dissolved at a rate of 1 mol / L, and then dimethyl sulfone was mixed to a concentration of 0.1 mol / L. The electrolyte was adjusted.
<比較例3>
 エチレンカーボネートとジメチルカーボネートの混合溶媒(体積比率1:1)に、LiPFを1mol/Lの割合で溶解させた後、1,3-プロパンスルトンを5重量%の割合で混合し、比較例3の電解液を調整した。
<Comparative Example 3>
In a mixed solvent of ethylene carbonate and dimethyl carbonate (volume ratio 1: 1), LiPF 6 was dissolved at a rate of 1 mol / L, and then 1,3-propane sultone was mixed at a rate of 5% by weight. The electrolyte solution was adjusted.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
[リチウムイオン電池用正極の作成]
表4~7に示した処方に基づいて電極保護膜形成剤(F)を添加した正極を以下の方法で作成した。
 LiCoO2粉末90.0部、ケチェンブラック[アルドリッチ社製]5部、ポリフッ化ビニリデン[アルドリッチ社製]5部、及び表4~7に示した重量の(F)を乳鉢で十分に混合した後、1-メチル-2-ピロリドン[東京化成工業(株)製]70.0部、を添加し、更に乳鉢で十分に混合してスラリーを得た。得られたスラリーを、大気中でワイヤーバーを用いて厚さ20μmのアルミニウム電解箔上の片面に塗布し、100℃で15分間乾燥させた後、更に減圧下(10mmHg)、80℃で5分間乾燥して、15.95mmφに打ち抜き、実施例36~67のリチウムイオン電池用正極を作製した。
[Creation of positive electrode for lithium ion battery]
Based on the formulations shown in Tables 4 to 7, positive electrodes to which the electrode protective film forming agent (F) was added were prepared by the following method.
After thoroughly mixing 90.0 parts of LiCoO2 powder, 5 parts of Ketjen black [manufactured by Aldrich], 5 parts of polyvinylidene fluoride [manufactured by Aldrich], and the weight (F) shown in Tables 4 to 7 in a mortar 1-methyl-2-pyrrolidone [manufactured by Tokyo Chemical Industry Co., Ltd.] was added and further mixed well in a mortar to obtain a slurry. The obtained slurry was applied to one side of an aluminum electrolytic foil having a thickness of 20 μm using a wire bar in the atmosphere, dried at 100 ° C. for 15 minutes, and further under reduced pressure (10 mmHg) at 80 ° C. for 5 minutes. It was dried and punched out to 15.95 mmφ to produce positive electrodes for lithium ion batteries of Examples 36 to 67.
[リチウムイオン電池用負極の作成]
表4~7に示した処方に基づいて電極保護膜形成剤(F)を添加した負極を以下の方法で作成した。
平均粒子径約8~12μmの黒鉛粉末92.5部、ポリフッ化ビニリデン7.5部、1-メチル-2-ピロリドン[東京化成工業(株)製]200部及び表4~7に示した重量の(F)を乳鉢で十分に混合しスラリーを得た。得られたスラリーを、厚さ20μmの銅箔の片面に塗布し、100℃で15分間乾燥して溶媒を蒸発させた後、16.15mmφに打ち抜き、プレス機で厚さ30μmにして実施例36~67のリチウムイオン電池用負極を作製した。
[Creation of negative electrode for lithium ion battery]
Based on the formulations shown in Tables 4 to 7, negative electrodes to which the electrode protective film forming agent (F) was added were prepared by the following method.
92.5 parts of graphite powder having an average particle size of about 8 to 12 μm, 7.5 parts of polyvinylidene fluoride, 200 parts of 1-methyl-2-pyrrolidone [manufactured by Tokyo Chemical Industry Co., Ltd.] and the weights shown in Tables 4 to 7 (F) was sufficiently mixed in a mortar to obtain a slurry. The obtained slurry was applied to one side of a 20 μm thick copper foil, dried at 100 ° C. for 15 minutes to evaporate the solvent, punched to 16.15 mmφ, and made 30 μm thick with a press machine. ~ 67 negative electrodes for lithium ion batteries were prepared.
[リチウムイオンキャパシタ用正極の作成]
表7に示した処方に基づいて電極保護膜形成剤(F)を添加した正極を以下の方法で作成した。
 活性炭粉末90.0部、ケチェンブラック[アルドリッチ社製]5.0部、ポリフッ化ビニリデン[アルドリッチ社製]5.0部、及び表4~7に示した重量の(F)を乳鉢で十分に混合した後、1-メチル-2-ピロリドン[東京化成工業(株)製]70.0部、を添加し、更に乳鉢で十分に混合してスラリーを得た。得られたスラリーを、大気中でワイヤーバーを用いて厚さ20μmのアルミニウム電解箔上の片面に塗布し、100℃で15分間乾燥させた後、更に減圧下(10mmHg)、80℃で5分間乾燥して、15.95mmφに打ち抜き、実施例68~71のリチウムイオンキャパシタ用正極を作製した。
[Creation of positive electrode for lithium ion capacitor]
A positive electrode to which an electrode protective film forming agent (F) was added based on the formulation shown in Table 7 was prepared by the following method.
90.0 parts of activated carbon powder, 5.0 parts of Ketjen black [manufactured by Aldrich], 5.0 parts of polyvinylidene fluoride [manufactured by Aldrich], and the weight (F) shown in Tables 4 to 7 are sufficient in a mortar After mixing, 70.0 parts of 1-methyl-2-pyrrolidone [manufactured by Tokyo Chemical Industry Co., Ltd.] was added and further mixed well in a mortar to obtain a slurry. The obtained slurry was applied to one side of an aluminum electrolytic foil having a thickness of 20 μm using a wire bar in the atmosphere, dried at 100 ° C. for 15 minutes, and further under reduced pressure (10 mmHg) at 80 ° C. for 5 minutes. It was dried and punched out to 15.95 mmφ to produce positive electrodes for lithium ion capacitors of Examples 68 to 71.
[リチウムイオンキャパシタ用負極の作成]
表7に示した処方に基づいて電極保護膜形成剤(F)を添加した負極を以下の方法で作成した。
平均粒子径約8~12μmの黒鉛粉末92.5部、ポリフッ化ビニリデン7.5部、1-メチル-2-ピロリドン[東京化成工業(株)製]200部及び表4~7に示した重量の(F)を乳鉢で十分に混合しスラリーを得た。得られたスラリーを、厚さ20μmの銅箔の片面に塗布し、100℃で15分間乾燥して溶媒を蒸発させた後、16.15mmφに打ち抜き、プレス機で厚さ30μmにした。得られた電極と、リチウム金属箔を、セパレータ(ポリプロピレン製不織布)で挟んでビーカーセルにセットし、負極理論容量の約75%のリチウムイオンを約10時間かけて負極に吸蔵させ、実施例68~71のリチウムイオンキャパシタ用負極を作製した。
[Creation of negative electrode for lithium ion capacitor]
