JP2005251677A - Nonaqueous electrolyte solution secondary battery - Google Patents

Nonaqueous electrolyte solution secondary battery Download PDF

Info

Publication number
JP2005251677A
JP2005251677A JP2004064022A JP2004064022A JP2005251677A JP 2005251677 A JP2005251677 A JP 2005251677A JP 2004064022 A JP2004064022 A JP 2004064022A JP 2004064022 A JP2004064022 A JP 2004064022A JP 2005251677 A JP2005251677 A JP 2005251677A
Authority
JP
Japan
Prior art keywords
secondary battery
carbon
positive electrode
electrolyte secondary
nonaqueous electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004064022A
Other languages
Japanese (ja)
Other versions
JP4618404B2 (en
Inventor
Ikiko Yamazaki
伊紀子 山崎
Etsuo Hasegawa
悦雄 長谷川
Koji Utsuki
功二 宇津木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP2004064022A priority Critical patent/JP4618404B2/en
Publication of JP2005251677A publication Critical patent/JP2005251677A/en
Application granted granted Critical
Publication of JP4618404B2 publication Critical patent/JP4618404B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide a nonaqueous electrolyte solution secondary battery with a high operating voltage through restraint of capacity deterioration accompanying charge and discharge cycles and lowering of reliability at high temperature. <P>SOLUTION: The nonaqueous electrolyte solution secondary battery uses electrolyte solution containing at least a kind of circular sulfonate of formula (1), (wherein, A and B denote, each independently, an alkylene group or a fluoroalkylene group, and X denotes a C-C single bond, or an -OSO<SB>2</SB>- or -SO<SB>2</SB>O- group) and at least a kind of unsaturated compounds having a carbon-carbon unsaturated bond and an electron donor group conjugated with the carbon-carbon unsaturated bond reacting at a voltage higher than the maximum operating voltage of the battery. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は電解液を構成する溶媒として、環状スルホン酸エステルの少なくとも一種と、電池の最大動作電圧以下で重合する、炭素−炭素不飽和結合と該炭素−炭素不飽和結合に共役した電子供与基を有する不飽和化合物の少なくとも一種を含有する溶媒を用いた非水電解液二次電池に関するものである。   The present invention relates to an electron donating group conjugated to a carbon-carbon unsaturated bond and a carbon-carbon unsaturated bond, which is polymerized with at least one cyclic sulfonic acid ester as a solvent constituting an electrolytic solution at a maximum operating voltage of the battery or lower. The present invention relates to a non-aqueous electrolyte secondary battery using a solvent containing at least one kind of unsaturated compound having the following.

非水電解質二次電池、特にリチウムイオン二次電池は、高電圧、高エネルギー密度を有するので、近年、携帯型電子機器やパソコン等の用途に広く利用されている。また、今後は自動車用途への適応も期待されているが、更なるサイクル特性の改善、特に高温環境下におけるサイクル特性の劣化を抑制することが、重要な技術的課題となっている。   Nonaqueous electrolyte secondary batteries, particularly lithium ion secondary batteries, have high voltage and high energy density, and have been widely used in recent years for applications such as portable electronic devices and personal computers. In the future, adaptation to automobile applications is also expected, but further improvement of cycle characteristics, particularly suppression of deterioration of cycle characteristics under high temperature environment is an important technical issue.

非水電解質二次電池用電解液の有機溶媒としては、従来、エチレンカーボネート、プロピレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、ジメチルカーボネート等のカーボネート類が使用されている。中では、エチレンカーボネート、プロピレンカーボネート等の環状カーボネートは誘電率が高いという特徴を有するが、溶媒としては粘度が高いため単独では電解液として使用が困難である。このため、低粘度の有機溶媒であるジエチルカーボネート、ジメチルカーボネート等の鎖状カーボネートを混合し電解液として用いられている。   Conventionally, carbonates such as ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate, and dimethyl carbonate have been used as the organic solvent for the electrolyte solution for non-aqueous electrolyte secondary batteries. Among them, cyclic carbonates such as ethylene carbonate and propylene carbonate have a high dielectric constant, but they are difficult to use as an electrolyte alone because of their high viscosity as a solvent. For this reason, chain carbonates such as diethyl carbonate and dimethyl carbonate, which are low-viscosity organic solvents, are mixed and used as an electrolytic solution.

しかしながら、このような非水電解質二次電池における充放電の際に電解液が置かれる環境は、負極表面においては還元作用が非常に強い環境に、また、正極表面においては酸化作用が非常に強い環境になるため、これらの電極表面における電解液の還元反応または酸化反応は避けられず、電解液が電極を構成する材料との間で副反応を起こし分解する。そのために、長期にわたり電池の充放電を繰り返すと電池の容量劣化が見られるという問題があった。   However, the environment in which the electrolytic solution is placed during charging / discharging in such a nonaqueous electrolyte secondary battery is an environment in which the reducing action is very strong on the negative electrode surface, and the oxidizing action is very strong on the positive electrode surface. Since it becomes an environment, a reduction reaction or an oxidation reaction of the electrolytic solution on the surface of these electrodes is inevitable, and the electrolytic solution causes a side reaction with the material constituting the electrode and decomposes. Therefore, there has been a problem that when the battery is repeatedly charged and discharged over a long period of time, the capacity of the battery is deteriorated.

電解液に添加剤を加えることによって、長期にわたり充放電を繰り返した際の容量劣化を抑制する研究は従来よりなされている。   Studies have been made in the past to suppress capacity deterioration when charging and discharging are repeated over a long period of time by adding an additive to the electrolytic solution.

例えば、電解液中に、過充電時に電池の最大動作電圧以上の電圧で反応する化合物と不飽和結合を有する環状炭酸エステルおよび酸無水物からなる群から選ばれる少なくとも一種の化合物と、含硫黄有機化合物から選ばれる少なくとも一種の化合物を含有する技術が開示されている(特許文献1)。   For example, in the electrolyte, at least one compound selected from the group consisting of a compound that reacts at a voltage higher than the maximum operating voltage of the battery during overcharge, a cyclic carbonate having an unsaturated bond, and an acid anhydride, and a sulfur-containing organic compound A technique containing at least one compound selected from compounds is disclosed (Patent Document 1).

また、比誘電率25以上の有機溶媒が非水溶媒の60重量%以上を占め、かつ電解液が炭素−炭素不飽和結合と共役した電子吸引基を有する化合物を0.001〜10重量%含むことにより、サイクル特性が改善された非水系電解液二次電池を提供する技術が開示されている(特許文献2)。   Further, an organic solvent having a relative dielectric constant of 25 or more occupies 60% by weight or more of the non-aqueous solvent, and the electrolytic solution contains 0.001 to 10% by weight of a compound having an electron withdrawing group conjugated with a carbon-carbon unsaturated bond. Thus, a technique for providing a non-aqueous electrolyte secondary battery with improved cycle characteristics is disclosed (Patent Document 2).

