WO2012111335A1 - Agent for forming electrode protection film - Google Patents

Agent for forming electrode protection film Download PDF

Info

Publication number
WO2012111335A1
WO2012111335A1 PCT/JP2012/001019 JP2012001019W WO2012111335A1 WO 2012111335 A1 WO2012111335 A1 WO 2012111335A1 JP 2012001019 W JP2012001019 W JP 2012001019W WO 2012111335 A1 WO2012111335 A1 WO 2012111335A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
electrode
protective film
compound
forming agent
Prior art date
Application number
PCT/JP2012/001019
Other languages
French (fr)
Japanese (ja)
Inventor
文平 吉田
剛史 大高
敦史 若月
拓馬 竹田
Original Assignee
三洋化成工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三洋化成工業株式会社 filed Critical 三洋化成工業株式会社
Priority to JP2012557845A priority Critical patent/JPWO2012111335A1/en
Publication of WO2012111335A1 publication Critical patent/WO2012111335A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/26Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Definitions

  • the present invention relates to an electrode protective film forming agent, an electrode and an electrolytic solution particularly useful for a lithium secondary battery or a lithium ion capacitor.
  • Non-aqueous electrolyte secondary batteries such as lithium secondary batteries are characterized by high voltage and high energy density, so they are widely used in the field of portable information equipment, and the demand is rapidly expanding.
  • a position as a standard battery for mobile information devices such as mobile phones and notebook computers has been established.
  • higher performance for example, higher capacity and higher energy density
  • various methods such as higher density by improving the filling rate of electrodes, improvement of the depth of use of current active materials (especially negative electrodes), development of new high-capacity active materials, etc. have been carried out. Yes.
  • the capacity of the non-aqueous electrolyte secondary battery is reliably increased by these methods.
  • a cobalt composite oxide which is an active material of a non-aqueous electrolyte secondary battery having an operating voltage of 4.2 V class, has a charge capacity of about 155 mAh / g when charged to 4.3 V based on the current Li standard.
  • LiCoO 2 cobalt composite oxide
  • the utilization rate of a positive electrode active material becomes large by the improvement of a charging voltage.
  • Patent Document 1 by adding an aromatic sulfide such as methylphenyl sulfide or diphenyl sulfide, the aromatic sulfide is preferentially oxidized on the surface of the positive electrode over the electrolyte, and the oxidation product is converted into the negative electrode. It is disclosed that by repeating the reaction of diffusion and reduction to return to the original sulfide body, the oxidative decomposition of the solvent is suppressed, and the storage characteristics, charge / discharge cycle characteristics and the like are improved.
  • an aromatic sulfide such as methylphenyl sulfide or diphenyl sulfide
  • Patent Document 2 by adding a sulfide compound having an aryl group or a heterocyclic group as a substituent, this sulfide compound is preferentially applied to strongly oxidizing chemical species such as active oxygen generated on the surface of the positive electrode. It has been disclosed to suppress a decrease in discharge capacity due to repeated charge and discharge by reacting and suppressing oxidative decomposition of the solvent. Furthermore, it is disclosed that a part of the oxidized material adheres to the positive electrode, is reduced during discharge, returns to the original state, and a part is diffused to the negative electrode.
  • JP 7-320779 A Japanese Patent Laid-Open No. 10-64591
  • An object of this invention is to provide the electrode or electrolyte solution for lithium secondary batteries or lithium ion capacitors which is high voltage, high capacity
  • the present invention includes an alkenyl ether group (X) represented by the general formula (1) and a group (L) having at least one atom selected from oxygen, fluorine, silicon, phosphorus and sulfur, and an ether.
  • T 1 to T 3 are each independently a hydrogen atom or an alkyl group having 1 to 3 carbon atoms.
  • the electrode protective film forming agent (B) of the present invention can suppress the decomposition of the electrolytic solution on the electrode surface under a high voltage, and can improve the charge / discharge cycle characteristics and the high temperature storage characteristics.
  • a high-voltage, high-capacity lithium secondary battery or lithium-ion capacitor can be obtained, and under these high voltages.
  • the charge / discharge cycle performance and high-temperature storage characteristics can be improved.
  • the electrode protective film forming agent (B) of the present invention includes an alkenyl ether group (X) represented by the general formula (1) and a group having at least one atom selected from oxygen, fluorine, silicon, phosphorus and sulfur ( L) and a compound (A) having an ether group concentration of 0.1 to 9.0 meq / g.
  • alkenyl ether group (X) represented by the general formula (1) and a group having at least one atom selected from oxygen, fluorine, silicon, phosphorus and sulfur ( L) and a compound (A) having an ether group concentration of 0.1 to 9.0 meq / g.
  • T 1 , T 2 and T 3 in the general formula (1) are each independently a hydrogen atom or an alkyl group having 1 to 3 carbon atoms (methyl group, ethyl group, n-propyl group and isopropyl group).
  • alkenyl ether group (X) examples include a vinyl ether group, a 1-propenyl ether group, and a 2-methyl-1-propenyl ether group. Of these, vinyl ether groups and 1-propenyl ether groups are preferred from the viewpoint of charge / discharge cycle characteristics.
  • the number of alkenyl ether groups (X) contained in the compound (A) is 1 to 5, preferably 2 to 4, more preferably 2 or 3, from the viewpoint of charge / discharge cycle characteristics.
  • the group (L) possessed by the compound (A) is a group having at least one atom selected from oxygen, fluorine, silicon, phosphorus and sulfur, preferably groups represented by the following (a) to (g) A group having at least one group selected from the group consisting of and a hydrocarbon group having 1 to 20 carbon atoms.
  • a group having at least one group selected from the group consisting of and a hydrocarbon group having 1 to 20 carbon atoms (A): carbonate group (b): fluorinated hydrocarbon group having 1 to 20 carbon atoms (c): sulfino group (d): sulfo group (E): Phosphate ester group (f): Siloxane group (g): Silylene group
  • fluorinated hydrocarbon group (b) having 1 to 20 carbon atoms a linear or branched fluorinated hydrocarbon group [perfluoromethyl group, perfluoroethyl group, perfluoropropyl group, perfluorobutyl group, perfluoro 2 -Methylpropyl group, perfluoropentyl group, perfluoro-2-methylbutyl group, perfluoro2,2-dimethylpropyl group, perfluorohexyl group, perfluorooctyl group, perfluorodecyl group, perfluorododecyl group, perfluorotridecyl group Decyl group, perfluorotetradecyl group, perfluoropentadecyl group, perfluorooctadecyl group, perfluoroeicosyl group, perfluoromethylene group, perfluoroethylene group, perfluoropropylene group, perfluorobutylene
  • Examples of the phosphate ester group (e) include an alkyl phosphate ester group. Specific examples of (e) include a methyl phosphate group, an ethyl phosphate group, a butyl phosphate group, and a hexyl phosphate group.
  • Examples of the siloxane group (f) include alkylsiloxane groups.
  • Specific examples of the alkylsiloxane group include a dimethylsiloxane group, a diethylsiloxane group, a dibutylsiloxane group, and a dihexylsiloxane group.
  • Examples of the silylene group (g) include a dialkylsilylene group.
  • Examples of the dialkylsilylene group include a dimethylsilylene group, a diethylsilylene group, a dibutylsilylene group, and a dihexylsilylene group.
  • hydrocarbon group having 1 to 20 carbon atoms examples include linear or branched aliphatic hydrocarbon groups, cyclic aliphatic hydrocarbon groups, and aromatic hydrocarbon groups.
  • the ether group concentration of the compound (A) is 0.1 to 9.0 meq / g, preferably 0.1 to 7.5 meq / g.
  • the ether group concentration is 0.1 to 9.0 milliequivalent / g, oxidative decomposition of the electrode protective film can be suppressed, and charge / discharge cycle characteristics and high-temperature storage characteristics can be improved. If the ether group concentration exceeds 9.0 milliequivalent / g, oxidation stability is inferior, which is not preferable.
  • the compound (A) is preferably a compound (A1) represented by the general formula (2) and a compound (A2) represented by the general formula (3).
  • R 1 is an aliphatic hydrocarbon group having a linear or aliphatic hydrocarbon group or a cyclic structure having from 5 to 12 carbon atoms having 1 to 6 carbon atoms branched, plurality is R 1 May be the same or different, and T 1 , T 2 and T 3 are each independently a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, and n is a number from 1 to 10. ]
  • X is an alkenyl ether group represented by the general formula (1);
  • Y is a mono- to tetra-valent fluorinated hydrocarbon group having 1 to 20 carbon atoms;
  • n represents an integer of 1 to 4.
  • the linear or branched aliphatic hydrocarbon group having 1 to 6 carbon atoms includes a methylene group, an ethylene group, a trimethylene group, an ethylidene group, a tetramethylene group, a 1-methyltrimethylene group, 2 -Methyltrimethylene group, 1-ethylethylene group, 1,1-dimethylethylene group, ethylmethylmethylene group, propylmethylene group, pentamethylene group, 1-methyltetramethylene group, 2-methyltetramethylene group, 1,1 -Dimethyltrimethylene group, 2,2-dimethyltrimethylene group, 1,2-dimethyltrimethylene group, 1,3-dimethyltrimethylene group, 1-ethyltrimethylene group, 1,1,2-trimethylethylene group, Diethylmethylene group, 1-propylethylene group, butylmethylene group, hexamethylene group, 1-methylpentamethylene group, , 1-dimethyltetramethylene group
  • examples of the aliphatic hydrocarbon group having a cyclic structure having 5 to 12 carbon atoms include 1,2-cyclopentylene group, 1,2-cyclohexylene group, 1,3-cyclohexylene group 1,4-cyclohexylene group, a residue obtained by removing two hydroxyl groups from 1,3-cyclohexanedimethanol, a residue obtained by removing two hydroxyl groups from 1,4-cyclohexanedimethanol, 1-hydroxy- Residue obtained by removing two hydroxyl groups from 3-hydroxymethylcyclohexane, residue obtained by removing two hydroxyl groups from 1-hydroxy-4-hydroxymethylcyclohexane, and two hydroxyl groups removed from 1,4-cyclohexanediethanol
  • Examples thereof include a residue and a residue obtained by removing two hydroxyl groups from 1,4-cyclohexanedipropanol.
  • an aliphatic hydrocarbon group having a cyclic structure having 5 to 12 carbon atoms is preferable from the viewpoint of cycle characteristics, and more preferable is the removal of two hydroxyl groups from 1,4-cyclohexanedimethanol. Residue.
  • examples of the alkyl group having 1 to 3 carbon atoms include a methyl group, an ethyl group, an n-propyl group, and an isopropyl group.
  • n is a number of 1 to 10, and preferably 1 to 4 from the viewpoint of cycle characteristics.
  • a fluorinated hydrocarbon group in which 1 to 4 fluorine atoms of a linear, branched, or cyclic perfluoroalkane having 1 to 20 carbon atoms are removed A compound in which a divalent linear or branched alkylene group (K) having 1 to 10 carbon atoms is bonded to an alkenyl ether group (X), and is shortest between the fluorinated hydrocarbon group and the alkenyl ether group. In which the number of covalent bonds intervening in is 2 to 5.
  • the 1 to 4 valent fluorinated hydrocarbon group (Y) having 1 to 20 carbon atoms is a group in which 1 to 4 fluorine atoms of a linear, branched or cyclic perfluoroalkane having 1 to 20 carbon atoms are removed. From the viewpoint of charge / discharge cycle characteristics, a group from which 1 to 3 fluorine atoms have been removed is preferred, and a group from which 2 to 3 fluorine atoms have been removed is more preferred.
  • the mono- to tetra-valent fluorinated hydrocarbon group (Y) having 1 to 20 carbon atoms is a linear or branched fluorinated hydrocarbon group (Y1) [perfluoromethyl group, perfluoroethyl group, perfluoropropyl group, Perfluorobutyl group, perfluoro 2-methylpropyl group, perfluoropentyl group, perfluoro 2-methylbutyl group, perfluoro 2,2-dimethylpropyl group, perfluorohexyl group, perfluorooctyl group, perfluorodecyl group, Perfluorododecyl group, perfluorotridecyl group, perfluorotetradecyl group, perfluoropentadecyl group, perfluorooctadecyl group, perfluoroeicosyl group, perfluoromethylene group, perfluoroethylene group, perfluoropropylene group, perfluoroprop
  • Examples of the divalent linear or branched alkylene group (K) having 1 to 10 carbon atoms include methylene group, ethylene group, propylene group, 2-methylpropylene group, 2,2-dimethylpropylene group, butylene group, and cyclopentylene. Cyclohexylene group and 2-methylbutylene group.
  • Examples of the compound (A) include a compound (A21) in which a linear or branched fluorinated hydrocarbon group (Y1) is bonded to an alkenyl ether group (X) through an alkylene group (K), and a cyclic fluorinated hydrocarbon group ( Examples thereof include compound (A22) in which Y2) is bonded to alkenyl ether group (X) through alkylene group (K).
  • a compound in which a linear fluorinated hydrocarbon group is bonded via a linear alkylene group having 1 to 3 carbon atoms is preferable from the viewpoint of cycle characteristics.
  • Examples of (A21) include compounds having a monoalkenyl ether group, compounds having a dialkenyl ether group, and compounds having a trialkenyl ether group.
  • monovinyl ether [3,3,4,4,4-pentafluorobutanol vinyl ether, 3,3,4,4,5,5,5-heptafluoropentanol vinyl ether, 3,3,4 , 4,5,5,6,6,6-nonafluorohexanol vinyl ether, 3,3,4,4,5,5,6,6,7,7,7-undecafluoroheptanol vinyl ether, and 4, 4,5,5,6,6,7,7,8,8,8-undecafluorooctanol vinyl ether and the like]; mono (1-propenyl) ether [3,3,4,4,4-pentafluorobutanol ( 1-propenyl) ether, 3,3,4,4,5,5,5-heptafluoropentanol (1-propenyl) ether, 3,3,4,4,5,5,6,6,6-nonaflu Lohexanol (1-propenyl) ether and 4,4,5,5,6,6,7,7,8,
  • Examples of the compound (A22) include a compound having a monoalkenyl ether group, a compound having a dialkenyl ether group, and a compound having a trialkenyl ether group.
  • the compound (A) functions as a positive electrode protective film forming agent. That is, compound (A) is polymerized on the surface of the positive electrode active material to form a film by containing compound (A) in the electrode or electrolyte and applying a voltage to the electrode.
  • This film serves as a protective film that suppresses the decomposition of the electrolytic solution on the electrode surface under a high voltage, and improves the charge / discharge cycle characteristics.
  • the protective film is formed during the initial charge.
  • An electrode in which a polymer film of the compound (A) is formed on the (positive electrode active material surface) can also be used.
  • Compound (A) in the present invention can be synthesized by an ordinary method.
  • the compound represented by the general formula (2) the compound can be synthesized by transesterification of a monoalcohol having an alkenyloxy group and the diol having R 1 with a chain carbonate in the presence of a basic catalyst. it can.
  • the compound represented by the general formula (3) it can be synthesized by reacting the corresponding alcohol with allyl chloride in the presence of a basic catalyst to form an allyl ether, followed by propenyl transfer reaction of this allyl ether. it can.
  • Examples of the basic catalyst include sodium metal, sodium hydroxide, sodium methoxide, sodium tert-butoxide, metal potassium, potassium hydroxide, potassium methoxide and potassium tert-butoxide.
  • Examples of monoalcohol having an alkenyloxy group include ethylene glycol monovinyl ether, ethylene glycol monopropenyl ether, propylene glycol monovinyl ether, propylene glycol monopropenyl ether, 1-hydroxymethyl-4- (vinyloxymethyl) cyclohexane and 1-hydroxymethyl. -4- (propenyloxymethyl) cyclohexane and the like.
  • Examples of the diol having R 1 include ethylene glycol, propylene glycol, and 1,4-bis (hydroxymethyl) cyclohexane.
  • Examples of the chain carbonate include dimethyl carbonate, diethyl carbonate, and diphenyl carbonate.
  • the electrode protective film forming agent (B) of the present invention can further contain a negative electrode protective film forming agent (C).
  • C negative electrode protective film forming agent
  • Examples of the negative electrode protective film forming agent (C) include vinylene carbonate, fluoroethylene carbonate, chloroethylene carbonate, ethylene sulfite, propylene sulfite, and ⁇ -bromo- ⁇ -butyrolactone. Among these, vinylene carbonate is preferable from the viewpoint of cycle characteristics.
  • the content of the compound (A) in the electrode protective film forming agent (B) is preferably 10 to 100% by weight, more preferably 50 to 100% by weight, based on the weight of (B).
  • the content of the negative electrode protective film forming agent (C) in the electrode protective film forming agent (B) is preferably 0 to 90% by weight, more preferably 0 to 50% by weight, based on the weight of (B). It is.
  • the electrode of the present invention contains an electrode protective film forming agent (B), an active material (D), and a binder (E).
  • the active material (D) examples include a negative electrode active material (D1), a positive electrode active material (D2) for a lithium secondary battery, and a positive electrode active material (D3) for a lithium ion capacitor.
  • a negative electrode active material (D1) graphite, amorphous carbon, a polymer compound fired body (for example, those obtained by firing and carbonizing a phenol resin, a furan resin, etc.), cokes (for example, pitch coke, needle coke, and petroleum coke), And carbon fibers, conductive polymers (for example, polyacetylene and polypyrrole), tin, silicon, and metal alloys (for example, lithium-tin alloy, lithium-silicon alloy, lithium-aluminum alloy, and lithium-aluminum-manganese alloy).
  • Examples of the positive electrode active material (D2) for the lithium secondary battery include composite oxides of lithium and transition metals (for example, LiCoO 2 , LiNiO 2 , LiMnO 2 and LiMn 2 O 4 ), transition metal oxides (for example, MnO 2 and V 2). O 5 ), transition metal sulfides (eg, MoS 2 and TiS 2 ), and conductive polymers (eg, polyaniline, polyvinylidene fluoride, polypyrrole, polythiophene, polyacetylene, poly-p-phenylene, and polycarbazole).
  • Examples of the positive electrode active material (D3) for the lithium ion capacitor include activated carbon, carbon fiber, and conductive polymer (for example, polyacetylene and polypyrrole).
  • binder (E) examples include polymer compounds such as starch, polyvinylidene fluoride, polyvinyl alcohol, carboxymethyl cellulose, polyvinyl pyrrolidone, tetrafluoroethylene, polyethylene, and polypropylene.
  • the electrode of the present invention can further contain a Lewis base (F).
  • a Lewis base F
  • the storage stability of the compound (A) is improved.
  • the Lewis base (F) include triazole derivatives (1,2,3-benzotriazole, 5-methyl-1,2,3-benzotriazole, 5,6-dimethyl-1,2,3-benzotriazole, 1 2,4-triazole, 3-amino-1,2,4-triazole, 3,5-diamino-1,2,4-triazole, 3-amino-5-methyl-1,2,4-triazole, 3, -Amino-5-ethyl-1,2,4-triazole, 3-amino-5-propyl-1,2,4-triazole and 3-amino-5-butyl-1,2,4-triazole) It is done. These can be obtained commercially. Of these, 3-amino-1,2,4-triazole is preferable from the viewpoint of charge / discharge cycle characteristics.
  • the electrode of the present invention can further contain a conductive additive (G).
  • a conductive additive examples include graphite (for example, natural graphite and artificial graphite), carbon blacks (for example, carbon black, acetylene black, ketjen black, channel black, furnace black, lamp black and thermal black) and metal powder (for example, Aluminum powder and nickel powder), conductive metal oxides (for example, zinc oxide and titanium oxide), and the like.
  • each of electrode protective film forming agent (B), active material (D), binder (E), Lewis base (F) and conductive additive (G) based on the total weight of the electrode is preferred.
  • the content is as follows.
  • the content of the electrode protective film forming agent (B) is preferably 0.5 to 5% by weight, more preferably 1 to 3% by weight, from the viewpoint of charge / discharge cycle characteristics, battery capacity and high storage characteristics.
  • the content of the active material (D) is preferably 70 to 98% by weight, more preferably 90 to 98% by weight, from the viewpoint of charge / discharge cycle characteristics.
  • the content of the binder (E) is preferably 0.5 to 29% by weight, more preferably 1 to 10% by weight, from the viewpoint of charge / discharge cycle characteristics.
  • the content of the Lewis base (F) is preferably 0 to 7.5% by weight, more preferably 0.5 to 3% by weight, from the viewpoint of battery capacity, battery output and charge / discharge cycle characteristics.
  • the content of the conductive auxiliary agent (G) is preferably 0 to 29% by weight, more preferably 0 to 10% by weight, from the viewpoint of battery output.
  • an electrode protective film forming agent (B), an active material (D), a binder (E), and, if necessary, a Lewis base (F) and a conductive additive (G) are added to water or a solvent.
  • a slurry dispersed at a concentration of ⁇ 60% by weight is applied to the current collector with a coating device such as a bar coater, then dried to remove the solvent, and if necessary, obtained by pressing with a press. It is done.
  • a positive electrode for a lithium secondary battery is obtained by using a positive electrode active material (D2) for a lithium secondary battery as the active material (D), and a positive electrode active material for a lithium ion capacitor (D3) as the active material (D).
  • the negative electrode for lithium secondary batteries is obtained by using the negative electrode active material (D1) as the active material (D), and the negative electrode for lithium ion capacitors is obtained by doping lithium into the negative electrode for lithium secondary batteries. It is done.
  • Examples of the solvent include 1-methyl-2-pyrrolidone, methyl ethyl ketone, dimethylformamide, dimethylacetamide, N, N-dimethylaminopropylamine, and tetrahydrofuran.
  • Examples of the current collector include copper, aluminum, titanium, stainless steel, nickel, baked carbon, conductive polymer, and conductive glass.
  • the electrolytic solution of the present invention contains an electrode protective film forming agent (B), an electrolyte (H) and a nonaqueous solvent (I), and is particularly useful as an electrolytic solution for lithium secondary batteries and lithium ion capacitors.
  • non-aqueous solvent (I) those used in ordinary electrolytic solutions can be used, for example, lactone compounds, cyclic or chain carbonates, chain carboxylates, cyclic or chain ethers, phosphoric acid. Esters, nitrile compounds, amide compounds, sulfones, sulfolanes, and the like and mixtures thereof can be used.
  • lactone compound examples include 5-membered rings (such as ⁇ -butyrolactone and ⁇ -valerolactone) and 6-membered lactone compounds (such as ⁇ -valerolactone).
  • Examples of the cyclic carbonate include propylene carbonate, ethylene carbonate and butylene carbonate.
  • Examples of the chain carbonate include dimethyl carbonate, methyl ethyl carbonate, diethyl carbonate, methyl-n-propyl carbonate, ethyl-n-propyl carbonate, and di-n-propyl carbonate.
  • chain carboxylic acid esters include methyl acetate, ethyl acetate, propyl acetate, and methyl propionate.
  • cyclic ether examples include tetrahydrofuran, tetrahydropyran, 1,3-dioxolane, 1,4-dioxane and the like.
  • chain ether examples include dimethoxymethane and 1,2-dimethoxyethane.
  • phosphate esters include trimethyl phosphate, triethyl phosphate, ethyl dimethyl phosphate, diethyl methyl phosphate, tripropyl phosphate, tributyl phosphate, tri (trifluoromethyl) phosphate, tri (trichloromethyl) phosphate, Tri (trifluoroethyl) phosphate, tri (triperfluoroethyl) phosphate, 2-ethoxy-1,3,2-dioxaphosphoran-2-one, 2-trifluoroethoxy-1,3,2- Examples include dioxaphospholan-2-one and 2-methoxyethoxy-1,3,2-dioxaphosphoran-2-one.
  • Nonaqueous solvent (I) may be used individually by 1 type, and may use 2 or more types together.
  • lactone compounds Of the non-aqueous solvents (I), lactone compounds, chain carbonates, chain carbonates and phosphates are preferred from the viewpoint of battery output and charge / discharge recycling characteristics, and more preferred are lactone compounds and chain carbonates.
  • Esters particularly preferred are lactone compounds, especially preferred are 5- or 6-membered lactone compounds, and most preferred are 5-membered lactone compounds.
  • the electrolytic solution of the present invention can further contain the Lewis base (F).
  • the storage stability of the compound (A) is improved.
  • Preferred contents or concentrations of the electrode protective film forming agent (B), the electrolyte (H), the non-aqueous solvent (I) and the Lewis base (F) in the electrolytic solution of the present invention are as follows.
  • the content of (B) is preferably 0.01 to 10% by weight, more preferably 0.05 to 1% by weight, based on the weight of the electrolyte, from the viewpoints of charge / discharge cycle characteristics, battery capacity and high storage characteristics. It is.
  • the content of (F) is preferably 0 to 10% by weight, more preferably 0.01 to 10% by weight, particularly preferably from the viewpoint of battery capacity, battery output and charge / discharge cycle characteristics. Is 0.05 to 1% by weight.
  • the concentration of the electrolyte (H) in the electrolytic solution is preferably 0.01 to 3 mol / L, more preferably 0.05 to 1 based on the capacity of the electrolytic solution from the viewpoint of battery output and charge / discharge cycle characteristics. 0.5 mol / L.
  • the content of the non-aqueous solvent (I) is preferably 70 to 99% by weight and more preferably 93 to 99% by weight based on the weight of the electrolytic solution from the viewpoint of battery output and charge / discharge cycle characteristics.
  • the electrolytic solution of the present invention may further contain additives such as an overcharge inhibitor, a dehydrating agent and a capacity stabilizer.
  • additives such as an overcharge inhibitor, a dehydrating agent and a capacity stabilizer.
  • the overcharge preventing agent include biphenyl, alkylbiphenyl, terphenyl, partially hydrogenated terphenyl, aromatic compounds such as cyclohexylbenzene, t-butylbenzene and t-amylbenzene.
  • the amount of the overcharge inhibitor used is usually 0 to 5% by weight, preferably 0 to 3% by weight, based on the total weight of the electrolyte.
  • the dehydrating agent examples include zeolite, silica gel and calcium oxide.
  • the amount of the dehydrating agent used is usually 0 to 5% by weight, preferably 0 to 3% by weight, based on the total weight of the electrolytic solution.
  • the capacity stabilizer examples include fluoroethylene carbonate, succinic anhydride, 1-methyl-2-piperidone, heptane and fluorobenzene.
  • the amount of the capacity stabilizer used is usually 0 to 5% by weight, preferably 0 to 3% by weight, based on the total weight of the electrolytic solution.
  • the lithium secondary battery of the present invention seals the battery can by injecting the electrolyte into the battery can containing the positive electrode, the negative electrode and the separator, the electrode of the present invention (the positive electrode is a lithium secondary battery). Positive electrode), the electrolytic solution of the present invention is used as the electrolytic solution, or a combination thereof is used.
  • a separator in a lithium secondary battery As a separator in a lithium secondary battery, a microporous film made of polyethylene or polypropylene film, a multilayer film of porous polyethylene film and polypropylene, a nonwoven fabric made of polyester fiber, aramid fiber, glass fiber, etc., and silica on these surfaces, The thing to which ceramic fine particles, such as an alumina and a titania, were made to adhere is mentioned.
  • the battery can in the lithium secondary battery, metal materials such as stainless steel, iron, aluminum and nickel-plated steel can be used, but plastic materials can also be used depending on the battery application. Further, the battery can be formed into a cylindrical shape, a coin shape, a square shape, or any other shape depending on the application.
  • the lithium ion capacitor of the present invention can be obtained by replacing the positive electrode with a positive electrode for a lithium ion capacitor and replacing the battery can with a capacitor can in the basic configuration of the lithium secondary battery of the present invention.
  • Examples of the material and shape of the capacitor can include the same as those exemplified for the battery can.
  • reaction product was purified by an alumina column [150 mesh, Blockman 1, standard grade, manufactured by Sigma-Aldrich] using hexane as a solvent, and 1-hydroxymethyl-4- (propenyloxy) 9.0 parts (48.6 mmol parts) of methyl) cyclohexane were obtained (yield 71%).
  • reaction product was purified by an alumina column [150 mesh, Blockman 1, standard grade, manufactured by Sigma-Aldrich] using hexane as a solvent, and bis [ ⁇ 4- (propenyloxy 352 parts (893 mmol parts) of (methyl) cyclohexyl ⁇ methyl] carbonate (A-1) were obtained (yield 89%, ether group concentration: 5.4 meq / g).
  • reaction was carried out for 5 hours while distilling off the ethanol produced. After removing residual ethanol under reduced pressure (2.5 kPa), the reaction product was purified by an alumina column [150 mesh, Blockman 1, standard grade, manufactured by Sigma-Aldrich] using hexane as a solvent, and 109 parts of compound (A-3) was obtained. (0.21 mol part) was obtained (yield 21%, ether group concentration: 3.8 meq / g). The value of n calculated by 1H-NMR measurement of the compound (A-3) was 2.4.
  • the temperature was raised to 65 ° C. over 2 hours and further stirred for 4 hours to carry out an etherification reaction and a rearrangement reaction. After allowing to cool, 200 parts of water was added and the aqueous layer was separated. Further, the organic layer was washed with 200 parts of water. After removing toluene at 80 ° C.
  • reaction product was purified by an alumina column [150 mesh, Blockman 1, standard grade, Sigma-Aldrich] using hexane as a solvent, and 2, 2, 3, 3, 4 , 4-hexafluoro-1,5-pentanediol di (1-propenyl) ether (A-4) (14.2 parts, 48.6 mmol) was obtained (yield 71%, ether group concentration: 6.8 mm). Equivalent / g).
  • the organic layer was washed with 200 parts of saturated brine. After removing THF by reduced pressure (2.5 kPa) at 30 ° C., the reaction product was purified by an alumina column using hexane as a solvent, and tris [ ⁇ 4- (propenyloxymethyl) cyclohexyl ⁇ methyl] phosphate (A-9) 25. 3 parts (44.3 mmol) were obtained (yield 65%, ether group concentration: 5.2 meq / g).
  • a negative electrode to which an electrode protective film forming agent (B) and a Lewis base (F) were added based on the formulations shown in Tables 1 and 2 was produced by the following method. 92.5 parts of graphite powder having an average particle size of about 8 to 12 ⁇ m, 7.5 parts of polyvinylidene fluoride, 200 parts of 1-methyl-2-pyrrolidone [manufactured by Tokyo Chemical Industry Co., Ltd.] and the parts shown in Tables 1 and 2 (B) and (F) were sufficiently mixed in a mortar to obtain a slurry. The obtained slurry was applied to one side of a copper foil having a thickness of 20 ⁇ m, dried at 100 ° C. for 15 minutes to evaporate the solvent, punched to 16.15 mm ⁇ , and made 30 ⁇ m in thickness with a press machine. To 18 and Comparative Examples 1 to 5 were prepared.
  • a positive electrode to which an electrode protective film forming agent (B) and a Lewis base (F) were added was produced by the following method.
  • Activated carbon powder 90.0 parts, Kechen Black [Sigma-Aldrich Co.] 5.0 parts, Polyvinylidene fluoride [Sigma-Aldrich Co.] 5.0 parts, and (B) and ( F) was thoroughly mixed in a mortar, 70.0 parts of 1-methyl-2-pyrrolidone [manufactured by Tokyo Chemical Industry Co., Ltd.] was added, and further mixed well in a mortar to obtain a slurry.
  • the obtained slurry was applied to one side of an aluminum electrolytic foil having a thickness of 20 ⁇ m using a wire bar in the atmosphere, dried at 100 ° C. for 15 minutes, and further under reduced pressure (10 mmHg) at 80 ° C. for 5 minutes. It was dried and punched out to 15.95 mm ⁇ to produce positive electrodes for lithium ion capacitors of Examples 19 to 36 and Comparative Examples 6 to 10.
  • a negative electrode to which the electrode protective film forming agents (B) and (F) were added based on the formulations shown in Tables 3 and 4 was produced by the following method. 92.5 parts of graphite powder having an average particle size of about 8 to 12 ⁇ m, 7.5 parts of polyvinylidene fluoride, 200 parts of 1-methyl-2-pyrrolidone [manufactured by Tokyo Chemical Industry Co., Ltd.] and the number of parts shown in Tables 3 and 4 (B) and (F) were sufficiently mixed in a mortar to obtain a slurry. The obtained slurry was applied to one side of a 20 ⁇ m thick copper foil, dried at 100 ° C.
  • a positive electrode for a lithium ion battery of Comparative Example 11 was produced in the same manner as in Example 1 except that 1.5 parts of methylsulfone was added instead of the electrode protective film forming agent (B) and the Lewis base (F).
  • a negative electrode for a lithium ion battery of Comparative Example 11 was produced in the same manner as in Example 1 except that the electrode protective film forming agent (B) and the Lewis base (F) were not added.
  • ⁇ Comparative Example 12> A positive electrode for a lithium ion battery of Comparative Example 12 in the same manner as in Example 1 except that 1.5 parts of 1,3-propane sultone was added instead of the electrode protective film forming agent (B) and Lewis base (F). Was made.
  • a negative electrode for a lithium ion battery of Comparative Example 12 was produced in the same manner as in Example 1 except that the electrode protective film forming agent (B) and the Lewis base (F) were not added.
  • a positive electrode for a lithium ion capacitor of Comparative Example 13 was produced in the same manner as in Example 18, except that 1.5 parts of dimethyl sulfone was added instead of the electrode protective film forming agent (B) and the Lewis base (F).
  • a negative electrode for a lithium ion capacitor of Comparative Example 13 was produced in the same manner as in Example 13, except that the electrode protective film forming agent (B) and the Lewis base (F) were not added.
  • ⁇ Comparative example 14> A positive electrode for a lithium ion capacitor of Comparative Example 14 in the same manner as in Example 18 except that 1.5 parts of 1,3-propane sultone was added instead of the electrode protective film forming agent (B) and Lewis base (F). Was made.
  • a negative electrode for a lithium ion capacitor of Comparative Example 14 was produced in the same manner as in Example 18 except that the electrode protective film forming agent (E) and the Lewis base (F) were not added.
  • the positive and negative electrodes of Examples 1 to 18 and Comparative Examples 1 to 5, 11 and 12 are arranged on both ends of a 2032 type coin cell so that the coated surfaces face each other.
  • a separator polypropylene nonwoven fabric
  • the mixture was sealed in a cell in which an electrolytic solution in which LiPF 6 was dissolved in a mixed solvent of ethylene carbonate and dimethyl carbonate (volume ratio 1: 1) at a rate of 1 mol / L was prepared, and a high voltage charge / discharge cycle was performed by the following method.
  • Tables 5 and 6 show the results of evaluation of characteristics and high-temperature storage characteristics.
  • Examples 37 to 50 and Comparative Examples 15 to 22 [Creation of electrolyte] Compound (A), (F), (C) and non-aqueous solvent (I) are blended in the weight ratios shown in Tables 7 and 8, and LiPF 6 as an electrolyte is added thereto so as to have a concentration of 1 mol / L.
  • the electrolytes of Examples 37 to 50 and Comparative Examples 15 to 19 were prepared by dissolution.
  • the negative electrode obtained as described above was doped with lithium as follows.
  • the negative electrode and lithium metal foil were sandwiched between separators (polypropylene nonwoven fabric) and set in a beaker cell, and a predetermined amount of lithium ions was occluded in the negative electrode over about 10 hours.
  • the doping amount of lithium was about 75% of the negative electrode theoretical capacity.
  • Capacitor cell assembly A separator (polypropylene non-woven fabric) is inserted between the positive electrode and the negative electrode obtained as described above, and impregnated with an electrolytic solution. A lithium ion capacitor was produced by sealing in a case.
  • the electrode and electrolyte using the electrode protective film forming agent (B) of the present invention are excellent in cycle characteristics under high voltage and high-temperature storage stability, the electrode for lithium secondary batteries or lithium ion capacitors is particularly used. In addition, it is useful as an electrolyte solution and suitable for an electric vehicle.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

Provided is an agent for forming an electrode protection film which has a high voltage and a high capacity and can increase the high temperature storage properties and the charge/discharge cycle properties of a lithium secondary battery or a lithium ion capacitor; also provided are an electrode and an electrolyte solution including the electrode protection film. The present invention is an agent (B) for forming an electrode protection film, said agent containing a compound (A), which has an alkenyl ether group (X) represented by general formula (1) and a group (L) having at least one kind of atom selected from oxygen, fluorine, silicon, phosphorous, and sulfur, and the compound has an ether group concentration of 0.1-9.0 mEq/g.

Description

電極保護膜形成剤Electrode protective film forming agent
 本発明は、特にリチウム二次電池又はリチウムイオンキャパシタに有用な電極保護膜形成剤、電極及び電解液に関する。 The present invention relates to an electrode protective film forming agent, an electrode and an electrolytic solution particularly useful for a lithium secondary battery or a lithium ion capacitor.
 リチウム二次電池等の非水電解液二次電池は、高電圧、高エネルギー密度という特徴を持つことから、携帯情報機器分野等において広く利用され、その需要が急速に拡大しており、現在、携帯電話、ノート型パソコンを始めとするモバイル情報化機器用の標準電池としてのポジションが確立されている。当然ながら、携帯機器等の高性能化と多機能化に伴い、その電源としての非水電解液二次電池に対しても更なる高性能化(例えば、高容量化と高エネルギー密度化)が求められている。この要求に応えるために種々の方法、例えば、電極の充填率の向上による高密度化、現行の活物質(特に負極)の利用深度の向上、新規高容量の活物質の開発等が行われている。そして、現実に非水電解液二次電池がこれらの方法によって確実に高容量化されている。 Non-aqueous electrolyte secondary batteries such as lithium secondary batteries are characterized by high voltage and high energy density, so they are widely used in the field of portable information equipment, and the demand is rapidly expanding. A position as a standard battery for mobile information devices such as mobile phones and notebook computers has been established. Of course, along with the high performance and multi-functionality of portable devices, etc., even higher performance (for example, higher capacity and higher energy density) for non-aqueous electrolyte secondary batteries as its power source It has been demanded. In order to meet this demand, various methods such as higher density by improving the filling rate of electrodes, improvement of the depth of use of current active materials (especially negative electrodes), development of new high-capacity active materials, etc. have been carried out. Yes. In reality, the capacity of the non-aqueous electrolyte secondary battery is reliably increased by these methods.
 また、非水電解液二次電池の更なる高容量化を図るために、正極活物質の利用率の向上や高電圧材料の開発が求められている。この中で、特に充電電圧の上昇による正極活物質の利用深度の向上が注目されている。例えば、作動電圧が4.2V級の非水電解液二次電池の活物質であるコバルト複合酸化物(LiCoO)は、現在のLi基準で4.3Vまで充電すると充電容量が約155mAh/gであるのに対し、4.50Vまで充電すると約190mAh/g以上である。このように充電電圧の向上で正極活物質の利用率が大きくなる。 Further, in order to further increase the capacity of the non-aqueous electrolyte secondary battery, improvement in the utilization rate of the positive electrode active material and development of a high voltage material are required. Among these, the improvement of the utilization depth of the positive electrode active material due to the increase in the charging voltage has attracted attention. For example, a cobalt composite oxide (LiCoO 2 ), which is an active material of a non-aqueous electrolyte secondary battery having an operating voltage of 4.2 V class, has a charge capacity of about 155 mAh / g when charged to 4.3 V based on the current Li standard. On the other hand, when charged to 4.50 V, it is about 190 mAh / g or more. Thus, the utilization rate of a positive electrode active material becomes large by the improvement of a charging voltage.
 しかし、電池の高電圧化に伴って、電池の容量やエネルギー密度が向上する一方で、充放電サイクル特性の低下や、高温貯蔵時における膨れ等の問題が発生する。 However, as the battery voltage increases, the capacity and energy density of the battery improve, while problems such as deterioration of charge / discharge cycle characteristics and swelling during high-temperature storage occur.
 従来、電池の充放電サイクルの低下や電池の膨れ等の問題を解決する技術は種々提案されている。具体的に、特許文献1には、メチルフェニルスルフィド、ジフェニルスルフィド等の芳香族スルフィドを添加することで、正極表面上で芳香族スルフィドが電解液より優先して酸化され、酸化生成物が負極に拡散及び還元されて、元のスルフィド体に戻るという反応を繰り返すことにより、溶媒の酸化分解が抑制され、保存特性、充放電サイクル特性等を改善することが開示されている。 Conventionally, various techniques for solving problems such as a decrease in battery charge / discharge cycle and battery swelling have been proposed. Specifically, in Patent Document 1, by adding an aromatic sulfide such as methylphenyl sulfide or diphenyl sulfide, the aromatic sulfide is preferentially oxidized on the surface of the positive electrode over the electrolyte, and the oxidation product is converted into the negative electrode. It is disclosed that by repeating the reaction of diffusion and reduction to return to the original sulfide body, the oxidative decomposition of the solvent is suppressed, and the storage characteristics, charge / discharge cycle characteristics and the like are improved.
 特許文献2には、アリール基又は複素環基を置換基として有するスルフィド化合物を添加することで、正極表面上で発生する活性酸素等の強酸化性の化学種に、このスルフィド化合物が優先的に反応し、溶媒の酸化分解を抑制することで、充放電繰り返しによる放電容量の低下を抑制することが開示されている。さらに、酸化された一部は正極上に付着し、放電時に還元されて元に戻り、また一部は負極に拡散されることも開示されている。 In Patent Document 2, by adding a sulfide compound having an aryl group or a heterocyclic group as a substituent, this sulfide compound is preferentially applied to strongly oxidizing chemical species such as active oxygen generated on the surface of the positive electrode. It has been disclosed to suppress a decrease in discharge capacity due to repeated charge and discharge by reacting and suppressing oxidative decomposition of the solvent. Furthermore, it is disclosed that a part of the oxidized material adheres to the positive electrode, is reduced during discharge, returns to the original state, and a part is diffused to the negative electrode.
特開平7-320779号公報JP 7-320779 A 特開平10-64591号公報Japanese Patent Laid-Open No. 10-64591
 しかしながら、特許文献1、2のようなスルフィド化合物は、それ自体がラジカルに分解してしまい、電解液や電極との反応によってサイクル特性を低下させてしまうという課題があった。本発明は、高電圧、高容量であり、充放電サイクル性能及び高温貯蔵特性に優れたリチウム二次電池用又はリチウムイオンキャパシタ用の電極又は電解液を提供することを目的とする。 However, the sulfide compounds as disclosed in Patent Documents 1 and 2 have a problem that themselves are decomposed into radicals, and the cycle characteristics are deteriorated by reaction with the electrolytic solution and the electrode. An object of this invention is to provide the electrode or electrolyte solution for lithium secondary batteries or lithium ion capacitors which is high voltage, high capacity | capacitance, and was excellent in charging / discharging cycling performance and high temperature storage characteristics.
 本発明者らは、上記の目的を達成すべく鋭意検討を行った結果、本発明に到達した。即ち、本発明は、一般式(1)で表されるアルケニルエーテル基(X)及び酸素、フッ素、ケイ素、リン及び硫黄から選ばれる少なくとも1種の原子を有する基(L)を有し、エーテル基濃度が0.1~9.0ミリ当量/gである化合物(A)を含有する電極保護膜形成剤(B);前記電極保護膜形成剤(B)を含有する電極及び電解液;前記電極又は電解液を有するリチウム二次電池及びリチウムイオンキャパシタ;電極保護膜形成剤(B)を電極及び/又は電解液に含有させた後、電圧を印加する工程を含む電極保護膜の製造方法である。
Figure JPOXMLDOC01-appb-C000001
[式(1)中、T~Tはそれぞれ独立して水素原子、又は炭素数1~3のアルキル基である。]
As a result of intensive studies to achieve the above object, the present inventors have reached the present invention. That is, the present invention includes an alkenyl ether group (X) represented by the general formula (1) and a group (L) having at least one atom selected from oxygen, fluorine, silicon, phosphorus and sulfur, and an ether. An electrode protective film-forming agent (B) containing a compound (A) having a group concentration of 0.1 to 9.0 meq / g; an electrode and an electrolytic solution containing the electrode protective film-forming agent (B); Lithium secondary battery and lithium ion capacitor having an electrode or an electrolytic solution; an electrode protective film manufacturing method including a step of applying a voltage after the electrode protective film forming agent (B) is contained in the electrode and / or the electrolytic solution is there.
Figure JPOXMLDOC01-appb-C000001
[In Formula (1), T 1 to T 3 are each independently a hydrogen atom or an alkyl group having 1 to 3 carbon atoms. ]
 本発明の電極保護膜形成剤(B)は、高電圧下の電極表面での電解液の分解を抑制し、充放電サイクル特性及び高温貯蔵特性を向上させることができる。
 本発明の電極保護膜形成剤(B)を含有する電極又は電解液を使用することで、特に、高電圧、高容量のリチウム二次電池又はリチウムイオンキャパシタが得られると共に、これらの高電圧下での充放電サイクル性能及び高温貯蔵特性を向上させることができる。
The electrode protective film forming agent (B) of the present invention can suppress the decomposition of the electrolytic solution on the electrode surface under a high voltage, and can improve the charge / discharge cycle characteristics and the high temperature storage characteristics.
By using the electrode or electrolytic solution containing the electrode protective film forming agent (B) of the present invention, in particular, a high-voltage, high-capacity lithium secondary battery or lithium-ion capacitor can be obtained, and under these high voltages. The charge / discharge cycle performance and high-temperature storage characteristics can be improved.
 本発明の電極保護膜形成剤(B)は、一般式(1)で表されるアルケニルエーテル基(X)及び酸素、フッ素、ケイ素、リン及び硫黄から選ばれる少なくとも1種の原子を有する基(L)を有し、エーテル基濃度が0.1~9.0ミリ当量/gである化合物(A)を含有することを特徴とする。 The electrode protective film forming agent (B) of the present invention includes an alkenyl ether group (X) represented by the general formula (1) and a group having at least one atom selected from oxygen, fluorine, silicon, phosphorus and sulfur ( L) and a compound (A) having an ether group concentration of 0.1 to 9.0 meq / g.
 一般式(1)におけるT、T及びTはそれぞれ独立に水素原子又は炭素数1~3のアルキル基(メチル基、エチル基、n-プロピル基及びイソプロピル基)である。 T 1 , T 2 and T 3 in the general formula (1) are each independently a hydrogen atom or an alkyl group having 1 to 3 carbon atoms (methyl group, ethyl group, n-propyl group and isopropyl group).
 アルケニルエーテル基(X)としては、ビニルエーテル基、1-プロペニルエーテル基及び2-メチル-1-プロペニルエーテル基等が挙げられる。これらの内、充放電サイクル特性の観点から好ましくは、ビニルエーテル基及び1-プロペニルエーテル基である。
化合物(A)が有するアルケニルエーテル基(X)の数としては、1~5であり、充放電サイクル特性の観点から、好ましくは2~4であり、更に好ましくは2又は3である。
Examples of the alkenyl ether group (X) include a vinyl ether group, a 1-propenyl ether group, and a 2-methyl-1-propenyl ether group. Of these, vinyl ether groups and 1-propenyl ether groups are preferred from the viewpoint of charge / discharge cycle characteristics.
The number of alkenyl ether groups (X) contained in the compound (A) is 1 to 5, preferably 2 to 4, more preferably 2 or 3, from the viewpoint of charge / discharge cycle characteristics.
化合物(A)が有する基(L)は、酸素、フッ素、ケイ素、リン及び硫黄から選ばれる少なくとも1種の原子を有する基であり、好ましくは下記(a)~(g)で表される基からなる群から選ばれる少なくとも1種の基及び炭素数1~20の炭化水素基を有する基である。
(a):カーボネート基
(b):炭素数1~20のフッ素化炭化水素基
(c):スルフィノ基
(d):スルホ基 
(e):リン酸エステル基
(f):シロキサン基
(g):シリレン基
The group (L) possessed by the compound (A) is a group having at least one atom selected from oxygen, fluorine, silicon, phosphorus and sulfur, preferably groups represented by the following (a) to (g) A group having at least one group selected from the group consisting of and a hydrocarbon group having 1 to 20 carbon atoms.
(A): carbonate group (b): fluorinated hydrocarbon group having 1 to 20 carbon atoms (c): sulfino group (d): sulfo group
(E): Phosphate ester group (f): Siloxane group (g): Silylene group
炭素数1~20のフッ素化炭化水素基(b)としては直鎖又は分岐鎖フッ素化炭化水素基[パーフルオロメチル基、パーフルオロエチル基、パーフルオロプロピル基、パーフルオロブチル基、パーフルオロ2-メチルプロピル基、パーフルオロペンチル基、パーフルオロ2-メチルブチル基、パーフルオロ2,2-ジメチルプロピル基、パーフルオロヘキシル基、パーフルオロオクチル基、パーフルオロデシル基、パーフルオロドデシル基、パーフルオロトリデシル基、パーフルオロテトラデシル基、パーフルオロペンタデシル基、パーフルオロオクタデシル基、パーフルオロエイコシル基、パーフルオロメチレン基、パーフルオロエチレン基、パーフルオロプロピレン基、パーフルオロブチレン基、パーフルオロペンチレン基、パーフルオロ2-メチルブチル基、パーフルオロ2,2-ジメチルプロピレン基、パーフルオロヘキシレン基等];環状フッ素化炭化水素基[パーフルオロシクロペンチル基、パーフルオロシクロヘキシル基、パーフルオロシクロペンチレン基及びパーフルオロシクロヘキシレン基等]等が挙げられる。 As the fluorinated hydrocarbon group (b) having 1 to 20 carbon atoms, a linear or branched fluorinated hydrocarbon group [perfluoromethyl group, perfluoroethyl group, perfluoropropyl group, perfluorobutyl group, perfluoro 2 -Methylpropyl group, perfluoropentyl group, perfluoro-2-methylbutyl group, perfluoro2,2-dimethylpropyl group, perfluorohexyl group, perfluorooctyl group, perfluorodecyl group, perfluorododecyl group, perfluorotridecyl group Decyl group, perfluorotetradecyl group, perfluoropentadecyl group, perfluorooctadecyl group, perfluoroeicosyl group, perfluoromethylene group, perfluoroethylene group, perfluoropropylene group, perfluorobutylene group, perfluoropentylene Group, perfluo 2-methylbutyl group, perfluoro 2,2-dimethylpropylene group, perfluorohexylene group, etc.]; cyclic fluorinated hydrocarbon group [perfluorocyclopentyl group, perfluorocyclohexyl group, perfluorocyclopentylene group and perfluorocyclohexyl group] A silylene group, etc.].
リン酸エステル基(e)としてはアルキルリン酸エステル基が挙げられる。(e)の具体例としてはメチルリン酸エステル基、エチルリン酸エステル基、ブチルリン酸エステル基及びヘキシルリン酸エステル基が挙げられる。 Examples of the phosphate ester group (e) include an alkyl phosphate ester group. Specific examples of (e) include a methyl phosphate group, an ethyl phosphate group, a butyl phosphate group, and a hexyl phosphate group.
シロキサン基(f)としてはアルキルシロキサン基が挙げられる。アルキルシロキサン基の具体例としては、ジメチルシロキサン基、ジエチルシロキサン基、ジブチルシロキサン基及びジヘキシルシロキサン基が挙げられる。 Examples of the siloxane group (f) include alkylsiloxane groups. Specific examples of the alkylsiloxane group include a dimethylsiloxane group, a diethylsiloxane group, a dibutylsiloxane group, and a dihexylsiloxane group.
シリレン基(g)としてはジアルキルシリレン基が挙げられる。ジアルキルシリレン基の例としてはジメチルシリレン基、ジエチルシリレン基、ジブチルシリレン基及びジヘキシルシリレン基が挙げられる。 Examples of the silylene group (g) include a dialkylsilylene group. Examples of the dialkylsilylene group include a dimethylsilylene group, a diethylsilylene group, a dibutylsilylene group, and a dihexylsilylene group.
炭素数1~20の炭化水素基としては直鎖若しくは分岐の脂肪族炭化水素基、環状脂肪族炭化水素基または芳香族炭化水素基が挙げられる。 Examples of the hydrocarbon group having 1 to 20 carbon atoms include linear or branched aliphatic hydrocarbon groups, cyclic aliphatic hydrocarbon groups, and aromatic hydrocarbon groups.
化合物(A)中に複数の(L)が存在する場合はそれぞれ同一であっても異なっていてもよい。 When a plurality of (L) are present in the compound (A), they may be the same or different.
化合物(A)のエーテル基濃度は0.1~9.0ミリ当量/gであり、好ましくは0.1~7.5ミリ当量/gである。エーテル基濃度が0.1~9.0ミリ当量/gであることにより、電極保護膜の酸化分解が抑制され、充放電サイクル特性及び高温貯蔵特性を向上させることができる。
エーテル基濃度が、9.0ミリ等量/gを超えると、酸化安定性が劣るため好ましくない。
The ether group concentration of the compound (A) is 0.1 to 9.0 meq / g, preferably 0.1 to 7.5 meq / g. When the ether group concentration is 0.1 to 9.0 milliequivalent / g, oxidative decomposition of the electrode protective film can be suppressed, and charge / discharge cycle characteristics and high-temperature storage characteristics can be improved.
If the ether group concentration exceeds 9.0 milliequivalent / g, oxidation stability is inferior, which is not preferable.
化合物(A)として好ましくは、一般式(2)で表される化合物(A1)及び一般式(3)で表される化合物(A2)である。 The compound (A) is preferably a compound (A1) represented by the general formula (2) and a compound (A2) represented by the general formula (3).
Figure JPOXMLDOC01-appb-C000002
[式(2)中、Rは直鎖若しくは分岐の炭素数1~6の脂肪族炭化水素基又は炭素数5~12の環状構造を有する脂肪族炭化水素基であり、複数個あるRはそれぞれ同一でも異なっていてもよく、T、T及びTはそれぞれ独立に水素原子又は炭素数1~3のアルキル基であり、nは1~10の数である。]
Figure JPOXMLDOC01-appb-C000002
[In formula (2), R 1 is an aliphatic hydrocarbon group having a linear or aliphatic hydrocarbon group or a cyclic structure having from 5 to 12 carbon atoms having 1 to 6 carbon atoms branched, plurality is R 1 May be the same or different, and T 1 , T 2 and T 3 are each independently a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, and n is a number from 1 to 10. ]
Y(-K-X)n    (3)
[式(3)中、Xは一般式(1)で表されるアルケニルエーテル基;Yは炭素数1~20の1~4価フッ素化炭化水素基;Kは、XとYの間に最短で介在する共有結合の数が2~5である、炭素数1~10の2価の直鎖又は分岐アルキレン基を表す;nは1~4の整数を表す。]
Y (-KX) n (3)
[In the formula (3), X is an alkenyl ether group represented by the general formula (1); Y is a mono- to tetra-valent fluorinated hydrocarbon group having 1 to 20 carbon atoms; Represents a divalent linear or branched alkylene group having 1 to 10 carbon atoms and having 2 to 5 covalent bonds interposed therein; n represents an integer of 1 to 4. ]
 一般式(2)において、炭素数1~6の直鎖又は分岐の脂肪族炭化水素基としては、メチレン基、エチレン基、トリメチレン基、エチリデン基、テトラメチレン基、1-メチルトリメチレン基、2-メチルトリメチレン基、1-エチルエチレン基、1,1-ジメチルエチレン基、エチルメチルメチレン基、プロピルメチレン基、ペンタメチレン基、1-メチルテトラメチレン基、2-メチルテトラメチレン基、1,1-ジメチルトリメチレン基、2,2-ジメチルトリメチレン基、1,2-ジメチルトリメチレン基、1,3-ジメチルトリメチレン基、1-エチルトリメチレン基、1,1,2-トリメチルエチレン基、ジエチルメチレン基、1-プロピルエチレン基、ブチルメチレン基、ヘキサメチレン基、1-メチルペンタメチレン基、1,1-ジメチルテトラメチレン基、2,2-ジメチルテトラメチレン基、1,1,3-トリメチルトリメチレン基、1,1,2-トリメチルトリメチレン基、1,1,2,2-テトラメチルエチレン基、1,1-ジメチル-2-エチルエチレン基、1,1-ジエチルエチレン基、1-プロピルトリメチレン基、2-プロピルトリメチレン基、1-ブチルエチレン基、1-メチル-1-プロピルエチレン基、1-メチル-2-プロピルエチレン基、ペンチルメチレン基、ブチルメチルメチレン基及びエチルプロピルメチレン基等が挙げられる。 In the general formula (2), the linear or branched aliphatic hydrocarbon group having 1 to 6 carbon atoms includes a methylene group, an ethylene group, a trimethylene group, an ethylidene group, a tetramethylene group, a 1-methyltrimethylene group, 2 -Methyltrimethylene group, 1-ethylethylene group, 1,1-dimethylethylene group, ethylmethylmethylene group, propylmethylene group, pentamethylene group, 1-methyltetramethylene group, 2-methyltetramethylene group, 1,1 -Dimethyltrimethylene group, 2,2-dimethyltrimethylene group, 1,2-dimethyltrimethylene group, 1,3-dimethyltrimethylene group, 1-ethyltrimethylene group, 1,1,2-trimethylethylene group, Diethylmethylene group, 1-propylethylene group, butylmethylene group, hexamethylene group, 1-methylpentamethylene group, , 1-dimethyltetramethylene group, 2,2-dimethyltetramethylene group, 1,1,3-trimethyltrimethylene group, 1,1,2-trimethyltrimethylene group, 1,1,2,2-tetramethylethylene 1,1-dimethyl-2-ethylethylene group, 1,1-diethylethylene group, 1-propyltrimethylene group, 2-propyltrimethylene group, 1-butylethylene group, 1-methyl-1-propylethylene Group, 1-methyl-2-propylethylene group, pentylmethylene group, butylmethylmethylene group, ethylpropylmethylene group and the like.
 一般式(2)において、炭素数5~12の環状構造を有する脂肪族炭化水素基としては1,2-シクロペンチレン基、1,2-シクロへキシレン基、1,3-シクロへキシレン基、1,4-シクロへキシレン基、1,3-シクロヘキサンジメタノールから2個の水酸基を除いた残基、1,4-シクロヘキサンジメタノールから2個の水酸基を除いた残基、1-ヒドロキシ-3-ヒドロキシメチルシクロヘキサンから2個の水酸基を除いた残基、1-ヒドロキシ-4-ヒドロキシメチルシクロヘキサンから2個の水酸基を除いた残基、1,4-シクロヘキサンジエタノールから2個の水酸基を除いた残基及び1,4-シクロヘキサンジプロパノールから2個の水酸基を除いた残基等が挙げられる。
 これらの内、サイクル特性の観点から好ましいのは炭素数5~12の環状構造を有する脂肪族炭化水素基であり、更に好ましいのは、1,4-シクロヘキサンジメタノールから2個の水酸基を除いた残基である。
In the general formula (2), examples of the aliphatic hydrocarbon group having a cyclic structure having 5 to 12 carbon atoms include 1,2-cyclopentylene group, 1,2-cyclohexylene group, 1,3-cyclohexylene group 1,4-cyclohexylene group, a residue obtained by removing two hydroxyl groups from 1,3-cyclohexanedimethanol, a residue obtained by removing two hydroxyl groups from 1,4-cyclohexanedimethanol, 1-hydroxy- Residue obtained by removing two hydroxyl groups from 3-hydroxymethylcyclohexane, residue obtained by removing two hydroxyl groups from 1-hydroxy-4-hydroxymethylcyclohexane, and two hydroxyl groups removed from 1,4-cyclohexanediethanol Examples thereof include a residue and a residue obtained by removing two hydroxyl groups from 1,4-cyclohexanedipropanol.
Of these, an aliphatic hydrocarbon group having a cyclic structure having 5 to 12 carbon atoms is preferable from the viewpoint of cycle characteristics, and more preferable is the removal of two hydroxyl groups from 1,4-cyclohexanedimethanol. Residue.
一般式(2)において、炭素数1~3のアルキル基としてはメチル基、エチル基、n-プロピル基及びイソプロピル基が挙げられる。 In the general formula (2), examples of the alkyl group having 1 to 3 carbon atoms include a methyl group, an ethyl group, an n-propyl group, and an isopropyl group.
 一般式(2)におけるnは1~10の数であり、サイクル特性の観点から1~4が好ましい。 In the general formula (2), n is a number of 1 to 10, and preferably 1 to 4 from the viewpoint of cycle characteristics.
 一般式(3)で表される化合物(A2)としては、炭素数1~20の直鎖、分岐鎖又は環状パーフルオロアルカンの1~4個のフッ素原子を除去したフッ素化炭化水素基が、炭素数1~10の2価の直鎖又は分岐のアルキレン基(K)を介在してアルケニルエーテル基(X)と結合した化合物であり、フッ素化炭化水素基とアルケニルエーテル基との間に最短で介在する共有結合の数が2~5である化合物が挙げられる。 As the compound (A2) represented by the general formula (3), a fluorinated hydrocarbon group in which 1 to 4 fluorine atoms of a linear, branched, or cyclic perfluoroalkane having 1 to 20 carbon atoms are removed, A compound in which a divalent linear or branched alkylene group (K) having 1 to 10 carbon atoms is bonded to an alkenyl ether group (X), and is shortest between the fluorinated hydrocarbon group and the alkenyl ether group. In which the number of covalent bonds intervening in is 2 to 5.
  炭素数1~20の1~4価フッ素化炭化水素基(Y)とは、炭素数1~20の直鎖、分岐鎖又は環状パーフルオロアルカンの1~4個のフッ素原子を除去した基を表しており、充放電サイクル特性の観点から、好ましくは、1~3個のフッ素原子を除去した基、更に好ましくは、2~3個のフッ素原子を除去した基である。 The 1 to 4 valent fluorinated hydrocarbon group (Y) having 1 to 20 carbon atoms is a group in which 1 to 4 fluorine atoms of a linear, branched or cyclic perfluoroalkane having 1 to 20 carbon atoms are removed. From the viewpoint of charge / discharge cycle characteristics, a group from which 1 to 3 fluorine atoms have been removed is preferred, and a group from which 2 to 3 fluorine atoms have been removed is more preferred.
炭素数1~20の1~4価フッ素化炭化水素基(Y)とは、直鎖又は分岐鎖フッ素化炭化水素基(Y1)[パーフルオロメチル基、パーフルオロエチル基、パーフルオロプロピル基、パーフルオロブチル基、パーフルオロ2-メチルプロピル基、パーフルオロペンチル基、パーフルオロ2-メチルブチル基、パーフルオロ2,2-ジメチルプロピル基、パーフルオロヘキシル基、パーフルオロオクチル基、パーフルオロデシル基、パーフルオロドデシル基、パーフルオロトリデシル基、パーフルオロテトラデシル基、パーフルオロペンタデシル基、パーフルオロオクタデシル基、パーフルオロエイコシル基、パーフルオロメチレン基、パーフルオロエチレン基、パーフルオロプロピレン基、パーフルオロブチレン基、パーフルオロペンチレン基、パーフルオロ2-メチルブチル基、パーフルオロ2,2-ジメチルプロピレン基、パーフルオロヘキシレン基等];環状フッ素化炭化水素基(Y2)[パーフルオロシクロペンチル基、パーフルオロシクロヘキシル基、パーフルオロシクロペンチレン基及びパーフルオロシクロヘキシレン基等]等が挙げられる。 The mono- to tetra-valent fluorinated hydrocarbon group (Y) having 1 to 20 carbon atoms is a linear or branched fluorinated hydrocarbon group (Y1) [perfluoromethyl group, perfluoroethyl group, perfluoropropyl group, Perfluorobutyl group, perfluoro 2-methylpropyl group, perfluoropentyl group, perfluoro 2-methylbutyl group, perfluoro 2,2-dimethylpropyl group, perfluorohexyl group, perfluorooctyl group, perfluorodecyl group, Perfluorododecyl group, perfluorotridecyl group, perfluorotetradecyl group, perfluoropentadecyl group, perfluorooctadecyl group, perfluoroeicosyl group, perfluoromethylene group, perfluoroethylene group, perfluoropropylene group, perfluoropropylene group Fluorobutylene group, perfluoropentylene Perfluoro 2-methylbutyl group, perfluoro 2,2-dimethylpropylene group, perfluorohexylene group, etc.]; cyclic fluorinated hydrocarbon group (Y2) [perfluorocyclopentyl group, perfluorocyclohexyl group, perfluorocyclopenty] Len group and perfluorocyclohexylene group, etc.].
炭素数1~10の2価の直鎖又は分岐アルキレン基(K)としては、メチレン基、エチレン基、プロピレン基、2-メチルプロピレン基、2,2-ジメチルプロピレン基、ブチレン基、シクロペンチレン、シクロヘキシレン基及び2-メチルブチレン基等が挙げられる。 Examples of the divalent linear or branched alkylene group (K) having 1 to 10 carbon atoms include methylene group, ethylene group, propylene group, 2-methylpropylene group, 2,2-dimethylpropylene group, butylene group, and cyclopentylene. Cyclohexylene group and 2-methylbutylene group.
化合物(A)としては、直鎖又は分岐鎖フッ素化炭化水素基(Y1)がアルキレン基(K)を介してアルケニルエーテル基(X)と結合した化合物(A21)及び環状フッ素化炭化水素基(Y2)がアルキレン基(K)を介してアルケニルエーテル基(X)と結合した化合物(A22)等が挙げられる。これらの内、サイクル特性の観点から好ましいのは直鎖フッ素化炭化水素基が炭素数1~3の直鎖アルキレン基を介して結合した化合物である。 Examples of the compound (A) include a compound (A21) in which a linear or branched fluorinated hydrocarbon group (Y1) is bonded to an alkenyl ether group (X) through an alkylene group (K), and a cyclic fluorinated hydrocarbon group ( Examples thereof include compound (A22) in which Y2) is bonded to alkenyl ether group (X) through alkylene group (K). Among these, a compound in which a linear fluorinated hydrocarbon group is bonded via a linear alkylene group having 1 to 3 carbon atoms is preferable from the viewpoint of cycle characteristics.
(A21)としては、モノアルケニルエーテル基を有する化合物、ジアルケニルエーテル基を有する化合物及びトリアルケニルエーテル基を有する化合物等が挙げられる。 Examples of (A21) include compounds having a monoalkenyl ether group, compounds having a dialkenyl ether group, and compounds having a trialkenyl ether group.
化合物(A21)としては、モノビニルエーテル[3,3,4,4,4-ペンタフルオロブタノールビニルエーテル、3,3,4,4,5,5,5-ヘプタフルオロペンタノールビニルエーテル、3,3,4,4,5,5,6,6,6-ノナフルオロヘキサノールビニルエーテル、3,3,4,4,5,5,6,6,7,7,7-ウンデカフルオロヘプタノールビニルエーテル、及び4,4,5,5,6,6,7,7,8,8,8-ウンデカフルオロオクタノールビニルエーテル等];モノ(1-プロペニル)エーテル[3,3,4,4,4-ペンタフルオロブタノール(1-プロペニル)エーテル、3,3,4,4,5,5,5-ヘプタフルオロペンタノール(1-プロペニル)エーテル、3,3,4,4,5,5,6,6,6-ノナフルオロヘキサノール(1-プロペニル)エーテル、及び4,4,5,5,6,6,7,7,8,8,8-ウンデカフルオロオクタノールビニルエーテル等];ジビニルエーテル[3,3,4,4-テトラフルオロ-1,6-ヘキサンジオールジビニルエーテル、3,3,4,4,5,5-ヘキサフルオロ-1,7-ヘプタンジオールジビニルエーテル、及び4,4,5,5,6,6,7,7-オクタフルオロ-1,10-デカンジオールジビニルエーテル等];(1-プロペニル)ビニルエーテル[3,3,4,4-テトラフルオロ-1,6-ヘキサンジオール(1-プロペニル)ビニルエーテル、3,3,4,4,5,5-ヘキサフルオロ-1,7-ヘプタンジオール(1-プロペニル)ビニルエーテル、及び4,4,5,5,6,6,7,7,8,8,9,9-ドデカフルオロ-1,12-ドデカンジオール(1-プロペニル)ビニルエーテル等];ジ(1-プロペニル)エーテル[2,2,3,3,4,4-ヘキサフルオロ-1,5-ペンタンジオールジ(1-プロペニル)エーテル、3,3,4,4-テトラフルオロ-1,6-ヘキサンジオールジ(1-プロペニル)エーテル、3,3,4,4,5,5-ヘキサフルオロ-1,7-ヘプタンジオールジ(1-プロペニル)エーテル、及び4,4,5,5,6,6,7,7,8,8,9,9-ドデカフルオロ-1,12-ドデカンジオールジ(1-プロペニル)エーテル等];トリビニルエーテル[4-(1,1-ジフルオロ-3-ビニロキシプロピル)-3,3,4,5,5-ペンタフルオロ-1,7-ヘプタンジオールジビニルエーテル、5-(1,1-ジフルオロ-4-ビニロキシプロピル)-4,4,5,6,6-ペンタフルオロ-1,9-ノナンジオールジビニルエーテル等];トリ(1-プロペニル)エーテル[4-(1,1-ジフルオロ-3-(1-プロペノキシ)プロピル)-3,3,4,5,5-ペンタフルオロ-1,7-ヘプタンジオールジ(1-プロペニル)エーテル、5-(1,1-ジフルオロ-4-(1-プロペノキシ)プロピル)-4,4,5,6,6-ペンタフルオロ-1,9-ノナンジオールジ(1-プロペニル)エーテル等]等が挙げられる。 As the compound (A21), monovinyl ether [3,3,4,4,4-pentafluorobutanol vinyl ether, 3,3,4,4,5,5,5-heptafluoropentanol vinyl ether, 3,3,4 , 4,5,5,6,6,6-nonafluorohexanol vinyl ether, 3,3,4,4,5,5,6,6,7,7,7-undecafluoroheptanol vinyl ether, and 4, 4,5,5,6,6,7,7,8,8,8-undecafluorooctanol vinyl ether and the like]; mono (1-propenyl) ether [3,3,4,4,4-pentafluorobutanol ( 1-propenyl) ether, 3,3,4,4,5,5,5-heptafluoropentanol (1-propenyl) ether, 3,3,4,4,5,5,6,6,6-nonaflu Lohexanol (1-propenyl) ether and 4,4,5,5,6,6,7,7,8,8,8-undecafluorooctanol vinyl ether and the like]; divinyl ether [3, 3, 4, 4 Tetrafluoro-1,6-hexanediol divinyl ether, 3,3,4,4,5,5-hexafluoro-1,7-heptanediol divinyl ether, and 4,4,5,5,6,6 7,7-octafluoro-1,10-decanediol divinyl ether and the like]; (1-propenyl) vinyl ether [3,3,4,4-tetrafluoro-1,6-hexanediol (1-propenyl) vinyl ether, 3 , 3,4,4,5,5-hexafluoro-1,7-heptanediol (1-propenyl) vinyl ether, and 4,4,5,5,6,6,7, , 8,8,9,9-dodecafluoro-1,12-dodecanediol (1-propenyl) vinyl ether, etc.]; di (1-propenyl) ether [2,2,3,3,4,4-hexafluoro- 1,5-pentanediol di (1-propenyl) ether, 3,3,4,4-tetrafluoro-1,6-hexanediol di (1-propenyl) ether, 3,3,4,4,5,5 Hexafluoro-1,7-heptanediol di (1-propenyl) ether and 4,4,5,5,6,6,7,7,8,8,9,9-dodecafluoro-1,12- Dodecanediol di (1-propenyl) ether, etc.]; trivinyl ether [4- (1,1-difluoro-3-vinyloxypropyl) -3,3,4,5,5-pentafluoro-1,7-heptanediol Jibi Nyl ether, 5- (1,1-difluoro-4-vinyloxypropyl) -4,4,5,6,6-pentafluoro-1,9-nonanediol divinyl ether and the like]; tri (1-propenyl) ether [ 4- (1,1-difluoro-3- (1-propenoxy) propyl) -3,3,4,5,5-pentafluoro-1,7-heptanediol di (1-propenyl) ether, 5- (1 , 1-difluoro-4- (1-propenoxy) propyl) -4,4,5,6,6-pentafluoro-1,9-nonanediol di (1-propenyl) ether, etc.].
 化合物(A22)としては、モノアルケニルエーテル基を有する化合物、ジアルケニルエーテル基を有する化合物及びトリアルケニルエーテル基を有する化合物等が挙げられる。 Examples of the compound (A22) include a compound having a monoalkenyl ether group, a compound having a dialkenyl ether group, and a compound having a trialkenyl ether group.
化合物(A22)としては、モノビニルエーテル[1,2,2,3,3,4,4,5,5,6,6-デカフルオロ-1-ビニロキシメチルシクロヘキサン、1,2,2,3,3,4,4,5,5,6,6-デカフルオロ-1-ビニロキシエチルシクロヘキサン、及び1,2,2,3,3,4,4,5,5,6,6-デカフルオロ-1-ビニロキシプロピルシクロヘキサン等];1-プロペニルエーテル[1,2,2,3,3,4,4,5,5,6,6-デカフルオロ-1-(1-プロペノキシメチル)シクロヘキサン、1,2,2,3,3,4,4,5,5,6,6-デカフルオロ-1-(1-プロペノキシエチル)シクロヘキサン、及び1,2,2,3,3,4,4,5,5,6,6-ウンデカフルオロ-1-(1-プロペノキシプロピル)シクロヘキサン等];ジビニルエーテル[1,2,3,3,4,4,5,5,6,6-デカフルオロ-1,2-ビス(ビニロキシメチル)シクロヘキサン、1,2,2,3,4,4,5,5,6,6-デカフルオロ-1,3-ビス(ビニロキシメチル)シクロヘキサン、及び1,2,2,3,3,4,5,5,6,6-デカフルオロ-1,4-ビス(ビニロノキシプロピル)シクロヘキサン等];(1-プロペニル)ビニルエーテル[1,2,3,3,4,4,5,5,6,6-デカフルオロ-1-(1-プロペノキシメチル)-2-(ビニロキシメチル)シクロヘキサン、1,2,2,3,4,4,5,5,6,6-デカフルオロ-1-(1-プロペノキシメチル)-3-(ビニロキシメチル)シクロヘキサン、及び1,2,2,3,3,4,5,5,6,6-デカフルオロ-1-(1-プロペノキシプロピル)-4-(ビニロノキシプロピル)シクロヘキサン等];ジ(1-プロペニル)エーテル[1,2,3,3,4,4,5,5,6,6-デカフルオロ-1,2-ビス(1-プロペノキシメチル)シクロヘキサン、1,2,2,3,3,4,5,5,6,6-デカフルオロ-1,4-ビス(1-プロペノキシメチル)シクロヘキサン、及び1,2,2,3,3,4,5,5,6,6-デカフルオロ-1,4-ビス(1-プロペノキシプロピル)シクロヘキサン等];トリビニルエーテル[1,2,2,3,4,4,5,6,6-ノナフルオロ-1,3,5-トリス(ビニロキシメチル)シクロヘキサン、及び1,2,2,3,4,4,5,6,6-ノナフルオロ-1,3,5-トリス(ビニロキシエチル)シクロヘキサン等];トリ(1-プロペニル)エーテル[1,2,2,3,4,4,5,6,6-ノナフルオロ-1,3,5-トリス(1-プロペノキシメチル)シクロヘキサン及び1,2,2,3,4,4,5,6,6-ノナフルオロ-1,3,5-トリス(1-プロペノキシエチル)シクロヘキサン等]等が挙げられる。 As the compound (A22), monovinyl ether [1,2,2,3,3,4,4,5,5,6,6-decafluoro-1-vinyloxymethylcyclohexane, 1,2,2,3, 3,4,4,5,5,6,6-decafluoro-1-vinyloxyethylcyclohexane and 1,2,2,3,3,4,4,5,5,6,6-decafluoro- 1-vinyloxypropylcyclohexane etc.]; 1-propenyl ether [1,2,2,3,3,4,4,5,5,6,6-decafluoro-1- (1-propenoxymethyl) cyclohexane 1,2,2,3,3,4,4,5,5,6,6-decafluoro-1- (1-propenoxyethyl) cyclohexane, and 1,2,2,3,3,4 , 4,5,5,6,6-Undecafluoro-1- (1-propenoxypropyl Cyclohexane and the like]; divinyl ether [1,2,3,3,4,4,5,5,6,6-decafluoro-1,2-bis (vinyloxymethyl) cyclohexane, 1,2,2,3 4,4,5,5,6,6-decafluoro-1,3-bis (vinyloxymethyl) cyclohexane and 1,2,2,3,3,4,5,5,6,6-decafluoro -1,4-bis (vinylonoxypropyl) cyclohexane etc.]; (1-propenyl) vinyl ether [1,2,3,3,4,4,5,5,6,6-decafluoro-1- (1 -Propenoxymethyl) -2- (vinyloxymethyl) cyclohexane, 1,2,2,3,4,4,5,5,6,6-decafluoro-1- (1-propenoxymethyl)- 3- (vinyloxymethyl) cyclohexane and 1,2,2,3,3 4,5,5,6,6-decafluoro-1- (1-propenoxypropyl) -4- (vinylonoxypropyl) cyclohexane etc.]; di (1-propenyl) ether [1,2,3 3,4,4,5,5,6,6-decafluoro-1,2-bis (1-propenoxymethyl) cyclohexane, 1,2,2,3,3,4,5,5,6 6-decafluoro-1,4-bis (1-propenoxymethyl) cyclohexane and 1,2,2,3,3,4,5,5,6,6-decafluoro-1,4-bis ( 1-propenoxypropyl) cyclohexane etc.]; trivinyl ether [1,2,2,3,4,4,5,6,6-nonafluoro-1,3,5-tris (vinyloxymethyl) cyclohexane, and 1 , 2,2,3,4,4,5,6,6-nonafluoro-1,3 5-tris (vinyloxyethyl) cyclohexane etc.]; tri (1-propenyl) ether [1,2,2,3,4,4,5,6,6-nonafluoro-1,3,5-tris (1-propeno) Xymethyl) cyclohexane and 1,2,2,3,4,4,5,6,6-nonafluoro-1,3,5-tris (1-propenoxyethyl) cyclohexane and the like.
 化合物(A)は正極保護膜形成剤として機能する。即ち、化合物(A)を電極や電解液に含有させて、電極に電圧を印加することにより化合物(A)が正極活物質表面で重合し被膜を形成する。この被膜が、高電圧下の電極表面での電解液の分解を抑制する保護膜となり、充放電サイクル特性を向上させる。
