WO2011101986A1 - 固定子及び固定子製造方法 - Google Patents

固定子及び固定子製造方法 Download PDF

Info

Publication number
WO2011101986A1
WO2011101986A1 PCT/JP2010/052597 JP2010052597W WO2011101986A1 WO 2011101986 A1 WO2011101986 A1 WO 2011101986A1 JP 2010052597 W JP2010052597 W JP 2010052597W WO 2011101986 A1 WO2011101986 A1 WO 2011101986A1
Authority
WO
WIPO (PCT)
Prior art keywords
stator core
stator
resin
electromagnetic steel
coil
Prior art date
Application number
PCT/JP2010/052597
Other languages
English (en)
French (fr)
Inventor
常治 吉村
浩二 中西
泰弘 上野
修一 中山
直希 吉田
尚文 千葉
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to PCT/JP2010/052597 priority Critical patent/WO2011101986A1/ja
Publication of WO2011101986A1 publication Critical patent/WO2011101986A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/14Stator cores with salient poles
    • H02K1/146Stator cores with salient poles consisting of a generally annular yoke with salient poles
    • H02K1/148Sectional cores
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/12Impregnating, heating or drying of windings, stators, rotors or machines
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/46Fastening of windings on the stator or rotor structure
    • H02K3/52Fastening salient pole windings or connections thereto
    • H02K3/521Fastening salient pole windings or connections thereto applicable to stators only
    • H02K3/522Fastening salient pole windings or connections thereto applicable to stators only for generally annular cores with salient poles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/04Details of the magnetic circuit characterised by the material used for insulating the magnetic circuit or parts thereof
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/02Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies
    • H02K15/022Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies with salient poles or claw-shaped poles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2201/00Specific aspects not provided for in the other groups of this subclass relating to the magnetic circuits
    • H02K2201/09Magnetic cores comprising laminations characterised by being fastened by caulking
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2203/00Specific aspects not provided for in the other groups of this subclass relating to the windings
    • H02K2203/12Machines characterised by the bobbins for supporting the windings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/32Windings characterised by the shape, form or construction of the insulation
    • H02K3/325Windings characterised by the shape, form or construction of the insulation for windings on salient poles, such as claw-shaped poles