しかし、本発明者らの実験の結果、電解液の支持塩としてLiPF6を用いた電解液を使用した場合、電解液中の不純物である、PF5が反応開始剤として働くことにより、炭素−炭素不飽和結合と共役した電子吸引基を有する化合物が電解液中で重合してしまうとことがわかった。また、電子吸引基を有する化合物は電池内部で重合した場合、重合に際して負極表面に被膜を形成することがわかった。
特開2003−338317号公報 特開2003−86248号公報
However, results of experiments of the present inventors, when using the electrolytic solution using LiPF 6 as a supporting salt of an electrolyte solution, which is an impurity in the electrolyte, by the PF 5 acts as a reaction initiator, a carbon - It has been found that a compound having an electron withdrawing group conjugated with a carbon unsaturated bond is polymerized in the electrolytic solution. Further, it was found that when the compound having an electron withdrawing group was polymerized inside the battery, a film was formed on the surface of the negative electrode upon polymerization.
JP 2003-338317 A JP 2003-86248 A

こうした事情に鑑み、本発明は、充放電サイクルに伴う電池容量の低下や、高温での信頼性の低下を抑えつつ、高い動作電圧を実現する非水電解質二次電池を提供することを目的とする。特に、正極側電極上に被膜を形成することによって高温下での信頼性を向上させることを目的とする。   In view of such circumstances, an object of the present invention is to provide a nonaqueous electrolyte secondary battery that realizes a high operating voltage while suppressing a decrease in battery capacity associated with a charge / discharge cycle and a decrease in reliability at high temperatures. To do. In particular, an object is to improve the reliability at high temperatures by forming a film on the positive electrode.

すなわち、本発明は、リチウムを吸蔵、放出することが可能な負極および正極と、非水溶媒にリチウム塩を溶解している電解液とを含む非水電解液二次電池において、
下記式(1)で示される環状スルホン酸エステルの少なくとも一種と、電池の最大動作電圧以下で重合する、炭素−炭素不飽和結合と該不飽和結合に共役した電子供与性基を有する不飽和化合物の少なくとも一種を含有する電解液を用いることを特徴とする非水電解質二次電池である。
That is, the present invention provides a non-aqueous electrolyte secondary battery including a negative electrode and a positive electrode capable of inserting and extracting lithium, and an electrolytic solution in which a lithium salt is dissolved in a non-aqueous solvent.
An unsaturated compound having a carbon-carbon unsaturated bond and an electron donating group conjugated to the unsaturated bond, which is polymerized with at least one cyclic sulfonate ester represented by the following formula (1) at a maximum operating voltage or less of the battery It is a nonaqueous electrolyte secondary battery using the electrolyte solution containing at least 1 type of these.

Figure 2005251677
(式中、AおよびBは、それぞれ独立にアルキレン基またはフルオロアルキレン基を表し、XはC−C単結合または−OSO2−ないし−SO2O−基を表す。)
Figure 2005251677
(Wherein, A and B each independently represent an alkylene group or a fluoroalkylene group, X is C-C single bond or -OSO 2 - represents a to -SO 2 O-group.)

なお、正極表面に硫黄原子またはその化合物が含まれていることが好ましい。   In addition, it is preferable that the positive electrode surface contains a sulfur atom or a compound thereof.

上記式(1)で示される環状スルホン酸エステルが全電解液の0.01〜10質量%含有されていること、また、電池の最大動作電圧以下で重合する、炭素−炭素不飽和結合と該不飽和結合に共役した電子供与基を有する不飽和化合物が全電解液の0.01〜1質量%含有されていることが好ましい。   The cyclic sulfonic acid ester represented by the above formula (1) is contained in an amount of 0.01 to 10% by mass of the total electrolytic solution, and the carbon-carbon unsaturated bond polymerized at a maximum operating voltage of the battery or less and the carbon-carbon unsaturated bond It is preferable that an unsaturated compound having an electron donating group conjugated to an unsaturated bond is contained in an amount of 0.01 to 1% by mass of the total electrolytic solution.

さらに、正極がリチウムに対して4.5V以上の放電電位を有する正極活物質を用いることが好ましい。   Furthermore, it is preferable to use a positive electrode active material in which the positive electrode has a discharge potential of 4.5 V or more with respect to lithium.

リチウムを吸蔵、放出することが可能な負極および正極と、非水溶媒にリチウム塩を溶解している電解液とを含む非水電解液二次電池において、上記式(1)の環状スルホン酸エステルの少なくとも一種と電池の最大動作電圧以下で重合する、カチオン重合性の炭素−炭素不飽和結合と該炭素−炭素不飽和結合に共役した電子供与基を有する不飽和化合物の少なくとも一種を含有する電解液を用いることで、サイクル特性および保存特性を改善することができる。   In a non-aqueous electrolyte secondary battery comprising a negative electrode and a positive electrode capable of inserting and extracting lithium, and an electrolytic solution in which a lithium salt is dissolved in a non-aqueous solvent, the cyclic sulfonate ester of the above formula (1) Electrolysis containing at least one of a cationically polymerizable carbon-carbon unsaturated bond and an unsaturated compound having an electron donating group conjugated to the carbon-carbon unsaturated bond, polymerized with at least one of the above and the maximum operating voltage of the battery By using the liquid, cycle characteristics and storage characteristics can be improved.

本発明は、リチウムイオンを吸蔵、放出する正極および、負極、前記リチウムイオンを含む電解液を有する非水電解質二次電池において、上記式(1)で示される環状スルホン酸エステルの少なくとも一種と、炭素−炭素不飽和結合と該炭素−炭素不飽和結合に共役した電子供与基を有する不飽和化合物の少なくとも一種を電解液中に含有してなるものである。なお、該環状スルホン酸エステル、該不飽和化合物、カーボネートとの比率は特に制限されず、その目的に応じて適宣選択される。   The present invention provides a non-aqueous electrolyte secondary battery having a positive electrode that occludes and releases lithium ions, a negative electrode, and an electrolytic solution containing the lithium ions, and at least one cyclic sulfonate ester represented by the above formula (1); The electrolyte solution contains at least one unsaturated compound having a carbon-carbon unsaturated bond and an electron donating group conjugated to the carbon-carbon unsaturated bond. The ratio of the cyclic sulfonate ester, the unsaturated compound, and the carbonate is not particularly limited and is appropriately selected according to the purpose.

電解液の溶媒中に環状スルホン酸エステルおよび電池の最大動作電圧以下で重合する、炭素−炭素不飽和結合と該炭素−炭素不飽和結合に共役した電子供与基を有する不飽和化合物を含有させることにより、非水電解質二次電池において容量劣化を抑制することができる。   In the solvent of the electrolytic solution, a cyclic sulfonate ester and an unsaturated compound having an electron donating group conjugated to the carbon-carbon unsaturated bond and polymerizing at a maximum operating voltage of the battery or less are contained. As a result, it is possible to suppress capacity deterioration in the nonaqueous electrolyte secondary battery.

電解質として、例えば、LiPF6を用いた電解液中に炭素−炭素不飽和結合と該炭素−炭素不飽和結合に共役した電子供与基を有する不飽和化合物を混合した場合、電解液中の不純物であるPF5が反応開始剤となり、電解液中で該不飽和化合物が重合してしまうが、式(1)で示される環状スルホン酸エステルを同時に使用することにより、電解液中での該不飽和化合物の重合を抑制することができる。そのため、重合被膜を正極上に選択的に形成することができる。重合被膜は厚すぎた場合、抵抗上昇の原因となるが、薄膜が電極表面に形成されれば抵抗抑制の効果がある。 For example, when an electrolyte containing LiPF 6 is mixed with a carbon-carbon unsaturated bond and an unsaturated compound having an electron donating group conjugated to the carbon-carbon unsaturated bond as an electrolyte, impurities in the electrolyte A certain PF 5 becomes a reaction initiator, and the unsaturated compound is polymerized in the electrolytic solution. By using the cyclic sulfonate ester represented by the formula (1) at the same time, the unsaturated compound in the electrolytic solution is used. Polymerization of the compound can be suppressed. Therefore, a polymer film can be selectively formed on the positive electrode. If the polymer film is too thick, it causes an increase in resistance, but if a thin film is formed on the electrode surface, there is an effect of suppressing resistance.

電解液の溶媒として、溶媒の誘電率を大きくするためにプロピレンカーボネート(PC)、エチレンカーボネート(EC)等の環状カーボネート化合物を使用することが好ましい。なお、粘度の低減などを目的として、ジメチルカーボネート(DMC)、エチルメチルカーボネート(EMC)、ジエチルカーボネート(DEC)等の鎖状モノカーボネートを混合することが好ましい。なお、式(1)で示される環状スルホン酸エステル、炭素−炭素不飽和結合と該炭素−炭素不飽和結合に共役した電子供与基を有する不飽和化合物、およびカーボネートの使用比率は特に制限されず、その目的に応じて適宣選択される。   As the solvent for the electrolytic solution, it is preferable to use a cyclic carbonate compound such as propylene carbonate (PC) or ethylene carbonate (EC) in order to increase the dielectric constant of the solvent. For the purpose of reducing the viscosity, it is preferable to mix a chain monocarbonate such as dimethyl carbonate (DMC), ethyl methyl carbonate (EMC), or diethyl carbonate (DEC). The use ratio of the cyclic sulfonate ester represented by the formula (1), the unsaturated compound having an electron donating group conjugated to the carbon-carbon unsaturated bond and the carbon-carbon unsaturated bond, and the carbonate is not particularly limited. , To be selected according to its purpose.

また、他の非水溶媒として、従来から非水電解液用溶媒として用いられている有機溶媒を用いることが可能であり、例えば、ギ酸メチル、酢酸メチル、プロピオン酸エチル等の脂肪族カルボン酸エステル類、γ−ブチロラクトン等のラクトン類、1、2−エトキシエタン(DEE)、エトキシメトキシエタン(EME)等の鎖状エーテル類、テトラヒドロフラン、2−メチルテトラヒドロフラン等の環状エーテル類、ジメチルスルホキシド、1、3−ジオキソラン、ホルムアミド、アセトアミド、ジメチルホルムアミド、アセトニトリル、プロピルニトリル、ニトロメタン、リン酸トリエステル、トリメトキシメタン、ジオキソラン誘導体、スルホラン、メチルスルホラン、1、3−ジメチル−2−イミダゾリジノン、3−メチル−2−オキサゾリジノン、エチルエーテル、アニソール、N−メチルピロリドン等が挙げられる。   In addition, as other non-aqueous solvents, it is possible to use organic solvents conventionally used as solvents for non-aqueous electrolytes. For example, aliphatic carboxylic acid esters such as methyl formate, methyl acetate, and ethyl propionate , Lactones such as γ-butyrolactone, chain ethers such as 1,2-ethoxyethane (DEE) and ethoxymethoxyethane (EME), cyclic ethers such as tetrahydrofuran and 2-methyltetrahydrofuran, dimethyl sulfoxide, 1, 3-dioxolane, formamide, acetamide, dimethylformamide, acetonitrile, propylnitrile, nitromethane, phosphoric acid triester, trimethoxymethane, dioxolane derivative, sulfolane, methylsulfolane, 1,3-dimethyl-2-imidazolidinone, 3-methyl -2-Oki Zorijinon, ethyl ether, anisole, N- methylpyrrolidone and the like.

本発明で用いる、上記式(1)で示される環状スルホン酸エステルの例としては、1,3−プロパンスルトン、1,4−ブタンスルトン、メタンジスルホン酸メチレンエステル、メタンジスルホン酸エチレンエステル等が挙げられる。   Examples of the cyclic sulfonic acid ester represented by the above formula (1) used in the present invention include 1,3-propane sultone, 1,4-butane sultone, methane disulfonic acid methylene ester, methane disulfonic acid ethylene ester, and the like. .

なお、非水電解質中に式(1)で示される環状スルホン酸エステルが0.01〜10質量%含有されていることが好ましい。0.1質量%以上含有されていれば正極上に被膜を形成し溶媒の分解を抑制することができる。一方、10質量%を超えて含有されている場合、電解液の粘度が上がり、電解液の導電性が低下するため、低温でのサイクル特性が劣る。また、環状スルホン酸エステルは、正極上への被膜形成に十分な量であればよいので、10質量%含有すれば、十分その効果を示す。   In addition, it is preferable that 0.01-10 mass% of cyclic sulfonic acid ester shown by Formula (1) is contained in nonaqueous electrolyte. If it is contained in an amount of 0.1% by mass or more, a film can be formed on the positive electrode to suppress decomposition of the solvent. On the other hand, when the content exceeds 10% by mass, the viscosity of the electrolytic solution is increased and the conductivity of the electrolytic solution is decreased, so that the cycle characteristics at low temperature are inferior. Moreover, since cyclic sulfonic acid ester should just be sufficient quantity for the film formation on a positive electrode, if it contains 10 mass%, the effect is fully shown.

さらに、電解液に式(1)で示される環状スルホン酸エステルを含むことにより、正極表面に硫黄原子または硫黄化合物が含まれることとなり、サイクル特性、保存特性が改善される。正極表面の硫黄化合物は環状スルホン酸エステルに由来し、電池の正常の反応を損なうこと無く、正極表面での溶媒の分解を抑制する不動体膜として存在すると考えられる。   Furthermore, by including the cyclic sulfonic acid ester represented by the formula (1) in the electrolytic solution, a sulfur atom or a sulfur compound is contained on the surface of the positive electrode, thereby improving cycle characteristics and storage characteristics. The sulfur compound on the surface of the positive electrode is derived from the cyclic sulfonate ester, and is considered to exist as an immobile film that suppresses the decomposition of the solvent on the surface of the positive electrode without impairing the normal reaction of the battery.

本発明では、式(1)で示される環状スルホン酸エステルと共に電池の最大動作電圧以下で重合する、炭素−炭素不飽和結合と該炭素−炭素不飽和結合に共役した電子供与基を有する不飽和化合物を使用する。   In the present invention, the unsaturated compound having a carbon-carbon unsaturated bond and an electron donating group conjugated to the carbon-carbon unsaturated bond, which is polymerized with the cyclic sulfonate ester represented by the formula (1) below the maximum operating voltage of the battery. Use compounds.

ここで用いる該不飽和化合物の炭素−炭素不飽和結合に共役した電子供与基とは、不飽和化合物中の炭素−炭素不飽和結合に対して電子を供与するように働く基であり、例えば、アシル基、アルコキシ基、電子供与性基を有するあるいは無置換の芳香族基等を例示することができ、該不飽和化合物の例としては、酢酸ビニル、インデン、エチルビニルエーテル、n−ブチルビニルエーテル、イソブチルビニルエーテル等が挙げられる。   The electron donating group conjugated to the carbon-carbon unsaturated bond of the unsaturated compound used here is a group that functions to donate electrons to the carbon-carbon unsaturated bond in the unsaturated compound, for example, An acyl group, an alkoxy group, an electron donating group or an unsubstituted aromatic group can be exemplified. Examples of the unsaturated compound include vinyl acetate, indene, ethyl vinyl ether, n-butyl vinyl ether, isobutyl. Examples include vinyl ether.

なお、該不飽和化合物は、全電解質中0.01〜1質量%含有されていることが好ましい。0.01質量%以上含有されていれば、正極上に被膜を形成し、溶媒の分解を抑制することができる。また、該不飽和化合物は1質量%以下含有すれば効果は十分その効果を示す。該不飽和化合物は反応性が大きいため1質量%を超えて含まれる場合、正極の表面上に被膜が厚く成長しすぎるため、電極と電解液界面の抵抗が高くなり、サイクル特性が劣化する。   In addition, it is preferable that this unsaturated compound contains 0.01-1 mass% in the whole electrolyte. If it contains 0.01 mass% or more, a film can be formed on a positive electrode and decomposition | disassembly of a solvent can be suppressed. Further, if the unsaturated compound is contained in an amount of 1% by mass or less, the effect is sufficiently exhibited. When the unsaturated compound is contained in an amount exceeding 1% by mass due to its high reactivity, the coating grows too thick on the surface of the positive electrode, so that the resistance between the electrode and the electrolyte interface increases, and the cycle characteristics deteriorate.

これらの有機溶媒に溶解させ、電解質として作動させるために用いるリチウム塩としては、例えば、LiPF6、LiAsF6、LiAlCl4、LiClO4、LiBF4、LiSbF6、LiCF3SO3、LiC49CO3、LiC(CF3SO23、LiN(CF3SO22、LiN(C25SO22、LiB10Cl10、低級脂肪族カルボン酸リチウム塩、四フェニルホウ酸リチウム、LiCl、LiBr、LiI、LiSCN、リチウムイミド類等が挙げられる。これらリチウム塩を電解質として用いたときの電解質濃度とし0.5〜1.5mol/lとすることが好ましい。なお、濃度が高すぎると密度と粘度が増加し、濃度が低すぎると電気伝導率が低下する。 Are dissolved in these organic solvents, the lithium salt used to operate as an electrolyte, for example, LiPF 6, LiAsF 6, LiAlCl 4, LiClO 4, LiBF 4, LiSbF 6, LiCF 3 SO 3, LiC 4 F 9 CO 3 , LiC (CF 3 SO 2 ) 3 , LiN (CF 3 SO 2 ) 2 , LiN (C 2 F 5 SO 2 ) 2 , LiB 10 Cl 10 , lower aliphatic carboxylic acid lithium salt, lithium tetraphenylborate, LiCl , LiBr, LiI, LiSCN, lithium imides and the like. The electrolyte concentration when these lithium salts are used as the electrolyte is preferably 0.5 to 1.5 mol / l. If the concentration is too high, the density and viscosity increase, and if the concentration is too low, the electrical conductivity decreases.

なお、ここで、上記有機溶媒に代えてあるいはと共に、非水電荷質二次電池に用いられるポリマー類、例えば、PEO、PAN、ポリカーボネート、架橋ポリアクリレート、ポリウレタン等を用いてもよい。   Here, instead of or in addition to the organic solvent, polymers used for the non-aqueous chargeable secondary battery, such as PEO, PAN, polycarbonate, cross-linked polyacrylate, polyurethane, and the like may be used.

本発明の非水電解質二次電池は、リチウム含有金属複合酸化物を正極活物質とした正極と、リチウムを吸蔵放出可能な負極活物質を持つ負極を主要構成材料とし、正極と負極の間に絶縁体としてのセパレータが挟まれ、正極と負極はリチウムイオン伝導性の電解液に浸った状態であり、これらが電池ケースの中に密閉された状態となっている。正極と負極に電圧を印加することにより、正極活物質がリチウムイオンを放出し負極活物質がリチウムイオンを吸蔵し、電池は充電状態となる。放電状態では充電状態と逆の状態となる。   The non-aqueous electrolyte secondary battery of the present invention includes a positive electrode having a lithium-containing metal composite oxide as a positive electrode active material and a negative electrode having a negative electrode active material capable of occluding and releasing lithium as main constituent materials. A separator as an insulator is sandwiched, and the positive electrode and the negative electrode are immersed in a lithium ion conductive electrolyte, and these are sealed in a battery case. By applying a voltage to the positive electrode and the negative electrode, the positive electrode active material releases lithium ions, the negative electrode active material occludes lithium ions, and the battery is charged. In the discharged state, the state is opposite to the charged state.

本発明の非水電解質二次電池の正極活物質に用いる物質は、特に限定されるものでは無く、その目的に応じて従来公知の非水電解質二次電池用正極活物質から適宣選択して使用することができる。具体例としては、TiS2、TiS3、MoS3、FeS、FeS2、CuCoS4等の金属硫化物、V25、V613、MnO3、MnO2、CuO、Cu5210、Cr23、Ti2O等の金属酸化物、NbSe3、VSe2等の金属セレン化物、LiVO2、LiCrO2、LiFeO2、LiNiO2、LiCoO2、LiMnO2、LiMn24、Li[LixyMn2-x-y]O2(0<x<0.33、0<y<0.5、M:Cr、Ni、Co、Fe)、Li[xyMn2-x-y]O2(0<x<0.5、M:Cr、Ni、Cu、Co、Fe、Ti)、LiMPO4(M:Co、Mn、Fe)等のアルカリ金属含有複合酸化物などが挙げられる。 The material used for the positive electrode active material of the nonaqueous electrolyte secondary battery of the present invention is not particularly limited, and is appropriately selected from conventionally known positive electrode active materials for nonaqueous electrolyte secondary batteries according to the purpose. Can be used. Specific examples include metal sulfides such as TiS 2 , TiS 3 , MoS 3 , FeS, FeS 2 , and CuCoS 4 , V 2 O 5 , V 6 O 13 , MnO 3 , MnO 2 , CuO, and Cu 5 V 2 O. 10 , metal oxides such as Cr 2 O 3 and Ti 2 O, metal selenides such as NbSe 3 and VSe 2 , LiVO 2 , LiCrO 2 , LiFeO 2 , LiNiO 2 , LiCoO 2 , LiMnO 2 , LiMn 2 O 4 , Li [Li x M y Mn 2 -xy] O 2 (0 <x <0.33,0 <y <0.5, M: Cr, Ni, Co, Fe), Li [x M y Mn 2-xy ] O 2 (0 <x < 0.5, M: Cr, Ni, Cu, Co, Fe, Ti), LiMPO 4 (M: Co, Mn, Fe) alkali metal-containing composite oxides such as and the like .

なお、従来の非水溶媒二次電池においては、正極にリチウムに対して4.5V以上の放電電位を有する正極活物質を用いた場合、正極側での電解液の酸化分解が特に激しいが、本発明においては、リチウムに対して4.5V以上の放電電位を有する正極活物質を用いることが可能であり、そのような場合にも、サイクル特性、保存特性の改善効果が大きい。   In the conventional non-aqueous solvent secondary battery, when a positive electrode active material having a discharge potential of 4.5 V or higher with respect to lithium is used for the positive electrode, the oxidative decomposition of the electrolyte solution on the positive electrode side is particularly severe. In the present invention, it is possible to use a positive electrode active material having a discharge potential of 4.5 V or more with respect to lithium. Even in such a case, the effect of improving cycle characteristics and storage characteristics is great.

正極は、正極活物質と導電付与剤と結着剤を混合し、集電体上に作製する。   The positive electrode is prepared on a current collector by mixing a positive electrode active material, a conductivity-imparting agent, and a binder.

ここで用いる導電付与剤の例としては、炭素材料の他、Alなどの金属物質、導電性酸化物の粉末などを使用することができる。また、結着剤としてはポリフッ化ビニリデンなどが用いられる。さらに、集電体としては、通常、Alなどを主体とする金属薄膜を用いる。ここで、導電付与剤の添加量は電極全体の1〜10質量%程度が好ましく、結着剤の添加量も電極全体の1〜10質量%程度が適当である。これは、正極活物質の割合が大きい方が質量毎の容量が大きくなるためである。導電付与剤と結着剤の割合が小さすぎると、導電性が保てなくなったり、電極剥離の問題が生じたりすることがある。   Examples of the conductivity-imparting agent used here include a carbon material, a metal substance such as Al, and a conductive oxide powder. As the binder, polyvinylidene fluoride and the like are used. Further, as the current collector, a metal thin film mainly composed of Al or the like is usually used. Here, the addition amount of the conductivity-imparting agent is preferably about 1 to 10% by mass of the whole electrode, and the addition amount of the binder is also preferably about 1 to 10% by mass of the whole electrode. This is because the capacity per mass increases as the ratio of the positive electrode active material increases. If the ratio between the conductivity-imparting agent and the binder is too small, the conductivity may not be maintained, or a problem of electrode peeling may occur.

負極に用いる負極活物質としては、リチウムイオンを充電時に吸蔵、放電時に放出することができれば、特に限定されるものでなく、公知のものを用いることができる。具体例としては、黒鉛、コークス、ハードカーボン等の炭素材料、リチウム−アルミニウム合金、リチウム−鉛合金、リチウム−錫合金等のリチウム合金、リチウム金属、Si等の金属、SnO2、SnO、TiO2等の電位が正極活物質に比べて卑な金属酸化物があげられる。 The negative electrode active material used for the negative electrode is not particularly limited as long as lithium ions can be occluded during charging and released during discharging, and known materials can be used. Specific examples include carbon materials such as graphite, coke, and hard carbon, lithium alloys such as lithium-aluminum alloy, lithium-lead alloy and lithium-tin alloy, metals such as lithium metal and Si, SnO 2 , SnO, and TiO 2. A base metal oxide having a potential such as that is lower than that of the positive electrode active material can be given.

負極は、負極活物質を導電付与剤と結着剤によって集電体上に形成させる。   In the negative electrode, a negative electrode active material is formed on a current collector by a conductivity-imparting agent and a binder.

ここで用いる導電付与剤の例としては、炭素材料の他、導電性酸化物の粉末などが挙げられる。結着剤としてはポリフッ化ビニリデンなどが用いられる。集電体としてはCuなどを主体とする金属薄膜を用いる。   Examples of the conductivity-imparting agent used here include carbon materials and conductive oxide powders. As the binder, polyvinylidene fluoride or the like is used. As the current collector, a metal thin film mainly composed of Cu or the like is used.

本発明に係る非水電解質二次電池は、乾燥空気または不活性ガス雰囲気において、負極および正極を、セパレータを介して積層し、あるいは積層したものを捲回した後に、電池缶に収容し、合成樹脂と金属箔との積層体からなる可とう性フィルム等によって封口することによって電池を製造することができる。なお、本発明の非水電荷質二次電池の形状には制限がなく、セパレータを挟んで対向した正極、負極を捲回型、積層型などの形態を取ることが可能であり、セルにも、コイン型、ラミネートパック、角型セル、円筒型セルを用いることができる。   The non-aqueous electrolyte secondary battery according to the present invention is prepared by laminating a negative electrode and a positive electrode through a separator in a dry air or an inert gas atmosphere, or winding the laminated one and then storing it in a battery can. A battery can be manufactured by sealing with a flexible film made of a laminate of a resin and a metal foil. The shape of the nonaqueous chargeable secondary battery of the present invention is not limited, and the positive electrode and the negative electrode facing each other with the separator interposed therebetween can take the form of a wound type, a laminated type, etc. A coin type, a laminate pack, a square cell, and a cylindrical cell can be used.

以下、実施例により本発明を説明する。   Hereinafter, the present invention will be described by way of examples.

参考例1(正極活物質1の作製)
MnO2、NiO、Li2CO3及びTi23の粉末を、それぞれ金属の組成がLi:Ni:Mn:Ti=1:0.5:1.37:0.13となるように採取し、粉砕混合した後、750℃で8時間焼成して、正極活物質1(LiNi0.5Mn1.37Ti0.134)を作製した。この焼成物はほぼ単相のスピネル構造であった。
Reference Example 1 (Preparation of positive electrode active material 1)
MnO 2 , NiO, Li 2 CO 3 and Ti 2 O 3 powders were collected so that the metal composition would be Li: Ni: Mn: Ti = 1: 0.5: 1.37: 0.13, respectively. After pulverizing and mixing, the mixture was baked at 750 ° C. for 8 hours to produce positive electrode active material 1 (LiNi 0.5 Mn 1.37 Ti 0.13 O 4 ). This fired product had a substantially single-phase spinel structure.

参考例2(正極活物質2の作製)
MnO2およびLi2CO3の粉末を原料とし、それぞれ金属の組成がLi:Mn=1:2となるように採取し、粉砕混合した後、750℃で8時間焼成して、正極活物質2(LiMn24)を作製した。
Reference Example 2 (Preparation of positive electrode active material 2)
Powder MnO 2 and Li 2 CO 3 as a raw material, each composition of the metal Li: Mn = 1: 2 to become so collected, after mixing pulverized, and then calcined for 8 hours at 750 ° C., the positive electrode active material 2 (LiMn 2 O 4 ) was produced.

実施例1
参考例1で作製した正極活物質1と導電付与剤である炭素を混合し、N−メチルピロリドンにポリフッ化ビニリデン(PVDF)を溶かしたものに分散させスラリー状とした。なお、正極活物質1、導電付与剤および結着剤の質量比は91/5/4とした。Al集電体上にこのスラリーを塗布し、真空中で12時間乾燥させて、直径12mmの円に切り出した後、加圧成形して正極とした。
Example 1
The positive electrode active material 1 produced in Reference Example 1 and carbon as a conductivity-imparting agent were mixed and dispersed in a solution of polyvinylidene fluoride (PVDF) dissolved in N-methylpyrrolidone to obtain a slurry. The mass ratio of the positive electrode active material 1, the conductivity-imparting agent, and the binder was 91/5/4. This slurry was applied on an Al current collector, dried in vacuum for 12 hours, cut into a circle having a diameter of 12 mm, and then pressure-molded to obtain a positive electrode.

負極活物質にハードカーボンを用い、導電付与剤である炭素を混合し、N−メチルピロリドンにPVDFを溶かしたものに分散させスラリー状とした。負極活物質、導電付与剤および結着剤の質量比は91/1/8とした。Cu集電体上に前記スラリーを塗布し、真空中で12時間乾燥させて、直径13mmの円に切り出した後、加圧成形して負極とした。   Hard carbon was used as the negative electrode active material, carbon as a conductivity-imparting agent was mixed, and dispersed in a solution obtained by dissolving PVDF in N-methylpyrrolidone to obtain a slurry. The mass ratio of the negative electrode active material, the conductivity-imparting agent, and the binder was 91/1/8. The slurry was applied on a Cu current collector, dried in vacuum for 12 hours, cut into a circle having a diameter of 13 mm, and then pressure-molded to obtain a negative electrode.

セパレータとしてPPのフィルムを使用し、上記正極と負極を該セパレータを挟んで絶縁し、コインセル内に配置した後、電解液を満たして密閉し、非水電解質二次電池を作成した。   A PP film was used as a separator, the positive electrode and the negative electrode were insulated with the separator interposed therebetween, placed in a coin cell, filled with an electrolytic solution, and sealed to prepare a nonaqueous electrolyte secondary battery.

電解液は,溶媒としてエチレンカーボネート(EC)とジメチルカーボネート(DMC)を当容量混合したものを用い、1,3−プロパンスルトン(PS)およびn−ブチルビニルエーテルをそれぞれ1質量%、2質量%となるように加え、この混合溶媒にさらに電解質としてLiPF6を1mol/lの濃度となるように溶解して調整したものである。 The electrolyte used was a mixture of ethylene carbonate (EC) and dimethyl carbonate (DMC) in the same volume as a solvent, and 1,3-propane sultone (PS) and n-butyl vinyl ether were 1% by mass, 2% by mass, respectively. In addition, LiPF 6 as an electrolyte was further dissolved and adjusted to a concentration of 1 mol / l in this mixed solvent.

実施例2〜4
実施例1において、n−ブチルビニルエーテルの使用量をそれぞれ1質量%(実施例2)、0.5質量%(実施例3)、0.25質量%(実施例4)とする他は実施例1と同様にして非水電解質二次電池を作成した。
Examples 2-4
In Example 1, the amount of n-butyl vinyl ether used was 1% by mass (Example 2), 0.5% by mass (Example 3), and 0.25% by mass (Example 4), respectively. In the same manner as in Example 1, a nonaqueous electrolyte secondary battery was prepared.

比較例1
実施例1において、PSおよびn−ブチルビニルエーテルを全く使用せずに実施例1と同様にして非水電解質二次電池を作成した。
Comparative Example 1
In Example 1, a nonaqueous electrolyte secondary battery was produced in the same manner as in Example 1 without using PS and n-butyl vinyl ether at all.

比較例2
実施例1おいて、PSを全く使用せずに実施例1と同様にして非水電解質二次電池を作成した。
Comparative Example 2
In Example 1, a nonaqueous electrolyte secondary battery was produced in the same manner as Example 1 without using any PS.

比較例3
実施例1において、n−ブチルビニルエーテルを全く使用せずに実施例1と同様にして非水電解質二次電池を作成した。
Comparative Example 3
In Example 1, a nonaqueous electrolyte secondary battery was prepared in the same manner as in Example 1 without using n-butyl vinyl ether at all.

実施例5
実施例1において、正極活物質1に代えて参考例2で作成した正極活物質2を用いる他は実施例1と同様にして非水電解質二次電池を作成した。
Example 5
In Example 1, a nonaqueous electrolyte secondary battery was prepared in the same manner as in Example 1 except that the positive electrode active material 2 prepared in Reference Example 2 was used instead of the positive electrode active material 1.

比較例4
実施例5において、PSおよびn−ブチルビニルエーテルを全く使用せずに実施例5と同様にして非水電解質二次電池を作成した。
Comparative Example 4
In Example 5, a nonaqueous electrolyte secondary battery was produced in the same manner as in Example 5 without using PS and n-butyl vinyl ether at all.

比較例5
実施例5において、PSを全く使用せずに実施例5と同様にして非水電解質二次電池を作成した。
Comparative Example 5
In Example 5, a nonaqueous electrolyte secondary battery was produced in the same manner as Example 5 without using any PS.

比較例6
実施例5において、n−ブチルビニルエーテルを全く使用せずに実施例5と同様にして非水電解質二次電池を作成した。
Comparative Example 6
In Example 5, a nonaqueous electrolyte secondary battery was prepared in the same manner as in Example 5 without using n-butyl vinyl ether at all.

以上で作製した非水電解質二次電池について保存特性を評価した。結果を表1に示す。   The storage characteristics of the nonaqueous electrolyte secondary battery produced above were evaluated. The results are shown in Table 1.

[保存特性評価試験]
まず、室温に於いて充電および放電を1回ずつ行った。この時の充電電流および放電電流は一定(2mA)(1C相当)であり、この際の放電容量を初期容量とした。その後、各電池を2mAの定電流定電圧で所定の電圧まで2.5時間充電した後、60℃の恒温槽中で1週間放置した。放置後に室温において再度定電流で放電操作を行い、続いて同じく定電流で充電、放電をもう一度繰り返し、この際の放電容量を回復容量とした。回復容量/初期容量=容量維持率とし、容量維持率を求めた。なお、評価の際、実施例1〜4および比較例1〜3は4.75Vまで充電を行い、2.5Vまで放電を行い、実施例5および比較例4〜6は4.2Vまで充電を行い2.5Vまで放電を行った。
[Storage characteristics evaluation test]
First, charging and discharging were performed once at room temperature. The charging current and discharging current at this time are constant (2 mA) (corresponding to 1C), and the discharging capacity at this time is defined as the initial capacity. Thereafter, each battery was charged at a constant current constant voltage of 2 mA to a predetermined voltage for 2.5 hours, and then left in a constant temperature bath at 60 ° C. for 1 week. After leaving, the discharge operation was performed again at a constant current at room temperature. Subsequently, the same charge and discharge were repeated again at a constant current, and the discharge capacity at this time was defined as a recovery capacity. Recovery capacity / initial capacity = capacity maintenance ratio, and capacity maintenance ratio was obtained. In the evaluation, Examples 1 to 4 and Comparative Examples 1 to 3 are charged to 4.75 V, discharged to 2.5 V, and Examples 5 and Comparative Examples 4 to 6 are charged to 4.2 V. Discharge to 2.5V.

Figure 2005251677
Figure 2005251677

表1から明らかなように、電解液の溶媒として環状スルホン酸エステルと電池の最大動作電圧以下で重合する炭素―炭素不飽和結合と共役した電子供与基を有する化合物かを用いることで、保存特性が改善することが確認された。   As can be seen from Table 1, by using a cyclic sulfonic acid ester as a solvent for the electrolyte and a compound having an electron donating group conjugated with a carbon-carbon unsaturated bond that is polymerized below the maximum operating voltage of the battery, storage characteristics can be obtained. Was confirmed to improve.

Claims (5)

リチウムを吸蔵、放出することが可能な負極および正極と、非水溶媒にリチウム塩を溶解している電解液とを含む非水電解液二次電池において、
下記式(1)で示される環状スルホン酸エステルの少なくとも一種と、電池の最大動作電圧以下で重合する、炭素−炭素不飽和結合と該不飽和結合に共役した電子供与性基を有する不飽和化合物の少なくとも一種を含有する電解液を用いることを特徴とする非水電解質二次電池。
Figure 2005251677

式中、AおよびBは、それぞれ独立にアルキレン基またはフルオロアルキレン基を表し、XはC−C単結合または−OSO2−ないし−SO2O−基を表す。
In a non-aqueous electrolyte secondary battery comprising a negative electrode and a positive electrode capable of inserting and extracting lithium, and an electrolytic solution in which a lithium salt is dissolved in a non-aqueous solvent,
An unsaturated compound having a carbon-carbon unsaturated bond and an electron donating group conjugated to the unsaturated bond, which is polymerized with at least one cyclic sulfonate ester represented by the following formula (1) at a maximum operating voltage or less of the battery A non-aqueous electrolyte secondary battery characterized by using an electrolytic solution containing at least one of the following.
Figure 2005251677

In the formula, A and B each independently represent an alkylene group or a fluoroalkylene group, and X represents a C—C single bond or —OSO 2 — or —SO 2 O— group.
正極表面に硫黄原子またはその化合物が含まれている請求項1に記載の非水電解質二次電池   The nonaqueous electrolyte secondary battery according to claim 1, wherein the positive electrode surface contains a sulfur atom or a compound thereof. 式(1)で示される環状スルホン酸エステルが全電解液の0.01〜10質量%含有されていることを特徴とする請求項1または2に記載のリチウムイオン二次電池。   3. The lithium ion secondary battery according to claim 1, wherein the cyclic sulfonic acid ester represented by the formula (1) is contained in an amount of 0.01 to 10% by mass of the total electrolytic solution. 電池の最大動作電圧以下で重合する、炭素−炭素不飽和結合と該不飽和結合に共役した電子供与基を有する不飽和化合物が全電解液の0.01〜1質量%含有されていることを特徴とする請求項1〜3のいずれかに記載の非水電解質二次電池。   The unsaturated compound having a carbon-carbon unsaturated bond and an electron donating group conjugated to the unsaturated bond, which is polymerized at a voltage lower than the maximum operating voltage of the battery, is contained in an amount of 0.01 to 1% by mass of the total electrolytic solution. The nonaqueous electrolyte secondary battery according to any one of claims 1 to 3. 正極がリチウムに対して4.5V以上の放電電位を有する正極活物質を用いることを特徴とする請求項1〜4のいずれかに記載の非水電解質二次電池。   The nonaqueous electrolyte secondary battery according to any one of claims 1 to 4, wherein the positive electrode uses a positive electrode active material having a discharge potential of 4.5 V or more with respect to lithium.
JP2004064022A 2004-03-08 2004-03-08 Non-aqueous electrolyte secondary battery Expired - Fee Related JP4618404B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004064022A JP4618404B2 (en) 2004-03-08 2004-03-08 Non-aqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004064022A JP4618404B2 (en) 2004-03-08 2004-03-08 Non-aqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JP2005251677A true JP2005251677A (en) 2005-09-15
JP4618404B2 JP4618404B2 (en) 2011-01-26

Family

ID=35031929

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004064022A Expired - Fee Related JP4618404B2 (en) 2004-03-08 2004-03-08 Non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP4618404B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008035928A1 (en) * 2006-09-20 2008-03-27 Lg Chem, Ltd. Additive for non-aqueous electrolyte and secondary battery using the same
WO2009116740A2 (en) * 2008-03-18 2009-09-24 Lg Chem, Ltd. Non-aqueous electrolyte solution for lithium secondary battery and lithium secondary battery comprising the same
WO2011129053A1 (en) * 2010-04-12 2011-10-20 三洋化成工業株式会社 Agent for forming electrode protective film and electrolyte solution
JP2011258564A (en) * 2011-08-01 2011-12-22 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
WO2012127717A1 (en) 2011-03-24 2012-09-27 日本電気株式会社 Secondary battery
WO2013133384A1 (en) * 2012-03-08 2013-09-12 富士フイルム株式会社 Electrolytic solution for nonaqueous secondary battery, and secondary battery
JP2014049296A (en) * 2012-08-31 2014-03-17 Tdk Corp Nonaqueous electrolyte for lithium ion secondary battery and lithium ion secondary battery
JP2014049293A (en) * 2012-08-31 2014-03-17 Tdk Corp Nonaqueous electrolyte for lithium ion secondary battery and lithium ion secondary battery
WO2021194231A1 (en) * 2020-03-27 2021-09-30 주식회사 엘지에너지솔루션 Electrolyte for lithium-sulfur battery, and lithium-sulfur battery including same

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000100421A (en) * 1998-09-28 2000-04-07 Hitachi Maxell Ltd Nonaqueous electrolyte secondary battery
JP2000223154A (en) * 1999-01-29 2000-08-11 Sanyo Electric Co Ltd Lithium secondary battery
JP2001256966A (en) * 2000-03-13 2001-09-21 Hitachi Maxell Ltd Nonaqueous secondary battery and method for charging the battery
JP2002025615A (en) * 2000-07-10 2002-01-25 Toyota Central Res & Dev Lab Inc Lithium secondary battery
JP2003007334A (en) * 2002-05-17 2003-01-10 Ube Ind Ltd Nonaqueous electrolytic solution and lithium secondary battery
JP2003197194A (en) * 2001-10-18 2003-07-11 Nec Corp Electrode material for nonaqueous electrolyte secondary battery
JP2003308875A (en) * 2002-04-18 2003-10-31 Japan Storage Battery Co Ltd Nonaqueous secondary battery
JP2003331915A (en) * 2002-05-16 2003-11-21 Mitsubishi Chemicals Corp Nonaqueous electrolyte secondary cell

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000100421A (en) * 1998-09-28 2000-04-07 Hitachi Maxell Ltd Nonaqueous electrolyte secondary battery
JP2000223154A (en) * 1999-01-29 2000-08-11 Sanyo Electric Co Ltd Lithium secondary battery
JP2001256966A (en) * 2000-03-13 2001-09-21 Hitachi Maxell Ltd Nonaqueous secondary battery and method for charging the battery
JP2002025615A (en) * 2000-07-10 2002-01-25 Toyota Central Res & Dev Lab Inc Lithium secondary battery
JP2003197194A (en) * 2001-10-18 2003-07-11 Nec Corp Electrode material for nonaqueous electrolyte secondary battery
JP2003308875A (en) * 2002-04-18 2003-10-31 Japan Storage Battery Co Ltd Nonaqueous secondary battery
JP2003331915A (en) * 2002-05-16 2003-11-21 Mitsubishi Chemicals Corp Nonaqueous electrolyte secondary cell
JP2003007334A (en) * 2002-05-17 2003-01-10 Ube Ind Ltd Nonaqueous electrolytic solution and lithium secondary battery

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008035928A1 (en) * 2006-09-20 2008-03-27 Lg Chem, Ltd. Additive for non-aqueous electrolyte and secondary battery using the same
US8349502B2 (en) 2006-09-20 2013-01-08 Lg Chem, Ltd. Additive for non-aqueous electrolyte and secondary battery using the same
US8277972B2 (en) 2008-03-18 2012-10-02 Lg Chem, Ltd. Non-aqueous electrolyte solution for lithium secondary battery and lithium secondary battery comprising the same
WO2009116740A2 (en) * 2008-03-18 2009-09-24 Lg Chem, Ltd. Non-aqueous electrolyte solution for lithium secondary battery and lithium secondary battery comprising the same
WO2009116740A3 (en) * 2008-03-18 2009-11-12 Lg Chem, Ltd. Non-aqueous electrolyte solution for lithium secondary battery and lithium secondary battery comprising the same
KR101060349B1 (en) 2008-03-18 2011-08-29 주식회사 엘지화학 Non-aqueous electrolyte for lithium secondary battery and lithium secondary battery having same
CN101978548B (en) * 2008-03-18 2013-10-30 株式会社Lg化学 Non-aqueous electrolyte solution for lithium secondary battery and lithium secondary battery comprising same
WO2011129053A1 (en) * 2010-04-12 2011-10-20 三洋化成工業株式会社 Agent for forming electrode protective film and electrolyte solution
WO2012127717A1 (en) 2011-03-24 2012-09-27 日本電気株式会社 Secondary battery
US9203111B2 (en) 2011-03-24 2015-12-01 Nec Corporation Secondary battery
KR20180108928A (en) 2011-03-24 2018-10-04 닛본 덴끼 가부시끼가이샤 Secondary battery
JP2011258564A (en) * 2011-08-01 2011-12-22 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
WO2013133384A1 (en) * 2012-03-08 2013-09-12 富士フイルム株式会社 Electrolytic solution for nonaqueous secondary battery, and secondary battery
CN104205470A (en) * 2012-03-08 2014-12-10 富士胶片株式会社 Electrolytic solution for nonaqueous secondary battery, and secondary battery
US9905886B2 (en) 2012-03-08 2018-02-27 Fujifilm Corporation Non-aqueous liquid electrolyte for secondary battery and secondary battery
JP2014049296A (en) * 2012-08-31 2014-03-17 Tdk Corp Nonaqueous electrolyte for lithium ion secondary battery and lithium ion secondary battery
JP2014049293A (en) * 2012-08-31 2014-03-17 Tdk Corp Nonaqueous electrolyte for lithium ion secondary battery and lithium ion secondary battery
WO2021194231A1 (en) * 2020-03-27 2021-09-30 주식회사 엘지에너지솔루션 Electrolyte for lithium-sulfur battery, and lithium-sulfur battery including same
CN114503333A (en) * 2020-03-27 2022-05-13 株式会社Lg新能源 Electrolyte for lithium-sulfur battery and lithium-sulfur battery comprising same

Also Published As

Publication number Publication date
JP4618404B2 (en) 2011-01-26

Similar Documents

Publication Publication Date Title
JP4698126B2 (en) Non-aqueous electrolyte secondary battery
JP4697382B2 (en) Nonaqueous electrolyte secondary battery
JP5169850B2 (en) Non-aqueous electrolyte secondary battery
JP5068459B2 (en) Lithium secondary battery
KR100674011B1 (en) Electrode additives coated with electro conductive material and lithium secondary comprising the same
JP4539816B2 (en) Positive electrode for lithium secondary battery and lithium secondary battery
JP5910627B2 (en) Secondary battery
JP5310711B2 (en) Nonaqueous electrolyte secondary battery
JP4853608B2 (en) Lithium secondary battery
JP5278994B2 (en) Lithium secondary battery
JP5709231B1 (en) Positive electrode for lithium ion secondary battery and lithium ion secondary battery using the same
CN101192663A (en) An electrode for a rechargeable lithium battery and a rechargeable lithium battery fabricated therefrom
CN108701865B (en) Electrolyte for lithium secondary battery and lithium secondary battery comprising the same
JP4288402B2 (en) Secondary battery electrolyte, secondary battery, and method of using secondary battery
JP4192477B2 (en) Positive electrode active material for secondary battery, and positive electrode for secondary battery and secondary battery using the same
WO2003105267A1 (en) Secondary cell
JP4639634B2 (en) Positive electrode active material for lithium secondary battery and lithium secondary battery using the same
JP2005085720A (en) Positive electrode for lithium-ion secondary battery, and lithium-ion secondary battery
JP4618404B2 (en) Non-aqueous electrolyte secondary battery
JP4776186B2 (en) Nonaqueous electrolyte secondary battery
JP4725009B2 (en) Non-aqueous electrolyte secondary battery
KR20170000903A (en) Lithium secondary battery
JP5447615B2 (en) Electrolyte and non-aqueous electrolyte secondary battery
JP5006599B2 (en) Lithium ion secondary battery
JP2011096520A (en) Negative electrode plate for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery using this negative electrode plate

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060207

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091125

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100929

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101012

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131105

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4618404

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees