WO2011128173A1 - Optoelektronisches bauelement und verfahren zum herstellen eines optoelektronischen bauelements - Google Patents

Optoelektronisches bauelement und verfahren zum herstellen eines optoelektronischen bauelements Download PDF

Info

Publication number
WO2011128173A1
WO2011128173A1 PCT/EP2011/054106 EP2011054106W WO2011128173A1 WO 2011128173 A1 WO2011128173 A1 WO 2011128173A1 EP 2011054106 W EP2011054106 W EP 2011054106W WO 2011128173 A1 WO2011128173 A1 WO 2011128173A1
Authority
WO
WIPO (PCT)
Prior art keywords
semiconductor chip
optoelectronic component
semiconductor chips
electromagnetic radiation
component according
Prior art date
Application number
PCT/EP2011/054106
Other languages
English (en)
French (fr)
Inventor
Ralph Wirth
Original Assignee
Osram Opto Semiconductors Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osram Opto Semiconductors Gmbh filed Critical Osram Opto Semiconductors Gmbh
Priority to JP2013504187A priority Critical patent/JP5757993B2/ja
Priority to EP11710172A priority patent/EP2519971A1/de
Priority to KR1020127029964A priority patent/KR101818554B1/ko
Priority to CN201180019220.3A priority patent/CN102870214B/zh
Priority to US13/641,650 priority patent/US8835931B2/en
Publication of WO2011128173A1 publication Critical patent/WO2011128173A1/de

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/075Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00
    • H01L25/0753Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00 the devices being arranged next to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/58Optical field-shaping elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48463Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • H01L2933/0041Processes relating to semiconductor body packages relating to wavelength conversion elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0091Scattering means in or on the semiconductor body or semiconductor body package
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/44Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the coatings, e.g. passivation layer or anti-reflective coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/58Optical field-shaping elements
    • H01L33/60Reflective elements

Definitions

  • the present invention relates to an optoelectronic component for mixing electromagnetic radiation of different wavelengths.
  • an optoelectronic component for mixing electromagnetic radiation of different wavelengths.
  • a first semiconductor chip can partially absorb the electromagnetic radiation of a second semiconductor chip, which degrades the light output of the optoelectronic component.
  • blue emitting InGaN semiconductor chips may be colored with red
  • the object of the invention is to provide an optoelectronic component which minimizes the absorption losses.
  • At least one first semiconductor chip for emitting electromagnetic radiation in a first spectral range is provided on a carrier.
  • At least one second semiconductor chip for emitting electromagnetic radiation in a second is also present on the carrier
  • the first and the second spectral range are different from each other.
  • the at least one first semiconductor chip and the at least one second semiconductor chip are arranged in a single package.
  • the at least one first semiconductor chip is optically separated from the at least one second semiconductor chip by a barrier.
  • Centrosymmetric means that the first
  • the optoelectronic component has a common center of gravity for the first and the second semiconductor chips.
  • the mixed light emanating from the optoelectronic component has a very good mixture of the electromagnetic radiation from the first and the second spectral range.
  • the mixture is good.
  • the first semiconductor chips in an inner region of the
  • the second semiconductor chips may be arranged optoelectronic component.
  • the second semiconductor chips may be arranged in an outer region.
  • the second semiconductor chips may be arranged in an outer region.
  • Semiconductor chips may be arranged annularly around the first semiconductor chips. This is advantageous because it allows a uniform luminance, especially in the far field, can be achieved.
  • a further barrier is arranged around the second semiconductor chips. This is advantageous because it can prevent unintentional outflow of potting material to the outside.
  • the barrier between the first and the second semiconductor chips is annular. This is advantageous since it does not cause a mixture of the electromagnetic radiation -zi ⁇ first in the far field but can already be done after a few centimeters. This can be done for example on a matt surface.
  • the further barrier can also be annular.
  • the barriers may have a height between about 200 ym and about 2 mm,
  • Electromagnetic radiation of the second semiconductor chip is absorbed by the first semiconductor chips.
  • the semiconductor chips have at least one active zone which emits electromagnetic radiation.
  • the active zones may include pn junctions, double heterostructure, multiple quantum well structure (MQW), single
  • Quantum well structure means quantum wells (3-dim), quantum wires (2-dim) and quantum dots (1-dim).
  • Semiconductor chip an AlGalnP semiconductor chip, which is designed for the emission of electromagnetic radiation, especially in the red spectral range.
  • the second semiconductor chip may be mounted on a III-V compound semiconductor material, in particular a
  • Nitride compound semiconductor material such as gallium nitride
  • the second semiconductor chip may be an InGaN semiconductor chip which is designed to emit electromagnetic radiation, in particular in the blue spectral range.
  • a portion of the emitted from the InGaN semiconductor chips may be an InGaN semiconductor chip which is designed to emit electromagnetic radiation, in particular in the blue spectral range.
  • Spectral range are converted by a conversion agent in the yellow-green spectral range.
  • Conversion agent may comprise phosphor particles.
  • the phosphor particles may have phosphors.
  • Phosphors can have yttrium aluminum garnet.
  • the partial conversion of blue light into yellow light is particularly advantageous because white light can be generated from the superposition of blue and yellow light.
  • electromagnetic radiation in the red spectral range can be achieved with the starting from the InGaN semiconductor chips blue and yellow-green radiation.
  • This mixture of blue, yellow and red light is particularly suitable for producing warm white light. Due to the centrosymmetric arrangement of the AlGalnP and the InGaN semiconductor chips, it can be further achieved that the warm white light, at least in the far field, has a high intensity
  • the semiconductor chips may be potted.
  • One of the semiconductor chips may be potted.
  • Potting material serves to protect the contact wires, but above all to increase the efficiency of the coupling of electromagnetic radiation.
  • the efficiency with Potting material can be compared to the efficiency without
  • Grouting material can be increased by up to 80%.
  • the AlGalnP semiconductor chips in the center are potted with a first potting material.
  • potting material silicone or epoxy resin can be used.
  • the Barrier to the AlGalnP semiconductor chips also serves as a flow stop for the first potting material.
  • the first potting material contains as few scattering centers as possible. The red light should as completely as possible the first potting material without a wavelength conversion
  • the first potting material contains no phosphorus.
  • the InGaN semiconductor chips with a second potting material in particular of silicone, in the form of a planar
  • the second potting material contains a conversion agent, in particular a phosphor.
  • the conversion means part of the electromagnetic radiation emitted by the InGaN semiconductor chips from the blue spectral range, in
  • a hemispherical coupling-out lens spans the AlGalnP semiconductor chips. In other words, that covers
  • Decoupling lens is the area enclosed by the barrier around the AlGalnP semiconductor chips, ie the inner area or the emission area.
  • Radiation is reduced compared to a device without a lens.
  • Refractive index excluding ha / refractive index L in Se The refractive index of air, ie 1, is assumed to be the refractive index outside the coupling- out lens.
  • the coupling lens can be made of high refractive index glass with a refractive index of 1.5. This gives the following
  • the coupling-out lens is made of conventional silicone, the refractive index is 1.4. Does that exist?
  • Decoupling lens made of high refractive index silicon has a refractive index of 1.54.
  • Other potting materials can be used for the coupling lens.
  • the value of 1.5 can be taken as the refractive index for the above potting materials.
  • Barrier be arranged, but must be arranged as centrally as possible.
  • the coupling lens can be glued or produced by the casting process itself.
  • the InGaN semiconductor chips are pronounced as volume emitters, in particular as sapphire chips.
  • the InGaN semiconductor chips are surface emitters
  • Surface emitters are at least partially in a highly reflective material, especially a T1O 2
  • Silicone also be filled with Zr0 2 , Al 2 O 3 or ZnO.
  • the InGaN semiconductor chips are embedded in the white silicone up to the level of epitaxy. This is special
  • the carrier is highly absorbent and the InGaN semiconductor chip itself has a reflectivity of only about 85%.
  • the layer of T1O 2 filled silicone is a planar Verversionsverguss with the second
  • the barriers are highly reflective. A reflectivity of greater than 90%, preferably greater than 95%, can be realized.
  • Material for the barriers can be PBT
  • Semiconductor chip are arranged in a package.
  • the at least one first semiconductor chip and the at least one second semiconductor chip are arranged centrosymmetrically to a common center of symmetry.
  • a barrier is arranged between the at least one first semiconductor chip and the at least one second semiconductor chip.
  • the barrier may be present even before arranging the semiconductor chips.
  • the barrier serves for the complete optical separation of the inner region with the first semiconductor chips from the outer region with the second semiconductor chips.
  • Figure la shows a plan view of a
  • Figure lb shows a sectional view of the
  • Figure lc shows a sectional view of the
  • Figure ld shows a sectional view of the
  • Figure 2a shows a plan view of a
  • Figure 2b shows a plan view of a
  • FIG. 3 shows a top view of a
  • Figure 4a shows a 3-dimensional view of a
  • FIG. 4b shows a sectional view of FIG
  • Figure 5a shows a 3-dimensional view of a
  • FIG. 5b shows a sectional view of FIG
  • FIG. 6 shows a sectional view of a
  • FIG. 7 shows a sectional view of a
  • Figure 8 shows a section of a 3-dimensional
  • FIG. 1 a shows a plan view of an optoelectronic component 1.
  • the optoelectronic component 1 is used for mixing electromagnetic radiation with different wavelengths, in particular in the far field.
  • On a carrier 2 are first semiconductor chips 3 for emitting electromagnetic radiation in a first
  • the first semiconductor chips 3 and the second semiconductor chips 4 are arranged in a single package.
  • the first semiconductor chips 3 are optically separated from the second semiconductor chips 4 by a barrier 5.
  • the first semiconductor chips 3 and the second semiconductor chips 4 are each centrosymmetric about a common
  • the first semiconductor chips 3 are in the inner region 113, in the center of the optoelectronic component 1,
  • the second semiconductor chips 4 are annular in an outer region 114 around the first
  • the barrier 5 between the first semiconductor chips 3 and the second semiconductor chips 4 is annular.
  • the barrier 5 has a high reflectivity of more than 90%, preferably more than 95%.
  • the first semiconductor chips 3 may be formed as AlGalnP semiconductor chips.
  • AlGalnP semiconductor chips emit electromagnetic radiation, preferably from the red spectral region.
  • the second semiconductor chips 4 may be formed as InGaN semiconductor chips.
  • InGaN semiconductor chips preferably emit electromagnetic radiation the UV to the green spectral range, particularly preferably from the blue spectral range.
  • FIG. 1b shows a sectional view of the optoelectronic component from FIG. 1a.
  • the highly reflective barrier 5 has a height between about 200 ym and about 2 mm, preferably a height of about 500 ym.
  • the AlGalnP semiconductor chips 3 are provided with a first
  • Potting material 7 shed.
  • the potting material 7 may comprise silicone or epoxy resin.
  • the InGaN semiconductor chips 4 are encapsulated with a second potting material 9, in particular of silicone.
  • the second potting material 9 in particular of silicone.
  • Potting material 9 has the shape of a planar
  • Figure lc shows a further sectional view of the
  • FIG. 1c differs only from FIG. 1b in that, in the region of the AlGalnP semiconductor chips 3, the carrier 2 between the AlGalnP semiconductor chips 3 is lined with a third potting material 18.
  • the third potting material 18 may be a white, T1O 2 filled,
  • Potting material 18 is achieved that red scattered light is reflected efficiently.
  • Figure ld shows a further sectional view of the
  • FIG. 1 d shows InGaN semiconductor chips 4 b, which are referred to as Surface emitter, in particular as a thin-film chips are formed.
  • Figure ld is different only in of Figure lb, the InGaN semiconductor chips 4b are filled in a highly reflective material 11, in particular a silicone T1O 2 embedded.
  • a highly reflective material 11 in particular a silicone T1O 2 embedded.
  • the silicone may also be filled with ZrÜ 2 , Al 2 O 3 or ZnO.
  • the highly reflective material 11 can be flush with the surface emitters 4b. On the surface emitter 4b and the highly reflective material 11 is a second potting material. 9
  • Figure 2a shows a plan view of another
  • the AlGalnP semiconductor chips 3 are arranged in the inner region 113 around the center Z in a square shape.
  • the AlGalnP semiconductor chips 3 are enclosed by the barrier 5.
  • the InGaN semiconductor chips 4 are arranged around the AlGalnP semiconductor chips 3 in the outer region 114 in a square shape. Also the
  • Arrangement of the InGaN semiconductor chips is symmetrical about the center Z.
  • Figure 2b shows a plan view of another
  • Optoelectronic component 1 Within the barrier 5, InGaN semiconductor chips 4 are arranged in a rectangular shape. Outside the barrier 5 are AlGalnP -
  • the center Z is the common center of symmetry for the InGaN semiconductor chips 4 and the AlGalnP semiconductor chips 3.
  • Figure 3 shows a plan view of another
  • Optoelectronic component 1 In the center of the Optoelectronic component 1, a single AlGalnP semiconductor chip 3 is arranged, which differs from the
  • a plurality of InGaN semiconductor chips are arranged annularly around the center Z in the outer region 114.
  • Figure 4a shows a 3-dimensional view of a
  • a hemispherical coupling-out lens 6 whose geometry fulfills the Weierstrass condition spans the AlGalnP semiconductor chips 3.
  • the InGaN semiconductor chips 4 span around in a ring-shaped manner
  • the barrier 5 separates the inner region 113 with the AlGalnP semiconductor chips 3 from the outer region 114 with the InGaN semiconductor chips 4. Again, the center Z is the common one
  • FIG. 4b shows a sectional view of FIG
  • Embodiment in Figure lb except that over the inner region 113 in which the AlGalnP - semiconductor chips 3 are arranged a Auskoppellinse 6 is arranged.
  • the coupling-out lens 6 fulfills the Weierstrass condition. This means that the radius 13 of the coupling lens 6 and the radius 12 of the emission surface in the following
  • Refractive index serh ai b / refractive index L in Se The refractive index outside is 1.
  • the refractive index of the lens is assumed to be 1.5.
  • Figure 5a shows a 3-dimensional view of a
  • the InGaN semiconductor chips 4 arranged in a circle around the center of symmetry Z are enclosed by a further, annular, barrier 8.
  • the further barrier 8 has a reflectivity of greater than 90%, preferably greater than 95%.
  • the InGaN semiconductor chips 4 are cast in a second potting material 9. The second
  • Potting material 9 has a conversion means 17, in particular a phosphor. A portion of the electromagnetic radiation emitted by the InGaN semiconductor chips 4 from the blue spectral range is converted by the conversion means 17 into the yellow-green spectral range. The semiconductor chips 3, 4 are over
  • FIG. 5b shows a sectional view of the optoelectronic component from FIG. 5a.
  • InGaN semiconductor chips 4a as volume emitters, in particular as sapphire chips, are completely encapsulated in the second potting material 9.
  • Verguss is a conversion means 17 in the form of
  • the luminous particles can be Introduced luminescent particles.
  • the luminous particles can be introduced.
  • a coupling lens 6 covers the inner
  • FIG. 6 shows a sectional view of a
  • the InGaN semiconductor chips 4b are surface emitters,
  • the InGaN semiconductor chips 4b are laterally with a
  • FIG. 6 corresponds to FIG. 5b.
  • FIG. 7 shows a sectional view of a
  • Potting material 18 may be filled with Ti02 ⁇ particles. By the third potting material 18 is achieved that from the range of InGaN semiconductor chips 4 in the
  • the scattered light is preferably white mixed light.
  • FIG. 8 shows a section of FIG. 5a.
  • the inner region 113 of the optoelectronic component 1 is shown, which is enclosed by the barrier 5.
  • the inner region 113 forms a circular
  • This emission surface 14 has a certain radius 12. About the emission surface 14, the hemispherical lens 6 is spanned. The hemispherical lens 6 has a certain radius 13. The lens 6 has a refractive index 15 of about 1.5. Outside the lens 6, the refractive index of air, namely 1, is assumed. The two radii 12 and 13 are chosen so that the Weierstrass condition is met.
  • the optoelectronic device has become the
  • Embodiments are not limited to specific feature combinations. Although some

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Led Device Packages (AREA)

Abstract

Es handelt sich um ein optoelektronisches Bauelement (1) zur Mischung von elektromagnetischer Strahlung mit verschiedenen Wellenlängen, insbesondere im Fernfeld. Auf einem Träger (2) ist mindestens ein erster Halbleiterchip (3) zur Emission von elektromagnetischer Strahlung in einem ersten Spektralbereich vorgesehen. Weiters ist auf dem Träger (2) mindestens ein zweiter Halbleiterchip (4, 4a, 4b) zur Emission von elektromagnetischer Strahlung in einem zweiten Spektralbereich vorgesehen. Der erste und der zweite Spektralbereich sind voneinander verschieden. Der mindestens eine erste Halbleiterchip (3) und der mindestens eine zweite Halbleiterchip (4, 4a, 4b) sind in einem einzigen Package angeordnet. Der mindestens eine erste Halbleiterchip (3) ist vom mindestens einen zweiten Halbleiterchip (4, 4a, 4b) durch eine Barriere (5) optisch getrennt. Der mindestens eine erste Halbleiterchip (3) und der mindestens eine zweite Halbleiterchip ( 4, 4a, 4b) sind jeweils zentrosymmetrisch um ein gemeinsames Symmetriezentrum (Z) angeordnet.

Description

OPTOELEKTRONISCHES BAUELEMENT UND VERFAHREN ZUM HERSTELLEN EINES OPTOELEKTRONISCHEN BAUELEMENTS
BESCHREIBUNG
Die vorliegende Erfindung betrifft ein optoelektronisches Bauelement zur Mischung von elektromagnetischer Strahlung verschiedener Wellenlängen. Darüber hinaus ist ein
Verfahren zum Herstellen eines optoelektronischen
Bauelements angegeben.
Zur Erzeugung von Mischlicht können in einem
optoelektronischen Bauelement Halbleiterchips, die elektromagnetische Strahlung bei verschiedenen
Wellenlängen emittieren, in unmittelbarer Nähe zueinander kombiniert werden. Dabei kann ein erster Halbleiterchip teilweise die elektromagnetische Strahlung eines zweiten Halbleiterchips absorbieren, was die Lichtleistung des optoelektronischen Bauelements verschlechtert.
Beispielsweise können zur Erzeugung von warmweißem Licht blau emittierende InGaN-Halbleiterchips mit rot
emittierenden AlGalnP-Halbleiterchips kombiniert werden. Dabei können hohe Absorptionsverluste auftreten, da die AlGalnP-Halbleiterchips für die von den InGaN- Halbleiterchips emittierte elektromagnetische Strahlung mit Wellenlängen kleiner als etwa 600 nm, also
insbesondere im blauen Spektralbereich, stark
absorbierend sind. Aufgabe der Erfindung ist es, ein optoelektronisches Bauelement vorzusehen, das die Absorptionsverluste minimiert .
Dieses Problem wird durch ein optoelektronisches
Bauelement und ein Verfahren zur Herstellung eines optoelektronischen Bauelements gemäß den unabhängigen Patentansprüchen 1 bzw. 14 gelöst.
Weiterbildungen und vorteilhafte Ausgestaltungen des optoelektronischen Bauelements sind in den abhängigen Ansprüchen angegeben.
Beispielhafte Ausführungsformen
Verschiedene Ausführungsformen weisen ein
optoelektronisches Bauelement zur Mischung von
elektromagnetischer Strahlung mit verschiedenen
Wellenlängen, insbesondere im Fernfeld, auf. Auf einem Träger ist mindestens ein erster Halbleiterchip zur Emission von elektromagnetischer Strahlung in einem ersten Spektralbereich vorgesehen. Auf dem Träger ist zudem mindestens ein zweiter Halbleiterchip zur Emission von elektromagnetischer Strahlung in einem zweiten
Spektralbereich vorgesehen. Der erste und der zweite Spektralbereich sind voneinander verschieden. Der mindestens eine erste Halbleiterchip und der mindestens eine zweite Halbleiterchip sind in einem einzigen Package angeordnet. Der mindestens eine erste Halbleiterchip ist vom mindestens einen zweiten Halbleiterchip durch eine Barriere optisch getrennt. Zudem sind der mindestens eine erste Halbleiterchip und der mindestens eine zweite
Halbleiterchip jeweils zentrosymmetrisch um ein
gemeinsames Symmetriezentrum angeordnet. Durch die Barriere wird verhindert, dass die von den zweiten Halbleiterchips emittierte elektromagnetische Strahlung von den ersten Halbleiterchips absorbiert wird. Zentrosymmetrisch bedeutet, dass die ersten
Halbleiterchips und die zweiten Halbleiterchips jeweils um ein gemeinsames Symmetriezentrum angeordnet sind. Mit anderen Worten weist das optoelektronische Bauelement einen gemeinsamen Schwerpunkt für die ersten und die zweiten Halbleiterchips auf. Dadurch weist das von dem optoelektronischen Bauelement ausgehende Mischlicht eine sehr gute Mischung der elektromagnetischen Strahlungen aus dem ersten und dem zweiten Spektralbereich auf.
Insbesondere im Fernfeld ist die Mischung gut.
In einer bevorzugten Ausführungsform können die ersten Halbleiterchips in einem inneren Bereich des
optoelektronischen Bauelements angeordnet sein. Die zweiten Halbleiterchips können in einem äußeren Bereich angeordnet sein. Insbesondere können die zweiten
Halbleiterchips ringförmig um die ersten Halbleiterchips angeordnet sein. Dies ist vorteilhaft, da dadurch eine gleichmäßige Leuchtdichte, insbesondere im Fernfeld, erreicht werden kann.
In einer bevorzugten Ausführungsform ist um die zweiten Halbleiterchips eine weitere Barriere angeordnet. Dies ist vorteilhaft, da dadurch ein ungewolltes Abfließen von Vergussmaterial nach Außen verhindert werden kann.
In einer bevorzugten Ausführungsform ist die Barriere zwischen den ersten und den zweiten Halbleiterchips ringförmig ausgebildet. Dies ist vorteilhaft, da dadurch eine Mischung der elektromagnetischen Strahlung nicht -zi¬ erst im Fernfeld sondern bereits nach einigen Zentimetern erfolgen kann. Dies kann zum Beispiel auf einer matten Fläche erfolgen.
Auch die weitere Barriere kann ringförmig ausgebildet sein.
In einer bevorzugten Ausführungsform können die Barrieren eine Höhe zwischen etwa 200 ym und etwa 2 mm,
vorzugsweise eine Höhe von etwa 500 ym, aufweisen. Dies ist vorteilhaft, da damit vermieden wird, dass
elektromagnetische Strahlung der zweiten Halbleiterchips von den ersten Halbleiterchips absorbiert wird.
Die Halbleiterchips weisen mindestens eine aktive Zone auf, die elektromagnetische Strahlung emittiert. Die aktiven Zonen können pn-Übergänge, Doppelheterostruktur, Mehrfach-Quantentopfstruktur (MQW) , Einfach-
Quantentopfstruktur (SQW) sein. Quantentopfstruktur bedeutet: Quantentöpfe (3-dim) , Quantendrähte (2-dim) und Quantenpunkte (1-dim) .
In einer bevorzugten Ausführungsform kann der erste
Halbleiterchip ein AlGalnP-Halbleiterchip sein, der zur Emission von elektromagnetischer Strahlung insbesondere im roten Spektralbereich ausgelegt ist.
Der zweite Halbleiterchip kann auf einem III-V- Verbindungshalbleitermaterial , insbesondere einem
Nitridverbindungshalbleitermaterial wie Galliumnitrid
(GaN) aufgewachsen sein. Beispielsweise kann der zweite Halbleiterchip ein InGaN-Halbleiterchip sein, der zur Emission von elektromagnetischer Strahlung insbesondere im blauen Spektralbereich ausgelegt ist. In einer bevorzugten Ausführungsform kann ein Teil der von den InGaN-Halbleiterchips emittierten
elektromagnetischen Strahlung aus dem blauen
Spektralbereich durch ein Konversionsmittel in den gelb- grünen Spektralbereich konvertiert werden. Das
Konversionsmittel kann Leuchtstoffpartikel aufweisen. Die Leuchtstoffpartikel können Phosphore aufweisen. Die
Phosphore können Yttrium Aluminium Granat aufweisen. Die teilweise Konversion von blauem Licht in gelbes Licht ist besonders vorteilhaft, da aus der Überlagerung von blauem und gelbem Licht weißes Licht erzeugt werden kann.
Die Anordnung der AlGalnP-Halbleiterchips und der InGaN- Halbleiterchips in einem Package ist besonders
vorteilhaft, da dadurch eine gute Mischung der
elektromagnetischen Strahlung im roten Spektralbereich mit der von den InGaN-Halbleiterchips ausgehend blauen und gelb-grünen Strahlung erreicht werden kann. Diese Mischung aus blauem, gelben und rotem Licht ist besonders geeignet um warm weißes Licht zu erzeugen. Durch die zentrosymmetrische Anordnung der AlGalnP- und der InGaN- Halbleiterchips kann weiter erreicht werden, dass das warm weiße Licht zumindest im Fernfeld eine hohe
Farbhomogenität aufweist. Bei der starken Absorption der AlGalnP-Halbleiterchips für elektromagnetische Strahlung mit Wellenlängen kleiner als etwa 600 nm ist es besonders vorteilhaft, die AlGalnP- von den InGaN-Halbleiterchips durch eine optische Barriere zu trennen.
Die Halbleiterchips können vergossen sein. Ein
Vergussmaterial dient zum Schutz der Kontaktdrähte, vor allem aber zum Steigern der Effizienz der Auskopplung von elektromagnetischer Strahlung. Die Effizienz mit Vergussmaterial kann gegenüber der Effizienz ohne
Vergussmaterial um bis zu 80% gesteigert werden.
Die AlGalnP-Halbleiterchips im Zentrum sind mit einem ersten Vergussmaterial vergossen. Als Vergussmaterial kann Silikon oder Epoxidharz verwendet werden. Die
Barriere um die AlGalnP-Halbleiterchips dient dabei auch als Fliesstop für das erste Vergussmaterial. Das erste Vergussmaterial enthält möglichst wenige Streuzentren. Das rote Licht soll ohne eine Wellenlängenkonversion möglichst vollständig das erste Vergussmaterial
verlassen. Insbesondere enthält das erste Vergussmaterial kein Phosphor.
In einer bevorzugten Ausführungsform sind die InGaN- Halbleiterchips mit einem zweiten Vergussmaterial, insbesondere aus Silikon, in Form eines planaren
Volumenvergusses vergossen. Das zweite Vergussmaterial enthält ein Konversionsmittel, insbesondere ein Phosphor. Durch das Konversionsmittel wird ein Teil der von den InGaN-Halbleiterchips emittierten elektromagnetischen Strahlung aus dem blauen Spektralbereich, in
elektromagnetische Strahlung im gelb-grünen
Spektralbereich umgewandelt.
In einer bevorzugten Ausführungsform überspannt eine halbkugelförmige Auskoppellinse die AlGalnP- Halbleiterchips. Mit anderen Worten bedeckt die
Auskoppellinse die Fläche die von der Barriere um die AlGalnP-Halbleiterchips eingeschlossen ist, also den inneren Bereich bzw. die Emissionsfläche. Die
Auskoppellinse ist vorteilhaft, da sie die
Auskoppeleffizienz für die elektromagnetische Strahlung erhöht, indem der Anteil der total reflektierten
Strahlung gegenüber einer Anordnung ohne Linse verringert wird .
In einer bevorzugten Ausführungsform erfüllt die
Geometrie der Auskoppellinse die sogenannte
Weierstraßbedingung. Diese Bedingung fordert, dass das Verhältnis des Radius der kreisförmigen Fläche auf der die AlGalnP-Halbleiterchips angeordnet sind zum Radius der Auskoppellinse dem Verhältnis des Brechungsindex außerhalb der Auskoppellinse zum Brechungsindex innerhalb der Auskoppellinse entspricht. Diese Bedingung kann formelmäßig so angegeben werden:
RadiusFiäche/RadiusLinSe ^
Brechungsindex ausserhaib/Brechunsgindex LinSe Als Brechungsindex außerhalb der Auskoppellinse wird der Brechungsindex von Luft, also 1, angenommen. Die
Auskoppellinse kann aus hochbrechendem Glas bestehen, mit einem Brechungsindex von 1,5. Dies ergibt folgende
Bedingung : RadiusFiäche/RadiusLinse - 1/1,5 = 2/3.
Besteht die Auskoppellinse aus herkömmlichem Silikon beträgt der Brechungsindex 1,4. Besteht die
Auskoppellinse aus hochbrechendem Silikon beträgt der Brechungsindex 1,54. Auch andere Vergussmaterialien sind für die Auskoppellinse einsetzbar.
Der Einfachheit halber kann als Brechungsindex für obige Vergussmaterialien der Wert 1,5 angenommen werden. Wenn die Weierstrassbedinung erfüllt ist, wird die an dem Übergang Auskoppellinse zu Luft stattfinde Totalreflexion minimiert. Dies ist besonders vorteilhaft, da damit die Auskoppelverluste verringert werden. Um die Weierstrassbedingung zu erfüllen, können die
AlGalnP-Halbleiterchips nicht beliebig nahe an der
Barriere angeordnet werden, sondern müssen möglichst zentral angeordnet sein.
Vorzugsweise kann die Auskoppellinse aufgeklebt werden oder durch den Vergussvorgang selbst erzeugt werden.
Ist die Weierstrassbedingung erfüllt, ergibt sich für die von den AlGalnP-Halbleiterchips emittierte
elektromagnetische Strahlung ein Lambertsches Fernfeld.
In einer bevorzugten Ausführungsform sind die InGaN- Halbleiterchips als Volumenemitter, insbesondere als Saphirchips, ausgeprägt.
In einer weiteren bevorzugten Ausführungsform sind die InGaN-Halbleiterchips als Oberflächenemitter,
insbesondere als Dünnfilmchips, ausgebildet. Die
Oberflächenemitter sind mindestens teilweise in einem hochreflektiven Material, insbesondere einem T1O2
gefüllten Silikon, angeordnet. Alternativ kann das
Silikon auch mit Zr02, AI2O3 oder ZnO gefüllt sein. Die InGaN-Halbleiterchips sind bis zur Höhe der Epitaxie in das weiße Silikon eingebettet. Dies ist besonders
vorteilhaft, da dadurch eine Reflektivität von bis zu 95% erreicht werden kann. Zum Vergleich ist der Träger hoch absorbierend und der InGaN-Halbleiterchip selbst weist eine Reflektivität von nur etwa 85 % auf. Auf die Schicht aus T1O2 gefülltem Silikon erfolgt ein planarer Konversionsverguss mit dem zweiten
Vergussmaterial. Solche planaren Konversionsvergüsse ermöglichen ein Lambertsches Abstrahlprofil der
emittierten elektromagnetischen Strahlung.
In einer bevorzugten Ausführungsform sind die Barrieren hochreflektiv . Eine Reflektivität von größer 90%, vorzugsweise von größer 95%, ist realisierbar. Als
Material für die Barrieren kann PBT
(Polybutylenterephthalat) verwendet werden, das mit T1O2, ZrÜ2, AI2O3 oder ZnO gefüllt ist. Die hohe Reflektivität der Barriere ist besonders vorteilhaft, da dadurch die Absorptionsverluste in den Barrieren minimiert werden.
Verschiedene Ausführungsformen weisen ein Verfahren zur Herstellung eines optoelektronischen Bauelements zur Mischung von elektromagnetischer Strahlung mit
verschiedenen Wellenlängen, insbesondere im Fernfeld, auf. Folgende Verfahrensschritte können angewendet werden: Zunächst wird mindestens ein erster
Halbleiterchip und mindestens ein zweiter Halbleiterchip auf einem Träger angeordnet. Der mindestens eine erste Halbleiterchip und der mindestens eine zweite
Halbleiterchip werden in einem Package angeordnet. Der mindestens eine erste Halbleiterchip und der mindestens eine zweite Halbleiterchip sind zentrosymmetrisch zu einem gemeinsamen Symmetriezentrum angeordnet.
Anschließend wird eine Barriere zwischen dem mindestens einen ersten Halbleiterchip und dem mindestens einen zweiten Halbleiterchip angeordnet. Alternativ kann die Barriere schon vor dem Anordnen der Halbleiterchips vorhanden sein. Hierfür kommen
insbesondere Premold-Packages in Frage.
Die Barriere dient der vollständigen optischen Trennung des inneren Bereichs mit den ersten Halbleiterchips von dem äußeren Bereich mit den zweiten Halbleiterchips.
KURZE BESCHREIBUNG DER ZEICHNUNGEN
Verschiedene Ausführungsbeispiele der erfindungsgemäßen Lösung werden im Folgenden anhand der Zeichnungen näher erläutert .
Figur la zeigt eine Draufsicht auf ein
optoelektronischen Bauelement;
Figur lb zeigt eine Schnittansicht des
optoelektronischen Bauelements aus Figur la;
Figur lc zeigt eine Schnittansicht des
optoelektronischen Bauelements aus Figur la;
Figur ld zeigt eine Schnittansicht des
optoelektronischen Bauelements aus Figur la;
Figur 2a zeigt eine Draufsicht auf ein
optoelektronischen Bauelement; Figur 2b zeigt eine Draufsicht auf ein
optoelektronischen Bauelement;
Figur 3 zeigt eine Draufsicht auf ein
optoelektronischen Bauelement; Figur 4a zeigt eine 3-dimensionale Ansicht eines
optoelektronischen Bauelements;
Figur 4b zeigt eine Schnittansicht des
optoelektronischen Bauelements aus Figur 4a; Figur 5a zeigt eine 3-dimensionale Ansicht eines
optoelektronischen Bauelements;
Figur 5b zeigt eine Schnittansicht des
optoelektronischen Bauelements aus Figur 5a;
Figur 6 zeigt eine Schnittansicht eines
optoelektronischen Bauelements;
Figur 7 zeigt eine Schnittansicht eines
optoelektronischen Bauelements;
Figur 8 zeigt einen Ausschnitt einer 3-dimensionalen
Ansicht eines optoelektronischen Bauelements,
AU S F Ü H RU N GS B E I S P I E L E Gleiche, gleichartige oder gleich wirkende Elemente sind in den Figuren mit denselben Bezugszeichen versehen. Die Figuren und die Größenverhältnisse der in den Figuren dargestellten Elemente untereinander sind nicht als maßstäblich zu betrachten. Vielmehr können einzelne
Elemente zur besseren Darstellbarkeit und zum besseren Verständnis übertrieben groß dargestellt sein.
Figur la zeigt eine Draufsicht auf ein optoelektronisches Bauelement 1. Das optoelektronische Bauelement 1 dient zur Mischung von elektromagnetischer Strahlung mit verschiedenen Wellenlängen, insbesondere im Fernfeld. Auf einem Träger 2 sind erste Halbleiterchips 3 zur Emission von elektromagnetischer Strahlung in einem ersten
Spektralbereich vorgesehen. Ebenso sind auf dem Träger 2 zweite Halbleiterchips 4 zur Emission von
elektromagnetischer Strahlung in einem zweiten
Spektralbereich vorgesehen. Die ersten Halbleiterchips 3 und die zweiten Halbleiterchips 4 sind in einem einzigen Package angeordnet. Die ersten Halbleiterchips 3 sind von den zweiten Halbleiterchips 4 durch eine Barriere 5 optisch getrennt. Es sind mehrere erste Halbleiterchips 3 und mehrere zweite Halbleiterchips 4 vorgesehen. Die ersten Halbleiterchips 3 und die zweiten Halbleiterchips 4 sind jeweils zentrosymmetrisch um ein gemeinsames
Symmetriezentrum Z angeordnet. Die ersten Halbleiterchips 3 sind im inneren Bereich 113, im Zentrum des optoelektronischen Bauelements 1,
angeordnet. Die zweiten Halbleiterchips 4 sind in einem äußeren Bereich 114 ringförmig um die ersten
Halbleiterchips 3 angeordnet. Die Barriere 5 zwischen den ersten Halbleiterchips 3 und den zweiten Halbleiterchips 4 ist ringförmig ausgebildet. Die Barriere 5 weist eine hohe Reflektivität von mehr als 90%, vorzugsweise von mehr als 95%, auf.
Die ersten Halbleiterchips 3 können als AlGalnP- Halbleiterchips ausgebildet sein. AlGalnP-Halbleiterchips emittieren elektromagnetischer Strahlung vorzugsweise aus dem roten Spektralbereich.
Die zweiten Halbleiterchips 4 können als InGaN- Halbleiterchips ausgebildet sein. InGaN-Halbleiterchips emittieren vorzugsweise elektromagnetische Strahlung aus dem UV- bis in den grünen Spektralbereich, besonders bevorzugt aus dem blauen Spektralbereich.
Figur lb zeigt eine Schnittansicht des optoelektronischen Bauelements aus Figur la. Die hochreflektive Barriere 5 weist eine Höhe zwischen etwa 200 ym und etwa 2 mm, vorzugsweise eine Höhe von etwa 500 ym, auf. Wie schon in Figur la sind die AlGalnP-Halbleiterchips 3 und die
InGaN-Halbleiterchips 4 um das gemeinsame
Symmetriezentrum Z zentrosymmetrisch angeordnet. Die AlGalnP-Halbleiterchips 3 sind mit einem ersten
Vergussmaterial 7 vergossen. Das Vergussmaterial 7 kann Silikon oder Epoxidharz aufweisen. Die InGaN- Halbleiterchips 4 sind mit einem zweiten Vergussmaterial 9, insbesondere aus Silikon, vergossen. Das zweite
Vergussmaterial 9 weist die Form eines planaren
Volumenvergusses auf, der mit der Barriere 5 bündig abschließt .
Figur lc zeigt eine weitere Schnittansicht des
optoelektronischen Bauelements aus Figur la. Figur lc unterscheidet sich nur dadurch von Figur lb, dass im Bereich der AlGalnP - Halbleiterchips 3 der Träger 2 zwischen den AlGalnP - Halbleiterchips 3 mit einem dritten Vergußmaterial 18 ausgekleidet ist. Als drittes Vergussmaterial 18 kann ein weißer, T1O2 gefüllter,
Verguss eingesetzt werden. Durch das dritte
Vergussmaterial 18 wird erreicht, dass rotes Streulicht effizient reflektiert wird.
Figur ld zeigt eine weitere Schnittansicht des
optoelektronischen Bauelements aus Figur la. Figur ld zeigt InGaN-Halbleiterchips 4b, die als Oberflächenemitter , insbesondere als Dünnfilmchips, ausgebildet sind. Figur ld unterscheidet sich nur dadurch von Figur lb, dass die InGaN-Halbleiterchips 4b in einem hochreflektiven Material 11, insbesondere einem T1O2 gefüllten Silikon, eingebettet sind. Alternativ zur
Füllung mit T1O2 kann das Silikon auch mit ZrÜ2, AI2O3 oder ZnO gefüllt sein. Das hochreflektive Material 11 kann mit den Oberflächenemittern 4b bündig abschließen. Auf die Oberflächenemitter 4b und das hochreflektive Material 11 ist ein zweites Vergussmaterial 9
aufgebracht .
Figur 2a zeigt eine Draufsicht auf ein weiteres
optoelektronisches Bauelement. Die AlGalnP - Halbleiterchips 3 sind im inneren Bereich 113 um das Zentrum Z in einer quadratischen Form angeordnet. Die AlGalnP - Halbleiterchips 3 sind von der Barriere 5 umschlossen. Die InGaN - Halbleiterchips 4 sind im äußeren Bereich 114 in einer quadratischen Form um die AlGalnP - Halbleiterchips 3 angeordnet. Auch die
Anordnung der InGaN-Halbleiterchips ist symmetrisch um das Zentrum Z .
Figur 2b zeigt eine Draufsicht auf ein weiteres
optoelektronischen Bauelement 1. Innerhalb der Barriere 5 sind in einer Rechteckform InGaN - Halbleiterchips 4 angeordnet. Außerhalb der Barriere 5 sind AlGalnP -
Halbleiterchips 3 angeordnet. Wiederum ist das Zentrum Z das gemeinsame Symmetriezentrum für die InGaN - Halbleiterchips 4 und die AlGalnP - Halbleiterchips 3.
Figur 3 zeigt eine Draufsicht auf ein weiteres
optoelektronisches Bauelement 1. Im Zentrum des optoelektronischen Bauelements 1 ist ein einziger AlGalnP - Halbleiterchip 3 angeordnet, der von der
hochreflektiven Barriere 5 seitlich umschlossen ist. Um das Zentrum Z sind im äußeren Bereich 114 mehrere InGaN - Halbleiterchips ringförmig angeordnet.
Figur 4a zeigt eine 3-dimensionale Ansicht eines
optoelektronischen Bauelements. Eine halbkugelförmige Auskoppellinse 6, deren Geometrie die Weierstraßbedingung erfüllt, überspannt die AlGalnP-Halbleiterchips 3. Die InGaN-Halbleiterchips 4 umspannen ringförmig, in
regelmäßigen Abständen zueinander, die Anordnung der AlGalnP-Halbleiterchips 3. Die Barriere 5 trennt den inneren Bereich 113 mit den AlGalnP - Halbleiterchips 3 vom äußeren Bereich 114 mit den InGaN-Halbleiterchips 4. Wiederum ist das Zentrum Z das gemeinsame
Symmetriezentrum für die InGaN - Halbleiterchips 4 und die AlGalnP - Halbleiterchips 3.
Figur 4b zeigt eine Schnittansicht des
optoelektronischen Bauelements aus Figur 4a. Das
Ausführungsbeispiel in Figur 4b entspricht dem
Ausführungsbeispiel in Figur lb, außer dass über dem inneren Bereich 113 in dem die AlGalnP - Halbleiterchips 3 angeordnet sind eine Auskoppellinse 6 angeordnet ist. Die Auskoppellinse 6 erfüllt die Weierstrassbedingung . Dies bedeutet, dass der Radius 13 der Auskoppellinse 6 und der Radius 12 der Emissionsfläche in folgendem
Verhältnis zueinander stehen:
RadiusFiäche/RadiusLinSe ^
Brechungsindex aus serhaib/Brechungsindex LinSe Der Brechungsindex außerhalb ist 1. Der Brechungsindex der Linse wird mit 1,5 angenommen.
Figur 5a zeigt eine 3-dimensionale Ansicht eines
optoelektronischen Bauelements. Zusätzlich zu dem in Figur 4a dargestellten Ausführungsbeispiel sind die kreisförmig um das Symmetriezentrum Z angeordneten InGaN- Halbleiterchips 4 von einer weiteren, ringförmigen, Barriere 8 umschlossen. Die weitere Barriere 8 weist eine Reflektivität von größer 90%, vorzugsweise von größer 95%, auf. Die InGaN - Halbleiterchips 4 sind in einem zweiten Vergussmaterial 9 vergossen. Das zweite
Vergussmaterial 9 weist ein Konversionsmittel 17, insbesondere ein Phosphor, auf. Ein Teil der von den InGaN-Halbleiterchips 4 emittierten elektromagnetischen Strahlung aus dem blauen Spektralbereich wird durch das Konversionsmittel 17 in den gelb-grünen Spektralbereich konvertiert. Die Halbleiterchips 3, 4 sind über
elektrische Kontaktierungen und Leiterbahnen 10 mit
(nicht gezeigten) Stromquellen verbunden. Figur 5b zeigt eine Schnittansicht des optoelektronischen Bauelements aus Figur 5a. InGaN-Halbleiterchips 4a als Volumenemitter, insbesondere als Saphirchips, sind in das zweite Vergussmaterial 9 vollständig eingegossen. Im Verguss ist ein Konversionsmittel 17 in Form von
Leuchtpartikeln eingebracht. Die Leuchtpartikel können
Phosphore aufweisen. Wie schon im Ausführungsbeispiel von Figur 4b bedeckt eine Auskoppellinse 6 den inneren
Bereich 113 vollständig. Der äußere Bereich 114 ist von einer weiteren hochreflektiven Barriere 8 eingefasst. Die weitere Barriere 8 weist eine Reflektivität von größer 90%, vorzugsweise von größer 95%, auf. Figur 6 zeigt eine Schnittansicht eines
optoelektronischen Bauelements. Die InGaN - Halbleiterchips 4b sind als Oberflächenemitter,
insbesondere als Dünnfilmchips, ausgelegt. Die InGaN - Halbleiterchips 4b sind seitlich mit einem
hochreflektiven Material 11, insbesondere aus weißem Silikon, vergossen. Auf dieses hochreflektive Material 11 ist das zweite Vergussmaterial 9 aufgebracht. Das zweite Vergussmaterial 9 weist das Konversionsmittel 17 auf. Ansonsten entspricht die Figur 6 der Figur 5b.
Figur 7 zeigt eine Schnittansicht eines
optoelektronischen Bauelements 1. Die AlGalnP- Halbleiterchips 3 im inneren Bereich 113 des
optoelektronischen Bauelements 1 sind mit einem dritten Vergussmaterial 18 seitlich vergossen. Das dritte
Vergussmaterial 18 kann mit Ti02~Partikel gefüllt sein. Durch das dritte Vergussmaterial 18 wird erreicht, dass aus dem Bereich der InGaN-Halbleiterchips 4 in die
Auskoppellinse 6 über dem Bereich der AlGalnP- Halbleiterchips 3 eingekoppeltes Streulicht effizient reflektiert wird. Bei dem Streulicht handelt es sich vorzugsweise um weißes Mischlicht. Auf das dritte
Vergussmaterial 18 ist das erste Vergussmaterial 7 aufgebracht . Figur 8 zeigt einen Ausschnitt von Figur 5a. Es ist der innere Bereich 113 des optoelektronischen Bauelements 1 dargestellt, der von der Barriere 5 eingeschlossen wird. Der innere Bereich 113 bildet eine kreisförmige
Emissionsfläche 14. Diese Emissionsfläche 14 hat einen bestimmten Radius 12. Über der Emissionsfläche 14 ist die halbkugelförmige Linse 6 aufgespannt. Die halbkugelförmige Linse 6 hat einen bestimmten Radius 13. Die Linse 6 weist einen Brechungsindex 15 von etwa 1,5 auf. Außerhalb der Linse 6 wird der Brechungsindex von Luft, nämlich 1, angenommen. Die beiden Radien 12 und 13 sind so gewählt, dass die Weierstrassbedingung erfüllt ist .
Das optoelektronische Bauelement wurde zur
Veranschaulichung des zugrundeliegenden Gedankens anhand einiger Ausführungsbeispiele beschrieben. Die
Ausführungsbeispiele sind dabei nicht auf bestimmte Merkmalskombinationen beschränkt. Auch wenn einige
Merkmale und Ausgestaltungen nur im Zusammenhang mit einem besonderen Ausführungsbeispiel oder einzelnen Ausführungsbeispielen beschrieben wurden, können sie jeweils mit anderen Merkmalen aus anderen
Ausführungsbeispielen kombiniert werden. Es ist ebenso denkbar, in Ausführungsbeispielen einzelne dargestellte Merkmale oder besondere Ausgestaltungen wegzulassen oder hinzuzufügen, soweit die allgemeine technische Lehre realisiert bleibt.
Bezugs zeichenliste
1 optolektronisches Bauelement
2 Träger
3 erster Halbleiterchip, insbesondere AlGalnP- Halbleiterchip
4 zweiter Halbleiterchip, insbesondere InGaN- Halbleiterchip
4a InGaN-Volumenemitter (Saphirchip)
4b InGaN-Oberflächenemitter (Dünnfilmchip)
5 Barriere
6 Auskoppellinse
7 erstes Vergussmaterial (ohne Konversionsmittel)
8 weitere Barriere
9 zweites Vergussmaterial (mit Konversionsmittel)
10 elektrische Kontaktierungen und Leiterbahnen 11 hochreflektives Material (weisses Silikon)
12 Radius der Emissionsfläche
13 Radius der Auskoppellinse
14 Emissionsfläche
15 Brechungsindex der Auskoppellinse 16 Brechungsindex außerhalb der Auskoppellinse
17 Konversionsmittel
18 drittes Vergußmaterial
Z Symmetriezentrum 113 innerer Bereich des optoelektronischen
Bauelements
114 äußerer Bereich des optoelektronischen
Bauelements

Claims

PAT E N TAN S P R U C H E
1. Optoelektronisches Bauelement (1) zur Mischung von elektromagnetischer Strahlung mit verschiedenen
Wellenlängen, insbesondere im Fernfeld, mit:
- einem Träger (2),
- mindestens einem auf dem Träger (2) vorgesehenen ersten Halbleiterchip (3) zur Emission von
elektromagnetischer Strahlung in einem ersten
Spektralbereich,
- mindestens einem auf dem Träger (2) vorgesehenen zweiten Halbleiterchip (4, 4a, 4b) zur Emission von elektromagnetischer Strahlung in einem zweiten
Spektralbereich,
- wobei der erste und der zweite Spektralbereich voneinander verschieden sind,
- wobei der erste Halbleiterchip (3) und der zweite Halbleiterchip (4, 4a, 4b) in einem einzigen Package angeordnet sind,
- wobei der erste Halbleiterchip (3) vom zweiten Halbleiterchip (4, 4a, 4b) durch eine Barriere (5) optisch getrennt ist und
- wobei der erste Halbleiterchip (3) und der zweite Halbleiterchip ( 4 , 4a, 4b) jeweils zentrosymmetrisch um ein gemeinsames Symmetriezentrum (Z) angeordnet sind.
2. Optoelektronisches Bauelement gemäß Anspruch 1, wobei der mindestens eine erste Halbleiterchip (3) in einem inneren Bereich (113) und der mindestens eine zweite Halbleiterchip (4) in einem äußeren Bereich (114) auf dem Träger (2) angeordnet sind.
3. Optoelektronisches Bauelement gemäß Anspruch 1 oder 2, wobei um die zweiten Halbleiterchips (4, 4a, 4b) eine weitere Barriere (8) angeordnet ist.
4. Optoelektronisches Bauelement gemäß einem der vorigen Ansprüche, wobei die Barriere (5) und/oder die weitere Barriere (8) ringförmig ausgebildet sind/ist.
5. Optoelektronisches Bauelement gemäß einem der vorigen Ansprüche, wobei der erste Halbleiterchip (3) ein AlGalnP-Halbleiterchip zur Emission von
elektromagnetischer Strahlung im roten Spektralbereich ist .
6. Optoelektronisches Bauelement gemäß einem der vorigen Ansprüche, wobei der zweite Halbleiterchip (4, 4a, 4b) ein InGaN-Halbleiterchip zur Emission von elektromagnetischer Strahlung im blauen
Spektralbereich ist.
7. Optoelektronisches Bauelement gemäß Anspruch 6, wobei ein Teil der vom InGaN-Halbleiterchip (4, 4a, 4b) emittierten elektromagnetischen Strahlung durch ein Konversionsmittel (17), insbesondere in den gelb¬ grünen Spektralbereich, konvertiert wird.
8. Optoelektronisches Bauelement gemäß Anspruch 5, wobei die AlGalnP-Halbleiterchips (3) mit einem ersten Vergussmaterial (7), insbesondere mit Silikon oder Epoxidharz, vergossen sind.
9. Optoelektronisches Bauelement gemäß Anspruch 6 oder 7, wobei die InGaN-Halbleiterchips (4, 4a, 4b) mit einem zweiten Vergussmaterial (9), insbesondere mit Silikon, in Form eines planaren Volumenvergusses vergossen sind, wobei das zweite Vergussmaterial (9) ein Konversionsmittel (17) aufweist.
10. Optoelektronisches Bauelement gemäß einem der vorigen Ansprüche, wobei eine halbkugelförmige
Auskoppellinse (6), deren Geometrie insbesondere die Weierstraßbedingung erfüllt, die ersten
Halbleiterchips (3) überspannt.
11. Optoelektronisches Bauelement gemäß einem der Ansprüche 6 oder 7 oder 9, wobei die InGaN- Halbleiterchips (4) als Volumenemitter (4a),
insbesondere als Saphirchips, und/oder als
Oberflächenemitter (4b) , insbesondere als
Dünnfilmchips, ausgebildet sind.
12. Optoelektronisches Bauelement gemäß Anspruch 11, wobei die Oberflächenemitter (4b) mindestens teilweise in einem hochreflektiven Material (11), insbesondere einem Ti02, Zr02, AI2O3 oder ZnO gefüllten Silikon, angeordnet sind.
13. Optoelektronisches Bauelement gemäß einem der vorigen Ansprüche, wobei die Barriere (5) und/oder die weitere Barriere (8) hochreflektiv, mit einer
Reflektivität von größer 90%, vorzugsweise von größer 95%, sind/ist.
14. Verfahren zur Herstellung eines
optoelektronischen Bauelements zur Mischung von elektromagnetischer Strahlung mit verschiedenen
Wellenlängen, insbesondere im Fernfeld, mit folgenden Verfahrensschritten :
- Anordnen mindestens eines ersten Halbleiterchips (3) auf einem Träger (2),
- Anordnen mindestens eines zweiten Halbleiterchips (4) auf einem Träger (2),
wobei der mindestens eine erste Halbleiterchip (3) und der mindestens eine zweite Halbleiterchip (4, 4a, 4b) in einem einzigen Package zentrosymmetrisch zu einem gemeinsamen Symmetriezentrum (Z) angeordnet werden,
- Anordnen einer Barriere (5) zwischen dem mindestens einen ersten Halbleiterchip (3) und dem mindestens einen zweiten Halbleiterchip (4, 4a, 4b) zur optischen
Trennung .
PCT/EP2011/054106 2010-04-16 2011-03-18 Optoelektronisches bauelement und verfahren zum herstellen eines optoelektronischen bauelements WO2011128173A1 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2013504187A JP5757993B2 (ja) 2010-04-16 2011-03-18 オプトエレクトロニクスデバイス及び該オプトエレクトロニクスデバイスの製造方法
EP11710172A EP2519971A1 (de) 2010-04-16 2011-03-18 Optoelektronisches bauelement und verfahren zum herstellen eines optoelektronischen bauelements
KR1020127029964A KR101818554B1 (ko) 2010-04-16 2011-03-18 광전자 소자 그리고 광전자 소자를 제조하기 위한 방법
CN201180019220.3A CN102870214B (zh) 2010-04-16 2011-03-18 光电子器件和用于制造光电子器件的方法
US13/641,650 US8835931B2 (en) 2010-04-16 2011-03-18 Optoelectronic component and method for producing an optoelectronic component

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102010027875A DE102010027875A1 (de) 2010-04-16 2010-04-16 Optoelektronisches Bauelement und Verfahren zum Herstellen eines optoelektronischen Bauelements
DE102010027875.0 2010-04-16

Publications (1)

Publication Number Publication Date
WO2011128173A1 true WO2011128173A1 (de) 2011-10-20

Family

ID=43983590

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2011/054106 WO2011128173A1 (de) 2010-04-16 2011-03-18 Optoelektronisches bauelement und verfahren zum herstellen eines optoelektronischen bauelements

Country Status (7)

Country Link
US (1) US8835931B2 (de)
EP (1) EP2519971A1 (de)
JP (1) JP5757993B2 (de)
KR (1) KR101818554B1 (de)
CN (2) CN104979339B (de)
DE (1) DE102010027875A1 (de)
WO (1) WO2011128173A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013104963A1 (en) * 2012-01-10 2013-07-18 Koninklijke Philips N.V. Light emitting array with improved light output efficiency

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130170174A1 (en) 2011-12-29 2013-07-04 Intematix Technology Center Corp. Multi-cavities light emitting device
EP2613354B1 (de) * 2012-01-03 2020-05-06 Epistar Corporation Lichtemittierende Vorrichtung mit mehreren Hohlräumen
US20130264577A1 (en) * 2012-04-07 2013-10-10 Axlen, Inc. High flux high brightness led lighting devices
WO2014185693A1 (ko) 2013-05-13 2014-11-20 서울반도체 주식회사 발광소자 패키지, 그 제조 방법, 및 이를 포함하는 차량용 램프 및 백라이트 유닛
US9847457B2 (en) 2013-07-29 2017-12-19 Seoul Viosys Co., Ltd. Light emitting diode, method of fabricating the same and LED module having the same
KR101546929B1 (ko) 2013-09-24 2015-08-25 서울바이오시스 주식회사 발광 다이오드 및 그것을 갖는 발광 다이오드 모듈
US10163747B2 (en) 2013-09-25 2018-12-25 STATS ChipPAC Pte. Ltd. Semiconductor device and method of controlling warpage in reconstituted wafer
US9607965B2 (en) 2013-09-25 2017-03-28 STATS ChipPAC Pte. Ltd. Semiconductor device and method of controlling warpage in reconstituted wafer
JP6149727B2 (ja) * 2013-12-28 2017-06-21 日亜化学工業株式会社 発光装置及びその製造方法
DE202014103029U1 (de) 2014-03-27 2014-07-15 Tridonic Jennersdorf Gmbh LED-Modul zur Abgabe von Weißlicht
USD771579S1 (en) 2014-05-26 2016-11-15 Citizens Electronics Co., Ltd. Light emitting diode
JP1524801S (de) * 2014-05-26 2015-06-01
USD767515S1 (en) * 2014-10-24 2016-09-27 Citizen Electronics Co., Ltd. Light emitting diode
DE102014116134A1 (de) * 2014-11-05 2016-05-12 Osram Opto Semiconductors Gmbh Verfahren zum Herstellen eines optoelektronischen Bauelements und optoelektronisches Bauelement
DE102015206471A1 (de) * 2015-04-10 2016-10-13 Osram Gmbh Beleuchtungseinrichtung
JP1545462S (de) * 2015-05-20 2016-03-14
USD786809S1 (en) * 2015-05-20 2017-05-16 Citizen Electronics Co., Ltd. Light emitting diode
DE102015007750A1 (de) * 2015-06-17 2016-12-22 Osram Gmbh Leuchtdiodenanordnung und Verfahren zum Herstellen einer Leuchtdiodenanordnung
JP6646969B2 (ja) * 2015-08-03 2020-02-14 シチズン電子株式会社 発光装置
US10354912B2 (en) * 2016-03-21 2019-07-16 Qualcomm Incorporated Forming self-aligned vertical interconnect accesses (VIAs) in interconnect structures for integrated circuits (ICs)
JP6769248B2 (ja) * 2016-11-09 2020-10-14 日亜化学工業株式会社 発光装置
TWI716674B (zh) * 2017-03-17 2021-01-21 新加坡商星科金朋有限公司 半導體裝置和在重建晶圓中控制翹曲的方法
JP7057528B2 (ja) * 2020-09-10 2022-04-20 日亜化学工業株式会社 発光装置
US11830858B2 (en) * 2022-03-21 2023-11-28 Foshan Evercore Optoelectronic Technology Co., Ltd. Full-color chip-on-board (COB) device

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040217364A1 (en) * 2003-05-01 2004-11-04 Cree Lighting Company, Inc. Multiple component solid state white light
US20060197098A1 (en) * 2005-03-07 2006-09-07 Citizen Electronics Co. Ltd. Light emitting device and illumination apparatus using said light emitting device
US20070001188A1 (en) * 2004-09-10 2007-01-04 Kyeong-Cheol Lee Semiconductor device for emitting light and method for fabricating the same
US20070228392A1 (en) * 2006-04-03 2007-10-04 Ivoclar Vivadent Ag Semiconductor radiation source and light curing device
US20080308822A1 (en) * 2007-06-13 2008-12-18 Advanced Optoelectronic Technology Inc. Package structure of light emitting diode for backlight
US20090108271A1 (en) * 2007-10-31 2009-04-30 Wei-Jen Chou Light emitting diode package
US20090152571A1 (en) * 2007-12-17 2009-06-18 Su Chih-Liang Array type light-emitting device with high color rendering index
US20090284951A1 (en) * 2006-06-30 2009-11-19 Julius Muschaweck Optoelectronic component and illumination device

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0521458A (ja) 1991-07-11 1993-01-29 Nec Corp 半導体装置およびその製造方法
JPH0521458U (ja) * 1991-08-30 1993-03-19 サンケン電気株式会社 半導体発光装置
JP3156731B2 (ja) * 1992-01-31 2001-04-16 東ソー・クォーツ株式会社 石英ガラス製バーナー
JP2000150969A (ja) 1998-11-16 2000-05-30 Matsushita Electronics Industry Corp 半導体発光装置
JP2001351404A (ja) 2000-04-06 2001-12-21 Kansai Tlo Kk 発光ダイオードを用いた面発光装置
DE10038213A1 (de) * 2000-08-04 2002-03-07 Osram Opto Semiconductors Gmbh Strahlungsquelle und Verfahren zur Herstellung einer Linsensform
DE10120703A1 (de) * 2001-04-27 2002-10-31 Osram Opto Semiconductors Gmbh Halbleiterchip für die Optoelektronik
JP3991624B2 (ja) * 2001-06-26 2007-10-17 日亜化学工業株式会社 表面実装型発光装置及びその製造方法
FR2839211A1 (fr) 2002-04-29 2003-10-31 Conception & Dev Michelin Sa Machine electrique dont le rotor est specialement adapte aux hautes vitesses
FR2852162B1 (fr) 2003-03-06 2005-09-23 Leroy Somer Moteurs Machine electrique tournante comportant un stator et deux rotors
JP4458804B2 (ja) 2003-10-17 2010-04-28 シチズン電子株式会社 白色led
JP2005158958A (ja) * 2003-11-25 2005-06-16 Matsushita Electric Works Ltd 発光装置
US20050234316A1 (en) 2004-04-16 2005-10-20 Sensors For Medicine And Science, Inc. Housing for a circuit that is to be implanted in-vivo and process of making the same
US7462502B2 (en) * 2004-11-12 2008-12-09 Philips Lumileds Lighting Company, Llc Color control by alteration of wavelength converting element
JP2007019096A (ja) 2005-07-05 2007-01-25 Toyoda Gosei Co Ltd 発光装置及びその製造方法
KR100771811B1 (ko) * 2005-12-27 2007-10-30 삼성전기주식회사 백색 발광 장치
JP5108297B2 (ja) 2005-12-27 2012-12-26 昭和電工株式会社 発光素子実装パッケージ、面光源装置および表示装置
JP2009538532A (ja) 2006-05-23 2009-11-05 クリー エル イー ディー ライティング ソリューションズ インコーポレイテッド 照明装置
DE102007021042A1 (de) 2006-07-24 2008-01-31 Samsung Electro-Mechanics Co., Ltd., Suwon Leuchtdiodenmodul für Lichtquellenreihe
JP2008041699A (ja) 2006-08-01 2008-02-21 Showa Denko Kk Ledパッケージ
DE102007011123A1 (de) * 2007-03-07 2008-09-11 Osram Opto Semiconductors Gmbh Licht emittierendes Modul und Herstellungsverfahren für ein Licht emittierendes Modul
JP2008270305A (ja) * 2007-04-17 2008-11-06 Nichia Corp 発光装置
JP5431688B2 (ja) * 2007-06-29 2014-03-05 ソウル セミコンダクター カンパニー リミテッド マルチledパッケージ
JP2009038161A (ja) 2007-08-01 2009-02-19 Sumitomo Metal Electronics Devices Inc 発光素子収納用パッケージ
TWI331397B (en) 2007-09-03 2010-10-01 Ledtech Electronics Corp Array type light-emitting device with high color rendering index
CN101878540B (zh) * 2007-11-29 2013-11-06 日亚化学工业株式会社 发光装置及其制造方法
JP5119917B2 (ja) * 2007-12-28 2013-01-16 日亜化学工業株式会社 発光装置
JP5056520B2 (ja) * 2008-03-21 2012-10-24 東芝ライテック株式会社 照明装置
JP5125748B2 (ja) 2008-05-13 2013-01-23 豊田合成株式会社 発光装置の製造方法
JP5628475B2 (ja) 2008-07-22 2014-11-19 日亜化学工業株式会社 表面実装型発光装置の製造方法
JP2010190859A (ja) 2009-02-20 2010-09-02 Mitsubishi Heavy Ind Ltd テーパねじの締結力管理方法及び管理装置
JP3156731U (ja) * 2009-10-29 2010-01-14 柏友照明科技股▲フン▼有限公司 色温度調整装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040217364A1 (en) * 2003-05-01 2004-11-04 Cree Lighting Company, Inc. Multiple component solid state white light
US20070001188A1 (en) * 2004-09-10 2007-01-04 Kyeong-Cheol Lee Semiconductor device for emitting light and method for fabricating the same
US20060197098A1 (en) * 2005-03-07 2006-09-07 Citizen Electronics Co. Ltd. Light emitting device and illumination apparatus using said light emitting device
US20070228392A1 (en) * 2006-04-03 2007-10-04 Ivoclar Vivadent Ag Semiconductor radiation source and light curing device
US20090284951A1 (en) * 2006-06-30 2009-11-19 Julius Muschaweck Optoelectronic component and illumination device
US20080308822A1 (en) * 2007-06-13 2008-12-18 Advanced Optoelectronic Technology Inc. Package structure of light emitting diode for backlight
US20090108271A1 (en) * 2007-10-31 2009-04-30 Wei-Jen Chou Light emitting diode package
US20090152571A1 (en) * 2007-12-17 2009-06-18 Su Chih-Liang Array type light-emitting device with high color rendering index

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013104963A1 (en) * 2012-01-10 2013-07-18 Koninklijke Philips N.V. Light emitting array with improved light output efficiency

Also Published As

Publication number Publication date
CN104979339B (zh) 2018-06-26
DE102010027875A1 (de) 2011-10-20
EP2519971A1 (de) 2012-11-07
JP2013526016A (ja) 2013-06-20
CN104979339A (zh) 2015-10-14
US20130032820A1 (en) 2013-02-07
US8835931B2 (en) 2014-09-16
JP5757993B2 (ja) 2015-08-05
KR101818554B1 (ko) 2018-01-15
CN102870214A (zh) 2013-01-09
CN102870214B (zh) 2015-08-05
KR20130051449A (ko) 2013-05-20

Similar Documents

Publication Publication Date Title
WO2011128173A1 (de) Optoelektronisches bauelement und verfahren zum herstellen eines optoelektronischen bauelements
EP2599120B1 (de) Optoelektronisches bauelement
EP2638575B1 (de) Optoelektronischer halbleiterchip und verfahren zu dessen herstellung
EP2577754B1 (de) Optoelektronisches bauelement und verfahren zur herstellung eines optoelektronischen bauelements und eines verbunds
DE102011080458A1 (de) Optoelektronische anordnung und verfahren zur herstellung einer optoelektronischen anordnung
DE102015112042B4 (de) Optoelektronische Leuchtvorrichtung
DE202011110910U1 (de) Lichtemittierender Diodenchip
DE102015113759A1 (de) Lichtemittierende vorrichtung und beleuchtungsvorrichtung
DE102015103055A1 (de) Optoelektronisches Halbleiterbauteil und Verfahren zur Herstellung eines optoelektronischen Halbleiterbauteils
WO2009039816A1 (de) Strahlungsemittierendes bauelement mit glasabdeckung und verfahren zu dessen herstellung
WO2013110540A1 (de) Leuchte und verfahren zur herstellung einer leuchte
DE102018123851A1 (de) Lichtemittierende Vorrichtung
DE102016104616B4 (de) Halbleiterlichtquelle
WO2011151156A1 (de) Wellenlängenkonversionselement, optoelektronisches bauelement mit einem wellenlängenkonversionselement und verfahren zur herstellung eines wellenlängenkonversionselements
DE102008022888A1 (de) Leuchtvorrichtung
DE112014000439B4 (de) Optoelektronischer Halbleiterchip und Verfahren zum Herstellen eines optoelektronischen Halbleiterchips
DE112015004123B4 (de) Optoelektronisches Bauteil und Verfahren zur Herstellung des optoelektronischen Bauteils
DE102016117189A1 (de) Optoelektronisches Bauelement
WO2017121815A1 (de) Verfahren zum herstellen einer optoelektronischen leuchtvorrichtung und optoelektronische leuchtvorrichtung
DE102011015726B4 (de) Halbleiterchip, Display mit einer Mehrzahl von Halbleiterchips und Verfahren zu deren Herstellung
DE10340271A1 (de) Dünnschicht-Leuchtdiodenchip und Verfahren zu seiner Herstellung
DE102011084885A1 (de) Auflage für eine Leuchtvorrichtung
DE102008048653A1 (de) Optoelektronisches Halbleiterbauelement
DE102014112659A1 (de) Licht emittierende Vorrichtung
DE102018105085B4 (de) Optoelektronisches Bauteil und Leuchtmittel

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180019220.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11710172

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011710172

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13641650

Country of ref document: US

Ref document number: 2013504187

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20127029964

Country of ref document: KR

Kind code of ref document: A