Definitions

  • the present invention relates to a stator used by forming a stator core by laminating electromagnetic steel sheets and a stator manufacturing method, and to a technique for suppressing distortion generated in the stator core.
  • Patent Document 1 discloses a technique regarding a stator of a motor.
  • a groove portion extending in the axial direction is formed on the inner peripheral side of the yoke portion of the stator core.
  • the resin filling part with which each groove part is filled is provided integrally. Since the covering member is firmly fixed to the stator core in the resin-filled portion, it is possible to prevent the covering member from being cracked or peeled off.
  • Patent Document 2 discloses a technique related to a stator piece and a stator of a motor.
  • the core piece of the stator core formed by laminating electromagnetic steel sheets is formed so that the teeth width of one electromagnetic steel sheet located at both ends in the stacking direction is narrower than the teeth width of the electromagnetic steel sheet located in the center in the stacking direction.
  • Patent Document 3 discloses a technique regarding a stator, a manufacturing method thereof, and an electric motor using the stator.
  • a core piece of a stator core formed by laminating electromagnetic steel sheets is composed of an electromagnetic steel sheet having a narrow tooth width and an electromagnetic steel sheet having a wide tooth width, and is alternately stacked.
  • Patent Document 4 discloses a technique related to a split stator and a split stator manufacturing method.
  • an adhesive layer is provided around the teeth portion of the stator core so that the filler mixed in the resin used for the insulator does not have directionality. . Since the direction of the filler mixed in the insulator can be arranged at random, it is possible to suppress the influence of the filler that hinders heat transfer, and to improve the thermal conductivity.
  • FIG. 13 is a schematic cross-sectional view of a connecting portion that connects the stator cores by caulking.
  • the electromagnetic steel sheet 150 includes a caulking recess 111b, and the electromagnetic steel sheet 150 is overlapped to form a split stator core 111.
  • FIG. 14 is a cross-sectional view showing a state where an insulator is insert-molded in the stator core.
  • the insulator 114 covers the teeth portion 111a as shown in FIG.
  • the thermal expansion coefficients of the insulator 114 made of resin and the split stator core 111 formed by laminating the metal electromagnetic steel plates 150 are different. For this reason, when the insulator 114 is molded and cooled, a contraction force F1 is generated on the teeth portion 111a side and an expansion force F2 is generated on the outer peripheral side of the split stator core 111.
  • an object of the present invention is to provide a stator or a stator manufacturing method in which distortion is less likely to occur due to stress generated during insulator molding.
  • a stator according to an aspect of the present invention has the following characteristics. (1) A stator core that is formed by winding a conductor, and a stator core that is formed by laminating electromagnetic steel plates and that protrudes from an outer ring portion toward an inner peripheral side, and that is inserted into the coil.
  • a resin mold part in which a coil end portion of the coil inserted into the resin is covered with a resin, and the electromagnetic steel sheet constituting the stator core is provided with a caulking recess, and the caulking recess is used to
  • the stator core is formed by connecting electromagnetic steel sheets, and a groove portion is provided in the outer ring portion of the stator core or the root portion of the teeth in parallel to the axial direction of the stator core, and the groove portion A resin column is provided.
  • the outer ring portion here refers to a portion of the stator core that is formed in an annular shape and has a teeth portion on the inner peripheral side, excluding the teeth portion. Therefore, it refers to a region surrounded by a virtual plane connecting the bottom surface of the slot formed between both end surfaces and the outer peripheral surface of the stator core and between the teeth, and the bottom surface of the adjacent slots.
  • a stator manufacturing method has the following characteristics.
  • the portion, in the stator manufacturing method laminating the electromagnetic steel sheets using the caulking recess used in the electromagnetic steel sheet, forming the stator core, and setting the stator core in a mold,
  • the insulator is formed by insert molding, and a resin column is formed by pouring resin into a groove provided in the outer ring portion of the electromagnetic steel sheet or the root portion of the teeth in parallel with the axial direction of the stator core.
  • the following actions and effects can be obtained by the stator according to one aspect of the present invention having such characteristics.
  • the aspect of the invention described in the above (1) includes a coil formed by winding a conductor and a tooth formed by laminating electromagnetic steel plates and inserting the coil so as to protrude from the outer ring portion toward the inner peripheral side.
  • the electromagnetic steel sheet constituting the stator core is provided with a crimp recess, and the crimp recess
  • the stator core is formed by connecting the electromagnetic steel sheets using the outer peripheral portion of the stator core or the root portion of the teeth, the groove portion is provided in parallel to the axial direction of the stator core, and the resin column is provided in the groove portion. It is what is provided.
  • the stator core is connected by caulking recesses to create a slight gap between the electromagnetic steel sheets.
  • the stator core includes a groove portion in the outer ring portion, and a resin column is formed in the groove portion. For this reason, even if the insulator is insert-molded in the stator core and the resin constituting the insulator is contracted, the stator core is not deformed. This is because the resin pillar provided in the outer ring portion of the stator core is integrated with the electromagnetic steel plate constituting the stator core, and when the insulator shrinks when the insulator is insert-molded, the insulator and the resin This is because, since the columns contract in the same direction, the force generated when the insulator contracts is offset by the force generated when the resin column contracts.
  • a coil is formed by winding a conductor, and the coil is inserted into a tooth formed on a stator core made of laminated electromagnetic steel sheets.
  • the stator manufacturing method of forming a resin mold part that covers a portion with resin the electromagnetic steel sheets are laminated using the caulking recesses used in the electromagnetic steel sheet to form a stator core, and the stator core is formed into a mold.
  • the insulator is formed by insert molding, and a resin column is formed by pouring resin into a groove provided parallel to the axial direction of the stator core in the outer ring portion of the electromagnetic steel sheet or the root portion of the teeth. .
  • the insulator and the resin pillar provided in the groove of the outer ring portion it is possible to suppress the distortion of the stator core due to the shrinkage of the insulator.
  • Magnetic steel sheets and insulators have different coefficients of thermal expansion due to differences in materials. For this reason, when the resin melted at the time of insulator molding is injected into the cavity, insert molded, and solidified, the resin constituting the insulator contracts and a force is generated on the teeth side to compress in the stator core axial direction. In order to generate a force that counteracts this, a resin column is formed on the outer ring portion of the stator core.
  • stator of this embodiment It is a perspective view of the stator of this embodiment. It is a perspective view of the split type stator core of this embodiment. It is a perspective view in the state where insert molding of an insulator was carried out to a stator core of this embodiment. It is a perspective view in the state where a coil was inserted in a stator core of this embodiment. It is a perspective view in the state where the resin mold part was formed in the stator core of this embodiment. It is a mimetic diagram at the time of insert-molding an insulator of this embodiment. It is a schematic perspective view of the stator core of this embodiment. It is a schematic sectional drawing of the stator core of this embodiment. It is a perspective view showing another embodiment of a stator core of this embodiment.
