WO2011100778A1 - Verfahren zum herstellen von lithiumtitanat - Google Patents

Verfahren zum herstellen von lithiumtitanat Download PDF

Info

Publication number
WO2011100778A1
WO2011100778A1 PCT/AT2011/000086 AT2011000086W WO2011100778A1 WO 2011100778 A1 WO2011100778 A1 WO 2011100778A1 AT 2011000086 W AT2011000086 W AT 2011000086W WO 2011100778 A1 WO2011100778 A1 WO 2011100778A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium
titanium
drying
alcohol
lithium titanate
Prior art date
Application number
PCT/AT2011/000086
Other languages
English (en)
French (fr)
Inventor
Lukas Rubacek
Jiri Duchoslav
Original Assignee
Lukas Rubacek
Jiri Duchoslav
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lukas Rubacek, Jiri Duchoslav filed Critical Lukas Rubacek
Publication of WO2011100778A1 publication Critical patent/WO2011100778A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/003Titanates
    • C01G23/005Alkali titanates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/30Three-dimensional structures
    • C01P2002/32Three-dimensional structures spinel-type (AB2O4)
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • C01P2002/54Solid solutions containing elements as dopants one element only
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area

Definitions

  • the invention relates to a process for producing lithium titanate, wherein a solution of lithium and titanium compounds is prepared before, after drying by separation of the solvent, calcining the obtained drying product to obtain lithium titanate.
  • Lithium titanates in crystal form having the stoichiometric formula Li 4 Ti 5 O 2 are particularly suitable for the production of the electrodes of lithium-ion batteries.
  • Various processes are known for the preparation of lithium titanates, which can be subdivided by dry and wet processes. While dry processes, which always use insoluble or only partially soluble starting materials, such as lithium hydroxide or lithium carbonate as the lithium compound and titanium dioxide as the titanium compound, are more economical, wet processes yield crystalline lithium titanates with better properties for the electrode production of lithium-ion batteries, not least because of the better mixing of the lithium used and titanium compounds in a liquid phase.
  • This substantially anhydrous drying product is then calcined at a temperature for a time sufficient to convert the mixture of titanium and lithium compounds to lithium titanate having the desired structure and particle size.
  • the reaction temperature is substantially between 700 and 900 ° C.
  • the disadvantage is the comparatively low yield.
  • the invention is therefore based on the object, a method of the type described in such a way that pure crystalline lithium titanate can be produced economically advantageous for the production of electrodes for lithium-ion batteries properties in particular in terms of particle size and specific surface area
  • the invention achieves the stated object by dissolving an alcohol-soluble lithium salt and a titanium alkoxide in a mixture of alcohol and a chelating agent for retarding the hydrolysis of the titanium alkoxide, before the drying product is calcined in the form of a viscous sludge.
  • the invention is based on the finding that water, which is present in the solution or in the air, a hydrolysis of the titanium compounds and as a result of a precipitation of amorphous titanium dioxide in the form of anatase and rutile with comparatively large particles because of the uncontrolled and rapid reaction which impairs the homogeneity of the mixture of lithium and titanium compounds obtained after drying, and leads to an undesired L ⁇ TiO ß phase in the final product. Therefore, when starting from insoluble in water lithium and titanium compounds and an alcohol used as a solvent, an essential prerequisite to avoid hydrolysis of titanium compounds is created.
  • This condition is not yet sufficient, because inhibition of the hydrolysis as a prerequisite for ensuring that after drying a homogeneous mixture of lithium and titanium compounds as drying product is obtained after drying of the alcohol which is only soluble in alcohol Requirements for subsequent calcination advantageously corresponds.
  • This drying product may be directly subjected to the heat treatment under protective gas in the form of a viscous slurry to obtain pure nanocrystalline lithium titanate having a comparatively high specific surface area.
  • an alcohol-soluble lithium salt from the group of lithium nitrates, lithium chlorides and lithium hydroxides can be selected. Preference is given to using a lithium acetate dihydrate which can be dissolved in an alcohol.
  • Particularly suitable solvents are lower-valent alcohols, such as methanol, ethanol, propanol, isopropanol or butanol. Preferably, ethanol is used.
  • the water-insoluble titanium compounds used as starting material for titanium are selected from the group of titanium (IV) alkoxides, for example from the group containing titanium (IV) methoxides, ethoxides, -propoxides, -isopropoxides and tert-butoxides, preferably titanium (IV).
  • IV) tetrabutoxide is used.
  • the molar ratio between titanium and lithium is selected in the range between 1: 0.8 to 1: 1, 2, preferably 1: 1.
  • Acetylacetone can advantageously be used as a chelating agent. Titanium alkoxides react very rapidly with the chelating agent acetylacetone to obtain a titanium acetylacetonate complex compound and alcohol. In the case of the use of titanium tetrabutoxide, the reaction gives butanol.
  • the molar ratio between the titanium alkoxide and the chelating agent can be chosen between 1: 0.2 to 1: 2, preferably 1: 1.
  • Particularly advantageous conditions for the further processing of the nanocrystalline final product can be ensured if the alcoholic solution of the lithium salt and the titanium alkoxide before drying a nanoscale carbon powder is added, which ensures the electrical conductivity of the electrodes produced and the otherwise necessary admixture of a carbon powder for Lithium titanate makes redundant.
  • the carbon powder acts as a template for calcining and inhibits the sintering of the resulting lithium titanate particles which are directly covered with the conductive carbon and together with the carbon yield particles having an average grain diameter of 1 to 10 ⁇ m, which markedly improves the processability of these powders , Carbon can be added to the solution in an amount of 1 to 2% by weight of the titanium compounds used.
  • the final product of lithium titanate and carbon obtained after calcining may contain small residual amounts of lithium salt, which is preferably dissolved in a superstoichiometric amount. For this reason, the final product can be washed from the calcination with water to remove residual lithium salt.
  • the washed product may be dried at a temperature between 100 and 120 ° C to evaporate the water and obtain a dry powder. Subsequently, the fired and washed powder can be ground to obtain a predetermined grain size of the crystalline lithium titanate.
  • the product obtained after this calcination consisted of crystalline lithium titanate Li 4 Ti 5 Oi 2 having a particle size of about 30 to 80 nm.
  • the calcined product was suspended in water and ground with zirconium as grinding medium for eight hours.
  • the specific surface area of the product was about 53 m g.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Composite Materials (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Geology (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

Es wird ein Verfahren zum Herstellen von Lithiumtitanat beschrieben, wobei eine Lösung aus Lithium- und Titanverbindungen hergestellt wird, bevor nach einem Trocknen durch ein Abtrennen des Lösungsmittels das erhaltene Trocknungsprodukt zur Gewinnung von Lithiumtitanat kalziniert wird. Um vorteilhafte Herstellungsbedingungen zu schaffen, wird vorgeschlagen, dass ein in Alkohol lösliches Lithiumsalz und ein Titanalkoxid in einer Mischung aus Alkohol und einem Chelatbildner zur Verzögerung der Hydrolyse des Titanalkoxids gelöst werden, bevor das Trocknungsprodukt in Form eines viskosen Schlamms kalziniert wird.

Description

Verfahren zum Herstellen von Lithiumtitanat
Technisches Gebiet
Die Erfindung bezieht sich auf ein Verfahren zum Herstellen von Lithiumtitanat, wobei eine Lösung aus Lithium- und Titanverbindungen hergestellt wird, bevor nach einem Trocknen durch ein Abtrennen des Lösungsmittels das erhaltene Trocknungsprodukt zur Gewinnung von Lithiumtitanat kalziniert wird.
Stand der Technik
Für die Herstellung der Elektroden von Lithiumionenbatterien eignen sich insbesondere Lithiumtitanate in Kristallform mit der stöchiometrischen Formel Li4Ti50i2. Zur Herstellung von Lithiumtitanaten sind verschiedene Verfahren bekannt, die sich in Trocken- und Nassverfahren unterteilen lassen. Während Trockenverfahren, die stets unlösliche bzw. nur teillösliche Ausgangsstoffe, wie Lithiumhydroxid oder Lithiumcarbonat als Lithiumverbindung und Titandioxid als Titanverbindung, einsetzen, wirtschaftlicher sind, liefern Nassverfahren kristalline Lithiumtitanate mit besseren Eigenschaften für die Elektrodenherstellung von Lithiumionenbatterien, nicht zuletzt aufgrund der besseren Mischung der eingesetzten Lithium- und Titanverbindungen in einer flüssigen Phase. So ist es bekannt (WO 03/008334 A1) nicht nur von einer Suspension einer amorphen oxidierten Titanverbindung in einer Lithiumlösung auszugehen, sondern eine wässrige Chloridlösung aus Titan und Lithium vorzusehen. Diese Lösung wird verdampft, und zwar bei einer Temperatur, die oberhalb des Siedepunkts der Lösung, aber unterhalb der Reaktionstemperatur liegt, bei der eine Kristallisation des Lithiumtitanats stattfindet. Beim Sprühen der auf eine Temperatur zwischen 120 und 350° C erwärmten Lösung in einem Sprühtrockner werden Wasser und Säure verdampft, um eine innige Mischung aus einer Lithiumverbindung und einer amorphen oxidierten Titanverbindung in kugeliger Form mit Durchmessern zwischen 0,1 und 100 pm zu erhalten. Dieses weitgehend wasserfreie Trocknungsprodukt wird anschließend bei einer Temperatur über einen Zeitraum kalziniert, der ausreicht, die Mischung aus Titan- und Lithiumverbindungen in Lithiumtitanat mit der gewünschten Struktur und Teilchengröße umzuwandeln. Die Reaktionstemperatur liegt dabei im Wesentlichen zwischen 700 und 900° C. Nachteilig ist allerdings die vergleichsweise geringe Ausbeute.
Darstellung der Erfindung