Based on the formulation shown in Table 7, a negative electrode to which the electrode protective film forming agent (F) was added was prepared by the following method.
92.5 parts of graphite powder having an average particle size of about 8 to 12 μm, 7.5 parts of polyvinylidene fluoride, 200 parts of 1-methyl-2-pyrrolidone [manufactured by Tokyo Chemical Industry Co., Ltd.] and the weights shown in Tables 4 to 7 (F) was sufficiently mixed in a mortar to obtain a slurry. The obtained slurry was applied to one side of a 20 μm thick copper foil, dried at 100 ° C. for 15 minutes to evaporate the solvent, punched to 16.15 mmφ, and made 30 μm thick with a press. The obtained electrode and a lithium metal foil were sandwiched between separators (polypropylene nonwoven fabric) and set in a beaker cell, and lithium ions of about 75% of the theoretical capacity of the negative electrode were occluded in the negative electrode over about 10 hours. Example 68 The negative electrode for lithium ion capacitors of ~ 71 was produced.
<比較例4>
 電極保護膜形成剤(F)のかわりにメチルスルホン1.5部を添加すること以外、実施例36~67と同様の方法で比較例4のリチウムイオン電池用正極を作成した。
 電極保護膜形成剤(F)を添加しないこと以外、実施例36~67と同様の方法で比較例4のリチウムイオン電池用負極を作成した。
<Comparative Example 4>
A positive electrode for a lithium ion battery of Comparative Example 4 was prepared in the same manner as in Examples 36 to 67 except that 1.5 parts of methylsulfone was added instead of the electrode protective film forming agent (F).
A negative electrode for a lithium ion battery of Comparative Example 4 was prepared in the same manner as in Examples 36 to 67 except that the electrode protective film forming agent (F) was not added.
<比較例5> 
電極保護膜形成剤(F)のかわりに1,3-プロパンスルトン1.5部を添加すること以外、実施例36~67と同様の方法で比較例5のリチウムイオン電池用正極を作成した。
電極保護膜形成剤(F)を添加しないこと以外、実施例36~67と同様の方法で比較例5のリチウムイオン電池用負極を作成した。
<Comparative Example 5>
A positive electrode for a lithium ion battery of Comparative Example 5 was prepared in the same manner as in Examples 36 to 67 except that 1.5 parts of 1,3-propane sultone was added instead of the electrode protective film forming agent (F).
A negative electrode for a lithium ion battery of Comparative Example 5 was prepared in the same manner as in Examples 36 to 67 except that the electrode protective film forming agent (F) was not added.
<比較例6> 
電極保護膜形成剤(F)のかわりにジメチルスルホン1.5部を添加すること以外、実施例68~71と同様の方法で比較例6のリチウムイオンキャパシタ用正極を作成した。
電極保護膜形成剤(F)を添加しないこと以外、実施例68~71と同様の方法で比較例6のリチウムイオンキャパシタ用負極を作成した。
<Comparative Example 6>
A positive electrode for a lithium ion capacitor of Comparative Example 6 was prepared in the same manner as in Examples 68 to 71 except that 1.5 parts of dimethyl sulfone was added instead of the electrode protective film forming agent (F).
A negative electrode for a lithium ion capacitor of Comparative Example 6 was prepared in the same manner as in Examples 68 to 71 except that the electrode protective film forming agent (F) was not added.
<比較例7>
電極保護膜形成剤(F)のかわりに1,3-プロパンスルトン1.5部を添加すること以外、実施例68~71と同様の方法で比較例7のリチウムイオンキャパシタ用正極を作成した。
電極保護膜形成剤(F)を添加しないこと以外、実施例68~71と同様の方法で比較例7のリチウムイオンキャパシタ用負極を作成した。
<Comparative Example 7>
A positive electrode for a lithium ion capacitor of Comparative Example 7 was prepared in the same manner as in Examples 68 to 71 except that 1.5 parts of 1,3-propane sultone was added instead of the electrode protective film forming agent (F).
A negative electrode for a lithium ion capacitor of Comparative Example 7 was prepared in the same manner as in Examples 68 to 71 except that the electrode protective film forming agent (F) was not added.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
[リチウムイオン電池、リチウムイオンキャパシタの作成]
(1)リチウムイオン電池の作成
(1-1)正極の作製
 LiCoO2粉末9.0部、ケチェンブラック[アルドリッチ社製]0.5部及びポリフッ化ビニリデン[アルドリッチ社製]0.5部を乳鉢で十分に混合した後、1-メチル-2-ピロリドン[東京化成工業(株)製]7.0部を添加し、更に乳鉢で十分に混合してスラリーを得た。得られたスラリーを、大気中でワイヤーバーを用いて厚さ20μmのアルミニウム電解箔上の片面に塗布し、100℃で15分間乾燥させた後、更に減圧下(10mmHg)、80℃で5分間乾燥して、15.95mmφに打ち抜き、膜厚30μmのリチウムイオン電池用の正極を作製した。
[Create lithium-ion batteries and lithium-ion capacitors]
(1) Preparation of Lithium Ion Battery (1-1) Preparation of Positive Electrode 9.0 parts of LiCoO2 powder, 0.5 part of Kechen Black [manufactured by Aldrich] and 0.5 part of polyvinylidene fluoride [manufactured by Aldrich] Then, 7.0 parts of 1-methyl-2-pyrrolidone [manufactured by Tokyo Chemical Industry Co., Ltd.] was added, and the mixture was further thoroughly mixed in a mortar to obtain a slurry. The obtained slurry was applied to one side of an aluminum electrolytic foil having a thickness of 20 μm using a wire bar in the atmosphere, dried at 100 ° C. for 15 minutes, and further under reduced pressure (10 mmHg) at 80 ° C. for 5 minutes. It dried and punched out to 15.95 mm diameter and produced the positive electrode for lithium ion batteries with a film thickness of 30 micrometers.
(1-2)負極の作製