  • FIG. 1 It is a perspective view showing another embodiment of a stator core of this embodiment. It is a perspective view showing another embodiment of a stator core of this embodiment. It is a perspective view showing another embodiment of a stator core of this embodiment. It is a perspective view showing another embodiment of a stator core of this embodiment. It is a schematic cross section of the connection part which connects a stator core by caulking joining. It is the side surface cross-section schematic diagram of the stator core which showed the contractive force which generate
  • FIG. 1 the perspective view of the stator of this embodiment is shown.
  • FIG. 2 is a perspective view of a split-type stator core.
  • FIG. 3 is a perspective view of a state where an insulator is insert-molded into the stator core.
  • FIG. 4 is a perspective view of a state where a coil is inserted into the stator core.
  • FIG. 5 is a perspective view of a state where the resin mold portion 113 is formed on the stator core. It should be noted that details are different from FIG. 1 for convenience of explanation.
  • the stator 10 uses a split-type stator core 111, and is formed by arranging 18 stator core units 110 in an annular shape and fitting an outer ring 102 on the outer periphery.
  • a bus bar holder 101 is provided at the coil end of the stator 10.
  • the stator core 111 is formed by laminating a plurality of electromagnetic steel plates 150 formed in a substantially T shape by press working.
  • the state of lamination is as shown in FIG.
  • the stator core 111 includes a tooth portion 111a so as to protrude toward the inner peripheral side of the stator 10, and the electromagnetic steel plates 150 are fixed to each other by a caulking recess 111b.
  • the groove part 111e is formed in the outer ring part 111c provided along the outer peripheral side of the stator core 111 from the teeth part 111a.
  • the groove 111e is a V-shaped groove formed at the time of pressing.
  • a coil 112 is inserted into the tooth portion 111a after an insulator 114 is provided.
  • the insulator 114 is insert-molded with respect to the stator core 111 as shown in FIG.
  • the insulator 114 includes a flange portion 114a, an annular portion 114b, and a coil support wall 114c, and is formed of an insulating resin.
  • the resin forming the insulator 114 needs to transfer heat from the heated coil 112 to the stator core 111 side. For this reason, the filler is mixed in the insulator 114 for the purpose of improving heat transferability.
  • FIG. 6 is a schematic view when insert-molding the insulator.
  • the stator core 111 is disposed between the movable mold D1 and the fixed mold D2, so that an insulator forming cavity B1 and a resin column forming cavity B2 are formed between the movable mold D1 and the stator core 111. Is done.
  • the insulator 114 and the resin column 130 are insert-formed by pouring molten resin into the insulator forming cavity B1 and the resin column forming cavity B2, cooling, and releasing.
  • the insulator forming cavity B1 and the resin column forming cavity B2 are provided with a gate for supplying resin. The same resin is injected into the insulator forming cavity B1 and the resin column forming cavity B2.
  • the coil 112 is wound by edgewise bending a rectangular conductor having a rectangular cross section.
  • a flat conductor is a conductor having a high conductivity such as copper and is coated with an insulating resin such as enamel.
  • an outer terminal portion 112a and an inner terminal portion 112b are formed and connected to a bus bar (not shown).
  • the coil 112 is inserted into the insulator 114 in a tooth portion 111 a formed in the stator core 111.
  • the resin mold portion 113 is formed so as to cover the coil 112 as shown in FIG.
  • the stator 10 of this embodiment is the said structure, there exists an effect demonstrated below.
  • the stator 10 of this embodiment has a coil 112 formed by winding a conductor and a tooth portion 111a formed by laminating electromagnetic steel plates 150 and inserting the coil 112 protruding from the outer ring portion 111c toward the inner peripheral side.
  • the electromagnetic steel plate 150 constituting the stator core 111 is provided.
  • stator core 111 is formed on the outer ring portion 111c of the stator core 111 with the axial direction of the stator core 111.
  • the groove 111e is provided in parallel, and the resin pillar 130 is provided in the groove 111e.
  • FIG. 7 shows a schematic perspective view of the stator core. Note that the insulator is omitted for convenience of explanation.
  • FIG. 8 shows a schematic cross-sectional view of the stator core.
  • Stator core 111 is formed by laminating electromagnetic steel plates 150. The electromagnetic steel sheet 150 is punched with a press, and at the same time, a caulking recess 111b is formed. Then, after press working, the stator core 111 is overlapped with the crimped recess 111b and integrated as shown in FIG. In FIG. 2, only one crimping recess 111b is shown, but a plurality of crimping recesses 111b may be provided depending on the size and required strength of the stator core 111.
  • the insulator 114 is insert-molded and the resin pillar 130 is formed at the same time.
  • the resin column 130 is formed by pouring resin into a groove 111e formed in the outer ring portion 111c of the stator core 111, and is in close contact with the stator core 111 by slightly entering the resin into the gap d. It is formed integrally.
  • the shrinkage force of the resin column 130 is determined by the type of resin, the thickness of the resin column 130, and the like.
  • a method of changing the material of the resin column 130 is also conceivable, but since the merit of forming together with the insulator 114 is impaired, the position of the groove 111e formed on the outer peripheral surface 111d of the outer ring portion 111c is changed.
  • a method of changing is also conceivable.
  • FIG. 9 is a perspective view showing another embodiment of the stator core.
  • the resin pillar 130 can be increased to two places by increasing the number of grooves 111e formed on the outer peripheral surface 111d to two.
  • FIG. 10 is a perspective view showing another embodiment of the stator core.
  • FIG. 11 is a perspective view showing another embodiment of the stator core.
  • FIG. 12 is a perspective view showing another embodiment of the stator core.
  • the pattern as shown in FIG. 10 in which the resin pillar 130 is provided on the dividing surface of the split-type stator core 111, the pattern as shown in FIG. 11 in which the resin pillar 130 is provided at the root of the tooth portion 111a, or A pattern as shown in FIG. 12 in which a resin pillar 130 is provided at the bottom of the slot is conceivable.
  • the resin column 130 is provided to cancel the force generated by the contraction of the insulator 114.
  • it is possible to offset the force that effectively contracts by devising not only the size of the resin pillar 130 but also the position and number of formation. It becomes.
  • the resin column 130 that generates a force that cancels the contracting force of the insulator 114, it is possible to make it difficult for the stator core 111 of the stator core unit 110 to be distorted. Since the distortion of the stator core unit 110 is less likely to occur, it becomes easy to ensure the roundness of the inner periphery of the stator 10, and the clearance between the rotor disposed on the inner periphery side (not shown) and the stator 10 is minimized. Can be set to the limit. Since the gap between the stator 10 and the rotor affects the output and performance of the motor using the stator 10, it is desirable that the gap can be narrowed.
  • the invention has been described according to the present embodiment, the invention is not limited to the embodiment, and by appropriately changing a part of the configuration without departing from the spirit of the invention. It can also be implemented.
  • the resin pillar 130 formed on the outer ring portion 111c and the tooth portion 111a is shown in FIGS. 7 and 9 to 12, but is not limited to this example because it is just an example. It does not prevent the resin column 130 from being formed in a position and size that can cancel the force generated in the insulator 114, and does not prevent the resin column 130 from being disposed in a place that does not hinder the magnetic circuit generated in the stator core 111. .
  • the stator core unit 110 is of a split type, but it does not prevent the resin pillar 130 from being provided on an annular stator core.
  • the materials exemplified in the present embodiment do not preclude changing in a range that does not deviate from the function and application.
  • the formation timing of the resin pillar 130 is made simultaneously with the insulator 114, it does not prevent any one from being formed first.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)