Der Erfindung liegt somit die Aufgabe zugrunde, ein Verfahren der eingangs geschilderten Art so auszugestalten, dass reines kristallines Lithiumtitanat mit für die Fertigung von Elektroden für Lithiumionenbatterien vorteilhaften Eigenschaften insbesondere hinsichtlich der Teilchengröße und der spezifischen Oberfläche wirtschaftlich hergestellt werden kann
Die Erfindung löst die gestellte Aufgabe dadurch, dass ein in Alkohol lösliches Lithiumsalz und ein Titanalkoxid in einer Mischung aus Alkohol und einem Chelatbildner zur Verzögerung der Hydrolyse des Titanalkoxids gelöst werden, bevor das Trocknungsprodukt in Form eines viskosen Schlamms kalziniert wird.
Der Erfindung liegt die Erkenntnis zugrunde, dass Wasser, das in der Lösung oder in der Luft vorhanden ist, eine Hydrolyse der Titanverbindungen und als Folge davon eine Fällung von amorphem Titandioxid in Form von Anatas und Rutil mit wegen der ungesteuerten und schnellen Reaktion vergleichsweise großen Teilchen bedingt, was die Homogenität der nach dem Trocknen erhaltenen Mischung der Lithium- und Titanverbindungen beeinträchtigt und schließ- lieh zu einer unerwünschten L^TiOß-Phase im Endprodukt führt. Wird daher von im Wasser unlöslichen Lithium- und Titanverbindungen ausgegangen und ein Alkohol als Lösungsmittel eingesetzt, so wird eine wesentliche Voraussetzung zur Vermeidung einer Hydrolyse der Titanverbindungen geschaffen. Diese Voraussetzung ist aber noch nicht hinreichend, weil erst durch eine Chela- tierung des nur in Alkohol löslichen Titanalkoxids eine Hemmung der Hydrolyse als Voraussetzung dafür sichergestellt wird, dass nach dem Trocknen eine homogene Mischung aus Lithium- und Titanverbindungen als Trocknungsprodukt erhalten wird, das den Anforderungen für das nachfolgende Kalzinieren vorteilhaft entspricht. Dieses Trocknungsprodukt kann in Form eines viskosen Schlamms unmittelbar der Wärmebehandlung unter Schutzgas unterworfen werden, um reines nanokristallines Lithiumtitanat mit einer vergleichsweise hohen spezifischen Oberfläche zu erhalten.
Als Ausgangsstoff für die Lithiumverbindungen kann ein in Alkohol lösliches Lithiumsalz aus der Gruppe der Lithiumnitrate, Lithiumchloride und Lithiumhydroxide gewählt werden. Bevorzugt wird ein Lithiumacetatdihydrat eingesetzt, das in einem Alkohol gelöst werden kann. Als Lösungsmittel eignen sich vor allem niederwertige Alkohole, wie Methanol, Ethanol, Propanol, Isopropanol oder Butanol. Bevorzugt wird Ethanol verwendet.
Die als Ausgangsstoff für Titan eingesetzten, wasserunlöslichen Titanverbindungen werden aus der Gruppe der Titan(IV)alkoxide gewählt, beispielsweise aus der Titan(IV)methoxide, -ethoxide, -propoxide, -isopropoxide und -tert- butoxide enthaltenden Gruppe, wobei vorzugsweise Titan(IV)tetrabutoxid verwendet wird. Das Molverhältnis zwischen Titan und Lithium wird im Bereich zwischen 1 :0,8 bis 1 :1 ,2, vorzugsweise 1 :1 , gewählt. Als Chelatbildner kann vorteilhaft Acetylaceton eingesetzt werden. Titanalkoxide reagieren sehr rasch mit dem Chelatbildner Acetylaceton, um eine Titanacetylacetonat-Komplex- verbindung und Alkohol zu erhalten. Im Falle des Einsatzes von Titantetrabuto- xid liefert die Reaktion Butanol. Das Molverhältnis zwischen dem Titanalkoxid und dem Chelatbildner kann zwischen 1 :0,2 bis 1 :2, vorzugsweise 1 :1 , gewählt werden.