 平均粒子径約8~12μmの黒鉛粉末92.5部、ポリフッ化ビニリデン7.5部及び1-メチル-2-ピロリドン[東京化成工業(株)製]200部を乳鉢で十分に混合しスラリーを得た。得られたスラリーを、厚さ20μmの銅箔の片面に塗布し、100℃で15分間乾燥して溶媒を蒸発させた後、16.15mmφに打ち抜き、プレス機で厚さ30μmにしてリチウムイオン電池用の負極を作製した。
(1-2) Production of negative electrode 92.5 parts of graphite powder having an average particle size of about 8 to 12 μm, 7.5 parts of polyvinylidene fluoride and 200 parts of 1-methyl-2-pyrrolidone [manufactured by Tokyo Chemical Industry Co., Ltd.] The slurry was sufficiently mixed with a mortar. The obtained slurry was applied to one side of a copper foil having a thickness of 20 μm, dried at 100 ° C. for 15 minutes to evaporate the solvent, punched to 16.15 mmφ, and made 30 μm in thickness with a press machine. A negative electrode was prepared.
(1-3)二次電池用セルの作製
 2032型コインセル内の両端に、上記正極及び負極を、それぞれの塗布面が向き合うように配置して二次電池用セルを作製した。
(1-3) Production of Secondary Battery Cell The secondary battery cell was produced by arranging the positive electrode and the negative electrode at both ends of the 2032 type coin cell so that the respective coated surfaces face each other.
(2)リチウムイオンキャパシタの作成
 (2-1)正極の作製
 正極活物質として、アルカリ賦活法によって得られた比表面積が約2200m2/gである活性炭を用いた。活性炭粉末、アセチレンブラック、及びポリフッ化ビニリデンを、それぞれ重量比80:10:10の割合となるように混合し、この混合物を、溶媒であるN-メチルピロリドン中に添加し、攪拌混合してスラリーを得た。このスラリーを、厚さ30μmのアルミニウム箔の上にドクターブレード法で塗布し、仮乾燥した後、電極サイズが20mm×30mmとなるように切り取った。電極の厚みは約50μmであった。セルの組み立て前には、真空中で120℃、10時間乾燥しリチウムイオンキャパシタ用の正極を作成した。
(2) Production of Lithium Ion Capacitor (2-1) Production of Positive Electrode As the positive electrode active material, activated carbon having a specific surface area obtained by an alkali activation method of about 2200 m 2 / g was used. Activated carbon powder, acetylene black, and polyvinylidene fluoride are mixed at a weight ratio of 80:10:10, and the mixture is added to N-methylpyrrolidone, which is a solvent, and mixed by stirring. Got. This slurry was applied onto an aluminum foil having a thickness of 30 μm by a doctor blade method, temporarily dried, and then cut so that the electrode size was 20 mm × 30 mm. The electrode thickness was about 50 μm. Before assembling the cell, it was dried in a vacuum at 120 ° C. for 10 hours to prepare a positive electrode for a lithium ion capacitor.
(2-2)負極の作製
 平均粒子径約8~12μmの黒鉛粉末80部、アセチレンブラック10部、及びポリフッ化ビニリデン10部を混合し、この混合物を溶媒であるN-メチルピロリドンに添加して攪拌混合し、スラリーを得た。このスラリーを、厚さ18μmの銅箔の上にドクターブレード法で塗布し、仮乾燥した後、電極サイズが20mm×30mmとなるように切り取った。電極の厚みは、約50μmであった。セルの組み立て前に、真空中で120℃、5時間乾燥しリチウムイオンキャパシタ用の負極を作成した。
(2-2) Preparation of negative electrode 80 parts of graphite powder having an average particle size of about 8 to 12 μm, 10 parts of acetylene black, and 10 parts of polyvinylidene fluoride were mixed, and this mixture was added to N-methylpyrrolidone as a solvent. The mixture was stirred to obtain a slurry. This slurry was applied onto a copper foil having a thickness of 18 μm by a doctor blade method and temporarily dried, and then cut so that the electrode size was 20 mm × 30 mm. The electrode thickness was about 50 μm. Before assembling the cell, it was dried in vacuum at 120 ° C. for 5 hours to prepare a negative electrode for a lithium ion capacitor.
 (2-3)負極へのリチウムのドーピング
 上記のようにして得られた負極に、以下のようにしてリチウムをドーピングさせた。負極と、リチウム金属箔を、セパレータ(ポリプロピレン製不織布)で挟んでビーカーセルにセットし、所定量のリチウムイオンを約10時間かけて負極に吸蔵させた。リチウムのドープ量は、負極理論容量の約75%とした。
(2-3) Doping of lithium into the negative electrode The negative electrode obtained as described above was doped with lithium as follows. The negative electrode and lithium metal foil were sandwiched between separators (polypropylene nonwoven fabric) and set in a beaker cell, and a predetermined amount of lithium ions was occluded in the negative electrode over about 10 hours. The doping amount of lithium was about 75% of the negative electrode theoretical capacity.
 (2-4)キャパシタセルの組み立て
 上記のようにして得られた正極と負極の間に、セパレータ(ポリプロピレン製不織布)を挿入し、これに電解液を含浸させ、ラミネートフィルムからなる収納ケースに入れて密封しリチウムイオンキャパシタを作成した。
(2-4) Capacitor cell assembly A separator (polypropylene nonwoven fabric) is inserted between the positive electrode and the negative electrode obtained as described above, impregnated with an electrolytic solution, and placed in a storage case made of a laminate film. And sealed to make a lithium ion capacitor.
[評価]
電解液の評価
 実施例4~35及び比較例1~3で調整した電解液を、それぞれ上記二次電池用セルに注液後密封し、以下の方法で高電圧充放電サイクル特性及び高温保存特性を評価した結果と、キャパシタセルに注液後密封し、以下の方法で高電圧充放電サイクル特性及び高温保存特性を評価した結果を表8に示す。
[Evaluation]
Evaluation of Electrolytic Solution The electrolytic solutions prepared in Examples 4 to 35 and Comparative Examples 1 to 3 were respectively poured into the above secondary battery cells and sealed, and high voltage charge / discharge cycle characteristics and high temperature storage characteristics were as follows. Table 8 shows the results of evaluation and the results of sealing after filling the capacitor cell and evaluating the high voltage charge / discharge cycle characteristics and the high temperature storage characteristics by the following methods.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
電極の評価
(1)リチウム二次電池の作成
 2032型コインセル内の両端に、実施例36~67及び比較例4,5の正極及び負極をそれぞれの塗布面が向き合うように配置して二次電池用セルを作製した。エチレンカーボネートとジメチルカーボネートの混合溶媒(体積比率1:1)に、LiPFを1mol/Lの割合で溶解させた電解液を作成したセルに注液密封し、以下の方法で高電圧充放電サイクル特性及び高温保存特性を評価した結果を表9に示す。
(2)リチウムイオンキャパシタの作成
 ラミネートフィルムからなる収納ケースに、実施例68~71及び比較例6,7の正極及び負極を、それぞれの塗布面が向き合うように配置してキャパシタ用セルを作製した。エチレンカーボネートとジメチルカーボネートの混合溶媒(体積比率1:1)に、LiPFを1mol/Lの割合で溶解させた電解液を作成したセルに注液密封し、以下の方法で高電圧充放電サイクル特性及び高温保存特性を評価した結果を表9に示す。
Evaluation of Electrode (1) Preparation of Lithium Secondary Battery Secondary Battery by Disposing the Positive Electrode and Negative Electrode of Examples 36 to 67 and Comparative Examples 4 and 5 at the Both Ends of 2032 Type Coin Cell A cell was prepared. An electrolyte solution prepared by dissolving LiPF 6 in a mixed solvent of ethylene carbonate and dimethyl carbonate (volume ratio 1: 1) at a rate of 1 mol / L was injected and sealed, and a high voltage charge / discharge cycle was performed by the following method. Table 9 shows the results of evaluating the characteristics and the high temperature storage characteristics.
(2) Preparation of Lithium Ion Capacitor A capacitor cell was prepared by arranging the positive and negative electrodes of Examples 68 to 71 and Comparative Examples 6 and 7 so that their coated surfaces face each other in a storage case made of a laminate film. . An electrolyte solution prepared by dissolving LiPF 6 in a mixed solvent of ethylene carbonate and dimethyl carbonate (volume ratio 1: 1) at a rate of 1 mol / L was injected and sealed, and a high voltage charge / discharge cycle was performed by the following method. Table 9 shows the results of evaluating the characteristics and the high temperature storage characteristics.
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
<高電圧充放電サイクル特性の評価>
 充放電測定装置「バッテリーアナライザー1470型」[東陽テクニカ(株)製]を用いて、0.1Cの電流で電圧4.5Vまで充電し、10分間の休止後、0.1Cの電流で電池電圧を3.5Vまで放電し、この充放電を繰り返した。この時の初回充電時の電池容量と50サイクル目充電時の電池容量を測定し、下記式から充放電サイクル特性を算出する。数値が大きい程、充放電サイクル特性が良好であることを示す。
高電圧充放電サイクル特性(%)=(50サイクル目充電時の電池容量/初回充電時の電池容量)×100
<Evaluation of high voltage charge / discharge cycle characteristics>
Using a charge / discharge measuring device “Battery Analyzer 1470” [manufactured by Toyo Technica Co., Ltd.], the battery voltage is charged at 0.1 C current to a voltage of 4.5 V, and after 10 minutes of rest, the battery voltage at 0.1 C current Was discharged to 3.5 V, and this charge / discharge was repeated. At this time, the battery capacity at the first charge and the battery capacity at the 50th cycle charge are measured, and the charge / discharge cycle characteristics are calculated from the following equation. It shows that charging / discharging cycling characteristics are so favorable that a numerical value is large.
High voltage charge / discharge cycle characteristics (%) = (battery capacity at the 50th cycle charge / battery capacity at the first charge) × 100
<高温保存特性の評価>
 充放電測定装置「バッテリーアナライザー1470型」[東陽テクニカ(株)製]を用いて、0.1Cの電流で電圧4.5Vまで充電し、10分間の休止後、0.1Cの電流で電圧3.5Vまで放電し容量を測定する(初回電池容量)。更に0.1Cの電流で電圧4.5Vまで充電し、85℃で7日間保存後、0.1Cの電流で3.5Vまで放電を行い電池容量を測定する(高温保存後電池容量)。下記式から高温保存特性を算出する。数値が大きいほど、高温保存特性が良好であることを示す。
高温保存特性(%)=(高温保存後電池容量/初回電池容量)×100 
<Evaluation of high-temperature storage characteristics>
Using a charge / discharge measuring device “Battery Analyzer 1470 type” [manufactured by Toyo Technica Co., Ltd.], charge to a voltage of 4.5 V with a current of 0.1 C, and after a pause of 10 minutes, a voltage of 3 with a current of 0.1 C Discharge to 5V and measure capacity (initial battery capacity). Further, the battery is charged to a voltage of 4.5 V with a current of 0.1 C, stored for 7 days at 85 ° C., then discharged to 3.5 V with a current of 0.1 C, and the battery capacity is measured (battery capacity after high temperature storage). The high temperature storage characteristics are calculated from the following formula. It shows that high temperature storage characteristics are so favorable that a numerical value is large.
High temperature storage characteristics (%) = (battery capacity after high temperature storage / initial battery capacity) × 100
 本発明の電極保護膜形成剤(F)を使用した電解液は高電圧下でのサイクル特性及び高温貯蔵安定性が優れているため、特にリチウム二次電池用電解液又はリチウムイオンキャパシタ用電解液として有用であり、電気自動車用として好適である。 Since the electrolytic solution using the electrode protective film forming agent (F) of the present invention has excellent cycle characteristics under high voltage and high-temperature storage stability, the electrolytic solution for a lithium secondary battery or the electrolytic solution for a lithium ion capacitor is particularly preferable. It is useful as an electric vehicle.

Claims (16)

  1. 下記(A1)、(A2)、(A3)、(B1)及び(B2)からなる群より選ばれる少なくとも1種の化合物(A)又は(B)を含有する電極保護膜形成剤(F)。
    (A1):下記一般式(1)で表されるアルケニルオキシ基(a)を有する脂肪族炭化水素
    (A2):(a)を有する多価アルコールのエーテル
    (A3):(a)を有するポリオキシアルキレンエーテル
    (B1):下記一般式(2)で表される置換基、下記一般式(3)で表される置換基、(メタ)アクリロイルオキシアルキル基、及び(メタ)アクリロイルアルキル基からなる群より選ばれる少なくとも1種の置換基(b)を有する多価アルコールのエーテル
    (B2):(b)を有するポリオキシアルキレンエーテル
    Figure JPOXMLDOC01-appb-C000007
    [T、T及びTは水素原子又は炭素数1~3のアルキル基である。]
    Figure JPOXMLDOC01-appb-C000008
    [式中、Rは炭素数1~3のアルキレン基であり、Q、Q及びQは、それぞれ独立に水素原子、ハロゲン原子、炭素数1~4のアルキル基、炭素数1若しくは2のフルオロアルキル基、フェニル基、シアノ基、カルボキシル基、炭素数1~3のアルコキシ基又は炭素数1~4のアルコキシカルボニル基である。]
    Figure JPOXMLDOC01-appb-C000009
    [式中、Rは炭素数1~3のアルキレン基であり、Qは水素原子又はハロゲン原子であり、Q、Q及びQは、それぞれ独立に水素原子、ハロゲン原子、炭素数1~4のアルキル基、炭素数1若しくは2のフルオロアルキル基、フェニル基、シアノ基、カルボキシル基、炭素数1~3のアルコキシ基又は炭素数1~4のアルコキシカルボニル基である。]
    The electrode protective film forming agent (F) containing at least one compound (A) or (B) selected from the group consisting of the following (A1), (A2), (A3), (B1) and (B2).
    (A1): aliphatic hydrocarbon (A2) having an alkenyloxy group (a) represented by the following general formula (1): polyhydric alcohol ether (A3) having (a): poly having (a) Oxyalkylene ether (B1): consisting of a substituent represented by the following general formula (2), a substituent represented by the following general formula (3), a (meth) acryloyloxyalkyl group, and a (meth) acryloylalkyl group Polyoxyalkylene ether having polyhydric alcohol ether (B2) :( b) having at least one substituent (b) selected from the group
    Figure JPOXMLDOC01-appb-C000007
    [T 1 , T 2 and T 3 are a hydrogen atom or an alkyl group having 1 to 3 carbon atoms. ]
    Figure JPOXMLDOC01-appb-C000008
    [Wherein R 2 is an alkylene group having 1 to 3 carbon atoms, and Q 1 , Q 2 and Q 3 are each independently a hydrogen atom, a halogen atom, an alkyl group having 1 to 4 carbon atoms, a carbon number 1 or 2 fluoroalkyl group, phenyl group, cyano group, carboxyl group, alkoxy group having 1 to 3 carbon atoms or alkoxycarbonyl group having 1 to 4 carbon atoms. ]
    Figure JPOXMLDOC01-appb-C000009
    [Wherein R 3 is an alkylene group having 1 to 3 carbon atoms, Q 4 is a hydrogen atom or a halogen atom, and Q 5 , Q 6 and Q 7 are each independently a hydrogen atom, a halogen atom or a carbon number. An alkyl group having 1 to 4 carbon atoms, a fluoroalkyl group having 1 or 2 carbon atoms, a phenyl group, a cyano group, a carboxyl group, an alkoxy group having 1 to 3 carbon atoms, or an alkoxycarbonyl group having 1 to 4 carbon atoms. ]
  2. アルケニルオキシ基(a)が、ビニルオキシ基又は1-プロペニルオキシ基である請求項1に記載の電極保護膜形成剤(F)。 The electrode protective film-forming agent (F) according to claim 1, wherein the alkenyloxy group (a) is a vinyloxy group or a 1-propenyloxy group.
  3. (A1)、(A2)及び(A3)からなる群より選ばれる少なくとも1種の化合物(A)を含有してなり、化合物(A)が一般式(4)で表される化合物、一般式(5)で表される化合物又はビニルオキシ基若しくは1-プロペニルオキシ基を2つ以上有するシクロヘキサン誘導体である請求項1又は2に記載の電極保護膜形成剤(F)。
     R-CH=CH-O-(CH-O-CH=CH-R        (4)
    [式中、R及びRはそれぞれ独立に水素原子又はメチル基であり、pは1~10の整数である。]
     R-CH=CH-O-(CO)-CH=CH-R        (5)
    [式中、R及びRはそれぞれ独立に水素原子又はメチル基であり、qは1~5の整数である。]
    A compound comprising at least one compound (A) selected from the group consisting of (A1), (A2) and (A3), wherein the compound (A) is represented by the general formula (4): The electrode protective film forming agent (F) according to claim 1 or 2, which is a compound represented by 5) or a cyclohexane derivative having two or more vinyloxy groups or 1-propenyloxy groups.
    R 4 —CH═CH—O— (CH 2 ) p —O—CH═CH—R 5   (4)
    [Wherein, R 4 and R 5 each independently represent a hydrogen atom or a methyl group, and p is an integer of 1 to 10. ]
    R 6 —CH═CH—O— (C 2 H 4 O) q —CH═CH—R 7 (5)
    [Wherein, R 6 and R 7 are each independently a hydrogen atom or a methyl group, and q is an integer of 1 to 5.] ]
  4. 請求項1~3のいずれか1項に記載の電極保護膜形成剤(F)を含有する電解液。 An electrolytic solution containing the electrode protective film forming agent (F) according to any one of claims 1 to 3.
  5.  更に、ルイス塩基(C)を含有する請求項4に記載の電解液。 Furthermore, the electrolyte solution of Claim 4 containing a Lewis base (C).
  6.  前記ルイス塩基(C)が、アザクラウンエーテル誘導体(C1)及び/又はトリアゾール誘導体(C2)である請求項5に記載の電解液。 The electrolytic solution according to claim 5, wherein the Lewis base (C) is an azacrown ether derivative (C1) and / or a triazole derivative (C2).
  7.  前記アザクラウンエーテル誘導体(C1)が、アザクラウンエーテル環における窒素原子の1個以上に重合性不飽和二重結合を有する置換基を結合してなる誘導体である請求項6に記載の電解液。 The electrolytic solution according to claim 6, wherein the azacrown ether derivative (C1) is a derivative formed by bonding a substituent having a polymerizable unsaturated double bond to one or more nitrogen atoms in the azacrown ether ring.
  8.  前記重合性不飽和二重結合を有する置換基が、置換基(b)である請求項7に記載の電解液。 The electrolytic solution according to claim 7, wherein the substituent having a polymerizable unsaturated double bond is the substituent (b).