Abstract

 インシュレータ成形時に発生する応力に対し歪みが発生しにくい固定子又は固定子製造方法を提供するにあたり、導体を巻回して形成したコイルと、電磁鋼板を積層して形成されコイルを挿入するティース部を外環部から内周側に向けて突出して備える固定子コアと、固定子コアに挿入したコイルのコイルエンド部分を樹脂で覆った樹脂モールド部と、を備える固定子において、固定子コアを構成する電磁鋼板にはカシメ凹部が設けられ、カシメ凹部を用いて電磁鋼板同士を連結することで固定子コアが形成され、固定子コアの外環部に、固定子コアの軸方向と平行に溝部を備え、溝部に樹脂柱を備える。

Description

固定子及び固定子製造方法
 本発明は、電磁鋼板を積層して固定子コアを形成し固定子に用いる固定子及び固定子の製造方法に関するものであり、固定子コアに生じる歪みを抑制する技術に関する。
 近年、自動車の駆動力にモータを用いる需要が増加している。特にハイブリッド車へモータを搭載するにあたっては、小型化、高性能化に加えてコストダウンが重要であり、様々な開発がなされている。
 特許文献1にはモータの固定子についての技術が開示されている。
 固定子コアのヨーク部の内周側に軸方向に伸びる溝部を形成している。そして、各溝部に充填される樹脂充填部が一体的に設けられる。被覆部材としては樹脂充填部においてステータコアと強固に固定された状態となるため、被覆部材にクラックや剥がれが発生することを抑えることが可能である。
 特許文献2には固定子ピース及びモータの固定子に関する技術が開示されている。
 電磁鋼板を積層して形成される固定子コアのコアピースは、積み厚方向両端部に位置する一枚の電磁鋼板のティース幅が、積み厚方向中央部に位置する電磁鋼板のティース幅より狭く形成されている。
 固定子コア端面に配置される電磁鋼板のティース幅を狭くすることで、インシュレータの筒部の四隅に発生する集中応力を低減させることが可能となる。
 特許文献3には、固定子とその製造方法及びこの固定子を用いた電動機についての技術が開示されている。
 電磁鋼板を積層して形成される固定子コアのコアピースは、ティース幅が狭い電磁鋼板とティース幅の広い電磁鋼板とからなり、交互に積み重ねられている。
 このように固定子コアを形成することで、インサート成形されるインシュレータとの密着性を高めることが可能であり、耐久性を向上させることが可能である。
 特許文献4には、分割固定子及び分割固定子製造方法に関する技術が開示されている。
 分割型の固定子コアにインシュレータをインサート成形する際に、固定子コアのティース部分の周囲に接着剤層を設けることで、インシュレータに用いる樹脂に混入するフィラーに方向性を持たせないようにする。
 インシュレータに混入するフィラーの方向がランダムに配置できることで、熱伝達を阻害するフィラーによる影響を抑えることができ、熱伝導率を向上させることができる。
特開平11-341714号公報 特開2004-248440号公報 特開2007-166759号公報 特開2009-219235号公報
 しかしながら、特許文献1乃至特許文献4に記載の技術には、以下に説明する課題があると考えられる。
 モータのコストダウンを更に推し進めるため、固定子コアに用いる電磁鋼板は、溶接によって接合するのではなく、電磁鋼板にカシメ穴を設け、電磁鋼板の外形をプレス加工で打ち抜いた後に重ねることで、連結する方法が検討されている。
 図13に、固定子コアをカシメ接合によって連結する連結部分の模式断面図を示す。
 図示されるように電磁鋼板150はカシメ凹部111bを備えており、電磁鋼板150が重ね合わされることで分割型の固定子コア111を形成する。このような電磁鋼板の積層方法を採用することで、電磁鋼板同士を連結するための溶接工程を省くことが可能となり、コストダウンに貢献する。
 ただし、図13に示すようにカシメ凹部111bが重ねられることで、隙間dが生じる結果となる。この隙間dは電磁鋼板の厚みに左右され、カシメ結合をする限り、ゼロにすることは困難である。
 図14に、固定子コアにインシュレータをインサート成形した状態の断面図を示す。
 インシュレータ114をインサート成形すると、図14に示すようにティース部111aをインシュレータ114が覆うことになる。しかし、樹脂で形成されるインシュレータ114と、金属製の電磁鋼板150を積層して形成される分割型の固定子コア111の熱膨張率は異なる。このため、インシュレータ114を成型し冷却するにあたって、ティース部111a側に収縮力F1が、分割型の固定子コア111の外周側に拡張力F2が発生する。
 これは、図13に示すように積層された電磁鋼板150同士の間に、隙間dが形成されてしまうためである。電磁鋼板150に形成されるカシメ凹部111bを重ねて結合することで、隙間dが形成されてしまう点は避けられない。そのため、熱膨張率の差によってインシュレータ114にティース部111aが締め付けられることで、分割型の固定子コア111が変形する虞がある。
 分割型の固定子コア111の内周側は、図示しない回転子とのクリアランスが保たれる必要があり、分割型の固定子コア111の変形は回転子との干渉を引き起こす虞もある。また、固定子コア111に歪があると、モータ駆動時の振動や音などの発生を招き、寿命が短くなるなどの問題もある。
 特許文献1乃至特許文献4には、このような事態を想定した技術ではないと考えられ、カシメ凹部111bを備えた分割型の固定子コア111を用いた場合には、上述した問題が発生する虞がある。
 そこで、本発明はこのような課題を解決するために、インシュレータ成形時に発生する応力に対し歪みが発生しにくい固定子又は固定子製造方法を提供することを目的とする。
 前記目的を達成するために、本発明の一態様による固定子は、以下のような特徴を有する。
(1)導体を巻回して形成したコイルと、電磁鋼板を積層して形成され前記コイルを挿入するティースを外環部から内周側に向けて突出して備える固定子コアと、前記固定子コアに挿入した前記コイルのコイルエンド部分を樹脂で覆った樹脂モールド部と、を備える固定子において、前記固定子コアを構成する前記電磁鋼板にはカシメ凹部が設けられ、前記カシメ凹部を用いて前記電磁鋼板同士を連結することで前記固定子コアが形成され、前記固定子コアの前記外環部又は前記ティースの根本部に、前記固定子コアの軸方向と平行に溝部を備え、前記溝部に樹脂柱が備えられていることを特徴とする。
 ここで言う外環部とは、環状に形成され内周側にティース部を備える固定子コアの、ティース部を除いた部分のことを指している。したがって、固定子コアの両端面と外周面、そしてティース同士の間に形成されるスロットの底面と、その隣り合うスロットの底面を繋いだ仮想の面に囲まれる領域を指す。
 また、前記目的を達成するために、本発明の一態様による固定子製造方法は、以下のような特徴を有する。