Besonders vorteilhafte Bedingungen für die Weiterverarbeitung des nanokris- tallinen Endprodukts können dann sichergestellt werden, wenn der alkoholischen Lösung des Lithiumsalzes und des Titanalkoxids vor dem Trocknen ein nanoskalares Kohlenstoffpulver zugemischt wird, das die elektrische Leitfähigkeit der hergestellten Elektroden sichert und die sonst notwendige Zumischung eines Kohlenstoffpulvers zum Lithiumtitanat überflüssig macht. Das Kohlenstoffpulver wirkt als Vorlage für die Kalzinierung und hemmt die Sinterung der entstehenden Lithiumtitanatteilchen, die unmittelbar mit dem leitenden Kohlenstoff bedeckt werden und zusammen mit dem Kohlenstoff Partikel mit einem durchschnittlichen Korndurchmesser von 1 bis 10 pm ergeben, was die Verar- beitbarkeit dieser Pulver merklich verbessert. Kohlenstoff kann in einer Menge von 1 bis 2 Gew.% der eingesetzten Titanverbindungen der Lösung zugesetzt werden.
Das nach dem Kalzinieren erhaltene Endprodukt aus Lithiumtitanat und Kohlenstoff kann geringe Restmengen an Lithiumsalz enthalten, das vorzugsweise in einer überstöchiometrischen Menge gelöst wird. Aus diesem Grund kann das Endprodukt aus der Kalzination mit Wasser gewaschen werden, um restliches Lithiumsalz zu entfernen. Das gewaschene Produkt kann bei einer Temperatur zwischen 100 und 120° C getrocknet werden, um das Wasser zu verdampfen und ein trockenes Pulver zu erhalten. Anschließend kann das gebrannte und gewaschene Pulver gemahlen werden, um eine vorgegebene Körnung des kristallinen Lithiumtitanats zu erhalten.
Ausführungsbeispiel:
28,8 g Lithiumacetatdihydrat wurde in 70 g Ethanol gelöst und dann 30,3 g Ace- tylaceton als Chelatbildner hinzugefügt. Die Lösung wurde gerührt und nachfolgend 100 g Titantetrabutoxid beigegeben. Um eine homogene Lösung zu erhalten, wurde diese angenährt 15 Minuten lang gerührt. Zur Trocknung wurde die Lösung auf ihren Siedepunkt, angenähert auf 120° C, für zwei Stunden erwärmt, um den Hauptanteil des Ausgangslösungsmittels, nämlich Ethanol und Butanol, zu entfernen und einen viskosen Schlamm zu erhalten. Der gewonnene Schlamm wurde in einem geschlossenen Schmelztiegel aus Porzellan in einem Ofen auf 850° C erwärmt und für zwei Stunden unter einer Schutzgasatmosphäre aus Stickstoff der Wärmebehandlung ausgesetzt.
Das nach diesem Kalzinieren erhaltene Produkt bestand aus kristallinem Lithi- umtitanat Li4Ti5Oi2 mit einer Korngröße von etwa 30 bis 80 nm. Das kalzinierte Produkt wurde im Wasser suspendiert und mit Zirkon als Mahlmedium acht Stunden gemahlen. Die spezifische Oberfläche des Produkts betrug etwa 53 m g.

Claims

P a t e n t a n s p r ü c h e
1. Verfahren zum Herstellen von Lithiumtitanat, wobei eine Lösung aus Lithium- und Titanverbindungen hergestellt wird, bevor nach einem Trocknen durch ein Abtrennen des Lösungsmittels das erhaltene Trocknungsprodukt zur Gewinnung von Lithiumtitanat kalziniert wird, dadurch gekennzeichnet, dass ein in Alkohol lösliches Lithiumsalz und ein Titanalkoxid in einer Mischung aus Alkohol und einem Chelatbildner zur Verzögerung der Hydrolyse des Titanalkoxids gelöst werden, bevor das Trocknungsprodukt in Form eines viskosen Schlamms kalziniert wird.
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass als Lithiumsalz Lithiumacetatdihydrat eingesetzt wird.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass als Titanalkoxid Titantetrabutoxid eingesetzt wird.
4. Verfahren nach einem der Ansprüche 1 bis 3. dadurch gekennzeichnet, dass als Chelatbildner Acetylaceton eingesetzt wird.
5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass als Lösungsmittel ein niederwertiger Alkohol, vorzugsweise Ethanol, eingesetzt wird.
6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass der Lösung des Lithiumsalzes und des Titanalkoxids vor dem Trocknen ein nanoskalares Kohlenstoffpulver zugemischt wird.
PCT/AT2011/000086 2010-02-19 2011-02-21 Verfahren zum herstellen von lithiumtitanat WO2011100778A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
AT2542010A AT509504A1 (de) 2010-02-19 2010-02-19 Verfahren zum herstellen von lithiumtitanat
ATA254/2010 2010-02-19

Publications (1)

Publication Number Publication Date
WO2011100778A1 true WO2011100778A1 (de) 2011-08-25

Family

ID=44170509

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/AT2011/000086 WO2011100778A1 (de) 2010-02-19 2011-02-21 Verfahren zum herstellen von lithiumtitanat

Country Status (2)

Country Link
AT (1) AT509504A1 (de)
WO (1) WO2011100778A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2746220A3 (de) * 2012-12-21 2014-07-30 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Mit einem Interkalationsmaterial beschichtete Partikeln mit großer Oberfläche, Verfahren zu deren Herstellung sowie Verwendung der Partikeln in Hybridelektroden und hochkapazitativen Doppelschichtkondensatoren und schnellen Batterien
CN113921806A (zh) * 2020-07-10 2022-01-11 精工爱普生株式会社 负极活性物质的前体溶液、粉末及负极活性物质制造方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003008334A1 (en) 2001-07-20 2003-01-30 Altair Nanomaterials Inc. Process for making lithium titanate
US20080285211A1 (en) * 2000-12-05 2008-11-20 Hydro-Quebec Li4Ti5O12,Li(4-alpha)ZalphaTi5O12 or Li4ZbetaTi(5-beta)O12 particles processes for obtaining same and use as electrochemical generators
WO2009135448A2 (en) * 2008-05-06 2009-11-12 Elmarco S.R.O. A method for production of inorganic nanofibres through electrostatic spinning
CN101609883A (zh) * 2009-07-13 2009-12-23 北京安华联合能源科技有限责任公司 一种纳米银颗粒分散Li4Ti5O12薄膜锂离子电池负极制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080285211A1 (en) * 2000-12-05 2008-11-20 Hydro-Quebec Li4Ti5O12,Li(4-alpha)ZalphaTi5O12 or Li4ZbetaTi(5-beta)O12 particles processes for obtaining same and use as electrochemical generators
WO2003008334A1 (en) 2001-07-20 2003-01-30 Altair Nanomaterials Inc. Process for making lithium titanate
WO2009135448A2 (en) * 2008-05-06 2009-11-12 Elmarco S.R.O. A method for production of inorganic nanofibres through electrostatic spinning
CN101609883A (zh) * 2009-07-13 2009-12-23 北京安华联合能源科技有限责任公司 一种纳米银颗粒分散Li4Ti5O12薄膜锂离子电池负极制备方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2746220A3 (de) * 2012-12-21 2014-07-30 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Mit einem Interkalationsmaterial beschichtete Partikeln mit großer Oberfläche, Verfahren zu deren Herstellung sowie Verwendung der Partikeln in Hybridelektroden und hochkapazitativen Doppelschichtkondensatoren und schnellen Batterien
CN113921806A (zh) * 2020-07-10 2022-01-11 精工爱普生株式会社 负极活性物质的前体溶液、粉末及负极活性物质制造方法

Also Published As

Publication number Publication date
AT509504A1 (de) 2011-09-15

Similar Documents

Publication Publication Date Title
EP2303780B1 (de) Verfahren zur herstellung von lithiumtitan-spinell
DE60202373T2 (de) Verfahren zur herstellung von lithiumtitanat
EP0318111B1 (de) Verfahren zur Herstellung von Bariumtitanat in Pulverform
CN107151029B (zh) 一种四方相钛酸钡粉体的溶胶-水热法制备工艺
DE3633309C2 (de) Zusammensetzung auf der Basis von Zirkoniumdioxid und Verfahren zu ihrer Herstellung
WO2006063784A1 (de) Feinteilige bleizirkonattitanate, zirkontitanhydrate und zirkoniumtitanate und verfahren zu deren herstellung
KR20140047669A (ko) 우수한 고속 성능을 갖는 나노구조 Li4Ti5O12의 제조
DE102005027246A1 (de) Verfahren zur Herstellung eines alpha-Aluminiumoxidpulvers
CN105439196A (zh) 高四方相含量纳米钛酸钡粉体的低温制备方法
WO2011124435A1 (de) Siliciumdioxid und titandioxid enthaltendes granulat
JPH0323222A (ja) 酸化ニオビウム粉末及びその製造法
DE102009009182A1 (de) Zinkoxid-Kristallpartikel und Verfahren zu der Herstellung
WO2011100778A1 (de) Verfahren zum herstellen von lithiumtitanat
DE102012211013B4 (de) Verfahren zur Herstellung von wasserfreiem Ammoniumtrivanadat und wasserfreiesAmmoniumtrivanadat
CN107892326B (zh) 金红石相TiO2纳米棒组装体的制备方法及产品
CN106745210B (zh) 一种Li掺杂SrTiO3表面多孔纳米颗粒的制备方法及产物
CN111094189A (zh) 制备电极活性材料的方法
CN115124072A (zh) 一种硫酸法制备高纯纳米二氧化钛的方法及产品
JPS61186223A (ja) 誘電体微粉末の製造方法
DE102013224045B4 (de) Verfahren zur Herstellung eines lithiumionenleitfähigen Materials mit granatartiger Kristallstruktur, Verwendung des Materials und Verfahren zur Herstellung eines Zwischenproduktes
JP6075964B2 (ja) アルカリ金属分を低減した酸化チタンナノワイヤの製造方法、及び酸化チタンナノワイヤからアルカリ金属分を除去する方法
JP6858042B2 (ja) 球状大粒子二酸化チタンの製造方法
JP2557344B2 (ja) 無機水酸化物沈澱の処理方法
TW201520173A (zh) 草酸氧鈦鋇製備方法以及鈦酸鋇製備方法
CN107082450B (zh) 一种Ag0.33V2O5材料的制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11710999

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: FESTSTELLUNG EINES RECHTSVERLUSTS NACH REGEL 112(1) EPUE (EPA FORM 1205A VOM 11.12.2012)

122 Ep: pct application non-entry in european phase

Ref document number: 11710999

Country of ref document: EP

Kind code of ref document: A1