  9.  前記アザクラウンエーテル誘導体(C1)のアザクラウンエーテル骨格が、アザ-12-クラウン-4-エーテル、アザ-14-クラウン-4-エーテル、アザ-15-クラウン-5-エーテル又はアザ-18-クラウン-6-エーテルである請求項6~8のいずれか1項に記載の電解液。 The azacrown ether skeleton of the azacrown ether derivative (C1) is aza-12-crown-4-ether, aza-14-crown-4-ether, aza-15-crown-5-ether or aza-18-crown. The electrolytic solution according to any one of claims 6 to 8, which is -6-ether.
  10.  前記トリアゾール誘導体(C2)が、3-アミノ-1,2,4-トリアゾール、3,5-ジアミノ-1,2,4-トリアゾール、3-アミノ-5-メチル-1,2,4-トリアゾール、3-アミノ-5-エチル-1,2,4-トリアゾール、3-アミノ-5-プロピル-1,2,4-トリアゾール又は3-アミノ-5-ブチル-1,2,4-トリアゾールである請求項6に記載の電解液。 The triazole derivative (C2) is 3-amino-1,2,4-triazole, 3,5-diamino-1,2,4-triazole, 3-amino-5-methyl-1,2,4-triazole, It is 3-amino-5-ethyl-1,2,4-triazole, 3-amino-5-propyl-1,2,4-triazole or 3-amino-5-butyl-1,2,4-triazole Item 7. The electrolytic solution according to Item 6.
  11.  更に、溶媒として、5員環又は6員環のラクトン化合物を含む請求項4~10のいずれか1項に記載の電解液。 The electrolyte solution according to any one of claims 4 to 10, further comprising a 5-membered or 6-membered lactone compound as a solvent.
  12. リチウム二次電池用又はリチウムイオンキャパシタ用である請求項4~11のいずれか1項に記載の電解液。 The electrolyte solution according to any one of claims 4 to 11, which is used for a lithium secondary battery or a lithium ion capacitor.
  13. 請求項12に記載の電解液を含むリチウム二次電池又はリチウムイオンキャパシタ。 A lithium secondary battery or a lithium ion capacitor comprising the electrolytic solution according to claim 12.
  14. 請求項1~3のいずれか1項に記載の電極保護膜形成剤(F)が反応してできた膜(f)で被覆された電極活物質を有するリチウム二次電池又はリチウムイオンキャパシタ。 A lithium secondary battery or a lithium ion capacitor having an electrode active material coated with a film (f) formed by reaction of the electrode protective film forming agent (F) according to any one of claims 1 to 3.
  15. 正極及び/又は負極に、請求項1~3のいずれか1項に記載の電極保護膜形成剤(F)を含有するリチウム二次電池又はリチウムイオンキャパシタ。 A lithium secondary battery or a lithium ion capacitor containing the electrode protective film-forming agent (F) according to any one of claims 1 to 3 in a positive electrode and / or a negative electrode.
  16. 下記(A1)、(A2)、(A3)、(B1)及び(B2)からなる群より選ばれる少なくとも1種の化合物(A)又は(B)を含有する電極保護膜形成剤(F)を含有する電解液に充電することにより、電極表面に膜を形成する電極保護膜形成方法。
    (A1):下記一般式(1)で表されるアルケニルオキシ基(a)を有する脂肪族炭化水素
    (A2):(a)を有する多価アルコールのエーテル
    (A3):(a)を有するポリオキシアルキレンエーテル
    (B1):下記一般式(2)で表される置換基、下記一般式(3)で表される置換基、(メタ)アクリロイルオキシアルキル基、及び(メタ)アクリロイルアルキル基からなる群より選ばれる少なくとも1種の置換基(b)を有する多価アルコールのエーテル
    (B2):(b)を有するポリオキシアルキレンエーテル
    Figure JPOXMLDOC01-appb-C000010
    [T、T及びTは水素原子又は炭素数1~3のアルキル基である。]
    Figure JPOXMLDOC01-appb-C000011
    [式中、Rは炭素数1~3のアルキレン基であり、Q、Q及びQは、それぞれ独立に水素原子、ハロゲン原子、炭素数1~4のアルキル基、炭素数1若しくは2のフルオロアルキル基、フェニル基、シアノ基、カルボキシル基、炭素数1~3のアルコキシ基又は炭素数1~4のアルコキシカルボニル基である。]
    Figure JPOXMLDOC01-appb-C000012
    [式中、Rは炭素数1~3のアルキレン基であり、Qは水素原子又はハロゲン原子であり、Q、Q及びQは、それぞれ独立に水素原子、ハロゲン原子、炭素数1~4のアルキル基、炭素数1若しくは2のフルオロアルキル基、フェニル基、シアノ基、カルボキシル基、炭素数1~3のアルコキシ基又は炭素数1~4のアルコキシカルボニル基である。]
    An electrode protective film forming agent (F) containing at least one compound (A) or (B) selected from the group consisting of the following (A1), (A2), (A3), (B1) and (B2) An electrode protective film forming method for forming a film on an electrode surface by charging an electrolyte solution contained therein.
    (A1): aliphatic hydrocarbon (A2) having an alkenyloxy group (a) represented by the following general formula (1): polyhydric alcohol ether (A3) having (a): poly having (a) Oxyalkylene ether (B1): consisting of a substituent represented by the following general formula (2), a substituent represented by the following general formula (3), a (meth) acryloyloxyalkyl group, and a (meth) acryloylalkyl group Polyoxyalkylene ether having polyhydric alcohol ether (B2) :( b) having at least one substituent (b) selected from the group
    Figure JPOXMLDOC01-appb-C000010
    [T 1 , T 2 and T 3 are a hydrogen atom or an alkyl group having 1 to 3 carbon atoms. ]
    Figure JPOXMLDOC01-appb-C000011
    [Wherein R 2 is an alkylene group having 1 to 3 carbon atoms, and Q 1 , Q 2 and Q 3 are each independently a hydrogen atom, a halogen atom, an alkyl group having 1 to 4 carbon atoms, a carbon number 1 or 2 fluoroalkyl group, phenyl group, cyano group, carboxyl group, alkoxy group having 1 to 3 carbon atoms or alkoxycarbonyl group having 1 to 4 carbon atoms. ]
    Figure JPOXMLDOC01-appb-C000012
    [Wherein R 3 is an alkylene group having 1 to 3 carbon atoms, Q 4 is a hydrogen atom or a halogen atom, and Q 5 , Q 6 and Q 7 are each independently a hydrogen atom, a halogen atom or a carbon number. An alkyl group having 1 to 4 carbon atoms, a fluoroalkyl group having 1 or 2 carbon atoms, a phenyl group, a cyano group, a carboxyl group, an alkoxy group having 1 to 3 carbon atoms, or an alkoxycarbonyl group having 1 to 4 carbon atoms. ]
PCT/JP2011/001503 2010-04-12 2011-03-15 Agent for forming electrode protective film and electrolyte solution WO2011129053A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012510541A JPWO2011129053A1 (en) 2010-04-12 2011-03-15 Electrode protective film forming agent and electrolyte

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2010091199 2010-04-12
JP2010-091199 2010-04-12
JP2010-210634 2010-09-21
JP2010210634 2010-09-21
JP2011-006753 2011-01-17
JP2011006753 2011-01-17

Publications (1)

Publication Number Publication Date
WO2011129053A1 true WO2011129053A1 (en) 2011-10-20

Family

ID=44798443

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/001503 WO2011129053A1 (en) 2010-04-12 2011-03-15 Agent for forming electrode protective film and electrolyte solution

Country Status (3)

Country Link
JP (1) JPWO2011129053A1 (en)
TW (1) TW201203678A (en)
WO (1) WO2011129053A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012111335A1 (en) * 2011-02-18 2012-08-23 三洋化成工業株式会社 Agent for forming electrode protection film
WO2013031045A1 (en) * 2011-08-26 2013-03-07 三洋化成工業株式会社 Additive for electrode, and electrode
WO2013031487A1 (en) * 2011-08-26 2013-03-07 三洋化成工業株式会社 Additive for negative electrode, negative electrode, method for producing polymerized coating film, lithium secondary battery, and lithium ion capacitor
WO2014073378A1 (en) * 2012-11-07 2014-05-15 三洋化成工業株式会社 Electrode protective film forming agent, electrode, electrolyte, lithium secondary battery, lithium-ion capacitor, and method for producing electrode protective film
JP2015062158A (en) * 2013-08-20 2015-04-02 三洋化成工業株式会社 Electrode protection-film-forming agent
CN109755044A (en) * 2013-07-12 2019-05-14 Ioxus公司 Stability for electrochemical appliance enhances additive
CN110582877A (en) * 2017-05-01 2019-12-17 株式会社村田制作所 Negative electrode for lithium ion secondary battery and lithium ion secondary battery

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106711506A (en) * 2016-12-22 2017-05-24 广州天赐高新材料股份有限公司 Electrolyte containing styrene and derivative thereof and lithium secondary battery using electrolyte

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06168739A (en) * 1992-11-30 1994-06-14 Canon Inc Secondary battery
JPH09251860A (en) * 1996-03-15 1997-09-22 Fujitsu Ltd Electrolyte for lithium secondary battery and lithium secondary battery
JPH11329492A (en) * 1998-05-12 1999-11-30 Asahi Glass Co Ltd Secondary power source
US6120941A (en) * 1995-06-19 2000-09-19 Brookhaven Science Associates Anion receptor compounds for non-aqueous electrolytes
JP2001148257A (en) * 1999-11-22 2001-05-29 Denso Corp Non-water electrolytic solution and lithium secondary battery
JP2002050398A (en) * 1999-06-30 2002-02-15 Matsushita Electric Ind Co Ltd Non-aqueous electrolyte secondary battery system containing non-aqueous electrolyte secondary battery and charge control system and apparatus mounting this
JP2002518796A (en) * 1998-06-08 2002-06-25 モルテック・コーポレーション Non-aqueous electrochemical cell containing multifunctional reactive monomer for safety protection
JP2005174945A (en) * 2005-01-07 2005-06-30 Ube Ind Ltd Nonaqueous electrolyte for lithium secondary battery, and nonaqueous electrolyte secondary battery
JP2005251677A (en) * 2004-03-08 2005-09-15 Nec Corp Nonaqueous electrolyte solution secondary battery
JP2010500725A (en) * 2006-08-11 2010-01-07 カリフォルニア インスティテュート オブ テクノロジー Dissociation agents, formulations and methods resulting in increased solubility of fluoride
JP2010086954A (en) * 2008-09-03 2010-04-15 Sanyo Chem Ind Ltd Additive for electrolyte

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06168739A (en) * 1992-11-30 1994-06-14 Canon Inc Secondary battery
US6120941A (en) * 1995-06-19 2000-09-19 Brookhaven Science Associates Anion receptor compounds for non-aqueous electrolytes
JPH09251860A (en) * 1996-03-15 1997-09-22 Fujitsu Ltd Electrolyte for lithium secondary battery and lithium secondary battery
JPH11329492A (en) * 1998-05-12 1999-11-30 Asahi Glass Co Ltd Secondary power source
JP2002518796A (en) * 1998-06-08 2002-06-25 モルテック・コーポレーション Non-aqueous electrochemical cell containing multifunctional reactive monomer for safety protection
JP2002050398A (en) * 1999-06-30 2002-02-15 Matsushita Electric Ind Co Ltd Non-aqueous electrolyte secondary battery system containing non-aqueous electrolyte secondary battery and charge control system and apparatus mounting this
JP2001148257A (en) * 1999-11-22 2001-05-29 Denso Corp Non-water electrolytic solution and lithium secondary battery
JP2005251677A (en) * 2004-03-08 2005-09-15 Nec Corp Nonaqueous electrolyte solution secondary battery
JP2005174945A (en) * 2005-01-07 2005-06-30 Ube Ind Ltd Nonaqueous electrolyte for lithium secondary battery, and nonaqueous electrolyte secondary battery
JP2010500725A (en) * 2006-08-11 2010-01-07 カリフォルニア インスティテュート オブ テクノロジー Dissociation agents, formulations and methods resulting in increased solubility of fluoride
JP2010086954A (en) * 2008-09-03 2010-04-15 Sanyo Chem Ind Ltd Additive for electrolyte

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012111335A1 (en) * 2011-02-18 2012-08-23 三洋化成工業株式会社 Agent for forming electrode protection film
WO2013031045A1 (en) * 2011-08-26 2013-03-07 三洋化成工業株式会社 Additive for electrode, and electrode
WO2013031487A1 (en) * 2011-08-26 2013-03-07 三洋化成工業株式会社 Additive for negative electrode, negative electrode, method for producing polymerized coating film, lithium secondary battery, and lithium ion capacitor
JPWO2014073378A1 (en) * 2012-11-07 2016-09-08 三洋化成工業株式会社 Electrode protective film forming agent, electrode, electrolytic solution, lithium secondary battery, lithium ion capacitor, and method for producing electrode protective film
KR20150068462A (en) * 2012-11-07 2015-06-19 산요가세이고교 가부시키가이샤 Electrode protective film forming agent, electrode, electrolyte, lithium secondary battery, lithium-ion capacitor, and method for producing electrode protective film
WO2014073378A1 (en) * 2012-11-07 2014-05-15 三洋化成工業株式会社 Electrode protective film forming agent, electrode, electrolyte, lithium secondary battery, lithium-ion capacitor, and method for producing electrode protective film
KR101692172B1 (en) 2012-11-07 2017-01-02 산요가세이고교 가부시키가이샤 Electrode protective film forming agent, electrode, electrolyte, lithium secondary battery, lithium-ion capacitor, and method for producing electrode protective film
CN109755044A (en) * 2013-07-12 2019-05-14 Ioxus公司 Stability for electrochemical appliance enhances additive
JP2015062158A (en) * 2013-08-20 2015-04-02 三洋化成工業株式会社 Electrode protection-film-forming agent
CN110582877A (en) * 2017-05-01 2019-12-17 株式会社村田制作所 Negative electrode for lithium ion secondary battery and lithium ion secondary battery
EP3621135A4 (en) * 2017-05-01 2020-12-30 Murata Manufacturing Co., Ltd. Negative electrode for lithium-ion rechargeable battery, and lithium-ion rechargeable battery
EP3621134A4 (en) * 2017-05-01 2021-04-14 Murata Manufacturing Co., Ltd. Cyclic compound, negative electrode for lithium-ion secondary battery, and lithium-ion secondary battery
CN110582877B (en) * 2017-05-01 2022-03-11 株式会社村田制作所 Negative electrode for lithium ion secondary battery and lithium ion secondary battery
US11276878B2 (en) 2017-05-01 2022-03-15 Murata Manufacturing Co., Ltd. Anode for lithium ion secondary battery and lithium ion secondary battery

Also Published As

Publication number Publication date
TW201203678A (en) 2012-01-16
JPWO2011129053A1 (en) 2013-07-11

Similar Documents

Publication Publication Date Title
KR101710246B1 (en) Electrolytic solution, electrochemical device, lithium ion secondary battery, and module
WO2011129053A1 (en) Agent for forming electrode protective film and electrolyte solution
KR101685271B1 (en) Electrolytic solution, electrochemical device, lithium ion secondary battery, and module
WO2013002186A1 (en) Agent for forming electrode protection film, electrode, electrolyte solution, lithium secondary cell, lithium ion capacitor, and method for forming electrode protection film
JP5897444B2 (en) Non-aqueous secondary battery electrolyte and secondary battery
JP6779775B2 (en) Electrolyte, electrochemical device, lithium-ion secondary battery, and module
JP5680468B2 (en) Non-aqueous secondary battery electrolyte and lithium secondary battery
JP6071600B2 (en) Nonaqueous secondary battery electrolyte, nonaqueous secondary battery, electrolyte additive
JP5764526B2 (en) Non-aqueous secondary battery electrolyte and secondary battery
JP2012064472A (en) Nonaqueous electrolyte and lithium secondary battery
JP2024510336A (en) Positive electrode active material and electrochemical devices and electronic devices using the same
JP5810014B2 (en) Non-aqueous secondary battery electrolyte and secondary battery
JP2024505108A (en) Non-aqueous electrolyte for lithium secondary batteries and lithium secondary batteries containing the same
JP2013012442A (en) Electrode protective film forming agent
JP2013026180A (en) Electrode protective film forming agent
JP2010245034A (en) Electrolyte for lithium secondary battery
WO2012111335A1 (en) Agent for forming electrode protection film
JP2023548506A (en) Nonaqueous electrolyte for lithium secondary batteries and lithium secondary batteries containing the same
WO2012077326A1 (en) Additive for electrolytic solution, and electrolytic solution
JPWO2018016519A1 (en) Non-aqueous secondary battery electrolyte and non-aqueous secondary battery
JP2013254633A (en) Electrolyte for electrochemical device, and lithium ion secondary battery
JP6150987B2 (en) Non-aqueous secondary battery electrolyte and secondary battery
JP2012256515A (en) Electrode protective film forming agent
JP6391028B2 (en) Electrolyte, lithium ion battery and lithium ion capacitor
JP2018133183A (en) Additive agent for battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11768580

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012510541

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11768580

Country of ref document: EP

Kind code of ref document: A1