WO2013031487A1 - Additive for negative electrode, negative electrode, method for producing polymerized coating film, lithium secondary battery, and lithium ion capacitor - Google Patents

Additive for negative electrode, negative electrode, method for producing polymerized coating film, lithium secondary battery, and lithium ion capacitor Download PDF

Info

Publication number
WO2013031487A1
WO2013031487A1 PCT/JP2012/069995 JP2012069995W WO2013031487A1 WO 2013031487 A1 WO2013031487 A1 WO 2013031487A1 JP 2012069995 W JP2012069995 W JP 2012069995W WO 2013031487 A1 WO2013031487 A1 WO 2013031487A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
negative electrode
general formula
additive
carbon atoms
Prior art date
Application number
PCT/JP2012/069995
Other languages
French (fr)
Japanese (ja)
Inventor
文平 吉田
剛史 大高
敦史 若月
Original Assignee
三洋化成工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三洋化成工業株式会社 filed Critical 三洋化成工業株式会社
Publication of WO2013031487A1 publication Critical patent/WO2013031487A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/38Carbon pastes or blends; Binders or additives therein
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/50Electrodes characterised by their material specially adapted for lithium-ion capacitors, e.g. for lithium-doping or for intercalation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/04Hybrid capacitors
    • H01G11/06Hybrid capacitors with one of the electrodes allowing ions to be reversibly doped thereinto, e.g. lithium ion capacitors [LIC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/58Liquid electrolytes
    • H01G11/62Liquid electrolytes characterised by the solute, e.g. salts, anions or cations therein
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a negative electrode additive useful for a lithium secondary battery or a lithium ion capacitor, a negative electrode containing the negative electrode additive, a method of forming a polymer film, a lithium secondary battery having the negative electrode, and a lithium having the negative electrode
  • the present invention relates to an ion capacitor.
  • Non-aqueous electrolyte secondary batteries such as lithium secondary batteries are characterized by high voltage and high energy density, so they are widely used in the field of portable information equipment, and the demand is rapidly expanding.
  • a position as a standard battery for mobile information devices such as mobile phones and notebook computers has been established.
  • higher performance for example, higher capacity and higher energy density
  • various methods such as higher density by improving the filling rate of electrodes, improvement of the depth of use of current active materials (especially positive electrodes), development of new high-capacity active materials, etc. have been carried out. Yes.
  • the capacity of the non-aqueous electrolyte secondary battery is reliably increased by these methods.
  • the interfacial resistance on the electrode surface has a particularly large resistance. It is said that the cause of the interface resistance of the negative electrode is a rate-determining reaction in which the desolvation reaction in which the solvent molecules coordinated to the lithium ions are eliminated when the lithium ions are inserted into the negative electrode is slow.
  • a method for promoting desolvation a method of using an additive for an electrolytic solution having an azacrown ether skeleton has been proposed. (Patent Document 1)
  • the electrolyte additive having the azacrown ether skeleton has a great effect of reducing the interface resistance of the negative electrode, it has low oxidation stability and undergoes a long-term cycle test, which decomposes at the positive electrode and increases the interface resistance of the positive electrode. There was a problem.
  • An object of the present invention is to provide an additive for a lithium secondary battery or a lithium ion capacitor that can improve the output characteristics of the lithium secondary battery or the lithium ion capacitor and has excellent long-term cycle characteristics.
  • the present invention has a cyclic structure represented by the general formula (1), wherein at least one hydrogen atom in the molecule is substituted with an organic group (a) having a polymerizable unsaturated bond (x).
  • R 1 to R 4 are a hydrogen atom or a hydrocarbon group having 1 to 10 carbon atoms.
  • R 1 and / or R 2 and R 3 and / or R 4 may be bonded to each other to form a ring.
  • Y represents at least a divalent functional group selected from the group consisting of O, NH, S, PH and Se.
  • n is an integer of 2 to 10.
  • the repeating unit — [— CR 1 R 2 —CR 3 R 4 —Y —] — may be the same as or different from each other. Both ends of the general formula (1) are bonded to each other to form a cyclic structure.
  • the additive for negative electrode (B) of the present invention can improve output characteristics.
  • a lithium secondary battery or a lithium ion capacitor excellent in output characteristics can be obtained.
  • the output characteristics of the electrochemical device can be greatly improved by adding the cyclic compound (A) to the negative electrode of the electrochemical device instead of the electrolyte.
  • the electrochemical element in the present invention refers to a lithium secondary battery and a lithium ion capacitor.
  • the cyclic compound (A) has a cyclic structure represented by the general formula (1), and at least one hydrogen atom in the molecule is substituted with an organic group (a) having a polymerizable unsaturated bond (x). It is the compound which becomes. -[-CR 1 R 2 -CR 3 R 4 -Y-] n- (1)
  • R 1 to R 4 are a hydrogen atom or a hydrocarbon group having 1 to 10 carbon atoms, and preferably a hydrogen atom.
  • R 1 and / or R 2 and R 3 and / or R 4 may be bonded to each other to form a ring.
  • Y represents at least a divalent functional group selected from the group consisting of O, NH, S, PH and Se. Y is preferably O and NH.
  • n is an integer of 2 to 10, preferably 3 to 8, and more preferably 4 to 6.
  • the repeating unit — [— CR 1 R 2 —CR 3 R 4 —Y —] — may be the same as or different from each other, but at least one repeating unit is preferably different from other repeating units. Both ends of the general formula (1) are bonded to each other to form a cyclic structure.
  • the organic group (a) having a polymerizable unsaturated bond (x) is substituted with any hydrogen atom in the molecule (A), but is substituted with a hydrogen atom of NH as Y in the general formula (1).
  • the cyclic compound (A) is preferably a crown ether compound, and more preferably an azacrown ether compound (A1).
  • azacrown ether skeleton of the azacrown ether compound (A1) examples include -5-ether, aza-18-crown-6-ether, and the like, and monobenzo, dibenzo and the like thereof. From the viewpoint of output characteristics, aza-15-crown-5-ether is preferred.
  • Organic group (a) having polymerizable unsaturated bond (x) examples include a group represented by the following general formula (2), a group represented by the general formula (3), and a group represented by the general formula (4). Etc.
  • R 5 is an alkylene group having 1 to 3 carbon atoms.
  • Q 1 , Q 2 and Q 3 are one selected from the group consisting of a hydrogen atom, an alkyl group having 1 to 4 carbon atoms and an aromatic group having 6 to 12 carbon atoms, at least one of which has 6 carbon atoms 12 to 12 aromatic groups.
  • Examples of the alkylene group having 1 to 3 carbon atoms in the general formula (2) include a methylene group, an ethylene group, a 1,2-propylene group, and a 1,3-propylene group. Of these, a methylene group is preferred from the viewpoint of output characteristics.
  • Examples of the alkyl group having 1 to 4 carbon atoms in the general formula (2) include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, 1-methylpropyl group, 2-methylpropyl group and t-butyl. Groups. Of these, a methyl group is preferred from the viewpoint of output characteristics.
  • Examples of the aromatic group having 6 to 12 carbon atoms include a phenyl group and a methylphenyl group.
  • R 5 methylene group
  • Q 1 hydrogen atom
  • Q 2 hydrogen atom
  • Q 3 phenyl group
  • R 5 methylene group
  • Q 1 hydrogen atom
  • Q 2 phenyl group
  • Q 3 Hydrogen atom
  • R 5 methylene group
  • Q 1 methyl group
  • Q 2 hydrogen atom
  • Q 3 phenyl group
  • the combination of (1) is preferred.
  • R 6 is an alkylene group having 1 to 3 carbon atoms.
  • Q 4 to Q 8 are one selected from the group consisting of a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, an alkenyl group having 2 to 6 carbon atoms, a halogen atom, and a fluoroalkyl group, and at least one of An alkenyl group having 2 to 6 carbon atoms.
  • Examples of the alkylene group having 1 to 3 carbon atoms in the general formula (3) include the same groups as in the general formula (2). Of these, the same groups are preferable from the viewpoint of output characteristics.
  • Examples of the alkyl group having 1 to 4 carbon atoms in the general formula (3) include the same groups as in the general formula (2). Of these, the same groups are preferable from the viewpoint of output characteristics.
  • Examples of the alkenyl group having 2 to 6 carbon atoms in the general formula (3) include vinyl group, 1-propenyl group, 2-propenyl group, isopropenyl group, 1-butenyl group, 2-butenyl group, isobutenyl group, and 1-pentenyl group.
  • a vinyl group and a 1-propenyl group are preferable from the viewpoint of output characteristics.
  • Examples of the fluoroalkyl group in the general formula (3) include a trifluoromethyl group, a perfluoroethyl group, and a 2,2,2-trifluoroethyl group. Of these, a trifluoromethyl group is preferred from the viewpoint of output characteristics.
  • R 6 and Q 4 to Q 8 include the following (1) to (4).
  • R 7 is an alkylene group having 1 to 3 carbon atoms or an alkyleneoxycarbonyl group (the carbon atom constituting the carbonyl group is bonded to the carbon atom constituting the carbon-carbon double bond).
  • Q 9 , Q 10 and Q 11 are a group T1, an alkoxycarbonyl group, an acyl group, a nitro group, a cyano group, a halogen selected from the group consisting of an alkyl group having 1 to 4 carbon atoms and a phenyl group
  • a group T2 selected from the group consisting of a group, or a hydrogen atom, at least one of which is a group T2, or when none of Q 9 , Q 10 and Q 11 is a group T2,
  • R 7 is an alkyleneoxycarbonyl group (the carbon atom constituting the carbonyl group is bonded to the carbon atom constituting the carbon-carbon double bond).
  • T2 are an alkoxycarbonyl group and an acyl group.
  • the alkyleneoxycarbonyl group include an ethyleneoxycarbonyl group and a butyleneoxycarbonyl group.
  • Specific examples of the alkoxycarbonyl group of T2 include a methoxycarbonyl group and an ethoxycarbonyl group, and specific examples of the acyl group include a formyl group, an acetyl group, and a propionyl group.
  • azacrown ether compound (A1) in the present invention include the following.
  • organic group (a) is represented by the above general formula (2); N-cinnamyl-4-aza-6-crown-2-ether, N, N′-dicinnamyl-1,4-diaza-6-crown-2-ether, N, N′-dicinnamyl-4,7-diaza 15-crown-5-ether, N, N′-dicinnamyl-4,10-diaza-15-crown-5-ether, N-cinnamyl-4-aza-dibenzo-18-crown-6-ether, etc.
  • organic group (a) is represented by the general formula (3); N- ⁇ (4-vinylphenyl) methyl ⁇ -4-aza-6-crown-2-ether, N, N'-bis- ⁇ (4-vinylphenyl) methyl ⁇ -1,4-diaza-6-crown -2-ether, N- ⁇ (4-vinylphenyl) methyl ⁇ -4-aza-9-crown-3-ether, N, N′-bis- ⁇ (4-vinylphenyl) methyl ⁇ -4,7- Diaza-9-crown-3-ether, N, N′-bis- ⁇ (4-vinylphenyl) methyl ⁇ -4,7-diaza-12-crown-4-ether, N- ⁇ (4-vinylphenyl) Methyl ⁇ -4-aza-12-crown-4-ether, N, N′-bis- ⁇ (4-vinylphenyl) methyl ⁇ -4,10-diaza-12-crown-4-ether
  • the cyclic compound (A) contains 1 to 7 mmol / g, preferably 2 to 6 mmol / g of the polymerizable unsaturated bond (x).
  • the negative electrode additive (B) containing the cyclic compound (A) contains the cyclic compound (A), but in addition, a Lewis base (J) other than (A), a negative electrode protective film forming agent (K) or ( I) may be contained.
  • Lewis base (J) examples include triazole derivatives (1,2,3-benzotriazole, 5-methyl-1,2,3-benzotriazole, 5,6-dimethyl-1,2,3-benzotriazole, 1 2,4-triazole, 3-amino-1,2,4-triazole, 3,5-diamino-1,2,4-triazole, 3-amino-5-methyl-1,2,4-triazole, 3, -Amino-5-ethyl-1,2,4-triazole, 3-amino-5-propyl-1,2,4-triazole and 3-amino-5-butyl-1,2,4-triazole) It is done. These can be obtained commercially.
  • the content of the Lewis base (J) in the negative electrode additive (B) is preferably 0 to 90% by weight, more preferably 1 to 50% by weight, based on the weight of (B).
  • Examples of the negative electrode protective film forming agent (K) include vinylene carbonate, fluoroethylene carbonate, chloroethylene carbonate, ethylene sulfite, propylene sulfite, and ⁇ -bromo- ⁇ -butyrolactone. Among these, vinylene carbonate is preferable from the viewpoint of cycle characteristics.
  • the content of the negative electrode protective film forming agent (K) in the negative electrode additive (B) is preferably 0 to 90% by weight, more preferably 1 to 50% by weight, based on the weight of (B). is there.
  • cyclic compound (A) there is no limitation in particular about the manufacturing method of cyclic compound (A) in this invention, It can manufacture by a normal method etc. Examples thereof include a method of reacting an unsubstituted cyclic compound (A) with a halogen compound having an organic group (a) having a polymerizable unsaturated bond in an organic solvent in the absence of a catalyst or in the presence of a catalyst. The same applies to the case where (A) is an azacrown ether compound (A1).
  • organic solvents examples include nitrile organic solvents (acetonitrile, propiononitrile, benzonitrile, etc.), ketone organic solvents (acetone, methyl ethyl ketone, etc.), amide organic solvents (formamide, acetamide, dimethylformamide, dimethylacetamide, etc.) , Ether organic solvents (such as dimethyl ether, tetrahydrofuran and dioxane), ester organic solvents (such as ethyl acetate and diethyl maleate), sulfur-containing organic solvents (such as dimethyl sulfoxide and sulfolane), halogenated hydrocarbons (such as chloroform and dichloromethane) , Hydrocarbons (hexane, heptane, toluene, xylene, etc.) and the like, and mixtures of two or more of these solvents.
  • nitrile organic solvents acetonitrile, propiononitrile,
  • Catalysts include alkali metal hydroxides (such as lithium hydroxide, sodium hydroxide and potassium hydroxide), alkali metal carbonates (such as sodium bicarbonate, potassium bicarbonate, sodium carbonate and potassium carbonate) and alkali metal hydrides ( Sodium hydride, potassium hydride, etc.).
  • the reaction temperature is usually 10 to 150 ° C., and the reaction time is usually 0.5 to 24 hours. After completion of the reaction, if necessary, the catalyst can be neutralized and treated with an adsorbent to remove and purify the catalyst.
  • halogen compound having the organic group (a) examples include 4- (chloromethyl) styrene, 2-chloroethylstyrene, cinnamilk chloride, and the like.
  • the negative electrode additive (B) When the negative electrode additive (B) is contained in the negative electrode and a voltage is applied, (B) polymerizes on the surface of the active material (C) contained in the negative electrode to form a film.
  • This polymerized film serves as a protective film that lowers the interface resistance on the negative electrode surface and improves the output characteristics.
  • the additive for negative electrode (B) is added to the electrolyte, (B) can come into contact with the positive electrode, so that a decomposition reaction occurs on the positive electrode, resulting in significant deterioration in cycle characteristics.
  • the negative electrode additive (B) When the negative electrode additive (B) is contained in the negative electrode of a lithium secondary battery or lithium ion capacitor, the protective film is formed at the time of initial charge. However, a separate negative electrode is used as the negative electrode of the lithium secondary battery or lithium ion capacitor. An electrode having a polymer film (B) formed on the surface can also be used.
  • the negative electrode of the present invention contains a negative electrode additive (B) and an active material (C), and preferably further contains a binder (D).
  • Examples of the active material (C) include graphite, amorphous carbon, polymer compound fired bodies (for example, those obtained by firing and carbonizing phenol resin, furan resin, etc.), cokes (for example, pitch coke, needle coke, petroleum coke, etc.) Carbon fibers, conductive polymers (such as polyacetylene and polypyrrole), tin, silicon, and metal alloys (such as lithium-tin alloys, lithium-silicon alloys, lithium-aluminum alloys, and lithium-aluminum-manganese alloys) Can be mentioned.
  • binder (D) examples include polymer compounds such as starch, polyvinylidene fluoride, polyvinyl alcohol, carboxymethyl cellulose, polyvinyl pyrrolidone, tetrafluoroethylene, polyethylene, and polypropylene.
  • the negative electrode of the present invention can further contain a conductive additive (E).
  • a conductive additive examples include graphite (for example, natural graphite and artificial graphite), carbon blacks (for example, carbon black, acetylene black, ketjen black, channel black, furnace black, lamp black, and thermal black) and metal powder ( Examples thereof include aluminum powder and nickel powder) and conductive metal oxides (for example, zinc oxide and titanium oxide).
  • the preferred contents of the negative electrode additive (B), the active material (C), the binder (D), and the conductive additive (E) are (B), (C), (D ) Based on the total weight of
  • the content of the additive for negative electrode (B) is preferably 0.001 to 1% by weight, more preferably 0.005 to 0.5% by weight from the viewpoints of charge / discharge cycle characteristics, battery capacity and high storage characteristics. %.
  • the content of the active material (C) is preferably 70 to 98% by weight, more preferably 90 to 98% by weight, from the viewpoint of charge / discharge cycle characteristics.
  • the content of the binder (D) is preferably 0.5 to 29% by weight, more preferably 1 to 10% by weight, from the viewpoint of charge / discharge cycle characteristics.
  • the content of the conductive auxiliary agent (E) is preferably 0 to 10% by weight, more preferably 0 to 5% by weight, from the viewpoint of battery output.
  • the negative electrode of the present invention comprises, for example, a negative electrode additive (B), an active material (C), a binder (D) and, if necessary, a conductive auxiliary agent (E) in an amount of 30 to 60% based on the weight of water or solvent. Obtained by applying the slurry to a current collector with a coating device such as a bar coater, drying to remove water or solvent, and pressing with a press if necessary. It is done.
  • a coating device such as a bar coater
  • Examples of the solvent include 1-methyl-2-pyrrolidone, methyl ethyl ketone, dimethylformamide, dimethylacetamide, N, N-dimethylaminopropylamine and tetrahydrofuran.
  • Examples of the current collector include copper, aluminum, titanium, stainless steel, nickel, baked carbon, conductive polymer, and conductive glass.
  • the negative electrode of the present invention is particularly useful as a negative electrode for a lithium secondary battery or a lithium ion capacitor.
  • the lithium secondary battery or lithium ion capacitor using the negative electrode of the present invention is obtained by combining the positive electrode and the negative electrode of the present invention, storing it in a cell container together with a separator, injecting an electrolyte, and sealing the cell container. .
  • the positive electrode combined with the negative electrode for a lithium secondary battery of the present invention comprises, for example, a positive electrode active material, a binder (D) and optionally a conductive auxiliary agent (E) in an amount of 30 to 60% by weight based on the weight of water or solvent.
  • the dispersion liquid which is dispersed at a concentration and formed into a slurry, is applied to a current collector with a coating device such as a bar coater, dried to remove water or solvent, and, if necessary, obtained by pressing with a press machine.
  • composite oxides of lithium and transition metals for example, LiCoO 2 , LiNiO 2 , LiMnO 2 and LiMn 2 O 4 ), transition metal oxides (for example, MnO 2 and V 2 O 5 ), transition Examples thereof include metal sulfides (for example, MoS 2 and TiS 2 ) and conductive polymers (for example, polyaniline, polyvinylidene fluoride, polypyrrole, polythiophene, polyacetylene, poly-p-phenylene, and polycarbazole).
  • transition metals for example, MoS 2 and TiS 2
  • conductive polymers for example, polyaniline, polyvinylidene fluoride, polypyrrole, polythiophene, polyacetylene, poly-p-phenylene, and polycarbazole.
  • the positive electrode combined with the negative electrode for a lithium ion capacitor of the present invention can be produced in the same manner as the negative electrode except that the negative electrode additive (B) is not added.
  • separators polyethylene, polypropylene film microporous membrane, porous polyethylene film and polypropylene multilayer film, polyester fiber, aramid fiber, nonwoven fabric made of glass fiber, etc., and silica, alumina, titania etc. on their surface And those having ceramic fine particles attached thereto.
  • the electrolytic solution constituting the lithium secondary battery or the lithium ion capacitor of the present invention contains an electrolyte (G) and a non-aqueous solvent (H).
  • LiPF 6 is preferable from the viewpoint of battery output and charge / discharge cycle characteristics.
  • non-aqueous solvent those used in ordinary electrolytes can be used, for example, lactone compounds, cyclic or chain carbonates, chain carboxylates, cyclic or chain ethers, phosphoric acid Esters, nitrile compounds, amide compounds, sulfones, sulfolanes, and the like and mixtures thereof can be used.
  • lactone compound examples include 5-membered rings (such as ⁇ -butyrolactone and ⁇ -valerolactone) and 6-membered lactone compounds (such as ⁇ -valerolactone).
  • Examples of the cyclic carbonate include propylene carbonate, ethylene carbonate and butylene carbonate.
  • Examples of the chain carbonate include dimethyl carbonate, methyl ethyl carbonate, diethyl carbonate, methyl-n-propyl carbonate, ethyl-n-propyl carbonate, and di-n-propyl carbonate.
  • chain carboxylic acid esters include methyl acetate, ethyl acetate, propyl acetate, and methyl propionate.
  • cyclic ether examples include tetrahydrofuran, tetrahydropyran, 1,3-dioxolane, 1,4-dioxane and the like.
  • chain ether examples include dimethoxymethane and 1,2-dimethoxyethane.
  • phosphate esters include trimethyl phosphate, triethyl phosphate, ethyl dimethyl phosphate, diethyl methyl phosphate, tripropyl phosphate, tributyl phosphate, tri (trifluoromethyl) phosphate, tri (trichloromethyl) phosphate, Tri (trifluoroethyl) phosphate, tri (triperfluoroethyl) phosphate, 2-ethoxy-1,3,2-dioxaphosphoran-2-one, 2-trifluoroethoxy-1,3,2- Examples include dioxaphospholan-2-one and 2-methoxyethoxy-1,3,2-dioxaphosphoran-2-one.
  • Examples of the nitrile compound include acetonitrile.
  • Examples of the amide compound include dimethylformamide.
  • Examples of the sulfone include dimethyl sulfone and diethyl sulfone.
  • a nonaqueous solvent (H) may be used individually by 1 type, and may use 2 or more types together.
  • lactone compounds are preferred from the viewpoint of battery output and charge / discharge recycling characteristics, and more preferred are lactone compounds, cyclic carbonates and A chain carbonate, particularly preferably a mixed solution of a cyclic carbonate and a chain carbonate.
  • the preferable contents or concentrations of the electrolyte (G) and the nonaqueous solvent (H) in the electrolytic solution are as follows.
  • the concentration of the electrolyte (G) in the electrolytic solution is preferably 1 to 30% by weight and more preferably 1 to 15% by weight based on the weight of the electrolytic solution from the viewpoint of battery output and charge / discharge cycle characteristics.
  • the content of the non-aqueous solvent (H) is preferably 70 to 99% by weight and more preferably 85 to 99% by weight based on the weight of the electrolytic solution from the viewpoint of battery output and charge / discharge cycle characteristics.
  • the electrolytic solution can further contain a negative electrode protective film forming agent (I).
  • a negative electrode protective film forming agent I
  • the stability of the negative electrode protective film is further improved, and the charge / discharge cycle characteristics can be further improved.
  • Examples of the negative electrode protective film forming agent (I) that can be contained in the electrolytic solution include vinylene carbonate, fluoroethylene carbonate, chloroethylene carbonate, ethylene sulfite, propylene sulfite, and ⁇ -bromo- ⁇ -butyrolactone. From the viewpoint of these internal cycle characteristics, vinylene carbonate is preferred.
  • the preferred content of the negative electrode protective film forming agent (I), which is an optional component in the electrolytic solution, is preferably 0 to 5% by weight based on the weight of the electrolytic solution from the viewpoint of battery capacity, battery output, and charge / discharge cycle characteristics. More preferably, it is 0.01 to 3% by weight.
  • the electrolytic solution may further contain additives such as an overcharge inhibitor, a dehydrating agent and a capacity stabilizer.
  • overcharge inhibitor examples include biphenyl, alkylbiphenyl, terphenyl, partially hydrogenated terphenyl, aromatic compounds such as cyclohexylbenzene, t-butylbenzene, and t-amylbenzene.
  • the amount of the overcharge inhibitor used is usually 0 to 5% by weight, preferably 0 to 3% by weight, based on the total weight of the electrolyte.
  • the dehydrating agent examples include zeolite, silica gel and calcium oxide.
  • the amount of the dehydrating agent used is usually 0 to 5% by weight, preferably 0 to 3% by weight, based on the total weight of the electrolytic solution.
  • the capacity stabilizer examples include fluoroethylene carbonate, succinic anhydride, 1-methyl-2-piperidone, heptane and fluorobenzene.
  • the amount of the capacity stabilizer used is usually 0 to 5% by weight, preferably 0 to 3% by weight, based on the total weight of the electrolytic solution.
  • Acetonitrile was removed by reduced pressure (1.3 kPa), and then purified by an alumina column (150 mesh, Blockman 1, standard grade, manufactured by Sigma-Aldrich) using acetone as a solvent, and 1.1 parts (2.5 mmol) of (A-1) ) Was obtained (yield 75%).
  • reaction product was purified by an alumina column (150 mesh, Blockman 1, standard grade, manufactured by Sigma-Aldrich) using acetone as a solvent, and N, N′-bis-[(2- Methoxycarbonylvinyl) methyl] -4,10-diaza-15-crown-5-ether (A-7) 0.85 part (2.0 mmol) was obtained (yield 71%).
  • ⁇ Production Example 12> [Preparation of positive electrode for lithium secondary battery] After 90.0 parts of LiCoO 2 powder, 5 parts of Ketjen black [Sigma-Aldrich] and 5 parts of polyvinylidene fluoride (Sigma-Aldrich) were mixed thoroughly in a mortar, 1-methyl-2-pyrrolidone [Tokyo Kasei Co., Ltd.] Kogyo Co., Ltd.] 70.0 parts was added and further mixed well in a mortar to obtain a slurry. The obtained slurry was applied on one side of an aluminum electrolytic foil having a thickness of 20 ⁇ m using a wire bar in the atmosphere, dried at 100 ° C. for 15 minutes, and further under reduced pressure (1.3 kPa) at 80 ° C. It was dried for 5 minutes, punched out to 15.95 mm ⁇ , and a positive electrode for a lithium secondary battery of Production Example 12 was produced.
  • Negative electrodes for lithium secondary batteries to which the negative electrode additive (B) obtained in Production Examples 13 to 26 was added were prepared by the following method. Additive for negative electrode based on 92.5 parts of graphite powder having an average particle size of about 8 to 12 ⁇ m, 7.5 parts of polyvinylidene fluoride, 200 parts of 1-methyl-2-pyrrolidone [manufactured by Tokyo Chemical Industry Co., Ltd.] and Table 2 (B) 0.2 part was added and it fully mixed with the mortar and obtained the slurry. The obtained slurry was applied to one side of a copper foil having a thickness of 20 ⁇ m, dried at 100 ° C. for 15 minutes to evaporate the solvent, punched to 16.15 mm ⁇ , and made 30 ⁇ m in thickness with a press machine. To 16 and Comparative Examples 1 to 15 were prepared. Moreover, the thing without description of (B) in Table 2 produced without adding (B).
  • Electrolytic solutions of Examples 1 to 16 LiPF 6 was dissolved in a mixed solvent of ethylene carbonate and dimethyl carbonate (volume ratio 1: 1) at a rate of 1 mol / L, and the electrolytic solutions for lithium secondary batteries of Examples 1 to 16 was made.
  • Electrolytic solutions of Comparative Examples 1 to 15 Based on Table 2, 0.2 parts of the negative electrode additive (B) was added to 100 parts of the electrolytic solution and dissolved therein. A liquid was prepared.
  • Example 17 To 32 and Comparative Examples 16 to 30 were prepared. Moreover, the thing without description of (B) in Table 3 produced without adding (B).
  • Electrolytes of Examples 17 to 32 LiPF 6 was dissolved in a mixed solvent of ethylene carbonate and dimethyl carbonate (volume ratio 1: 1) at a rate of 1 mol / L to prepare electrolytes for lithium ion capacitors of Examples 17 to 32.
  • Electrolytic Solutions of Comparative Examples 16-30 Based on Table 3, 0.2 parts of the negative electrode additive (B) was added to 100 parts of the electrolytic solution to prepare electrolytic solutions of Comparative Examples 16-30.
  • the lithium secondary battery and lithium ion capacitor produced using the negative electrode additive of the present invention are excellent in output characteristics.
  • the reason why the output characteristics are improved is considered to be that a lithium ion-coordinating polymer film is formed on the surface and the desolvation energy is reduced.
  • the electrode using the additive for negative electrode (B) of the present invention has excellent output characteristics, it is particularly useful as an electrode for a lithium secondary battery or a lithium ion capacitor, and is suitable for an electric vehicle.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

The purpose of the present invention is to provide an additive for a negative electrode, wherein it is possible to improve the output properties of a lithium secondary battery or a lithium ion capacitor, and to achieve excellent long-term cycle properties. This additive for an electrode is characterized by containing a cyclic compound (A) which has a cyclic structure represented by general formula (1) and in which the hydrogen atom in at least one molecule is replaced by an organic group (a) having a polymerizable unsaturated bond (x), general formula (1) being -[-CR1R2-CR3R4-Y-]n-. (R1 to R4 represent a hydrogen atom or a C1-10 hydrocarbon group. R1 and/or R2 and R3 and/or R4 may bond with one another to form a ring. Y represents a functional group having at least a valence of two, the functional group being selected from among O, NH, S, PH, and Se. n represents an integer between 2 and 10. The repeating units -[-CR1R2-CR3R4-Y-]- may be the same or different from one another. Both terminals of general formula (1) are bound to one another and form a cyclic structure.)

Description

負極用添加剤、負極、重合被膜の形成方法、リチウム二次電池及びリチウムイオンキャパシタNegative electrode additive, negative electrode, method for forming polymer film, lithium secondary battery, and lithium ion capacitor
 本発明は、リチウム二次電池又はリチウムイオンキャパシタに有用な負極用添加剤、該負極用添加剤を含有する負極、重合被膜の形成方法、該負極を有するリチウム二次電池及び該負極を有するリチウムイオンキャパシタに関する。 The present invention relates to a negative electrode additive useful for a lithium secondary battery or a lithium ion capacitor, a negative electrode containing the negative electrode additive, a method of forming a polymer film, a lithium secondary battery having the negative electrode, and a lithium having the negative electrode The present invention relates to an ion capacitor.
 リチウム二次電池等の非水電解液二次電池は、高電圧、高エネルギー密度という特徴を持つことから、携帯情報機器分野等において広く利用され、その需要が急速に拡大しており、現在、携帯電話、ノート型パソコンを始めとするモバイル情報化機器用の標準電池としてのポジションが確立されている。当然ながら、携帯機器等の高性能化と多機能化に伴い、その電源としての非水電解液二次電池に対しても更なる高性能化(例えば、高容量化と高エネルギー密度化)が求められている。この要求に応えるために種々の方法、例えば、電極の充填率の向上による高密度化、現行の活物質(特に正極)の利用深度の向上、新規高容量の活物質の開発等が行われている。そして、現実に非水電解液二次電池がこれらの方法によって確実に高容量化されている。 Non-aqueous electrolyte secondary batteries such as lithium secondary batteries are characterized by high voltage and high energy density, so they are widely used in the field of portable information equipment, and the demand is rapidly expanding. A position as a standard battery for mobile information devices such as mobile phones and notebook computers has been established. Of course, along with the high performance and multi-functionality of portable devices, etc., even higher performance (for example, higher capacity and higher energy density) for non-aqueous electrolyte secondary batteries as its power source It has been demanded. In order to meet this demand, various methods such as higher density by improving the filling rate of electrodes, improvement of the depth of use of current active materials (especially positive electrodes), development of new high-capacity active materials, etc. have been carried out. Yes. In reality, the capacity of the non-aqueous electrolyte secondary battery is reliably increased by these methods.
 近年、電気自動車のニーズに応えるため、リチウム二次電池の高出力化が急務となっている。一般に、電池の高出力化には2つの重要な要素が考えられる。ひとつは電極材料において電子伝導性が高いこと、もうひとつはリチウムイオンの伝導性が高いことである。いずれか一方が劣る場合は、電池の内部抵抗が高くなり充分な出力特性は得られない。内部抵抗の主な原因となる箇所は、イオン伝導と電子伝導の反応界面が集中する電極材料である。 In recent years, there is an urgent need to increase the output of lithium secondary batteries to meet the needs of electric vehicles. In general, there are two important factors for increasing the output of a battery. One is that the electrode material has high electron conductivity, and the other is that lithium ion has high conductivity. When either one is inferior, the internal resistance of the battery becomes high and sufficient output characteristics cannot be obtained. The main cause of the internal resistance is the electrode material where the reaction interface between ion conduction and electron conduction is concentrated.
 イオン伝導の中でも特に大きな抵抗となっているのが電極表面での界面抵抗である。負極の界面抵抗の原因はリチウムイオンに配位している溶媒分子が、リチウムイオンが負極に挿入される際に脱離する脱溶媒和反応が遅く律速反応になっていると言われている。脱溶媒和を促進する方法としては、アザクラウンエーテル骨格を有する電解液用添加剤を使用する方法が提案されている。(特許文献1) Among the ionic conduction, the interfacial resistance on the electrode surface has a particularly large resistance. It is said that the cause of the interface resistance of the negative electrode is a rate-determining reaction in which the desolvation reaction in which the solvent molecules coordinated to the lithium ions are eliminated when the lithium ions are inserted into the negative electrode is slow. As a method for promoting desolvation, a method of using an additive for an electrolytic solution having an azacrown ether skeleton has been proposed. (Patent Document 1)
特開2010-86954号公報JP 2010-86954 A
 しかしながら、前記アザクラウンエーテル骨格を有する電解液添加剤は負極の界面抵抗を低減する効果は大きい一方で、酸化安定性が低く長期サイクル試験を行うと正極で分解して正極の界面抵抗を上昇させてしまう課題があった。 However, while the electrolyte additive having the azacrown ether skeleton has a great effect of reducing the interface resistance of the negative electrode, it has low oxidation stability and undergoes a long-term cycle test, which decomposes at the positive electrode and increases the interface resistance of the positive electrode. There was a problem.
 本発明は、リチウム二次電池又はリチウムイオンキャパシタの出力特性を向上でき、長期サイクル特性も優れるリチウム二次電池又はリチウムイオンキャパシタ用添加剤を提供することを目的とする。 An object of the present invention is to provide an additive for a lithium secondary battery or a lithium ion capacitor that can improve the output characteristics of the lithium secondary battery or the lithium ion capacitor and has excellent long-term cycle characteristics.
 本発明者らは、上記の目的を達成すべく鋭意検討を行った結果、本発明に到達した。即ち、本発明は、一般式(1)で示される環状構造を有し、少なくとも1個の分子内の水素原子が、重合性不飽和結合(x)を有する有機基(a)に置換されてなる環状化合物(A)を含有する負極用添加剤(B);
-[-CR-CR-Y-]-  (1)
 [R~Rは水素原子または炭素数1~10である炭化水素基である。Rおよび/またはRとRおよび/またはRが互いに結合して環を形成していてもよい。YはO、NH、S、PH及びSeからなる群より選ばれる少なくとも2価の官能基を示す。nは2~10の整数である。繰り返し単位-[-CR-CR-Y-]-は互いに同じでも異なっていてもよい。一般式(1)の両末端は互いに結合しており、環状構造を形成する。]
 該負極用添加剤(B)を含有する負極;該負極用添加剤(B)を負極に含有させて、電圧を印加することにより活物質(C)表面に重合被膜を形成することを特徴とする重合被膜の形成方法;該負極を有するリチウム二次電池;該負極を有するリチウムイオンキャパシタである。
As a result of intensive studies to achieve the above object, the present inventors have reached the present invention. That is, the present invention has a cyclic structure represented by the general formula (1), wherein at least one hydrogen atom in the molecule is substituted with an organic group (a) having a polymerizable unsaturated bond (x). A negative electrode additive (B) containing the cyclic compound (A);
-[-CR 1 R 2 -CR 3 R 4 -Y-] n- (1)
[R 1 to R 4 are a hydrogen atom or a hydrocarbon group having 1 to 10 carbon atoms. R 1 and / or R 2 and R 3 and / or R 4 may be bonded to each other to form a ring. Y represents at least a divalent functional group selected from the group consisting of O, NH, S, PH and Se. n is an integer of 2 to 10. The repeating unit — [— CR 1 R 2 —CR 3 R 4 —Y —] — may be the same as or different from each other. Both ends of the general formula (1) are bonded to each other to form a cyclic structure. ]
A negative electrode containing the negative electrode additive (B); a negative electrode additive (B) is contained in the negative electrode, and a polymer film is formed on the surface of the active material (C) by applying a voltage. A lithium secondary battery having the negative electrode; and a lithium ion capacitor having the negative electrode.
 本発明の負極用添加剤(B)は、出力特性を向上させることができる。
 本発明の負極用添加剤(B)を含有する負極を使用することで、出力特性に優れたリチウム二次電池又はリチウムイオンキャパシタを得ることができる。
The additive for negative electrode (B) of the present invention can improve output characteristics.
By using the negative electrode containing the negative electrode additive (B) of the present invention, a lithium secondary battery or a lithium ion capacitor excellent in output characteristics can be obtained.
 本発明は、上記環状化合物(A)を電解液ではなく、電気化学素子の負極に添加することにより電気化学素子の出力特性を大幅に向上させることができるものである。
 ここで、本発明における電気化学素子とは、リチウム二次電池、リチウムイオンキャパシタを言うものとする。
In the present invention, the output characteristics of the electrochemical device can be greatly improved by adding the cyclic compound (A) to the negative electrode of the electrochemical device instead of the electrolyte.
Here, the electrochemical element in the present invention refers to a lithium secondary battery and a lithium ion capacitor.
<環状化合物(A)>
 環状化合物(A)は、一般式(1)で示される環状構造を有し、少なくとも1個の分子内の水素原子が、重合性不飽和結合(x)を有する有機基(a)に置換されてなる化合物である。
-[-CR-CR-Y-]-  (1)
 R~Rは水素原子または炭素数1~10である炭化水素基であり、水素原子であることが好ましい。
 Rおよび/またはRとRおよび/またはRが互いに結合して環を形成していてもよい。-CR-CR-が環を形成する場合は1,2-フェニレン基であることが好ましい。
 YはO、NH、S、PH及びSeからなる群より選ばれる少なくとも2価の官能基を示す。
 YはOおよびNHであることが好ましい。
<Cyclic compound (A)>
The cyclic compound (A) has a cyclic structure represented by the general formula (1), and at least one hydrogen atom in the molecule is substituted with an organic group (a) having a polymerizable unsaturated bond (x). It is the compound which becomes.
-[-CR 1 R 2 -CR 3 R 4 -Y-] n- (1)
R 1 to R 4 are a hydrogen atom or a hydrocarbon group having 1 to 10 carbon atoms, and preferably a hydrogen atom.
R 1 and / or R 2 and R 3 and / or R 4 may be bonded to each other to form a ring. When —CR 1 R 2 —CR 3 R 4 — forms a ring, it is preferably a 1,2-phenylene group.
Y represents at least a divalent functional group selected from the group consisting of O, NH, S, PH and Se.
Y is preferably O and NH.
 nは2~10の整数であり、3~8が好ましく、4~6がさらに好ましい。
 繰り返し単位-[-CR-CR-Y-]-は互いに同じでも異なっていてもよいが、少なくとも1つの繰り返し単位が他の繰り返し単位と異なっているものが好ましい。
 一般式(1)の両末端は互いに結合しており、環状構造を形成する。
 重合性不飽和結合(x)を有する有機基(a)は、(A)分子内のいずれかの水素原子と置換されてなるが、一般式(1)におけるYであるNHの水素原子と置換されてなるのが好ましく、一般式(1)で表される環状構造中の窒素原子に直接結合する水素原子のうち1~3個が、有機基(a)で置換されているものが好ましい。
 環状化合物(A)は、クラウンエーテル化合物であることが好ましく、アザクラウンエーテル化合物(A1)であることがさらに好ましい。
n is an integer of 2 to 10, preferably 3 to 8, and more preferably 4 to 6.
The repeating unit — [— CR 1 R 2 —CR 3 R 4 —Y —] — may be the same as or different from each other, but at least one repeating unit is preferably different from other repeating units.
Both ends of the general formula (1) are bonded to each other to form a cyclic structure.
The organic group (a) having a polymerizable unsaturated bond (x) is substituted with any hydrogen atom in the molecule (A), but is substituted with a hydrogen atom of NH as Y in the general formula (1). It is preferable that 1 to 3 hydrogen atoms directly bonded to the nitrogen atom in the cyclic structure represented by the general formula (1) are substituted with the organic group (a).
The cyclic compound (A) is preferably a crown ether compound, and more preferably an azacrown ether compound (A1).
 アザクラウンエーテル化合物(A1)のアザクラウンエーテル骨格としては、アザ-6-クラウン-2-エーテル、アザ-9-クラウン-3-エーテル、アザ-12-クラウン-4-エーテル、アザ-15-クラウン-5-エーテル、アザ-18-クラウン-6-エーテル等、およびそれらのモノベンゾ体、ジベンゾ体等が挙げられる。出力特性の観点からアザ-15-クラウン-5-エーテルであることが好ましい。 As the azacrown ether skeleton of the azacrown ether compound (A1), aza-6-crown-2-ether, aza-9-crown-3-ether, aza-12-crown-4-ether, aza-15-crown Examples include -5-ether, aza-18-crown-6-ether, and the like, and monobenzo, dibenzo and the like thereof. From the viewpoint of output characteristics, aza-15-crown-5-ether is preferred.
<重合性不飽和結合(x)を有する有機基(a)>
 重合性不飽和結合(x)を有する有機基(a)としては、下記一般式(2)で表される基、一般式(3)で示される基、および一般式(4)で示される基等があげられる。
Figure JPOXMLDOC01-appb-C000004
<Organic group (a) having polymerizable unsaturated bond (x)>
Examples of the organic group (a) having a polymerizable unsaturated bond (x) include a group represented by the following general formula (2), a group represented by the general formula (3), and a group represented by the general formula (4). Etc.
Figure JPOXMLDOC01-appb-C000004
 式中、Rは炭素数1~3のアルキレン基である。Q、Q及びQは水素原子、炭素数が1~4のアルキル基及び炭素数6~12の芳香族基からなる群から選ばれた1種であり、少なくとも1つは炭素数6~12の芳香族基である。 In the formula, R 5 is an alkylene group having 1 to 3 carbon atoms. Q 1 , Q 2 and Q 3 are one selected from the group consisting of a hydrogen atom, an alkyl group having 1 to 4 carbon atoms and an aromatic group having 6 to 12 carbon atoms, at least one of which has 6 carbon atoms 12 to 12 aromatic groups.
 一般式(2)における炭素数1~3のアルキレン基としてはメチレン基、エチレン基、1,2-プロピレン基及び1,3-プロピレン基が挙げられる。
これらのうち出力特性の観点から好ましくはメチレン基である。
Examples of the alkylene group having 1 to 3 carbon atoms in the general formula (2) include a methylene group, an ethylene group, a 1,2-propylene group, and a 1,3-propylene group.
Of these, a methylene group is preferred from the viewpoint of output characteristics.
 一般式(2)における炭素数1~4のアルキル基としてはメチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、1-メチルプロピル基、2-メチルプロピル基及びt-ブチル基が挙げられる。
 これらのうち出力特性の観点から好ましくはメチル基である。
 炭素数6~12の芳香族基としてはフェニル基、メチルフェニル基等が挙げられる。
Examples of the alkyl group having 1 to 4 carbon atoms in the general formula (2) include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, 1-methylpropyl group, 2-methylpropyl group and t-butyl. Groups.
Of these, a methyl group is preferred from the viewpoint of output characteristics.
Examples of the aromatic group having 6 to 12 carbon atoms include a phenyl group and a methylphenyl group.
 これらのうちR、Q、Q及びQの好ましい組合せとしては以下の(1)~(3)が挙げられる。
(1)R=メチレン基、Q=水素原子、Q=水素原子、Q=フェニル基
(2)R=メチレン基、Q=水素原子、Q=フェニル基、Q=水素原子
(3)R=メチレン基、Q=メチル基、Q=水素原子、Q=フェニル基
 これらのうち、好ましいのは(1)の組合せである。
Among these, preferred combinations of R 5 , Q 1 , Q 2 and Q 3 include the following (1) to (3).
(1) R 5 = methylene group, Q 1 = hydrogen atom, Q 2 = hydrogen atom, Q 3 = phenyl group (2) R 5 = methylene group, Q 1 = hydrogen atom, Q 2 = phenyl group, Q 3 = Hydrogen atom (3) R 5 = methylene group, Q 1 = methyl group, Q 2 = hydrogen atom, Q 3 = phenyl group Of these, the combination of (1) is preferred.
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 式中、Rは炭素数1~3のアルキレン基である。Q~Qは水素原子、炭素数が1~4のアルキル基、炭素数2~6のアルケニル基、ハロゲン原子及びフルオロアルキル基からなる群から選ばれた1種であり、少なくとも1つは炭素数2~6のアルケニル基である。 In the formula, R 6 is an alkylene group having 1 to 3 carbon atoms. Q 4 to Q 8 are one selected from the group consisting of a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, an alkenyl group having 2 to 6 carbon atoms, a halogen atom, and a fluoroalkyl group, and at least one of An alkenyl group having 2 to 6 carbon atoms.
 一般式(3)における炭素数1~3のアルキレン基としては一般式(2)と同様の基が挙げられる。これらの内、出力特性の観点から好ましい基も同様である。 Examples of the alkylene group having 1 to 3 carbon atoms in the general formula (3) include the same groups as in the general formula (2). Of these, the same groups are preferable from the viewpoint of output characteristics.
 一般式(3)における炭素数が1~4のアルキル基としては一般式(2)と同様の基が挙げられる。これらの内、出力特性の観点から好ましい基も同様である。 Examples of the alkyl group having 1 to 4 carbon atoms in the general formula (3) include the same groups as in the general formula (2). Of these, the same groups are preferable from the viewpoint of output characteristics.
 一般式(3)における炭素数2~6のアルケニル基としては、ビニル基、1-プロペニル基、2-プロペニル基、イソプロペニル基、1-ブテニル基、2-ブテニル基、イソブテニル基、1-ペンテニル基、2-ペンテニル基、3-ペンテニル基、イソペンテニル基、1-ヘキセニル基、2-ヘキセニル基、3-ヘキセニル基及びイソヘキセニル基等が挙げられる。
 これらのうち、出力特性の観点から好ましくは、ビニル基及び1-プロペニル基である。
Examples of the alkenyl group having 2 to 6 carbon atoms in the general formula (3) include vinyl group, 1-propenyl group, 2-propenyl group, isopropenyl group, 1-butenyl group, 2-butenyl group, isobutenyl group, and 1-pentenyl group. Group, 2-pentenyl group, 3-pentenyl group, isopentenyl group, 1-hexenyl group, 2-hexenyl group, 3-hexenyl group and isohexenyl group.
Of these, a vinyl group and a 1-propenyl group are preferable from the viewpoint of output characteristics.
 一般式(3)におけるフルオロアルキル基としてはトリフルオロメチル基、パーフルオロエチル基及び2,2,2-トリフルオロエチル基が挙げられる。
 これらのうち、出力特性の観点からトリフルオロメチル基が好ましい。
Examples of the fluoroalkyl group in the general formula (3) include a trifluoromethyl group, a perfluoroethyl group, and a 2,2,2-trifluoroethyl group.
Of these, a trifluoromethyl group is preferred from the viewpoint of output characteristics.
 これらのうち、R及びQ~Qの好ましい組合せとしては以下の(1)~(4)が挙げられる。
(1)R=メチレン基、Q=水素原子、Q=水素原子、Q=ビニル基、Q=水素原子、Q=水素原子
(2)R=メチレン基、Q=水素原子、Q=水素原子、Q=1-プロペニル基、Q=水素原子、Q=水素原子
(3)R=メチレン基、Q=フッ素原子、Q=フッ素原子、Q=ビニル基、Q=フッ素原子、Q=フッ素原子
(4)R=メチレン基、Q=メチル基、Q=メチル基、Q=ビニル基、Q=メチル基、Q=メチル基
 これらのうち、好ましいのは(1)の組合せである。
Of these, preferable combinations of R 6 and Q 4 to Q 8 include the following (1) to (4).
(1) R 6 = methylene group, Q 4 = hydrogen atom, Q 5 = hydrogen atom, Q 6 = vinyl group, Q 7 = hydrogen atom, Q 8 = hydrogen atom (2) R 6 = methylene group, Q 4 = Hydrogen atom, Q 5 = hydrogen atom, Q 6 = 1-propenyl group, Q 7 = hydrogen atom, Q 8 = hydrogen atom (3) R 6 = methylene group, Q 4 = fluorine atom, Q 5 = fluorine atom, Q 6 = vinyl group, Q 7 = fluorine atom, Q 8 = fluorine atom (4) R 6 = methylene group, Q 4 = methyl group, Q 5 = methyl group, Q 6 = vinyl group, Q 7 = methyl group, Q 8 = methyl group Among these, the combination of (1) is preferable.
Figure JPOXMLDOC01-appb-C000006
 式中、Rは炭素数1~3のアルキレン基、またはアルキレンオキシカルボニル基(カルボニル基を構成する炭素原子が炭素-炭素二重結合を構成する炭素原子に結合)である。Q、Q10及びQ11は、炭素数が1~4のアルキル基及びフェニル基からなる群から選ばれた1種である基T1、アルコキシカルボニル基、アシル基、ニトロ基、シアノ基、ハロゲン基からなる群から選ばれた1種である基T2、または水素原子であり、少なくとも1つは基T2であるか、またはQ、Q10及びQ11のいずれもが基T2でない場合は、Rがアルキレンオキシカルボニル基(カルボニル基を構成する炭素原子が炭素-炭素二重結合を構成する炭素原子に結合)である。T2として好ましいものはアルコキシカルボニル基、アシル基である。
 アルキレンオキシカルボニル基の具体例としてはエチレンオキシカルボニル基、ブチレンオキシカルボニル基等があげられる。T2のアルコキシカルボニル基の具体例としてはメトキシカルボニル基、エトキシカルボニル基等、アシル基の具体例としてはホルミル基、アセチル基、プロピオニル基等が挙げられる。
Figure JPOXMLDOC01-appb-C000006
In the formula, R 7 is an alkylene group having 1 to 3 carbon atoms or an alkyleneoxycarbonyl group (the carbon atom constituting the carbonyl group is bonded to the carbon atom constituting the carbon-carbon double bond). Q 9 , Q 10 and Q 11 are a group T1, an alkoxycarbonyl group, an acyl group, a nitro group, a cyano group, a halogen selected from the group consisting of an alkyl group having 1 to 4 carbon atoms and a phenyl group A group T2 selected from the group consisting of a group, or a hydrogen atom, at least one of which is a group T2, or when none of Q 9 , Q 10 and Q 11 is a group T2, R 7 is an alkyleneoxycarbonyl group (the carbon atom constituting the carbonyl group is bonded to the carbon atom constituting the carbon-carbon double bond). Preferred as T2 are an alkoxycarbonyl group and an acyl group.
Specific examples of the alkyleneoxycarbonyl group include an ethyleneoxycarbonyl group and a butyleneoxycarbonyl group. Specific examples of the alkoxycarbonyl group of T2 include a methoxycarbonyl group and an ethoxycarbonyl group, and specific examples of the acyl group include a formyl group, an acetyl group, and a propionyl group.
 本発明におけるアザクラウンエーテル化合物(A1)の具体例としては、以下のものが挙げられる。
有機基(a)としては上記一般式(2)で表される場合;
N-シンナミル-4-アザ-6-クラウン-2-エーテル、N,N’-ジシンナミル-1,4-ジアザ-6-クラウン-2-エーテル、N,N’-ジシンナミル-4,7-ジアザ-15-クラウン-5-エーテル、N,N’-ジシンナミル-4,10-ジアザ-15-クラウン-5-エーテル、N-シンナミル-4-アザ-ジベンゾ-18-クラウン-6-エーテル等、
有機基(a)としては上記一般式(3)で表される場合;
N-{(4-ビニルフェニル)メチル}-4-アザ-6-クラウン-2-エーテル、N,N’-ビス-{(4-ビニルフェニル)メチル}-1,4-ジアザ-6-クラウン-2-エーテル、N-{(4-ビニルフェニル)メチル}-4-アザ-9-クラウン-3-エーテル、N,N’-ビス-{(4-ビニルフェニル)メチル}-4,7-ジアザ-9-クラウン-3-エーテル、N,N’-ビス-{(4-ビニルフェニル)メチル}-4,7-ジアザ-12-クラウン-4-エーテル、N-{(4-ビニルフェニル)メチル}-4-アザ-12-クラウン-4-エーテル、N,N’-ビス-{(4-ビニルフェニル)メチル}-4,10-ジアザ-12-クラウン-4-エーテル、N,N’-ビス-{(4-ビニルフェニル)メチル}-4,7-ジアザ-15-クラウン-5-エーテル、N-{(4-ビニルフェニル)メチル}-4-アザ-15-クラウン-5-エーテル、N,N’-ビス-{(4-ビニルフェニル)メチル}-4,10-ジアザ-15-クラウン-5-エーテル、
N,N’-ビス-{(4-ビニルフェニル)メチル}-4,10-ジアザ-18-クラウン-6-エーテル、N-{(4-ビニルフェニル)メチル}-4-アザ-ジベンゾ-18-クラウン-6-エーテル等、
有機基(a)としては上記一般式(4)で表される場合;
N,N’-ビス-{(2-メトキシカルボニルビニル)メチル}-4,10-ジアザ-15-クラウン-5-エーテル、N-{(2-メトキシカルボニルビニル)メチル}-1-アザ-15-クラウン-5-エーテル、N,N’-ビス-{(2-メトキシカルボニルビニル)メチル}-4,10-ジアザ-12-クラウン-4-エーテル、N-{(2-メトキシカルボニルビニル)メチル}-1-アザ-12-クラウン-4-エーテル、N,N’-ビス-(アクリロイルオキシエチル)-4,10-ジアザ-15-クラウン-5-エーテル、N-(アクリロイルオキシエチル)-1-アザ-15-クラウン-5-エーテル、N,N’-ビス-(アクリロイルオキシエチル)-4,10-ジアザ-12-クラウン-4-エーテル、N-(アクリロイルオキシエチル)-1-アザ-12-クラウン-4-エーテル、N-(アクリロイルオキシエチル)-4-アザ-ジベンゾ-18-クラウン-6-エーテル等。
Specific examples of the azacrown ether compound (A1) in the present invention include the following.
When the organic group (a) is represented by the above general formula (2);
N-cinnamyl-4-aza-6-crown-2-ether, N, N′-dicinnamyl-1,4-diaza-6-crown-2-ether, N, N′-dicinnamyl-4,7-diaza 15-crown-5-ether, N, N′-dicinnamyl-4,10-diaza-15-crown-5-ether, N-cinnamyl-4-aza-dibenzo-18-crown-6-ether, etc.
When the organic group (a) is represented by the general formula (3);
N-{(4-vinylphenyl) methyl} -4-aza-6-crown-2-ether, N, N'-bis-{(4-vinylphenyl) methyl} -1,4-diaza-6-crown -2-ether, N-{(4-vinylphenyl) methyl} -4-aza-9-crown-3-ether, N, N′-bis-{(4-vinylphenyl) methyl} -4,7- Diaza-9-crown-3-ether, N, N′-bis-{(4-vinylphenyl) methyl} -4,7-diaza-12-crown-4-ether, N-{(4-vinylphenyl) Methyl} -4-aza-12-crown-4-ether, N, N′-bis-{(4-vinylphenyl) methyl} -4,10-diaza-12-crown-4-ether, N, N ′ -Bis-{(4-vinylphenyl) methyl} -4,7-di The-15-crown-5-ether, N-{(4-vinylphenyl) methyl} -4-aza-15-crown-5-ether, N, N′-bis-{(4-vinylphenyl) methyl} -4,10-diaza-15-crown-5-ether,
N, N′-bis-{(4-vinylphenyl) methyl} -4,10-diaza-18-crown-6-ether, N-{(4-vinylphenyl) methyl} -4-aza-dibenzo-18 -Crown-6-ether, etc.
When the organic group (a) is represented by the above general formula (4);
N, N′-bis-{(2-methoxycarbonylvinyl) methyl} -4,10-diaza-15-crown-5-ether, N-{(2-methoxycarbonylvinyl) methyl} -1-aza-15 -Crown-5-ether, N, N'-bis-{(2-methoxycarbonylvinyl) methyl} -4,10-diaza-12-crown-4-ether, N-{(2-methoxycarbonylvinyl) methyl } -1-Aza-12-crown-4-ether, N, N′-bis- (acryloyloxyethyl) -4,10-diaza-15-crown-5-ether, N- (acryloyloxyethyl) -1 Aza-15-crown-5-ether, N, N′-bis- (acryloyloxyethyl) -4,10-diaza-12-crown-4-ether, N- (acryloyl) Oxyethyl) -1-aza-12-crown-4-ether, N- (acryloyloxyethyl) -4-aza-dibenzo-18-crown-6-ether, and the like.
 環状化合物(A)は重合性不飽和結合(x)を1~7ミリモル/g含有し、好ましくは2~6ミリモル/g含有する。 The cyclic compound (A) contains 1 to 7 mmol / g, preferably 2 to 6 mmol / g of the polymerizable unsaturated bond (x).
 環状化合物(A)を含有する負極用添加剤(B)は、環状化合物(A)を含有するが、他に(A)以外のルイス塩基(J)または負極保護膜形成剤(K)又は(I)を含有していてもよい。 The negative electrode additive (B) containing the cyclic compound (A) contains the cyclic compound (A), but in addition, a Lewis base (J) other than (A), a negative electrode protective film forming agent (K) or ( I) may be contained.
 ルイス塩基(J)としては、例えばトリアゾール誘導体(1,2,3-ベンゾトリアゾール、5-メチル-1,2,3-ベンゾトリアゾール、5,6-ジメチル-1,2,3-ベンゾトリアゾール、1,2,4-トリアゾール、3-アミノ-1,2,4-トリアゾール、3,5-ジアミノ-1,2,4-トリアゾール、3-アミノ-5-メチル-1,2,4-トリアゾール、3-アミノ-5-エチル-1,2,4-トリアゾール、3-アミノ-5-プロピル-1,2,4-トリアゾール及び3-アミノ-5-ブチル-1,2,4-トリアゾール等)が挙げられる。これらは市販品を入手することが出来る。これらの内、充放電サイクル特性の観点から好ましいのは、3-アミノ-1,2,4-トリアゾールである。
 負極用添加剤(B)におけるルイス塩基(J)の含有量は、(B)の重量を基準として、0~90重量%であることが好ましく、更に好ましくは1~50重量%である。
Examples of the Lewis base (J) include triazole derivatives (1,2,3-benzotriazole, 5-methyl-1,2,3-benzotriazole, 5,6-dimethyl-1,2,3-benzotriazole, 1 2,4-triazole, 3-amino-1,2,4-triazole, 3,5-diamino-1,2,4-triazole, 3-amino-5-methyl-1,2,4-triazole, 3, -Amino-5-ethyl-1,2,4-triazole, 3-amino-5-propyl-1,2,4-triazole and 3-amino-5-butyl-1,2,4-triazole) It is done. These can be obtained commercially. Of these, 3-amino-1,2,4-triazole is preferable from the viewpoint of charge / discharge cycle characteristics.
The content of the Lewis base (J) in the negative electrode additive (B) is preferably 0 to 90% by weight, more preferably 1 to 50% by weight, based on the weight of (B).
 負極保護膜形成剤(K)としては、ビニレンカーボネート、フルオロエチレンカーボネート、クロロエチレンカーボネート、エチレンサルファイト、プロピレンサルファイト及びα-ブロモ-γ-ブチロラクトン等が挙げられる。これらの内、サイクル特性の観点から好ましいのはビニレンカーボネートである。
 負極用添加剤(B)における負極保護膜形成剤(K)の含有量は、(B)の重量を基準として、0~90重量%であることが好ましく、更に好ましくは1~50重量%である。
Examples of the negative electrode protective film forming agent (K) include vinylene carbonate, fluoroethylene carbonate, chloroethylene carbonate, ethylene sulfite, propylene sulfite, and α-bromo-γ-butyrolactone. Among these, vinylene carbonate is preferable from the viewpoint of cycle characteristics.
The content of the negative electrode protective film forming agent (K) in the negative electrode additive (B) is preferably 0 to 90% by weight, more preferably 1 to 50% by weight, based on the weight of (B). is there.
 本発明における環状化合物(A)の製造方法については特に限定はなく、通常の方法等で製造することができる。例えば、有機溶媒中で、無触媒又は触媒の存在下、無置換の環状化合物(A)と、重合性不飽和結合を有する有機基(a)を有するハロゲン化合物を反応させる方法が挙げられる。(A)がアザクラウンエーテル化合物(A1)でも同様である。
 有機溶媒としては、例えば、ニトリル系有機溶媒(アセトニトリル、プロピオノニトリル及びベンゾニトリル等)、ケトン系有機溶媒(アセトン及びメチルエチルケトン等)、アミド系有機溶媒(ホルムアミド、アセトアミド、ジメチルホルムアミド及びジメチルアセトアミド等)、エーテル系有機溶媒(ジメチルエーテル、テトラヒドロフラン及びジオキサン等)、エステル系有機溶媒(酢酸エチル及びマレイン酸ジエチル等)、硫黄含有有機溶剤(ジメチルスルホキシド及びスルホラン等)、ハロゲン化炭化水素(クロロホルム及びジクロロメタン等)、炭化水素(ヘキサン、ヘプタン、トルエン及びキシレン等)等及びこれらの溶媒の二種以上の混合物が挙げられる。
 触媒としては、アルカリ金属水酸化物(水酸化リチウム、水酸化ナトリウム及び水酸化カリウム等)、アルカリ金属炭酸塩(炭酸水素ナトリウム、炭酸水素カリウム、炭酸ナトリウム及び炭酸カリウム等)及びアルカリ金属水素化物(水素化ナトリウム及び水素化カリウム等)等が挙げられる。反応温度は通常10~150℃、反応時間は通常0.5~24時間である。反応終了後は、必要により触媒を中和し、吸着剤で処理して触媒を除去・精製することができる。
There is no limitation in particular about the manufacturing method of cyclic compound (A) in this invention, It can manufacture by a normal method etc. Examples thereof include a method of reacting an unsubstituted cyclic compound (A) with a halogen compound having an organic group (a) having a polymerizable unsaturated bond in an organic solvent in the absence of a catalyst or in the presence of a catalyst. The same applies to the case where (A) is an azacrown ether compound (A1).
Examples of organic solvents include nitrile organic solvents (acetonitrile, propiononitrile, benzonitrile, etc.), ketone organic solvents (acetone, methyl ethyl ketone, etc.), amide organic solvents (formamide, acetamide, dimethylformamide, dimethylacetamide, etc.) , Ether organic solvents (such as dimethyl ether, tetrahydrofuran and dioxane), ester organic solvents (such as ethyl acetate and diethyl maleate), sulfur-containing organic solvents (such as dimethyl sulfoxide and sulfolane), halogenated hydrocarbons (such as chloroform and dichloromethane) , Hydrocarbons (hexane, heptane, toluene, xylene, etc.) and the like, and mixtures of two or more of these solvents.
Catalysts include alkali metal hydroxides (such as lithium hydroxide, sodium hydroxide and potassium hydroxide), alkali metal carbonates (such as sodium bicarbonate, potassium bicarbonate, sodium carbonate and potassium carbonate) and alkali metal hydrides ( Sodium hydride, potassium hydride, etc.). The reaction temperature is usually 10 to 150 ° C., and the reaction time is usually 0.5 to 24 hours. After completion of the reaction, if necessary, the catalyst can be neutralized and treated with an adsorbent to remove and purify the catalyst.
 前記有機基(a)を有するハロゲン化合物としては、例えば、4-(クロロメチル)スチレン、2-クロロエチルスチレン及びシンナミルクロライド等が挙げられる。 Examples of the halogen compound having the organic group (a) include 4- (chloromethyl) styrene, 2-chloroethylstyrene, cinnamilk chloride, and the like.
 負極用添加剤(B)は負極に含有させて電圧を印加することにより(B)が負極に含有する活物質(C)表面で重合し被膜を形成する。この重合被膜が、負極表面での界面抵抗を下げる保護膜となり、出力特性を向上させる。
 負極用添加剤(B)を電解液に添加した場合は(B)が正極と接触しうるため、正極上で分解反応が起こり著しいサイクル特性の悪化を招く。
 リチウム二次電池やリチウムイオンキャパシタの負極に負極用添加剤(B)を含有させた場合、初回充電時に上記保護膜が形成されるが、リチウム二次電池やリチウムイオンキャパシタの負極として、別途負極表面に(B)の重合被膜を形成させた電極を使用することもできる。
When the negative electrode additive (B) is contained in the negative electrode and a voltage is applied, (B) polymerizes on the surface of the active material (C) contained in the negative electrode to form a film. This polymerized film serves as a protective film that lowers the interface resistance on the negative electrode surface and improves the output characteristics.
When the additive for negative electrode (B) is added to the electrolyte, (B) can come into contact with the positive electrode, so that a decomposition reaction occurs on the positive electrode, resulting in significant deterioration in cycle characteristics.
When the negative electrode additive (B) is contained in the negative electrode of a lithium secondary battery or lithium ion capacitor, the protective film is formed at the time of initial charge. However, a separate negative electrode is used as the negative electrode of the lithium secondary battery or lithium ion capacitor. An electrode having a polymer film (B) formed on the surface can also be used.
 本発明の負極は、負極用添加剤(B)および活物質(C)を含有し、好ましくはさらに結着剤(D)を含有する。 The negative electrode of the present invention contains a negative electrode additive (B) and an active material (C), and preferably further contains a binder (D).
 活物質(C)としては、黒鉛、アモルファス炭素、高分子化合物焼成体(例えばフェノール樹脂及びフラン樹脂等を焼成し炭素化したもの等)、コークス類(例えばピッチコークス、ニードルコークス及び石油コークス等)、炭素繊維、導電性高分子(例えばポリアセチレン及びポリピロール等)、スズ、シリコン、及び金属合金(例えばリチウム-スズ合金、リチウム-シリコン合金、リチウム-アルミニウム合金及びリチウム-アルミニウム-マンガン合金等)等が挙げられる。 Examples of the active material (C) include graphite, amorphous carbon, polymer compound fired bodies (for example, those obtained by firing and carbonizing phenol resin, furan resin, etc.), cokes (for example, pitch coke, needle coke, petroleum coke, etc.) Carbon fibers, conductive polymers (such as polyacetylene and polypyrrole), tin, silicon, and metal alloys (such as lithium-tin alloys, lithium-silicon alloys, lithium-aluminum alloys, and lithium-aluminum-manganese alloys) Can be mentioned.
 結着剤(D)としてはデンプン、ポリフッ化ビニリデン、ポリビニルアルコール、カルボキシメチルセルロース、ポリビニルピロリドン、テトラフロオロエチレン、ポリエチレン及びポリプロピレン等の高分子化合物が挙げられる。 Examples of the binder (D) include polymer compounds such as starch, polyvinylidene fluoride, polyvinyl alcohol, carboxymethyl cellulose, polyvinyl pyrrolidone, tetrafluoroethylene, polyethylene, and polypropylene.
 本発明の負極は更に導電助剤(E)を含有することができる。
 導電助剤(E)としては黒鉛(例えば天然黒鉛及び人工黒鉛)、カーボンブラック類(例えばカーボンブラック、アセチレンブラック、ケチェンブラック、チャンネルブラック、ファーネスブラック、ランプブラック及びサーマルブラック等)及び金属粉末(例えばアルミニウム粉及びニッケル粉等)、導電性金属酸化物(例えば酸化亜鉛及び酸化チタン等)等が挙げられる。
The negative electrode of the present invention can further contain a conductive additive (E).
Examples of the conductive assistant (E) include graphite (for example, natural graphite and artificial graphite), carbon blacks (for example, carbon black, acetylene black, ketjen black, channel black, furnace black, lamp black, and thermal black) and metal powder ( Examples thereof include aluminum powder and nickel powder) and conductive metal oxides (for example, zinc oxide and titanium oxide).
 本発明の負極における、負極用添加剤(B)、活物質(C)、結着剤(D)及び導電助剤(E)のそれぞれの好ましい含有量は(B)、(C)、(D)の合計重量に基づいて以下の通りである。
 負極用添加剤(B)の含有量は、充放電サイクル特性、電池容量及び高貯蔵特性の観点から、好ましくは0.001~1重量%であり、更に好ましくは0.005~0.5重量%である。
 活物質(C)の含有量は、充放電サイクル特性の観点から、好ましくは70~98重量%であり、更に好ましくは90~98重量%である。
 結着剤(D)の含有量は、充放電サイクル特性の観点から、好ましくは0.5~29重量%であり、更に好ましくは1~10重量%である。
 導電助剤(E)の含有量は、電池出力の観点から、好ましくは0~10重量%であり、更に好ましくは0~5重量%である。
In the negative electrode of the present invention, the preferred contents of the negative electrode additive (B), the active material (C), the binder (D), and the conductive additive (E) are (B), (C), (D ) Based on the total weight of
The content of the additive for negative electrode (B) is preferably 0.001 to 1% by weight, more preferably 0.005 to 0.5% by weight from the viewpoints of charge / discharge cycle characteristics, battery capacity and high storage characteristics. %.
The content of the active material (C) is preferably 70 to 98% by weight, more preferably 90 to 98% by weight, from the viewpoint of charge / discharge cycle characteristics.
The content of the binder (D) is preferably 0.5 to 29% by weight, more preferably 1 to 10% by weight, from the viewpoint of charge / discharge cycle characteristics.
The content of the conductive auxiliary agent (E) is preferably 0 to 10% by weight, more preferably 0 to 5% by weight, from the viewpoint of battery output.
 本発明の負極は、例えば負極用添加剤(B)、活物質(C)、結着剤(D)並びに必要により導電助剤(E)を、水又は溶媒の重量に基づいて30~60重量%の濃度で分散してスラリー化した分散液を、集電体にバーコーター等の塗工装置で塗布後、乾燥して水又は溶媒を除去して、必要によりプレス機でプレスすることにより得られる。 The negative electrode of the present invention comprises, for example, a negative electrode additive (B), an active material (C), a binder (D) and, if necessary, a conductive auxiliary agent (E) in an amount of 30 to 60% based on the weight of water or solvent. Obtained by applying the slurry to a current collector with a coating device such as a bar coater, drying to remove water or solvent, and pressing with a press if necessary. It is done.
 溶媒としては、1-メチル-2-ピロリドン、メチルエチルケトン、ジメチルホルムアミド、ジメチルアセトアミド、N,N-ジメチルアミノプロピルアミン及びテトラヒドロフラン等が挙げられる。
 集電体としては、銅、アルミニウム、チタン、ステンレス鋼、ニッケル、焼成炭素、導電性高分子及び導電性ガラス等が挙げられる。
Examples of the solvent include 1-methyl-2-pyrrolidone, methyl ethyl ketone, dimethylformamide, dimethylacetamide, N, N-dimethylaminopropylamine and tetrahydrofuran.
Examples of the current collector include copper, aluminum, titanium, stainless steel, nickel, baked carbon, conductive polymer, and conductive glass.
 本発明の負極は、特にリチウム二次電池用又はリチウムイオンキャパシタ用の負極として有用である。
 本発明の負極を用いたリチウム二次電池又はリチウムイオンキャパシタは、正極と本発明の負極を組み合わせて、セパレータと共にセル容器に収納し、電解液を注入し、セル容器を密封することで得られる。
The negative electrode of the present invention is particularly useful as a negative electrode for a lithium secondary battery or a lithium ion capacitor.
The lithium secondary battery or lithium ion capacitor using the negative electrode of the present invention is obtained by combining the positive electrode and the negative electrode of the present invention, storing it in a cell container together with a separator, injecting an electrolyte, and sealing the cell container. .
 本発明のリチウム二次電池用負極と組み合わせる正極は、例えば正極活物質、結着剤(D)並びに必要により導電助剤(E)を、水又は溶媒の重量に基づいて30~60重量%の濃度で分散してスラリー化した分散液を、集電体にバーコーター等の塗工装置で塗布後、乾燥して水又は溶媒を除去して、必要によりプレス機でプレスすることにより得られる。 The positive electrode combined with the negative electrode for a lithium secondary battery of the present invention comprises, for example, a positive electrode active material, a binder (D) and optionally a conductive auxiliary agent (E) in an amount of 30 to 60% by weight based on the weight of water or solvent. The dispersion liquid, which is dispersed at a concentration and formed into a slurry, is applied to a current collector with a coating device such as a bar coater, dried to remove water or solvent, and, if necessary, obtained by pressing with a press machine.
 正極活物質としては、リチウムと遷移金属との複合酸化物(例えばLiCoO、LiNiO、LiMnO及びLiMn等)、遷移金属酸化物(例えばMnO及びV等)、遷移金属硫化物(例えばMoS及びTiS等)及び導電性高分子(例えばポリアニリン、ポリフッ化ビニリデン、ポリピロール、ポリチオフェン、ポリアセチレン、ポリ-p-フェニレン及びポリカルバゾール等)等が挙げられる。 As the positive electrode active material, composite oxides of lithium and transition metals (for example, LiCoO 2 , LiNiO 2 , LiMnO 2 and LiMn 2 O 4 ), transition metal oxides (for example, MnO 2 and V 2 O 5 ), transition Examples thereof include metal sulfides (for example, MoS 2 and TiS 2 ) and conductive polymers (for example, polyaniline, polyvinylidene fluoride, polypyrrole, polythiophene, polyacetylene, poly-p-phenylene, and polycarbazole).
 本発明のリチウムイオンキャパシタ用負極と組み合わせる正極は負極用添加剤(B)を添加しないこと以外は負極と同様の方法で作製することが出来る。 The positive electrode combined with the negative electrode for a lithium ion capacitor of the present invention can be produced in the same manner as the negative electrode except that the negative electrode additive (B) is not added.
 セパレーターとしては、ポリエチレン、ポリプロピレン製フィルムの微多孔膜、多孔性のポリエチレンフィルムとポリプロピレンとの多層フィルム、ポリエステル繊維、アラミド繊維、ガラス繊維等からなる不織布、及びそれらの表面にシリカ、アルミナ、チタニア等のセラミック微粒子を付着させたもの等が挙げられる。 As separators, polyethylene, polypropylene film microporous membrane, porous polyethylene film and polypropylene multilayer film, polyester fiber, aramid fiber, nonwoven fabric made of glass fiber, etc., and silica, alumina, titania etc. on their surface And those having ceramic fine particles attached thereto.
 本発明のリチウム二次電池又はリチウムイオンキャパシタを構成する電解液は、電解質(G)及び非水溶媒(H)を含有する。 The electrolytic solution constituting the lithium secondary battery or the lithium ion capacitor of the present invention contains an electrolyte (G) and a non-aqueous solvent (H).
 電解質(G)としては、通常の電解液に用いられているもの等が使用でき、例えば、LiPF、LiBF、LiSbF、LiAsF及びLiClO等の無機酸のリチウム塩、LiN(CFSO、LiN(CSO及びLiC(CFSO等の有機酸のリチウム塩等が挙げられる。これらの内、電池出力及び充放電サイクル特性の観点から好ましいのはLiPFである。 The electrolyte (G), normal is can be used such as those used in the electrolytic solution, for example, LiPF 6, LiBF 4, LiSbF 6, LiAsF 6 , and lithium salts of inorganic acids LiClO 4, etc., LiN (CF 3 Examples thereof include lithium salts of organic acids such as SO 2 ) 2 , LiN (C 2 F 5 SO 2 ) 2 and LiC (CF 3 SO 2 ) 3 . Among these, LiPF 6 is preferable from the viewpoint of battery output and charge / discharge cycle characteristics.
 非水溶媒(H)としては、通常の電解液に用いられているもの等が使用でき、例えば、ラクトン化合物、環状又は鎖状炭酸エステル、鎖状カルボン酸エステル、環状又は鎖状エーテル、リン酸エステル、ニトリル化合物、アミド化合物、スルホン、スルホラン等及びこれらの混合物を用いることができる。 As the non-aqueous solvent (H), those used in ordinary electrolytes can be used, for example, lactone compounds, cyclic or chain carbonates, chain carboxylates, cyclic or chain ethers, phosphoric acid Esters, nitrile compounds, amide compounds, sulfones, sulfolanes, and the like and mixtures thereof can be used.
 ラクトン化合物としては、5員環(γ-ブチロラクトン及びγ-バレロラクトン等)及び6員環のラクトン化合物(δ-バレロラクトン等)等を挙げることができる。 Examples of the lactone compound include 5-membered rings (such as γ-butyrolactone and γ-valerolactone) and 6-membered lactone compounds (such as δ-valerolactone).
 環状炭酸エステルとしては、プロピレンカーボネート、エチレンカーボネート及びブチレンカーボネート等が挙げられる。
 鎖状炭酸エステルとしては、ジメチルカーボネート、メチルエチルカーボネート、ジエチルカーボネート、メチル-n-プロピルカーボネート、エチル-n-プロピルカーボネート及びジ-n-プロピルカーボネート等が挙げられる。
Examples of the cyclic carbonate include propylene carbonate, ethylene carbonate and butylene carbonate.
Examples of the chain carbonate include dimethyl carbonate, methyl ethyl carbonate, diethyl carbonate, methyl-n-propyl carbonate, ethyl-n-propyl carbonate, and di-n-propyl carbonate.
 鎖状カルボン酸エステルとしては、酢酸メチル、酢酸エチル、酢酸プロピル及びプロピオン酸メチル等が挙げられる。
 環状エーテルとしては、テトラヒドロフラン、テトラヒドロピラン、1,3-ジオキソラン及び1,4-ジオキサン等が挙げられる。
 鎖状エーテルとしては、ジメトキシメタン及び1,2-ジメトキシエタン等が挙げられる。
Examples of chain carboxylic acid esters include methyl acetate, ethyl acetate, propyl acetate, and methyl propionate.
Examples of the cyclic ether include tetrahydrofuran, tetrahydropyran, 1,3-dioxolane, 1,4-dioxane and the like.
Examples of the chain ether include dimethoxymethane and 1,2-dimethoxyethane.
 リン酸エステルとしては、リン酸トリメチル、リン酸トリエチル、リン酸エチルジメチル、リン酸ジエチルメチル、リン酸トリプロピル、リン酸トリブチル、リン酸トリ(トリフルオロメチル)、リン酸トリ(トリクロロメチル)、リン酸トリ(トリフルオロエチル)、リン酸トリ(トリパーフルオロエチル)、2-エトキシ-1,3,2-ジオキサホスホラン-2-オン、2-トリフルオロエトキシ-1,3,2-ジオキサホスホラン-2-オン及び2-メトキシエトキシ-1,3,2-ジオキサホスホラン-2-オン等が挙げられる。
 ニトリル化合物としては、アセトニトリル等が挙げられる。アミド化合物としては、ジメチルホルムアミド等が挙げられる。スルホンとしては、ジメチルスルホン及びジエチルスルホン等が挙げられる。
 非水溶媒(H)は1種を単独で用いてもよいし、2種以上を併用してもよい。
Examples of phosphate esters include trimethyl phosphate, triethyl phosphate, ethyl dimethyl phosphate, diethyl methyl phosphate, tripropyl phosphate, tributyl phosphate, tri (trifluoromethyl) phosphate, tri (trichloromethyl) phosphate, Tri (trifluoroethyl) phosphate, tri (triperfluoroethyl) phosphate, 2-ethoxy-1,3,2-dioxaphosphoran-2-one, 2-trifluoroethoxy-1,3,2- Examples include dioxaphospholan-2-one and 2-methoxyethoxy-1,3,2-dioxaphosphoran-2-one.
Examples of the nitrile compound include acetonitrile. Examples of the amide compound include dimethylformamide. Examples of the sulfone include dimethyl sulfone and diethyl sulfone.
A nonaqueous solvent (H) may be used individually by 1 type, and may use 2 or more types together.
 非水溶媒(H)の内、電池出力及び充放電リサイクル特性の観点から好ましいのは、ラクトン化合物、環状炭酸エステル、鎖状炭酸エステル及びリン酸エステル、更に好ましいのはラクトン化合物、環状炭酸エステル及び鎖状炭酸エステル、特に好ましいのは環状炭酸エステルと鎖状炭酸エステルの混合液である。 Among the non-aqueous solvents (H), lactone compounds, cyclic carbonates, chain carbonates and phosphates are preferred from the viewpoint of battery output and charge / discharge recycling characteristics, and more preferred are lactone compounds, cyclic carbonates and A chain carbonate, particularly preferably a mixed solution of a cyclic carbonate and a chain carbonate.
 電解液における電解質(G)、非水溶媒(H)のそれぞれ好ましい含有量又は濃度は以下の通りである。 The preferable contents or concentrations of the electrolyte (G) and the nonaqueous solvent (H) in the electrolytic solution are as follows.
 電解液中の電解質(G)の濃度は、電解液の重量に基づいて、電池出力及び充放電サイクル特性の観点から好ましくは1~30重量%であり、更に好ましくは1~15重量%である。
 非水溶媒(H)の含有量は、電解液の重量に基づいて、電池出力及び充放電サイクル特性の観点から好ましくは70~99重量%であり、更に好ましくは85~99重量%である。
The concentration of the electrolyte (G) in the electrolytic solution is preferably 1 to 30% by weight and more preferably 1 to 15% by weight based on the weight of the electrolytic solution from the viewpoint of battery output and charge / discharge cycle characteristics. .
The content of the non-aqueous solvent (H) is preferably 70 to 99% by weight and more preferably 85 to 99% by weight based on the weight of the electrolytic solution from the viewpoint of battery output and charge / discharge cycle characteristics.
 電解液は、更に負極保護膜形成剤(I)を含有することができる。電解液が(I)を含有することにより、負極保護膜の安定性が更に向上し充放電サイクル特性を更に向上させることができる。 The electrolytic solution can further contain a negative electrode protective film forming agent (I). When the electrolytic solution contains (I), the stability of the negative electrode protective film is further improved, and the charge / discharge cycle characteristics can be further improved.
 電解液が含有することができる負極保護膜形成剤(I)としては、ビニレンカーボネート、フルオロエチレンカーボネート、クロロエチレンカーボネート、エチレンサルファイト、プロピレンサルファイト及びα-ブロモ-γ-ブチロラクトン等が挙げられる。これらの内サイクル特性の観点から好ましいのはビニレンカーボネートである。 Examples of the negative electrode protective film forming agent (I) that can be contained in the electrolytic solution include vinylene carbonate, fluoroethylene carbonate, chloroethylene carbonate, ethylene sulfite, propylene sulfite, and α-bromo-γ-butyrolactone. From the viewpoint of these internal cycle characteristics, vinylene carbonate is preferred.
 電解液における任意成分である負極保護膜形成剤(I)の好ましい含有量は、電池容量、電池出力及び充放電サイクル特性の観点から、電解液の重量に基づいて好ましくは0~5重量%、更に好ましくは0.01~3重量%である。 The preferred content of the negative electrode protective film forming agent (I), which is an optional component in the electrolytic solution, is preferably 0 to 5% by weight based on the weight of the electrolytic solution from the viewpoint of battery capacity, battery output, and charge / discharge cycle characteristics. More preferably, it is 0.01 to 3% by weight.
 電解液は、更に過充電防止剤、脱水剤及び容量安定化剤等の添加剤を含有してもよい。 The electrolytic solution may further contain additives such as an overcharge inhibitor, a dehydrating agent and a capacity stabilizer.
 過充電防止剤としては、ビフェニル、アルキルビフェニル、ターフェニル、ターフェニルの部分水素化体、シクロヘキシルベンゼン、t-ブチルベンゼン及びt-アミルベンゼン等の芳香族化合物等が挙げられる。過充電防止剤の使用量は、電解液の全重量に基づいて、通常0~5重量%、好ましくは0~3重量%である。 Examples of the overcharge inhibitor include biphenyl, alkylbiphenyl, terphenyl, partially hydrogenated terphenyl, aromatic compounds such as cyclohexylbenzene, t-butylbenzene, and t-amylbenzene. The amount of the overcharge inhibitor used is usually 0 to 5% by weight, preferably 0 to 3% by weight, based on the total weight of the electrolyte.
 脱水剤としては、ゼオライト、シリカゲル及び酸化カルシウム等が挙げられる。脱水剤の使用量は、電解液の全重量に基づいて、通常0~5重量%、好ましくは0~3重量%である。 Examples of the dehydrating agent include zeolite, silica gel and calcium oxide. The amount of the dehydrating agent used is usually 0 to 5% by weight, preferably 0 to 3% by weight, based on the total weight of the electrolytic solution.
 容量安定化剤としては、フルオロエチレンカーボネート、無水コハク酸、1-メチル-2-ピペリドン、ヘプタン及びフルオロベンゼン等が挙げられる。容量安定化剤の使用量は、電解液の全重量に基づいて、通常0~5重量%、好ましくは0~3重量%である。 Examples of the capacity stabilizer include fluoroethylene carbonate, succinic anhydride, 1-methyl-2-piperidone, heptane and fluorobenzene. The amount of the capacity stabilizer used is usually 0 to 5% by weight, preferably 0 to 3% by weight, based on the total weight of the electrolytic solution.
 以下、実施例により本発明を更に説明するが、本発明はこれらに限定されるものではない。以下、特に定めない限り、%は重量%、部は重量部を示す。 Hereinafter, the present invention will be further described with reference to examples, but the present invention is not limited thereto. Hereinafter, unless otherwise specified, “%” represents “% by weight” and “parts” represents “parts by weight”.
<製造例1>
 N,N’-ビス-{(4-ビニルフェニル)メチル}-4,7-ジアザ-15-クラウン-5-エーテル(以下(A-1)と記載)の合成;
 攪拌機、温度計及び冷却管を取り付けたフラスコに、4,7-ジアザ-15-クラウン5-エーテル[東京化成工業(株)製]0.72部(3.3mmol)、4-(クロロメチル)スチレン[東京化成工業(株)製]1.0部(6.6mmol)及びアセトニトリル10部を仕込み、攪拌しながら均一に溶解させた後、攪拌下室温で24時間反応させた。アセトニトリルを減圧(1.3kPa)によって除去した後、アセトンを溶剤としたアルミナカラム(150mesh、Brockman1,standard grade、シグマアルドリッチ社製)によって精製し、(A-1)1.1部(2.5mmol)を得た(収率75%)。
<Production Example 1>
Synthesis of N, N′-bis-{(4-vinylphenyl) methyl} -4,7-diaza-15-crown-5-ether (hereinafter referred to as (A-1));
In a flask equipped with a stirrer, a thermometer and a condenser, 4,7-diaza-15-crown 5-ether [manufactured by Tokyo Chemical Industry Co., Ltd.] 0.72 parts (3.3 mmol), 4- (chloromethyl) Styrene [manufactured by Tokyo Chemical Industry Co., Ltd.] 1.0 part (6.6 mmol) and 10 parts of acetonitrile were charged and dissolved uniformly with stirring, and then reacted at room temperature for 24 hours with stirring. Acetonitrile was removed by reduced pressure (1.3 kPa), and then purified by an alumina column (150 mesh, Blockman 1, standard grade, manufactured by Sigma-Aldrich) using acetone as a solvent, and 1.1 parts (2.5 mmol) of (A-1) ) Was obtained (yield 75%).
<製造例2> 
 N,N’-ビス-{(4-ビニルフェニル)メチル}-4,10-ジアザ-15-クラウン-5-エーテル(以下(A-2)と記載)の合成;
 製造例1の4,7-ジアザ-15-クラウン5-エーテル0.72部を4,10-ジアザ-15-クラウン5-エーテル[東京化成工業(株)製]0.72部(3.3mmol)に変更した以外は同様の操作を行い、(A-2)1.1部(2.5mmol)を得た(収率75%)。 
<Production Example 2>
Synthesis of N, N′-bis-{(4-vinylphenyl) methyl} -4,10-diaza-15-crown-5-ether (hereinafter referred to as (A-2));
0.72 part of 4,10-diaza-15-crown 5-ether (manufactured by Tokyo Chemical Industry Co., Ltd.) 0.73 parts (3.3 mmol) of 4,7-diaza-15-crown 5-ether of Production Example 1 The procedure was the same as above except that the content was changed to) to obtain 1.1 parts (2.5 mmol) of (A-2) (yield 75%).
<製造例3>
 N,N’-ビス-{(4-ビニルフェニル)メチル}-1,4-ジアザ-6-クラウン-2-エーテル(以下(A-3)と記載)の合成;
 製造例1の4,7-ジアザ-15-クラウン5-エーテル0.72部を1,4-ジアザ-6-クラウン-2-エーテル[東京化成工業(株)製]0.28部(3.3mmol)に変更した以外は同様の操作を行い、(A-3)0.71部(2.2mmol)を得た(収率68%)。
<Production Example 3>
Synthesis of N, N′-bis-{(4-vinylphenyl) methyl} -1,4-diaza-6-crown-2-ether (hereinafter referred to as (A-3));
0.78 part of 4,7-diaza-15-crown 5-ether of Production Example 1 is 0.28 part of 1,4-diaza-6-crown-2-ether [manufactured by Tokyo Chemical Industry Co., Ltd.] (3. The same operation was carried out except that the amount was changed to 3 mmol) to obtain 0.71 part (2.2 mmol) of (A-3) (yield 68%).
<製造例4>
 N,N’-ジシンナミル-4,7-ジアザ-15-クラウン-5-エーテル(以下(A-4)と記載)の合成;
 製造例1の4-(クロロメチル)スチレン1.0部をシンナミルクロライド[東京化成工業(株)製]1.0部(6.6mmol)に変更した以外は同様の操作を行い、(A-4)1.0部(2.3mmol)を得た(収率71%)。
<Production Example 4>
Synthesis of N, N′-dicinnamyl-4,7-diaza-15-crown-5-ether (hereinafter referred to as (A-4));
The same operation was carried out except that 1.0 part of 4- (chloromethyl) styrene of Production Example 1 was changed to 1.0 part (6.6 mmol) of cinnamilk chloride (manufactured by Tokyo Chemical Industry Co., Ltd.) (A -4) 1.0 part (2.3 mmol) was obtained (yield 71%).
<製造例5>
 N,N’-ジシンナミル-4,10-ジアザ-15-クラウン-5-エーテル(以下(A-5)と記載)の合成;
 製造例2の4-(クロロメチル)スチレン1.0部をシンナミルクロライド[東京化成工業(株)製]1.0部(6.6mmol)に変更した以外は同様の操作を行い、(A-5)1.1部(2.5mmol)を得た(収率75%)。
<Production Example 5>
Synthesis of N, N′-dicinnamyl-4,10-diaza-15-crown-5-ether (hereinafter referred to as (A-5));
The same operation was carried out except that 1.0 part of 4- (chloromethyl) styrene in Production Example 2 was changed to 1.0 part (6.6 mmol) of cinnamilk chloride (manufactured by Tokyo Chemical Industry Co., Ltd.) (A -5) 1.1 parts (2.5 mmol) were obtained (yield 75%).
<製造例6>
 N,N’-ジシンナミル-1,4-ジアザ-6-クラウン-2-エーテル(以下(A-6)と記載)の合成;
 製造例3の4-(クロロメチル)スチレン1.0部をシンナミルクロライド[東京化成工業(株)製]1.0部(6.6mmol)に変更した以外は同様の操作を行い、(A-6)0.68部(2.1mmol)を得た(収率65%)。
<Production Example 6>
Synthesis of N, N′-dicinnamyl-1,4-diaza-6-crown-2-ether (hereinafter referred to as (A-6));
The same operation was carried out except that 1.0 part of 4- (chloromethyl) styrene of Production Example 3 was changed to 1.0 part (6.6 mmol) of cinnamilk chloride (manufactured by Tokyo Chemical Industry Co., Ltd.) (A -6) 0.68 part (2.1 mmol) was obtained (yield 65%).
<製造例7>
 N,N’-ビス-{(2-メトキシカルボニルビニル)メチル}-4、10-ジアザ-15-クラウン-5-エーテル(以下(A-7)と記載)の合成;
 攪拌器、温度計及び冷却管を取り付けたフラスコに、4,10-ジアザ-15-クラウン-5-エーテル[東京化成工業(株)製]0.61部(5.6mmol)、4-ブロモ-2-ブテン酸メチルエステル[東京化成工業(株)製]1.0部(5.6mmol)及びアセトニトリル10部を仕込み、攪拌しながら均一に溶解させた後、攪拌下室温で24時間反応させた。アセトニトリルを減圧(1.3kPa)によって除去後、アセトンを溶剤としたアルミナカラム(150mesh、Brockman1,standard grade、シグマアルドリッチ社製)によって反応物を精製し、N,N’-ビス-[(2-メトキシカルボニルビニル)メチル]-4、10-ジアザ-15-クラウン-5-エーテル(A-7)0.85部(2.0mmol)を得た(収率71%)。
<Production Example 7>
Synthesis of N, N′-bis-{(2-methoxycarbonylvinyl) methyl} -4, 10-diaza-15-crown-5-ether (hereinafter referred to as (A-7));
To a flask equipped with a stirrer, a thermometer and a condenser tube, 0.61 part (5.6 mmol) of 4,10-diaza-15-crown-5-ether (Tokyo Chemical Industry Co., Ltd.), 4-bromo- 2-butenoic acid methyl ester [manufactured by Tokyo Chemical Industry Co., Ltd.] 1.0 part (5.6 mmol) and acetonitrile 10 parts were charged and dissolved uniformly with stirring, and then reacted at room temperature for 24 hours with stirring. . After the acetonitrile was removed under reduced pressure (1.3 kPa), the reaction product was purified by an alumina column (150 mesh, Blockman 1, standard grade, manufactured by Sigma-Aldrich) using acetone as a solvent, and N, N′-bis-[(2- Methoxycarbonylvinyl) methyl] -4,10-diaza-15-crown-5-ether (A-7) 0.85 part (2.0 mmol) was obtained (yield 71%).
<製造例8>
 N,N’-ビス-(2-アクリロイルオキシエチル)-4,10-ジアザ-15-クラウン-5-エーテル(以下(A-8)と記載)の合成;
 製造例7の4-ブロモ-2-ブテン酸メチルエステル1.0部をアクリル酸-2-クロロエチルエステル[東京化成工業(株)製]0.76部(5.6mmol)に変更した以外は同様の操作を行い、(A-8)0.60部(1.9mmol)を得た(収率68%)。
<Production Example 8>
Synthesis of N, N′-bis- (2-acryloyloxyethyl) -4,10-diaza-15-crown-5-ether (hereinafter referred to as (A-8));
Except that 1.0 part of 4-bromo-2-butenoic acid methyl ester of Production Example 7 was changed to 0.76 part (5.6 mmol) of acrylic acid-2-chloroethyl ester [manufactured by Tokyo Chemical Industry Co., Ltd.] The same operation was performed to obtain 0.60 part (1.9 mmol) of (A-8) (yield 68%).
<製造例9>
 N,N’-ビス-{(4-ビニルフェニル)メチル}-4,10-ジアザ-12-クラウン-4-エーテル(以下(A-9)と記載)の合成;
 製造例1の4,7-ジアザ-15-クラウン5-エーテル0.72部を4,10-ジアザ-12-クラウン-4-エーテル[東京化成工業(株)製]0.57部(3.3mmol)に変更した以外は同様の操作を行い、(A-9)0.9部(2.2mmol)を得た(収率67%)。
<Production Example 9>
Synthesis of N, N′-bis-{(4-vinylphenyl) methyl} -4,10-diaza-12-crown-4-ether (hereinafter referred to as (A-9));
0.77 part of 4,7-diaza-15-crown 5-ether of Production Example 1 is 0.57 part of 4,10-diaza-12-crown-4-ether [manufactured by Tokyo Chemical Industry Co., Ltd.] (3. The same operation was performed except that the amount was changed to 3 mmol) to obtain 0.9 part (2.2 mmol) of (A-9) (yield 67%).
<製造例10>
 N-{(4-ビニルフェニル)メチル}-4-アザ-15-クラウン-5-エーテル(以下(A-10)と記載)の合成;
 製造例1の4,7-ジアザ-15-クラウン-5-エーテル0.72部を4-アザ-15-クラウン-5-エーテル[東京化成工業(株)製]0.72部(3.3mmol)に変更し、4-(クロロメチル)スチレン[東京化成工業(株)製]1.0部(6.6mmol)を、0.5部(3.3mmol)に変更した以外は同様の操作を行い、(A-10)0.7部(2.1mmol)を得た(収率64%)。
<Production Example 10>
Synthesis of N-{(4-vinylphenyl) methyl} -4-aza-15-crown-5-ether (hereinafter referred to as (A-10));
0.72 part (3.3 mmol) of 4-aza-15-crown-5-ether [manufactured by Tokyo Chemical Industry Co., Ltd.] was added to 0.72 part of 4,7-diaza-15-crown-5-ether of Production Example 1. Except that 1.0 part (6.6 mmol) of 4- (chloromethyl) styrene [manufactured by Tokyo Chemical Industry Co., Ltd.] was changed to 0.5 part (3.3 mmol). And 0.7 part (2.1 mmol) of (A-10) was obtained (yield 64%).
<製造例11>
 N-{(4-ビニルフェニル)メチル}-4-アザ-ジベンゾ-18-クラウン-6-エーテル(以下(A-11)と記載)の合成;
 製造例1の4,7-ジアザ-15-クラウン-5-エーテル0.72部を4-アザ-ジベンゾ-18-クラウン-6-エーテル[東京化成工業(株)製]2.4部(6.6mmol)に変更した以外は同様の操作を行い、(A-11)1.0部(2.1mmol)を得た(収率32%)。
<Production Example 11>
Synthesis of N-{(4-vinylphenyl) methyl} -4-aza-dibenzo-18-crown-6-ether (hereinafter referred to as (A-11));
0.72 parts of 4,7-diaza-15-crown-5-ether of Production Example 1 was replaced with 2.4 parts of 4-aza-dibenzo-18-crown-6-ether [manufactured by Tokyo Chemical Industry Co., Ltd.] (6 The same operation was conducted except that the amount was changed to 0.6 mmol), and 1.0 part (2.1 mmol) of (A-11) was obtained (yield 32%).
<製造例12>
[リチウム二次電池用正極の作製]
 LiCoO粉末90.0部、ケチェンブラック[シグマアルドリッチ社製]5部及びポリフッ化ビニリデン[シグマアルドリッチ社製]5部を乳鉢で充分に混合した後、1-メチル-2-ピロリドン[東京化成工業(株)製]70.0部を添加し、更に乳鉢で充分に混合してスラリーを得た。得られたスラリーを、大気中でワイヤーバーを用いて厚さ20μmのアルミニウム電解箔上の片面に塗布し、100℃で15分間乾燥させた後、更に減圧下(1.3kPa)、80℃で5分間乾燥して、15.95mmφに打ち抜き製造例12のリチウム二次電池用正極を作製した。
<Production Example 12>
[Preparation of positive electrode for lithium secondary battery]
After 90.0 parts of LiCoO 2 powder, 5 parts of Ketjen black [Sigma-Aldrich] and 5 parts of polyvinylidene fluoride (Sigma-Aldrich) were mixed thoroughly in a mortar, 1-methyl-2-pyrrolidone [Tokyo Kasei Co., Ltd.] Kogyo Co., Ltd.] 70.0 parts was added and further mixed well in a mortar to obtain a slurry. The obtained slurry was applied on one side of an aluminum electrolytic foil having a thickness of 20 μm using a wire bar in the atmosphere, dried at 100 ° C. for 15 minutes, and further under reduced pressure (1.3 kPa) at 80 ° C. It was dried for 5 minutes, punched out to 15.95 mmφ, and a positive electrode for a lithium secondary battery of Production Example 12 was produced.
<製造例13~26>
[負極用添加剤(B)の作製]
 表1に示した処方に基づいて、環状化合物(A)、ルイス塩基(J)及び負極保護膜形成剤(K)若しくは(I)を配合し、製造例13~26の負極用添加剤(B)を調整した。
<Production Examples 13 to 26>
[Preparation of Additive for Negative Electrode (B)]
Based on the formulation shown in Table 1, the cyclic compound (A), Lewis base (J), and negative electrode protective film forming agent (K) or (I) were blended, and the negative electrode additives (B ) Was adjusted.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
なお、表1中の環状化合物(A)、ルイス塩基(J)及び負極保護膜形成剤(K)又は(I)の略号は以下のとおりである。
(A-1):N,N’-ビス-{(4-ビニルフェニル)メチル}-4,7-ジアザ-15-クラウン-5-エーテル
(A-2):N,N’-ビス-{(4-ビニルフェニル)メチル}-4,10-ジアザ-15-クラウン-5-エーテル
(A-3):N,N’-ビス-{(4-ビニルフェニル)メチル}-1,4-ジアザ-6-クラウン-2-エーテル
(A-4):N,N’-ジシンナミル-4,7-ジアザ-15-クラウン-5-エーテル
(A-5):N,N’-ジシンナミル-4,10-ジアザ-15-クラウン-5-エーテル
(A-6):N,N’-ジシンナミル-1,4-ジアザ-6-クラウン-2-エーテル
(A-7):N,N’-ビス-{(2-メトキシカルボニルビニル)メチル}-4、10-ジアザ-15-クラウン-5-エーテル
(A-8):N,N’-ビス-(2-アクリロイルオキシエチル)-4,10-ジアザ-15-クラウン-5-エーテル
(A-9):N,N’-ビス-{(4-ビニルフェニル)メチル}-4,10-ジアザ-12-クラウン-4-エーテル
(A-10):N-{(4-ビニルフェニル)メチル}-4-アザ-15-クラウン-5-エーテル
(A-11):N-{(4-ビニルフェニル)メチル}-4-アザ-ジベンゾ-18-クラウン-6-エーテル
(J-1):3-アミノ-1,2,4-トリアゾール
(K-1):ビニレンカーボネート
(I-1):ビニレンカーボネート
In addition, the abbreviations of the cyclic compound (A), Lewis base (J) and negative electrode protective film forming agent (K) or (I) in Table 1 are as follows.
(A-1): N, N′-bis-{(4-vinylphenyl) methyl} -4,7-diaza-15-crown-5-ether (A-2): N, N′-bis- { (4-Vinylphenyl) methyl} -4,10-diaza-15-crown-5-ether (A-3): N, N′-bis-{(4-vinylphenyl) methyl} -1,4-diaza -6-crown-2-ether (A-4): N, N'-dicinnamyl-4,7-diaza-15-crown-5-ether (A-5): N, N'-dicinnamyl-4,10 -Diaza-15-crown-5-ether (A-6): N, N'-dicinnamyl-1,4-diaza-6-crown-2-ether (A-7): N, N'-bis- { (2-Methoxycarbonylvinyl) methyl} -4, 10-diaza-15-crown-5-ether (A-8): N, N′-bis- (2-acryloyloxyethyl) -4,10-diaza-15-crown-5-ether (A-9): N, N′-bis-{(4 -Vinylphenyl) methyl} -4,10-diaza-12-crown-4-ether (A-10): N-{(4-vinylphenyl) methyl} -4-aza-15-crown-5-ether ( A-11): N-{(4-vinylphenyl) methyl} -4-aza-dibenzo-18-crown-6-ether (J-1): 3-amino-1,2,4-triazole (K- 1): Vinylene carbonate (I-1): Vinylene carbonate
<実施例1~16及び比較例1~15>
[リチウム二次電池用負極の作製]
 製造例13~26で得た負極用添加剤(B)を添加したリチウム二次電池用負極を以下の方法で作製した。
 平均粒子径約8~12μmの黒鉛粉末92.5部、ポリフッ化ビニリデン7.5部、1-メチル-2-ピロリドン[東京化成工業(株)製]200部及び表2に基づき負極用添加剤(B)0.2部を加え、乳鉢で充分に混合しスラリーを得た。得られたスラリーを、厚さ20μmの銅箔の片面に塗布し、100℃で15分間乾燥して溶媒を蒸発させた後、16.15mmφに打ち抜き、プレス機で厚さ30μmにして実施例1~16及び比較例1~15のリチウム二次電池用負極を作製した。
 また、表2に(B)の記載のないものは、(B)を添加せずに作製した。
<Examples 1 to 16 and Comparative Examples 1 to 15>
[Preparation of negative electrode for lithium secondary battery]
Negative electrodes for lithium secondary batteries to which the negative electrode additive (B) obtained in Production Examples 13 to 26 was added were prepared by the following method.
Additive for negative electrode based on 92.5 parts of graphite powder having an average particle size of about 8 to 12 μm, 7.5 parts of polyvinylidene fluoride, 200 parts of 1-methyl-2-pyrrolidone [manufactured by Tokyo Chemical Industry Co., Ltd.] and Table 2 (B) 0.2 part was added and it fully mixed with the mortar and obtained the slurry. The obtained slurry was applied to one side of a copper foil having a thickness of 20 μm, dried at 100 ° C. for 15 minutes to evaporate the solvent, punched to 16.15 mmφ, and made 30 μm in thickness with a press machine. To 16 and Comparative Examples 1 to 15 were prepared.
Moreover, the thing without description of (B) in Table 2 produced without adding (B).
[リチウム二次電池用電解液の作製]
実施例1~16の電解液
 エチレンカーボネートとジメチルカーボネートの混合溶媒(体積比率1:1)に、LiPFを1mol/Lの割合で溶解させて実施例1~16のリチウム二次電池用電解液を作製した。
比較例1~15の電解液
 表2に基づき、上記電解液100部に対して負極用添加剤(B)を0.2部添加して溶解し比較例1~15のリチウム二次電池用電解液を作製した。
[Preparation of electrolyte for lithium secondary battery]
Electrolytic solutions of Examples 1 to 16 LiPF 6 was dissolved in a mixed solvent of ethylene carbonate and dimethyl carbonate (volume ratio 1: 1) at a rate of 1 mol / L, and the electrolytic solutions for lithium secondary batteries of Examples 1 to 16 Was made.
Electrolytic solutions of Comparative Examples 1 to 15 Based on Table 2, 0.2 parts of the negative electrode additive (B) was added to 100 parts of the electrolytic solution and dissolved therein. A liquid was prepared.
[リチウム二次電池の作製]
 2032型コインセル内の両端に、製造例12の正極と実施例1~16、比較例1~15の負極をそれぞれの塗布面が向き合うように配置して、電極間にセパレータ(ポリプロピレン製不織布)を挿入し、二次電池用セルを作製した。セルに電解液を注液密封し、以下の方法で二次電池出力特性及び二次電池サイクル特性を評価した結果を表2に示した。
[Production of lithium secondary battery]
At both ends of the 2032 type coin cell, the positive electrode of Production Example 12 and the negative electrodes of Examples 1 to 16 and Comparative Examples 1 to 15 are arranged so that the coated surfaces face each other, and a separator (polypropylene nonwoven fabric) is placed between the electrodes. This was inserted to produce a secondary battery cell. Table 2 shows the results of sealing the electrolyte in the cell and evaluating the secondary battery output characteristics and secondary battery cycle characteristics by the following method.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
<製造例27>
[リチウムイオンキャパシタ用正極の作製]
 活性炭粉末90.0部、ケチェンブラック[シグマアルドリッチ社製]5.0部及びポリフッ化ビニリデン[シグマアルドリッチ社製]5.0部を乳鉢で充分に混合した後、1-メチル-2-ピロリドン[東京化成工業(株)製]70.0部、を添加し、更に乳鉢で充分に混合してスラリーを得た。得られたスラリーを、大気中でワイヤーバーを用いて厚さ20μmのアルミニウム電解箔上の片面に塗布し、100℃で15分間乾燥させた後、更に減圧下(1.3kPa)、80℃で5分間乾燥して、15.95mmφに打ち抜き、製造例27のリチウムイオンキャパシタ用正極を作製した。
<Production Example 27>
[Production of positive electrode for lithium ion capacitor]
90.0 parts of activated carbon powder, 5.0 parts of Ketjen black [Sigma-Aldrich] and 5.0 parts of polyvinylidene fluoride [Sigma-Aldrich] were thoroughly mixed in a mortar, and then 1-methyl-2-pyrrolidone. [Tokyo Chemical Industry Co., Ltd.] 70.0 parts was added and further mixed well in a mortar to obtain a slurry. The obtained slurry was applied on one side of an aluminum electrolytic foil having a thickness of 20 μm using a wire bar in the atmosphere, dried at 100 ° C. for 15 minutes, and further under reduced pressure (1.3 kPa) at 80 ° C. It was dried for 5 minutes and punched out to 15.95 mmφ to produce a positive electrode for a lithium ion capacitor of Production Example 27.
<実施例17~32及び比較例16~30>
[リチウムイオンキャパシタ用負極の作製]
 平均粒子径約8~12μmの黒鉛粉末92.5部、ポリフッ化ビニリデン7.5部、1-メチル-2-ピロリドン[東京化成工業(株)製]200部及び表3に基づき負極用添加剤(B)0.2部を加え、乳鉢で充分に混合しスラリーを得た。得られたスラリーを、厚さ20μmの銅箔の片面に塗布し、100℃で15分間乾燥して溶媒を蒸発させた後、16.15mmφに打ち抜き、プレス機で厚さ30μmにした。得られた電極と、リチウム金属箔を、セパレータ(ポリプロピレン製不織布)で挟んでビーカーセルにセットし、負極理論容量の約75%のリチウムイオンを約10時間かけて負極に吸蔵させ、実施例17~32及び比較例16~30のリチウムイオンキャパシタ用負極を作製した。
 また、表3に(B)の記載のないものは、(B)を添加せずに作製した。
<Examples 17 to 32 and Comparative Examples 16 to 30>
[Production of negative electrode for lithium ion capacitor]
Additive for negative electrode based on 92.5 parts of graphite powder having an average particle size of about 8-12 μm, 7.5 parts of polyvinylidene fluoride, 200 parts of 1-methyl-2-pyrrolidone (manufactured by Tokyo Chemical Industry Co., Ltd.) and Table 3 (B) 0.2 part was added and it fully mixed with the mortar and obtained the slurry. The obtained slurry was applied to one side of a 20 μm thick copper foil, dried at 100 ° C. for 15 minutes to evaporate the solvent, punched to 16.15 mmφ, and made 30 μm thick with a press. The obtained electrode and lithium metal foil were sandwiched between separators (polypropylene nonwoven fabric) and set in a beaker cell, and about 75% of the negative electrode theoretical capacity lithium ions were occluded in the negative electrode over about 10 hours. Example 17 To 32 and Comparative Examples 16 to 30 were prepared.
Moreover, the thing without description of (B) in Table 3 produced without adding (B).
[リチウムイオンキャパシタ用電解液の作製]
実施例17~32の電解液
 エチレンカーボネートとジメチルカーボネートの混合溶媒(体積比率1:1)に、LiPFを1mol/Lの割合で溶解させて実施例17~32のリチウムイオンキャパシタ用電解液を作製した。
比較例16~30の電解液
 表3に基づき、上記電解液100部に対して負極用添加剤(B)を0.2部添加して比較例16~30の電解液を作製した。
[Preparation of electrolyte for lithium ion capacitor]
Electrolytes of Examples 17 to 32 LiPF 6 was dissolved in a mixed solvent of ethylene carbonate and dimethyl carbonate (volume ratio 1: 1) at a rate of 1 mol / L to prepare electrolytes for lithium ion capacitors of Examples 17 to 32. Produced.
Electrolytic Solutions of Comparative Examples 16-30 Based on Table 3, 0.2 parts of the negative electrode additive (B) was added to 100 parts of the electrolytic solution to prepare electrolytic solutions of Comparative Examples 16-30.
[リチウムイオンキャパシタの作製]
 ポリプロピレンのアルミラミネートフィルムからなる収納ケースに、製造例27の正極と実施例17~32、比較例16~30の負極を、それぞれの塗布面が向き合うように配置して、電極間にセパレータ(ポリプロピレン製不織布)を挿入し、キャパシタ用セルを作製した。セルに電解液を注液密封し、以下の方法でキャパシタ出力特性及びキャパシタサイクル特性を評価した結果を表3に示した。
[Production of lithium ion capacitors]
In a storage case made of an aluminum laminate film of polypropylene, the positive electrode of Production Example 27 and the negative electrodes of Examples 17 to 32 and Comparative Examples 16 to 30 are arranged so that the coated surfaces face each other, and a separator (polypropylene) is placed between the electrodes. A non-woven fabric) was inserted to produce a capacitor cell. Table 3 shows the results of evaluating the capacitor output characteristics and the capacitor cycle characteristics by injecting and sealing the electrolytic solution to the cell and by the following method.
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
<リチウム二次電池出力特性の評価>
 充放電測定装置「バッテリーアナライザー1470型」[東陽テクニカ(株)製]を用いて、0.1Cの電流で電圧4.3Vまで充電し、10分間の休止後、0.1Cの電流で電圧を3.0Vまで放電し、放電容量(以下0.1C放電容量と記載)を測定した。次に0.1Cの電流で電圧4.3Vまで充電し、10分間の休止後、1Cの電流で電圧を3.0Vまで放電し容量(以下1C放電容量と記載)を測定し、下記式から1C放電時の容量維持率を算出する。数値が大きい程、出力特性が良好であることを示す。
1C放電時の容量維持率(%)=(1C放電容量/0.1C放電容量)×100
<Evaluation of lithium secondary battery output characteristics>
Using a charge / discharge measuring device “Battery Analyzer 1470” [manufactured by Toyo Technica Co., Ltd.], charge to a voltage of 4.3 V with a current of 0.1 C. After resting for 10 minutes, the voltage is applied with a current of 0.1 C. The battery was discharged to 3.0 V, and the discharge capacity (hereinafter referred to as 0.1 C discharge capacity) was measured. Next, the battery is charged to a voltage of 4.3 V with a current of 0.1 C, and after a pause of 10 minutes, the voltage is discharged to 3.0 V with a current of 1 C, and the capacity (hereinafter referred to as 1 C discharge capacity) is measured. The capacity maintenance rate at the time of 1C discharge is calculated. The larger the value, the better the output characteristics.
Capacity maintenance rate during 1 C discharge (%) = (1 C discharge capacity / 0.1 C discharge capacity) × 100
<リチウム二次電池サイクル特性の評価>
 室温下、充放電測定装置「バッテリーアナライザー1470型」[東陽テクニカ(株)製]を用いて、0.1Cの電流で電圧4.3Vまで充電し、10分間の休止後、0.1Cの電流で電池電圧を3.0Vまで放電し、この充放電を繰り返した。この時の初回充電時の電池容量と500サイクル目充電時の電池容量を測定し、下記式から充放電サイクル特性を算出する。数値が大きい程、充放電サイクル特性が良好であることを示す。
室温充放電サイクル特性(%)=(500サイクル目充電時の電池容量/初回充電時の電池容量)×100
<Evaluation of lithium secondary battery cycle characteristics>
Using a charge / discharge measuring device “Battery Analyzer 1470” [manufactured by Toyo Technica Co., Ltd.] at room temperature, the battery was charged to a voltage of 4.3 V with a current of 0.1 C, and after a pause of 10 minutes, a current of 0.1 C The battery voltage was discharged to 3.0V, and this charge / discharge was repeated. At this time, the battery capacity at the first charge and the battery capacity at the 500th charge are measured, and the charge / discharge cycle characteristics are calculated from the following equation. It shows that charging / discharging cycling characteristics are so favorable that a numerical value is large.
Room temperature charge / discharge cycle characteristics (%) = (battery capacity at 500th charge / battery capacity at first charge) × 100
<リチウムイオンキャパシタ出力特性の評価>
 充放電測定装置「バッテリーアナライザー1470型」[東陽テクニカ(株)製]を用いて、1Cの電流で電圧3.8Vまで充電し、10分間の休止後、1Cの電流で電圧を2.0Vまで放電し、放電容量(以下1C放電容量と記載)を測定した。次に1Cの電流で電圧3.8Vまで充電し、10分間の休止後、10Cの電流で電圧を2.0Vまで放電し容量(以下10C放電容量と記載)を測定し、下記式から10C放電時の容量維持率を算出する。数値が大きい程、出力特性が良好であることを示す。
10C放電時の容量維持率(%)=(10C放電容量/1C放電容量)×100
<Evaluation of lithium ion capacitor output characteristics>
Charge / discharge measuring device “Battery Analyzer 1470” [manufactured by Toyo Technica Co., Ltd.] is charged to a voltage of 3.8 V at a current of 1 C, and after a pause of 10 minutes, the voltage is increased to 2.0 V at a current of 1 C. After discharging, the discharge capacity (hereinafter referred to as 1C discharge capacity) was measured. Next, the battery is charged to a voltage of 3.8 V with a current of 1 C, and after a pause of 10 minutes, the voltage is discharged to 2.0 V with a current of 10 C, and the capacity (hereinafter referred to as 10 C discharge capacity) is measured. Calculate the capacity maintenance rate at the time. The larger the value, the better the output characteristics.
Capacity maintenance rate during 10C discharge (%) = (10C discharge capacity / 1C discharge capacity) × 100
<リチウムイオンキャパシタサイクル特性の評価>
 室温下、充放電測定装置「バッテリーアナライザー1470型」[東陽テクニカ(株)製]を用いて、1Cの電流で電圧3.8Vまで充電し、10分間の休止後、1Cの電流で電池電圧を2.0Vまで放電し、この充放電を繰り返した。この時の初回充電時のキャパシタ容量と500サイクル目充電時のキャパシタ容量を測定し、下記式から充放電サイクル特性を算出する。数値が大きい程、充放電サイクル特性が良好であることを示す。
室温充放電サイクル特性(%)=(500サイクル目充電時のキャパシタ容量/初回充電時のキャパシタ容量)×100
<Evaluation of lithium ion capacitor cycle characteristics>
Using a charge / discharge measuring device “Battery Analyzer 1470” [manufactured by Toyo Technica Co., Ltd.] at room temperature, the battery is charged to a voltage of 3.8 V with a current of 1 C, and after a pause of 10 minutes, the battery voltage is supplied with a current of 1 C. The battery was discharged to 2.0 V, and this charge / discharge was repeated. At this time, the capacitor capacity at the first charge and the capacitor capacity at the 500th charge are measured, and the charge / discharge cycle characteristics are calculated from the following equation. It shows that charging / discharging cycling characteristics are so favorable that a numerical value is large.
Room temperature charge / discharge cycle characteristics (%) = (capacitor capacity at 500th charge / capacitor capacity at first charge) × 100
 本発明の負極用添加剤を用いて作製したリチウム二次電池及びリチウムイオンキャパシタは、出力特性に優れている。出力特性が向上する原因としては、表面でリチウムイオン配位性の高分子皮膜が形成され、脱溶媒和エネルギーが低減されるためと考える。 The lithium secondary battery and lithium ion capacitor produced using the negative electrode additive of the present invention are excellent in output characteristics. The reason why the output characteristics are improved is considered to be that a lithium ion-coordinating polymer film is formed on the surface and the desolvation energy is reduced.
 本発明の負極用添加剤(B)を使用した電極は出力特性が優れているため、特にリチウム二次電池用又はリチウムイオンキャパシタ用の電極として有用であり、電気自動車用として好適である。 Since the electrode using the additive for negative electrode (B) of the present invention has excellent output characteristics, it is particularly useful as an electrode for a lithium secondary battery or a lithium ion capacitor, and is suitable for an electric vehicle.

Claims (14)

  1.  一般式(1)で示される環状構造を有し、少なくとも1個の分子内の水素原子が、重合性不飽和結合(x)を有する有機基(a)に置換されてなる環状化合物(A)を含有する負極用添加剤(B)。
    -[-CR-CR-Y-]-  (1)
    [R~Rは水素原子または炭素数1~10である炭化水素基である。Rおよび/またはRとRおよび/またはRが互いに結合して環を形成していてもよい。YはO、NH、S、PH及びSeからなる群より選ばれる少なくとも2価の官能基を示す。nは2~10の整数である。繰り返し単位-[-CR-CR-Y-]-は互いに同じでも異なっていてもよい。一般式(1)の両末端は互いに結合しており、環状構造を形成する。]
    A cyclic compound (A) having a cyclic structure represented by the general formula (1), wherein at least one hydrogen atom in the molecule is substituted with an organic group (a) having a polymerizable unsaturated bond (x) A negative electrode additive (B).
    -[-CR 1 R 2 -CR 3 R 4 -Y-] n- (1)
    [R 1 to R 4 are a hydrogen atom or a hydrocarbon group having 1 to 10 carbon atoms. R 1 and / or R 2 and R 3 and / or R 4 may be bonded to each other to form a ring. Y represents at least a divalent functional group selected from the group consisting of O, NH, S, PH and Se. n is an integer of 2 to 10. The repeating unit — [— CR 1 R 2 —CR 3 R 4 —Y —] — may be the same as or different from each other. Both ends of the general formula (1) are bonded to each other to form a cyclic structure. ]
  2.  環状化合物(A)が下記の(1)または(2)である請求項1に記載の負極用添加剤(B)。
    (1)一般式(1)におけるR~Rがすべて水素原子である環状化合物(A)
    (2)少なくとも1つの繰り返し構造において、一般式(1)における-CR-CR-が1,2-フェニレン基である環状化合物(A)
    The additive for negative electrode (B) according to claim 1, wherein the cyclic compound (A) is the following (1) or (2).
    (1) Cyclic compound (A) in which R 1 to R 4 in formula (1) are all hydrogen atoms
    (2) a cyclic compound (A) in which —CR 1 R 2 —CR 3 R 4 — in general formula (1) is a 1,2-phenylene group in at least one repeating structure
  3.  環状化合物(A)において、一般式(1)におけるYの少なくとも1つがNHであり、他のYはすべて酸素原子である請求項1または2に記載の負極用添加剤(B)。 3. The negative electrode additive (B) according to claim 1, wherein in the cyclic compound (A), at least one of Y in the general formula (1) is NH, and the other Ys are all oxygen atoms.
  4.  一般式(1)におけるYであるNHの水素原子の少なくとも1つが、有機基(a)で置換されてなる請求項1~3のいずれか1項に記載の負極用添加剤(B)。 The additive for negative electrode (B) according to any one of claims 1 to 3, wherein at least one hydrogen atom of NH which is Y in the general formula (1) is substituted with an organic group (a).
  5.  一般式(1)においてnが2~6である請求項1~4のいずれか1項に記載の負極用添加剤(B)。 The negative electrode additive (B) according to any one of claims 1 to 4, wherein n is 2 to 6 in the general formula (1).
  6.  一般式(1)におけるYの少なくとも1つがNHであり、一般式(1)で表される環状構造中の窒素原子に直接結合する水素原子のうち1~3個が、有機基(a)で置換されてなる請求項1~5のいずれか1項に記載の負極用添加剤(B)。 At least one of Y in the general formula (1) is NH, and 1 to 3 of the hydrogen atoms directly bonded to the nitrogen atom in the cyclic structure represented by the general formula (1) are organic groups (a). The negative electrode additive (B) according to any one of claims 1 to 5, which is substituted.
  7.  有機基(a)が、一般式(2)で示される基、一般式(3)で示される基、および一般式(4)で示される基からなる群より選ばれる少なくとも1種の基である請求項1~4のいずれか1項に記載の負極用添加剤(B)。
    Figure JPOXMLDOC01-appb-C000001
    (式中、Rは炭素数1~3のアルキレン基である。Q、Q及びQは水素原子、炭素数が1~4のアルキル基及び炭素数6~12の芳香族基からなる群から選ばれた1種であり、少なくとも1つは炭素数6~12の芳香族基である。)
    Figure JPOXMLDOC01-appb-C000002
    (式中、Rは炭素数1~3のアルキレン基である。Q~Qは水素原子、炭素数が1~4のアルキル基、炭素数2~6のアルケニル基、ハロゲン原子及びフルオロアルキル基からなる群から選ばれた1種であり、少なくとも1つは炭素数2~6のアルケニル基である。)
    Figure JPOXMLDOC01-appb-C000003
    [式中、Rは炭素数1~3のアルキレン基、またはアルキレンオキシカルボニル基(カルボニル基を構成する炭素原子が炭素-炭素二重結合を構成する炭素原子に結合)である。Q、Q10及びQ11は、炭素数が1~4のアルキル基及びフェニル基からなる群から選ばれた1種である基T1、アルコキシカルボニル基、アシル基、ニトロ基、シアノ基、ハロゲン基からなる群から選ばれた1種である基T2、または水素原子であり、少なくとも1つは基T2であるか、またはQ、Q10及びQ11のいずれもが基T2でない場合は、Rがアルキレンオキシカルボニル基(カルボニル基を構成する炭素原子が炭素-炭素二重結合を構成する炭素原子に結合)である。]
    The organic group (a) is at least one group selected from the group consisting of a group represented by the general formula (2), a group represented by the general formula (3), and a group represented by the general formula (4). The negative electrode additive (B) according to any one of claims 1 to 4.
    Figure JPOXMLDOC01-appb-C000001
    (Wherein R 5 is an alkylene group having 1 to 3 carbon atoms. Q 1 , Q 2 and Q 3 are each a hydrogen atom, an alkyl group having 1 to 4 carbon atoms and an aromatic group having 6 to 12 carbon atoms. (At least one is an aromatic group having 6 to 12 carbon atoms.)
    Figure JPOXMLDOC01-appb-C000002
    (Wherein R 6 is an alkylene group having 1 to 3 carbon atoms. Q 4 to Q 8 are a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, an alkenyl group having 2 to 6 carbon atoms, a halogen atom, and a fluoro atom) (It is one selected from the group consisting of alkyl groups, and at least one is an alkenyl group having 2 to 6 carbon atoms.)
    Figure JPOXMLDOC01-appb-C000003
    [Wherein R 7 is an alkylene group having 1 to 3 carbon atoms or an alkyleneoxycarbonyl group (a carbon atom constituting a carbonyl group is bonded to a carbon atom constituting a carbon-carbon double bond). Q 9 , Q 10 and Q 11 are a group T1, an alkoxycarbonyl group, an acyl group, a nitro group, a cyano group, a halogen selected from the group consisting of an alkyl group having 1 to 4 carbon atoms and a phenyl group A group T2 selected from the group consisting of a group, or a hydrogen atom, at least one of which is a group T2, or when none of Q 9 , Q 10 and Q 11 is a group T2, R 7 is an alkyleneoxycarbonyl group (the carbon atom constituting the carbonyl group is bonded to the carbon atom constituting the carbon-carbon double bond). ]
  8.  環状化合物(A)が重合性不飽和結合(x)を1~7ミリモル/g含有する請求項1~7のいずれか1項に記載の負極用添加剤(B)。 The negative electrode additive (B) according to any one of claims 1 to 7, wherein the cyclic compound (A) contains 1 to 7 mmol / g of a polymerizable unsaturated bond (x).
  9.  請求項1~8のいずれか1項に記載の負極用添加剤(B)および活物質(C)を含有する負極。 A negative electrode comprising the negative electrode additive (B) and the active material (C) according to any one of claims 1 to 8.
  10.  負極用添加剤(B)、活物質(C)及び結着剤(D)を含有し、(B)、(C)および(D)の合計重量に対して(B)を0.01~5重量%含有する請求項9に記載の負極。 The negative electrode additive (B), the active material (C) and the binder (D) are contained, and (B) is 0.01 to 5 with respect to the total weight of (B), (C) and (D). The negative electrode according to claim 9, which is contained by weight%.
  11.  請求項1~8のいずれか1項に記載の負極用添加剤(B)により形成される重合被膜を有する負極。 A negative electrode having a polymer film formed by the negative electrode additive (B) according to any one of claims 1 to 8.
  12.  負極用添加剤(B)を負極に含有させて、電圧を印加することにより活物質(C)の表面に重合被膜を形成する請求項11に記載の重合被膜の形成方法。 The method for forming a polymer film according to claim 11, wherein the polymer film is formed on the surface of the active material (C) by adding a negative electrode additive (B) to the negative electrode and applying a voltage.
  13.  請求項9~11のいずれか1項に記載の負極を有するリチウム二次電池。 A lithium secondary battery having the negative electrode according to any one of claims 9 to 11.
  14.  請求項9~11のいずれか1項に記載の負極を有するリチウムイオンキャパシタ。 A lithium ion capacitor having the negative electrode according to any one of claims 9 to 11.
PCT/JP2012/069995 2011-08-26 2012-08-06 Additive for negative electrode, negative electrode, method for producing polymerized coating film, lithium secondary battery, and lithium ion capacitor WO2013031487A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011185323 2011-08-26
JP2011-185323 2011-08-26

Publications (1)

Publication Number Publication Date
WO2013031487A1 true WO2013031487A1 (en) 2013-03-07

Family

ID=47755989

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/069995 WO2013031487A1 (en) 2011-08-26 2012-08-06 Additive for negative electrode, negative electrode, method for producing polymerized coating film, lithium secondary battery, and lithium ion capacitor

Country Status (2)

Country Link
JP (1) JPWO2013031487A1 (en)
WO (1) WO2013031487A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11329492A (en) * 1998-05-12 1999-11-30 Asahi Glass Co Ltd Secondary power source
JP2001229917A (en) * 2000-02-10 2001-08-24 Toyo Tanso Kk Method of producing negative electrode
JP2010086954A (en) * 2008-09-03 2010-04-15 Sanyo Chem Ind Ltd Additive for electrolyte
WO2011129053A1 (en) * 2010-04-12 2011-10-20 三洋化成工業株式会社 Agent for forming electrode protective film and electrolyte solution
WO2012067102A1 (en) * 2010-11-16 2012-05-24 日立マクセルエナジー株式会社 Non-aqueous secondary battery

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11329492A (en) * 1998-05-12 1999-11-30 Asahi Glass Co Ltd Secondary power source
JP2001229917A (en) * 2000-02-10 2001-08-24 Toyo Tanso Kk Method of producing negative electrode
JP2010086954A (en) * 2008-09-03 2010-04-15 Sanyo Chem Ind Ltd Additive for electrolyte
WO2011129053A1 (en) * 2010-04-12 2011-10-20 三洋化成工業株式会社 Agent for forming electrode protective film and electrolyte solution
WO2012067102A1 (en) * 2010-11-16 2012-05-24 日立マクセルエナジー株式会社 Non-aqueous secondary battery

Also Published As

Publication number Publication date
JPWO2013031487A1 (en) 2015-03-23

Similar Documents

Publication Publication Date Title
JP6547816B2 (en) Electrolyte solution and method for producing sulfate ester salt
JP5394239B2 (en) Gel polymer electrolyte and electrochemical device provided with the same
EP2840641B1 (en) Electrolytic solution, electrochemical device, lithium ion secondary battery, and module
EP2840642B1 (en) Electrolytic solution, electrochemical device, lithium ion secondary battery, and module
US20120107701A1 (en) Electrolyte solution for chargeable device, electrolyte solution for lithium ion secondary battery, and secondary battery
WO2013002186A1 (en) Agent for forming electrode protection film, electrode, electrolyte solution, lithium secondary cell, lithium ion capacitor, and method for forming electrode protection film
KR20180075406A (en) Electrolyte solution, electrochemical device, lithium ion secondary battery, and module
JPWO2011129053A1 (en) Electrode protective film forming agent and electrolyte
JP2015225689A (en) Additive agent for battery
JP6785148B2 (en) Non-aqueous electrolyte solution and non-aqueous electrolyte solution secondary battery using it
WO2019003776A1 (en) Electrolytic solution, electrochemical device, secondary cell, and module
JP5105807B2 (en) Lithium polymer battery
JPWO2017179468A1 (en) Electrolyte, electrochemical device, lithium ion secondary battery, and module
WO2019003780A1 (en) Electrolytic solution, electrochemical device, secondary battery and module
WO2012111335A1 (en) Agent for forming electrode protection film
JP2018133183A (en) Additive agent for battery
JP2010245034A (en) Electrolyte for lithium secondary battery
JP5727985B2 (en) Battery electrode and battery using the same
JP2012256515A (en) Electrode protective film forming agent
JP2015213046A (en) Electrolytic solution or electrode including nitryl compound having sulfonyl group, and lithium ion secondary battery arranged by use thereof
WO2013031487A1 (en) Additive for negative electrode, negative electrode, method for producing polymerized coating film, lithium secondary battery, and lithium ion capacitor
WO2013031045A1 (en) Additive for electrode, and electrode
JP2015207392A (en) Additive agent for batteries
KR20230027909A (en) Non-aqueous electrolyte for lithium secondary battery and lithium secondary battery comprising same
JP2014075268A (en) Additive for negative electrode, negative electrode, formation method of negative electrode protective film, lithium secondary battery, and lithium ion capacitor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12828705

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013531193

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12828705

Country of ref document: EP

Kind code of ref document: A1