 リチウム二次電池やリチウムイオンキャパシタの電極又は電解質に化合物(A)を含有させた場合、初回充電時に上記保護膜が形成されるが、リチウム二次電池やリチウムイオンキャパシタの電極として、別途電極表面(正極活物質表面)に化合物(A)の重合被膜を形成させた電極を使用することもできる。
The compound (A) functions as a positive electrode protective film forming agent. That is, compound (A) is polymerized on the surface of the positive electrode active material to form a film by containing compound (A) in the electrode or electrolyte and applying a voltage to the electrode. This film serves as a protective film that suppresses the decomposition of the electrolytic solution on the electrode surface under a high voltage, and improves the charge / discharge cycle characteristics.
When the compound (A) is contained in the electrode or electrolyte of a lithium secondary battery or lithium ion capacitor, the protective film is formed during the initial charge. An electrode in which a polymer film of the compound (A) is formed on the (positive electrode active material surface) can also be used.
 本発明における化合物(A)は、通常の方法より合成することができる。例えば、一般式(2)で表される化合物の場合、塩基性触媒存在下、アルケニルオキシ基を有するモノアルコール及び上記Rを有するジオールと、鎖状カーボネートとのエステル交換反応により合成することができる。一般式(3)で表される化合物の場合、塩基性触媒存在下、対応するアルコールと塩化アリルを反応させることでアリルエーテルとし、続けてこのアリルエーテルをプロペニル転移反応させることで合成することができる。 Compound (A) in the present invention can be synthesized by an ordinary method. For example, in the case of the compound represented by the general formula (2), the compound can be synthesized by transesterification of a monoalcohol having an alkenyloxy group and the diol having R 1 with a chain carbonate in the presence of a basic catalyst. it can. In the case of the compound represented by the general formula (3), it can be synthesized by reacting the corresponding alcohol with allyl chloride in the presence of a basic catalyst to form an allyl ether, followed by propenyl transfer reaction of this allyl ether. it can.
 塩基性触媒としては、金属ナトリウム、水酸化ナトリウム、ナトリウムメトキシド、ナトリウムtert-ブトキシド、金属カリウム、水酸化カリウム、カリウムメトキシド及びカリウムtert-ブトキシド等が挙げられる。
 アルケニルオキシ基を有するモノアルコールとしては、エチレングリコールモノビニルエーテル、エチレングリコールモノプロペニルエーテル、プロピレングリコールモノビニルエーテル、プロピレングリコールモノプロペニルエーテル、1-ヒドロキシメチル-4-(ビニルオキシメチル)シクロヘキサン及び1-ヒドロキシメチル-4-(プロペニルオキシメチル)シクロヘキサン等が挙げられる。
 上記Rを有するジオールとしてはエチレングリコール、プロピレングリコール及び1,4-ビス(ヒドロキシメチル)シクロヘキサン等が挙げられる。
 鎖状カーボネートとしては、ジメチルカーボネート、ジエチルカーボネート及びジフェニルカーボネート等が挙げられる。
Examples of the basic catalyst include sodium metal, sodium hydroxide, sodium methoxide, sodium tert-butoxide, metal potassium, potassium hydroxide, potassium methoxide and potassium tert-butoxide.
Examples of monoalcohol having an alkenyloxy group include ethylene glycol monovinyl ether, ethylene glycol monopropenyl ether, propylene glycol monovinyl ether, propylene glycol monopropenyl ether, 1-hydroxymethyl-4- (vinyloxymethyl) cyclohexane and 1-hydroxymethyl. -4- (propenyloxymethyl) cyclohexane and the like.
Examples of the diol having R 1 include ethylene glycol, propylene glycol, and 1,4-bis (hydroxymethyl) cyclohexane.
Examples of the chain carbonate include dimethyl carbonate, diethyl carbonate, and diphenyl carbonate.
 本発明の電極保護膜形成剤(B)は、更に負極保護膜形成剤(C)を含有することができる。(C)を含有することにより、負極保護膜の安定性が向上し充放電サイクル特性を更に向上させることができる。 The electrode protective film forming agent (B) of the present invention can further contain a negative electrode protective film forming agent (C). By containing (C), the stability of the negative electrode protective film is improved and the charge / discharge cycle characteristics can be further improved.
 負極保護膜形成剤(C)としては、ビニレンカーボネート、フルオロエチレンカーボネート、クロロエチレンカーボネート、エチレンサルファイト、プロピレンサルファイト及びα-ブロモ-γ-ブチロラクトン等が挙げられる。これらの内、サイクル特性の観点から好ましいのはビニレンカーボネートである。 Examples of the negative electrode protective film forming agent (C) include vinylene carbonate, fluoroethylene carbonate, chloroethylene carbonate, ethylene sulfite, propylene sulfite, and α-bromo-γ-butyrolactone. Among these, vinylene carbonate is preferable from the viewpoint of cycle characteristics.
 電極保護膜形成剤(B)における化合物(A)の含有量は、(B)の重量を基準として、10~100重量%であることが好ましく、更に好ましくは50~100重量%である。
 電極保護膜形成剤(B)における負極保護膜形成剤(C)の含有量は、(B)の重量を基準として、0~90重量%であることが好ましく、更に好ましくは0~50重量%である。
The content of the compound (A) in the electrode protective film forming agent (B) is preferably 10 to 100% by weight, more preferably 50 to 100% by weight, based on the weight of (B).
The content of the negative electrode protective film forming agent (C) in the electrode protective film forming agent (B) is preferably 0 to 90% by weight, more preferably 0 to 50% by weight, based on the weight of (B). It is.
 本発明の電極は、電極保護膜形成剤(B)、活物質(D)及び結着剤(E)を含有する。 The electrode of the present invention contains an electrode protective film forming agent (B), an active material (D), and a binder (E).
 活物質(D)としては負極活物質(D1)、リチウム二次電池用正極活物質(D2)及びリチウムイオンキャパシタ用正極活物質(D3)が挙げられる。
 負極活物質(D1)としては、黒鉛、アモルファス炭素、高分子化合物焼成体(例えばフェノール樹脂及びフラン樹脂等を焼成し炭素化したもの)、コークス類(例えばピッチコークス、ニードルコークス及び石油コークス)、炭素繊維、導電性高分子(例えばポリアセチレン及びポリピロール)、スズ、シリコン、及び金属合金(例えばリチウム-スズ合金、リチウム-シリコン合金、リチウム-アルミニウム合金及びリチウム-アルミニウム-マンガン合金等)等が挙げられる。
 リチウム二次電池用正極活物質(D2)としてはリチウムと遷移金属との複合酸化物(例えばLiCoO2、LiNiO2、LiMnO2及びLiMn24)、遷移金属酸化物(例えばMnO2及びV25)、遷移金属硫化物(例えばMoS2及びTiS2)、及び導電性高分子(例えばポリアニリン、ポリフッ化ビニリデン、ポリピロール、ポリチオフェン、ポリアセチレン、ポリ-p-フェニレン及びポリカルバゾール)等が挙げられる。
 リチウムイオンキャパシタ用正極活物質(D3)としては活性炭、炭素繊維及び導電性高分子(例えばポリアセチレン及びポリピロール)等が挙げられる。
Examples of the active material (D) include a negative electrode active material (D1), a positive electrode active material (D2) for a lithium secondary battery, and a positive electrode active material (D3) for a lithium ion capacitor.
As the negative electrode active material (D1), graphite, amorphous carbon, a polymer compound fired body (for example, those obtained by firing and carbonizing a phenol resin, a furan resin, etc.), cokes (for example, pitch coke, needle coke, and petroleum coke), And carbon fibers, conductive polymers (for example, polyacetylene and polypyrrole), tin, silicon, and metal alloys (for example, lithium-tin alloy, lithium-silicon alloy, lithium-aluminum alloy, and lithium-aluminum-manganese alloy). .
Examples of the positive electrode active material (D2) for the lithium secondary battery include composite oxides of lithium and transition metals (for example, LiCoO 2 , LiNiO 2 , LiMnO 2 and LiMn 2 O 4 ), transition metal oxides (for example, MnO 2 and V 2). O 5 ), transition metal sulfides (eg, MoS 2 and TiS 2 ), and conductive polymers (eg, polyaniline, polyvinylidene fluoride, polypyrrole, polythiophene, polyacetylene, poly-p-phenylene, and polycarbazole).
Examples of the positive electrode active material (D3) for the lithium ion capacitor include activated carbon, carbon fiber, and conductive polymer (for example, polyacetylene and polypyrrole).
 結着剤(E)としてはデンプン、ポリフッ化ビニリデン、ポリビニルアルコール、カルボキシメチルセルロース、ポリビニルピロリドン、テトラフルオロエチレン、ポリエチレン及びポリプロピレン等の高分子化合物が挙げられる。 Examples of the binder (E) include polymer compounds such as starch, polyvinylidene fluoride, polyvinyl alcohol, carboxymethyl cellulose, polyvinyl pyrrolidone, tetrafluoroethylene, polyethylene, and polypropylene.
 本発明の電極は、更にルイス塩基(F)を含有することができる。(F)を含有することにより、化合物(A)の保存安定性が向上する。
 ルイス塩基(F)としては、例えばトリアゾール誘導体(1,2,3-ベンゾトリアゾール、5-メチル-1,2,3-ベンゾトリアゾール、5,6-ジメチル-1,2,3-ベンゾトリアゾール、1,2,4-トリアゾール、3-アミノ-1,2,4-トリアゾール、3,5-ジアミノ-1,2,4-トリアゾール、3-アミノ-5-メチル-1,2,4-トリアゾール、3-アミノ-5-エチル-1,2,4-トリアゾール、3-アミノ-5-プロピル-1,2,4-トリアゾール及び3-アミノ-5-ブチル-1,2,4-トリアゾール等)が挙げられる。これらは市販品を入手することが出来る。これらの内、充放電サイクル特性の観点から好ましいのは、3-アミノ-1,2,4-トリアゾールである。
The electrode of the present invention can further contain a Lewis base (F). By containing (F), the storage stability of the compound (A) is improved.
Examples of the Lewis base (F) include triazole derivatives (1,2,3-benzotriazole, 5-methyl-1,2,3-benzotriazole, 5,6-dimethyl-1,2,3-benzotriazole, 1 2,4-triazole, 3-amino-1,2,4-triazole, 3,5-diamino-1,2,4-triazole, 3-amino-5-methyl-1,2,4-triazole, 3, -Amino-5-ethyl-1,2,4-triazole, 3-amino-5-propyl-1,2,4-triazole and 3-amino-5-butyl-1,2,4-triazole) It is done. These can be obtained commercially. Of these, 3-amino-1,2,4-triazole is preferable from the viewpoint of charge / discharge cycle characteristics.
 本発明の電極は更に導電助剤(G)を含有することができる。
 導電助剤(G)としては黒鉛(例えば天然黒鉛及び人工黒鉛)、カーボンブラック類(例えばカーボンブラック、アセチレンブラック、ケッチェンブラック、チャンネルブラック、ファーネスブラック、ランプブラック及びサーマルブラック)及び金属粉末(例えばアルミニウム粉及びニッケル粉)、導電性金属酸化物(例えば酸化亜鉛及び酸化チタン)等が挙げられる。
The electrode of the present invention can further contain a conductive additive (G).
Examples of the conductive assistant (G) include graphite (for example, natural graphite and artificial graphite), carbon blacks (for example, carbon black, acetylene black, ketjen black, channel black, furnace black, lamp black and thermal black) and metal powder (for example, Aluminum powder and nickel powder), conductive metal oxides (for example, zinc oxide and titanium oxide), and the like.
 本発明の電極における、電極の全重量に基づく電極保護膜形成剤(B)、活物質(D)、結着剤(E)、ルイス塩基(F)及び導電助剤(G)のそれぞれの好ましい含有量は以下の通りである。
 電極保護膜形成剤(B)の含有量は、充放電サイクル特性、電池容量及び高貯蔵特性の観点から、好ましくは0.5~5重量%であり、更に好ましくは1~3重量%である。
 活物質(D)の含有量は、充放電サイクル特性の観点から、好ましくは70~98重量%であり、更に好ましくは90~98重量%である。
 結着剤(E)の含有量は、充放電サイクル特性の観点から、好ましくは0.5~29重量%であり、更に好ましくは1~10重量%である。
 ルイス塩基(F)の含有量は、電池容量、電池出力及び充放電サイクル特性の観点から、好ましくは0~7.5重量%であり、更に好ましくは0.5~3重量%である。
 導電助剤(G)の含有量は、電池出力の観点から、好ましくは0~29重量%であり、更に好ましくは0~10重量%である。
In the electrode of the present invention, each of electrode protective film forming agent (B), active material (D), binder (E), Lewis base (F) and conductive additive (G) based on the total weight of the electrode is preferred The content is as follows.
The content of the electrode protective film forming agent (B) is preferably 0.5 to 5% by weight, more preferably 1 to 3% by weight, from the viewpoint of charge / discharge cycle characteristics, battery capacity and high storage characteristics. .
The content of the active material (D) is preferably 70 to 98% by weight, more preferably 90 to 98% by weight, from the viewpoint of charge / discharge cycle characteristics.
The content of the binder (E) is preferably 0.5 to 29% by weight, more preferably 1 to 10% by weight, from the viewpoint of charge / discharge cycle characteristics.
The content of the Lewis base (F) is preferably 0 to 7.5% by weight, more preferably 0.5 to 3% by weight, from the viewpoint of battery capacity, battery output and charge / discharge cycle characteristics.
The content of the conductive auxiliary agent (G) is preferably 0 to 29% by weight, more preferably 0 to 10% by weight, from the viewpoint of battery output.
 本発明の電極は、例えば電極保護膜形成剤(B)、活物質(D)、結着剤(E)並びに必要によりルイス塩基(F)及び導電助剤(G)を、水又は溶媒に30~60重量%の濃度で分散してスラリー化したものを、集電体にバーコーター等の塗工装置で塗布後、乾燥して溶媒を除去して、必要によりプレス機でプレスすることにより得られる。
 ここで、活物質(D)としてリチウム二次電池用正極活物質(D2)を用いることによりリチウム二次電池用の正極が得られ、活物質(D)としてリチウムイオンキャパシタ用正極活物質(D3)を用いることによりリチウムイオンキャパシタ用の正極が得られる。また、活物質(D)として負極用活物質(D1)を用いることによりリチウム二次電池用の負極が得られ、リチウム二次電池用負極にリチウムをドーピングすることによりリチウムイオンキャパシタ用負極が得られる。
In the electrode of the present invention, for example, an electrode protective film forming agent (B), an active material (D), a binder (E), and, if necessary, a Lewis base (F) and a conductive additive (G) are added to water or a solvent. A slurry dispersed at a concentration of ˜60% by weight is applied to the current collector with a coating device such as a bar coater, then dried to remove the solvent, and if necessary, obtained by pressing with a press. It is done.
Here, a positive electrode for a lithium secondary battery is obtained by using a positive electrode active material (D2) for a lithium secondary battery as the active material (D), and a positive electrode active material for a lithium ion capacitor (D3) as the active material (D). ) Is used to obtain a positive electrode for a lithium ion capacitor. Moreover, the negative electrode for lithium secondary batteries is obtained by using the negative electrode active material (D1) as the active material (D), and the negative electrode for lithium ion capacitors is obtained by doping lithium into the negative electrode for lithium secondary batteries. It is done.
 溶媒としては、例えば1-メチル-2-ピロリドン、メチルエチルケトン、ジメチルホルムアミド、ジメチルアセトアミド、N,N-ジメチルアミノプロピルアミン及びテトラヒドロフラン等が挙げられる。
 集電体としては、銅、アルミニウム、チタン、ステンレス鋼、ニッケル、焼成炭素、導電性高分子及び導電性ガラス等が挙げられる。
Examples of the solvent include 1-methyl-2-pyrrolidone, methyl ethyl ketone, dimethylformamide, dimethylacetamide, N, N-dimethylaminopropylamine, and tetrahydrofuran.
Examples of the current collector include copper, aluminum, titanium, stainless steel, nickel, baked carbon, conductive polymer, and conductive glass.
 本発明の電解液は、電極保護膜形成剤(B)、電解質(H)及び非水溶媒(I)を含有し、特にリチウム二次電池用及びリチウムイオンキャパシタ用の電解液として有用である。 The electrolytic solution of the present invention contains an electrode protective film forming agent (B), an electrolyte (H) and a nonaqueous solvent (I), and is particularly useful as an electrolytic solution for lithium secondary batteries and lithium ion capacitors.
 電解質(H)としては、通常の電解液に用いられているもの等が使用でき、例えば、LiPF6、LiBF4、LiSbF6、LiAsF6及びLiClO4等の無機酸のリチウム塩、LiN(CF3SO22、LiN(C25SO22及びLiC(CF3SO23等の有機酸のリチウム塩が挙げられる。これらの内、電池出力及び充放電サイクル特性の観点から好ましいのはLiPF6である。 The electrolyte (H), normal is can be used such as those used in the electrolytic solution, for example, LiPF 6, LiBF 4, LiSbF 6, LiAsF 6 , and lithium salts of inorganic acids LiClO 4, etc., LiN (CF 3 Examples include lithium salts of organic acids such as SO 2 ) 2 , LiN (C 2 F 5 SO 2 ) 2, and LiC (CF 3 SO 2 ) 3 . Among these, LiPF 6 is preferable from the viewpoint of battery output and charge / discharge cycle characteristics.
 非水溶媒(I)としては、通常の電解液に用いられているもの等が使用でき、例えば、ラクトン化合物、環状又は鎖状炭酸エステル、鎖状カルボン酸エステル、環状又は鎖状エーテル、リン酸エステル、ニトリル化合物、アミド化合物、スルホン、スルホラン等及びこれらの混合物を用いることができる。 As the non-aqueous solvent (I), those used in ordinary electrolytic solutions can be used, for example, lactone compounds, cyclic or chain carbonates, chain carboxylates, cyclic or chain ethers, phosphoric acid. Esters, nitrile compounds, amide compounds, sulfones, sulfolanes, and the like and mixtures thereof can be used.
 ラクトン化合物としては、5員環(γ-ブチロラクトン及びγ-バレロラクトン等)及び6員環のラクトン化合物(δ-バレロラクトン等)等を挙げることができる。 Examples of the lactone compound include 5-membered rings (such as γ-butyrolactone and γ-valerolactone) and 6-membered lactone compounds (such as δ-valerolactone).
 環状炭酸エステルとしては、プロピレンカーボネート、エチレンカーボネート及びブチレンカーボネート等が挙げられる。
 鎖状炭酸エステルとしては、ジメチルカーボネート、メチルエチルカーボネート、ジエチルカーボネート、メチル-n-プロピルカーボネート、エチル-n-プロピルカーボネート及びジ-n-プロピルカーボネート等が挙げられる。
Examples of the cyclic carbonate include propylene carbonate, ethylene carbonate and butylene carbonate.
Examples of the chain carbonate include dimethyl carbonate, methyl ethyl carbonate, diethyl carbonate, methyl-n-propyl carbonate, ethyl-n-propyl carbonate, and di-n-propyl carbonate.
 鎖状カルボン酸エステルとしては、酢酸メチル、酢酸エチル、酢酸プロピル及びプロピオン酸メチル等が挙げられる。
 環状エーテルとしては、テトラヒドロフラン、テトラヒドロピラン、1,3-ジオキソラン及び1,4-ジオキサン等が挙げられる。
 鎖状エーテルとしては、ジメトキシメタン及び1,2-ジメトキシエタン等が挙げられる。
Examples of chain carboxylic acid esters include methyl acetate, ethyl acetate, propyl acetate, and methyl propionate.
Examples of the cyclic ether include tetrahydrofuran, tetrahydropyran, 1,3-dioxolane, 1,4-dioxane and the like.
Examples of the chain ether include dimethoxymethane and 1,2-dimethoxyethane.
 リン酸エステルとしては、リン酸トリメチル、リン酸トリエチル、リン酸エチルジメチル、リン酸ジエチルメチル、リン酸トリプロピル、リン酸トリブチル、リン酸トリ(トリフルオロメチル)、リン酸トリ(トリクロロメチル)、リン酸トリ(トリフルオロエチル)、リン酸トリ(トリパーフルオロエチル)、2-エトキシ-1,3,2-ジオキサホスホラン-2-オン、2-トリフルオロエトキシ-1,3,2-ジオキサホスホラン-2-オン及び2-メトキシエトキシ-1,3,2-ジオキサホスホラン-2-オン等が挙げられる。
 ニトリル化合物としては、アセトニトリル等が挙げられる。アミド化合物としては、ジメチルホルムアミド等が挙げられる。スルホンとしては、ジメチルスルホン及びジエチルスルホン等が挙げられる。
 非水溶媒(I)は1種を単独で用いてもよいし、2種以上を併用してもよい。
Examples of phosphate esters include trimethyl phosphate, triethyl phosphate, ethyl dimethyl phosphate, diethyl methyl phosphate, tripropyl phosphate, tributyl phosphate, tri (trifluoromethyl) phosphate, tri (trichloromethyl) phosphate, Tri (trifluoroethyl) phosphate, tri (triperfluoroethyl) phosphate, 2-ethoxy-1,3,2-dioxaphosphoran-2-one, 2-trifluoroethoxy-1,3,2- Examples include dioxaphospholan-2-one and 2-methoxyethoxy-1,3,2-dioxaphosphoran-2-one.
Examples of the nitrile compound include acetonitrile. Examples of the amide compound include dimethylformamide. Examples of the sulfone include dimethyl sulfone and diethyl sulfone.
Nonaqueous solvent (I) may be used individually by 1 type, and may use 2 or more types together.
 非水溶媒(I)の内、電池出力及び充放電リサイクル特性の観点から好ましいのは、ラクトン化合物、鎖状炭酸エステル、鎖状炭酸エステル及びリン酸エステル、更に好ましいのはラクトン化合物及び鎖状炭酸エステル、特に好ましいのはラクトン化合物、とりわけ好ましいのは5員環又は6員環のラクトン化合物、最も好ましいのは5員環のラクトン化合物である。 Of the non-aqueous solvents (I), lactone compounds, chain carbonates, chain carbonates and phosphates are preferred from the viewpoint of battery output and charge / discharge recycling characteristics, and more preferred are lactone compounds and chain carbonates. Esters, particularly preferred are lactone compounds, especially preferred are 5- or 6-membered lactone compounds, and most preferred are 5-membered lactone compounds.
 炭酸エステル化合物に比べ電位窓が狭いため、従来リチウム電池用途では使用できなかったラクトン化合物も本発明においては保護膜形成剤による保護膜が存在するため溶媒として使用することができ、ラクトン化合物は炭酸エステル化合物と比較して耐熱保存安定性に優れるため、高温貯蔵特性を向上させることができる。 Since the potential window is narrower than that of the carbonate ester compound, a lactone compound that could not be used in conventional lithium battery applications can also be used as a solvent in the present invention because of the presence of a protective film formed by a protective film forming agent. Since it is excellent in heat-resistant storage stability as compared with an ester compound, high-temperature storage characteristics can be improved.
 本発明の電解液は、更に前記ルイス塩基(F)を含有することができる。(F)を含有することにより、化合物(A)の保存安定性が向上する。 The electrolytic solution of the present invention can further contain the Lewis base (F). By containing (F), the storage stability of the compound (A) is improved.
 本発明の電解液における電極保護膜形成剤(B)、電解質(H)、非水溶媒(I)及びルイス塩基(F)、のそれぞれ好ましい含有量又は濃度は以下の通りである。 Preferred contents or concentrations of the electrode protective film forming agent (B), the electrolyte (H), the non-aqueous solvent (I) and the Lewis base (F) in the electrolytic solution of the present invention are as follows.
 (B)の含有量は、充放電サイクル特性、電池容量及び高貯蔵特性の観点から、電解液の重量に基づいて好ましくは0.01~10重量%、更に好ましくは0.05~1重量%である。
 (F)の含有量は、電池容量、電池出力及び充放電サイクル特性の観点から、電解液の重量に基づいて好ましくは0~10重量%、更に好ましくは0.01~10重量%、特に好ましくは0.05~1重量%である。
 電解液中の電解質(H)の濃度は、電解液の容量に基づいて、電池出力及び充放電サイクル特性の観点から好ましくは0.01~3mol/Lであり、更に好ましくは0.05~1.5mol/Lである。
 非水溶媒(I)の含有量は、電解液の重量に基づいて、電池出力及び充放電サイクル特性の観点から好ましくは70~99重量%であり、更に好ましくは93~99重量%である。
The content of (B) is preferably 0.01 to 10% by weight, more preferably 0.05 to 1% by weight, based on the weight of the electrolyte, from the viewpoints of charge / discharge cycle characteristics, battery capacity and high storage characteristics. It is.
The content of (F) is preferably 0 to 10% by weight, more preferably 0.01 to 10% by weight, particularly preferably from the viewpoint of battery capacity, battery output and charge / discharge cycle characteristics. Is 0.05 to 1% by weight.
The concentration of the electrolyte (H) in the electrolytic solution is preferably 0.01 to 3 mol / L, more preferably 0.05 to 1 based on the capacity of the electrolytic solution from the viewpoint of battery output and charge / discharge cycle characteristics. 0.5 mol / L.
The content of the non-aqueous solvent (I) is preferably 70 to 99% by weight and more preferably 93 to 99% by weight based on the weight of the electrolytic solution from the viewpoint of battery output and charge / discharge cycle characteristics.
 本発明の電解液は、更に過充電防止剤、脱水剤及び容量安定化剤等の添加剤を含有してもよい。
 過充電防止剤としては、ビフェニル、アルキルビフェニル、ターフェニル、ターフェニルの部分水素化体、シクロヘキシルベンゼン、t-ブチルベンゼン及びt-アミルベンゼン等の芳香族化合物等が挙げられる。過充電防止剤の使用量は、電解液の全重量に基づいて、通常0~5重量%、好ましくは0~3重量%である。
The electrolytic solution of the present invention may further contain additives such as an overcharge inhibitor, a dehydrating agent and a capacity stabilizer.
Examples of the overcharge preventing agent include biphenyl, alkylbiphenyl, terphenyl, partially hydrogenated terphenyl, aromatic compounds such as cyclohexylbenzene, t-butylbenzene and t-amylbenzene. The amount of the overcharge inhibitor used is usually 0 to 5% by weight, preferably 0 to 3% by weight, based on the total weight of the electrolyte.
 脱水剤としては、ゼオライト、シリカゲル及び酸化カルシウム等が挙げられる。脱水剤の使用量は、電解液の全重量に基づいて、通常0~5重量%、好ましくは0~3重量%である。 Examples of the dehydrating agent include zeolite, silica gel and calcium oxide. The amount of the dehydrating agent used is usually 0 to 5% by weight, preferably 0 to 3% by weight, based on the total weight of the electrolytic solution.
 容量安定化剤としては、フルオロエチレンカーボネート、無水コハク酸、1-メチル-2-ピペリドン、ヘプタン及びフルオロベンゼン等が挙げられる。容量安定化剤の使用量は、電解液の全重量に基づいて、通常0~5重量%、好ましくは0~3重量%である。 Examples of the capacity stabilizer include fluoroethylene carbonate, succinic anhydride, 1-methyl-2-piperidone, heptane and fluorobenzene. The amount of the capacity stabilizer used is usually 0 to 5% by weight, preferably 0 to 3% by weight, based on the total weight of the electrolytic solution.
 本発明のリチウム二次電池は、正極、負極及びセパレータを収納した電池缶内に電解液を注入して電池缶を密封する際に、正極又は負極として本発明の電極(正極はリチウム二次電池用の正極)を用いるか、電解液に本発明の電解液を用いるか、又はこれらの併用により得られる。 When the lithium secondary battery of the present invention seals the battery can by injecting the electrolyte into the battery can containing the positive electrode, the negative electrode and the separator, the electrode of the present invention (the positive electrode is a lithium secondary battery). Positive electrode), the electrolytic solution of the present invention is used as the electrolytic solution, or a combination thereof is used.
 リチウム二次電池におけるセパレータとしては、ポリエチレン又はポリプロピレン製フィルムの微多孔膜、多孔性のポリエチレンフィルムとポリプロピレンとの多層フィルム、ポリエステル繊維、アラミド繊維及びガラス繊維等からなる不織布並びにこれらの表面にシリカ、アルミナ及びチタニア等のセラミック微粒子を付着させたものが挙げられる。 As a separator in a lithium secondary battery, a microporous film made of polyethylene or polypropylene film, a multilayer film of porous polyethylene film and polypropylene, a nonwoven fabric made of polyester fiber, aramid fiber, glass fiber, etc., and silica on these surfaces, The thing to which ceramic fine particles, such as an alumina and a titania, were made to adhere is mentioned.
 リチウム二次電池における電池缶としては、ステンレススチール、鉄、アルミニウム及びニッケルメッキスチール等の金属材料を用いることができるが、電池用途に応じてプラスチック材料を用いることもできる。また電池缶は、用途に応じて円筒型、コイン型、角型又はその他任意の形状にすることができる。 As the battery can in the lithium secondary battery, metal materials such as stainless steel, iron, aluminum and nickel-plated steel can be used, but plastic materials can also be used depending on the battery application. Further, the battery can can be formed into a cylindrical shape, a coin shape, a square shape, or any other shape depending on the application.
 本発明のリチウムイオンキャパシタは、本発明のリチウム二次電池の基本構成において、正極をリチウムイオンキャパシタ用の正極に代え、電池缶をキャパシタ缶に代えることにより得られる。キャパシタ缶の材質及び形状としては、電池缶で例示したものと同様のものが挙げられる。 The lithium ion capacitor of the present invention can be obtained by replacing the positive electrode with a positive electrode for a lithium ion capacitor and replacing the battery can with a capacitor can in the basic configuration of the lithium secondary battery of the present invention. Examples of the material and shape of the capacitor can include the same as those exemplified for the battery can.
 以下、実施例により本発明を更に説明するが、本発明はこれらに限定されるものではない。以下、特に定めない限り、%は重量%、部は重量部を示す。 Hereinafter, the present invention will be further described with reference to examples, but the present invention is not limited thereto. Hereinafter, unless otherwise specified, “%” represents “% by weight” and “parts” represents “parts by weight”.
<製造例1>
 1-ヒドロキシメチル-4-(プロペニルオキシメチル)シクロヘキサンの合成;
 撹拌機、温度計及び冷却管を取り付けたフラスコに、1,4-シクロヘキサンジメタノール[東京化成工業(株)製]9.86部(68.4mmol部)、塩化アリル[東京化成工業(株)製]5.76部(75.2mmol部)、水酸化ナトリウム6.00部(150mmol部)及びトルエン100部を仕込み、撹拌しながら均一に溶解させた後、室温で15分間撹拌後、テトラブチルアンモニウムブロマイド1.32部(4.1mmol部)を加えた。2時間かけて65℃まで昇温し更に4時間撹拌して、エーテル化反応及び転位反応を行った。放冷後、水200部を加え水層を分離した。更に有機層を水200部で洗浄した。トルエンを減圧(2.5kPa)下に除去後、ヘキサンを溶剤としたアルミナカラム[150mesh、Brockman1,standard grade、シグマアルドリッチ社製]によって反応物を精製し、1-ヒドロキシメチル-4-(プロペニルオキシメチル)シクロヘキサン9.0部(48.6mmol部)を得た(収率71%)。
<Production Example 1>
Synthesis of 1-hydroxymethyl-4- (propenyloxymethyl) cyclohexane;
In a flask equipped with a stirrer, a thermometer, and a condenser, 1,4-cyclohexanedimethanol [Tokyo Chemical Industry Co., Ltd.] 9.86 parts (68.4 mmol), allyl chloride [Tokyo Chemical Industry Co., Ltd.] [Production] 5.76 parts (75.2 mmol parts), 6.00 parts (150 mmol parts) of sodium hydroxide and 100 parts of toluene were charged and dissolved uniformly with stirring. After stirring for 15 minutes at room temperature, tetrabutyl was added. 1.32 parts (4.1 mmol parts) of ammonium bromide was added. The temperature was raised to 65 ° C. over 2 hours and further stirred for 4 hours to carry out an etherification reaction and a rearrangement reaction. After allowing to cool, 200 parts of water was added and the aqueous layer was separated. Further, the organic layer was washed with 200 parts of water. After removing the toluene under reduced pressure (2.5 kPa), the reaction product was purified by an alumina column [150 mesh, Blockman 1, standard grade, manufactured by Sigma-Aldrich] using hexane as a solvent, and 1-hydroxymethyl-4- (propenyloxy) 9.0 parts (48.6 mmol parts) of methyl) cyclohexane were obtained (yield 71%).
<製造例2> 
 ビス[{4-(プロペニルオキシメチル)シクロヘキシル}メチル]カーボネート(A-1)[一般式(2)でRが1,4-シクロヘキサンジメタノールから2個の水酸基を除いた基であり、T及びTが水素原子、Tがメチル基であり、nが1の化合物)]の合成;
 撹拌機、温度計及び冷却管を取り付けたフラスコに、上記1-ヒドロキシメチル-4-(プロペニルオキシメチル)シクロヘキサン736部(4mol部)、ジエチルカーボネート[東京化成工業(株)製]118部(1.0mol部)、ナトリウム0.3部(13mmol部)を仕込み、撹拌しながら均一に溶解させた後、100℃まで加熱し生成するエタノールを留去しながら5時間反応させた。残留したエタノールを減圧(2.5kPa)下に除去後、ヘキサンを溶剤としたアルミナカラム[150mesh、Brockman1,standard grade、シグマアルドリッチ社製]によって反応物を精製し、ビス[{4-(プロペニルオキシメチル)シクロヘキシル}メチル]カーボネート(A-1)352部(893mmol部)を得た(収率89%、エーテル基濃度:5.4ミリ当量/g)。
<Production Example 2>
Bis [{4- (propenyloxymethyl) cyclohexyl} methyl] carbonate (A-1) [In the general formula (2), R 1 is a group obtained by removing two hydroxyl groups from 1,4-cyclohexanedimethanol; A compound in which 1 and T 3 are hydrogen atoms, T 2 is a methyl group, and n is 1)]
In a flask equipped with a stirrer, a thermometer and a condenser tube, 736 parts (4 mol parts) of 1-hydroxymethyl-4- (propenyloxymethyl) cyclohexane, 118 parts of diethyl carbonate [manufactured by Tokyo Chemical Industry Co., Ltd.] (1 0.0 mol part) and 0.3 part (13 mmol part) of sodium were added and dissolved uniformly with stirring, and then heated to 100 ° C. and reacted for 5 hours while distilling off the produced ethanol. After removing residual ethanol under reduced pressure (2.5 kPa), the reaction product was purified by an alumina column [150 mesh, Blockman 1, standard grade, manufactured by Sigma-Aldrich] using hexane as a solvent, and bis [{4- (propenyloxy 352 parts (893 mmol parts) of (methyl) cyclohexyl} methyl] carbonate (A-1) were obtained (yield 89%, ether group concentration: 5.4 meq / g).
<製造例3>
 化合物(A-2)[一般式(2)でRが1,4-シクロヘキサンジメタノールから2個の水酸基を除いた基であり、T及びTが水素原子、Tがメチル基であり、nが2.2の化合物]の合成;
 撹拌機、温度計及び冷却管を取り付けたフラスコに、上記1-ヒドロキシメチル-4-(プロペニルオキシメチル)シクロヘキサン369部(2mol部)、1,4-シクロヘキサンジメタノール288部[東京化成工業(株)製](2mol部)、ジエチルカーボネート[東京化成工業(株)製]118部(1.0mol部)、ナトリウム0.3部(13mmol部)を仕込み、撹拌しながら均一に溶解させた後、100℃まで加熱し生成するエタノールを留去しながら5時間反応させた。残留したエタノールを減圧(2.5kPa)下に除去後、ヘキサンを溶剤としたアルミナカラム[150mesh、Brockman1,standard grade、シグマアルドリッチ社製]によって反応物を精製し、化合物(A-2)144部(0.24mol部)を得た(収率24%、エーテル基濃度:3.3ミリ当量/g)。
 化合物(A-2)の1H-NMR測定により算出されたnの値は2.2であった。
<Production Example 3>
Compound (A-2) [in the general formula (2), R 1 is a group obtained by removing two hydroxyl groups from 1,4-cyclohexanedimethanol, T 1 and T 3 are hydrogen atoms, and T 2 is a methyl group. A compound wherein n is 2.2];
To a flask equipped with a stirrer, a thermometer and a condenser, 369 parts (2 mol parts) of 1-hydroxymethyl-4- (propenyloxymethyl) cyclohexane and 288 parts of 1,4-cyclohexanedimethanol [Tokyo Chemical Industry Co., Ltd. )] (2 mol parts), 118 parts (1.0 mol parts) of diethyl carbonate [manufactured by Tokyo Chemical Industry Co., Ltd.], 0.3 parts (13 mmol parts) of sodium, and uniformly dissolved while stirring. The mixture was heated to 100 ° C. and reacted for 5 hours while distilling off the ethanol produced. After removing residual ethanol under reduced pressure (2.5 kPa), the reaction product was purified by an alumina column [150 mesh, Blockman 1, standard grade, Sigma-Aldrich] using hexane as a solvent, and 144 parts of compound (A-2) (0.24 mol parts) was obtained (yield 24%, ether group concentration: 3.3 meq / g).
The value of n calculated by 1H-NMR measurement of the compound (A-2) was 2.2.
<製造例4>
 化合物(A-3)[一般式(2)でRが1,4-シクロヘキサンジメタノールから2個の水酸基を除いた基とエチレン基であり、T及びTが水素原子、Tがメチル基であり、nが2.4の化合物]の合成;
 撹拌機、温度計及び冷却管を取り付けたフラスコに、上記1-ヒドロキシメチル-4-(プロペニルオキシメチル)シクロヘキサン369部(2mol部)、エチレングリコール124部[東京化成工業(株)製](2mol部)、ジエチルカーボネート[東京化成工業(株)製]118部(1.0mol部)、ナトリウム0.3部(13mmol部)を仕込み、撹拌しながら均一に溶解させた後、100℃まで加熱し生成するエタノールを留去しながら5時間反応させた。残留したエタノールを減圧(2.5kPa)下に除去後、ヘキサンを溶剤としたアルミナカラム[150mesh、Brockman1,standard grade、シグマアルドリッチ社製]によって反応物を精製し、化合物(A-3)109部(0.21mol部)を得た(収率21%、エーテル基濃度:3.8ミリ当量/g)。
 化合物(A-3)の1H-NMR測定により算出されたnの値は2.4であった。
<Production Example 4>
Compound (A-3) [In the general formula (2), R 1 is a group obtained by removing two hydroxyl groups from 1,4-cyclohexanedimethanol and an ethylene group, T 1 and T 3 are hydrogen atoms, and T 2 is Synthesis of a compound having a methyl group and n of 2.4];
In a flask equipped with a stirrer, a thermometer and a condenser, 369 parts (2 mol parts) of 1-hydroxymethyl-4- (propenyloxymethyl) cyclohexane and 124 parts of ethylene glycol [manufactured by Tokyo Chemical Industry Co., Ltd.] (2 mol) Part), 118 parts (1.0 mol part) of diethyl carbonate [manufactured by Tokyo Chemical Industry Co., Ltd.], 0.3 part (13 mmol part) of sodium, dissolved uniformly with stirring, and then heated to 100 ° C. The reaction was carried out for 5 hours while distilling off the ethanol produced. After removing residual ethanol under reduced pressure (2.5 kPa), the reaction product was purified by an alumina column [150 mesh, Blockman 1, standard grade, manufactured by Sigma-Aldrich] using hexane as a solvent, and 109 parts of compound (A-3) was obtained. (0.21 mol part) was obtained (yield 21%, ether group concentration: 3.8 meq / g).
The value of n calculated by 1H-NMR measurement of the compound (A-3) was 2.4.
<製造例5>
 攪拌機、温度計及び冷却管を取り付けたフラスコに、2,2,3,3,4,4-ヘキサフルオロ-1,5-ペンタンジオール[東京化成工業(株)製]14.51部(68.4mmol)、塩化アリル[東京化成工業(株)製]11.51部(150.3mmol)、水酸化ナトリウム6.00部(150mmol)及びトルエン100部を仕込み、攪拌しながら均一に溶解させた後、室温で15分間撹拌後、テトラブチルアンモニウムブロマイド1.32部(4.1mmol)を加えた。2時間かけて65℃まで昇温し更に4時間攪拌して、エーテル化反応及び転位反応を行った。放冷後、水200部を加え水層を分離した。更に有機層を水200部で洗浄した。トルエンを減圧(2.5kPa)80℃によって除去後、ヘキサンを溶剤としたアルミナカラム[150mesh、Brockman1,standard grade、シグマアルドリッチ社製]によって反応物を精製し、2,2,3,3,4,4-ヘキサフルオロ-1,5-ペンタンジオールジ(1-プロペニル)エーテル(A-4)14.2部(48.6mmol)を得た(収率71%、エーテル基濃度:6.8ミリ当量/g)。
<Production Example 5>
To a flask equipped with a stirrer, a thermometer and a condenser tube, 14.51 parts (68. 2) of 2,2,3,3,4,4-hexafluoro-1,5-pentanediol [manufactured by Tokyo Chemical Industry Co., Ltd.] 4 mmol), allyl chloride [manufactured by Tokyo Chemical Industry Co., Ltd.] 11.51 parts (150.3 mmol), 6.00 parts (150 mmol) of sodium hydroxide and 100 parts of toluene, and uniformly dissolved with stirring After stirring at room temperature for 15 minutes, 1.32 parts (4.1 mmol) of tetrabutylammonium bromide was added. The temperature was raised to 65 ° C. over 2 hours and further stirred for 4 hours to carry out an etherification reaction and a rearrangement reaction. After allowing to cool, 200 parts of water was added and the aqueous layer was separated. Further, the organic layer was washed with 200 parts of water. After removing toluene at 80 ° C. under reduced pressure (2.5 kPa), the reaction product was purified by an alumina column [150 mesh, Blockman 1, standard grade, Sigma-Aldrich] using hexane as a solvent, and 2, 2, 3, 3, 4 , 4-hexafluoro-1,5-pentanediol di (1-propenyl) ether (A-4) (14.2 parts, 48.6 mmol) was obtained (yield 71%, ether group concentration: 6.8 mm). Equivalent / g).
<製造例6>
2,2,3,3,4,4-ヘキサフルオロ-1,5-ペンタンジオールの代わりに、1,2,2,3,3,4,5,5,6,6-デカフルオロ-1,4-シクロヘキサンジメタノール[シグマアルドリッチ社製]22.17部(68.4mmol)を使用したこと以外は、製造例1と同様にして1,2,2,3,3,4,5,5,6,6-デカフルオロ-1,4-ビス(1-プロペノキシメチル)シクロヘキサン(A-5)14.37部(35.6mmol)を得た(収率52%、エーテル基濃度:5.0ミリ当量/g)。
<Production Example 6>
Instead of 2,2,3,3,4,4-hexafluoro-1,5-pentanediol, 1,2,2,3,3,4,5,5,6,6-decafluoro-1, 1,2,2,3,3,4,5,5, 4-cyclohexanedimethanol [manufactured by Sigma-Aldrich], except that 22.17 parts (68.4 mmol) were used. 14.37 parts (35.6 mmol) of 6,6-decafluoro-1,4-bis (1-propenoxymethyl) cyclohexane (A-5) was obtained (yield 52%, ether group concentration: 5. 0 meq / g).
<製造例7>
2,2,3,3,4,4-ヘキサフルオロ-1,5-ペンタンジオールの代わりに、3,3,4,4-テトラフルオロ-1,6-ヘキサンジオール[東京化成(株)製]13.01部(68.4mmol)を使用したこと以外は、製造例1と同様にして3,3,4,4-テトラフルオロ-1,6-ヘキサンジオールジ(1-プロペニル)エーテル(A-6)12.74部(47.2mmol、エーテル基濃度:7.4ミリ当量/g)を得た(収率69%)。
<Production Example 7>
Instead of 2,2,3,3,4,4-hexafluoro-1,5-pentanediol, 3,3,4,4-tetrafluoro-1,6-hexanediol [manufactured by Tokyo Chemical Industry Co., Ltd.] 3,3,4,4-Tetrafluoro-1,6-hexanediol di (1-propenyl) ether (A--) in the same manner as in Production Example 1 except that 13.01 parts (68.4 mmol) were used. 6) 12.74 parts (47.2 mmol, ether group concentration: 7.4 meq / g) were obtained (yield 69%).
<製造例8>
2,2,3,3,4,4-ヘキサフルオロ-1,5-ペンタンジオールの代わりに、2,2,3,3,4,4,5,5,5-ノナフルオロペンタノール[東京化成(株)製]17.10部(68.4mmol)を使用したこと以外は、製造例1と同様にして2,2,3,3,4,4,5,5,5-ノナフルオロペンタノール(1-プロペニル)エーテル(A-7)16.34部(53.4mmol)を得た(収率78%、エーテル基濃度:6.5ミリ当量/g)。
<Production Example 8>
Instead of 2,2,3,3,4,4-hexafluoro-1,5-pentanediol, 2,2,3,3,4,4,5,5,5-nonafluoropentanol [Tokyo Chemical Industry 2,2,3,3,4,4,5,5,5-nonafluoropentanol in the same manner as in Production Example 1 except that 17.10 parts (68.4 mmol) were used. 16.34 parts (53.4 mmol) of (1-propenyl) ether (A-7) were obtained (yield 78%, ether group concentration: 6.5 meq / g).
<製造例9>
2,2,3,3,4,4-ヘキサフルオロ-1,5-ペンタンジオールの代わりに、1,2,2,3,4,4,5,6,6-ノナフルオロ-1,3,5-シクロヘキサントリメタノール[シグマアルドリッチ社製]22.99部(68.4mmol)を使用したこと以外は、製造例1と同様にして1,2,2,3,4,4,5,6,6-ノナフルオロ-1,3,5-トリス(1-プロペノキシメチル)シクロヘキサン(A-8)9.05部(19.84mmol)を得た(収率29%、エーテル基濃度:4.4ミリ当量/g)。
<Production Example 9>
1,2,2,3,4,4,5,6,6-nonafluoro-1,3,5 instead of 2,2,3,3,4,4-hexafluoro-1,5-pentanediol -1,2,2,3,4,4,5,6,6 in the same manner as in Production Example 1 except that 22.99 parts (68.4 mmol) of cyclohexanetrimethanol [Sigma Aldrich] was used. -9.05 parts (19.84 mmol) of nonafluoro-1,3,5-tris (1-propenoxymethyl) cyclohexane (A-8) was obtained (yield 29%, ether group concentration: 4.4 mm). Equivalent / g).
<製造例10>
 攪拌機、温度計及び冷却管を取り付けたフラスコに、塩化ホスホリル[東京化成工業(株)製]10.48部(68.4mmol)、1-ヒドロキシメチル-4-(プロペニルオキシメチル)シクロヘキサン38.0部(206.2mmol)、ピリジン21.6部(273mmol)及びテトラヒドロフラン300部を仕込み、攪拌しながら均一に溶解させた後、室温で1時間撹拌後、65℃に昇温し更に16時間攪拌した。放冷後、飽和食塩水200部を加え、水層を分離した。更に有機層を飽和食塩水200部で洗浄した。THFを減圧(2.5kPa)30℃によって除去後、ヘキサンを溶剤としたアルミナカラムによって反応物を精製し、トリス[{4-(プロペニルオキシメチル)シクロヘキシル}メチル]ホスフェート(A-9)25.3部(44.3mmol)を得た(収率65%、エーテル基濃度:5.2ミリ当量/g)。
<Production Example 10>
Into a flask equipped with a stirrer, a thermometer and a condenser, phosphoryl chloride [manufactured by Tokyo Chemical Industry Co., Ltd.] 10.48 parts (68.4 mmol), 1-hydroxymethyl-4- (propenyloxymethyl) cyclohexane 38.0 Parts (206.2 mmol), 21.6 parts (273 mmol) of pyridine, and 300 parts of tetrahydrofuran were uniformly dissolved with stirring, then stirred at room temperature for 1 hour, then heated to 65 ° C. and further stirred for 16 hours. . After allowing to cool, 200 parts of saturated brine was added, and the aqueous layer was separated. Further, the organic layer was washed with 200 parts of saturated brine. After removing THF by reduced pressure (2.5 kPa) at 30 ° C., the reaction product was purified by an alumina column using hexane as a solvent, and tris [{4- (propenyloxymethyl) cyclohexyl} methyl] phosphate (A-9) 25. 3 parts (44.3 mmol) were obtained (yield 65%, ether group concentration: 5.2 meq / g).
<比較製造例1> 
2,2,3,3,4,4-ヘキサフルオロ-1,5-ペンタンジオールの代わりに、4,4-ジフルオロ-1,7-ヘプタンジオール[シグマアルドリッチ社製]11.50部(68.4mmol)を使用したこと以外は、製造例1と同様にして4,4-ジフルオロ-1,7-ヘプタンジオールジ(1-プロペニル)エーテル(A’-1)11.67部(41.7mmol)を得た(収率61%、エーテル基濃度:7.1ミリ当量/g)。
<Comparative Production Example 1>
Instead of 2,2,3,3,4,4-hexafluoro-1,5-pentanediol, 4,4-difluoro-1,7-heptanediol [manufactured by Sigma-Aldrich] 11.50 parts (68. 4,4-difluoro-1,7-heptanediol di (1-propenyl) ether (A′-1) 11.67 parts (41.7 mmol) except that 4 mmol) was used. (Yield 61%, ether group concentration: 7.1 meq / g).
<比較製造例2>
塩化アリルの代わりに、1-ブロモプロパン[東京化成工業(株)製]18.49部(150.3mmol)を使用したこと以外は、製造例1と同様にして2,2,3,3,4,4-ヘキサフルオロ-1,5-ペンタンジオールジプロピルエーテル(A’-2)14.59部(49.25mmol)を得た(収率72%、エーテル基濃度:6.7ミリ当量/g)。
<Comparative Production Example 2>
2,2,3,3 in the same manner as in Production Example 1 except that 18.49 parts (150.3 mmol) of 1-bromopropane [manufactured by Tokyo Chemical Industry Co., Ltd.] was used instead of allyl chloride. 14.59 parts (49.25 mmol) of 4,4-hexafluoro-1,5-pentanediol dipropyl ether (A′-2) was obtained (yield 72%, ether group concentration: 6.7 milliequivalent / g).
<比較製造例3>
2,2,3,3,4,4-ヘキサフルオロ-1,5-ペンタンジオールの代わりに、ジエチレングリコール[シグマアルドリッチ社製]7.93部(68.4mmol)を使用したこと以外は、製造例1と同様にしてジエチレングリコールジ(1-プロペニル)エーテル(A’-3)11.27部(51.7mmol)を得た(収率75%、エーテル基濃度:13.8ミリ当量/g)。
<Comparative Production Example 3>
Production Example, except that instead of 2,2,3,3,4,4-hexafluoro-1,5-pentanediol, 7.93 parts (68.4 mmol) of diethylene glycol [manufactured by Sigma-Aldrich] was used. In the same manner as in Example 1, 11.27 parts (51.7 mmol) of diethylene glycol di (1-propenyl) ether (A′-3) was obtained (yield 75%, ether group concentration: 13.8 meq / g).
<比較製造例4>
2,2,3,3,4,4-ヘキサフルオロ-1,5-ペンタンジオールの代わりに、トリエチレングリコール[シグマアルドリッチ社製]10.27部(68.4mmol)を使用したこと以外は、製造例1と同様にしてトリエチレングリコールジ(1-プロペニル)エーテル(A’-4)11.79部(45.0mmol)を得た(収率66%、エーテル基濃度:15.3ミリ当量/g)。
<Comparative Production Example 4>
Except for using 10.27 parts (68.4 mmol) of triethylene glycol (manufactured by Sigma-Aldrich) instead of 2,2,3,3,4,4-hexafluoro-1,5-pentanediol, 11.79 parts (45.0 mmol) of triethylene glycol di (1-propenyl) ether (A′-4) was obtained in the same manner as in Production Example 1 (yield 66%, ether group concentration: 15.3 meq) / G).
<比較製造例5>
2,2,3,3,4,4-ヘキサフルオロ-1,5-ペンタンジオールの代わりに、1,4-シクロヘキサンジメタノール[東京化成工業(株)製]9.86部(68.4mmol部)を使用したこと以外は、製造例1と同様にして1,4-ビス(1-プロペノキシメチル)シクロヘキサン(A’-5)10.9部(48.6mmol部)を得た(収率71%、エーテル基濃度:9.2ミリ当量/g)。
<Comparative Production Example 5>
Instead of 2,2,3,3,4,4-hexafluoro-1,5-pentanediol, 1,4-cyclohexanedimethanol [manufactured by Tokyo Chemical Industry Co., Ltd.] 9.86 parts (68.4 mmol parts) 10.9 parts (48.6 mmol parts) of 1,4-bis (1-propenoxymethyl) cyclohexane (A′-5) was obtained in the same manner as in Production Example 1 except that 71%, ether group concentration: 9.2 meq / g).
<実施例1~36、比較例1~10>
[リチウムイオン電池用正極の作製]
 表1及び2に示した処方に基づいて電極保護膜形成剤(B)及びルイス塩基(F)を添加した正極を以下の方法で作製した。
 LiCoO2粉末90.0部、ケチェンブラック[シグマアルドリッチ社製]5部、ポリフッ化ビニリデン[シグマアルドリッチ社製]5部及び表1に示した部数の(B)及び(F)を乳鉢で十分に混合した後、1-メチル-2-ピロリドン[東京化成工業(株)製]70.0部を添加し、更に乳鉢で十分に混合してスラリーを得た。得られたスラリーを、大気中でワイヤーバーを用いて厚さ20μmのアルミニウム電解箔上の片面に塗布し、100℃で15分間乾燥させた後、更に減圧下(10mmHg)、80℃で5分間乾燥して、15.95mmφに打ち抜き、実施例1~18及び比較例1~5のリチウムイオン電池用正極を作製した。
<Examples 1 to 36, Comparative Examples 1 to 10>
[Production of positive electrode for lithium ion battery]
A positive electrode to which an electrode protective film forming agent (B) and a Lewis base (F) were added based on the formulations shown in Tables 1 and 2 was produced by the following method.
90.0 parts of LiCoO2 powder, 5 parts of Ketjen black [manufactured by Sigma-Aldrich], 5 parts of polyvinylidene fluoride [manufactured by Sigma-Aldrich] and the parts (B) and (F) shown in Table 1 in a mortar After mixing, 70.0 parts of 1-methyl-2-pyrrolidone [manufactured by Tokyo Chemical Industry Co., Ltd.] was added, and further mixed well in a mortar to obtain a slurry. The obtained slurry was applied to one side of an aluminum electrolytic foil having a thickness of 20 μm using a wire bar in the atmosphere, dried at 100 ° C. for 15 minutes, and further under reduced pressure (10 mmHg) at 80 ° C. for 5 minutes. It was dried and punched out to 15.95 mmφ to produce positive electrodes for lithium ion batteries of Examples 1 to 18 and Comparative Examples 1 to 5.
[リチウムイオン電池用負極の作製]
 表1及び2に示した処方に基づいて電極保護膜形成剤(B)及びルイス塩基(F)を添加した負極を以下の方法で作製した。
 平均粒子径約8~12μmの黒鉛粉末92.5部、ポリフッ化ビニリデン7.5部、1-メチル-2-ピロリドン[東京化成工業(株)製]200部及び表1、2に示した部数の(B)及び(F)を乳鉢で十分に混合しスラリーを得た。得られたスラリーを、厚さ20μmの銅箔の片面に塗布し、100℃で15分間乾燥して溶媒を蒸発させた後、16.15mmφに打ち抜き、プレス機で厚さ30μmにして実施例1~18及び比較例1~5のリチウムイオン電池用負極を作製した。
[Production of negative electrode for lithium ion battery]
A negative electrode to which an electrode protective film forming agent (B) and a Lewis base (F) were added based on the formulations shown in Tables 1 and 2 was produced by the following method.
92.5 parts of graphite powder having an average particle size of about 8 to 12 μm, 7.5 parts of polyvinylidene fluoride, 200 parts of 1-methyl-2-pyrrolidone [manufactured by Tokyo Chemical Industry Co., Ltd.] and the parts shown in Tables 1 and 2 (B) and (F) were sufficiently mixed in a mortar to obtain a slurry. The obtained slurry was applied to one side of a copper foil having a thickness of 20 μm, dried at 100 ° C. for 15 minutes to evaporate the solvent, punched to 16.15 mmφ, and made 30 μm in thickness with a press machine. To 18 and Comparative Examples 1 to 5 were prepared.
[リチウムイオンキャパシタ用正極の作製]
 表3及び4に示した処方に基づいて電極保護膜形成剤(B)及びルイス塩基(F)を添加した正極を以下の方法で作製した。
 活性炭粉末90.0部、ケチェンブラック[シグマアルドリッチ社製]5.0部、ポリフッ化ビニリデン[シグマアルドリッチ社製]5.0部、及び表3,4に示した部数の(B)及び(F)を乳鉢で十分に混合した後、1-メチル-2-ピロリドン[東京化成工業(株)製]70.0部、を添加し、更に乳鉢で十分に混合してスラリーを得た。得られたスラリーを、大気中でワイヤーバーを用いて厚さ20μmのアルミニウム電解箔上の片面に塗布し、100℃で15分間乾燥させた後、更に減圧下(10mmHg)、80℃で5分間乾燥して、15.95mmφに打ち抜き、実施例19~36及び比較例6~10のリチウムイオンキャパシタ用正極を作製した。
[Production of positive electrode for lithium ion capacitor]
Based on the formulations shown in Tables 3 and 4, a positive electrode to which an electrode protective film forming agent (B) and a Lewis base (F) were added was produced by the following method.
Activated carbon powder 90.0 parts, Kechen Black [Sigma-Aldrich Co.] 5.0 parts, Polyvinylidene fluoride [Sigma-Aldrich Co.] 5.0 parts, and (B) and ( F) was thoroughly mixed in a mortar, 70.0 parts of 1-methyl-2-pyrrolidone [manufactured by Tokyo Chemical Industry Co., Ltd.] was added, and further mixed well in a mortar to obtain a slurry. The obtained slurry was applied to one side of an aluminum electrolytic foil having a thickness of 20 μm using a wire bar in the atmosphere, dried at 100 ° C. for 15 minutes, and further under reduced pressure (10 mmHg) at 80 ° C. for 5 minutes. It was dried and punched out to 15.95 mmφ to produce positive electrodes for lithium ion capacitors of Examples 19 to 36 and Comparative Examples 6 to 10.
[リチウムイオンキャパシタ用負極の作製]
 表3及び4に示した処方に基づいて電極保護膜形成剤(B)及び(F)を添加した負極を以下の方法で作製した。
 平均粒子径約8~12μmの黒鉛粉末92.5部、ポリフッ化ビニリデン7.5部、1-メチル-2-ピロリドン[東京化成工業(株)製]200部及び表3,4に示した部数の(B)及び(F)を乳鉢で十分に混合しスラリーを得た。得られたスラリーを、厚さ20μmの銅箔の片面に塗布し、100℃で15分間乾燥して溶媒を蒸発させた後、16.15mmφに打ち抜き、プレス機で厚さ30μmにした。得られた電極と、リチウム金属箔を、セパレータ(ポリプロピレン製不織布)で挟んでビーカーセルにセットし、負極理論容量の約75%のリチウムイオンを約10時間かけて負極に吸蔵させ、実施例19~36及び比較例6~10のリチウムイオンキャパシタ用負極を作製した。
[Production of negative electrode for lithium ion capacitor]
A negative electrode to which the electrode protective film forming agents (B) and (F) were added based on the formulations shown in Tables 3 and 4 was produced by the following method.
92.5 parts of graphite powder having an average particle size of about 8 to 12 μm, 7.5 parts of polyvinylidene fluoride, 200 parts of 1-methyl-2-pyrrolidone [manufactured by Tokyo Chemical Industry Co., Ltd.] and the number of parts shown in Tables 3 and 4 (B) and (F) were sufficiently mixed in a mortar to obtain a slurry. The obtained slurry was applied to one side of a 20 μm thick copper foil, dried at 100 ° C. for 15 minutes to evaporate the solvent, punched to 16.15 mmφ, and made 30 μm thick with a press. The obtained electrode and lithium metal foil were sandwiched between separators (polypropylene nonwoven fabric) and set in a beaker cell, and about 75% of the negative electrode theoretical capacity of lithium ions was occluded in the negative electrode over about 10 hours. Example 19 To 36 and Comparative Examples 6 to 10 were prepared.
<比較例11>
 電極保護膜形成剤(B)及びルイス塩基(F)の代わりにメチルスルホン1.5部を添加すること以外は実施例1と同様の方法で比較例11のリチウムイオン電池用正極を作製した。
 電極保護膜形成剤(B)及びルイス塩基(F)を添加しないこと以外は実施例1と同様の方法で比較例11のリチウムイオン電池用負極を作製した。
<Comparative Example 11>
A positive electrode for a lithium ion battery of Comparative Example 11 was produced in the same manner as in Example 1 except that 1.5 parts of methylsulfone was added instead of the electrode protective film forming agent (B) and the Lewis base (F).
A negative electrode for a lithium ion battery of Comparative Example 11 was produced in the same manner as in Example 1 except that the electrode protective film forming agent (B) and the Lewis base (F) were not added.
<比較例12>
電極保護膜形成剤(B)及びルイス塩基(F)の代わりに1,3-プロパンスルトン1.5部を添加すること以外は実施例1と同様の方法で比較例12のリチウムイオン電池用正極を作製した。電極保護膜形成剤(B)及びルイス塩基(F)を添加しないこと以外は実施例1と同様の方法で比較例12のリチウムイオン電池用負極を作製した。
<Comparative Example 12>
A positive electrode for a lithium ion battery of Comparative Example 12 in the same manner as in Example 1 except that 1.5 parts of 1,3-propane sultone was added instead of the electrode protective film forming agent (B) and Lewis base (F). Was made. A negative electrode for a lithium ion battery of Comparative Example 12 was produced in the same manner as in Example 1 except that the electrode protective film forming agent (B) and the Lewis base (F) were not added.
<比較例13>
電極保護膜形成剤(B)及びルイス塩基(F)の代わりにジメチルスルホン1.5部を添加すること以外は実施例18と同様の方法で比較例13のリチウムイオンキャパシタ用正極を作製した。電極保護膜形成剤(B)及びルイス塩基(F)を添加しないこと以外は実施例13と同様の方法で比較例13のリチウムイオンキャパシタ用負極を作製した。
<Comparative Example 13>
A positive electrode for a lithium ion capacitor of Comparative Example 13 was produced in the same manner as in Example 18, except that 1.5 parts of dimethyl sulfone was added instead of the electrode protective film forming agent (B) and the Lewis base (F). A negative electrode for a lithium ion capacitor of Comparative Example 13 was produced in the same manner as in Example 13, except that the electrode protective film forming agent (B) and the Lewis base (F) were not added.
<比較例14>
電極保護膜形成剤(B)及びルイス塩基(F)の代わりに1,3-プロパンスルトン1.5部を添加すること以外は実施例18と同様の方法で比較例14のリチウムイオンキャパシタ用正極を作製した。電極保護膜形成剤(E)及びルイス塩基(F)を添加しないこと以外は実施例18と同様の方法で比較例14のリチウムイオンキャパシタ用負極を作製した。
<Comparative example 14>
A positive electrode for a lithium ion capacitor of Comparative Example 14 in the same manner as in Example 18 except that 1.5 parts of 1,3-propane sultone was added instead of the electrode protective film forming agent (B) and Lewis base (F). Was made. A negative electrode for a lithium ion capacitor of Comparative Example 14 was produced in the same manner as in Example 18 except that the electrode protective film forming agent (E) and the Lewis base (F) were not added.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
[評価]
電極の評価
(1)リチウム二次電池の作製
 2032型コインセル内の両端に、実施例1~18、比較例1~5、11及び12の正極及び負極をそれぞれの塗布面が向き合うように配置して、電極間にセパレータ(ポリプロピレン製不織布)を挿入し、二次電池用セルを作製した。エチレンカーボネートとジメチルカーボネートの混合溶媒(体積比率1:1)に、LiPFを1mol/Lの割合で溶解させた電解液を作製したセルに注液密封し、以下の方法で高電圧充放電サイクル特性及び高温保存特性を評価した結果を表5及び6に示す。
[Evaluation]
Electrode Evaluation (1) Production of Lithium Secondary Battery The positive and negative electrodes of Examples 1 to 18 and Comparative Examples 1 to 5, 11 and 12 are arranged on both ends of a 2032 type coin cell so that the coated surfaces face each other. Then, a separator (polypropylene nonwoven fabric) was inserted between the electrodes to produce a secondary battery cell. The mixture was sealed in a cell in which an electrolytic solution in which LiPF 6 was dissolved in a mixed solvent of ethylene carbonate and dimethyl carbonate (volume ratio 1: 1) at a rate of 1 mol / L was prepared, and a high voltage charge / discharge cycle was performed by the following method. Tables 5 and 6 show the results of evaluation of characteristics and high-temperature storage characteristics.
(2)リチウムイオンキャパシタの作製
 ポリプロピレンのアルミラミネートフィルムからなる収納ケースに、実施例19~36、比較例6~10、13及び14の正極及び負極を、それぞれの塗布面が向き合うように配置して、電極間にセパレータ(ポリプロピレン製不織布)を挿入し、キャパシタ用セルを作製した。エチレンカーボネートとジメチルカーボネートの混合溶媒(体積比率1:1)に、LiPFを1mol/Lの割合で溶解させた電解液を作製したセルに注液密封し、以下の方法で高電圧充放電サイクル特性及び高温保存特性を評価した結果を表5及び6に示す。
(2) Production of Lithium Ion Capacitor The positive and negative electrodes of Examples 19 to 36 and Comparative Examples 6 to 10, 13 and 14 are placed in a storage case made of polypropylene aluminum laminate film so that the coated surfaces face each other. Then, a separator (polypropylene nonwoven fabric) was inserted between the electrodes to produce a capacitor cell. The mixture was sealed in a cell in which an electrolytic solution in which LiPF 6 was dissolved in a mixed solvent of ethylene carbonate and dimethyl carbonate (volume ratio 1: 1) at a rate of 1 mol / L was prepared, and a high voltage charge / discharge cycle was performed by the following method. Tables 5 and 6 show the results of evaluation of characteristics and high-temperature storage characteristics.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
<実施例37~50、比較例15~22>
[電解液の作成]
 表7及び8に示した重量割合で化合物(A)、(F)、(C)及び非水溶媒(I)を配合し、そこに1mol/Lの濃度になるように電解質としてのLiPFを溶解させ実施例37~50及び比較例15~19の電解液を調整した。
<Examples 37 to 50 and Comparative Examples 15 to 22>
[Creation of electrolyte]
Compound (A), (F), (C) and non-aqueous solvent (I) are blended in the weight ratios shown in Tables 7 and 8, and LiPF 6 as an electrolyte is added thereto so as to have a concentration of 1 mol / L. The electrolytes of Examples 37 to 50 and Comparative Examples 15 to 19 were prepared by dissolution.
<比較例20>
 エチレンカーボネートとジエチルカーボネートの混合溶媒(体積比率3:7)に、LiPFを1mol/Lの割合で溶解させた後、ビニレンカーボネートを1重量%の割合で混合して比較例20の電解液を調整した。
<Comparative Example 20>
LiPF 6 was dissolved at a rate of 1 mol / L in a mixed solvent of ethylene carbonate and diethyl carbonate (volume ratio 3: 7), and then vinylene carbonate was mixed at a rate of 1% by weight to prepare the electrolytic solution of Comparative Example 20. It was adjusted.
<比較例21>
 エチレンカーボネートとジメチルカーボネートの混合溶媒(体積比率1:2)に、LiPFを1mol/Lの割合で溶解させた後、ジメチルスルホンを0.1mol/Lとなるように混合し、比較例21の電解液を調整した。
<Comparative Example 21>
In a mixed solvent of ethylene carbonate and dimethyl carbonate (volume ratio 1: 2), LiPF 6 was dissolved at a rate of 1 mol / L, and then dimethyl sulfone was mixed to a concentration of 0.1 mol / L. The electrolyte was adjusted.
<比較例22>
 エチレンカーボネートとジメチルカーボネートの混合溶媒(体積比率1:1)に、LiPFを1mol/Lの割合で溶解させた後、1,3-プロパンスルトンを5重量%の割合で混合し、比較例22の電解液を調整した。
<Comparative Example 22>
In a mixed solvent of ethylene carbonate and dimethyl carbonate (volume ratio 1: 1), LiPF 6 was dissolved at a rate of 1 mol / L, and then 1,3-propane sultone was mixed at a rate of 5% by weight. The electrolyte solution was adjusted.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
[リチウムイオン電池、リチウムイオンキャパシタの作製]
(1)リチウムイオン電池の作製
 (1-1)正極の作製
 LiCoO粉末9.0部、ケチェンブラック[シグマアルドリッチ社製]0.5部及びポリフッ化ビニリデン[シグマアルドリッチ社製]0.5部を乳鉢で十分に混合した後、1-メチル-2-ピロリドン[東京化成工業(株)製]7.0部を添加し、更に乳鉢で十分に混合してスラリーを得た。得られたスラリーを、大気中でワイヤーバーを用いて厚さ20μmのアルミニウム電解箔上の片面に塗布し、100℃で15分間乾燥させた後、更に減圧下(10mmHg)、80℃で5分間乾燥して、15.95mmφに打ち抜き、膜厚30μmのリチウムイオン電池用の正極を作製した。
[Production of lithium ion batteries and lithium ion capacitors]
(1) Production of Lithium Ion Battery (1-1) Production of Positive Electrode 9.0 parts of LiCoO 2 powder, 0.5 part of Ketjen Black [manufactured by Sigma Aldrich] and polyvinylidene fluoride [manufactured by Sigma Aldrich] 0.5 After thoroughly mixing the parts with a mortar, 7.0 parts of 1-methyl-2-pyrrolidone [manufactured by Tokyo Chemical Industry Co., Ltd.] was added and further mixed well with a mortar to obtain a slurry. The obtained slurry was applied to one side of an aluminum electrolytic foil having a thickness of 20 μm using a wire bar in the atmosphere, dried at 100 ° C. for 15 minutes, and further under reduced pressure (10 mmHg) at 80 ° C. for 5 minutes. It dried and punched out to 15.95 mm diameter and produced the positive electrode for lithium ion batteries with a film thickness of 30 micrometers.
(1-2)負極の作製
 平均粒子径約8~12μmの黒鉛粉末92.5部、ポリフッ化ビニリデン7.5部及び1-メチル-2-ピロリドン[東京化成工業(株)製]200部を乳鉢で十分に混合しスラリーを得た。得られたスラリーを、厚さ20μmの銅箔の片面に塗布し、100℃で15分間乾燥して溶媒を蒸発させた後、16.15mmφに打ち抜き、プレス機で厚さ30μmにしてリチウムイオン電池用の負極を作製した。
(1-2) Production of negative electrode 92.5 parts of graphite powder having an average particle size of about 8 to 12 μm, 7.5 parts of polyvinylidene fluoride and 200 parts of 1-methyl-2-pyrrolidone [manufactured by Tokyo Chemical Industry Co., Ltd.] The slurry was sufficiently mixed with a mortar. The obtained slurry was applied to one side of a copper foil having a thickness of 20 μm, dried at 100 ° C. for 15 minutes to evaporate the solvent, punched to 16.15 mmφ, and made 30 μm in thickness with a press machine. A negative electrode was prepared.
 (1-3)二次電池用セルの作製
 2032型コインセル内の両端に、上記正極及び負極を、それぞれの塗布面が向き合うように配置して、電極間にセパレータ(ポリプロピレン製不織布)を挿入し、二次電池用セルを作製した。
(1-3) Manufacture of secondary battery cell The positive electrode and the negative electrode are arranged at both ends of a 2032 type coin cell so that the coated surfaces face each other, and a separator (polypropylene nonwoven fabric) is inserted between the electrodes. A secondary battery cell was produced.
(2)リチウムイオンキャパシタの作製
(2-1)正極の作製
 正極活物質として、アルカリ賦活法によって得られた比表面積が約2200m/gである活性炭を用いた。活性炭粉末、アセチレンブラック及びポリフッ化ビニリデンを、それぞれ重量比80:10:10の割合となるように混合し、この混合物を、溶媒であるN-メチルピロリドン中に添加し、撹拌混合してスラリーを得た。このスラリーを、厚さ30μmのアルミニウム箔の上にドクターブレード法で塗布し、仮乾燥した後、電極サイズが20mm×30mmとなるように切り取った。電極の厚みは約50μmであった。セルの組み立て前には、真空中で120℃、10時間乾燥しリチウムイオンキャパシタ用の正極を作製した。
(2) Production of Lithium Ion Capacitor (2-1) Production of Positive Electrode As a positive electrode active material, activated carbon having a specific surface area obtained by an alkali activation method of about 2200 m 2 / g was used. Activated carbon powder, acetylene black, and polyvinylidene fluoride are mixed in a weight ratio of 80:10:10, and this mixture is added to N-methylpyrrolidone as a solvent, followed by stirring and mixing to prepare a slurry. Obtained. This slurry was applied onto an aluminum foil having a thickness of 30 μm by a doctor blade method, temporarily dried, and then cut so that the electrode size was 20 mm × 30 mm. The electrode thickness was about 50 μm. Before assembling the cell, it was dried in a vacuum at 120 ° C. for 10 hours to produce a positive electrode for a lithium ion capacitor.
 (2-2)負極の作製
 平均粒子径約8~12μmの黒鉛粉末80部、アセチレンブラック10部、及びポリフッ化ビニリデン10部を混合し、この混合物を溶媒であるN-メチルピロリドンに添加して撹拌混合し、スラリーを得た。このスラリーを、厚さ18μmの銅箔の上にドクターブレード法で塗布し、仮乾燥した後、電極サイズが20mm×30mmとなるように切り取った。電極の厚みは、約50μmであった。セルの組み立て前に、真空中で120℃、5時間乾燥しリチウムイオンキャパシタ用の負極を作製した。
(2-2) Preparation of negative electrode 80 parts of graphite powder having an average particle size of about 8 to 12 μm, 10 parts of acetylene black, and 10 parts of polyvinylidene fluoride were mixed, and this mixture was added to N-methylpyrrolidone as a solvent. The mixture was stirred to obtain a slurry. This slurry was applied onto a copper foil having a thickness of 18 μm by a doctor blade method and temporarily dried, and then cut so that the electrode size was 20 mm × 30 mm. The electrode thickness was about 50 μm. Before assembling the cell, it was dried in vacuum at 120 ° C. for 5 hours to produce a negative electrode for a lithium ion capacitor.
 (2-3)負極へのリチウムのドーピング
 上記のようにして得られた負極に、以下のようにしてリチウムをドーピングさせた。負極と、リチウム金属箔を、セパレータ(ポリプロピレン製不織布)で挟んでビーカーセルにセットし、所定量のリチウムイオンを約10時間かけて負極に吸蔵させた。リチウムのドープ量は、負極理論容量の約75%とした。
(2-3) Doping of lithium into the negative electrode The negative electrode obtained as described above was doped with lithium as follows. The negative electrode and lithium metal foil were sandwiched between separators (polypropylene nonwoven fabric) and set in a beaker cell, and a predetermined amount of lithium ions was occluded in the negative electrode over about 10 hours. The doping amount of lithium was about 75% of the negative electrode theoretical capacity.
 (2-4)キャパシタセルの組み立て
 上記のようにして得られた正極と負極の間に、セパレータ(ポリプロピレン製不織布)を挿入し、これに電解液を含浸させ、ポリプロピレンのアルミラミネートフィルムからなる収納ケースに入れて密封しリチウムイオンキャパシタを作製した。
(2-4) Capacitor cell assembly A separator (polypropylene non-woven fabric) is inserted between the positive electrode and the negative electrode obtained as described above, and impregnated with an electrolytic solution. A lithium ion capacitor was produced by sealing in a case.
[電解液の評価]
 実施例37~50及び比較例15~22で調整した電解液を、それぞれ上記二次電池用セルに注液後密封し、以下の方法で高電圧充放電サイクル特性及び高温保存特性を評価した結果と、キャパシタセルに注液後密封し、以下の方法で高電圧充放電サイクル特性及び高温保存特性を評価した結果を表9に示す。
[Evaluation of electrolyte]
Results obtained by injecting the electrolyte solutions prepared in Examples 37 to 50 and Comparative Examples 15 to 22 into the secondary battery cells and sealing them, and evaluating the high voltage charge / discharge cycle characteristics and the high temperature storage characteristics by the following methods. Table 9 shows the results of sealing after filling the capacitor cell and evaluating the high voltage charge / discharge cycle characteristics and the high temperature storage characteristics by the following method.
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
<高電圧充放電サイクル特性の評価>
 充放電測定装置「バッテリーアナライザー1470型」[東陽テクニカ(株)製]を用いて、0.1Cの電流で電圧4.5Vまで充電し、10分間の休止後、0.1Cの電流量で電池電圧を3.5Vまで放電し、この充放電を繰り返した。この時の初回充電時の電池容量と50サイクル目充電時の電池容量を測定し、下記式から充放電サイクル特性を算出した。数値が大きい程、充放電サイクル特性が良好であることを示す。
高電圧充放電サイクル特性(%)=(50サイクル目充電時の電池容量/初回充電時の電池容量)×100
<Evaluation of high voltage charge / discharge cycle characteristics>
Using a charge / discharge measuring device “Battery Analyzer 1470 type” [manufactured by Toyo Technica Co., Ltd.], the battery is charged with a current of 0.1 C to a voltage of 4.5 V, and after a pause of 10 minutes, a battery with a current amount of 0.1 C The voltage was discharged to 3.5 V, and this charge / discharge was repeated. At this time, the battery capacity at the first charge and the battery capacity at the 50th cycle charge were measured, and the charge / discharge cycle characteristics were calculated from the following formula. It shows that charging / discharging cycling characteristics are so favorable that a numerical value is large.
High voltage charge / discharge cycle characteristics (%) = (battery capacity at the 50th cycle charge / battery capacity at the first charge) × 100
<高温保存特性の評価>
 充放電測定装置「バッテリーアナライザー1470型」[東陽テクニカ(株)製]を用いて、0.1Cの電流で電圧4.5Vまで充電し、10分間の休止後、0.1Cの電流量で電圧3.5Vまで放電し容量を測定した(初回電池容量)。更に0.1Cの電流で電圧4.5Vまで充電し、85℃で7日間保存後、0.1Cの電流量で3.5Vまで放電を行い、電池容量を測定した(高温保存後電池容量)。下記式から高温保存特性を算出する。数値が大きいほど、高温保存特性が良好であることを示す。
高温保存特性(%)=(高温保存後電池容量/初回電池容量)×100
<Evaluation of high-temperature storage characteristics>
Using a charge / discharge measuring device “Battery Analyzer 1470 type” [manufactured by Toyo Technica Co., Ltd.], the battery is charged to a voltage of 4.5 V with a current of 0.1 C, and after a pause of 10 minutes, the voltage is charged with a current amount of 0.1 C. The battery was discharged to 3.5 V and the capacity was measured (initial battery capacity). Further, the battery was charged to a voltage of 4.5 V with a current of 0.1 C, stored at 85 ° C. for 7 days, discharged to 3.5 V with a current amount of 0.1 C, and the battery capacity was measured (battery capacity after high temperature storage) . The high temperature storage characteristics are calculated from the following formula. It shows that high temperature storage characteristics are so favorable that a numerical value is large.
High temperature storage characteristics (%) = (battery capacity after high temperature storage / initial battery capacity) × 100
 本発明の電極保護膜形成剤(B)を使用した電極及び電解液は高電圧下でのサイクル特性及び高温貯蔵安定性が優れているため、特にリチウム二次電池用又はリチウムイオンキャパシタ用の電極及び電解液として有用であり、電気自動車用として好適である。
 
Since the electrode and electrolyte using the electrode protective film forming agent (B) of the present invention are excellent in cycle characteristics under high voltage and high-temperature storage stability, the electrode for lithium secondary batteries or lithium ion capacitors is particularly used. In addition, it is useful as an electrolyte solution and suitable for an electric vehicle.

Claims (16)

  1. 一般式(1)で表されるアルケニルエーテル基(X)及び酸素、フッ素、ケイ素、リン及び硫黄から選ばれる少なくとも1種の原子を有する基(L)を有し、エーテル基濃度が0.1~9.0ミリ当量/gである化合物(A)を含有する電極保護膜形成剤(B)。
    Figure JPOXMLDOC01-appb-C000003
    [式(1)中、T~Tはそれぞれ独立して水素原子、又は炭素数1~3のアルキル基である。]
    It has an alkenyl ether group (X) represented by the general formula (1) and a group (L) having at least one atom selected from oxygen, fluorine, silicon, phosphorus and sulfur, and an ether group concentration of 0.1 An electrode protective film-forming agent (B) containing the compound (A) in an amount of ˜9.0 meq / g.
    Figure JPOXMLDOC01-appb-C000003
    [In Formula (1), T 1 to T 3 are each independently a hydrogen atom or an alkyl group having 1 to 3 carbon atoms. ]
  2. 基(L)が、下記(a)~(g)で表される基からなる群から選ばれる少なくとも1種の基及び炭素数1~20の炭化水素基を有する基である請求項1に記載の電極保護膜形成剤(B)。
    (a):カーボネート基
    (b):炭素数1~20のフッ素化炭化水素基 
    (c):スルフィノ基
    (d):スルホ基 
    (e):リン酸エステル基
    (f):シロキサン基
    (g):シリレン基  
    The group (L) is a group having at least one group selected from the group consisting of groups represented by the following (a) to (g) and a hydrocarbon group having 1 to 20 carbon atoms. Electrode protective film forming agent (B).
    (A): carbonate group (b): fluorinated hydrocarbon group having 1 to 20 carbon atoms
    (C): Sulfino group (d): Sulfo group
    (E): Phosphate ester group (f): Siloxane group (g): Silylene group
  3. 化合物(A)が分子内にアルケニルエーテル基(X)を2~4個有し、アルケニルエーテル基(X)がビニルオキシ基又は1-プロペニルオキシ基である請求項1又は2に記載の電極保護膜形成剤(B)。 3. The electrode protective film according to claim 1, wherein the compound (A) has 2 to 4 alkenyl ether groups (X) in the molecule, and the alkenyl ether group (X) is a vinyloxy group or a 1-propenyloxy group. Forming agent (B).
  4. 化合物(A)が、一般式(2)で表される化合物(A1)又は一般式(3)で表される化合物(A2)である請求項1~3のいずれか1項に記載の電極保護膜形成剤(B)。
    Figure JPOXMLDOC01-appb-C000004
    [式(2)中、Rは直鎖若しくは分岐の炭素数1~6の脂肪族炭化水素基又は炭素数5~12の環状構造を有する脂肪族炭化水素基であり、複数個あるRはそれぞれ同一でも異なっていてもよく、T、T及びTはそれぞれ独立に水素原子又は炭素数1~3のアルキル基であり、nは1~10の整数である。]
     
    Y(-K-X)n    (3)
     [式(3)中、Xは一般式(1)で表されるアルケニルエーテル基;Yは炭素数1~20の1~4価フッ素化炭化水素基;Kは、XとYの間に最短で介在する共有結合の数が2~5である、炭素数1~10の2価の直鎖又は分岐アルキレン基を表す;nは1~4の整数を表す。]
    The electrode protection according to any one of claims 1 to 3, wherein the compound (A) is the compound (A1) represented by the general formula (2) or the compound (A2) represented by the general formula (3). Film forming agent (B).
    Figure JPOXMLDOC01-appb-C000004
    [In formula (2), R 1 is an aliphatic hydrocarbon group having a linear or aliphatic hydrocarbon group or a cyclic structure having from 5 to 12 carbon atoms having 1 to 6 carbon atoms branched, plurality is R 1 May be the same or different, and T 1 , T 2 and T 3 are each independently a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, and n is an integer of 1 to 10. ]

    Y (-KX) n (3)
    [In the formula (3), X is an alkenyl ether group represented by the general formula (1); Y is a 1 to tetravalent fluorinated hydrocarbon group having 1 to 20 carbon atoms; K is the shortest between X and Y Represents a divalent linear or branched alkylene group having 1 to 10 carbon atoms and having 2 to 5 covalent bonds interposed therein; n represents an integer of 1 to 4. ]
  5.  請求項1~4のいずれか1項に記載の電極保護膜形成剤(B)を含有する電極。 An electrode containing the electrode protective film forming agent (B) according to any one of claims 1 to 4.
  6. 電極保護膜形成剤(B)により形成される保護膜を有する請求項5に記載の電極。 The electrode according to claim 5, further comprising a protective film formed by the electrode protective film forming agent (B).
  7.  更に、ルイス塩基(F)を含有する請求項5又は6に記載の電極。 The electrode according to claim 5 or 6, further comprising a Lewis base (F).
  8.  ルイス塩基(F)が、トリアゾール誘導体である請求項7に記載の電極。 The electrode according to claim 7, wherein the Lewis base (F) is a triazole derivative.
  9.  リチウム二次電池用又はリチウムイオンキャパシタ用である請求項5~8のいずれか1項に記載の電極。 The electrode according to any one of claims 5 to 8, which is used for a lithium secondary battery or a lithium ion capacitor.
  10.  請求項1~4のいずれか1項に記載の電極保護膜形成剤(B)、電解質(H)及び非水溶媒(I)を含有する電解液。 5. An electrolytic solution containing the electrode protective film forming agent (B) according to any one of claims 1 to 4, an electrolyte (H) and a non-aqueous solvent (I).
  11.  更に、ルイス塩基(F)を含有する請求項10に記載の電解液。 Furthermore, the electrolyte solution of Claim 10 containing a Lewis base (F).
  12.  ルイス塩基(F)が、トリアゾール誘導体である請求項11に記載の電解液。 The electrolyte solution according to claim 11, wherein the Lewis base (F) is a triazole derivative.
  13.  リチウム二次電池用又はリチウムイオンキャパシタ用である請求項10~12のいずれか1項に記載の電解液。 The electrolyte solution according to any one of claims 10 to 12, which is used for a lithium secondary battery or a lithium ion capacitor.
  14.  請求項5~9のいずれか1項に記載の電極及び/又は請求項10~13のいずれか1項に記載の電解液を有するリチウム二次電池。 A lithium secondary battery comprising the electrode according to any one of claims 5 to 9 and / or the electrolytic solution according to any one of claims 10 to 13.
  15.  請求項5~9のいずれか1項に記載の電極及び/又は請求項10~13のいずれか1項に記載の電解液を有するリチウムイオンキャパシタ。 A lithium ion capacitor comprising the electrode according to any one of claims 5 to 9 and / or the electrolytic solution according to any one of claims 10 to 13.
  16.  請求項1~4のいずれか1項に記載の電極保護膜形成剤(B)を電極及び/又は電解液に含有させた後、電圧を印加する工程を含む電極保護膜の製造方法。
     
    A method for producing an electrode protective film comprising a step of applying a voltage after the electrode protective film forming agent (B) according to any one of claims 1 to 4 is contained in an electrode and / or an electrolytic solution.
PCT/JP2012/001019 2011-02-18 2012-02-16 Agent for forming electrode protection film WO2012111335A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012557845A JPWO2012111335A1 (en) 2011-02-18 2012-02-16 Electrode protective film forming agent

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011-033460 2011-02-18
JP2011033460 2011-02-18
JP2011-082613 2011-04-04
JP2011082613 2011-04-04

Publications (1)

Publication Number Publication Date
WO2012111335A1 true WO2012111335A1 (en) 2012-08-23

Family

ID=46672279

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/001019 WO2012111335A1 (en) 2011-02-18 2012-02-16 Agent for forming electrode protection film

Country Status (2)

Country Link
JP (1) JPWO2012111335A1 (en)
WO (1) WO2012111335A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014073378A1 (en) * 2012-11-07 2014-05-15 三洋化成工業株式会社 Electrode protective film forming agent, electrode, electrolyte, lithium secondary battery, lithium-ion capacitor, and method for producing electrode protective film
WO2015037486A1 (en) * 2013-09-12 2015-03-19 新神戸電機株式会社 Electrolyte solution for lithium ion capacitors, and lithium ion capacitor
CN113809401A (en) * 2021-10-26 2021-12-17 远景动力技术(江苏)有限公司 Non-aqueous electrolyte of lithium ion battery and application thereof
JP2022543538A (en) * 2019-07-12 2022-10-13 ハネウェル・インターナショナル・インコーポレーテッド Electrolyte solution for lithium-ion cells

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004363031A (en) * 2003-06-06 2004-12-24 Japan Storage Battery Co Ltd Non-aqueous electrolyte secondary battery
JP2010086954A (en) * 2008-09-03 2010-04-15 Sanyo Chem Ind Ltd Additive for electrolyte
JP2010165667A (en) * 2008-12-18 2010-07-29 Sanyo Chem Ind Ltd Additive for electrolyte
WO2011096450A1 (en) * 2010-02-03 2011-08-11 宇部興産株式会社 Non-aqueous electrolytic solution, electrochemical element using same, and alkynyl compound used therefor
WO2011129053A1 (en) * 2010-04-12 2011-10-20 三洋化成工業株式会社 Agent for forming electrode protective film and electrolyte solution

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004363031A (en) * 2003-06-06 2004-12-24 Japan Storage Battery Co Ltd Non-aqueous electrolyte secondary battery
JP2010086954A (en) * 2008-09-03 2010-04-15 Sanyo Chem Ind Ltd Additive for electrolyte
JP2010165667A (en) * 2008-12-18 2010-07-29 Sanyo Chem Ind Ltd Additive for electrolyte
WO2011096450A1 (en) * 2010-02-03 2011-08-11 宇部興産株式会社 Non-aqueous electrolytic solution, electrochemical element using same, and alkynyl compound used therefor
WO2011129053A1 (en) * 2010-04-12 2011-10-20 三洋化成工業株式会社 Agent for forming electrode protective film and electrolyte solution

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014073378A1 (en) * 2012-11-07 2014-05-15 三洋化成工業株式会社 Electrode protective film forming agent, electrode, electrolyte, lithium secondary battery, lithium-ion capacitor, and method for producing electrode protective film
KR20150068462A (en) * 2012-11-07 2015-06-19 산요가세이고교 가부시키가이샤 Electrode protective film forming agent, electrode, electrolyte, lithium secondary battery, lithium-ion capacitor, and method for producing electrode protective film
JPWO2014073378A1 (en) * 2012-11-07 2016-09-08 三洋化成工業株式会社 Electrode protective film forming agent, electrode, electrolytic solution, lithium secondary battery, lithium ion capacitor, and method for producing electrode protective film
CN104737340B (en) * 2012-11-07 2016-12-14 三洋化成工业株式会社 The manufacture method of electrode protective membrane forming agent, electrode, electrolyte, lithium secondary battery, lithium-ion capacitor and electrode protective membrane
KR101692172B1 (en) 2012-11-07 2017-01-02 산요가세이고교 가부시키가이샤 Electrode protective film forming agent, electrode, electrolyte, lithium secondary battery, lithium-ion capacitor, and method for producing electrode protective film
WO2015037486A1 (en) * 2013-09-12 2015-03-19 新神戸電機株式会社 Electrolyte solution for lithium ion capacitors, and lithium ion capacitor
JP2022543538A (en) * 2019-07-12 2022-10-13 ハネウェル・インターナショナル・インコーポレーテッド Electrolyte solution for lithium-ion cells
JP7343684B2 (en) 2019-07-12 2023-09-12 ハネウェル・インターナショナル・インコーポレーテッド Electrolyte solution for lithium ion cells
CN113809401A (en) * 2021-10-26 2021-12-17 远景动力技术(江苏)有限公司 Non-aqueous electrolyte of lithium ion battery and application thereof
CN113809401B (en) * 2021-10-26 2024-01-30 远景动力技术(江苏)有限公司 Nonaqueous electrolyte for lithium ion battery and application thereof

Also Published As

Publication number Publication date
JPWO2012111335A1 (en) 2014-07-03

Similar Documents

Publication Publication Date Title
JP6842557B2 (en) Lithium sulphate compound, additive for lithium secondary battery, non-aqueous electrolyte for battery, and lithium secondary battery
KR101055144B1 (en) Electrolyte including amide compound and electrochemical device having same
JP5956680B2 (en) Non-aqueous electrolyte for battery, novel compound, polymer electrolyte, and lithium secondary battery
KR20080026522A (en) Additive for non-aqueous electrolyte and secondary battery using the same
TWI518975B (en) Electrode protective film forming agent,electrode,electrolyte,lithium secondary battery,lithium ion capacitor,electric double layer capacitor and method of manufacturing electrode protective film
KR20040065152A (en) Non aqueous electrolyte and rechargeable lithium battery
WO2013002186A1 (en) Agent for forming electrode protection film, electrode, electrolyte solution, lithium secondary cell, lithium ion capacitor, and method for forming electrode protection film
JPWO2011129053A1 (en) Electrode protective film forming agent and electrolyte
WO2014073378A1 (en) Electrode protective film forming agent, electrode, electrolyte, lithium secondary battery, lithium-ion capacitor, and method for producing electrode protective film
WO2021166771A1 (en) Electrolytic solution for secondary cell containing cyclic phosphoric acid ester
JP2015225689A (en) Additive agent for battery
JP2005267857A (en) Organic electrolyte, and organic electrolyte battery using the same
WO2012111335A1 (en) Agent for forming electrode protection film
JP6284772B2 (en) Electrode protective film forming agent
JP2014137843A (en) Electrode protection film-forming agent
KR20090111327A (en) Nonaqueous electrolyte solution and nonaqueous electrolyte secondary battery
JP2013026180A (en) Electrode protective film forming agent
JP6957179B2 (en) Non-aqueous electrolyte for batteries and lithium secondary battery
JP2013012442A (en) Electrode protective film forming agent
WO2013031045A1 (en) Additive for electrode, and electrode
JP7120507B2 (en) Lithium borate composition, additive for lithium secondary battery, method for producing lithium borate composition, non-aqueous electrolyte for lithium secondary battery, lithium secondary battery
JP2018133183A (en) Additive agent for battery
JP6326255B2 (en) Battery additive
TW202122378A (en) Composition
JP6980502B2 (en) Non-aqueous electrolyte for batteries and lithium secondary batteries

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12747655

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012557845

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12747655

Country of ref document: EP

Kind code of ref document: A1