(2)導体を巻回してコイルを形成し、前記コイルを積層された電磁鋼板からなる固定子コアに形成されたティースに挿入し、前記固定子コアの前記コイルエンド部分を樹脂で覆う樹脂モールド部を形成する、固定子製造方法において、前記電磁鋼板に用いられたカシメ凹部を用いて前記電磁鋼板を積層して、前記固定子コアを形成し、前記固定子コアを金型にセットし、インシュレータをインサート成形により形成すると共に、前記電磁鋼板の外環部又は前記ティースの根本部に前記固定子コアの軸方向と平行に備えられる溝部に、樹脂を流し込んで樹脂柱を形成することを特徴とする。
 このような特徴を有する本発明の一態様による固定子により、以下のような作用、効果が得られる。
 上記(1)に記載される発明の態様は、導体を巻回して形成したコイルと、電磁鋼板を積層して形成されコイルを挿入するティースを外環部から内周側に向けて突出して備える固定子コアと、固定子コアに挿入したコイルのコイルエンド部分を樹脂で覆った樹脂モールド部と、を備える固定子において、固定子コアを構成する電磁鋼板にはカシメ凹部が設けられ、カシメ凹部を用いて電磁鋼板同士を連結することで固定子コアが形成され、固定子コアの外環部又はティースの根本部に、固定子コアの軸方向と平行に溝部を備え、溝部に樹脂柱が備えられているものである。
 固定子コアは、カシメ凹部によって連結されることで電磁鋼板同士の間にわずかな隙間を生じるが、固定子コアの外環部に溝部を備え、その溝部には樹脂柱が形成されている。このため、この固定子コアにインシュレータをインサート成形し、インシュレータを構成する樹脂の収縮が発生しても、固定子コアが変形するようなことが無くなる。
 これは、固定子コアの外環部に備える樹脂柱が、固定子コアを構成する電磁鋼板と一体化して構成されており、インシュレータをインサート成形した際に樹脂が収縮する際にはインシュレータ及び樹脂柱がそれぞれ同じ方向に収縮するため、インシュレータが収縮する際に発生する力が、樹脂柱が収縮する際に発生する力で相殺されるためである。
 その結果、インシュレータと樹脂柱が収縮しても、固定子コアに偏荷重が発生しにくくなくなるので、固定子コアに発生する樹脂の収縮による歪みを抑制することが可能となる。
 そして、固定子コアの歪みが抑えられることで、固定子と回転子とのクリアランスを最小限に設定することが可能となる。
 また、このような特徴を有する本発明の一態様による固定子製造方法により、以下のような作用、効果が得られる。
 上記(2)に記載される発明の態様は、導体を巻回してコイルを形成し、コイルを積層された電磁鋼板からなる固定子コアに形成されたティースに挿入し、固定子コアのコイルエンド部分を樹脂で覆う樹脂モールド部を形成する、固定子製造方法において、電磁鋼板に用いられたカシメ凹部を用いて電磁鋼板を積層して、固定子コアを形成し、固定子コアを金型にセットし、インシュレータをインサート成形により形成すると共に、電磁鋼板の外環部又はティースの根本部に固定子コアの軸方向と平行に備えられる溝部に、樹脂を流し込んで樹脂柱を形成するものである。
 インシュレータと、外環部の溝に備える樹脂柱を形成することで、インシュレータの収縮による固定子コアの歪みを抑制することが可能となる。
 電磁鋼板とインシュレータでは、材質の違いから熱膨張率が異なる。このため、インシュレータ成形時に溶融した樹脂をキャビティに注入してインサート成形し、凝固させると、インシュレータを構成する樹脂が収縮してティース側に、固定子コア軸方向に圧縮する力が生じる。これと相殺させる力を発生させるために、固定子コアの外環部に樹脂柱を形成する。
 結果、樹脂柱側にも冷却時に収縮力が発生し、固定子コアの歪みの発生を抑制することが可能となる。
 また、インシュレータをインサート成形する際に、樹脂柱も成形することで、作業工程を増やすこともなく、コストの増加を防ぐことが可能である。
本実施形態の、固定子の斜視図である。 本実施形態の、分割型の固定子コアの斜視図である。 本実施形態の、固定子コアにインシュレータをインサート成形した状態の斜視図である。 本実施形態の、固定子コアにコイルを挿入した状態の斜視図である。 本実施形態の、固定子コアに樹脂モールド部を形成した状態の斜視図である。 本実施形態の、インシュレータをインサート成形する際の模式図である。 本実施形態の、固定子コアの概略斜視図である。 本実施形態の、固定子コアの概略断面図である。 本実施形態の、固定子コアの別の実施形態を表した斜視図である。 本実施形態の、固定子コアの別の実施形態を表した斜視図である。 本実施形態の、固定子コアの別の実施形態を表した斜視図である。 本実施形態の、固定子コアの別の実施形態を表した斜視図である。 固定子コアをカシメ接合によって連結する連結部分の模式断面図である。 インシュレータを冷却する時に発生する収縮力を示した固定子コアの側面断面模式図である。
 まず、本発明の実施形態について説明をする。
 図1に、本実施形態の固定子の斜視図を示す。なお、説明の都合上、固定子コアの細部は省略している。
 図2に、分割型の固定子コアの斜視図を示す。図3は、固定子コアにインシュレータをインサート成形した状態の斜視図である。図4は、固定子コアにコイルを挿入した状態の斜視図である。図5は、固定子コアに樹脂モールド部113を形成した状態の斜視図である。なお、図1とは説明の都合上細部が異なる。
 固定子10は、分割型の固定子コア111を用いており、固定子コアユニット110を円環状に18個配置し、外周にアウターリング102を嵌めることで形成されている。固定子10のコイルエンドにはバスバホルダ101が備えられている。
 固定子コア111は、図2に示すようにプレス加工により略T字状に形成された電磁鋼板150を複数枚積層して形成されている。積層の状況は図13に示した通りである。
 固定子コア111は固定子10の内周側に突出するようにティース部111aを備えており、カシメ凹部111bで電磁鋼板150同士が固定されている。そして、ティース部111aから固定子コア111の外周側に向けて沿設される外環部111cには、溝部111eが形成されている。溝部111eはプレス加工時に形成されたV字状の溝である。ティース部111aにはインシュレータ114を備えた上でコイル112が挿入される。
 インシュレータ114は、固定子コア111に対して図3に示されるようにインサート成形される。インシュレータ114は、鍔部114a、環状部114b、コイル支持壁114cを備えており、絶縁性を有する樹脂で形成されている。
 インシュレータ114を形成する樹脂には、インシュレータ114とコイル112との絶縁性を確保する機能の他に、発熱したコイル112からの熱を固定子コア111側に熱伝達する必要がある。このためインシュレータ114には熱伝達性を高める目的でフィラーが混入されている。
 図6は、インシュレータをインサート成形する際の模式図である。
 固定子コア111は、可動型D1と固定型D2との間に配設されることで、可動型D1と固定子コア111との間にインシュレータ形成用キャビティB1及び樹脂柱形成用キャビティB2が形成される。このインシュレータ形成用キャビティB1及び樹脂柱形成用キャビティB2に溶融した樹脂を流し込み、冷却、離型することで、インシュレータ114及び樹脂柱130をインサート形成する。
 なお、図では省略しているが、インシュレータ形成用キャビティB1及び樹脂柱形成用キャビティB2には樹脂を供給するための湯口などが設けられている。また、インシュレータ形成用キャビティB1及び樹脂柱形成用キャビティB2には同じ樹脂が注入されるものとする。
 コイル112は矩形断面を有する平角導体をエッジワイズ曲げ加工して巻回されている。平角導体は、銅などの導電性の高い導体の周囲にエナメルなどの絶縁性の高い樹脂にて絶縁被覆したものである。コイル112のコイルエンドの片側には、外側端子部112aと内側端子部112bが形成されており、図示しないバスバと接続される。コイル112は、図4に示すように固定子コア111に形成されるティース部111aにインシュレータ114に挿入される。
 固定子コア111にコイル112が挿入された後、図5に示されるようにコイル112を覆うように樹脂モールド部113が形成される。
 本実施形態の固定子10は上記構成であるので、以下に説明する作用効果を奏する。
 まず、固定子コア111にインシュレータ114をインサート成形する際に、固定子コア111に発生する歪みを抑制することが可能である点が挙げられる。
 本実施形態の固定子10は、導体を巻回して形成したコイル112と、電磁鋼板150を積層して形成されコイル112を挿入するティース部111aを外環部111cから内周側に向けて突出して備える固定子コア111と、固定子コア111に挿入したコイル112のコイルエンド部分を樹脂で覆った樹脂モールド部113と、を備える固定子10において、固定子コア111を構成する電磁鋼板150にはカシメ凹部111bが設けられ、カシメ凹部111bを用いて電磁鋼板150同士を連結することで固定子コア111が形成され、固定子コア111の外環部111cに、固定子コア111の軸方向と平行に溝部111eを備え、溝部111eに樹脂柱130が備えられているものである。
 図7に、固定子コアの概略斜視図を示す。なお、説明の都合上、インシュレータは省略してある。
 図8に、固定子コアの概略断面図を示す。
 固定子コア111は、電磁鋼板150が積層されて形成される。電磁鋼板150は、プレスで打ち抜かれると同時に、カシメ凹部111bが形成される。そして、プレス加工後、加圧しながら加工済みの電磁鋼板150と重ねられ、固定子コア111は図13に示されるようにカシメ凹部111bで結合され、一体化される。なお、図2にはカシメ凹部111bは1カ所しか示されていないが、固定子コア111の大きさや必要強度によってはカシメ凹部111bを複数設けても良い。
 このように固定子コア111をカシメ加工によって結合すると、図13に示すように電磁鋼板150同士の間に僅かな隙間dが発生してしまう。これは、課題にも示した通りカシメ凹部111bを用いて電磁鋼板150同士を結合している為であり、電磁鋼板150の板厚の関係でどうしても隙間dの発生は避けられない。
 そこで固定子コア111は、カシメ凹部111bにてカシメ加工された後、インシュレータ114をインサート成形すると同時に樹脂柱130を形成する。樹脂柱130は固定子コア111の外環部111cに形成される溝部111eに樹脂が流し込まれて形成されるものであり、隙間dにも若干樹脂が入り込むことで固定子コア111と密着し、一体化されて形成される。
 このように樹脂柱130が形成されることで、インシュレータ114の収縮によって発生する力に樹脂柱130が収縮する力で相殺される。結果、固定子コア111に生じる歪みの発生を抑制する事が可能となる。
 この樹脂柱130の収縮力は、樹脂の種類や樹脂柱130の太さなどで決定される。収縮力変更には、樹脂柱130の材質を変更する方法も考えられるが、インシュレータ114と一緒に形成するメリットが損なわれるので、外環部111cの外周面111dに形成される溝部111eの位置を変更するという方法も考えられる。
 図9に、固定子コアの別の実施形態を表した斜視図を示す。
 例えば、図9に示すように外周面111dに形成される溝部111eを2カ所に増やすことで、樹脂柱130を2カ所に増やすことが可能となる。
 図10に、固定子コアの別の実施形態を表した斜視図を示す。
 図11に、固定子コアの別の実施形態を表した斜視図を示す。
 図12に、固定子コアの別の実施形態を表した斜視図を示す。
 その他にも、分割型の固定子コア111の分割面に樹脂柱130を設けた図10のようなパターンや、ティース部111aの根本に樹脂柱130を設けた図11の様なパターン、あるいは、スロット底部に樹脂柱130を設けた図12の様なパターンが考えられる。
 いずれの場合にも、インシュレータ114の収縮により発生する力を相殺するために樹脂柱130が設けられる点では同じである。しかし、インシュレータ114の形状や厚みによって発生する収縮力に差異があるため、樹脂柱130の大きさだけでなく位置や形成数を工夫することで、効果的に収縮する力を相殺することが可能となる。
 このように、インシュレータ114が収縮する力を相殺する力を生じる樹脂柱130を設けることで、固定子コアユニット110の固定子コア111の歪みを生じにくくすることが可能となる。
 固定子コアユニット110の歪みが生じにくくなることで、固定子10の内周の真円度を確保しやすくなり、図示しない内周側に配置される回転子と固定子10とのクリアランスを最小限に設定することができる。
 固定子10と回転子のギャップは、固定子10を用いるモータの出力や性能に影響するため、このギャップを狭くできることは望ましい。
 以上、本実施形態に則して発明を説明したが、この発明は前記実施形態に限定されるものではなく、発明の趣旨を逸脱することのない範囲で構成の一部を適宜変更することにより実施することもできる。
 例えば、本実施形態では外環部111cやティース部111aに形成する樹脂柱130を、図7及び図9乃至図12に示しているが、あくまで例示であるのでこれに限定されるものではない。インシュレータ114に発生する力を相殺可能な位置、大きさに樹脂柱130を形成することを妨げないし、より固定子コア111に生じる磁力回路を阻害しない場所に樹脂柱130を配置することを妨げない。
 また、本実施形態では、固定子コアユニット110は分割式のものとしているが、円環状の分割式でない固定子コアに樹脂柱130を設けることを妨げない。
 また、本実施形態で例示した材質は、その機能や用途を逸脱しない範囲で変更することを妨げない。
 また、樹脂柱130の形成のタイミングはインシュレータ114と同時にとしているが、先に何れか一つを形成することを妨げない。
10   固定子
101   バスバホルダ
102   アウターリング
110   固定子コアユニット
111   固定子コア
111a   ティース部
111b   カシメ凹部
111c   外環部
111d   外周面
111e   溝部
112   コイル
112a   外側端子部
112b   内側端子部
113   樹脂モールド部
114   インシュレータ
114a   鍔部
114b   環状部
114c   コイル支持壁
130   樹脂柱
150   電磁鋼板
B1   インシュレータ形成用キャビティ
B2   樹脂柱形成用キャビティ
D1   可動型
D2   固定型
F1   収縮力
F2   拡張力
d   隙間

Claims (2)

  1.  導体を巻回して形成したコイルと、電磁鋼板を積層して形成され前記コイルを挿入するティースを外環部から内周側に向けて突出して備える固定子コアと、前記固定子コアに挿入した前記コイルのコイルエンド部分を樹脂で覆った樹脂モールド部と、を備える固定子において、
     前記固定子コアを構成する前記電磁鋼板にはカシメ凹部が設けられ、
     前記カシメ凹部を用いて前記電磁鋼板同士を連結することで前記固定子コアが形成され、
     前記固定子コアの前記外環部又は前記ティースの根本部に、前記固定子コアの軸方向と平行に溝部を備え、
     前記溝部に樹脂柱が備えられていることを特徴とする固定子。
  2.  導体を巻回してコイルを形成し、前記コイルを積層された電磁鋼板からなる固定子コアに形成されたティースに挿入し、前記固定子コアの前記コイルエンド部分を樹脂で覆う樹脂モールド部を形成する、固定子製造方法において、
     前記電磁鋼板に用いられたカシメ凹部を用いて前記電磁鋼板を積層して、前記固定子コアを形成し、
     前記固定子コアを金型にセットし、
      インシュレータをインサート成形により前記ティースを覆うように形成すると共に、
      前記電磁鋼板の外環部又は前記ティースの根本部に前記固定子コアの軸方向と平行に備えられる溝部に、樹脂を流し込んで樹脂柱を形成することを特徴とする固定子製造方法。
PCT/JP2010/052597 2010-02-22 2010-02-22 固定子及び固定子製造方法 WO2011101986A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/052597 WO2011101986A1 (ja) 2010-02-22 2010-02-22 固定子及び固定子製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/052597 WO2011101986A1 (ja) 2010-02-22 2010-02-22 固定子及び固定子製造方法

Publications (1)

Publication Number Publication Date
WO2011101986A1 true WO2011101986A1 (ja) 2011-08-25

Family

ID=44482603

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/052597 WO2011101986A1 (ja) 2010-02-22 2010-02-22 固定子及び固定子製造方法

Country Status (1)

Country Link
WO (1) WO2011101986A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013236499A (ja) * 2012-05-10 2013-11-21 Mitsubishi Electric Corp 電動機の積層鉄心
EP2882077A1 (de) * 2013-12-04 2015-06-10 HILTI Aktiengesellschaft Statorpaket mit Fliesswegbarriere
WO2016015869A1 (de) * 2014-07-30 2016-02-04 Kienle + Spiess Gmbh Lamellenpaket sowie verfahren zu dessen herstellung
JP2016073109A (ja) * 2014-09-30 2016-05-09 株式会社三井ハイテック 積層鉄心及びその製造方法
EP2940831A4 (en) * 2012-12-28 2016-07-27 Top Co Ltd ROTARY MACHINE AND ELECTRIC VEHICLE
EP3139474A1 (de) * 2015-09-02 2017-03-08 Siemens Aktiengesellschaft Elektrische maschine und verfahren zum betrieb einer solchen elektrischen maschine sowie herstellverfahren
US9824806B2 (en) 2012-08-21 2017-11-21 Kabushiki Kaisha Yaskawa Denki Coil, rotating electrical machine, and method of manufacturing coil
CN107975449A (zh) * 2016-10-21 2018-05-01 株式会社电装 电磁致动器
JP2020512805A (ja) * 2017-03-28 2020-04-23 ジェネシス ロボティクス アンド モーション テクノロジーズ カナダ アンリミテッド ライアビリティ カンパニー 波形固定子
CN111183568A (zh) * 2017-10-12 2020-05-19 大金工业株式会社 定子、马达和压缩机

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0690550A (ja) * 1992-09-07 1994-03-29 Yaskawa Electric Corp 電気機器用積層鉄心の製造方法
JPH11341714A (ja) * 1998-05-28 1999-12-10 Toshiba Corp モータのステータ
JP2000134832A (ja) * 1998-10-28 2000-05-12 Toshiba Corp 電動機の固定子
JP2004248471A (ja) * 2003-02-17 2004-09-02 Yaskawa Electric Corp 固定子ピースおよびこれを用いたモータ固定子
JP2006223076A (ja) * 2005-02-14 2006-08-24 Toshiba Corp アウターロータ及びその製造方法
JP2008199806A (ja) * 2007-02-14 2008-08-28 Yaskawa Electric Corp モールドステータとその製造方法およびモールドモータ
JP2009261150A (ja) * 2008-04-17 2009-11-05 Mitsubishi Electric Corp 回転電機の固定子製造方法及び永久磁石回転電機

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0690550A (ja) * 1992-09-07 1994-03-29 Yaskawa Electric Corp 電気機器用積層鉄心の製造方法
JPH11341714A (ja) * 1998-05-28 1999-12-10 Toshiba Corp モータのステータ
JP2000134832A (ja) * 1998-10-28 2000-05-12 Toshiba Corp 電動機の固定子
JP2004248471A (ja) * 2003-02-17 2004-09-02 Yaskawa Electric Corp 固定子ピースおよびこれを用いたモータ固定子
JP2006223076A (ja) * 2005-02-14 2006-08-24 Toshiba Corp アウターロータ及びその製造方法
JP2008199806A (ja) * 2007-02-14 2008-08-28 Yaskawa Electric Corp モールドステータとその製造方法およびモールドモータ
JP2009261150A (ja) * 2008-04-17 2009-11-05 Mitsubishi Electric Corp 回転電機の固定子製造方法及び永久磁石回転電機

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013236499A (ja) * 2012-05-10 2013-11-21 Mitsubishi Electric Corp 電動機の積層鉄心
EP2889988B1 (en) * 2012-08-21 2021-03-03 Kabushiki Kaisha Yaskawa Denki Coil, rotating electrical machine, and method of manufacturing coil
US9824806B2 (en) 2012-08-21 2017-11-21 Kabushiki Kaisha Yaskawa Denki Coil, rotating electrical machine, and method of manufacturing coil
US10186916B2 (en) 2012-12-28 2019-01-22 Top Co., Ltd Rotary machine and electric vehicle
EP2940831A4 (en) * 2012-12-28 2016-07-27 Top Co Ltd ROTARY MACHINE AND ELECTRIC VEHICLE
EP2882077A1 (de) * 2013-12-04 2015-06-10 HILTI Aktiengesellschaft Statorpaket mit Fliesswegbarriere
WO2015082373A3 (de) * 2013-12-04 2015-11-19 Hilti Aktiengesellschaft STATORPAKET MIT FLIEßWEGBARRIERE
WO2016015869A1 (de) * 2014-07-30 2016-02-04 Kienle + Spiess Gmbh Lamellenpaket sowie verfahren zu dessen herstellung
JP2022153579A (ja) * 2014-07-30 2022-10-12 キーンレ ウント シュピース ゲーエムベーハー 積層鉄心の製造方法
JP2017521994A (ja) * 2014-07-30 2017-08-03 キーンレ ウント シュピース ゲーエムベーハー 積層鉄心およびその製造方法
US10720802B2 (en) 2014-07-30 2020-07-21 Kienle + Spiess Gmbh Laminated core and method for producing same
JP2016073109A (ja) * 2014-09-30 2016-05-09 株式会社三井ハイテック 積層鉄心及びその製造方法
US10277089B2 (en) 2015-09-02 2019-04-30 Siemens Aktiengesellschaft Electric machine, method for operating such an electric machine, and production method
WO2017036745A1 (de) * 2015-09-02 2017-03-09 Siemens Aktiengesellschaft Elektrische maschine und verfahren zum betrieb einer solchen elektrischen maschine sowie herstellverfahren
EP3139474A1 (de) * 2015-09-02 2017-03-08 Siemens Aktiengesellschaft Elektrische maschine und verfahren zum betrieb einer solchen elektrischen maschine sowie herstellverfahren
CN107975449A (zh) * 2016-10-21 2018-05-01 株式会社电装 电磁致动器
JP2020512805A (ja) * 2017-03-28 2020-04-23 ジェネシス ロボティクス アンド モーション テクノロジーズ カナダ アンリミテッド ライアビリティ カンパニー 波形固定子
CN111183568A (zh) * 2017-10-12 2020-05-19 大金工业株式会社 定子、马达和压缩机
EP3678285B1 (en) * 2017-10-12 2022-11-02 Daikin Industries, Ltd. Stator, motor, and compressor

Similar Documents

Publication Publication Date Title
WO2011101986A1 (ja) 固定子及び固定子製造方法
US9793774B2 (en) Armature for rotary electric machine
KR101476022B1 (ko) 고정자 제조 방법
JP5083329B2 (ja) ステータ及びこれを用いた回転電機
JP5738385B2 (ja) 固定子およびその固定子を備えた回転電機
JP5533285B2 (ja) 絶縁部材、ステータの製造方法
JP2007267463A (ja) 回転電機及び回転電機の製造方法
JP5837213B2 (ja) 回転電機の電機子およびその製造方法
JP5164026B2 (ja) 電動機固定子およびそれを用いた永久磁石形電動機
JP2016116417A (ja) コイル巻回部品、コイル巻回部品の製造方法、ステータ、及び回転電機
JP2011259566A (ja) 固定子の製造方法
JP2006094579A (ja) 複軸多層型回転電機のステータ構造
JP6622995B2 (ja) 回転電機、回転電機の製造方法、固定子コイル、コイル樹脂構造体
JP2010178520A (ja) ステータおよびモータ
JP2008278684A (ja) 一体成形方法
JP4411950B2 (ja) 電動機固定子、その製造方法、およびその固定子を用いた永久磁石形電動機
JP4241321B2 (ja) 回転電機の固定子
JP7394216B2 (ja) 回転電機の固定子及びその組立て方法
WO2011101985A1 (ja) 固定子及び固定子製造方法
JP5659770B2 (ja) 回転電機のコア及び回転電機のコアの製造方法
JP2016082839A (ja) ブラシレスモータ
JP2007166759A (ja) 固定子とその製造方法およびこの固定子を用いた電動機
JP2009136091A (ja) ステータの製造方法及びステータ
JP2011239526A (ja) モータの電機子
JP5035334B2 (ja) 固定子の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10846122

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10846122

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP