WO2011061946A1 - 高周波回路、高周波回路部品、及び通信装置 - Google Patents

高周波回路、高周波回路部品、及び通信装置 Download PDF

Info

Publication number
WO2011061946A1
WO2011061946A1 PCT/JP2010/006814 JP2010006814W WO2011061946A1 WO 2011061946 A1 WO2011061946 A1 WO 2011061946A1 JP 2010006814 W JP2010006814 W JP 2010006814W WO 2011061946 A1 WO2011061946 A1 WO 2011061946A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
terminal
transistor
reception
terminals
Prior art date
Application number
PCT/JP2010/006814
Other languages
English (en)
French (fr)
Inventor
裕崇 佐竹
深町 啓介
釼持 茂
杉山 雄太
Original Assignee
日立金属株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立金属株式会社 filed Critical 日立金属株式会社
Priority to KR1020127015883A priority Critical patent/KR101680927B1/ko
Priority to US13/510,850 priority patent/US9252819B2/en
Priority to JP2011541822A priority patent/JP5630441B2/ja
Publication of WO2011061946A1 publication Critical patent/WO2011061946A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/005Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges
    • H04B1/0064Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges with separate antennas for the more than one band
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/51Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used
    • H03K17/56Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices
    • H03K17/687Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices the devices being field-effect transistors
    • H03K17/693Switching arrangements with several input- or output-terminals, e.g. multiplexers, distributors
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits
    • H04B1/44Transmit/receive switching
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0602Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using antenna switching
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0837Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station using pre-detection combining
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present invention relates to a high-frequency circuit using a switching circuit for switching a signal path of a high-frequency signal, a high-frequency circuit component, and a communication device using the same.
  • wireless LAN data communication represented by the IEEE 802.11 standard is widely used.
  • PCs personal computers
  • PC peripherals such as printers, hard disks, broadband routers, fax machines, refrigerators, standard televisions (SDTV) ), High-definition television (HDTV), digital cameras, digital video cameras, mobile phones, and other electronic devices, and signal transmission means that replace wired communication in automobiles and airplanes.
  • SDTV standard televisions
  • HDTV High-definition television
  • digital cameras digital video cameras
  • mobile phones mobile phones, and other electronic devices
  • signal transmission means that replace wired communication in automobiles and airplanes.
  • IEEE 802.11a supports high-speed data communication of up to 54 Mbps using an OFDM (Orthogonal Frequency Division Multiples) modulation method, and uses a frequency band of 5 GHz.
  • IEEE 802.11b is a DSSS (Direct Sequence Spread Spectrum) method that supports high-speed communication at 5.5 Mbps and 11 Mbps, and can be used freely without a radio license.
  • the 4 GHz ISM (Industrial Scientific and Medical) band is used.
  • IEEE 802.11g supports a high-speed data communication of up to 54 Mbps using the OFDM modulation method, and uses the 2.4 GHz band as in IEEE 802.11b.
  • WiMAX IEEE 802.16-2004, IEEE 802.16e-2005, etc.
  • WiMAX proposed as a high-speed wireless communication standard covering a communication distance of about several kilometers is in the 2.5 GHz band, 3.5 GHz band and 5 GHz band. It is expected as a technology to supplement the so-called last one mile of optical communication using three frequency bands.
  • MIMO Multiple-Input, Multiple-Output
  • the MIMO scheme requires a plurality of receiving terminals that can simultaneously and independently receive one communication system.
  • MIMO also includes SIMO (Single-Input, Multiple-Output).
  • SIMO Single-Input, Multiple-Output
  • the number of circuit configurations such as receiving terminals for one communication system increases, so that isolation between a plurality of communication systems is difficult, and the circuit configuration is complicated. Therefore, it is very difficult to apply the MIMO scheme to multiband wireless communication.
  • WiMAX that handles high transmission power
  • isolation between a plurality of communication systems is important in order to reduce transmission power loss.
  • a transmission diversity circuit has attracted attention as a wireless communication system.
  • the transmission diversity includes a plurality of antennas, and an optimum antenna can be selected from among the antennas according to the radio wave condition. Therefore, transmission power can be reduced, and the portable device can be operated for a long time.
  • Patent Document 1 describes that a high-frequency switch composed of FET switches is used as a diversity circuit. Further, Patent Document 2 describes a switch circuit configured by combining three SPDT switches as a prior art, and also describes a switch integrated with an FET switch on a semiconductor chip. Patent Document 3 discloses a radio apparatus in which a filter circuit is arranged on each path as shown in FIG. 1 as a transmission diversity circuit of a TDMA radio apparatus configured using a plurality of switch circuits. Patent Document 4 discloses that a diversity-compatible high-frequency switch is configured in a laminated structure.
  • JP-A-6-237101 Japanese Patent Laid-Open No. 10-150395 Japanese Patent Laid-Open No. 10-209935
  • An object of the present invention is different because the reception sensitivity is high and the transmission power loss is suppressed, the optimum antenna can be selected according to the radio wave condition at the time of transmission if necessary, and interference between signal paths can be suppressed.
  • An object of the present invention is to provide a high-frequency circuit, a high-frequency circuit component, and a communication device using the same that can receive signals received through an antenna and a reception path with equal sensitivity.
  • the first invention is A laminated body in which a plurality of layers, in which a first antenna terminal, a second antenna terminal, a transmission terminal for the first communication system and first and second reception terminals are formed, and an electrode pattern is formed, are integrated; Comprising at least a switching circuit mounted on the mounting surface of the laminate, The switching circuit can be connected by selecting either the first or second antenna terminal as the transmission terminal, and the connection / connection of the first reception terminal only to the first antenna terminal side.
  • the stacked body includes a first ground electrode formed in an inner layer, and a second ground electrode formed in a layer opposite to the mounting surface without overlapping the first ground electrode and sandwiching another ground electrode.
  • a first filter circuit is disposed in a reception path connecting the switching circuit and the first reception terminal;
  • a second filter circuit is disposed in a reception path connecting the switching circuit and the second reception terminal;
  • At least a part of the electrode pattern of the first and second filter circuits is formed in the layer sandwiched between the first and second ground electrodes of the stacked body, and the first filter circuit and the first filter circuit 2 filter circuits are formed in different regions when viewed in the stacking direction of the stack, In addition, a shield by a plurality of vias is formed between the regions.
  • the second invention is the high-frequency circuit component of the first invention,
  • a third filter circuit is disposed after the first filter circuit
  • a fourth filter circuit is arranged at the subsequent stage of the second filter circuit, In the layer sandwiched between the first and second ground electrodes of the laminate, at least a part of each electrode pattern of the third and fourth filter circuits is formed,
  • the third and fourth filter circuits are formed in different regions when viewed in the stacking direction of the stacked body,
  • Each of the third and fourth filter circuits is formed with a shield by a plurality of vias.
  • a third invention is the high-frequency circuit component of the second invention,
  • the electrode pattern of each circuit (second filter circuit, fourth filter circuit) of the reception path connecting the terminals is separately arranged.
  • the fourth invention is: A laminated body in which a plurality of layers, in which a first antenna terminal, a second antenna terminal, a transmission terminal for the first communication system and first and second reception terminals are formed, and an electrode pattern is formed, are integrated; Comprising at least a switching circuit mounted on the mounting surface of the laminate, The switching circuit can be connected by selecting either the first or second antenna terminal as the transmission terminal, and the connection / connection of the first reception terminal only to the first antenna terminal side.
  • the laminate includes a first ground electrode formed in an upper layer side inner layer and a second ground electrode formed in a lower layer side inner layer, A first filter circuit is disposed in a reception path connecting the switching circuit and the first reception terminal; A second filter circuit is disposed in a reception path connecting the switching circuit and the second reception terminal; A sixth filter circuit is disposed in a transmission path connecting the switching circuit and the transmission terminal; In the layer sandwiched between the first and second ground electrodes, at least part of the electrode patterns of the first, second, and sixth filter circuits are formed, and each filter circuit , Formed in different regions as seen in the stacking direction of the stack, The region where the electrode pattern of the first filter circuit is formed, the region where the electrode pattern of the sixth filter circuit is formed, the region where the electrode pattern of the second filter circuit is formed, and the sixth filter A shield by a plurality of vias is formed between regions where circuit electrode patterns
  • a fifth invention is the high-frequency circuit component of the fourth invention, In the reception path connecting the switching circuit and the first reception terminal, a third filter circuit is disposed after the first filter circuit, In the reception path connecting the switching circuit and the second reception terminal, a fourth filter circuit is arranged at the subsequent stage of the second filter circuit, In the transmission path, a fifth filter circuit is arranged before the sixth filter circuit, In the layer sandwiched between the first and second ground electrodes, at least part of the electrode patterns of the third, fourth, and fifth filter circuits are formed, and each filter circuit , Formed in different regions as seen in the stacking direction of the stack, The region where the electrode pattern of the third filter circuit is formed, the region where the electrode pattern of the fifth filter circuit is formed, and the region where the electrode pattern of the fourth filter circuit is formed and the fifth filter A shield by a plurality of vias is formed between regions where circuit electrode patterns are formed.
  • a sixth invention is the high-frequency circuit component of the fifth invention,
  • the electrode pattern of each circuit (first filter circuit, third filter circuit) of the reception path connecting the switching circuit and the first reception terminal and each circuit (sixth filter circuit, fifth filter circuit) of the transmission path The electrode pattern of the filter circuit is divided and arranged on the boundary of the shield, and the electrode pattern of each circuit (sixth filter circuit, fifth filter circuit) of the transmission path, the switching circuit, and the second circuit
  • the electrode pattern of each circuit (second filter circuit, fourth filter circuit) in the reception path connecting the reception terminals is arranged with the shield as a boundary.
  • a seventh invention is the high-frequency circuit component of the fifth invention, At least a part of an electrode pattern of each circuit (first filter circuit, third filter circuit) of a reception path connecting the switching circuit and the first reception terminal with the heat dissipation via as a boundary, and the switching At least a part of the electrode pattern of each circuit (second filter circuit, fourth filter circuit) on the reception path connecting the circuit and the second reception terminal is arranged with the via for heat dissipation as a boundary. It is characterized by being.
  • An eighth invention is the high-frequency circuit component of any one of the first to seventh inventions,
  • the switching circuit is disposed on a mounting surface such that the switching circuit overlaps at least a part of an electrode pattern of the sixth filter circuit in the multilayer body. It is arranged on the mounting surface so as to overlap with a region where an electrode pattern of the filter circuit is formed.
  • a ninth invention is the high-frequency circuit component of any one of the first to eighth inventions,
  • the switching circuit is A first switch that enables the first antenna terminal to select and connect between the transmitting terminal and the first receiving terminal; A second switch that enables the second antenna terminal to select and connect between the transmission terminal and the second reception terminal; A third switch that enables connection by selecting one of the first and second antenna terminals as the transmission terminal;
  • the first to third switches are installed on the mounting surface of the stacked body, and when viewed in a predetermined direction, the order of arrangement is the order of the first switch, the third switch, and the second switch, and The distance between the terminals for connecting the first switch and the third switch and the second switch and the third switch to each other is substantially the same.
  • a tenth aspect of the invention is the high frequency circuit component of the ninth aspect of the invention
  • the first to third switches are single pole double throw switches, A single pole side terminal of a first single pole double throw switch is connected to the first antenna terminal; In the first single-pole double-throw switch, one of the double-throw terminals is connected to the first receiving terminal for the first communication system, A single pole side terminal of a second single pole double throw switch is connected to the second antenna terminal; In the second single-pole double-throw switch, one of the double-throw terminals is connected to the second receiving terminal for the first communication system,
  • the third single-pole double-throw switch has a double-throw side terminal of the third single-pole double-throw switch connected to one of the double-throw side terminals of the first and second single-pole double-throw switches.
  • a single pole side terminal of the third single pole double throw switch is connected to a transmission terminal for the first communication system;
  • the first and second reception terminals can be connected to the first and second antenna terminals at the same time, and the transmission terminal selects the first and second antenna terminals. And is configured to be connectable.
  • An eleventh aspect of the present invention is the high frequency circuit component according to any one of the first to seventh aspects of the invention,
  • the switching circuit comprises a plurality of transistor circuits, A first transistor circuit that switches connection or disconnection between the first antenna terminal and the first receiving terminal; A fifth transistor circuit for switching connection or non-connection between the second antenna terminal and the second reception terminal; A second transistor circuit that switches connection or non-connection between a node between the first reception terminal and the first transistor circuit and a ground; A node between the second reception terminal and the fifth transistor circuit, and a sixth transistor circuit that switches connection or disconnection between the ground, In a state in which the first antenna terminal and the transmission terminal are connected, the sixth transistor circuit is connected between a node between the second reception terminal and the fifth transistor circuit and the ground. And In a state in which the second antenna terminal and the transmission terminal are connected, the second transistor circuit is connected between a node between the second reception terminal and the fifth transistor circuit and the ground. It is characterized by becoming.
  • a twelfth aspect of the invention is the high-frequency circuit component according to any one of the first to seventh aspects of the invention,
  • the switching circuit comprises a plurality of transistor circuits, A first transistor circuit that switches connection or disconnection between the first antenna terminal and the first receiving terminal; A fourth transistor circuit for switching connection or non-connection between the first antenna terminal and the transmission terminal; A fifth transistor circuit for switching connection or non-connection between the second antenna terminal and the second reception terminal; An eighth transistor circuit for switching connection or non-connection between the second antenna terminal and the transmission terminal; A second transistor circuit that switches connection or non-connection between a node between the first reception terminal and the first transistor circuit and a ground; A node between the second reception terminal and the fifth transistor circuit, and a sixth transistor circuit that switches connection or disconnection between the ground, In a state in which the first antenna terminal and the transmission terminal are connected, the sixth transistor circuit is connected between a node between the second reception terminal and the fifth transistor circuit and the ground. And In a state in which the second antenna terminal and the transmission terminal are connected, the second
  • a thirteenth invention is the high-frequency circuit component of the twelfth invention,
  • the high-frequency circuit includes a third transistor circuit that switches connection or non-connection between the first antenna terminal and the fourth transistor circuit, and a connection between the second antenna terminal and the eighth transistor circuit or
  • a seventh transistor circuit for switching non-connection is provided, wherein the second and third transistor circuits and the sixth and seventh transistor circuits are connected to the same power supply terminal.
  • a fourteenth aspect of the invention is the high frequency circuit component of the thirteenth aspect of the invention, A node between the third transistor circuit and the fourth transistor circuit, and a ninth transistor circuit for switching connection or non-connection between the ground, and between the seventh transistor circuit and the eighth transistor circuit; A tenth transistor circuit that switches connection or non-connection between a certain node and the ground, and the fourth transistor circuit and the tenth transistor circuit, and the eighth transistor circuit and the ninth transistor circuit have the same power supply terminal It is connected to.
  • a fifteenth aspect of the present invention is the high-frequency circuit component according to any one of the first to seventh aspects of the present invention
  • the switching circuit comprises a plurality of transistor circuits, A first transistor circuit that switches connection or disconnection between the first antenna terminal and the first receiving terminal; Third and fourth transistor circuits for switching connection or non-connection between the first antenna terminal and the transmission terminal; A fifth transistor circuit for switching connection or non-connection between the second antenna terminal and the second reception terminal; Seventh and eighth transistor circuits for switching connection or non-connection between the second antenna terminal and the transmission terminal; A ninth transistor circuit that switches connection or non-connection between a node between the third transistor circuit and the fourth transistor circuit and ground; A node between the seventh transistor circuit and the eighth transistor circuit, and a tenth transistor circuit for switching connection or disconnection between the ground,
  • the fourth transistor circuit and the tenth transistor circuit, and the eighth transistor circuit and the ninth transistor circuit are connected to the same power supply terminal.
  • a sixteenth aspect of the invention is the high frequency circuit component of the eleventh aspect of the invention, In the second and sixth transistor circuits, one of their sources or drains is grounded, the other source or drain is connected to a node of a signal path, and a resistor is connected between the source and drain.
  • a seventeenth aspect of the invention is the high frequency circuit component of the twelfth aspect of the invention, At least one of the transistor elements used in the second and sixth transistor circuits has a lower breakdown voltage than the transistor elements used in the first, fifth, fourth, and eighth transistor circuits.
  • An eighteenth aspect of the invention is the high frequency circuit component of the thirteenth or fourteenth aspect of the invention, At least one of the transistor elements used in the third and seventh transistor circuits has a lower withstand voltage than the transistor elements used in the fourth and eighth transistor circuits.
  • a nineteenth aspect of the invention is the high frequency circuit component of the eleventh aspect of the invention, In the switching circuit, each transistor element is arranged on an integrated semiconductor substrate.
  • a twentieth aspect of the invention is the high frequency circuit component of the nineteenth aspect of the invention.
  • the semiconductor substrate has a rectangular shape, and is connected to the electrodes connected to the first and second antenna terminals, the electrodes connected to the first and second reception terminals, and the transmission terminal on the semiconductor substrate. Electrode is formed, Electrodes connected to the first and second antenna terminals are arranged at adjacent corners, respectively, and electrodes connected to the first and second receiving terminals are arranged at the other two corners, respectively. It is characterized by.
  • a twenty-first invention is the high-frequency circuit component of the nineteenth invention, An electrode connected to the transmission terminal is disposed at an intermediate point between the electrodes connected to the first and second reception terminals, and an electrode connected to the transmission terminal and an electrode connected to the first reception terminal In the meantime, a ground electrode is formed between the electrode connected to the transmitting terminal and the electrode connected to the second receiving terminal.
  • a twenty-second invention is the high-frequency circuit component of the nineteenth invention, A power line connected to each of the transistor elements formed on a dielectric substrate, an electrode connected to the first and second antenna terminals, an electrode connected to the first and second receiving terminals, It is characterized by being routed on the outer peripheral side of the dielectric substrate with respect to at least one of the electrodes connected to the transmission terminal.
  • a twenty-third invention is the high-frequency circuit component of the twenty-second invention, wherein On the semiconductor substrate, a power supply line connected to a power supply terminal is formed along at least one side of the substrate.
  • a twenty-fourth invention is the high-frequency circuit component of any one of the first to third inventions,
  • the high-frequency circuit component includes a transmission terminal for the second communication system,
  • the transmission terminals for the first and second communication systems are
  • the switching circuit is connected to the switching circuit via a fourth switch.
  • a twenty-fifth aspect of the invention is the high-frequency circuit component of the twenty-second aspect of the invention,
  • a high frequency amplifier circuit is disposed between the second switching circuit and the transmission terminal for the first communication system, and between the second switching circuit and the transmission terminal for the second communication system, respectively. At least one of the high-frequency amplifier circuits and the fourth switch are connected to the same power supply terminal.
  • a twenty-sixth aspect of the invention is the high-frequency circuit component of any one of the first to third aspects of the invention.
  • the high-frequency circuit component includes first and second reception terminals for a second communication system, and a transmission terminal for a second communication system,
  • the first receiving terminal for the first communication system and the first receiving terminal for the second communication system are connected to the switching circuit via a fifth switching circuit or a first branching circuit.
  • the second receiving terminal for the first communication system and the second receiving terminal for the second communication system are connected to the switching circuit via a sixth switch circuit or a second branching circuit. It is characterized by.
  • the twenty-seventh invention A high-frequency circuit having at least first and second antenna terminals, first and second transmission terminals, first and second reception terminals, and a switching circuit;
  • the switching circuit either the first transmission terminal or the second transmission terminal can be connected by selecting either the first antenna terminal or the second antenna terminal, and the first reception terminal is connected to the first transmission terminal.
  • the connection / disconnection with only one antenna terminal side is switched, and the second receiving terminal switches between connection / disconnection with only the second antenna terminal side.
  • a twenty-eighth aspect of the invention is the high-frequency circuit component of the twenty-seventh aspect of the invention,
  • a single pole side terminal of a seventh switch of single pole and three throws is connected to the first antenna terminal
  • the seventh switch has one of three throw terminals connected to the first receiving terminal
  • a single pole side terminal of an eighth switch of single pole and three throws is connected to the second antenna terminal
  • the eighth switch has one of three throw terminals connected to the second receiving terminal
  • a single pole side terminal of a ninth switch of single pole double throw is connected to the first transmission terminal
  • one of the three throw side terminals of the seventh and eighth switches is connected to each of the third throw side terminals of the ninth switch.
  • Double throw terminal is connected,
  • the single pole side terminal of the tenth switch of single pole double throw is connected to the second transmission terminal, and one of the three throw side terminals of the seventh and eighth switches is connected to A double-throw terminal is connected.
  • a twenty-ninth aspect of the invention is the high-frequency circuit component of the twenty-seventh aspect of the invention,
  • a single pole side terminal of a single pole double throw eleventh switch is connected to the first antenna terminal
  • In the eleventh switch one of the double throw terminals is connected to the first receiving terminal
  • a single pole side terminal of a twelfth switch of single pole double throw is connected to the second antenna terminal
  • In the twelfth switch one of the double throw terminals is connected to the second receiving terminal
  • One bipolar terminal of a thirteenth switch of double pole double throw is connected to the first and second transmission terminals
  • each of the thirteenth bipolar terminals of the eleventh and twelfth switches is connected to the thirteenth The other double throw terminal of the switch is connected.
  • the 30th invention is a communication device using the high-frequency circuit component of any of the first to third inventions.
  • the present invention it is possible to provide a high-frequency circuit that can select an optimal antenna according to radio wave conditions during transmission, suppress transmission power loss, and can ensure isolation between signal paths.
  • FIG. 1 is a diagram illustrating an example of a transmission diversity circuit.
  • FIG. 2 is a block diagram of the high-frequency circuit according to the embodiment.
  • FIG. 3 is an equivalent circuit of the block diagram of FIG.
  • FIG. 4 is an equivalent circuit of another part of the block diagram of FIG.
  • FIG. 5 is an equivalent circuit of another part of the block diagram of FIG.
  • FIG. 6 is an equivalent circuit of the other part of the block diagram of FIG.
  • FIG. 7A is a diagram for explaining a region where a filter circuit is formed in the multilayer body according to the embodiment.
  • FIG. 7B is a diagram for describing a region where a filter circuit is formed in the multilayer body of the embodiment.
  • FIG. 8A is a stack diagram of the stack of the embodiment.
  • FIG. 8B is a stack diagram of the stack of the embodiment.
  • FIG. 9 is a block diagram of a high-frequency circuit according to another embodiment.
  • FIG. 10 is an equivalent circuit of the block diagram of FIG.
  • FIG. 11 is an equivalent circuit of another part of the block diagram of FIG. 12 is an equivalent circuit of the other part of the block diagram of FIG.
  • FIG. 13A is a laminate diagram of a laminate according to another embodiment.
  • FIG. 13B is a stacking diagram of a stacked body according to another embodiment.
  • FIG. 14 is a diagram for explaining a switching circuit used in the embodiment.
  • FIG. 15 is a diagram for explaining another switching circuit used in the embodiment.
  • FIG. 16 is a substrate surface of the switching circuit of FIG. 15 when formed on an integrated semiconductor substrate.
  • FIG. 16 is a substrate surface of the switching circuit of FIG. 15 when formed on an integrated semiconductor substrate.
  • FIG. 17 is a block diagram of a high-frequency circuit according to another embodiment.
  • FIG. 18 is a block diagram of a high-frequency circuit according to another embodiment.
  • FIG. 19 is a diagram illustrating a state in which the switch member and the power supply terminal of the high-frequency amplifier circuit are shared.
  • FIG. 20 is a block diagram of another high-frequency circuit.
  • FIG. 21 is a block diagram of a switching circuit used in the high frequency circuit of FIG.
  • FIG. 22 is an example of the switching circuit of FIG.
  • FIG. 23 is a block diagram of another switching circuit used in the high-frequency circuit of FIG. It is an example of the switching circuit of FIG.
  • the high-frequency circuit of the present invention includes at least first and second antenna terminals, a transmission terminal for the first communication system, and first and second reception terminals.
  • the switching circuit can be connected by selecting one of the first and second antenna terminals as a transmission terminal, and switching between connection / disconnection of the first reception terminal only with the first antenna terminal side.
  • the second receiving terminal can be switched between connection / non-connection only with the second antenna terminal side.
  • FIG. 2 is an example of a Tx diversity circuit that is a high-frequency circuit of the present embodiment.
  • the high-frequency circuit includes first and second antenna terminals ANT1 and ANT2, a transmission terminal Tx for the first communication system, a first reception terminal Rx1, a second reception terminal Rx2, and a switching circuit DP3T.
  • the transmitting terminal Tx and the receiving terminals Rx1 and Rx2 are connected to a 2.5 GHz band WiMAX RFIC circuit.
  • the switching circuit DP3T has two antenna terminals ANT1 and ANT2, a transmission terminal Tx, and switch terminals connected to the first and second reception terminals Rx1 and Rx2.
  • the switching circuit DP3T switches so that a signal from the transmission terminal Tx is selectively output to the two antenna terminals ANT1 and ANT2. In addition, the reception signals received at the two antenna terminals ANT1 and ANT2 are switched so as to be simultaneously output to different reception terminals Rx1 and Rx2. Details of the switching circuit DP3T will be described later.
  • a low noise amplifier circuit LNA1 for amplifying a reception signal is connected between the first antenna terminal ANT1 and the first reception terminal Rx1.
  • a filter circuit is disposed at least one of the front stage (antenna terminal side) and the rear stage (reception terminal side) of the low noise amplifier circuit LNA1.
  • the filter circuit can suppress unnecessary signals including signals of other communication systems from being input to the low noise amplifier circuit LNA1 and the reception terminal Rx1.
  • a band-pass filter circuit BPF1-1 is arranged at the front stage of the low noise amplifier circuit
  • a band-pass filter circuit BPF1-3 is arranged at the rear stage.
  • a balanced-unbalanced conversion circuit BAL1a is arranged between the first receiving terminal Rx1 and the subsequent band-pass filter circuit BPF1-3. It is preferable that a low noise amplifier circuit LNA2 for amplifying a reception signal is connected between the second antenna terminal ANT2 and the second reception terminal Rx2. Further, it is preferable that a filter circuit is arranged at least one of the front stage and the rear stage of the low noise amplifier circuit LNA2. The filter circuit can suppress unnecessary signals including signals of other communication systems from being input to the low noise amplifier circuit LNA2 and the reception terminal Rx2.
  • a band-pass filter circuit BPF1-2 is disposed in front of the low-noise amplifier circuit LNA2, and a band-pass filter circuit BPF1-4 is disposed in the subsequent stage.
  • a balanced-unbalanced conversion circuit BAL2a is disposed between the second reception terminal Rx2 and the subsequent band-pass filter circuits BPF1-4.
  • a high-frequency amplifier circuit HPA between the switching circuit DP3T1 and the transmission terminal Tx.
  • High integration of the high frequency circuit can be achieved by the high frequency amplifier circuit HPA.
  • a filter circuit between the switching circuit DP3T1 and the high-frequency amplifier circuit HPA.
  • a low-pass filter circuit LPF1 is arranged at a subsequent stage (on the antenna terminal side in the transmission path) of the high-frequency amplifier circuit HPA.
  • the low-pass filter circuit LPF1 can suppress the harmonics generated by the high-frequency amplifier circuit HPA from being input to the antenna terminal Tx.
  • a filter circuit in the previous stage of the high-frequency amplifier circuit HPA (on the transmission terminal side in the transmission path).
  • a bandpass filter circuit BPF1-5 is arranged.
  • the bandpass filter circuit BPF1-5 can prevent unnecessary band noise other than the transmission signal from being input to the high frequency amplifier circuit HPA.
  • a balanced-unbalanced conversion circuit BAL3a is disposed between the transmission terminal Tx and the bandpass filter circuit BPF1-5.
  • FIG. 3 is a diagram mainly showing an equivalent circuit from the switching circuit DP3T1 to the first and second antenna terminals.
  • T1 and T2 in the figure are connected to T1 and T2 in FIG. 4 described later, respectively, and T3 is connected to T3 in FIG. 6 described later.
  • the switching circuit DP3T1 includes a combination of single-pole double-throw switches SW1 to SW3.
  • the first switch SW1 and the second switch SW2 are controlled by a common power supply line connected to the control terminals Vt and Vr.
  • the first switch SW1 connects the first receiving terminal Rx1 and the first antenna terminal ANT1
  • the second switch SW2 is synchronized so as to connect the second receiving terminal Rx2 and the second antenna terminal ANT2.
  • the received signals can be received simultaneously from the two antenna terminals. Switching of the signal from the transmission terminal Tx can be performed by the third switch SW3.
  • Connection / disconnection of each signal path is switched by power supply terminals Va, Vt, and Vr connected to the switching circuit.
  • power supply terminals Vcc1, Vcc2, Vb, Vatt connected to the high frequency amplifier circuit HPA, VbL1 connected to the low noise amplifier circuit LNA1, VbL2 connected to LNA2, and the low noise amplifier circuits LNA1 and LNA2
  • Both shared power supply terminals VcL are switched ON / OFF.
  • the voltage of each control terminal when each antenna terminal is connected to the transmission terminal and each reception terminal is controlled as shown in the following table.
  • the unit of the numbers in the table is volts (V).
  • Mode Tx1 in the table indicates a state where the transmission terminal Tx and the first antenna terminal ANT1 are connected.
  • Mode Tx2 indicates a state in which the transmission terminal Tx and the second antenna terminal ANT2 are connected.
  • Mode Rx indicates a state in which the first antenna terminal and the first receiving terminal Rx1 are connected, and the second antenna terminal ANT2 and the second receiving terminal Rx2 are connected.
  • Mode Tx1 and ModeTx2 will be described.
  • a voltage value of 3.0 V is applied from the power supply terminal Vt, and a voltage value of 0.0 V is applied from the power supply terminal Vr.
  • the first switch SW1 connected to the shared power supply terminals Vt and Vr is connected to the first antenna terminal ANT1 and the third antenna.
  • the terminal on the switch SW3 side is connected, and the second switch SW2 connects the second antenna terminal ANT2 and the terminal on the third switch SW3 side. Connection / disconnection of the transmission terminal Tx, the terminal on the first switch SW1 side, and the terminal on the second switch SW2 side is switched by the third switch SW3.
  • the switching of the third switch is performed by the power supply terminals Va1 and Va2, and the voltage levels from the other power supply terminals are the same. Further, the power supply terminal Vb connected to the high-frequency amplifier circuit has a high voltage value, and amplifies the transmission signal in both cases of ModeTx1 and Tx2.
  • a voltage value of 0.0 V is applied from the power supply terminal Vt, and a voltage value of 3.0 V is applied from the power supply terminal Vr.
  • the first switch SW1 connected to the shared power supply terminals Vt and Vr is connected to the first antenna terminal ANT1 and the first The reception terminal RX is connected, and the second switch SW2 connects the second antenna terminal ANT2 and the second reception terminal Rx2.
  • the switching of the third switch is performed by the power supply terminals Va1 and Va2, but any combination of voltage High / Low may be used.
  • the low noise amplifier circuits LNA1 and LNA2 are driven by applying voltages from the power supply terminals Vbl and Vbl2, and a received signal is amplified.
  • FIG. 4 is a diagram showing an equivalent circuit between the first and second receiving terminals from the subsequent stage of the switching circuit DP3T1.
  • the bandpass filter circuits BPF1-1 and 1-2 are two-stage bandpass filters in which two resonance lines are electromagnetically coupled.
  • a grounding capacitor is connected to one end of the resonant line, and the other end is grounded to GND.
  • a DC cut capacitor is connected to the input / output side.
  • Chip inductors Lr2a and Lr1, Lr2b and Lr4 mounted on the upper surface of the multilayer body are connected between the DC cut capacitor on the rear stage side and the low noise amplifiers LNA1 and LNA2 in order to achieve input matching.
  • the input matching can be easily adjusted by changing the constant of the chip inductor.
  • the ON / OFF switching of the low noise amplifiers LNA1 and LNA2 is performed by the control voltages VbL1 and VbL2.
  • VcL drain voltage
  • VbL1 and VbL2 a voltage of about 2.0 to 3.0 V is applied when the received signal needs to be amplified, and the low noise amplifier is turned on.
  • the low noise amplifier When VbL1 and VbL2 are in the off mode, the low noise amplifier is in the bypass mode.
  • the bypass mode is used to prevent saturation of the low-noise amplifier when a high-power signal is input from the antenna.
  • an LNA without the bypass mode may be used as necessary.
  • choke coils Lr3, Lr6 and noise cut capacitors Cr1, Cr2, Cr3 are connected to the VcL terminal.
  • the signals amplified by the low noise amplifiers LNA1 and LNA2 pass through the inductors Lr2 and Lr5 for matching on the output side, and are input to the subsequent band pass filter circuits BPF1-3 and 1-4.
  • the latter-stage bandpass filter circuits BPF1-3 and 1-4 are two-stage bandpass filters in which two transmission lines formed in the laminate are electromagnetically coupled.
  • a grounding capacitor is connected to one end of the resonant line, and the other end is grounded to GND.
  • a DC cut capacitor is connected to the input / output side.
  • capacitors Cb5 and Cb2 are connected to strengthen the coupling between the resonators. This makes it possible to increase the attenuation outside the passband.
  • the number of resonators by the transmission line may be three, and the attenuation outside the passband may be increased.
  • the signals that have passed through the subsequent band pass filter circuits BPF1-3, 1-4 are converted into balanced signals by balanced-unbalanced conversion circuits BAL1a, BAL2a.
  • the balanced-unbalanced conversion circuit is configured using a transmission line formed in the laminated body.
  • the balanced-unbalanced conversion circuits BAL1a and BAL2a may include a transmission line for matching the subsequent band-pass filter circuit and the balanced-unbalanced conversion circuit.
  • Capacitors Cr5 and Cr6 mounted on the upper surface of the multilayer body are connected to the transmission line on the balanced-unbalanced conversion circuit side. Capacitors Cr5 and Cr6 can adjust the phase difference between the received signals output to the receiving terminals Rx1- and Rx1 +.
  • the receiving terminals Rx1- and Rx1 + are connected to the RFIC circuit unit. Since the balanced input / output has better noise resistance than the unbalanced input / output, the RFIC circuit section often has a balanced input and a balanced output. On the other hand, since a switching circuit, a low noise amplifier circuit, and the like are unbalanced devices, a balanced-unbalanced conversion circuit is often provided as an interface with the RFIC circuit section. By designing the balanced-unbalanced conversion circuit inside the laminated body, it is possible to reduce the size of the high-frequency components and to reduce the size of the communication device.
  • FIG. 5 is a diagram showing an equivalent circuit from the transmission terminal Tx to the front stage side of the high-frequency amplifier circuit.
  • the transmission signal from the RFIC circuit section is input to the bandpass filter circuit BPF1-5 through the balanced-unbalanced conversion circuit BAL3a.
  • T4 in the figure is connected to T4 in FIG.
  • the balanced-unbalanced conversion circuit BAL3a is configured using a transmission line formed in the laminated body. Further, a DC feed voltage terminal Vd is connected between the transmission lines, and a DC voltage can be simultaneously applied to the Tx ⁇ terminal and the Tx + terminal depending on the specifications of the RFIC circuit used. Between the DC feed voltage terminal Vd and BAL3a, a grounding capacitor Ct6 mounted on the mounting surface of the laminate is connected. In this embodiment, the grounded capacitor Ctxl is connected to the balanced-unbalanced conversion circuit BAL3a, and the phase and amplitude can be easily adjusted.
  • the band-pass filter circuit 1-5 is a two-stage band-pass filter having two resonance lines similar to the band-pass filter circuits BPF1-3 and BPF1-4. Even a high-frequency circuit without this band-pass filter circuit functions as a Tx diversity high-frequency circuit.
  • FIG. 6 is a diagram showing an equivalent circuit from the transmission terminal side of the switching circuit DP3T1 to the high-frequency amplifier circuit.
  • a signal from the transmission terminal is input to the high frequency amplifier circuit HPA via the attenuator.
  • the attenuator is controlled by the control voltage Vatt, and the transmission line lvatt that is a part of the power supply line is formed by an electrode pattern in the laminate.
  • the high frequency amplifier circuit HPA is driven by the voltage from the drive voltages Vcc1 and Vcc2.
  • the voltages from the drive power supplies Vcc1 and Vcc2 are input to the high-frequency amplifier circuit HPA via the constant voltage supply circuit, and the constant voltage supply circuit is connected to the electrode patterns lvcc1a and lvcc1b formed in the stacked body and the ground capacitance mounted on the top surface of the stacked body. It is formed by Ct3, Ct7, electrode patterns lind, lvcc2 and grounding capacitors Ct1, Ct2 mounted on the upper surface of the laminate.
  • the high frequency amplifier circuit HPA is controlled by a voltage from the bias voltage Vb.
  • the bias voltage Vb is input to the high-frequency circuit HPA via a control voltage circuit for controlling output power.
  • the control voltage circuit is connected to electrode patterns lvb1 and lbv2 formed in the stacked body and a grounded capacitor Ct4 mounted on the top surface of the stacked body. , Resistor Rt2 and ground resistor Rt3.
  • the signal amplified by the high frequency amplifier circuit HPA is connected to the low pass filter circuit LPF1 via the output matching circuit and the DC cut capacitor Ct6.
  • the output matching circuit is formed by electrode patterns lm1 and lm2 and grounding capacitors cm1 and cm2 in the stacked body.
  • the low-pass filter circuit LPF1 is actually a pi-type low-pass filter because parasitic capacitance is generated.
  • a parallel resonant circuit is formed between the input / output terminals.
  • a grounding capacitor is connected to the input terminal side of the parallel resonant circuit.
  • a transmission line connected in series is connected to the previous stage of the parallel resonant circuit.
  • These electrode patterns are formed inside a laminate including an insulating layer and a conductor pattern.
  • insulator layer dielectric ceramics, resin, or a composite material of resin and ceramic can be used. Laminating is performed using a known method. For example, when dielectric ceramics are used, LTCC (low temperature co-fired ceramic) technology or HTCC (high temperature co-fired ceramic) technology is used.
  • the laminated body is made of a ceramic dielectric that can be sintered at a low temperature of 1000 ° C. or lower, for example, as an insulator layer, and a predetermined conductive pattern is formed by printing a conductive paste such as Ag or Cu. It can be formed by using a plurality of ceramic green sheets having a thickness of 10 to 200 ⁇ m, laminating them, and sintering them integrally.
  • ceramic dielectrics that can be sintered at low temperatures include ceramics having Al, Si, and Sr as main components and Ti, Bi, Cu, Mn, Na, K, etc. as auxiliary components, Al, Mg, Si, and Gd. And ceramics containing Al, Si, Zr and Mg.
  • FIG. 7A and FIG. 7B are perspective views schematically showing regions where the filter circuits and the balanced-unbalanced conversion circuits are formed as an example of the laminated body of the embodiment.
  • FIGS. 7A and 7B are stacked views showing an example of the embodiment of FIGS. 7A and 7B.
  • the stacked body is composed of a layer 103 in which the first ground electrode is formed on the inner layer on the upper layer side (the mounting surface side from the center of the stack), and other layers in the stacking direction.
  • the ground electrode is formed with a second ground electrode formed on the inner layer on the lower layer side (opposite to the mounting surface), and between the first ground electrode and the second ground electrode.
  • regions FIL1 to FIL6 are provided with regions FIL1 to FIL6 in which at least a part of electrode patterns of each filter circuit is formed.
  • the first ground electrode and the second ground electrode are formed so as to cover each region when viewed in the stacking direction.
  • the ground electrode is preferably formed so as to cover almost the entire layer of the laminate.
  • the regions FIL1 and FIL2, and the regions FIL3 and FIL4 are formed by being separated by a shield (columnar portion in the drawing) including a plurality of vias. Vias extend substantially in the stacking direction, and the same plane including a plurality of vias can be regarded as a shield. If necessary, a shield composed of a plurality of vias is formed. If necessary, the shield may be formed between regions of other filter circuits.
  • the shield is connected to the first and second ground electrodes. Each region is electromagnetically partitioned by the shield and the ground electrode. Further, interference with the circuit board, the mounted component, and the power supply line formed on the outer layer side of the first and second ground electrodes is suppressed.
  • the stacked body of this embodiment includes a bandpass filter circuit BPF1- in the preceding stage formed between the switching circuit and the low noise amplifier LNA1 between the first ground electrode layer 103 and the second ground electrode layer 115.
  • a region BAL1 in which at least a part of the balanced-unbalanced conversion circuit BAL1a formed between the subsequent band-pass filter circuit BPF1-3 and the first receiving terminal is formed is formed so as not to overlap in the stacking direction. Is done.
  • regions are arranged in the order described above, and the region BAL1 of the balanced-unbalanced conversion circuit is arranged along the side of the stacked body.
  • a shield composed of a plurality of vias is formed between the regions of the front-stage and rear-stage band-pass filter circuits.
  • the laminated body of this embodiment is a band-pass filter circuit in the previous stage formed between the switching circuit and the low noise amplifier LNA2 between the first ground electrode layer 103 and the second ground electrode layer 115.
  • the region BAL2 in which at least a part of the balanced-unbalanced conversion circuit BAL2a formed between the subsequent band-pass filter circuits BPF1-4 and the second receiving terminal is formed does not overlap when viewed in the stacking direction. Formed.
  • regions are arranged in the order described above, and the region BAL2 of the balanced-unbalanced conversion circuit is arranged on the side of the laminate.
  • a shield composed of a plurality of vias is formed between the regions of the front-stage and rear-stage band-pass filter circuits.
  • the laminated body of this embodiment includes at least one low-pass filter circuit LPF1 formed between the switching circuit and the high-frequency amplifier HPA between the first ground electrode layer 103 and the second ground electrode layer 115.
  • a region BAL3 in which at least a part of the balanced-unbalanced conversion circuit BAL3 formed between the terminals Tx is formed is formed so as not to overlap in the stacking direction.
  • a shield composed of a plurality of vias is formed between the region FIL6 of the low-pass filter circuit LPF1 and the region FIL5 of the band-pass filter circuit BPF1-5. This shield is formed by a plurality of thermal vias.
  • the regions FIL1 and FIL2 of the previous bandpass filter circuit do not overlap in the stacking direction and are adjacent to each other with the shield separated.
  • the regions FIL3 and FIL4 of the subsequent band-pass filter circuit do not overlap in the stacking direction and are adjacent to each other with the shield separated.
  • the regions BAL1 and BAL2 of the balanced-unbalanced conversion circuit do not overlap with each other in the stacking direction and are adjacent to each other with a shield composed of a plurality of vias as boundaries. Isolation between each filter circuit and the reception path can be ensured by the shield.
  • the electrode pattern for the filter circuit may not be formed in the FIL5 region. The same applies to the case where another filter circuit is unnecessary.
  • the region FIL6 of the low-pass filter circuit arranged in the transmission path is formed so as not to overlap with the layers FIL1 and FIL2 of the preceding band-pass filter circuit in the stacking direction. Furthermore, it is preferable that the regions FIL1 and FIL6 are separated and adjacent to each other with a shield made of a plurality of vias as a boundary.
  • the region FIL5 of the bandpass filter circuit arranged in the transmission path does not overlap the region FIL3 in the stacking direction, and is adjacent to the shield made of a plurality of vias.
  • the area BAL3 of the balanced-unbalanced conversion circuit does not overlap with the area BAL2 in the stacking direction, and is adjacent to each other with a shield made of a plurality of vias as a boundary. Isolation between each filter circuit and the transmission path and the reception path can be ensured by the shield.
  • a layer 116 for forming a part of the electrode pattern of the filter circuit is disposed on the upper layer side of the first ground electrode layer 103 or on the lower layer side of the second ground electrode layer 115.
  • the electrode pattern between the ground electrodes and the electrode pattern on the outer layer side of the ground electrode can be allowed to partially overlap in the stacking direction.
  • a conductor pattern that widely covers a region including the central portion in the layer 118 on the lower surface of the multilayer body can be provided as the third ground electrode.
  • a conductor pattern that covers a wide area formed between the second ground electrode and the third ground electrode can be provided as the fourth ground electrode.
  • the switching circuits SW1 to SW3, the high frequency amplifier HPA, the low noise amplifiers LNA1 and LNA2, and the chip inductors and the chip capacitors are arranged on the outermost layer (mounting surface) of the laminate.
  • the switch SW3 connected to the transmission terminal is disposed between the switch SW1 connected to the first reception terminal and the switch SW3 connected to the second reception terminal, and has a predetermined direction, For example, the arrangement order of the first switch, the third switch, and the second switch is arranged along the side of the stacked body. It is preferable to arrange the switches SW3 and SW1 so that the distance between the switches SW3 and SW2 is equal. It is easy to make the length of the connection portion formed by the connection wire on the mounting surface and the electrode pattern on the mounting surface substantially the same, and the insertion loss difference between both reception paths can be reduced.
  • the switches SW1 and SW2 are arranged in parallel to the direction in which the region FIL1 and the region FIL2 are arranged in the stacked body, and the arrangement order is the same.
  • the length of the transmission line in the laminate connecting the switch SW1 and the filter circuit in the region FIL1, and the length of the transmission line in the laminate connecting the switch SW2 and the filter circuit in the region FIL2 may be shortened, respectively. it can.
  • the insertion loss can be reduced, and interference with other circuit elements can be suppressed.
  • the insertion loss difference can be reduced in a state where the transmission terminal is connected to the first antenna terminal and a state where the transmission terminal is connected to the second antenna terminal.
  • the number at the upper left of each layer is the number assigned in the order of the number of layers in order, with the mounting surface as the first layer.
  • the electrode patterns constituting each filter circuit describe the names of the filter circuits (BPF1-1 to BPF1-5, LPF1, and BAL1a to BAL3a).
  • Lsw1 and lsw2 in the first layer are electrode patterns formed on the mounting surface, and are transmission lines for connecting the wires of the switches. Description of each chip capacitor is omitted.
  • the second layer immediately below the mounting surface includes a high-frequency amplifier, a low-noise amplifier, and electrode patterns lva1, lva2, lvbl2, lvbl1, lvatt1, lvb1, lvb2, lind, and lvcclb that serve as power supply lines for driving or controlling the switches. Is formed. Since these power supply lines are electromagnetically isolated from the filter circuit below the fourth layer through the first ground electrode formed in the third layer, the power lines are relatively isolated while ensuring isolation from the filter circuit. Wiring can be routed freely. Further, it is possible to prevent interference between the multilayer internal electrode and an active element mounted on the top surface of the multilayer.
  • a region BAL2 where the electrode pattern of the balanced-unbalanced conversion circuit BAL2a is formed is provided in the upper left of the drawing.
  • this range of the fourth layer to the fourteenth layer is also in the same region as viewed in the stacking direction.
  • a region FIL4 in which the electrode pattern of the bandpass filter circuits BPF1-4 is formed is provided below the BAL2 in the drawing.
  • a region FIL2 in which an electrode pattern of the bandpass filter circuit BPF1-2 is formed is provided below the region FIL4 in the drawing.
  • the region BAL1 of the balanced-unbalanced conversion circuit BAL1a is provided on the right side of the region BAL2 in the drawing.
  • a region FIL3 where the electrode pattern of the bandpass filter circuits BPF1-3 is formed is provided below the region BAL1 in the drawing.
  • a region FIL1 in which an electrode pattern of the bandpass filter circuit BPF1-1 is formed is provided below the region FIL3 in the drawing.
  • the region BAL3 of the balanced-unbalanced conversion circuit BAL3a is provided on the right side of the region BAL1a in the drawing.
  • a region FIL5 in which the electrode pattern of the bandpass filter circuit BPF1-5 is formed is provided below the region BAL3 in the drawing.
  • a plurality of thermal vias for heat radiation provided on the installation surface of the high frequency amplifier circuit on the mounting surface are provided below the region FIL5 in the drawing. Thermal vias can also be used as a shield.
  • a region FIL6 in which the electrode pattern of the low-pass filter circuit LPF1 is formed is provided on the lower side of the drawing.
  • the electrode pattern of the low-pass filter circuit is formed on the ninth layer, the tenth layer, and the eleventh layer, and not on the fourth layer. However, for the sake of explanation, these transmission lines are formed on the fourth layer. The position when the formed region is viewed in the stacking direction is shown.
  • a shield composed of a plurality of vias is enclosed by a one-dot broken line.
  • the shield is a ground electrode composed of a plurality of vias formed at positions corresponding to the boundary portions between the regions FIL1 and FIL2, and FIL3 and FIL4.
  • This via is connected to both the first ground electrode GND1 and the second ground electrode GND2 in the third layer, and is formed by a substantially linear via in the stacking direction. Even if the vias are slightly deviated, they function as a shield as long as the upper and lower vias partially overlap each other when viewed in the stacking direction.
  • the fifth layer, the eighth layer, the tenth layer, the twelfth layer, and the fourteenth layer form electrode patterns that connect the vias to each other, and a shield that extends not only in the stacking direction but also in the in-plane direction is formed.
  • the shield formed between FIL1 and FIL2 and between FIL3 and FIL4 is preferably formed to be parallel or substantially on the same plane.
  • the regions FIL1, FIL3, FIL2, and FIL4 are formed in the same direction with the shield as a boundary.
  • this shield By this shield, the isolation between each receiving path is maintained, and further, it is formed between the upper and lower first and second ground electrodes GND1, GND2, so that it is isolated from other circuits, particularly surface mounted. Therefore, it is possible to suppress signal interference with the circuit components, the power supply terminals formed on the back surface of the laminated body, and the power supply lines connected thereto, so that a circuit with less noise can be configured even in a complicated circuit configuration.
  • region FIL3 and the region FIL5 are also formed with the shield as a boundary.
  • the capacitors of the band pass filter circuit BPF1-1 are formed in the fourth layer to the sixth layer, and serve as a DC cut capacitor on the input / output terminal side of the band pass filter circuit.
  • the DC cut capacitor is connected to the resonance lines of the tenth to twelfth layers through the sixth to ninth vias.
  • the resonance lines of the 10th layer to the 12th layer are formed by electrode patterns in which both ends are connected by through holes and are arranged over three layers. By configuring this parallel line across multiple layers, the insertion loss of the bandpass filter circuit can be improved.
  • the resonance lines of each bandpass filter are formed on the same dielectric layer, and it is easy to match the characteristics of the bandpass filters of the two reception paths. In order to match the transmission lines, the distance between the transmission lines may be adjusted, the width of the transmission lines may be adjusted, or the length of the transmission lines may be adjusted.
  • the bandpass filters can be densely arranged.
  • the longitudinal direction of the resonance line is the same for all bandpass filters, including other bandpass filter circuits described later, and the bandpass filter is also used for high-frequency components having five or more bandpass filters. It is possible to arrange them densely, contributing to the miniaturization of high-frequency components.
  • the longitudinal directions of the bandpass filters are the same, when the electrodes are formed by printing, there is also an effect of suppressing characteristic fluctuation due to variations in the shape of the electrodes.
  • the electrode pattern of ground capacitance is formed on the 16th layer.
  • a fifteenth layer second ground electrode GND2 is arranged between the fourth to twelfth layer electrode patterns. Depending on the ground capacitance with the ground electrode, these ground capacitances may be the second ground electrode GND2. It may be formed on the upper layer side.
  • These ground capacities are also formed in substantially the same range as the fourth to twelfth layer electrode patterns as viewed in the stacking direction, but partially with the electrode patterns of other filter circuits and balanced-unbalanced conversion circuits. You may overlap.
  • the vias connected to the resonance lines of the two filter circuits formed in the same layer in the direction in which the switches SW1, SW2, and SW3 are arranged are preferably connected to each other.
  • high-frequency circuit components with a large number of reception paths and transmission paths require a stacking design that takes into account the placement of surface-mounted switching circuits and the position of each internal element.
  • the length of the transmission line connected to the receiving circuit on the receiving terminal side of the first receiving path and the switching circuit of the second receiving path can be made approximately the same, and the insertion loss difference between the two receiving paths can be reduced.
  • the configuration of the laminated body of the bandpass filter circuits BPF1-3, 1-4, and 1-5 will be described.
  • the capacities of the bandpass filter circuits BPF1-3, BPF1-4, and BPF1-5 are formed, and serve as DC cut capacitors on the input / output terminal side of the bandpass filter circuit.
  • the capacitance of the floating electrode that partially overlaps both of the two capacitances of the fifth layer is formed. This capacitance strengthens the capacitive coupling of the resonant line and makes it possible to increase the attenuation outside the communication band.
  • the DC cut capacitor is connected to the resonance lines of the tenth to twelfth layers through the sixth to ninth vias.
  • the shape of the resonant line is different from the coupling amount and the like, and the width and the width of the lines are different.
  • the rest of the configuration is substantially the same as the configuration described in the band-pass filter circuits BPF1-1 and BPF1, and the description thereof will be omitted. .
  • the configuration of the laminated body of the low-pass filter circuit LPF1 will be described.
  • the low-pass filter circuit has transmission lines formed in the second, ninth, tenth, eleventh, and fourteenth layers, and capacitors formed in the fifteenth and sixteenth layers connected by vias in each layer. Configured. A part of the transmission line is formed to be spiral in the laminated body.
  • the equivalent circuit of FIG. 6 has a single installed capacitance, it actually functions as a pi-type low-pass filter circuit because parasitic capacitance is generated.
  • a switching circuit is arrange
  • the transmission lines of the balanced-unbalanced conversion circuits BAL1a and BAL2a and the capacities of the bandpass filter circuits BPF1-1 and BPF1-2 are connected via the fourth layer via.
  • the connected fourth-layer transmission lines form unbalanced lines by the transmission lines formed in the fourth to fourteenth layers.
  • the balanced-unbalanced conversion circuits BAL1a and BAL2a are connected to the first receiving terminals Rx1 + and Rx1 ⁇ formed on the back of the bottom layer, with the transmission lines of the 14th to 6th layers as balanced lines, respectively. .
  • the balanced-unbalanced conversion circuit BAL3a has substantially the same configuration as the BAL1a and BAL2a described above, but the transmission line from the power supply terminal Vd is connected between the transmission lines on the balanced side of the sixth layer, and the DC feed voltage It is formed so that a DC voltage can be simultaneously applied to the Tx ⁇ terminal and the Tx + terminal.
  • the 15th to 17th layers will be described.
  • the fifteenth layer forms the second ground electrode GND2 on almost the entire surface. Thereby, interference with the grounded capacitance formed in the sixteenth layer can be prevented.
  • an electrode serving as a ground capacitance of the bandpass filter is disposed.
  • the fourth ground electrode GND4 is formed on the entire surface of the seventeenth layer as in the fifteenth layer.
  • the three layers can form most of the ground capacitance of the bandpass filter circuit.
  • the three-layer laminate sheet thickness is preferably thinner than the other layers. By using a thin sheet, a large capacity can be obtained with a small electrode area, and the high-frequency component can be miniaturized.
  • a ground electrode that covers the multilayer body with a large area is not formed between the first and second ground electrodes.
  • the number of stacked layers can be reduced and the height can be reduced.
  • Electrodes constituting the circuit up to the terminal Tx are also arranged in the laminate.
  • a part of the inductance elements and capacitance elements constituting the band-pass filter circuit and the matching circuit are constituted by electrodes inside the laminate. Active elements such as a switching circuit and a power amplifier are mounted on the top surface of the laminate.
  • the second-layer transmission line LPF1 connected to the single-pole terminal of the third switch SW3 is formed to be relatively short, and the low-pass filter on the inner side of the multilayer body via the first ground electrode of the third layer.
  • a high-frequency amplifier connected to the electrode pattern, connected again to the transmission line lm1 formed relatively short in the second layer through the third ground layer, and surface-mounted through the first-layer via It is connected to the.
  • the transmission path that is most susceptible to the influence of other circuits is not substantially formed in the second layer immediately below the mounting surface, and the signal line is formed so as to be drawn inward from the first ground electrode.
  • the second-layer transmission line LPF1 is formed so as to overlap with a relatively large electrode pattern on the mounting surface on which the switch SW1 is mounted.
  • the above electrode pattern can suppress interference with the wire connecting the switches SW1 and SW3 on the mounting surface and the transmission line lsw1, thereby reducing the insertion loss in the transmission path between the switching circuit and the first antenna terminal.
  • the insertion loss difference between the transmission paths between the switching circuit and the first and second antenna terminals can be reduced.
  • the electrode pattern that forms the transmission path drawn into the multilayer body includes the low-pass filter circuit LPF1 so that the reception path in the multilayer body, particularly the previous filter circuit arranged in the reception path, does not overlap when viewed in the stacking direction. Is arranged.
  • each circuit By configuring each circuit in this way, interference between the transmission path and the reception path can be suppressed.
  • FIG. 9 is a circuit block diagram of another embodiment.
  • the switching circuit DP3T2 is substantially the same as the block diagram of FIG. 2 except that the switching circuit DP3T2 is a chip switch integrated on a semiconductor substrate using a plurality of transistor circuits.
  • filter circuits BPF2-1 and BPF2-3 are arranged before and after the low-frequency amplifier circuit LNA1 as in FIG.
  • filter circuits BPF2-2 and BPF2-4 are arranged between the switching circuit DP3T2 and the second reception terminal Rx2.
  • filter circuits LPF2 and BPF2-5 are disposed between the switching circuit DP3T2 and the transmission terminal Tx.
  • FIG. 9 shows a bandpass filter BPF2-5 arranged between the high-frequency amplifier circuit HPA and the transmission terminal Tx, but FIGS. 10 to 13 do not have this bandpass filter BPF2-5. It is described in the embodiment.
  • FIG. 10 is a diagram showing an equivalent circuit from the switching circuit DP3T2 to the antenna terminal.
  • a DC cut capacitor is disposed between the antenna terminal and the switching circuit, and matching circuits lanto1 and lanto2a are formed between the DC cut capacitor and the antenna terminal.
  • the transmission lines lan t1b and lan t2b are electrode patterns on the mounting surface, and connect the chip capacitor installed on the mounting surface and the switching circuit DP3T2.
  • the switching circuit DP3T2 will be described later.
  • FIG. 11 is an equivalent circuit for explaining the bandpass filter circuit BPF2-1. Although it differs from the equivalent circuit of FIG. 4 in that it has a structure with three stages of resonance lines, the other structure is the same as that of the bandpass filter circuit BPF1-1 shown in FIG.
  • the band-pass filter circuits BPF2-2, 2-3, and 2-4 have the same configuration as the band-pass filter circuit BPF2-1, and a description thereof will be omitted.
  • An equivalent circuit between the first stage and the second receiving terminal from the subsequent stage of the switching circuit DP3T2 is the same as that of FIG. 4 except that the configuration of the bandpass filter circuit is different.
  • the equivalent circuit between the transmitting terminal and the previous stage of the high-frequency amplifier circuit HPA is substantially the same as the equivalent circuit of only the balanced-unbalanced conversion circuit BAL3a in FIG. It differs from the equivalent circuit of FIG. 5 in that there is no bandpass filter circuit.
  • FIG. 12 is a diagram showing an equivalent circuit from the transmission terminal side of the switching circuit DP3T2 to the high-frequency amplifier circuit.
  • a signal from the transmission terminal is input to the high frequency amplifier circuit HPA via the attenuator.
  • the attenuator is controlled by the control voltage Vatt, and the transmission line lvatt that is a part of the power supply line is formed by an electrode pattern in the laminate.
  • the high frequency amplifier circuit HPA is driven by the voltage from the drive voltages Vcc1 and Vcc2.
  • the voltages from the drive voltages Vcc1 and Vcc2 are input to the high-frequency amplifier circuit HPA via the constant voltage supply circuit.
  • the constant voltage supply circuit is connected to the electrode pattern lvcc1 formed in the stack and the ground capacitance Ct3 mounted on the top of the stack. It is formed by Ct7, electrode patterns lvcc2a and lvcc2b, and a grounding capacitor Ct1 mounted on the top surface of the multilayer body.
  • the high frequency amplifier circuit HPA is controlled by a voltage from the bias voltage Vb.
  • the bias voltage Vb is input to the high-frequency circuit HPA through a control voltage circuit for controlling output power, and the control voltage circuit is formed by a grounding capacitor Ct4, a resistor Rt2, and a grounding resistor Rt3 mounted on the upper surface of the laminate.
  • the signal amplified by the high frequency amplifier circuit HPA is connected to the low pass filter circuit LPF1 via the output matching circuit and the DC cut capacitor Ct6.
  • the output matching circuit is formed by the electrode pattern lma in the stacked body and the ground capacitances cma1 and cma2.
  • the multilayer body includes a layer in which a first ground electrode is formed on the inner layer on the upper layer side, and a layer in which a second ground electrode is formed on the inner layer on the lower layer side. Between the first ground electrode and the second ground electrode, there are regions FIL1 to FIL6 in which at least part of electrode patterns of the respective filter circuits are formed.
  • this laminated body is different from the laminated body shown in FIGS. 7A, 7B, 8A, and 8B, and the filter circuit BPF2-1, which is arranged in the reception path from the switching circuit to the first reception terminal Rx1.
  • the regions FIL1 and FIL3 in which 2-3 is formed and the regions FIL2 and FIL4 in which the filter circuits BPF2-2 and 2-4 arranged in the reception path from the switching circuit to the second reception terminal Rx2 are formed are stacked. Arranged along two opposing sides of the body. Further, between the regions, regions FIL6 and FIL5 in which filter circuits LPF2-1 and BPF2-5 arranged in the transmission path from the switching circuit to the transmission terminal Tx are formed are arranged.
  • the present invention can be implemented without the filter circuit BPF2-5. Moreover, it can also be set as the structure without another filter circuit. Details will be described with reference to FIGS.
  • each filter circuit describes the names of the filter circuits (BPF2-1 to BPF2-4, LPF2, and BAL1b to BAL3b).
  • the first layer is a mounting surface for high-frequency circuit components, and a switching circuit, a high-frequency amplifier, a low-noise amplifier, and a plurality of chip inductors and chip capacitors are arranged.
  • a switching circuit a high-frequency amplifier, a low-noise amplifier, and a plurality of chip inductors and chip capacitors are arranged.
  • the installation location where the switching circuit DP3T2, the high frequency amplifier HPA, and the low noise amplifiers LNA1 and LNA2 are mounted is illustrated.
  • the switching circuit DP3T2 is arranged near the center of the side at a location along one side of the mounting surface. From the switching circuit DP3T2, electrode patterns lanto1a, lanto2a, lanto1b, lanto2b serving as reception paths are arranged symmetrically. In addition, the signal lines lrx1 and lrx2 that are the reception path between the first antenna terminal and the first reception terminal and the reception path between the second antenna terminal and the second reception terminal from the switching circuit are also symmetrical. Be placed. This signal line is connected to vias formed on two opposite sides, and is connected to each filter circuit in the stacked body.
  • the switching circuit is arranged at the center of one side of the laminate, and the reception path between the first antenna terminal ANT1 and the first reception terminal Rx1, the second antenna terminal ANT2 and the second reception terminal Rx2.
  • the transmission path is inevitably formed in the center by dividing the reception path into right and left in the stacked body, it is easy to achieve isolation between the reception paths, and the difference in insertion loss can be reduced.
  • the low noise amplifiers LNA1 and LAN2 are also arranged almost symmetrically about the switching circuit SPDT2.
  • the high-frequency amplifier HPA is arranged in the approximate center of the first layer.
  • a plurality of vias are formed at a position where the high-frequency amplifier circuit is disposed.
  • This via can be used as a thermal via for thermal radiation and as part of the shield.
  • the thermal via is preferably connected to the first ground electrode and the second ground electrode. Improvement of heat dissipation using the ground electrode can be expected.
  • the isolation between the reception paths can be improved.
  • power supply lines lva1, lva2, lvr1, lvr2, and lvt1, lvt2 for controlling the switching circuit are formed. These power supply lines are also formed symmetrically about the switching circuit as viewed in the stacking direction. By forming the power supply lines symmetrically, the insertion loss difference in both reception paths can be reduced. Further, a power supply line lvcc2 is formed. Since these power supply lines are electromagnetically isolated from the filter circuit below the fourth layer via the first ground electrode GND1 formed in the third layer, comparison is made while ensuring isolation from the filter circuit. Wiring can be routed freely. Further, it is possible to prevent interference between the multilayer internal electrode and an active element mounted on the top surface of the multilayer.
  • routing transmission lines llp1 and llp2 connected to the low-pass filter circuit LPF2 are formed.
  • the second-layer transmission path llp2 connected to the switching circuit DP3T2 is formed relatively short, and is connected to the low-pass filter circuit LPF2 on the inner side of the multilayer body via the first ground electrode of the third layer.
  • the third-layer ground layer is connected to the second-layer relatively short transmission line llp1, and the first-layer via is connected to the surface-mounted high-frequency amplifier HPA.
  • a region BAL2 where the electrode pattern of the balanced-unbalanced conversion circuit BAL2b is formed is provided in the upper left of the drawing.
  • the region is illustrated only by the broken line in the fourth layer, in the present embodiment, the same range of the fourth layer to the thirteenth layer is also in the same region when viewed in the stacking direction.
  • a region FIL4 where the electrode pattern of the bandpass filter circuit BPF2-4 is formed is provided on the lower side of the BAL2.
  • a region FIL2 in which the electrode pattern of the bandpass filter circuit BPF2-2 is formed is provided below the region FIL4 in the drawing.
  • a region BAL1 where the electrode pattern of the balanced-unbalanced conversion circuit BAL1b is formed is provided on the upper right side of the drawing.
  • a region FIL3 in which the electrode pattern of the bandpass filter circuit BPF2-3 is formed is provided below the region BAL1 in the drawing.
  • a region FIL1 in which the electrode pattern of the bandpass filter circuit BPF2-1 is formed is provided below the region FIL3 in the drawing.
  • the region BAL3 of the transmission path balanced-unbalanced conversion circuit BAL3b is provided between the region BAL1 and the region BAL2.
  • a region in which a plurality of thermal vias connected to the ground surface of the high-frequency amplifier circuit on the mounting surface are formed through a region in which a relatively electrode pattern is not formed.
  • a region FIL6 in which an electrode pattern of the low-pass filter circuit LPF1 is formed is provided.
  • a region FIL5 in which an electrode pattern of the bandpass filter circuit BPF2-5 is formed between the transmission terminal Tx and the high-frequency amplifier circuit may be provided.
  • a shield consisting of a plurality of vias is indicated by a one-dot broken line.
  • the regions FIL1 and FIL3, and FIL2 and FIL4 are formed separately from each other with the shield by the via as a boundary. Further, shields are also formed at positions on the left side of the regions FIL1 and FIL3 and on the right side of the regions FIL2 and FIL4.
  • the regions of the low-pass filter circuit region FIL6 and the bandpass filter circuit BPF2-1 are separated by a part of the shield.
  • the low pass filter circuit region FIL6 and the band pass filter circuit BPF2-2 are formed separately. This via is connected to both the first ground electrode and the second ground electrode.
  • this shield By this shield, the isolation between each receiving path is maintained, and further, it is formed between the upper and lower ground electrodes, so that it is isolated from other circuits, especially surface mounted circuit components and control terminals Therefore, even in a complicated circuit configuration, a circuit with less noise can be configured.
  • the shield between the regions FIL1 and FIL3 and between the regions FIL2 and FIL4 can prevent interference between the filter circuits in the previous stage and the subsequent stage, and can pass only a desired frequency band, thereby contributing to improvement in communication characteristics. To do.
  • the electrode pattern that forms the transmission path drawn into the multilayer body includes the low-pass filter circuit LPF1 so that the reception path in the multilayer body, particularly the previous filter circuit arranged in the reception path, does not overlap when viewed in the stacking direction. Is arranged. The insertion loss difference between the reception paths can be reduced.
  • the resonance lines of the seventh layer and the eighth layer are formed by electrode patterns in which both ends are connected by through holes and are arranged over two layers. By configuring this parallel line across multiple layers, the insertion loss of the bandpass filter circuit can be improved.
  • the resonance line of each bandpass filter is formed in the same dielectric layer.
  • Electrode patterns of ground capacitance are formed on the 14th and 16th layers.
  • the second ground electrode GND2 of the thirteenth layer is disposed between the resonance lines of the seventh layer and the eighth layer. Depending on the ground capacitance with the ground electrode, these ground capacitances are the second ground electrode GND2. It may be formed on the upper layer side.
  • a jump capacitance is formed in the fifteenth layer.
  • the configuration of the laminated body of the low-pass filter circuit LPF2 will be described.
  • the low-pass filter circuit has transmission lines formed in the second, fourth, fifth, sixth, and seventh layers, and capacitors formed in the fifteenth and sixteenth layers connected by vias in each layer. Configured. A part of the transmission line is formed to be spiral in the laminated body.
  • the switching circuit DP3T2 is arranged on the mounting surface so as to overlap with a region where the electrode pattern of the low-pass filter circuit LPF2 in the laminated body is formed. Since the switching circuit DP3T2 and the low-pass filter circuit LPF2 are close to each other, the transmission line of the transmission path can be shortened, and a reduction in insertion loss can be suppressed.
  • the transmission lines of the balanced-unbalanced conversion circuits BAL1b and BAL2b and the capacities of the bandpass filter circuits BPF1-1 and BPF1-2 are connected via vias in the fifth to thirteenth layers.
  • the connected fifth-layer transmission lines form unbalanced lines by the transmission lines formed in the fifth, sixth, eighth, tenth and twelfth layers.
  • the balanced-unbalanced conversion circuits BAL1b and BAL2b are formed on the back surface of the lowermost layer with the transmission lines of the seventh layer, the ninth layer, the eleventh layer, the twelfth layer, and the fourteenth layer as balanced lines, respectively.
  • the first receiving terminals Rx1 +, Rx1-, Rx2 +, and Rx2- are connected.
  • the balanced-unbalanced conversion circuit BAL3a has substantially the same configuration as the BAL1b and BAL2b described above, but the second-layer transmission line lxina drawn from the mounting surface is connected to the unbalanced line.
  • the 13th to 17th layers will be described.
  • the 13th layer forms the second ground electrode GND2 on almost the entire surface.
  • the fifteenth layer forms the fifth ground electrode GND5 on almost the entire surface. This can prevent interference with the ground capacitance formed by the 14th and 16th layers.
  • a fourth ground electrode GND4 is formed on the entire surface of the seventeenth layer. The five layers can form the ground capacitance of the bandpass filter circuit.
  • the switching circuit DP3T1 shown in FIG. 2 will be described below.
  • the switching circuit DP3T1 includes a first terminal connected to the first and second antenna terminals ANT1 and ANT2 (hereinafter referred to as antenna terminals ANT1 and ANT2 having the same name in the description of the switching circuit), and a first Are connected to the transmission terminal Tx1 and the first and second reception terminals Rx1 and Rx2 (hereinafter simply referred to as the transmission terminal Tx, the first reception terminal Rx1, and the second reception terminal Rx2).
  • the transmission terminal Tx, the first reception terminal Rx1, and the second reception terminal Rx2 have.
  • the switching circuit DP3T1 in FIG. 2 can use the first to third switches SW1, SW2, and SW3.
  • the switches are all single-pole double-throw (Single-Pole, Dual-Throw) switches SW1. , SW2, SW3 are used.
  • switches SW1, SW2 and SW3 are arranged on the mounting surface of the laminate as shown in the mounting surface of FIGS. 8A and 8B, and the terminals of each switch are connected with wires, transmission lines on the mounting surface, or the like. A connected configuration can be adopted.
  • the switch SW1 has a single pole side terminal connected to the first antenna terminal ANT1, one of the double throw side terminals connected to the first receiving terminal Rx1, and the other one described later. Connected to one of the double throw terminals of SW3.
  • the switch SW2 has a single pole side terminal connected to the second antenna terminal ANT2, one of the double throw terminals connected to the second receiving terminal Rx2, and the other connected to the other of the double throw terminals of the switch SW3.
  • the switch SW3 has a single pole side terminal connected to the transmission terminal Tx, and two of the double throw side terminals are connected to the double throw side terminals of the switches SW1 and SW2, as described above.
  • the switch SW3 can switch the connection with the switch SW1 or the switch SW2.
  • the switches SW1 and SW2 are preferably connected to the same control terminal.
  • the number of terminals can be reduced, and interference with other circuit elements in the high-frequency circuit component can be reduced by downsizing and reducing the number of power supply lines.
  • a capacitor is not arranged on a path connecting the switches SW1 and SW3 and the switches SW2 and SW3.
  • the number of parts can be reduced, and insertion loss can be reduced.
  • the switching circuit can be reduced in size by reducing the number of components. Since it is not necessary to arrange a capacitor between the switches, the mounting area of the switching circuit can be reduced. In particular, it is preferable that the capacitor is not disposed on the side where the bipolar terminals of the switch are connected.
  • the above switch can use FET elements, but other transistor elements may be used.
  • FET element p-HEMT (Pseudomorphic high mobility transistor) was used. In this embodiment, even if the drain electrode and the source electrode of the FET element are reversely connected, a high frequency circuit having the same function can be configured.
  • FIG. 14 is an example of an equivalent circuit diagram of the switching circuit DP3T2 that can be used in the embodiment of FIG.
  • the switching circuit DP3T1 has a configuration using a plurality of switches, whereas the switching circuit DP3T2 in FIG. 14 uses six or more transistor elements in combination on an integrated semiconductor substrate.
  • a switching operation substantially similar to that of the switching circuit DP3T1 of FIG. 2 can be performed. Further, since all the transistors can be arranged on one semiconductor substrate, the switching circuit can be reduced in size.
  • the 14 includes the first, second, fourth, fifth, sixth and eighth transistors.
  • An FET element was used as the transistor. Hereinafter, description will be made on the FET element.
  • the drain electrode or the source electrode is connected to the first antenna terminal ANT1, and the other is connected to the first receiving terminal Rx1.
  • the gate electrode of the first FET element Tr1 is connected to the power supply line of the control terminal Vr1.
  • either the drain electrode or the source electrode is connected to the first antenna terminal, and the other is connected to the transmission terminal Tx.
  • the gate electrode of the fourth FET element Tr4 is connected to the power supply line of the control terminal Va1.
  • the drain electrode or the source electrode is connected to the second antenna terminal ANT2, and the other is connected to the second reception terminal Rx2.
  • the gate electrode of the fifth FET element Tr5 is connected to the power supply line of the control terminal Vr2.
  • either the drain electrode or the source electrode is connected to the second antenna terminal, and the other is connected to the transmission terminal Tx.
  • the gate electrode of the eighth FET element Tr8 is connected to the power supply line of the control terminal Va2.
  • either the drain electrode or the source electrode is connected to a node between the first FET element Tr1 and the first receiving terminal, and the other is grounded.
  • the gate electrode of the second FET element Tr2 is connected to the power supply line of the control terminal Vt1.
  • either the drain electrode or the source electrode is connected to a node between the fifth FET element Tr5 and the second receiving terminal, and the other is grounded.
  • the gate electrode of the sixth FET element Tr6 is connected to the power supply line of the control terminal Vt2.
  • DC cut capacitors for cutting the DC power supply can be arranged at the first and second antenna terminals ANT1, 2, the first and second reception terminals Rx1, Rx2, and the transmission terminal Tx. Also, a DC cut capacitor can be disposed between the second FET element Tr2 and the ground, and between the sixth FET element Tr6 and the ground.
  • a branching circuit or the like is connected to the first and second receiving terminals Rx1, Rx2 and the transmitting terminal Tx, and the signals in the frequency band of the first communication system and the frequency band of the second communication system are divided, two different signals are obtained. It can be set as the high frequency circuit corresponding to one communication system.
  • each control terminal may be controlled as shown in the following table. Connection of Mode Tx1, Tx2, Rx and each terminal is the same as described in Table 1.
  • control terminals Vt1 and Vt2 Since the control terminals Vt1 and Vt2 always have the same high / low voltage (connected / not connected), the control terminals can be shared. Further, in a state where the signal path of the first antenna terminal ANT1 and the transmission terminal Tx is connected, a high voltage is applied to the FET elements Tr2 and Tr6 from the control terminals Vt1 and Vt2, so that the FET switch is connected between the drain electrode and the source electrode. Are connected to each other, so that a shunt circuit grounded from a node between the first receiving terminal Rx1 and the first FET element Tr1 and between the second receiving terminal Rx2 and the fifth FET element Tr5 are connected. A shunt circuit grounded from the node is formed, and isolation between the transmission path and the reception path can be ensured.
  • the second and sixth transistor elements Tr2 and Tr6 include the first, fourth, fifth, and eighth FET elements Tr1, Tr3 to Tr5, respectively.
  • a gate having a smaller number of gates and a lower breakdown voltage can be used.
  • An FET element having a small number of gates is advantageous because it is small, inexpensive, and has low loss.
  • high or low withstand voltage means that the FET element in a state in which the gate and the source are not connected is in order to keep the power from leaking to the source terminal side when high frequency power is applied from the drain terminal. It can be judged by the value. *
  • the second antenna terminal ANT2 is disconnected from the transmission path at a high frequency, and therefore the fourth FET element Tr8 is turned off. Further, the first FET element Tr1 is also in a disconnected state so that a signal does not leak to the first receiving terminal side. For this reason, the second FET element Tr2 connected from the transmission terminal Tx via the first FET element Tr1 is not directly applied with a high voltage, so that a low withstand voltage can be used.
  • the first antenna terminal ANT1 and the first receiving terminal Rx1 are connected.
  • the drain-source connection of the first FET element Tr1 is connected, and the second and fourth FET elements Tr2 and Tr4 are not connected. Since the power of the received signal is much smaller than the signal power of the transmission path, the second FET element having a low withstand voltage can be used.
  • the reason why the sixth FET element Tr6 may have a low withstand voltage is also the same as described above.
  • FIG. 15 is a diagram showing another embodiment of the switching circuit DP3T2. A part of the description of the FET element having the same description as FIG. 14 is omitted.
  • the third FET element Tr3 and the fourth FET element Tr4 are arranged in a signal path that connects the first antenna terminal ANT1 to the transmission terminal Tx, and the third FET element Tr3 is arranged on the first antenna terminal ANT1 side.
  • the four FET elements Tr4 are arranged on the transmission terminal Tx side.
  • either the drain electrode or the source electrode is connected to the first antenna terminal ANT1, and the other is connected to the fourth FET element Tr4.
  • the fourth FET element Tr4 either the drain electrode or the source electrode is connected to the third FET element Tr3, and the other is connected to the transmission terminal Tx.
  • the gate electrode of the third FET element Tr3 is connected to the power supply line of the control terminal Vt1, and the gate electrode of the fourth FET element Tr4 is connected to the power supply line of the control terminal Va1.
  • the seventh FET element Tr4 and the eighth FET element Tr8 are arranged in a signal path that connects the second antenna terminal ANT2 to the transmission terminal Tx, and the seventh FET element Tr7 is arranged on the second antenna terminal ANT2 side.
  • Eight FET elements Tr8 are arranged on the transmission terminal Tx side.
  • the seventh FET element Tr7 has one of a drain electrode and a source electrode connected to the second antenna terminal ANT2, and the other connected to the eighth FET element Tr8.
  • the eighth FET element Tr8 either the drain electrode or the source electrode is connected to the seventh FET element Tr7, and the other is connected to the transmission terminal Tx.
  • the gate electrode of the seventh FET element Tr7 is connected to the power supply line of the control terminal Vt2, and the gate electrode of the eighth FET element Tr8 is connected to the power supply line of the control terminal Va2.
  • the ninth FET element Tr9 either the drain electrode or the source electrode is connected to a node between the third FET element Tr3 and the fourth FET element Tr4, and the other is grounded.
  • a capacitor C3 may be arranged in the signal path between the ninth FET element Tr9 and the ground point.
  • the gate electrode of the ninth FET element Tr9 is connected in a state where the power line of the control terminal Va2 is shared with the eighth FET element Tr8.
  • the tenth FET element Tr10 has one of a drain electrode and a source electrode connected to a node between the seventh FET element Tr7 and the eighth FET element Tr8, and the other is grounded.
  • a capacitor C3 may be disposed in the signal path between the tenth FET element Tr10 and the ground point.
  • the gate electrode of the tenth FET element Tr10 is connected in a state where the power line of the control terminal Va1 is shared with the fourth FET element.
  • the eighth and ninth FET elements Tr8 and Tr9 and the fourth and tenth FET elements Tr4 and Tr10 share a power line, they can be controlled so that their ON / OFF is the same. For this reason, for example, when a signal is passed from the first transmission terminal Tx to the path between the first antenna terminals, the influence of the leakage signal leaking to the second antenna terminal via the eighth FET element Tr8 can be reduced. Also, by sharing power supply terminals, the number of power supply terminals and power supply lines can be reduced, and the structure of circuit components can be simplified and miniaturized easily. Details will be described later.
  • the second FET element Tr2 has one of the drain electrode and the source electrode connected to a node between the first FET element and the first receiving terminal Rx1, and the other is grounded.
  • the gate electrode of the second FET element Tr2 can be connected in a state where the power line of the control terminal Vt1 is shared with the third FET element Tr3.
  • a capacitor C1 may be disposed between the second FET element Tr2 and the ground.
  • the sixth FET element Tr6 either one of the drain electrode and the source electrode is connected to a node between the fifth FET element and the second reception terminal Rx2, and the other is grounded.
  • the gate electrode of the sixth FET element Tr6 can be connected in a state where the power line of the control terminal Vt2 is shared with the seventh FET element Tr7.
  • a capacitor C4 may be disposed between the sixth FET element Tr6 and the ground.
  • the number of power supply terminals and power supply lines can be reduced by sharing power supply terminals as described above, and the structure of circuit components can be simplified and miniaturized easily.
  • a configuration without the third FET element Tr3 and the seventh FET element Tr7 can be used as a switching circuit used for the high-frequency circuit component of the embodiment, but has a configuration with the seventh FET element Tr7 and the sixth FET element Tr6. With this switching circuit, it is easy to ensure isolation between the transmission path and the reception path.
  • the second and sixth transistor circuits Tr2 and Tr6 when the second and sixth transistor circuits Tr2 and Tr6 are used, at least one of the second and sixth transistor circuits Tr2 and Tr6 is the fourth and eighth transistor circuits Tr4 and Tr8. It is preferable that the pressure resistance is lower than that. It is more preferable that both the second and sixth transistor circuits Tr2 and Tr6 have lower breakdown voltages than the fourth and eighth transistor circuits.
  • the third and seventh transistor circuits Tr3 and Tr7 has a lower withstand voltage than the fourth and eighth transistor circuits Tr4 and Tr8, respectively. It is more preferable that both the third and seventh transistor circuits Tr3 and Tr7 have lower breakdown voltages than the fourth and eighth transistor circuits Tr4 and Tr8.
  • the FET element members are connected in series, the voltage due to the high-frequency signal between T1 and T2 is divided, so that the potential fluctuation of the source of each FET element member becomes small, and the FET element is smaller than a single FET element member. Can withstand higher voltages.
  • both FET elements can be used with a lower withstand voltage than when only one FET element is used. In the state in which the source electrode and the drain electrode are connected, the FET elements Tr3 and Tr4 are not subjected to a large voltage between the source electrode and the drain electrode.
  • the eighth transistor circuit Tr8 When the signal path from the transmission terminal Tx to the first antenna terminal ANT1 is connected, since the second antenna terminal ANT2 is separated from the transmission path at high frequency, the eighth transistor circuit Tr8 is turned off. At this time, the seventh transistor circuit Tr7 is also in the OFF state, but the transmission signal is blocked by the eighth transistor circuit, so that a high voltage is not applied to the seventh transistor circuit Tr7. Therefore, the seventh transistor circuit Tr7 can be used even in a transistor circuit having a low breakdown voltage and a small number of gates. A transistor circuit having a small number of gates is advantageous because of its small size, low cost, and low loss.
  • the fourth and third transistor circuits Tr3 and Tr4 are in the OFF state.
  • the third transistor element Tr3 having a small number of gates and a small withstand voltage can be used.
  • the first antenna terminal ANT1 and the first reception terminal Rx1 are connected, and the second antenna terminal ANT2 and the second reception terminal Rx2 are connected.
  • the first and fifth transistor circuits Tr1, Tr5 are turned on, and the second, third, sixth, and seventh transistor circuits Tr2, Tr3, Tr6, Tr7 are turned off. Since the power of the received signal is much smaller than the signal power at the time of transmission, the withstand voltage required for these transistor circuits in the OFF state is low, and a small or inexpensive transistor element with a small number of gates can be used.
  • control logic as in Table 2 can be used to connect each antenna terminal to the transmission terminal and each reception terminal.
  • Mode Tx1 which is a state where the signal path of the first antenna terminal ANT1 and the transmission terminal Tx are connected, will be described.
  • High voltage (3.0 V) is applied from the control terminals Va1 and Vt1, and the fourth transistor circuit connected to the control terminal Va1 and the third transistor circuit Tr3 connected to the control terminal Vt1 are turned on.
  • the signal path between the first antenna terminal ANT1 and the transmission terminal Tx is connected.
  • the low voltage (0.0 V) is applied to the control terminal Va2, and the eighth transistor circuit connected to the control terminal Va2 is turned off. Thereby, the signal flowing through the signal path between the second antenna ANT2 and the transmission terminal Tx is blocked.
  • the control terminal Va1 is also connected to the tenth transistor circuit Tr10, and the tenth transistor circuit Tr10 is turned on, so that the control terminal Va1 is connected to the node between the eighth transistor circuit Tr8 and the seventh transistor circuit Tr7.
  • the grounded path acts as a shunt circuit. For this reason, since the signal leaked from the transistor circuit Tr8 flows to the shunt circuit side, the amount of signal flowing from the transmission terminal Tx to the second antenna terminal ANT2 is further reduced, and the transmission paths between the antenna terminals and the transmission terminals are further reduced. Isolation to the first receiving terminal can be ensured, and a preferable transmission state can be maintained as a Tx diversity circuit.
  • the eighth transistor circuit Tr8 Since the eighth transistor circuit Tr8 is in the OFF state, the signal voltage applied to the seventh transistor circuit Tr7 is small even when the seventh transistor circuit Tr7 is in the OFF state. Therefore, the seventh transistor circuit Tr7 having a small number of gates and a low withstand voltage can be used.
  • the voltage applied to the control terminal Vt2 is High or Low, it can be operated as a switch circuit. However, if a high voltage (3.0 V) voltage is applied from the control terminal Vt2, the sixth and seventh transistor circuits Tr6 and Tr7 connected to the control terminal Vt2 are turned on, and the fifth transistor circuit Tr5 and the second transistor circuit Tr2 The signal path grounded from between the receiving terminals Rx2 is a shunt circuit. Therefore, even if there is a signal leaking from the fifth transistor circuit Tr5 to the second receiving terminal Tr2, a signal is sent to the second receiving terminal Rx2 side. Therefore, isolation between the transmission path and the reception path can be ensured.
  • a high voltage (3.0 V) voltage is applied from the control terminal Vt2
  • the sixth and seventh transistor circuits Tr6 and Tr7 connected to the control terminal Vt2 are turned on, and the fifth transistor circuit Tr5 and the second transistor circuit Tr2
  • the signal path grounded from between the receiving terminals Rx2 is a shunt circuit. Therefore, even if there
  • High voltage (3.0 V) is applied from the control terminals Vr1 and Vr2, and the first transistor circuit Tr1 connected to the control terminal Vr1 and the fifth transistor circuit Tr5 connected to the control terminal Vr2 are turned on. As a result, the signal paths of the first antenna terminal ANT1 and the first receiving terminal Rx1, and the second antenna terminal ANT2 and the second receiving terminal Rx2 are connected.
  • Tr7 is turned off. Thereby, it is suppressed that a signal leaks to other paths from the signal path of the first antenna terminal ANT1 and the first reception terminal Rx1, and from the signal path of the second antenna terminal ANT2 and the second reception terminal Rx2.
  • the applied voltage to the control terminals Va1 and Va2 can be operated as a switch circuit regardless of whether the applied voltage is High or Low. If the High voltage is applied to the control terminals Va1 and Va2, the ninth and tenth transistor circuits Tr9 and Tr10 are turned on to form a shunt circuit, so that transmission is performed from the third and seventh transistor circuits Tr3 and Tr7. Even if a signal leaks to the terminal Tx side, the signal flows to the shunt circuit side, which is preferable because it is possible to ensure isolation between the transmission path and the reception path.
  • FIG. 16 is a schematic diagram of a layout of a substrate surface of a switching circuit in which transistor elements are formed on one semiconductor substrate.
  • the signal path is indicated by a solid line
  • the power supply line is indicated by a broken line.
  • a terminal connected to the transmission terminal Tx (hereinafter simply referred to as the transmission terminal Tx for the sake of simplicity), and a terminal connected to the first and second reception terminals (hereinafter simply referred to as the first reception terminal Rx1 and the second reception terminal).
  • the receiving terminal Rx2) is formed on the substrate surface of a single semiconductor silicon substrate.
  • the first receiving terminal Rx1 and the second receiving terminal Rx2 are arranged at adjacent corners. Since the receiving terminal is arranged on the corner side, the circuit can be designed in a state separated from the other terminals, and isolation from other signal paths can be ensured.
  • the transistor element is arranged on the inner side away from the corner of the laminated surface from the receiving terminal.
  • the transmission terminal Tx is arranged against a side sandwiched between the corners where the reception terminals Rx1 and Rx2 are arranged, and is arranged at an intermediate point between the reception terminals Rx1 and Rx2. Since the transmission terminal Tx is arranged at an intermediate point between the reception terminals Rx1 and Rx2, circuit elements such as transistor elements can be arranged so as to be line-symmetric with respect to the transmission terminal Tx, and the transmission terminal Tx and the reception terminals Rx1 and Rx2 are arranged. Isolation between them can be secured to approximately the same extent. In addition, since other elements such as capacitors can be arranged between the transmission terminal Tx and the reception terminals Rx1 and Rx2, circuit design is facilitated. Further, by forming the ground electrode, it is possible to ensure isolation between the transmission path and the reception path.
  • a part of the transmission line can be shared, so that the switching circuit can be miniaturized, and the design layout of the mounting surface of the high-frequency circuit components becomes easy. Further, the loss can be reduced by the amount that the transmission line can be shared and shortened.
  • the return loss and insertion loss change in the same way when the reception paths and transmission paths are switched. Can be constant.
  • the electrode connected to the first antenna terminal ANT1 and the electrode connected to the second antenna terminal ANT2 are arranged on the remaining two corners. Since the antenna terminals ANT1 and ANT2 are arranged on the corner side, a circuit can be designed in a state separated from the other terminals, and isolation from other signal paths can be ensured.
  • the transistor element is arranged on the inner side from the antenna terminal on the mounting surface. If the power supply line is formed to wrap around the corner side (outer peripheral side) from at least one of the antenna terminals ANT1, ANT2, the receiving terminals Rx1, Rx2, and the transmitting terminal Tx, interference with other transistor elements is reduced. Isolation of each signal path can be ensured.
  • the power supply line is preferably formed along at least one side of the semiconductor substrate.
  • the fourth transistor circuit Tr4 and the eighth transistor element Tr8 are arranged at an equal distance from the transmission terminal Tx and closer to other transistor elements.
  • the ninth transistor element Tr9 is arranged and connected on the side away from the transmission terminal Tx via the fourth transistor element Tr4.
  • the tenth transistor element Tr10 is arranged and connected on the side away from the transmission terminal Tx via the eighth transistor element Tr8.
  • the third transistor element Tr3 is disposed between the ninth transistor element Tr9 and the first antenna terminal ANT1.
  • the seventh transistor element Tr7 is disposed between the tenth transistor element Tr10 and the second antenna terminal ANT2.
  • the first transistor element Tr1 is disposed between the ninth transistor element Tr9 and the first reception terminal Rx1. Since the first transistor element Tr1 is an element for opening and closing a reception path between the first antenna terminal ANT1 and the first reception terminal Rx1, it is preferable to ensure isolation from the transmission path. Therefore, the first transistor element Tr1 is arranged such that the distance from the first reception terminal Rx1 is closer to the distance from each transistor element Tr3, Tr9, Tr4 arranged in the transmission path.
  • the fifth transistor element Tr5 is disposed between the tenth transistor element Tr10 and the second reception terminal Rx2. For the same reason as the first transistor, the fifth transistor element Tr5 is arranged such that the distance from the second reception terminal Rx2 is closer to the distance from each transistor element Tr7, Tr10, Tr8 arranged in the transmission path. Is arranged.
  • the second transistor element Tr2 is disposed between the first reception terminal Rx1 and the transmission terminal, and together with the first capacitor C1 connected to the second transistor element Tr2 and the first ground terminal electrode GND1, is a semiconductor. Arranged along the side of the substrate.
  • the sixth transistor element Tr6 is disposed between the second reception terminal electrode Rx2 and the transmission terminal electrode Tx, and together with the fourth capacitor C4 and the fourth ground terminal GND4 connected to the sixth transistor element Tr6.
  • the semiconductor substrate is disposed along the side of the semiconductor substrate.
  • FIG. 17 is a block diagram showing another embodiment.
  • Each of the first and second branching circuits DIP1 and DIP2 includes a low-pass filter unit that uses the frequency band of the first communication system as a pass band and the frequency band of the second communication system as a stop band, and the first communication
  • the diplexer includes a high-pass filter unit that uses a frequency band of the system as a stop band and a frequency band of the second communication system as a pass band.
  • the band-pass filter circuit BPF3-1-1 and the first communication are sequentially provided from DIP1.
  • a low noise amplifier circuit LNA1-1 for amplifying the received signal of the system is connected.
  • the bandpass filter circuit BPF3-1-1 prevents unnecessary signals including the signal of the second communication system from being input to the low noise amplifier circuit LNA1.
  • a low noise amplifier circuit LNA1-2 for amplifying a received signal of the communication system is connected.
  • the bandpass filter circuit BPF3-1-2 prevents unnecessary signals including the signal of the first communication system from being input to the low noise amplifier circuit LNA1-2.
  • a band-pass filter circuit BPF3-2-1 and a low-noise amplifier circuit are arranged in order from DIP2 between the low-pass filter unit of the second branching circuit DIP2 and the second reception terminal Rx2-1 for the first communication system.
  • the LNA 2-1 is connected, and the band-pass filter circuit BPF3- is sequentially connected from the DIP2 between the high-pass filter unit of the second branching circuit DIP2 and the second reception terminal Rx2-2 for the second communication system.
  • 2-2 and a low noise amplifier circuit LNA2-2 are connected.
  • the arrangement and function of these circuits are as follows: the first branching circuit DIP1, the first receiving terminal Rx1-1 for the first communication system, and the first receiving terminal Rx1-2 for the second communication system. Since it is the same as that of the circuit between, description is abbreviate
  • the high-frequency circuit can be highly integrated by including the low-noise amplifier circuits LNA1-1, LNA1-2, LNA2-1, and LNA2-2 shown in FIG.
  • the configuration between each branching circuit and each receiving terminal may be omitted depending on the required characteristics, or a filter circuit may be added.
  • the demultiplexing circuit DIP3 is a low-pass filter unit that uses the frequency band of the first communication system as a pass band and the frequency band of the second communication system as a stop band. And a high-pass filter unit that uses the frequency band of the first communication system as a stop band and the frequency band of the second communication system as a pass band.
  • a high-frequency amplifier circuit HPA1 for amplifying a transmission signal in order from DIP3 and a bandpass filter circuit BPF3-5-1 are connected between the low-pass filter section of the branching circuit DIP3 and the transmission terminal Tx1 for the first communication system. ing.
  • the band pass filter circuit BPF3-5-1 prevents noise in unnecessary bands other than the transmission signal from being input to the high frequency amplifier circuit HPA1.
  • the low-pass filter unit of the demultiplexing circuit DIP3 is a low-pass filter that uses the frequency band of the first communication system as a pass band and the frequency band of the second communication system as a stop band. This low-pass filter unit can also suppress harmonics generated in the high-frequency amplifier circuit HPA1.
  • a high-frequency amplifier circuit HPA2 for amplifying a transmission signal in order from DIP3 and a band-pass filter circuit BPF3-5-2 are connected between the high-pass filter section of the branching circuit DIP3 and the transmission terminal Tx2 for the second communication system. ing.
  • the bandpass filter circuit BPF3-5-2 prevents noise in an unnecessary band other than the transmission signal from being input to the high frequency amplifier circuit HPA2.
  • the high-pass filter unit of the demultiplexing circuit DIP3 is a high-pass filter that uses the frequency band of the second communication system as a pass band and the frequency band of the first communication system as a stop band.
  • the high frequency circuit can be highly integrated by having the high frequency amplifier circuits HPA1 and HPA2 shown in FIG.
  • the configuration between the branching circuit DIP3 and the transmission terminal Tx1 for the first communication system and the configuration between the branching circuit DIP3 and the transmission terminal Tx2 for the second communication system depend on the required characteristics. It may be omitted or a filter circuit may be added.
  • a single-pole double-throw switch circuit may be provided in place of the first and second branching circuits DIP1, DIP2.
  • the first reception terminal Rx1-1 for the first communication system and the second reception terminal Rx2-1 for the first communication system are independently connected to separate antennas. Therefore, the reception signal of the first communication system can be simultaneously output to a plurality of reception terminals without switching the antenna.
  • the first reception terminal Rx1-2 for the second communication system and the second reception terminal Rx2-2 for the second communication system are independently connected to separate antennas, Without switching, the reception signal of the second communication system can be simultaneously output to a plurality of reception terminals.
  • reception sensitivity is improved.
  • the filter circuits arranged in the reception path inside the multilayer body do not overlap when viewed in the lamination direction, and a shield by vias is arranged between the reception paths and between the transmission path and the reception path. To do.
  • FIG. 18 is an example of another Tx diversity circuit.
  • the high-frequency circuit in FIG. 18 is, for example, wireless communication in which the first communication system is 2.5 GHz band WiMAX, and the second communication system is 3.5 GHz band WiMAX whose frequency band is higher than the first communication system. It can be used as a front end module used in the apparatus.
  • the configuration of this embodiment can also be used in other combinations such as a 2.4 GHz band and a 5 GHz band wireless LAN, or a combination of WiMAX and wireless LAN.
  • the high-frequency circuit includes first and second antenna terminals ANT1 and ANT2, a first reception terminal Rx1-1 of the first communication system, a first reception terminal Rx1-2 of the second communication system, a first A transmission terminal Tx1 of the communication system of FIG. 2 and a transmission terminal Tx2 of the second communication system, a second reception terminal Rx2-1 of the first communication system, a second reception terminal Rx2-2 of the second communication system, and It has a switching circuit DP3T1.
  • the switching circuit DP3T1 can be the same as the switching circuit described above.
  • a single-pole double-throw fourth switch SW4 is arranged in the switching circuit DP3T1.
  • the single pole side terminal of the fourth switch SW4 is connected to the switching circuit DP3T1, and the double throw side terminal is connected to the transmission terminal Tx1 for the first communication system and the transmission terminal Tx2 for the second communication system, respectively.
  • the fourth switch SW4 can transmit signals from the respective transmission terminals to the first antenna terminal ANT1 and the second antenna terminal ANT2 by appropriately switching the transmission path and switching with the switching circuit DP3T1.
  • a Tx diversity circuit corresponding to a communication system of a plurality of frequency bands can be obtained.
  • the fourth switch SW4 is used, even if the frequency bands of the first and second communication systems are closer than the circuit using the branching circuit at the same position, the transmission from both the transmission terminals can be ensured. Signals can be transmitted to each antenna terminal, and transmission loss can be suppressed.
  • high-frequency amplifier circuits HPA1 and HPA2 between the fourth switch SW4 and the transmission terminals Tx1 and Tx2.
  • the high-frequency amplifier circuits HPA1 and HPA2 can be integrated on the same chip and highly integrated.
  • a known single-pole double-throw switch can be used as the fourth switch SW4.
  • a structure in which the control terminal of the high-frequency amplifier circuit HPA1 or HPA2 and the control terminal of the transistor element between the double-throw side terminal and the single-pole side terminal to which the high-frequency amplifier circuits HPA1 and HPA2 are connected are connected to a common terminal. It is preferable that By doing in this way, the number of control terminals of the whole circuit can be reduced.
  • band-pass filter circuits BPF4-5-1 and BPF4-5-2 between the high-frequency amplifier circuits HPA1 and HPA2 and the transmission terminals Tx1 and Tx2, respectively.
  • the bandpass filter circuits BPF4-5-1 and BPF4-5-2 can prevent noise in unnecessary bands other than the transmission signal from being input to the high-frequency amplifier circuits HPA1 and HPA2.
  • low-pass filter circuits LPF4-1 and LPF4-2 between the fourth switch SW4 and the high-frequency amplifier circuits HPA1 and HPA2.
  • the low-pass filter circuits LPF4-1 and LPF4-2 can suppress harmonics generated in the high-frequency amplifier circuits HPA1 and HPA2.
  • the first reception terminal Rx1-1 of the first communication system and the first reception terminal Rx1-2 of the second communication system are connected to the first reception terminal of the switching circuit DP3T1 via the first branching circuit DIP1. Connected to Rx1.
  • the second receiving terminal Rx2-1 of the first communication system and the second receiving terminal Rx2-2 of the second communication system are connected to the second receiving terminal Rx2-2 of the switching circuit DP3T1 via the second branching circuit DIP2. To the receiving terminal Rx2.
  • FIG. 18 shows an example using the branching circuits DIP1 and DIP2, but the branching circuit may be a switch circuit as described above.
  • low noise amplifier circuits LNA1-1, 1-2, 2-1, and 2-2 for amplifying the received signal are connected between the switch or branching circuit and each receiving terminal.
  • band-pass filter circuits BPF4-5-1 and 4-5-2 are arranged between the switch circuit or the branching circuit and each reception terminal at least one of the front stage and the rear stage of the low noise amplifier circuit LNA. It is preferable.
  • the band pass filter circuits BPF 4-5-1 and 4-5-2 prevent unnecessary signals including signals of each communication system from being input to the low noise amplifier circuit and each reception terminal.
  • the filter circuit used is preferably a bandpass filter circuit.
  • control terminals of the high-frequency amplifier circuits HPA1 and HPA2 arranged in the transmission path and the terminal connected to the gate electrode of the switch SW4 can be shared.
  • the filter circuits arranged in the reception path inside the multilayer body do not overlap when viewed in the lamination direction, and a shield by vias is arranged between the reception paths and between the transmission path and the reception path. To do.
  • FIG. 20 is another block diagram of a dual-band high-frequency circuit.
  • This high frequency circuit uses a double pole four throw switching circuit DP4T.
  • the switching circuit DP4T is provided with two transmission terminals Tx1 and Tx2, one of which is connected to the transmission terminal Tx1 for the first communication system and the other is connected to the transmission terminal Tx2 for the second communication system.
  • Each circuit connected between the demultiplexing circuit DIP1 and the first receiving terminals Rx1-1 and Rx1-2, and each circuit connected between the demultiplexing circuit DIP2 and the first receiving terminals Rx2-1 and Rx2-2, 17 is the same as the block diagram of FIG. 17, and the description of the configuration and effects thereof is omitted.
  • the present invention is not limited to this embodiment, and each filter circuit may be added or omitted as necessary.
  • a circuit may be used.
  • the low-pass filter circuit LPF5-1 the high-frequency amplifier circuit HPA1 that amplifies the transmission signal, and the bandpass filter circuit BPF5- 5-1 is connected.
  • a low-pass filter circuit LPF5-2 a low-pass filter circuit LPF5-2, a high-frequency amplifier circuit HPA2 that amplifies a transmission signal, and a band-pass filter circuit are arranged in this order from the switching circuit DP4T between the switching circuit DP4T and the transmission terminal Tx2 for the second communication system.
  • BPF5-5-2 is connected.
  • the high-frequency circuit of the fifth embodiment may have fewer branching circuits than the high-frequency circuit of the third embodiment, the design freedom of the circuit elements in the stack is high, and the transmission path and the reception path are It can be designed to be separated in the laminated body, and is particularly effective in securing isolation in the transmission path.
  • FIG. 21 shows an example in which the switching circuit DP4T1 is composed of four switches.
  • the switching circuit DP4T1 is connected to the first antenna terminal ANT1 with the single pole side terminal of the single pole three throw switch SW1s, and one of the three throw side terminals of the first single pole three throw high frequency switch SW1s is the first.
  • the single-pole three-throw switch SW2s is connected to the receiving terminal Rx1, the second antenna terminal ANT2 is connected to the single-pole three-throw switch SW2s, and one of the three throw-side terminals is the second one. 2 reception terminals Rx2.
  • the single-pole double-throw high-frequency switch SW3s is connected so that the double-throw terminal is connected to one of the three-throw terminals of the first and second single-pole three-throw high-frequency switches SW1s and SW2s. .
  • a single-pole double-throw high-frequency switch SW4s is connected so that the double-throw terminal is connected to the remaining one of the three-throw terminals of the first and second single-pole three-throw switches SW1s and SW2s. ing.
  • the first and second reception terminals can be simultaneously connected to the first and second antenna terminals ANT1 and ANT2, respectively, by switching the switches SW1s, SW2s, SW3s, and SW4s. Further, either one of the transmission terminals Tx1 and Tx2 is configured to be connectable by selecting the first and second antenna terminals ANT1 and ANT2.
  • FIG. 22 is a diagram showing one mode of an equivalent circuit of a switching circuit that can be used in the high-frequency circuit of FIG.
  • the switching circuit of this embodiment uses the first to sixteenth FET elements, the FET elements can be appropriately omitted or newly added depending on required isolation characteristics and return loss characteristics.
  • the drain electrode or the source electrode is connected to the first antenna terminal ANT1, and the other is connected to the first receiving terminal Rx1.
  • the gate electrode of the first FET element Tr1 is connected to the power supply line of the control terminal Vr1. It can suppress that a signal leaks from a transmission path by setting it as a non-connection state.
  • the third FET element Tr3 and the fourth FET element Tr4 are arranged on a signal path that connects the first antenna terminal ANT1 to the first transmission terminal Tx1, and the third FET element Tr3 is on the first antenna terminal ANT1 side.
  • the fourth FET element Tr4 is arranged on the first transmission terminal Tx1 side.
  • the third FET element Tr3 either the drain electrode or the source electrode is connected to the first antenna terminal ANT1, and the other is connected to the fourth FET element Tr4.
  • the fourth FET element Tr4 either the drain electrode or the source electrode is connected to the third FET element Tr3, and the other is connected to the first transmission terminal Tx1.
  • the gate electrode of the third FET element Tr3 is connected to the power supply line of the control terminal Vt1, and the gate electrode of the fourth FET element Tr4 is connected to the power supply line of the control terminal Va1.
  • the thirteenth FET element Tr13 and the eleventh FET element Tr11 are arranged in a signal path connecting the second antenna terminal ANT2 to the first transmission terminal Tx1, and the thirteenth FET element Tr13 is on the second antenna terminal ANT2 side. In addition, the eleventh FET element Tr11 is arranged on the first transmission terminal Tx1 side. In the thirteenth FET element Tr13, either the drain electrode or the source electrode is connected to the second antenna terminal ANT2, and the other is connected to the eleventh FET element Tr11.
  • the eleventh FET element Tr11 has one of a drain electrode and a source electrode connected to the thirteenth FET element Tr13, and the other connected to the first transmission terminal Tx1.
  • the gate electrode of the thirteenth FET element Tr13 is connected to the power supply line of the control terminal Vt2, and the gate electrode of the eleventh FET element Tr11 is connected to the power supply line of the control terminal Vb1.
  • Only one of the third and fourth FET elements and the eleventh and fifteenth FET elements may be used. However, it is preferable to dispose each of the third and fourth FET elements to suppress a leakage signal.
  • the ninth FET element Tr9 either the drain electrode or the source electrode is connected to a node between the third FET element Tr3 and the fourth FET element Tr4, and the other is grounded.
  • a capacitor may be disposed in the signal path between the ninth FET element Tr9 and the ground point.
  • the gate electrode of the ninth FET element Tr9 is connected in a state where the power line of the control terminal Vb1 is shared with the eleventh FET element Tr11.
  • the drain electrode or the source electrode is connected to a node between the thirteenth FET element Tr13 and the eleventh FET element Tr11, and the other is grounded.
  • a capacitor may be arranged in the signal path between the fifteenth FET element Tr15 and the ground point.
  • the gate electrode of the fifteenth FET element Tr15 is connected in a state where the power line of the control terminal Va1 is shared with the fourth FET element Tr4.
  • the drain electrode or the source electrode is connected to the second antenna terminal ANT2, and the other is connected to the second reception terminal Rx2.
  • the gate electrode of the fifth FET element Tr5 is connected to the power supply line of the control terminal Vr2. It can suppress that a signal leaks from a transmission path by setting it as a non-connection state.
  • 7th FET element Tr7 and 8th FET element Tr8 are arrange
  • one of the drain electrode and the source electrode is connected to a node between the second antenna terminal ANT2 and the thirteenth FET element Tr13, and the other is connected to the eighth FET element Tr8.
  • either the drain electrode or the source electrode is connected to the seventh FET element Tr7, and the other is connected to the second transmission terminal Tx.
  • the gate electrode of the seventh FET element Tr7 is shared with the second and third FET elements Tr2 and Tr3 on the power supply line of the control terminal Vt2, and the gate electrode of the eighth FET element Tr8 is the power supply of the control terminal Va2. Connected to the line.
  • the fourteenth FET element Tr14 and the twelfth FET element Tr12 are arranged in a signal path that connects the first antenna terminal ANT1 to the second transmission terminal Tx2.
  • either the drain electrode or the source electrode is connected to the node between the first antenna terminal ANT1 and the third FET element Tr3, and the other is connected to the twelfth FET element Tr12.
  • the twelfth FET element Tr12 either the drain electrode or the source electrode is connected to the fourteenth FET element Tr14, and the other is connected to the second transmission terminal Tx2.
  • the gate electrode of the fourteenth FET element Tr14 is connected to the power supply line of the control terminal Vt1, and the gate electrode of the twelfth FET element Tr12 is connected to the power supply line of the control terminal Vb2.
  • the drain electrode or the source electrode is connected to a node between the fourteenth FET and the twelfth FET element Tr12, and the other is grounded.
  • a capacitor may be arranged in the signal path between the sixteenth FET element Tr16 and the ground point.
  • the gate electrode of the sixteenth FET element Tr16 is connected to the power line of the control terminal Va2 in a state shared with the eighth FET element Tr8.
  • either the drain electrode or the source electrode is connected to a node between the seventh FET element Tr7 and the eighth FET element Tr8, and the other is grounded.
  • a capacitor may be disposed in the signal path between the tenth FET element Tr10 and the ground point.
  • the gate electrode of the tenth FET element Tr10 is connected to the power line of the control terminal Vb2 in a state shared with the twelfth FET element Tr12.
  • the second FET element Tr2 has either one of the drain electrode and the source electrode connected to a node between the first FET element Tr1 and the first receiving terminal Rx1, and the other is grounded.
  • the gate electrode of the second FET element Tr2 can be configured to be connected to the power line of the control terminal Vt1 while being shared with the third and fourteenth FET elements Tr14.
  • a capacitor may be disposed between the second FET element Tr2 and the ground.
  • the drain electrode or the source electrode is connected to a node between the fifth FET element Tr5 and the second reception terminal Rx2, and the other is grounded.
  • the gate electrode of the sixth FET element Tr6 can be configured to be connected to the power line of the control terminal Vt2 while being shared with the seventh and thirteenth FET elements Tr13.
  • a capacitor may be disposed between the sixth FET element Tr6 and the ground.
  • the second, third, and fourteenth FET elements Tr2, Tr3, Tr14, and the sixth, seventh, and thirteenth FET elements Tr6, Tr7, and Tr13 have a common power supply line, their connection / disconnection is not possible. It can be controlled to be the same. For this reason, for example, when a signal flows from the first or second transmission terminal Tx1, Tx2 to the path between the first antenna terminals, that is, when the third or fourteenth FET element Tr14 is connected. Since the second FET element Tr2 is connected, a shunt circuit is formed between the second reception terminal and the fifth FET element Tr5. As a result, a leakage signal leaking to the second antenna terminal via the first transistor element can be suppressed, and the isolation between the transmission path and the reception path can be increased.
  • the sixth FET element Tr6 when a signal flows from the first or second transmission terminal Tx1, Tx2 to the path between the first antenna terminals, the sixth FET element Tr6 is turned on, so that the second reception terminal and the fifth A shunt circuit is formed between the FET elements Tr5, so that a signal can be prevented from leaking to the second reception terminal side, and isolation between the transmission path and the reception path can be increased.
  • the number of power supply terminals and power supply lines can be reduced, and the structure of circuit components can be simplified and miniaturized easily.
  • the control terminals Vr1 and Vr2 are also shared. can do.
  • the configuration without the third, seventh, thirteenth, and fourteenth FET elements Tr3, Tr7, Tr13, and Tr14 can be used as the switching circuit used in the high-frequency circuit component of the embodiment, the configuration with these FET elements is provided. If a switching circuit is used, it is easy to ensure isolation between the transmission path and the reception path.
  • the ninth, tenth, fifteenth, and sixteenth FET elements Tr9, Tr10, Tr15, and Tr16 are used as switching circuits used for the high-frequency circuit components of the embodiment even in a configuration without each shunt circuit that is a part of the constituent elements. However, if a switching circuit having such a shunt circuit is used, it is easy to ensure isolation between the transmission path and the reception path.
  • At least one of the second and sixth FET elements Tr2 and Tr6 is the fourth, eighth, eleventh, and twelfth. It is preferable that Tr4, Tr8, Tr11, Tr12 also have a low breakdown voltage. It is more preferable that both the second and sixth FET elements Tr2 and Tr6 have lower breakdown voltages than the fourth, eighth, eleventh, and twelfth FET elements Tr4, Tr8, Tr11, and Tr12.
  • At least one of the third, seventh, thirteenth, and fourteenth FET elements Tr3, Tr7, Tr13, and Tr14 is the fourth, eighth, eleventh, and twelfth FET elements Tr4, Tr8, and Tr11. It is preferable that the withstand voltage is lower than that of Tr12. All of the third, seventh, thirteenth, and fourteenth FET elements Tr3, Tr7, Tr13, and Tr14 have a higher breakdown voltage than the fourth, eighth, eleventh, and twelfth FET elements Tr4, Tr8, Tr11, and Tr12. It is still more preferable that is low.
  • Mode Tx1-1 indicates a state in which the first transmission terminal Tx1 and the first antenna terminal ANT1 are connected.
  • Mode Tx1-2 indicates a state in which the first transmission terminal Tx1 and the second antenna terminal ANT2 are connected.
  • Mode Tx2-1 indicates a state in which the second transmission terminal Tx2 and the first antenna terminal ANT1 are connected.
  • Mode Tx2-2 indicates a state in which the second transmission terminal Tx2 and the second antenna terminal ANT2 are connected.
  • Mode Rx indicates a state in which the first antenna terminal and the first receiving terminal are connected, and the second antenna terminal and the second receiving terminal are connected.
  • FIG. 23 shows another circuit configuration of the double-pole four-throw switching circuit DP4T used in the high-frequency circuit of FIG.
  • the double pole side terminal of the single pole double throw switch SW1t is connected to the first antenna terminal, and one side of the double pole side throw switch SW1t receives the first one.
  • the single pole side terminal of another single pole double throw switch SW2t is connected to the terminal Rx1, and the second antenna terminal is connected to one of the double pole side throw switches SW2t. Connected to Rx2.
  • the double pole side terminal of the double pole double throw switch SW3t is connected to the other one of the double throw side terminals of the two single pole double throw switches SW1t and SW2t.
  • the first and second reception terminals are configured to be simultaneously connectable to the first and second antenna terminals ANT1 and ANT2, respectively.
  • the transmission terminals Tx1 and Tx2 are connected to the first and second antenna terminals ANT1 and ANT2, respectively.
  • the second antenna terminals ANT1 and ANT2 are selected and connectable.
  • FIG. 24 is a diagram showing an embodiment of an equivalent circuit of a switching circuit that can be used in the high-frequency circuit of FIG.
  • This switching circuit uses the first to twelfth FET elements.
  • the drain electrode or the source electrode is connected to the first antenna terminal ANT1, and the other is connected to the first receiving terminal Rx1.
  • the gate electrode of the first FET element Tr1 is connected to the power supply line of the control terminal Vr1.
  • 3rd FET element Tr3 and 4th FET element Tr4 are arrange
  • the third FET element Tr3 either the drain electrode or the source electrode is connected to the first antenna terminal ANT1, and the other is connected to the fourth FET element Tr4.
  • the fourth FET element Tr4 either the drain electrode or the source electrode is connected to the third FET element Tr3, and the other is connected to the first transmission terminal Tx1.
  • the gate electrode of the third FET element Tr3 is connected to the power supply line of the control terminal Vt1, and the gate electrode of the fourth FET element Tr4 is connected to the power supply line of the control terminal Va1.
  • the drain electrode or the source electrode is connected to the first transmission terminal Tx1, and the other is connected to a node between the seventh and eighth FET elements Tr8 described later.
  • the gate electrode of the eleventh FET element Tr11 is connected to the power supply line of the control terminal Vb1.
  • the ninth FET element Tr9 one of the drain electrode and the source electrode is connected to a node between the third FET element Tr3 and the fourth FET element Tr4, and the other is grounded.
  • a capacitor may be disposed between the ninth FET element Tr9 and the ground point.
  • the gate electrode of the ninth FET element Tr9 is connected to the power supply line of the control terminal Vs1.
  • the drain electrode or the source electrode is connected to the second antenna terminal ANT2, and the other is connected to the second reception terminal Rx2.
  • the gate electrode of the fifth FET element Tr5 is connected to the power supply line of the control terminal Vr2.
  • the 7th FET element Tr7 and 8th FET element Tr8 are arrange
  • the seventh FET element Tr7 has one of a drain electrode and a source electrode connected to the second antenna terminal ANT2, and the other connected to the eighth FET element Tr8.
  • either the drain electrode or the source electrode is connected to the seventh FET element Tr7, and the other is connected to the second transmission terminal Tx2.
  • the gate electrode of the seventh FET element Tr7 is connected to the power supply line of the control terminal Vt2, and the gate electrode of the eighth FET element Tr8 is connected to the power supply line of the control terminal Va2.
  • the twelfth FET element Tr12 has either a drain electrode or a source electrode connected to the second transmission terminal Tx2, and the other connected to the node to which the fourth FET element Tr4 and the ninth FET element Tr9 are connected. Connected to a node in between.
  • the gate electrode of the twelfth FET element Tr12 is connected to the power supply line of the control terminal Vb2.
  • the drain electrode or the source electrode is connected to a node between the seventh FET and the node to which the eleventh FET element Tr11 is connected, and the other is grounded.
  • the A capacitor may be disposed between the tenth FET element Tr10 and the ground point.
  • the gate electrode of the tenth FET element Tr10 is connected to the power supply line of the control terminal Vs2.
  • the second FET element Tr2 has either one of the drain electrode and the source electrode connected to a node between the first FET element Tr1 and the first reception terminal Rx1, and the other is grounded.
  • the gate electrode of the second FET element Tr2 can be configured to be connected to the power line of the control terminal Vt1 while being shared with the third FET element Tr3.
  • a capacitor may be disposed between the second FET element Tr2 and the ground.
  • the drain electrode or the source electrode is connected to a node between the fifth FET element Tr5 and the second reception terminal Rx2, and the other is grounded.
  • the gate electrode of the sixth FET element Tr6 may be connected in a state where the power line of the control terminal Vt2 is shared with the seventh FET element Tr7.
  • a capacitor may be disposed between the sixth FET element Tr6 and the ground.
  • the second and third FET elements Tr2 and Tr3 and the sixth and seventh FET elements Tr6 and Tr7 share a power supply line, they can be controlled so that their connection / disconnection is the same. . For this reason, for example, when a signal flows from the first or second transmission terminal Tx1, Tx2 to the path between the first antenna terminals, that is, when the third FET element Tr3 is connected, the second Since the FET element Tr2 is connected, a shunt circuit is formed between the first receiving terminal and the first FET element Tr1. As a result, a leakage signal leaking to the second antenna terminal via the first FET element Tr1 can be suppressed, and the isolation between the transmission path and the reception path can be increased.
  • the sixth FET element Tr6 when a signal flows from the first or second transmission terminal Tx1, Tx2 to the path between the first antenna terminals, the sixth FET element Tr6 is turned on, so that the second reception terminal and the fifth A shunt circuit is formed between the FET elements Tr5, so that a signal can be prevented from leaking to the second reception terminal side, and isolation between the transmission path and the reception path can be increased.
  • control terminals Vr1 and Vr2 are also shared. can do.
  • the switching circuit without the third and seventh FET elements Tr7 can be used as the switching circuit used for the high-frequency circuit component of the embodiment, the switching circuit having the configuration with the third FET element Tr and the sixth FET element Tr6 can be used. Then, it is easy to ensure isolation between the transmission path and the reception path.
  • the ninth and tenth FET elements Tr9, 10 can be used as the switching circuit used in the high-frequency circuit component of the embodiment even in the configuration without each shunt circuit as a part of the constituent elements, the ninth FET element Tr9 and If the switching circuit is configured to include the tenth FET element Tr10, it is easy to ensure isolation between the transmission path and the reception path.
  • At least one of the second and sixth FET elements Tr2 and Tr6 has a higher breakdown voltage than the fourth, eighth, eleventh, and twelfth FET elements Tr4, Tr8, Tr11, and Tr12. Is preferably low. It is more preferable that both the second and sixth FET elements Tr2 and Tr6 have lower breakdown voltages than the fourth, eighth, eleventh, and twelfth FET elements Tr4, Tr8, Tr11, and Tr12.
  • At least one of the third and seventh FET elements Tr3 and Tr7 has a lower withstand voltage than the fourth, eighth, eleventh and twelfth FET elements Tr4, Tr8, Tr11 and Tr12. It is preferable. It is more preferable that both the third and seventh FET elements Tr3 and Tr7 have lower breakdown voltages than the fourth, eighth, eleventh and twelfth FET elements Tr4, Tr8, Tr11 and Tr12.
  • each control terminal may be controlled as shown in the following table.
  • the description of each Mode is the same as that described in Table 4.
  • ANT Antenna terminal SW: Switch DP3T, DP4T: switching circuit
  • BPF band pass filter circuit
  • LPF low pass filter circuit
  • HPA high frequency amplifier circuit
  • LNA low noise amplifier circuit
  • DIP branching circuit
  • BAL balun (balance-unbalance conversion circuit)
  • Rx1 first reception terminal
  • Rx2 second reception terminal
  • Tx transmission terminals Va
  • Vt Vr: control terminals
  • FIL1 to 6 areas BAL1 to B3 in which the filter circuit is formed
  • BAL1 to 3 balance-unbalance conversion circuit The area in the laminate where the is formed

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Transceivers (AREA)
  • Waveguide Switches, Polarizers, And Phase Shifters (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

 本発明は、異なる通信システムに対応可能で、受信感度が高く送信電力の損失が抑制された高周波回路、高周波部品及びこれを用いた通信装置を提供する。本発明の高周波回路は、第1のアンテナ端子(ANT1)および第2のアンテナ端子(ANT2)と、少なくとも第1の通信システム用の送信端子(Tx)並びに第1および第2の受信端子(Rx1,Rx2)とを備えている。各スイッチの切り替えによって、前記第1および第2の受信端子(Rx1,Rx2)は、それぞれ同時に前記第1および第2のアンテナ端子(ANT1,ANT2)に接続可能に構成されている。また、前記送信端子(Tx)は、前記第1および第2のアンテナ端子(ANT1,ANT2)を選択して接続可能に構成されている。

Description

高周波回路、高周波回路部品、及び通信装置
 本発明は、高周波信号の信号経路を切り変えるためのスイッチング回路を用いた高周波回路、高周波回路部品、及び、これを用いた通信装置に関する。
 現在IEEE 802.11規格に代表される無線LANによるデータ通信は広く一般化しており、例えばパーソナルコンピュータ(PC)、プリンタやハードディスク、ブロードバンドルーター等のPCの周辺機器、FAX、冷蔵庫、標準テレビ(SDTV)、高品位テレビ(HDTV)、デジタルカメラ、デジタルビデオカメラ、携帯電話等の電子機器、自動車内や航空機内での有線通信に代わる信号伝達手段に採用されている。
 無線LANの規格として、IEEE 802.11aは、OFDM(Orthogonal Frequency Division Multiples:直交周波数多重分割)変調方式を用いて最大54 Mbpsの高速データ通信をサポートするものであり、5GHzの周波数帯域を使用する。またIEEE 802.11bは、DSSS(Direct Sequence Spread Spectrum:ダイレクト・シーケンス・スペクトル拡散)方式で、5.5Mbps及び11Mbpsの高速通信をサポートするものであり、無線免許なしに自由に利用可能な2.4GHzのISM(Industrial Scientific and Medical:産業、科学及び医療)帯域を使用する。またIEEE 802.11gは、OFDM変調方式を用いて最大54Mbpsの高速データ通信をサポートするものであり、IEEE 802.11bと同様に2.4GHz帯域を使用する。また数km程度の通信距離をカバーする高速無線通信規格として提案されたWiMAX(IEEE 802.16-2004、IEEE 802.16e-2005等)は、2.5GHz帯、3.5GHz帯及び5GHz帯の三つの周波数帯域を用い、光通信のいわゆるラストワンマイルを補う技術として期待されている。
 近年通信特性に優れたMIMO(Multiple-Input, Multiple-Output)方式の無線通信システムが注目されている。MIMO方式は、一つの通信システムに対して独立して同時に受信可能な複数の受信端子を必要とする。ここでは、MIMOはSIMO(Single-Input, Multiple-Output)をも含むものとする。MIMO方式の無線通信システムでは一つの通信システムに対する受信端子等の回路構成が増えるので、複数の通信システム間のアイソレーションが困難であるだけでなく、回路構成も複雑になる。そのため、MIMO方式をマルチバンド無線通信に適用するのは非常に困難である。特に高い送信電力を取り扱うWiMAXの場合、送信電力の損失を低減するために複数の通信システム間のアイソレーションが重要である。
 無線LAN、WiMAX等の複数の通信システムを用いる高周波部品にとって、これらの通信システムの送受信信号をいかに分離して取り扱うかが重要である。例えば、無線通信システムとして送信ダイバーシティ回路が着目されている。送信ダイバーシティは複数本のアンテナを備え、その中から電波状況に応じて最適なアンテナを選択できるので、送信電力を低減することが可能であり、携帯機器は長時間稼動することが可能になる。
 特許文献1では、ダイバーシティの回路として、FETスイッチで構成した高周波スイッチを用いることが記載されている。また、特許文献2には3つのSPDTスイッチを組み合わせて構成したスイッチ回路が従来技術として記載され、また、半導体チップ上にFETスイッチで集積回路化したスイッチが記載されている。また、特許文献3には複数のスイッチ回路を用いて構成されたTDMA方式無線装置の送信ダイバーシティ回路として、図1に示すように、各経路にフィルタ回路を配置した無線装置が開示されている。また、特許文献4ではダイバーシティ対応の高周波スイッチを積層構造で構成することが開示されている。
特開平6-237101号公報 特開平10-150395号公報 特開平10-209935号公報
 しかし上記の従来技術では依然として複数の通信システム間のアイソレーションを確保することが難しい。特に、スイッチング回路を含めた送信ダイバーシティ回路を積層構造を用いた一つの回路部品で構成する場合に、積層体内部の各信号経路間の干渉を抑制する点については開示が無い。Txダイバシティ回路においては、異なるアンテナから入力されるそれぞれの信号を実質同じ感度で受信できる回路部品が求められている。特許文献4でスイッチング回路単体の積層構造は開示されているものの信号経路を含めた積層構造の高周波回路部品については記載が無い。Txダイバシティで信号経路を積層体の内部で構成する回路部品を製造する場合には、上記受信感度の点について十分考慮する必要がある。
 従って本発明の目的は、受信感度が高く送信電力の損失が抑制され、必要により送信時に電波状況に応じて最適なアンテナを選択でき、かつ信号経路間の干渉を抑制することが可能で、異なるアンテナと受信経路を介してそれぞれ受信される信号を同等の感度で受信できることが可能な高周波回路、高周波回路部品、及びこれを用いた通信装置を提供することである。
 第1の発明は、
 第1及び第2のアンテナ端子と、第1の通信システム用の送信端子並びに第1及び第2の受信端子が形成され、電極パターンが形成される複数の層を積層一体化した積層体と、
 前記積層体の搭載面上に搭載されるスイッチング回路を少なくとも備え、
 前記スイッチング回路は、前記送信端子が前記第1及び第2のアンテナ端子のどちらかを選択して接続可能であると共に、前記第1の受信端子が前記第1のアンテナ端子側のみとの接続/非接続を切り替えられ、前記第2の受信端子が前記第2のアンテナ端子側のみとの接続/非接続を切り替えられる高周波回路部品であって、
 前記積層体は内層に形成された第1のグランド電極と、前記第1のグランド電極と重なり他のグランド電極を挟まず前記搭載面とは反対側の層に形成された第2のグランド電極を備え、
 第1のフィルタ回路が前記スイッチング回路と前記第1の受信端子を繋ぐ受信経路に配置され、
 第2のフィルタ回路が前記スイッチング回路と前記第2の受信端子を繋ぐ受信経路に配置され、
 前記積層体の前記第1と第2のグランド電極に挟まれた層において、前記第1と第2のフィルタ回路の電極パターンの少なくとも一部が形成されると共に、前記第1のフィルタ回路と第2のフィルタ回路が、前記積層体の積層方向に見て異なる領域に形成されており、
 かつ、その領域の間には複数のビアによるシールドが形成されていることを特徴とする。
 第2の発明は、上記第1の発明の高周波回路部品において、
 前記スイッチング回路と前記第1の受信端子を繋ぐ受信経路には、第1のフィルタ回路の後段に第3のフィルタ回路が配置され、
 前記スイッチング回路と前記第2の受信端子を繋ぐ受信経路には、第2のフィルタ回路の後段に第4のフィルタ回路が配置され、
 前記積層体の前記第1と第2のグランド電極に挟まれた層において、第3及び第4のフィルタ回路のそれぞれの電極パターンの少なくとも一部が形成されると共に、
 前記第3と第4のフィルタ回路が前記積層体の積層方向に見て異なる領域に形成され、
 前記第3と第4のフィルタ回路の間にはそれぞれ複数のビアによるシールドが形成されていることを特徴とする。
 第3の発明は、上記第2の発明の高周波回路部品において、
 前記シールドを境に、前記スイッチング回路と前記第1の受信端子を繋ぐ受信経路の各回路(第1のフィルタ回路、第3のフィルタ回路)の電極パターンと、前記スイッチング回路と前記第2の受信端子を繋ぐ受信経路の各回路(第2のフィルタ回路、第4のフィルタ回路)の電極パターンが分かれて配置されていることを特徴とする。
 第4の発明は、
 第1及び第2のアンテナ端子と、第1の通信システム用の送信端子並びに第1及び第2の受信端子が形成され、電極パターンが形成される複数の層を積層一体化した積層体と、
 前記積層体の搭載面上に搭載されるスイッチング回路を少なくとも備え、
 前記スイッチング回路は、前記送信端子が前記第1及び第2のアンテナ端子のどちらかを選択して接続可能であると共に、前記第1の受信端子が前記第1のアンテナ端子側のみとの接続/非接続を切り替えられ、前記第2の受信端子が前記第2のアンテナ端子側のみとの接続/非接続を切り替えられる高周波回路部品であって、
 前記積層体は、その上層側の内層に形成された第1のグランド電極と、下層側の内層に形成された第2のグランド電極を備え、
 第1のフィルタ回路が前記スイッチング回路と前記第1の受信端子を繋ぐ受信経路に配置され、
 第2のフィルタ回路が前記スイッチング回路と前記第2の受信端子を繋ぐ受信経路に配置され、
 第6のフィルタ回路が前記スイッチング回路と前記送信端子を繋ぐ送信経路に配置され、
 前記積層体の前記第1と第2のグランド電極に挟まれた層において、前記第1、第2、及び第6のフィルタ回路の電極パターンの少なくとも一部が形成されると共に、各フィルタ回路が、前記積層体の積層方向に見て異なる領域に形成されており、
 かつ、第1のフィルタ回路の電極パターンが形成される領域と第6のフィルタ回路の電極パターンが形成される領域、及び、第2のフィルタ回路の電極パターンが形成される領域と第6のフィルタ回路の電極パターンが形成される領域の間には複数のビアによるシールドが形成されていることを特徴とする。
 第5の発明は、上記第4の発明の高周波回路部品において、
 前記スイッチング回路と前記第1の受信端子を繋ぐ受信経路には、第1のフィルタ回路の後段に第3のフィルタ回路が配置され、
 前記スイッチング回路と前記第2の受信端子を繋ぐ受信経路には、第2のフィルタ回路の後段に第4のフィルタ回路が配置され、
 前記送信経路には、前記第6のフィルタ回路の前段に第5のフィルタ回路が配置され、
 前記積層体の前記第1と第2のグランド電極に挟まれた層において、前記第3、第4、及び第5のフィルタ回路の電極パターンの少なくとも一部が形成されると共に、各フィルタ回路が、前記積層体の積層方向に見て異なる領域に形成されており、
 かつ、第3のフィルタ回路の電極パターンが形成される領域と第5のフィルタ回路の電極パターンが形成される領域、及び、第4のフィルタ回路の電極パターンが形成される領域と第5のフィルタ回路の電極パターンが形成される領域の間には複数のビアによるシールドが形成されていることを特徴とする。
 第6の発明は、上記第5の発明の高周波回路部品において、
 前記スイッチング回路と前記第1の受信端子を繋ぐ受信経路の各回路(第1のフィルタ回路、第3のフィルタ回路)の電極パターンと前記送信経路の各回路(第6のフィルタ回路、第5のフィルタ回路)の電極パターンが前記シールドを境に分かれて配置され、かつ、前記送信経路の各回路(第6のフィルタ回路、第5のフィルタ回路)の電極パターンと前記スイッチング回路と前記第2の受信端子を繋ぐ受信経路の各回路(第2のフィルタ回路、第4のフィルタ回路)の電極パターンが前記シールドを境に分かれて配置されていることを特徴とする。
 第7の発明は、上記第5の発明の高周波回路部品において、
 前記放熱用のビアを境に、前記スイッチング回路と前記第1の受信端子を繋ぐ受信経路の各回路(第1のフィルタ回路、第3のフィルタ回路)の電極パターンの少なくとも一部と、前記スイッチング回路と前記第2の受信端子を繋ぐ受信経路の各回路(第2のフィルタ回路、第4のフィルタ回路)の電極パターンの少なくとも一部が、前記放熱用のビアを境に分かれて配置されていることを特徴とする。
 第8の発明は、上記第1乃至第7の発明のいずれかの高周波回路部品において、
 前記スイッチング回路が、積層体内の前記第6のフィルタ回路の電極パターンの少なくとも一部と重なるように、搭載面上に配置されることを特徴とする前記スイッチング回路が、積層体内の前記第6のフィルタ回路の電極パターンが形成される領域と重なるように搭載面上に配置されることを特徴とする。
 第9の発明は、上記第1乃至第8の発明のいずれかの高周波回路部品において、
 前記スイッチング回路は、
 前記第1のアンテナ端子が前記送信端子及び前記第1の受信端子のどちらかを選択して接続を可能とする第1のスイッチと、
 前記第2のアンテナ端子が前記送信端子及び前記第2の受信端子のどちらかを選択して接続を可能とする第2のスイッチと、
 前記送信端子が前記第1及び第2のアンテナ端子のどちらかを選択して接続を可能とする第3のスイッチを備え、
 前記第1~第3のスイッチは前記積層体の搭載面に設置され、所定の方向に見て、その並び順が、第1のスイッチ、第3のスイッチ、第2のスイッチの順に並び、かつ第1のスイッチと第3のスイッチ、第2のスイッチと第3のスイッチを互いに接続するための各端子間の距離が実質的に同じであることを特徴とする。
 第10の発明は、上記第9の発明の高周波回路部品において、
 前記第1~第3のスイッチは単極双投スイッチであり、
 前記第1のアンテナ端子に第1の単極双投スイッチの単極側端子が接続され、
 前記第1の単極双投スイッチは双投側端子の片方が前記第1の通信システム用の第1の受信端子と接続され、
 前記第2のアンテナ端子に第2の単極双投スイッチの単極側端子が接続され、
 前記第2の単極双投スイッチは双投側端子の片方が前記第1の通信システム用の第2の受信端子と接続され、
 第3の単極双投スイッチが、前記第1と第2の単極双投スイッチの双投側端子のそれぞれ片方に、前記第3の単極双投スイッチの双投側端子が繋がるように接続され、
 前記第3の単極双投スイッチの単極側端子が前記第1の通信システム用の送信端子と接続され、
 前記各スイッチの切り替えによって、前記第1および第2の受信端子はそれぞれ同時に前記第1および第2のアンテナ端子に接続可能に構成され、前記送信端子は前記第1および第2のアンテナ端子を選択して接続可能に構成されていることを特徴とする。
 第11の発明は、上記第1乃至第7の発明のいずれかの高周波回路部品において、
 前記スイッチング回路は複数のトランジスタ回路からなり、
 前記第1のアンテナ端子と前記第1の受信端子間の接続又は非接続を切り替える第1のトランジスタ回路と、
 前記第2のアンテナ端子と前記第2の受信端子間の接続又は非接続を切り替える第5のトランジスタ回路と、
 前記第1の受信端子と前記第1のトランジスタ回路の間にあるノード、及びグランド間の接続又は非接続を切り替える第2のトランジスタ回路と、
 前記第2の受信端子と前記第5のトランジスタ回路の間にあるノード、及びグランド間の接続又は非接続を切り替える第6のトランジスタ回路を備え、
 前記第1のアンテナ端子と前記送信端子が接続された状態においては前記第6のトランジスタ回路が前記第2の受信端子と前記第5のトランジスタ回路の間にあるノードとグランドの間を接続した状態となり、
 前記第2のアンテナ端子と前記送信端子が接続された状態においては前記第2のトランジスタ回路が前記第2の受信端子と前記第5のトランジスタ回路の間にあるノードとグランドの間を接続した状態となることを特徴とする。
 第12の発明は、上記第1乃至第7の発明のいずれかの高周波回路部品において、
 前記スイッチング回路は複数のトランジスタ回路からなり、
 前記第1のアンテナ端子と前記第1の受信端子間の接続又は非接続を切り替える第1のトランジスタ回路と、
 前記第1のアンテナ端子と前記送信端子間の接続又は非接続を切り替える第4のトランジスタ回路と、
 前記第2のアンテナ端子と前記第2の受信端子間の接続又は非接続を切り替える第5のトランジスタ回路と、
 前記第2のアンテナ端子と前記送信端子の接続又は非接続を切り替える第8のトランジスタ回路と、
 前記第1の受信端子と前記第1のトランジスタ回路の間にあるノード、及びグランド間の接続又は非接続を切り替える第2のトランジスタ回路と、
 前記第2の受信端子と前記第5のトランジスタ回路の間にあるノード、及びグランド間の接続又は非接続を切り替える第6のトランジスタ回路を備え、
 前記第1のアンテナ端子と前記送信端子が接続された状態においては前記第6のトランジスタ回路が前記第2の受信端子と前記第5のトランジスタ回路の間にあるノードとグランドの間を接続した状態となり、
 前記第2のアンテナ端子と前記送信端子が接続された状態においては前記第2のトランジスタ回路が前記第2の受信端子と前記第5のトランジスタ回路の間にあるノードとグランドの間を接続した状態となることを特徴とする。
 第13の発明は、上記第12の発明の高周波回路部品において、
 この高周波回路は、前記第1のアンテナ端子と前記第4のトランジスタ回路間の接続又は非接続を切り替える第3のトランジスタ回路と、前記第2のアンテナ端子と前記第8のトランジスタ回路間の接続又は非接続を切り替える第7のトランジスタ回路を備え、前記第2と第3のトランジスタ回路、前記第6と第7のトランジスタ回路が、それぞれ同じ電源端子に接続されることを特徴とする。
 第14の発明は、上記第13の発明の高周波回路部品において、
 前記第3のトランジスタ回路と第4のトランジスタ回路の間にあるノード、及びグランド間の接続又は非接続を切り替える第9のトランジスタ回路と、前記第7のトランジスタ回路と第8のトランジスタ回路の間にあるノード、及びグランド間の接続又は非接続を切り替える第10のトランジスタ回路を備え、前記第4のトランジスタ回路と第10のトランジスタ回路、前記第8のトランジスタ回路と第9のトランジスタ回路は同じ電源端子に接続されることを特徴とする。
 第15の発明は、上記第1乃至第7の発明のいずれかの高周波回路部品において、
 前記スイッチング回路は複数のトランジスタ回路からなり、
 前記第1のアンテナ端子と前記第1の受信端子間の接続又は非接続を切り替える第1のトランジスタ回路と、
 前記第1のアンテナ端子と前記送信端子間の接続又は非接続を切り替える第3、第4のトランジスタ回路と、
 前記第2のアンテナ端子と前記第2の受信端子間の接続又は非接続を切り替える第5のトランジスタ回路と、
 前記第2のアンテナ端子と前記送信端子間の接続又は非接続を切り替える第7、第8のトランジスタ回路と、
 前記第3のトランジスタ回路と第4のトランジスタ回路の間にあるノード、及びグランド間の接続又は非接続を切り替える第9のトランジスタ回路と、
 前記第7のトランジスタ回路と第8のトランジスタ回路の間にあるノード、及びグランド間の接続又は非接続を切り替える第10のトランジスタ回路を備え、
 前記第4のトランジスタ回路と第10のトランジスタ回路、前記第8のトランジスタ回路と第9のトランジスタ回路は同じ電源端子に接続されることを特徴とする。
 第16の発明は、上記第11の発明の高周波回路部品において、
 前記第2及び第6のトランジスタ回路は、そのソース又はドレインの一方が接地され、他方のソース又はドレインが信号経路のノードに接続され、抵抗が前記ソース及びドレイン間に接続されていることを特徴とする。
 第17の発明は、上記第12の発明の高周波回路部品において、
 前記第2及び第6のトランジスタ回路に用いるトランジスタ素子の少なくとも一つは、前記第1、第5、第4および第8のトランジスタ回路に用いるトランジスタ素子よりも耐圧が小さいことを特徴とする
 第18の発明は、上記第13又は第14の発明の高周波回路部品において、
 前記第3及び第7のトランジスタ回路に用いるトランジスタ素子の少なくとも一つは、前記第4および第8のトランジスタ回路に用いるトランジスタ素子よりも耐圧が小さいことを特徴とする。
 第19の発明は、上記第11の発明の高周波回路部品において、
 前記スイッチング回路は、各トランジスタ素子が一体の半導体基板上に配置されたものであることを特徴とする。
 第20の発明は、上記第19の発明の高周波回路部品において、
 前記半導体基板は矩形状であり、前記半導体基板上に前記第1および第2のアンテナ端子に接続される電極と、前記第1および第2の受信端子に接続される電極と、送信端子に接続される電極が形成されており、
 前記第1と第2のアンテナ端子に接続される電極が、隣接する角にそれぞれ配置され、前記第1と第2の受信端子に接続される電極が他の2つの角にそれぞれ配置されることを特徴とする。
 第21の発明は、上記第19の発明の高周波回路部品において、
 前記送信端子に接続される電極が前記第1と第2の受信端子に接続される電極の中間点に配置され、前記送信端子に接続される電極と第1の受信端子に接続される電極の間、前記送信端子に接続される電極と第2の受信端子に接続される電極の間に、グランド電極が形成されていることを特徴とする。
 第22の発明は、上記第19の発明の高周波回路部品において、
 誘電体基板上に形成される前記各トランジスタ素子に接続される電源ラインが、前記第1および第2のアンテナ端子に接続される電極、前記第1および第2の受信端子に接続される電極、送信端子に接続される電極の少なくとも一つの電極よりも前記誘電体基板の外周側で引き回されていることを特徴とする。
 第23の発明は、上記第22の発明の高周波回路部品において、
 前記半導体基板上において、電源端子に接続される電源ラインが、基板の少なくとも一辺に沿って形成されていることを特徴とする。
 第24の発明は、上記第1乃至第3の発明のいずれかの高周波回路部品において、
 前記高周波回路部品は第2の通信システム用の送信端子を備え、
 前記第1及び第2の通信システム用の送信端子が、
 第4のスイッチを介して前記スイッチング回路と接続されていることを特徴とする。
 第25の発明は、上記第22の発明の高周波回路部品において、
 前記第2のスイッチング回路と前記第1の通信システム用の送信端子の間、前記第2のスイッチング回路と前記第2の通信システム用の送信端子の間には、それぞれ高周波増幅回路が配置され、前記高周波増幅回路の少なくとも一つと前記第4のスイッチがそれぞれ同じ電源端子に接続されることを特徴とする。
 第26の発明は、上記第1乃至第3の発明のいずれかの高周波回路部品において、
 前記高周波回路部品は第2の通信システム用の第1と第2の受信端子と、第2の通信システム用の送信端子を備え、
 前記第1の通信システム用の第1の受信端子と前記第2の通信システム用の第1の受信端子は、第5のスイッチング回路又は第1の分波回路を介して前記スイッチング回路に接続され、
 前記第1の通信システム用の第2の受信端子と前記第2の通信システム用の第2の受信端子は、第6のスイッチ回路又は第2の分波回路を介して前記スイッチング回路に接続されていることを特徴とする。
 第27の発明は、
 第1及び第2のアンテナ端子と、第1及び第2の送信端子と、第1及び第2の受信端子と、スイッチング回路を少なくとも有する高周波回路であって、
 前記スイッチング回路は、前記第1及び第2の送信端子のどちらか一方が前記第1及び第2のアンテナ端子のどちらかを選択して接続可能であると共に、前記第1の受信端子が前記第1のアンテナ端子側のみとの接続/非接続を切り替え、前記第2の受信端子が前記第2のアンテナ端子側のみとの接続/非接続を切り替えることを特徴とする。
 第28の発明は、上記第27の発明の高周波回路部品において、
 前記スイッチング回路は
 前記第1のアンテナ端子に単極3投の第7のスイッチの単極側端子が接続され、
 前記第7のスイッチは3投側端子の1つが前記第1の受信端子と接続され、
 前記第2のアンテナ端子に単極3投の第8のスイッチの単極側端子が接続され、
 前記第8のスイッチは3投側端子の1つが前記第2の受信端子と接続され、
 前記第1の送信端子に単極双投の第9のスイッチの単極側端子が接続され、前記第7と第8のスイッチの3投側端子のそれぞれ1つに、前記第9のスイッチの双投側端子が接続され、
 前記第2の送信端子に単極双投の第10のスイッチの単極側端子が接続され、前記第7と第8のスイッチの3投側端子のそれぞれ1つに、前記第10のスイッチの双投側端子が接続されていることを特徴とする。
 第29の発明は、上記第27の発明の高周波回路部品において、
 前記スイッチング回路は
 前記第1のアンテナ端子に単極双投の第11のスイッチの単極側端子が接続され、
 前記第11のスイッチは双投側端子の1つが前記第1の受信端子と接続され、
 前記第2のアンテナ端子に単極双投の第12のスイッチの単極側端子が接続され、
 前記第12のスイッチは双投側端子の1つが前記第2の受信端子と接続され、
 前記第1及び第2の送信端子に双極双投の第13のスイッチの一方の双極側端子が接続され、前記第11と第12のスイッチの双極側端子のそれぞれ1つに、前記第13のスイッチの他方の双投側端子が接続されていることを特徴とする。
 第30の発明は、上記第1乃至第3の発明のいずれかの高周波回路部品を用いた通信装置であることを特徴とする。
 本発明により、送信時に電波状況に応じて最適なアンテナを選択でき送信電力の損失を抑制できるとともに、信号経路間のアイソレーションを確保することができる高周波回路を提供できる。
図1は、送信ダイバーシティ回路の一例を示す図である。 図2は、実施形態の高周波回路のブロック図である。 図3は、図2のブロック図の等価回路である。 図4は、図2のブロック図の他の部分の等価回路である。 図5は、図2のブロック図の他の部分の等価回路である。 図6は、図2のブロック図の他の部分の等価回路である。 図7Aは、実施形態の積層体におけるフィルタ回路が形成される領域を説明するための図である。 図7Bは、実施形態の積層体におけるフィルタ回路が形成される領域を説明するための図である。 図8Aは、実施形態の積層体の積層図である。 図8Bは、実施形態の積層体の積層図である。 図9は、別の実施形態の高周波回路のブロック図である。 図10は、図9のブロック図の等価回路である。 図11は、図9のブロック図の他の部分の等価回路である。 図12は、図9のブロック図の他の部分の等価回路である。 図13Aは、別の実施形態の積層体の積層図である。 図13Bは、別の実施形態の積層体の積層図である。 図14は、実施形態に用いるスイッチング回路を説明するための図である。 図15は、実施形態に用いる別のスイッチング回路を説明するための図である。 図16は、一体の半導体基板に形成した場合の図15のスイッチング回路の基板面である。 図17は、別の実施形態の高周波回路のブロック図である。 図18は、別の実施形態の高周波回路のブロック図である。 図19は、スイッチ部材と高周波増幅回路の電源端子を共有化した状態を示す図である。 図20は、別の高周波回路のブロック図である。 図21は、図20の高周波回路に用いるスイッチング回路のブロック図である。 図22は、図21のスイッチング回路の一例である。 図23は、図20の高周波回路に用いる別のスイッチング回路のブロック図である。 図23のスイッチング回路の一例である。
[1]高周波回路
 本発明の高周波回路は、少なくとも第1及び第2のアンテナ端子と、第1の通信システム用の送信端子及び第1及び第2の受信端子を有し、第1及び第2のアンテナ端子を選択して前記送信端子と接続するスイッチング回路を備える。この構成により送信信号の損失を低減することができる。スイッチング回路は、送信端子が前記第1及び第2のアンテナ端子のどちらかを選択して接続可能であると共に、第1の受信端子が第1のアンテナ端子側のみとの接続/非接続を切り替えられ、第2の受信端子が前記第2のアンテナ端子側のみとの接続/非接続を切り替えられる。
 本発明の高周波回路の具体的な構成を詳細に説明するが、本発明はそれら実施形態に限定されるものではない。各図において同様の機能を発揮する要素には同じ符号を付する。
(1)第1の実施形態
 図2は、本実施形態の高周波回路であるTxダイバーシティ回路の一例である。この高周波回路は、第1及び第2のアンテナ端子ANT1,ANT2と、第1の通信システム用の送信端子Tx、第1の受信端子Rx1、及び第2の受信端子Rx2、およびスイッチング回路DP3Tを有する。例えばこれらの送信端子Tx、受信端子Rx1,Rx2には2.5GHz帯用のWiMAX用RFIC回路に接続される。スイッチング回路DP3Tは、2つのアンテナ端子ANT1、ANT2と、送信端子Tx、第1と第2の受信端子Rx1,Rx2に接続される各スイッチ端子を持つ。このスイッチング回路DP3Tは、送信端子Txからの信号が、2つのアンテナ端子ANT1,ANT2に選択的に出力されるように切り替わる。また、2つのアンテナ端子ANT1,ANT2でそれぞれ受信される受信信号が、同時にそれぞれ別の受信端子Rx1、Rx2に出力されるように切り替わる。スイッチング回路DP3Tの詳細は後述する。
 図2に示すように、第1のアンテナ端子ANT1と第1の受信端子Rx1の間には、受信信号を増幅する低雑音増幅器回路LNA1が接続されていることが好ましい。また、低雑音増幅器回路LNA1の前段(アンテナ端子側)か後段(受信端子側)の少なくとも一方にフィルタ回路が配置されることが好ましい。フィルタ回路により他の通信システムの信号も含めた不要信号が低雑音増幅器回路LNA1や受信端子Rx1に入力することを抑制することができる。本実施形態ではフィルタ回路として、低雑音増幅器回路の前段にバンドパスフィルタ回路BPF1-1、後段にバンドパスフィルタ回路BPF1-3が配置される。第1の受信端子Rx1と後段のバンドパスフィルタ回路BPF1-3の間には平衡―不平衡変換回路BAL1aが配置される。第2のアンテナ端子ANT2と第2の受信端子Rx2の間には、受信信号を増幅する低雑音増幅器回路LNA2が接続されることが好ましい。また、低雑音増幅器回路LNA2の前段か後段の少なくとも一方にフィルタ回路が配置されることが好ましい。フィルタ回路により他の通信システムの信号も含めた不要信号が低雑音増幅器回路LNA2や受信端子Rx2に入力することを抑制することができる。本実施形態ではフィルタ回路として、低雑音増幅器回路LNA2の前段にバンドパスフィルタ回路BPF1―2、後段にバンドパスフィルタ回路BPF1-4が配置される。第2の受信端子Rx2と後段のバンドパスフィルタ回路BPF1-4の間には平衡―不平衡変換回路BAL2aが配置される。
 図2に示すように、スイッチング回路DP3T1と送信端子Txの間には、高周波増幅回路HPAを配置することが好ましい。高周波増幅回路HPAにより、高周波回路の高集積化を図ることができる。スイッチング回路DP3T1と高周波増幅回路HPAの間には、フィルタ回路を配置することが好ましい。この実施形態では高周波増幅回路HPAの後段(送信経路においてはアンテナ端子側)にローパスフィルタ回路LPF1が配置される。このローパスフィルタ回路LPF1は、高周波増幅回路HPAで発生する高調波がアンテナ端子Txに入力されることを抑制することができる。高周波増幅回路HPAの前段(送信経路においては送信端子側)にはフィルタ回路を配置することが好ましい。この実施形態ではバンドパスフィルタ回路BPF1-5が配置される。このバンドパスフィルタ回路BPF1-5は、送信信号以外の不要な帯域のノイズが高周波増幅回路HPAに入力することを防ぐことができる。送信端子Txとバンドパスフィルタ回路BPF1-5の間には平衡―不平衡変換回路BAL3aが配置される。
[2]等価回路1
 図3~図6は図2のブロック回路の等価回路である。
 図3は主にスイッチング回路DP3T1から第1及び第2のアンテナ端子までの等価回路を示す図である。図中のT1、T2は、後述の図4のT1,T2にそれぞれ繋がり、T3が後述の図6のT3に繋がる。スイッチング回路DP3T1は、後述するように、単極双投のスイッチSW1~SW3の組み合わせで構成される。
 第1のスイッチSW1と第2のスイッチSW2は制御端子Vt、Vrに繋がる共通の電源ラインにより制御される。第1のスイッチSW1が第1の受信端子Rx1と第1のアンテナ端子ANT1を接続するときに、第2のスイッチSW2が第2の受信端子Rx2と第2のアンテナ端子ANT2を接続するように同期して切り替わり、二つのアンテナ端子から同時に受信信号を受信することができる。送信端子Txからの信号の切り換えは、第3のスイッチSW3で行なうことができる。
 各信号経路の接続/非接続はスイッチング回路に接続される電源端子Va、Vt、Vrにより切り替えられる。スイッチング回路の切り替えによって、高周波増幅回路HPAに接続される電源端子Vcc1、Vcc2、Vb、Vatt、低雑音増幅回路LNA1に接続されるVbL1、LNA2に接続されるVbL2、低雑音増幅回路LNA1とLNA2の両方の共有電源端子VcLのON/OFFが切り替わる。
 例えば、各アンテナ端子と送信端子、各受信端子の間を接続した時の各制御端子の電圧は次の表のように制御される。表中の数字の単位はボルト(V)である。
Figure JPOXMLDOC01-appb-T000001
 表中のMode Tx1は、送信端子Txと第1のアンテナ端子ANT1が接続される状態を示す。Mode Tx2は、送信端子Txと第2のアンテナ端子ANT2が接続される状態を示す。Mode Rxは、第1のアンテナ端子と第1の受信端子Rx1が接続され、かつ、第2のアンテナ端子ANT2と第2の受信端子Rx2が接続された状態を示す。
 Mode Tx1、ModeTx2について説明する。
電源端子Vtから電圧値3.0V、電源端子Vrから電圧値0.0Vが印加され、共有の電源端子Vt、Vrに接続された第1のスイッチSW1は第1のアンテナ端子ANT1と第3のスイッチSW3側の端子を接続し、かつ、第2のスイッチSW2は第2のアンテナ端子ANT2と第3のスイッチSW3側の端子を接続する。送信端子Txと第1のスイッチSW1側の端子、第2のスイッチSW2側の端子の接続/非接続は第3のスイッチSW3で切り替えられる。第3のスイッチの切り替えは電源端子Va1,Va2により行なわれ、それ以外の電源端子からの電圧の高/低は同じである。また、高周波増幅回路に接続される電源端子Vbは電圧値が高くなり、ModeTx1、Tx2のどちらの場合にも送信信号を増幅する。
 Mode Rxについて説明する。
 電源端子Vtから電圧値0.0V、電源端子Vrから電圧値3.0Vが印加され、共有の電源端子Vt、Vrに接続された第1のスイッチSW1は第1のアンテナ端子ANT1と第1の受信端子RXを接続し、かつ、第2のスイッチSW2は第2のアンテナ端子ANT2と第2の受信端子Rx2を接続する。第3のスイッチの切り替えは電源端子Va1,Va2により行なわれるが、電圧のHigh/Lowはどのような組合せでもよい。また、低雑音増幅回路LNA1、LNA2は、電源端子Vbl及びVbl2から電圧が印加されて駆動し、受信信号が増幅される。
 図4はスイッチング回路DP3T1の後段から第1及び第2の受信端子の間の等価回路を示す図である。
 バンドパスフィルタ回路BPF1-1、1-2は2本の共振線路が電磁気的に結合する二段のバンドパスフィルタである。共振線路の一端には接地容量が接続され、他端はGNDに接地される。また、入出力側にはDCカットコンデンサが接続されている。後段側のDCカットコンデンサと低雑音増幅器LNA1、LNA2の間には、入力整合をとるために積層体上面に搭載されたチップインダクタLr2aとLr1、Lr2bとLr4が接続されている。このチップインダクタの定数の変更により、入力整合の調整が容易に可能である。
 低雑音増幅器LNA1、LNA2のON/OFFの切替えは、制御電圧VbL1、VbL2により行う。低雑音増幅器にはVcL(ドレイン電圧)が通常3.0~4.0V印加されている。制御電圧VbL1、VbL2は、受信信号の増幅が必要なときに2.0~3.0V程度の電圧が印加され、低雑音増幅器をONモードにする。
 またVbL1、VbL2がオフモードのときは、低雑音増幅器がバイパスモードとなる。バイパスモードは大電力の信号がアンテナから入力された際に、低雑音増幅器の飽和を防ぐために使用されるが、必要に応じてバイパスモードが無いLNAを使用してもよい。またVcL端子にはチョークコイルLr3、Lr6とノイズカットコンデンサCr1とCr2,Cr3が接続される。
 低雑音増幅器LNA1、LNA2にて増幅された信号は、出力側の整合を取るためのインダクタLr2、Lr5を通過し、後段のバンドパスフィルタ回路BPF1-3、1-4に入力される。後段のバンドパスフィルタ回路BPF1-3、1-4は積層体内にて形成された2本の伝送線路が電磁気的に結合する二段のバンドパスフィルタである。共振線路の一端には接地容量が接続され、他端はGNDに接地される。また、入出力側にはDCカットコンデンサが接続されている。さらに共振器どうしの結合を強めるため、コンデンサCb5、Cb2が接続されている。これにより通過帯域外の減衰量を大きくとることが可能となる。伝送線路による共振器の本数を3本とし、通過帯域外の減衰量を大きくとっても良い。
 後段のバンドパスフィルタ回路BPF1-3、1-4を通過した信号は、平衡-不平衡変換回路BAL1a、BAL2aにて平衡信号に変換される。平衡-不平衡変換回路は、積層体内に形成された伝送線路を用いて構成される。この平衡―不平衡変換回路BAL1a、BAL2aは、後段のバンドパスフィルタ回路と平衡-不平衡変換回路との整合をとる伝送線路が含まれていても良い。また平衡―不平衡変換回路側の伝送線路には、積層体上面に搭載しているコンデンサCr5、Cr6が接続されている。コンデンサCr5、Cr6により、受信端子Rx1-、Rx1+に出力される受信信号の位相差を調整することができる。受信端子Rx1-、Rx1+はRFIC回路部に接続される。平衡入出力のほうが不平衡入出力より耐ノイズ性に優れているため、RFIC回路部は平衡入力、平衡出力であることが多い。一方スイッチング回路や低雑音増幅回路などは不平衡デバイスであるため、RFIC回路部とのインターフェースとして、平衡-不平衡変換回路を設けることが多い。平衡-不平衡変換回路を積層体内部にて設計することにより、高周波部品の小型化が可能となり、通信機器の小型化を実現することができる。
 図5は送信端子Txから高周波増幅回路の前段側までの等価回路を示す図である。RFIC回路部からの送信信号は、平衡―不平衡変換回路BAL3aを解してバンドパスフィルタ回路BPF1-5に入力される。図中のT4は図6のT4に繋がる。
 平衡―不平衡変換回路BAL3aは、積層体内に形成された伝送線路を用いて構成される。また、伝送線路の間には、DCフィード電圧端子Vdが接続され、用いるRFIC回路の仕様によりTx-端子とTx+端子に同時に直流電圧を印加できる。DCフィード電圧端子VdとBAL3aの間には積層体の搭載面に搭載される接地容量Ct6が接続される。この実施形態においては平衡―不平衡変換回路BAL3aに接地容量Ctxlを接続しており、位相及び振幅の調整を容易に行なうことができる。
 バンドパスフィルタ回路1-5は、前記のバンドパスフィルタ回路BPF1―3,BPF1-4と同様の2本の共振線路を持つ2段のバンドパスフィルタである。なお、このバンドパスフィルタ回路が無い高周波回路でもTxダイバーシティの高周波回路として機能する。
 図6はスイッチング回路DP3T1の送信端子側から高周波増幅回路までの等価回路を示す図である。送信端子からの信号は、アッテネータを介して高周波増幅回路HPAに入力される。必要により、アッテネータは制御電圧Vattにより制御され、電源ラインの一部となる伝送線路lvattは積層体内の電極パターンで形成される。
 高周波増幅回路HPAは、駆動電圧Vcc1、Vcc2からの電圧により駆動する。駆動電源Vcc1、Vcc2からの電圧は定電圧供給回路を介して高周波増幅回路HPAに入力され、定電圧供給回路は積層体内に形成される電極パターンlvcc1a、lvcc1bと積層体上面に搭載される接地容量Ct3,Ct7、及び、電極パターンlind、lvcc2と積層体上面に搭載される接地容量Ct1,Ct2により形成される。また、高周波増幅回路HPAは、バイアス電圧Vbからの電圧により制御される。バイアス電圧Vbは出力電力を制御するための制御電圧回路を介して高周波回路HPAに入力され、制御電圧回路は積層体内に形成される電極パターンlvb1,lbv2と積層体上面に搭載される接地容量Ct4,抵抗Rt2、接地抵抗Rt3により形成される。
 高周波増幅回路HPAで増幅された信号は、出力整合回路、及びDCカットコンデンサCt6を介してローパスフィルタ回路LPF1に接続される。出力整合回路は、積層体内の電極パターンlm1、lm2、及び接地容量cm1、cm2により形成される。
 このローパスフィルタ回路LPF1は、寄生容量が発生する事から実際はパイ型のローパスフィルタである。入出力端子の間には並列共振回路が形成される。また、並列共振回路の入力端子側には接地容量が接続される。また、並列共振回路の前段には直列に接続された伝送線路が接続される。
 これらの電極パターンは絶縁体の層と導体パターンとを含む積層体内部に形成される。絶縁体層としては、誘電体セラミックス、樹脂、樹脂とセラミックとの複合材を用いることが可能である。積層体化は公知の工法を用いて行なわれ、例えば誘電体セラミックスを用いる場合にはLTCC(低温同時焼成セラミック)技術や、HTCC(高温同時焼成セラミック)技術により、樹脂等ではビルドアップ技術による。
 LTCC技術であれば、積層体は、例えば絶縁体層として、1000℃以下の低温で焼結可能なセラミック誘電体からなり、AgやCu等の導電ペーストを印刷して所定の導体パターンを形成した厚さ10~200μmの複数のセラミックグリーンシートを用い、これを積層し、一体的に焼結することにより形成することができる。低温で焼結可能なセラミック誘電体としては、例えばAl,Si及びSrを主成分として、Ti,Bi,Cu,Mn,Na,K等を副成分とするセラミックス、Al,Mg,Si及びGdを含むセラミックス、Al,Si,Zr及びMgを含むセラミックスが挙げられる。
[3]積層体1
 図7Aおよび図7Bは、実施形態の積層体の一例として、各フィルタ回路及び各平衡―不平衡変換回路が形成される領域を簡略化して示す斜視図である。
 また、図8A、図8Bは、図7Aおよび図7Bの実施形態の一例を示す積層図である。
 図7Aおよび図7Bから解るように、積層体は、その上層側(積層中央よりも搭載面側)の内層に第1のグランド電極が形成された層103と、積層方向に見て間に他のグランド電極を挟まない状態で形成され、下層側(搭載面とは逆側)の内層に第2のグランド電極が形成された層115備え、第1のグランド電極と第2のグランド電極の間に各フィルタ回路のそれぞれ少なくとも一部の電極パターンが形成される領域FIL1~FIL6を有する。第1のグランド電極と第2のグランド電極は、各領域を積層方向に見て覆うように形成される。グランド電極は、積層体の層のほぼ全体を覆うように形成することが好ましい。領域FIL1とFIL2、領域FIL3とFIL4は複数のビアからなるシールド(図中の円柱状部)を境に分かれて形成される。ビアは実質的に積層方向に伸び、このビアが複数含まれる同一平面をシールドとみなせる。必要により複数のビアからなるシールドが形成される。シールドは必要により、他のフィルタ回路同士の領域間に形成してもよい。シールドは第1と第2のグランド電極に接続される。シールド及びグランド電極によって、各領域は電磁気的に区画される。また、回路基板、搭載部品、第1及び第2のグランド電極よりも外層側の層に形成される電源線路との間の干渉を抑制する。
 この実施形態の積層体は、第1のグランド電極の層103と第2のグランド電極の層115に間に、スイッチング回路と低雑音増幅器LNA1の間に形成される前段のバンドパスフィルタ回路BPF1-1の少なくとも一部が形成される領域FIL1、低雑音増幅器LNA1と第1の受信端子の間に形成される後段のバンドパスフィルタ回路BPF1-3の少なくとも一部が形成される領域FIL3、及び、後段のバンドパスフィルタ回路BPF1-3と第1の受信端子の間に形成される平衡―不平衡変換回路BAL1aの少なくとも一部が形成される領域BAL1が、積層方向に見て重ならないように形成される。これらの領域は上記に記載した順に並び、平衡―不平衡変換回路の領域BAL1は積層体の辺に沿って配置される。前段と後段のバンドパスフィルタ回路の領域間には複数のビアからなるシールドが形成される。
 また、この実施形態の積層体は、第1のグランド電極の層103と第2のグランド電極の層115の間に、スイッチング回路と低雑音増幅器LNA2の間に形成される前段のバンドパスフィルタ回路BPF1-2の少なくとも一部が形成される領域FIL2、低雑音増幅器LNA1と第2の受信端子の間に形成される後段のバンドパスフィルタ回路BPF1-4の少なくとも一部が形成される領域FIL4、及び、後段のバンドパスフィルタ回路BPF1-4と第2の受信端子の間に形成される平衡―不平衡変換回路BAL2aの少なくとも一部が形成される領域BAL2が、積層方向に見て重ならないように形成される。これらの領域は上記に記載した順に並び、平衡―不平衡変換回路の領域BAL2は積層体の辺側に配置される。前段と後段のバンドパスフィルタ回路の領域間には複数のビアからなるシールドが形成される。
 また、この実施形態の積層体は、第1のグランド電極の層103と第2のグランド電極の層115の間に、スイッチング回路と高周波増幅器HPAの間に形成されるローパスフィルタ回路LPF1の少なくとも一部が形成される領域FIL6、高周波増幅器HPAと送信端子Txの間に形成されるバンドパスフィルタ回路BPF1-5の少なくとも一部が形成される領域FIL5、及び、バンドパスフィルタ回路BPF1-5と送信端子Txの間に形成される平衡―不平衡変換回路BAL3の少なくとも一部が形成される領域BAL3が、積層方向に見て重ならないように形成される。これらの領域は上記に記載した順に並び、平衡―不平衡変換回路BAL3aの領域BAL3は積層体の辺側に配置される。ローパスフィルタ回路LPF1の領域FIL6とバンドパスフィルタ回路BPF1-5の領域FIL5の間には複数のビアからなるシールドが形成される。このシールドは、複数のサーマルビアで形成される。
 前段のバンドパスフィルタ回路の領域FIL1とFIL2は積層方向に重ならず、かつ、シールドを境に分かれた状態で隣接している。同様に、後段のバンドパスフィルタ回路の領域FIL3とFIL4は積層方向に重ならず、かつ、シールドを境に分かれた状態で隣接している。同様に、平衡―不平衡変換回路の領域BAL1、BAL2も積層方向に重ならず、かつ、複数のビアからなるシールドを境に分かれた状態で隣接している。シールドにより各フィルタ回路及び受信経路間でのアイソレーションを確保することができる。送信経路に配置されるバンドパスフィルタ回路が不要の場合には、FIL5の領域にフィルタ回路用の電極パターンが形成されない場合もある。また、同様に他のフィルタ回路が不要な場合も同様である。
 また、送信経路に配置されるローパスフィルタ回路の領域FIL6は、前段のバンドパスフィルタ回路の領域FIL1、FIL2と積層方向に重ならないように形成される。さらに、複数のビアからなるシールドを境に領域FIL1とFIL6が分かれて隣接されることが好ましい。送信経路に配置されるバンドパスフィルタ回路の領域FIL5は、領域FIL3と積層方向に重ならず、かつ、複数のビアからなるシールドを境に分かれて隣接している。平衡―不平衡変換回路の領域BAL3は、領域BAL2に対して積層方向に重ならず、かつ、複数のビアからなるシールドを境に分かれて隣接している。シールドにより各フィルタ回路及び送信経路と受信経路間でのアイソレーションを確保することができる。
 図7Bに一例を示すように、第1のグランド電極の層103より上層側、若しくは第2のグランド電極の層115よりも下層側にフィルタ回路の電極パターンの一部を形成する層116を配置こともでき、その場合はグランド電極間の電極パターンと、グランド電極より外層側の電極パターンが一部積層方向に重なる事を許容できる。また、第3のグランド電極として積層体の下面の層118において中央部を含む領域を広く覆う導体パターンを設けることができる。さらに、第4のグランド電極として第2のグランド電極と第3のグランド電極の間に形成される領域を広く覆う導体パターンを設けることができる。
 次に、図8A~Bの積層図を参照して、積層体内部の上記等価回路に関する電極パターンについて説明する。
 図8A左上の搭載面と記載された層は、積層体の最外層(搭載面)にスイッチング回路SW1~SW3、高周波増幅器HPA、低雑音増幅器LNA1、LNA2、及び各チップインダクタと各チップコンデンサを配置した状態を示す簡略図である。
 搭載面のスイッチング回路は、送信端子に接続されるスイッチSW3が、第1の受信端子に接続されるスイッチSW1と第2の受信端子に接続されるスイッチSW3の間に配置され、所定の方向、例えば積層体の辺に沿って、その並び順が、第1のスイッチ、第3のスイッチ、第2のスイッチの順に並ぶように配置される。スイッチSW3とスイッチSW1の距離と、スイッチSW3とスイッチSW2の距離が等しくなるように配置することが好ましい。搭載面上の接続ワイヤや搭載面の電極パターンで形成される接続部の長さをほぼ同じにしやすく、両方の受信経路の挿入損失差を小さくできる。
 また、スイッチSW1とスイッチSW2は、積層体内の、領域FIL1と領域FIL2が並ぶ方向に対して平行に並び、さらに、その並び順が同じであることが好ましい。スイッチSW1と領域FIL1内のフィルタ回路を接続する積層体内の伝送線路の長さ、スイッチSW2と領域FIL2内のフィルタ回路を接続するための積層体内の伝送線路の長さを、それぞれ短くすることができる。これにより挿入損失を小さくでき、また、他の回路素子との干渉を抑制できる。また、送信端子が第1のアンテナ端子に接続される状態と第2のアンテナ端子に接続される状態で挿入損失差を小さくできる。
 各層の左上の番号は、搭載面を第1層として、以下順次積層数順に付した番号である。図中、各フィルタ回路を構成する電極パターンは、そのフィルタ回路(BPF1-1~BPF1-5、LPF1、及びBAL1a~BAL3a)の名称を記載している。
 第1層のlsw1、lsw2は搭載面上に形成される電極パターンであり、各スイッチのワイヤを接続するための伝送線路である。各チップコンデンサの説明は省略する。
 搭載面の直下の第2層は、高周波増幅器、低雑音増幅器、スイッチを駆動又は制御するための電源ラインとなる電極パターンlva1、lva2、lvbl2、lvbl1、lvatt、lvb1、lvb2、lind、及びlvcclbが形成されている。これらの電源ラインは、第3層に形成された第1のグランド電極を介して第4層以下のフィルタ回路と電磁気的に隔離されているため、フィルタ回路からのアイソレーションを確保しながら比較的自由に配線を引き回すことができる。また、積層体内部電極と、積層体上面に搭載された能動素子などとの干渉を防ぐことができる。
 第4層~第15層には、図面左上に、平衡―不平衡変換回路BAL2aの電極パターンが形成される領域BAL2が設けられる。図8Aの第4層にのみ領域を破線で図示するが、本実施形態では積層方向に見て第4層~第14層のこの範囲も同じ領域内である。以下、他の領域においても同様である。BAL2の図面下側にはバンドパスフィルタ回路BPF1-4の電極パターンが形成される領域FIL4が設けられる。その領域FIL4の図面下側にはバンドパスフィルタ回路BPF1-2の電極パターンが形成される領域FIL2が設けられる。
 また、第4層~第14層には、領域BAL2の図面右側に、平衡―不平衡変換回路BAL1aの領域BAL1が設けられる。その領域BAL1の図面下側には、バンドパスフィルタ回路BPF1-3の電極パターンが形成される領域FIL3が設けられる。その領域FIL3の図面下側にはバンドパスフィルタ回路BPF1-1の電極パターンが形成される領域FIL1が設けられる。
 また、第4層~第14層には、領域BAL1aの図面右側に、平衡―不平衡変換回路BAL3aの領域BAL3が設けられる。その領域BAL3の図面下側には、バンドパスフィルタ回路BPF1-5の電極パターンが形成される領域FIL5が設けられる。その領域FIL5の図面下側には、搭載面の高周波増幅回路の設置面に設けられた熱放射用の複数のサーマルビアが設けられる。サーマルビアもシールドとして活用できる。その図面下側にローパスフィルタ回路LPF1の電極パターンが形成される領域FIL6が設けられる。なお、ローパスフィルタ回路の電極パターンは、第9層、第10層、第11層に形成され、第4層には形成されていないが、説明のため、第4層にはこれらの伝送線路が形成される領域を積層方向に見た場合の位置を示した。
 第5層の積層図に、複数のビアからなるシールドを1点破線で囲む。シールドは、領域FIL1とFIL2、FIL3とFIL4の境界部にあたる位置に形成された複数のビアからなるグランド電極である。このビアは第3層の第1のグランド電極GND1と第2のグランド電極GND2の両方に接続され、積層方向に実質直線状のビアで形成されている。ビアが多少ずれていても、積層方向に見て上層のビアと下層のビアが部分的に重なる程度であれば十分シールドとして機能する。また、第5層、第8層、第10層、第12層、第14層では互いのビアを接続する電極パターンを形成し、積層方向のみならず、面内方向に広がるシールドが形成される。FIL1とFIL2、FIL3とFIL4の間に形成されるシールドは平行もしくは実質的に同一平面上になるよう形成されることが好ましい。領域FIL1、FIL3と、FIL2、FIL4はシールドを境に同方向に分かれて形成される。
 このシールドにより、各受信経路間のアイソレーションが保たれ、さらに、上下の第1と第2グランド電極GND1、GND2の間に形成されることで、他の回路とのアイソレーション、特に表面実装されている回路部品や、積層体裏面に形成される電源端子やそれに繋がる電源ラインとの信号の干渉を抑制できるため、複雑な回路構成においてもノイズの少ない回路を構成することができる。
 なお、領域FIL3と領域FIL5もシールドを境に分かれて形成される。
 バンドパスフィルタ回路BPF1-1とバンドパスフィルタ回路BPF1-2の積層体内の構成について説明する。
 第4層~第6層にはバンドパスフィルタ回路BPF1-1の容量が形成され、バンドパスフィルタ回路の入出力端子側のDCカットコンデンサとなる。DCカットコンデンサは、第6層から第9層のビアを介して第10層~第12層の共振線路に接続される。
 第10層~第12層の共振線路は、両端がスルーホールにより接続されたものを3層に渡って配置した電極パターンにより形成される。多層に渡ってこの並列線路を構成したことにより、バンドパスフィルタ回路の挿入損失を改善できる。各バンドパスフィルタの共振線路は同じ誘電体層に形成されており、二つの受信経路のバンドパスフィルタの特性を合わせるのが容易である。また伝送線路は整合を取るために、伝送線路どうしの間隔を調整したり、伝送線路の幅を調整したり、伝送線路の長さなどを調整しても良い。
 共振線路はそれぞれ略直線状をなしている。さらに、バンドパスフィルタ回路BPF1-1の複数の共振線路と、バンドパスフィルタ回路BPF1-2の複数の共振線路が実質的に同一の直線上に形成される。かかる構成によってバンドパスフィルタを密に配置することができる。なお、後述する他のバンドパスフィルタ回路を含め、共振線路の長手方向は、全てのバンドパスフィルタで同じになっており、五つ以上のバンドパスフィルタを有する高周波部品においても、バンドパスフィルタを密に配置することが可能であり、高周波部品の小型化に寄与している。また、バンドパスフィルタの長手方向が同じであるため、電極を印刷によって形成する場合、電極の形状ばらつきによる特性変動が抑制される効果もある。
 第16層には接地容量の電極パターンが形成される。第4層~第12層の電極パターンとの間には第15層の第2のグランド電極GND2が配置されるが、グランド電極との接地容量次第ではこれらの接地容量は第2のグランド電極GND2よりも上層側に形成してもよい。これらの接地容量も、第4層~第12層の電極パターンと積層方向に見て実質的に同じ範囲に形成されるが部分的に他のフィルタ回路や平衡―不平衡変換回路の電極パターンと重なっても良い。
 フィルタ回路BPF1-1、BPF1-2は、スイッチSW1、SW2、SW3が並ぶ方向において同じ層に形成された2つのフィルタ回路の共振線路に繋がるそれぞれのビアが対照に接続されていることが好ましい。特に、受信経路及び送信経路の数が多い高周波回路部品では、表面実装されるスイッチング回路の配置と、内部の各素子の位置を配慮した積層設計が必要になり、ビアを対称に設けることで第1の受信端子側の受信経路と第2の受信経路のスイッチング回路と接続する引き回しの電送線路長を同程度にでき、両受信経路での挿入損失差を小さくできる。
 バンドパスフィルタ回路BPF1-3、1-4、1-5の積層体内の構成について説明する。第4層~第6層にはバンドパスフィルタ回路BPF1-3、BPF1-4,BPF1-5の容量が形成され、バンドパスフィルタ回路の入出力端子側のDCカットコンデンサとなる。また、第6層には、第5層の各2つの容量の両方に一部重なる浮き電極の容量がそれぞれ形成される。この容量により共振線路の容量結合を強くし、通信帯域外の減衰量を大きくとることが可能となる。DCカットコンデンサは、第6層から第9層のビアを介して第10層~第12層の共振線路に接続される。共振線路の形状は、結合量などの違いから太さ、線路同士の幅は異なるが、それ以外はバンドパスフィルタ回路BPF1-1、2で説明した構成と概略同じであるため、説明を省略する。
 ローパスフィルタ回路LPF1の積層体内の構成について説明する。ローパスフィルタ回路は、第2層、第9層、第10層、第11層、第14層に形成された伝送線路、及び第15層、第16層に形成された容量が各層のビアにより接続されて構成される。伝送線路の一部は積層体内で螺旋状になるよう形成される。図6の等価回路では設置容量が一つだが、実際は、寄生容量が生ずることからパイ型のローパスフィルタ回路として機能する。スイッチング回路は、この積層体内のローパスフィルタ回路LPF1の電極パターンが形成される領域と重なるように搭載面上に配置される。スイッチング回路とローパスフィルタ回路が近接するので、送信経路の伝送線路を短くすることができ挿入損失の低下を抑制できる。
 平衡―不平衡変換回路BAL1a、BAL2aおよびBAL3aの積層体内の構成について説明する。平衡―不平衡変換回路BAL1a、BAL2aの伝送線路と、バンドパスフィルタ回路BPF1-1、BPF1-2の容量が、第4層のビアを介して接続されている。接続された第4層の伝送線路は第4層~第14層に形成された伝送線路により不平衡側の線路を形成する。平衡―不平衡変換回路BAL1a、BAL2aは、第14層~第6層の伝送線路がそれぞれ平衡側の線路として、最下層の裏面に形成された第1の受信端子Rx1+、Rx1-に接続される。平衡―不平衡変換回路BAL3aは、上記のBAL1a,BAL2aの構成と概略同じであるが、第6層の平衡側の伝送線路の間に電源端子Vdからの伝送線路が接続され、DCフィード電圧によりTx-端子とTx+端子に同時に直流電圧が印加できるように形成される。
 第15層~第17層について説明する。第15層はほぼ全面に第2のグランド電極GND2を形成する。これにより第16層で形成する接地容量との干渉を防ぐことができる。第16層ではバンドパスフィルタの接地容量となる電極を配置する。第17層も第15層と同様に全面に第4のグランド電極GND4を形成する。当該3層によりバンドパスフィルタ回路の接地容量の大部分を形成することができる。またこの3層の積層体シート厚は他の層と比較して薄いほうが良い。薄いシートを用いることにより、小さな電極面積で大きな容量をとることが可能になり、高周波部品の小型化が可能となる。
 第1及び第2のグランド電極の間には、積層体を広い面積で覆うグランド電極は形成されないことが好ましい。積層数を減らすことができ、低背化できる。なお、第1及び第2のグランド電極よりも外層側の層にフィルタ回路や平衡―不平衡変換回路の電極パターンの一部が形成される場合には、グランド電極を介して内部のフィルタ回路と積層方向に見て一部重なってもよい。グランド電極によりアイソレーションが確保できるため、部分的な重なりは許容できる。
 上記の説明では、積層体内に設けられた電極の一部について説明を行ったが、本実施形態ではアンテナ端子ANT2から第2の受信端子Rx2までの回路を構成する電極や、アンテナ端子ANT1から送信端子Txまでの回路を構成する電極も積層体内にて配置されている。これらの回路も同様にバンドパスフィルタ回路や整合回路を構成するインダクタンス素子やキャパシタンス素子の一部を、積層体内部の電極にて構成する。またスイッチング回路やパワーアンプなどの能動素子を積層体上面に搭載する。
 第3のスイッチSW3の単極側端子に接続される第2層の伝送線路LPF1は比較的短く形成され、第3層目の第1のグランド電極を介して積層体の内部側のローパスフィルタの電極パターンに接続され、再度第3層目のグランド層を介して第2層の比較的短く形成された伝送線路lm1に接続され、第1層目のビアを解して表面実装された高周波増幅器に接続されている。最も他の回路から影響を受けやすい送信経路を実質的に搭載面の直下の第2層で実質的に形成しておらず、第1のグランド電極よりも内側に引き込むように信号線路を形成することで、他の回路とのアイソレーション、特に表面実装されている回路部品や、制御端子との信号の干渉を抑制できるため、複雑な回路構成においてもノイズの少ない回路を構成することができる。また、第2層の伝送線路LPF1はスイッチSW1が搭載される搭載面の比較的大きな電極パターンと重なるように形成される。上記の電極パターンにより、搭載面のスイッチSW1とSW3の間を接続するワイヤや伝送線路lsw1との干渉を抑制できるので、スイッチング回路と第1のアンテナ端子の間の送信経路において挿入損失を小さくでき、スイッチング回路と第1及び第2のアンテナ端子の間の送信経路同士の挿入損失差を小さくできる。
 積層体内部に引き込まれた送信経路を形成する電極パターンは、ローパスフィルタ回路LPF1を含め、積層方向に見て、積層体内の受信経路、特に受信経路に配置される前段のフィルタ回路が重ならないように配置している。
 このように各回路を構成することで、送信経路と受信経路の間の干渉を抑制できる。
[4]等価回路2
(2)第2の実施形態
 図9は、別の実施形態の回路フ゛ロック図である。図2のブロック図とほぼ同じであるが、スイッチング回路DP3T2は複数のトランジスタ回路を用いた半導体基板上で一体化されたチップスイッチである点で異なる。スイッチング回路DP3T2と第1の受信端子Rx1間には図2と同様に低周波増幅回路LNA1の前段と後段にフィルタ回路BPF2-1,BPF2-3が配置される。同様にスイッチング回路DP3T2と第2の受信端子Rx2間にはフィルタ回路BPF2-2,BPF2-4が配置される。また、スイッチング回路DP3T2と送信端子Txの間にはフィルタ回路LPF2,BPF2-5が配置される。但し、図9では説明のために高周波増幅回路HPAと送信端子Txの間に配置されるバンドパスフィルタBPF2-5が記載されているが、図10~13ではこのバンドパスフィルタBPF2-5が無い実施形態で記載している。
 図10~図12に図9の回路フ゛ロック図の等価回路を示す。
 図10は、スイッチング回路DP3T2からアンテナ端子までの等価回路を示す図である。アンテナ端子とスイッチング回路の間には直流カットコンデンサが配置され、直流カットコンデンサとアンテナ端子の間には整合回路lant1a、lant2aが形成される。また、伝送線路lant1b、lant2bは搭載面上の電極パターンであり、搭載面上に設置されたチップコンデンサとスイッチング回路DP3T2を繋ぐ。スイッチング回路DP3T2については後述する。
 図11は、バンドパスフィルタ回路BPF2-1を説明するための等価回路である。3段の共振線路を持つ構造である点で図4の等価回路と異なるが、それ以外は図4で示したバンドパスフィルタ回路BPF1-1と同じ構造である。また、バンドパスフィルタ回路BPF2-2、2-3、2-4はバンドパスフィルタ回路BPF2-1と同様の構成であるため説明は省略する。スイッチング回路DP3T2の後段から第1及び第2の受信端子の間の等価回路はこのバンドパスフィルタ回路の構成が異なる以外は図4と同様である。
 送信端子から高周波増幅回路HPAの前段側の間の等価回路は、図5の平衡―不平衡変換回路BAL3aのみの等価回路と実質同じであり説明を省略する。バンドパスフィルタ回路が無い点で図5の等価回路と異なる。
 図12は、スイッチング回路DP3T2の送信端子側から高周波増幅回路までの等価回路を示す図である。送信端子からの信号は、アッテネータを介して高周波増幅回路HPAに入力される。必要により、アッテネータは制御電圧Vattにより制御され、電源ラインの一部となる伝送線路lvattは積層体内の電極パターンで形成される。
 高周波増幅回路HPAは、駆動電圧Vcc1、Vcc2からの電圧により駆動する。駆動電圧Vcc1、Vcc2からの電圧は定電圧供給回路を介して高周波増幅回路HPAに入力され、定電圧供給回路は積層体内に形成される電極パターンlvcc1と積層体上面に搭載される接地容量Ct3,Ct7、及び、電極パターンlvcc2a,lvcc2bと積層体上面に搭載される接地容量Ct1により形成される。また、高周波増幅回路HPAは、バイアス電圧Vbからの電圧により制御される。バイアス電圧Vbは出力電力を制御するための制御電圧回路を介して高周波回路HPAに入力され、制御電圧回路は積層体上面に搭載される接地容量Ct4,抵抗Rt2、接地抵抗Rt3により形成される。
 高周波増幅回路HPAで増幅された信号は、出力整合回路、及びDCカットコンデンサCt6を介してローパスフィルタ回路LPF1に接続される。出力整合回路は、積層体内の電極パターンlma、及び接地容量cma1、cma2により形成される。
 [積層体2]
 積層体は、図7A、図7Bと同様に、その上層側の内層に第1のグランド電極が形成された層と、下層側の内層に第2のグランド電極が形成された層を備え、第1のグランド電極と第2のグランド電極に間に各フィルタ回路のそれぞれ少なくとも一部の電極パターンが形成される領域FIL1~FIL6を有する。
 ただし、この積層体は、図7A、図7B、図8A、及び図8Bに示した積層体と異なり、スイッチング回路から第1の受信端子Rx1までの受信経路に配置されるフィルタ回路BPF2-1,2-3が形成される領域FIL1、FIL3と、スイッチング回路から第2の受信端子Rx2までの受信経路に配置されるフィルタ回路BPF2-2,2-4が形成される領域FIL2、FIL4が、積層体の対向する2辺に沿って配置される。また、その領域間にはスイッチング回路から送信端子Txまでの送信経路に配置されるフィルタ回路LPF2-1、BPF2-5が形成される領域FIL6、FIL5が配置される。なお、上記で説明したように、フィルタ回路BPF2-5は無くても実施可能である。また、他のフィルタ回路が無い構成とすることもできる。詳細は積層図である図13A~Bで説明する。
 次に、図13A、図13Bを参照して、積層体内部の電極パターン示し、上記等価回路に関する電極について説明する。各フィルタ回路を構成する電極パターンは、そのフィルタ回路の名称(BPF2-1~BPF2-4、LPF2、およびBAL1b~BAL3b)を記載している。
 第1層は、高周波回路部品の搭載面であり、スイッチング回路、高周波増幅器、低雑音増幅器、及び複数のチップインダクタ、チップコンデンサが配置される。説明のため、スイッチング回路DP3T2、高周波増幅器HPA、低雑音増幅器LNA1、LNA2が搭載される設置場所を図示する。
 スイッチング回路DP3T2は、搭載面の一辺に沿った場所でその辺の中央付近に配置される。このスイッチング回路DP3T2からは、受信経路となる電極パターンlant1a、lant2a、lant1b、lant2bが左右対称に配置される。また、このスイッチング回路から第1のアンテナ端子と第1の受信端子の間の受信経路、第2のアンテナ端子と第2の受信端子の間の受信経路となる信号ラインlrx1,lrx2も左右対称に配置される。この信号ラインは対向する2辺に形成されたビアに接続され、積層体内の各フィルタ回路に接続される。
 スイッチング回路を積層体の一つの辺の中央に配置し、かつ、第1のアンテナ端子ANT1と第1の受信端子Rx1の間の受信経路、第2のアンテナ端子ANT2と第2の受信端子Rx2の間の受信経路をこのスイッチング回路を中心にほぼ左右対称になるように積層体内で形成することで、両者の受信経路での挿入損失差を小さくできる。
 また、受信経路を積層体内の左右に分けることで必然的に送信経路が中央に形成されるため、受信経路同士のアイソレーションが取りやすくなるとともに、挿入損失の差を小さくすることができる。
 低雑音増幅器LNA1、LAN2もこのスイッチング回路SPDT2を中心にほぼ左右対称に配置される。
 高周波増幅器HPAは第1層のほぼ中央に配置される。高周波増幅回路が配置される位置には複数のビアが形成される。このビアを熱放射のためのサーマルビアとして使用すると共に、シールドの一部として使用できる。サーマルビアは第1のグランド電極と第2のグランド電極を繋ぐようにすることが好ましい。グランド電極を利用した放熱性の向上が期待できる。また、複数のビアが両方の受信経路の間に配置されるので、受信経路同士のアイソレーションを向上することもできる。
 第2層は、スイッチング回路を制御するための電源ラインlva1,lva2、lvr1、lvr2、及びlvt1、lvt2が形成される。これらの電源ラインも、積層方向に見てスイッチング回路を中心として左右対称に形成される。電源ラインが左右対称に形成されることで、両方の受信経路における挿入損失差を小さくできる。また、電源ラインlvcc2が形成される。これらの電源ラインは、第3層に形成された第1のグランド電極GND1を介して第4層以下のフィルタ回路と電磁気的に隔離されているため、フィルタ回路からのアイソレーションを確保しながら比較的自由に配線を引き回すことができる。また、積層体内部電極と、積層体上面に搭載された能動素子などとの干渉を防ぐことができる。
 また、ローパスフィルタ回路LPF2につながる引き回しの伝送線路llp1、llp2が形成される。スイッチング回路DP3T2に接続される第2層の送信経路llp2は比較的短く形成され、第3層目の第1のグランド電極を介して積層体の内部側のローパスフィルタ回路LPF2に接続され、再度第3層目のグランド層を介して第2層の比較的短く形成された伝送線路llp1に接続され、第1層目のビアを解して表面実装された高周波増幅器HPAに接続されている。
 最も他の回路から影響を受けやすい送信経路を実質的に搭載面の直下の第2層で実質的に形成せず、第1のグランド電極よりも内側に引き込むように信号線路を形成することで、他の回路とのアイソレーション、特に表面実装されている回路部品や、制御端子との信号の干渉を抑制できるため、複雑な回路構成においてもノイズの少ない回路を構成することができる。また、バンドパスフィルタ回路BPF2-3,BPF2-4の伝送線路の一部も形成される。
 第4層~第12層には、図面左上に、平衡―不平衡変換回路BAL2bの電極パターンが形成される領域BAL2が設けられる。第4層にのみ領域を破線で図示するが、本実施形態では積層方向に見て第4層~第13層の同じ範囲も同じ領域内である。以下、他の領域においても同様である。
 BAL2の図面下側にはバンドパスフィルタ回路BPF2-4の電極パターンが形成される領域FIL4が設けられる。その領域FIL4の図面下側にはバンドパスフィルタ回路BPF2-2の電極パターンが形成される領域FIL2が設けられる。
 また、第4層~第12層には、図面右上に、平衡―不平衡変換回路BAL1bの電極パターンが形成される領域BAL1が設けられる。その領域BAL1の図面下側には、バンドパスフィルタ回路BPF2-3の電極パターンが形成される領域FIL3が設けられる。その領域FIL3の図面下側にはバンドパスフィルタ回路BPF2-1の電極パターンが形成される領域FIL1が設けられる。
 また、第4層~第12層には、領域BAL1と領域BAL2の間に、送信経路の平衡―不平衡変換回路BAL3bの領域BAL3が設けられる。その領域BAL3の図面下側には、比較的電極パターンが形成されていない領域を介して、搭載面の高周波増幅回路の接地面からつながる複数のサーマルビアが形成される領域を備え、さらにその図面下側にはローパスフィルタ回路LPF1の電極パターンが形成される領域FIL6が設けられる。
 領域BAL3と領域FIL6の間には、送信端子Txと高周波増幅回路の間にバンドパスフィルタ回路BPF2-5の電極パターンが形成される領域FIL5を設けても良い。
 第5層の積層図に、複数のビアからなるシールドを1点破線で示す。このビアによるシールドを境に領域FIL1とFIL3、FIL2とFIL4が分かれて形成される。また、領域FIL1とFIL3の左側と、領域FIL2とFIL4の右側の位置にもシールドが形成され、このシールドの一部を境にローパスフィルタ回路の領域FIL6とバンドパスフィルタ回路BPF2-1の領域が分かれて形成され、ローパスフィルタ回路の領域FIL6とバンドパスフィルタ回路BPF2-2の領域が分かれて形成される。このビアは第1のグランド電極と第2のグランド電極の両方に接続される。このシールドにより、各受信経路間のアイソレーションが保たれ、さらに、上下のグランド電極の間に形成されることで、他の回路とのアイソレーション、特に表面実装されている回路部品や、制御端子との信号の干渉を抑制できるため、複雑な回路構成においてもノイズの少ない回路を構成することができる。
 領域FIL1とFIL3の間、領域FIL2とFIL4の間にあるシールドは前段と後段のフィルタ回路同士の干渉を防ぐことができ、所望の周波数帯域のみを通過させることができるので通信特性の向上に寄与する。
 積層体内部に引き込まれた送信経路を形成する電極パターンは、ローパスフィルタ回路LPF1を含め、積層方向に見て、積層体内の受信経路、特に受信経路に配置される前段のフィルタ回路が重ならないように配置している。受信経路同士の挿入損失差を小さくできる。
 バンドパスフィルタ回路BPF2-1,2-2,2-3,2-4の積層体内の構成について説明する。第7層、第8層の共振線路は、両端がスルーホールにより接続されたものを2層に渡って配置した電極パターンにより形成される。多層に渡ってこの並列線路を構成したことにより、バンドパスフィルタ回路の挿入損失を改善できる。各バンドパスフィルタの共振線路は同じ誘電体層に形成されている。第14層、第16層には接地容量の電極パターンが形成される。第7層、第8層の共振線路との間には第13層の第2のグランド電極GND2が配置されるが、グランド電極との接地容量次第ではこれらの接地容量は第2のグランド電極GND2よりも上層側に形成してもよい。第15層には飛び越し容量が形成される。
 ローパスフィルタ回路LPF2の積層体内の構成について説明する。ローパスフィルタ回路は、第2層、第4層、第5層、第6層、第7層に形成された伝送線路、及び第15層、第16層に形成された容量が各層のビアにより接続されて構成される。伝送線路の一部は積層体内で螺旋状になるよう形成される。スイッチング回路DP3T2は、この積層体内のローパスフィルタ回路LPF2の電極パターンが形成される領域と重なるように搭載面上に配置される。スイッチング回路DP3T2とローパスフィルタ回路LPF2が近接するので、送信経路の伝送線路を短くすることができ挿入損失の低下を抑制できる。
 平衡―不平衡変換回路BAL1b、BAL2bおよびBAL3bの積層体内の構成について説明する。平衡―不平衡変換回路BAL1b、BAL2bの伝送線路と、バンドパスフィルタ回路BPF1-1、BPF1-2の容量が、第5層~第13層のビアを介して接続されている。接続された第5層の伝送線路は第5層、第6層,第8層,第10層、第12層に形成された伝送線路により不平衡側の線路を形成する。平衡―不平衡変換回路BAL1b、BAL2bは、第7層,第9層,第11層、第12層、および第14層の伝送線路がそれぞれ平衡側の線路として、最下層の裏面に形成された第1の受信端子Rx1+、Rx1-、Rx2+、Rx2-に接続される。平衡―不平衡変換回路BAL3aは、上記のBAL1b,BAL2bの構成と概略同じであるが、搭載面から引き回された第2層の伝送線路lxinaと不平衡側の線路が接続される。
 第13層~第17層について説明する。第13層はほぼ全面に第2のグランド電極GND2を形成する。また、第15層はほぼ全面に第5のグランド電極GND5を形成する。これにより第14層、第16層で形成する接地容量との干渉を防ぐことができる。第17層も同様に全面に第4のグランド電極GND4を形成する。当該5層によりバンドパスフィルタ回路の接地容量を形成することができる。
 [6]スイッチング回路
 図2に記載したスイッチング回路DP3T1について以下に説明する。スイッチング回路DP3T1は、第1及び第2のアンテナ端子ANT1、ANT2に接続される端子(以下、スイッチング回路の説明においては説明を簡略するため同じ名称のアンテナ端子ANT1,ANT2とする)と、第1の通信システム用の送信端子Tx1及び第1及び第2の受信端子Rx1、Rx2に接続される端子(以下、単に送信端子Tx、第1の受信端子Rx1、第2の受信端子Rx2とする)を有する。
 この図2のスイッチング回路DP3T1は、第1~第3のスイッチSW1、SW2、SW3を用いることができ、この実施形態ではスイッチに全て単極双投の(Single-Pole,Dual-Throw)スイッチSW1、SW2、SW3を3個用いる。
 これらのスイッチSW1、SW2、SW3は、図8A~Bの搭載面に示すように、それぞれを積層体の搭載面上に配置し、各スイッチの端子同士をワイヤや搭載面上の伝送線路等で接続した構成とすることができる。
 この図2のスイッチング回路DP3T1において、スイッチSW1は、単極側端子が第1のアンテナ端子ANT1に接続され、双投側端子の一方が第1の受信端子Rx1に接続され、他方が後述するスイッチSW3の双投側端子の一方に接続される。スイッチSW2は、単極側端子が第2のアンテナ端子ANT2に接続され、双投側端子の一方が第2の受信端子Rx2に接続され、他方がスイッチSW3の双投側端子の他方に接続される。スイッチSW3は、単極側端子が送信端子Txに接続され、双投側端子の二つが上述のようにスイッチSW1、SW2の双投側端子に繋がる。前記スイッチSW3は、スイッチSW1又はスイッチSW2との接続を切り換え可能である。スイッチSW1とSW2は、同じ制御端子に接続することが好ましい。端子数を少なくすることができ、小型化や電源ライン数を減らす事によって高周波回路部品内の他の回路素子への干渉を減らすことができる。
 この構成のスイッチング回路を用いる場合には、スイッチSW1とSW3、スイッチSW2とSW3の間を繋ぐ経路にキャパシタを配置しない構成とすることが好ましい。部品点数を削減でき、かつ挿入損失の低減を図ることができる。さらに、積層体の表面に実装配置する場合には、部品点数の削減によるスイッチング回路の小型化が可能である。スイッチ間にキャパシタを配置する必要が無いため、スイッチング回路の実装面積を少なくすることができる。特に、スイッチの双極側端子同士が接続される側はこのキャパシタを配置しない構成とすることが好ましい。
 上記スイッチはFET素子を用いることができるがその他のトランジスタ素子でもよい。FET素子は、p-HEMT(pseudomorphic high electron mobility transistor)を用いた。この実施形態において、FET素子のドレイン電極とソース電極は接続を逆にしても同様の機能を持つ高周波回路を構成することができる。
 図14は、図9の実施形態に用いることが可能なスイッチング回路DP3T2の等価回路図の一例である。スイッチング回路DP3T1が複数のスイッチを用いた構成であるのに対し、図14のスイッチング回路DP3T2は、6つ以上のトランジスタ素子を一体の半導体基板上で組み合わせて用いる。実質的に図2のスイッチング回路DP3T1と同様の切り替え動作を行なうことができる。また、一つの半導体基板上に全てのトランジスタを配置できるので、スイッチング回路を小型化できる。
 図14のスイッチング回路は、第1,2,4,5,6,8のトランジスタからなる。トランジスタとしてFET素子を用いた。以降はFET素子として説明する。
 第1のFET素子Tr1は、ドレイン電極かソース電極のどちらか一方が第1のアンテナ端子ANT1に、他方が第1の受信端子Rx1に接続される。また、第1のFET素子Tr1のゲート電極は制御端子Vr1の電源ラインが接続される。
 第4のFET素子Tr4は、ドレイン電極かソース電極のどちらか一方が第1のアンテナ端子に接続され、他方が送信端子Txに接続される。第4のFET素子Tr4のゲート電極は制御端子Va1の電源ラインに接続される。
 第5のFET素子Tr5はドレイン電極とソース電極のどちらか一方が第2のアンテナ端子ANT2に繋がれ、他方が第2の受信端子Rx2に繋がれる。また、第5のFET素子Tr5のゲート電極は制御端子Vr2の電源ラインが接続される。
 第8のFET素子Tr8は、ドレイン電極とソース電極のどちらか一方が第2のアンテナ端子に接続され、他方が送信端子Txに接続される。第8のFET素子Tr8のゲート電極は制御端子Va2の電源ラインに接続される。
 第2のFET素子Tr2は、ドレイン電極とソース電極のどちらか一方が第1のFET素子Tr1と第1の受信端子の間にあるノードに接続され、他方が接地される。第2のFET素子Tr2のゲート電極は制御端子Vt1の電源ラインに接続される。
 第6のFET素子Tr6は、ドレイン電極とソース電極のどちらか一方が第5のFET素子Tr5と第2の受信端子の間にあるノードに接続され、他方が接地される。第6のFET素子Tr6のゲート電極は制御端子Vt2の電源ラインに接続される。
 第1及び第2のアンテナ端子ANT1,2、第1及び第2の受信端子Rx1、Rx2、送信端子Txには直流電源をカットするためのDCカットコンデンサを配置することができる。また、第2のFET素子Tr2と接地の間、第6のFET素子Tr6と接地の間にもDCカットコンデンサを配置することができる。
 第1及び第2の受信端子Rx1、Rx2、送信端子Txに分波回路などを接続し、第1の通信システムの周波数帯域と第2の通信システムの周波数帯域の信号を分派すれば、異なる二つの通信システムに対応する高周波回路とすることができる。
 例えば、各アンテナ端子ANT1,ANT2と送信端子Tx、各受信端子Rx1、Rx2の間を接続するためには、各制御端子の電圧を次の表のように制御すればよい。ModeTx1、Tx2,Rxと各端子の接続は表1での説明と同様である。
Figure JPOXMLDOC01-appb-T000002
 制御端子Vt1とVt2は常に印加する電圧の高/低(接続/非接続)が同じであるため、制御端子を共通化することができる。また、第1のアンテナ端子ANT1と送信端子Txの信号経路を接続させた状態において、FET素子Tr2、Tr6は、制御端子Vt1,Vt2から高い電圧が印加されてFETスイッチのドレイン電極とソース電極間が接続された状態であるため、第1の受信端子Rx1と第1のFET素子Tr1の間のノードから接地されるシャント回路と、第2の受信端子Rx2と第5のFET素子Tr5の間のノードから接地されるシャント回路が形成され、送信経路と受信経路の間のアイソレーションを確保することができる。
 この実施形態のスイッチ回路は、上記のような構造を持つために、第2、第6のトランジスタ素子Tr2、Tr6は、第1、第4、第5、第8のFET素子Tr1、Tr3~5よりゲート数が少なく、耐圧が低いものを用いることができる。ゲート数が少ないFET素子は小型で安価であり低損失であるため有利である。ここで耐圧の高い、低いとは、ゲート-ソース間を非接続とした状態のFET素子に、ドレイン端子から高周波電力を与えたときにソース端子側に電力が漏洩しない状態を保つための耐電力値の値で判断できる。   
 以下に理由を詳述する。送信端子Txから第1のアンテナ端子ANT1の信号経路が接続される場合、送信経路から第2のアンテナ端子ANT2は高周波的に切り離されるため、第4のFET素子Tr8はOFF状態となる。また、第1のFET素子Tr1も第1の受信端子側へ信号が漏洩しないように非接続の状態となる。そのため、送信端子Txから第1のFET素子Tr1を介して接続される第2のFET素子Tr2は、高い電圧が直接印加されることが無いため、耐圧が低いものを用いることができる。
 また、信号を受信する場合には第1のアンテナ端子ANT1と第1の受信端子Rx1が接続される。この時、第1のFET素子Tr1のドレインーソース間が接続されたON状態となり、第2、第4のFET素子Tr2,Tr4は非接続の状態である。受信信号の電力は、送信経路の信号電力よりも遥に小さいため、第2のFET素子は耐圧が低いものを用いることができる。
 第6のFET素子Tr6の耐圧が低いものでもよい理由も、上記と同様の理由による。
 FET素子のドレイン-ソース間が非接続の状態の時に十分大きな電力の高周波信号が加わった場合には、ゲート-ソース間電圧が閾値を越えるようになり、FET素子のドレインーソース間はオフ状態を維持できなくなり、高調波歪や相互変調歪が発生する。そのためこのような歪みが発生しない耐圧の高いトランジスタ回路とすることが好ましい。
 図15は、スイッチング回路DP3T2の他の実施形態を示す図である。図14と説明が同じになるFET素子については説明を一部省略する。
 第3のFET素子Tr3と第4のFET素子Tr4が、第1のアンテナ端子ANT1から送信端子Txに繋がる信号経路に配置され、第3のFET素子Tr3は第1のアンテナ端子ANT1側に、第4のFET素子Tr4は送信端子Tx側に配置される。第3のFET素子Tr3はドレイン電極かソース電極のどちらか一方が第1のアンテナ端子ANT1に接続され、他方が第4のFET素子Tr4に接続される。第4のFET素子Tr4はドレイン電極かソース電極のどちらか一方が第3のFET素子Tr3に接続され、他方が送信端子Txに接続される。第3のFET素子Tr3のゲート電極は制御端子Vt1の電源ラインに、第4のFET素子Tr4のゲート電極は制御端子Va1の電源ラインに接続される。
 第7のFET素子Tr4と第8のFET素子Tr8が、第2のアンテナ端子ANT2から送信端子Txに繋がる信号経路に配置され、第7のFET素子Tr7は第2のアンテナ端子ANT2側に、第8のFET素子Tr8は送信端子Tx側に配置される。第7のFET素子Tr7はドレイン電極とソース電極のどちらか一方が第2のアンテナ端子ANT2に接続され、他方が第8のFET素子Tr8に接続される。第8のFET素子Tr8はドレイン電極とソース電極のどちらか一方が第7のFET素子Tr7に接続され、他方が送信端子Txに接続される。第7のFET素子Tr7のゲート電極は制御端子Vt2の電源ラインに、第8のFET素子Tr8のゲート電極は制御端子Va2の電源ラインに接続される。
 第9のFET素子Tr9はドレイン電極とソース電極のどちらか一方が第3のFET素子Tr3と第4のFET素子Tr4の間にあるノードに接続され、他方が接地される。第9のFET素子Tr9と接地点との間の信号経路にはキャパシタC3を配置しても良い。また、第9のFET素子Tr9のゲート電極は、制御端子Va2の電源ラインが第8のFET素子Tr8と共有された状態で接続される。
 第10のFET素子Tr10はドレイン電極とソース電極のどちらか一方が第7のFET素子Tr7と第8のFET素子Tr8の間にあるノードに接続され、他方が接地される。第10のFET素子Tr10と接地点との間の信号経路にはキャパシタC3を配置しても良い。また、第10のFET素子Tr10のゲート電極は、制御端子Va1の電源ラインが第4のFET素子と共有された状態で接続される。
 第8と第9のFET素子Tr8,Tr9、第4と第10のFET素子Tr4,Tr10は電源ラインが共有化されているため、そのON/OFFが同じになるように制御することができる。このため、例えば第1の送信端子Txから第1のアンテナ端子間の経路に信号を流す場合、第8のFET素子Tr8を介して第2のアンテナ端子へ漏洩する漏洩信号の影響を小さくできる。また、電源端子を共有させることで、電源端子数や電源ラインを少なくでき、回路部品の構造簡略化や小型化が行いやすい。詳細は後述する。
 また、第2のFET素子Tr2はドレイン電極とソース電極のどちらか一方が第1のFET素子と第1の受信端子Rx1の間にあるノードに接続され、他方が接地される。この場合、第2のFET素子Tr2のゲート電極は、制御端子Vt1の電源ラインが第3のFET素子Tr3と共有された状態で接続される構成とすることができる。第2のFET素子Tr2と接地の間には、キャパシタC1を配置しても良い。
 同様に、第6のFET素子Tr6はドレイン電極とソース電極のどちらか一方が第5のFET素子と第2の受信端子Rx2の間にあるノードに接続され、他方が接地される。この場合、第6のFET素子Tr6のゲート電極は、制御端子Vt2の電源ラインが第7のFET素子Tr7と共有された状態で接続される構成とすることができる。第6のFET素子Tr6と接地の間には、キャパシタC4を配置しても良い。
 この実施形態に用いる高周波回路は、前記のように電源端子を共有させることで、電源端子数や電源ラインを少なくでき、回路部品の構造の簡略化、小型化が行いやすい。
 なお、第1の受信端子と第1のアンテナ端子を接続する際に、第2の受信端子と第2のアンテナ端子を同時接続するようなスイッチングを行なう場合には、制御端子Vr1とVr2,Vt1とVt2も共通化することができる。
 なお、第3のFET素子Tr3と第7のFET素子Tr7が無い構成でも実施形態の高周波回路部品に用いるスイッチング回路として使用できるが、第7のFET素子Tr7と第6のFET素子Tr6が有る構成のスイッチング回路にすれば、送信経路と受信経路のアイソレーションを確保しやすい。
 図15のスイッチング回路において、第2及び第6のトランジスタ回路Tr2,Tr6を用いる場合、第2及び第6のトランジスタ回路Tr2,Tr6の少なくともどちらか一方は第4および第8のトランジスタ回路Tr4,Tr8よりも耐圧が低いことが好ましい。第2及び第6のトランジスタ回路Tr2,Tr6の両方を第4および第8のトランジスタ回路よりも耐圧が低いものとすることがなお好ましい。
 また、第3及び第7のトランジスタ回路Tr3,Tr7の少なくともどちらか一方は、それぞれ、第4および第8のトランジスタ回路Tr4,Tr8よりも耐圧が低いことが好ましい。第3及び第7のトランジスタ回路Tr3,Tr7の両方を第4および第8のトランジスタ回路Tr4,Tr8よりも耐圧が低いものとすることがなお好ましい。FET素子部材を直列に接続した場合にはT1-T2間の高周波信号による電圧は分圧されるため、各FET素子部材のソースの電位変動は小さくなり、FET素子が単体のFET素子部材に比べてより大きな電圧に耐えうる。FET素子Tr3とFET素子Tr4を配置した事で、一つのFET素子だけを用いたときよりも、両方のFET素子は耐圧が低いものを用いることができる。ソース電極とドレイン電極が接続されている状態においては、FET素Tr3、Tr4には、ソース電極-ドレイン電極の間に大きな電圧がかからないため、耐圧が低いものでも問題にはならない。
 第2及び第6のトランジスタ回路Tr2,Tr6の少なくともどちらか一方は第4および第8のトランジスタ回路よりも耐圧が低いものを用いることができる理由は、図14のスイッチング回路の説明で述べたとおりである。
 第3及び第7のトランジスタ回路Tr3,Tr7の耐圧が低くて良い理由を述べる。
 送信端子Txから第1のアンテナ端子ANT1の信号経路が接続される場合、送信経路から第2のアンテナ端子ANT2は高周波的に切り離されるため、第8のトランジスタ回路Tr8はOFF状態となる。この時、第7のトランジスタ回路Tr7もOFF状態であるが、送信信号は第8のトランジスタ回路で遮断されるので、第7のトランジスタ回路Tr7に高い電圧が付加されることがない。したがって第7のトランジスタ回路Tr7は、耐圧が小さくゲート数の少ないトランジスタ回路でも使用することができる。ゲート数が少ないトランジスタ回路は小型で安価であり低損失であるため有利である。
 送信端子Txから第2のアンテナ端子ANT2の信号経路が接続される場合は、第4及び第3のトランジスタ回路Tr3,Tr4はOFF状態になるので、同様に、第1のアンテナ端子ANT1側に、ゲート数の少なく、耐圧が小さい第3のトランジスタ素子Tr3を用いることができる。
 また、受信の場合を考えると、第1のアンテナ端子ANT1と第1の受信端子Rx1が接続され、第2のアンテナ端子ANT2と第2の受信端子Rx2が接続される。この時、第1及び第5のトランジスタ回路Tr1,Tr5がON状態となり、第2、第3、第6及び第7のトランジスタ回路Tr2,Tr3,Tr6,Tr7がOFF状態となる。受信信号の電力は、送信時の信号電力よりも遥に小さいため、これらOFF状態のトランジスタ回路に必要とされる耐圧は低く、ゲート数の少ない小型または安価なトランジスタ素子を用いることができる。
 各アンテナ端子と送信端子、各受信端子の間を接続するためには、前記の表2と同じ制御ロジックを用いることができる。
 第1のアンテナ端子ANT1と送信端子Txの信号経路を繋げた状態であるMode Tx1について述べる。
 制御端子Va1とVt1からHigh電圧(3.0V)が印加され、制御端子Va1に繋がる第4のトランジスタ回路と、制御端子Vt1に繋がる第3のトランジスタ回路Tr3がON状態になる。第1のアンテナ端子ANT1と送信端子Txの信号経路が接続された状態になる。
 またこの状態において、制御端子Va2はLow電圧(0.0V)が印加され、制御端子Va2に繋がる第8のトランジスタ回路はOFF状態になる。これにより、第2のアンテナANT2と送信端子Txの信号経路に流れる信号は遮断される。
 また、制御端子Va1は第10のトランジスタ回路Tr10にも繋がっており、第10のトランジスタ回路Tr10はON状態になるため、第8のトランジスタ回路Tr8と第7のトランジスタ回路Tr7の間にあるノードから接地される経路はシャント回路として作用する。このため、トランジスタ回路Tr8から漏洩した信号は、このシャント回路側に流れるため、送信端子Txから第2のアンテナ端子ANT2に流れる信号量がさらに少なくなり、アンテナ端子間の送信経路同士及び送信端子から第1の受信端子へのアイソレーションを確保することができ、Txダイバーシティ回路として好ましい送信状態を維持できる。
 第8のトランジスタ回路Tr8がOFF状態であるため、第7のトランジスタ回路Tr7がOFF状態であっても、第7のトランジスタ回路Tr7にかかる信号電圧は小さい。そのため、第7のトランジスタ回路Tr7はゲート数が少ない耐圧の低いものを用いることができる。
 制御端子Vt2への印加電圧はHighでもLowでも、スイッチ回路として動作させることは可能である。ただし、制御端子Vt2からHigh電圧(3.0V)電圧が印加されれば、制御端子Vt2に繋がる第6と第7のトランジスタ回路Tr6,Tr7がON状態となり、第5のトランジスタ回路Tr5と第2の受信端子Rx2の間から接地される信号経路がシャント回路となるので、第5のトランジスタ回路Tr5から第2の受信端子Tr2に漏洩する信号があっても第2の受信端子Rx2側に信号が行かないため、送信経路と受信経路のアイソレーションを確保することができる。
 ModeがTx2の場合も、上記と同様に、各信号経路に対応したトランジスタ回路の接続/非接続が切り替わる。説明は省略する。
 ModeがRxの場合を説明する。
 制御端子Vr1とVr2からHigh電圧(3.0V)が印加され、制御端子Vr1に繋がる第1のトランジスタ回路Tr1と、制御端子Vr2に繋がる第5のトランジスタ回路Tr5がON状態になる。これにより、第1のアンテナ端子ANT1と第1の受信端子Rx1、第2のアンテナ端子ANT2と第2の受信端子Rx2の信号経路が接続された状態になる。
 この状態において、制御端子Vt1とVt2からはLow電圧(0.0V)が印加され、制御端子Vt1に繋がる第2と第3のトランジスタ回路、制御端子Vt2に繋がる第6と第7のトランジスタ回路Tr6,Tr7はOFF状態となる。これにより、第1のアンテナ端子ANT1と第1の受信端子Rx1の信号経路、第2のアンテナ端子ANT2と第2の受信端子Rx2の信号経路から信号が他の経路に漏れることが抑制される。
 またこの状態において、制御端子Va1とVa2の印加電圧はHighでも、Lowでも、スイッチ回路として動作させることは可能である。制御端子Va1とVa2にHigh電圧が印加されていれば、第9、第10のトランジスタ回路Tr9,Tr10がON状態となりシャント回路となるので、たとえ第3、第7のトランジスタ回路Tr3,Tr7から送信端子Tx側に信号が漏洩したとしても信号はシャント回路側に流れるので、送信経路と受信経路のアイソレーションを確保することができるため、好ましい。
 図16は、トランジスタ素子を一つの半導体基板上で構成したスイッチング回路の基板面のレイアウトの模式図である。信号経路は実線で、電源ラインは破線で示す。
 送信端子Txに接続される端子(以下、説明を簡略するために単に送信端子Txとする)、第1及び第2の受信端子に接続される端子(以下単に第1の受信端子Rx1、第2の受信端子Rx2)が、単一の半導体シリコン基板の基板面上に形成される。
 第1の受信端子Rx1、第2の受信端子Rx2が、隣り合う角に配置される。受信端子が角側に配置されるので、他の端子と離した状態で回路が設計でき、他の信号経路とのアイソレーションを確保できる。トランジスタ素子はこの受信端子より積層面の角から離れた内部側に配置される。
 送信端子Txは受信端子Rx1,Rx2が配置される角に挟まれた辺に反って配置され、受信端子Rx1,Rx2の中間点に配置される。送信端子Txが受信端子Rx1、Rx2の中間点に配置されるため、トランジスタ素子などの回路素子もこの送信端子Txを中心に線対称になるよう配置でき、送信端子Txと受信端子Rx1,Rx2の間のアイソレーションがほぼ同じ程度に確保できる。また、送信端子Txと受信端子Rx1、Rx2の間にキャパシタ等のほかの素子も配置できるので、回路設計が容易になる。また、グランド電極を形成することで、送信経路と受信経路のアイソレーションを確保することができる。
 また、スイッチを組み合わせるスイッチング回路と異なり、伝送線路の一部を共有化できるので、スイッチング回路の小型化が可能であり、高周波回路部品の搭載面の設計レイアウトが容易になる。また、伝送線路が共有化されて短くできる分、損失を減らすことができる。
 また、スイッチを組み合わせるスイッチング回路よりも左右対称の回路を形成しやすいため、受信経路同士や、送信経路を切り換えた場合にリターンロスや挿入損失が同様に変化するので、各アンテナからの出力電圧を一定にできる。
 第1のアンテナ端子ANT1に接続される電極と第2のアンテナ端子ANT2に接続される電極(以下、単にアンテナ端子ANT1、ANT2)は、残る二つの角側に配置される。アンテナ端子ANT1、ANT2が角側に配置されるので、他の端子と離した状態で回路が設計でき、他の信号経路とのアイソレーションを確保できる。トランジスタ素子は搭載面においてアンテナ端子より内部側に配置される。電源ラインはこのアンテナ端子ANT1、ANT2、受信端子Rx1、Rx2、送信端子Txの少なくとも一つより、角側(外周側)に回りこむように形成すれば、他のトランジスタ素子との干渉が小さくなり、各信号経路のアイソレーションを確保できる。電源ラインは半導体基板の少なくとも一つの辺に沿って形成されることが好ましい。
 この端子配置において、第4のトランジスタ回路Tr4と第8のトランジスタ素子Tr8が送信端子Txに対して等距離かつ他のトランジスタ素子より近接するように配置される。
 第9のトランジスタ素子Tr9は第4のトランジスタ素子Tr4を介して送信端子Txから離れる側に配置、接続される。また、第10のトランジスタ素子Tr10は第8のトランジスタ素子Tr8を介して送信端子Txから離れる側に配置、接続される。
 第3のトランジスタ素子Tr3は、第9のトランジスタ素子Tr9と第1のアンテナ端子ANT1の間に配置される。また、第7のトランジスタ素子Tr7は、第10のトランジスタ素子Tr10と第2のアンテナ端子ANT2の間に配置される。
 第1のトランジスタ素子Tr1は第9のトランジスタ素子Tr9と第1の受信端子Rx1の間に配置される。第1のトランジスタ素子Tr1は第1のアンテナ端子ANT1と第1の受信端子Rx1の間にある受信経路を開閉するための素子であるため、送信経路とのアイソレーション確保を行なうことが好ましい。そのために第1のトランジスタ素子Tr1は、第1の受信端子Rx1との距離が、送信経路に配置される各トランジスタ素子Tr3、Tr9、Tr4との距離より近くなるように配置されている。
 第5のトランジスタ素子Tr5は第10のトランジスタ素子Tr10と第2の受信端子Rx2の間に配置される。第5のトランジスタ素子Tr5は、第1のトランジスタと同様の理由から、第2の受信端子Rx2との距離が、送信経路に配置される各トランジスタ素子Tr7、Tr10、Tr8との距離より近くなるように配置されている。
 第2のトランジスタ素子Tr2は、第1の受信端子Rx1と送信端子の間に配置され、第2のトランジスタ素子Tr2に接続される第1のキャパシタC1、および第1のグランド端子電極GND1と共に、半導体基板の辺に沿って配置されている。また、第6のトランジスタ素子Tr6は、第2の受信端子電極Rx2と送信端子電極Txの間に配置され、第6のトランジスタ素子Tr6に接続される第4キャパシタC4および第4のグランド端子GND4と共に、半導体基板の辺に沿って配置されている。
 上記のような素子配置とすることで、アイソレーション特性に優れたTxダイバーシティ回路を得ることができる。
(3)第3の実施形態
 図17は、別の実施形態を示すブロック図である。
 第1及び第2の分波回路DIP1,DIP2の各々は、第1の通信システムの周波数帯域を通過帯域とし第2の通信システムの周波数帯域を阻止帯域とするローパスフィルタ部と、第1の通信システムの周波数帯域を阻止帯域とし第2の通信システムの周波数帯域を通過帯域とするハイパスフィルタ部とで構成されているダイプレクサである。第1の分波回路DIP1のローパスフィルタ部と第1の通信システム用の第1の受信端子Rx1-1との間に、DIP1から順にバンドパスフィルタ回路BPF3-1-1、及び第1の通信システムの受信信号を増幅する低雑音増幅器回路LNA1-1が接続されている。バンドパスフィルタ回路BPF3-1-1は、第2の通信システムの信号も含めた不要信号が低雑音増幅器回路LNA1に入力するのを防ぐ。
 また第1の分波回路DIP1のハイパスフィルタ部と第2の通信システム用の第1の受信端子Rx1-2との間に、DIP1から順にバンドパスフィルタ回路BPF3-1-2、及び第2の通信システムの受信信号を増幅する低雑音増幅器回路LNA1-2が接続されている。バンドパスフィルタ回路BPF3-1-2は、第1の通信システムの信号も含めた不要信号が低雑音増幅器回路LNA1-2に入力するのを防ぐ。
 また第2の分波回路DIP2のローパスフィルタ部と第1の通信システム用の第2の受信端子Rx2-1との間に、DIP2から順にバンドパスフィルタ回路BPF3-2-1及び低雑音増幅器回路LNA2-1が接続されており、第2の分波回路DIP2のハイパスフィルタ部と第2の通信システム用の第2の受信端子Rx2-2との間に、DIP2から順にバンドパスフィルタ回路BPF3-2―2及び低雑音増幅器回路LNA2-2が接続されている。これらの回路の配置及び機能は、第1の分波回路DIP1と第1の通信システム用の第1の受信端子Rx1-1及び第2の通信システム用の第1の受信端子Rx1-2との間の回路のものと同じであるので、説明を省略する。
 図17に示す低雑音増幅器回路LNA1-1,LNA1-2,LNA2-1,LNA2-2を有することにより高周波回路の高集積化を図ることができる。但し、上記各分波回路と各受信端子との間の構成は、必要な特性に応じて省略するか、若しくはさらにフィルタ回路を追加しても良い。
 分波回路DIP3は、第1、第2の分波回路DIP1,DIP2と同様に、第1の通信システムの周波数帯域を通過帯域とし第2の通信システムの周波数帯域を阻止帯域とするローパスフィルタ部と、第1の通信システムの周波数帯域を阻止帯域とし第2の通信システムの周波数帯域を通過帯域とするハイパスフィルタ部とで構成されているダイプレクサである。
 分波回路DIP3のローパスフィルタ部と第1の通信システム用の送信端子Tx1との間に、DIP3から順に送信信号を増幅する高周波増幅回路HPA1、及びバンドパスフィルタ回路BPF3-5-1が接続されている。バンドパスフィルタ回路BPF3-5-1は送信信号以外の不要な帯域のノイズが高周波増幅回路HPA1に入力することを防ぐ。分波回路DIP3のローパスフィルタ部は、第1の通信システムの周波数帯域を通過帯域とし第2の通信システムの周波数帯域を阻止帯域とするローパスフィルタである。このローパスフィルタ部は高周波増幅回路HPA1で発生する高調波を抑制することもできる。
 分波回路DIP3のハイパスフィルタ部と第2の通信システム用の送信端子Tx2との間に、DIP3から順に送信信号を増幅する高周波増幅回路HPA2、及びバンドパスフィルタ回路BPF3-5-2が接続されている。バンドパスフィルタ回路BPF3-5-2は送信信号以外の不要な帯域のノイズが高周波増幅回路HPA2に入力することを防ぐ。分波回路DIP3のハイパスフィルタ部は、第2の通信システムの周波数帯域を通過帯域とし第1の通信システムの周波数帯域を阻止帯域とするハイパスフィルタである。
 図17に示す高周波増幅回路HPA1,HPA2を有することにより高周波回路の高集積化を図ることができる。分波回路DIP3と第1の通信システム用の送信端子Tx1との間の構成、及び分波回路DIP3と第2の通信システム用の送信端子Tx2との間の構成は、必要な特性に応じて省略するか、若しくはさらにフィルタ回路を追加しても良い。
 ハイパスフィルタ回路はバンドパスフィルタ回路より挿入損失が少ないため、低雑音増幅回路の入力側に配置するフィルタとして好ましい。また第1及び第2の分波回路DIP1,DIP2の代わりに単極双投型のスイッチ回路を設けても良い。
 図17に示す実施形態では、第1の通信システム用の第1の受信端子Rx1-1と第1の通信システム用の第2の受信端子Rx2-1とは別々のアンテナに独立に接続されているため、アンテナの切り換えを行うことなく、第1の通信システムの受信信号を同時に複数の受信端子に出力することができる。同様に、第2の通信システム用の第1の受信端子Rx1-2と第2の通信システム用の第2の受信端子Rx2-2とは別々のアンテナに独立に接続されているため、アンテナの切り換えを行うことなく、第2の通信システムの受信信号を同時に複数の受信端子に出力することができる。このようなマルチインプット方式の高周波回路を用いることにより、受信感度が向上する。
 この実施形態においても、積層体内部での受信経路に配置されるフィルタ回路は積層方向に見て重ならず、かつ、受信経路同士の間、送信経路と受信経路の間にビアによるシールドを配置する。
(4)第4の実施形態
 図18は、別のTxダイバーシティ回路の一例である。図18の高周波回路は、例えば第1の通信システムが2.5GHz帯のWiMAX、第2の通信システムが第1の通信システムより周波数帯域が高周波側である3.5GHz帯のWiMAXである無線通信装置に用いるフロンドエンドモジュールとして用いることができる。また、例えば2.4GHz帯と5GHz帯の無線LAN、WiMAXと無線LANとの組合せ等、別の組合せでもこの実施形態の構成を用いることができる。
 この高周波回路は、第1及び第2のアンテナ端子ANT1,ANT2と、第1の通信システムの第1の受信端子Rx1-1と第2の通信システムの第1の受信端子Rx1-2、第1の通信システムの送信端子Tx1と第2の通信システムの送信端子Tx2、第1の通信システムの第2の受信端子Rx2-1と第2の通信システムの第2の受信端子Rx2-2、および、スイッチング回路DP3T1を有する。スイッチング回路DP3T1は前記で説明したスイッチング回路と同じものを用いることができる。
 スイッチング回路DP3T1に単極双投の第4のスイッチSW4を配置する。第4のスイッチSW4の単極側端子がスイッチング回路DP3T1に接続され、双投側端子がそれぞれ第1の通信システム用の送信端子Tx1と第2の通信システム用の送信端子Tx2に接続される。第4のスイッチSW4は送信経路を適宜切り替え、スイッチング回路DP3T1とともに切り替わる事で各送信端子からの信号を第1のアンテナ端子ANT1、第2のアンテナ端子ANT2に送信することができる。このように、第4のスイッチSW4を設ける事で複数の周波数帯の通信システムに対応するTxダイバーシティ回路とすることができる。第4のスイッチSW4を用いたので、同じ位置に分波回路を用いた回路よりも、第1と第2の通信システムの周波数帯域が近いものであっても、確実に両方の送信端子からの信号を各アンテナ端子に送信でき、また送信ロスも抑えることが出来る。
 第4のスイッチSW4と各送信端子Tx1、Tx2の間には、高周波増幅回路HPA1、HPA2を配置することが好ましい。高周波増幅回路HPA1、HPA2は、同一のチップに集積し、高集積化することができる。
 この第4のスイッチSW4は、既知の単極双投のスイッチを用いることができる。高周波増幅回路HPA1あるいはHPA2の制御端子と、この高周波増幅回路HPA1、HPA2が接続される双投側端子と単極側端子の間のトランジスタ素子の制御端子とが、共通の端子に接続される構造とすることが好ましい。このようにすることで、回路全体の制御端子の数を減少させることが出来る。
 高周波増幅回路HPA1、HPA2と送信端子Tx1、Tx2の間にはバンドパスフィルタ回路BPF4-5-1,BPF4-5-2をそれぞれ配置することが好ましい。このバンドパスフィルタ回路BPF4-5-1、BPF4-5-2は、送信信号以外の不要な帯域のノイズが高周波増幅回路HPA1、HPA2に入力することを防ぐことができる。
 また、第4のスイッチSW4と高周波増幅回路HPA1、HPA2の間には、ローパスフィルタ回路LPF4-1、LPF4-2を配置することが好ましい。このローパスフィルタ回路LPF4-1、LPF4-2は、高周波増幅回路HPA1、HPA2で発生する高調波を抑制することができる。
 第1の通信システムの第1の受信端子Rx1-1と第2の通信システムの第1の受信端子Rx1-2は、第1の分波回路DIP1を介してスイッチング回路DP3T1の第1の受信端子Rx1に接続される。
 同様に、第1の通信システムの第2の受信端子Rx2-1と第2の通信システムの第2の受信端子Rx2-2は、第2の分波回路DIP2を介してスイッチング回路DP3T1の第2の受信端子Rx2に接続される。
 図18では分波回路DIP1、2を用いた例を示すが、上記のように分波回路はスイッチ回路でも良い。
 スイッチ又は分波回路と各受信端子の間には、受信信号を増幅する低雑音増幅器回路LNA1-1、1-2、2-1、2-2が接続されていることが好ましい。また、スイッチ回路又は分波回路と各受信端子の間には、低雑音増幅器回路LNAの前段か後段の少なくとも一方にバンドパスフィルタ回路BPF4-5-1、4-5-2が配置されていることが好ましい。バンドパスフィルタ回路BPF4-5-1,4-5-2は、各通信システムの信号も含めた不要信号が低雑音増幅器回路や各受信端子に入力するのを防ぐ。
 また、受信経路に分波回路を用いた場合は、低雑音増幅器回路のアンテナ側にフィルタ回路を配置しなくとも不要信号が低雑音増幅器回路LNAに入力するのを抑制することができる。そのためフィルタ回路を低雑音増幅器回路LNAの受信端子側のみに配置する構造を用いることができる。用いるフィルタ回路はバンドパスフィルタ回路が好ましい。
 図19に示すように、送信経路に配置された高周波増幅回路HPA1、HPA2の制御端子と、スイッチSW4のゲート電極に繋がる端子を共通化できる。
 この実施形態においても、積層体内部での受信経路に配置されるフィルタ回路は積層方向に見て重ならず、かつ、受信経路同士の間、送信経路と受信経路の間にビアによるシールドを配置する。
(5)第5の実施形態
 図20は、デュアルバンドの高周波回路の別のフ゛ロック図である。この高周波回路は、双極4投のスイッチング回路DP4Tを使用している。スイッチング回路DP4Tには二つの送信端子Tx1、Tx2が設けられ、一方は第1の通信システム用の送信端子Tx1に接続され、他方は第2の通信システム用の送信端子Tx2に接続される。
 分波回路DIP1と第1の受信端子Rx1-1およびRx1-2の間につながれた各回路、分波回路DIP2と第1の受信端子Rx2-1およびRx2-2の間につながれた各回路は、図17のフ゛ロック図の回路と同じであり、その構成および効果の説明を省略するが、この実施形態に限らず、必要により各フィルタ回路を追加、省略しても良いし、異なる種類のフィルタ回路を用いても良い。
 スイッチング回路DP4Tと第1の通信システム用の送信端子Tx1との間に、スイッチング回路DP4Tから順に、ローバスフィルタ回路LPF5-1、送信信号を増幅する高周波増幅回路HPA1、及びバンドパスフィルタ回路BPF5-5-1が接続されている。
 また、スイッチング回路DP4Tと第2の通信システム用の送信端子Tx2との間に、スイッチング回路DP4Tから順に、ローバスフィルタ回路LPF5-2、送信信号を増幅する高周波増幅回路HPA2、及びバンドパスフィルタ回路BPF5-5-2が接続されている。
 第5の実施形態の高周波回路は、第3の実施形態の高周波回路よりも分波回路が少なくてもよいため、積層体内の回路素子の設計自由度が高く、かつ、送信経路と受信経路を積層体内で離れるように設計ができ、特に送信経路でのアイソレーション確保に効果がある。
 図21は、上記スイッチング回路DP4T1を4つのスイッチで構成した一例を示す。スイッチング回路DP4T1は、第1のアンテナ端子ANT1に単極3投のスイッチSW1sの単極側端子が接続され、この第1の単極3投高周波スイッチSW1sは3投側端子の1つが第1の受信端子Rx1に接続され、第2のアンテナ端子ANT2に単極3投のスイッチSW2sの単極側端子が接続され、この第2の単極3投のスイッチSW2sは3投側端子の1つが第2の受信端子Rx2に接続されている。
 また、単極双投の高周波スイッチSW3sは、第1と第2の単極3投の高周波スイッチSW1s、SW2sの3投側端子のそれぞれ1つに双投側端子が繋がるように接続されている。同様に、単極双投の高周波スイッチSW4sが、第1と第2の単極3投のスイッチSW1s、SW2sの3投側端子の残りのそれぞれ1つに双投側端子が繋がるように接続されている。
 各スイッチSW1s、SW2s、SW3s、SW4sの切り替えによって、第1および第2の受信端子はそれぞれ同時に第1および第2のアンテナ端子ANT1、ANT2に接続可能に構成される。また、送信端子Tx1およびTx2のどちらか一方は前記第1および第2のアンテナ端子ANT1、ANT2を選択して接続可能に構成されている。
 図22は、図21の高周波回路に用いることが可能なスイッチング回路の等価回路の一形態を示す図である。
この実施形態のスイッチング回路は第1~第16のFET素子を用いたものであるが、必要となるアイソレーション特性やリターンロス特性によりFET素子を適宜省略または新たに付加することも可能である。
 第1のFET素子Tr1は、ドレイン電極かソース電極のどちらか一方が第1のアンテナ端子ANT1に、他方が第1の受信端子Rx1に接続される。また、第1のFET素子Tr1のゲート電極は制御端子Vr1の電源ラインが接続される。非接続状態とすることで送信経路から信号が漏洩することを抑制できる。
 第3のFET素子Tr3と第4のFET素子Tr4は、第1のアンテナ端子ANT1から第1の送信端子Tx1に繋がる信号経路に配置され、第3のFET素子Tr3は第1のアンテナ端子ANT1側に、第4のFET素子Tr4は第1の送信端子Tx1側に配置される。第3のFET素子Tr3はドレイン電極かソース電極のどちらか一方が第1のアンテナ端子ANT1に接続され、他方が第4のFET素子Tr4に接続される。第4のFET素子Tr4はドレイン電極かソース電極のどちらか一方が第3のFET素子Tr3に接続され、他方が第1の送信端子Tx1に接続される。第3のFET素子Tr3のゲート電極は制御端子Vt1の電源ラインに、第4のFET素子Tr4のゲート電極は制御端子Va1の電源ラインに接続される。
 第13のFET素子Tr13と第11のFET素子Tr11が、第2のアンテナ端子ANT2から第1の送信端子Tx1に繋がる信号経路に配置され、第13のFET素子Tr13は第2のアンテナ端子ANT2側に、第11のFET素子Tr11は第1の送信端子Tx1側に配置される。第13のFET素子Tr13はドレイン電極とソース電極のどちらか一方が第2のアンテナ端子ANT2に接続され、他方が第11のFET素子Tr11に接続される。第11のFET素子Tr11はドレイン電極とソース電極のどちらか一方が第13のFET素子Tr13に接続され、他方が第1の送信端子Tx1に接続される。第13のFET素子Tr13のゲート電極は制御端子Vt2の電源ラインに、第11のFET素子Tr11のゲート電極は制御端子Vb1の電源ラインに接続される。
 第3と第4のFET素子、第11と第15のFET素子はどちらかのみでも良いが、それぞれ配置することで漏洩信号が抑制でき好ましい。
 第9のFET素子Tr9はドレイン電極とソース電極のどちらか一方が第3のFET素子Tr3と第4のFET素子Tr4の間にあるノードに接続され、他方が接地される。第9のFET素子Tr9と接地点との間の信号経路にはキャパシタを配置しても良い。また、第9のFET素子Tr9のゲート電極は、制御端子Vb1の電源ラインが第11のFET素子Tr11と共有された状態で接続される。
 第15のFET素子Tr15はドレイン電極とソース電極のどちらか一方が第13のFET素子Tr13と第11のFET素子Tr11の間にあるノードに接続され、他方が接地される。第15のFET素子Tr15と接地点との間の信号経路にはキャパシタを配置しても良い。また、第15のFET素子Tr15のゲート電極は、制御端子Va1の電源ラインが第4のFET素子Tr4と共有された状態で接続される。
 この第9のFET素子Tr9によりシャント回路を形成することで、送信端子Tx1が一方のアンテナ端子に接続された際、他方への信号の漏洩を抑制できる。
 第5のFET素子Tr5はドレイン電極とソース電極のどちらか一方が第2のアンテナ端子ANT2に繋がれ、他方が第2の受信端子Rx2に繋がれる。また、第5のFET素子Tr5のゲート電極は制御端子Vr2の電源ラインが接続される。非接続状態とすることで送信経路から信号が漏洩することを抑制できる。
 第7のFET素子Tr7と第8のFET素子Tr8が、第2のアンテナ端子ANT2から第2の送信端子Tx2に繋がる信号経路に配置される。第7のFET素子Tr7はドレイン電極とソース電極のどちらか一方が第2のアンテナ端子ANT2と第13のFET素子Tr13間のノードに接続され、他方が第8のFET素子Tr8に接続される。第8のFET素子Tr8はドレイン電極とソース電極のどちらか一方が第7のFET素子Tr7に接続され、他方が第2の送信端子Txに接続される。第7のFET素子Tr7のゲート電極は制御端子Vt2の電源ラインに第2、第3のFET素子Tr2、Tr3と共有された状態で、第8のFET素子Tr8のゲート電極は制御端子Va2の電源ラインに接続される。
 第14のFET素子Tr14と第12のFET素子Tr12が、第1のアンテナ端子ANT1から第2の送信端子Tx2に繋がる信号経路に配置される。第14のFET素子Tr14はドレイン電極とソース電極のどちらか一方が第1のアンテナ端子ANT1と第3のFET素子Tr3の間のノードに接続され、他方が第12のFET素子Tr12に接続される。第12のFET素子Tr12はドレイン電極とソース電極のどちらか一方が第14のFET素子Tr14に接続され、他方が第2の送信端子Tx2に接続される。第14のFET素子Tr14のゲート電極は制御端子Vt1の電源ラインに、第12のFET素子Tr12のゲート電極は制御端子Vb2の電源ラインに接続される。
 第16のFET素子Tr16は、ドレイン電極とソース電極のどちらか一方が第14のFETと第12のFET素子Tr12の間にあるノードに接続され、他方が接地される。第16のFET素子Tr16と接地点との間の信号経路にはキャパシタを配置しても良い。また、第16のFET素子Tr16のゲート電極は、制御端子Va2の電源ラインに第8のFET素子Tr8と共有された状態で接続される。
 第10のFET素子Tr10は、ドレイン電極とソース電極のどちらか一方が第7のFET素子Tr7と第8のFET素子Tr8の間にあるノードに接続され、他方が接地される。第10のFET素子Tr10と接地点との間の信号経路にはキャパシタを配置しても良い。また、第10のFET素子Tr10のゲート電極は、制御端子Vb2の電源ラインに第12のFET素子Tr12と共有された状態で接続される。
 また、第2のFET素子Tr2はドレイン電極とソース電極のどちらか一方が第1のFET素子Tr1と第1の受信端子Rx1の間にあるノードに接続され、他方が接地される。第2のFET素子Tr2のゲート電極は、制御端子Vt1の電源ラインに第3及び第14のFET素子Tr14と共有された状態で接続された構成とすることができる。第2のFET素子Tr2と接地の間には、キャパシタを配置しても良い。
 同様に、第6のFET素子Tr6はドレイン電極とソース電極のどちらか一方が第5のFET素子Tr5と第2の受信端子Rx2の間にあるノードに接続され、他方が接地される。第6のFET素子Tr6のゲート電極は、制御端子Vt2の電源ラインに第7及び第13のFET素子Tr13と共有された状態で接続された構成とすることができる。第6のFET素子Tr6と接地の間には、キャパシタを配置しても良い。
 第2、第3及び第14のFET素子Tr2,Tr3,Tr14、第6、第7及び第13のFET素子Tr6,Tr7,Tr13は電源ラインが共有化されているため、その接続/非接続が同じになるように制御することができる。このため、例えば第1又は第2の送信端子Tx1,Tx2から第1のアンテナ端子間の経路に信号を流す場合、つまり第3又は第14のFET素子Tr14が接続された状態となる場合には、第2のFET素子Tr2が接続された状態となるため、第2の受信端子と第5のFET素子Tr5の間でシャント回路が形成される。これにより第1のトランジスタ素子を介して第2のアンテナ端子へ漏洩する漏洩信号を抑制でき、送信経路と受信経路のアイソレーションを高めることができる。
 また、第1又は第2の送信端子Tx1,Tx2から第1のアンテナ端子間の経路に信号を流す場合、第6のFET素子Tr6をON状態にするので、第2の受信端子と第5のFET素子Tr5の間にシャント回路が形成され、第2の受信端子側に信号が漏洩することを抑制でき、送信経路と受信経路のアイソレーションを高めることができる。
 また、電源端子を共有させることで、電源端子数や電源ラインを少なくでき、回路部品の構造簡略化や小型化が行いやすい。
 なお、第1の受信端子と第1のアンテナ端子を接続する際に、第2の受信端子と第2のアンテナ端子を接続するようなスイッチングを行なう場合には、制御端子Vr1及びVr2も共通化することができる。
 なお、第3、第7、第13、第14のFET素子Tr3、Tr7、Tr13,Tr14が無い構成でも実施形態の高周波回路部品に用いるスイッチング回路として使用できるが、これらのFET素子が有る構成のスイッチング回路にすれば、送信経路と受信経路のアイソレーションを確保しやすい。
 また、第9、第10、第15、第16のFET素子Tr9、Tr10、Tr15、Tr16が構成素子の一部となる各シャント回路が無い構成でも実施形態の高周波回路部品に用いるスイッチング回路として使用できるが、これらのシャント回路が有る構成のスイッチング回路にすれば、送信経路と受信経路のアイソレーションを確保しやすい。
 図22のスイッチング回路において、第2及び第6のFET素子Tr2、Tr6を用いる場合、第2及び第6のFET素子Tr2、Tr6の少なくとも一つは第4、第8、第11、及び第12のFET素子よTr4、Tr8、Tr11、Tr12りも耐圧が低いものであることが好ましい。第2及び第6のFET素子Tr2、Tr6の両方を第4、第8、第11、及び第12のFET素子Tr4、Tr8、Tr11、Tr12よりも耐圧が低いものであることがなお好ましい。
 また、第3、第7、第13、及び第14のFET素子Tr3,Tr7,Tr13,Tr14の少なくとも一つは、第4、第8、第11、及び第12のFET素子Tr4、Tr8、Tr11、Tr12よりも耐圧が低いものであることが好ましい。第3、第7、第13、及び第14のFET素子Tr3,Tr7,Tr13,Tr14の全てを第4、第8、第11、及び第12のFET素子Tr4、Tr8、Tr11、Tr12よりも耐圧が低いものであることがなお好ましい。
 例えば、各アンテナ端子と送信端子、各受信端子の間を接続するためには、各制御端子の電圧を次の表のように制御すればよい。Mode Tx1-1は、第1の送信端子Tx1と第1のアンテナ端子ANT1を接続する状態を示す。Mode Tx1-2は、第1の送信端子Tx1と第2のアンテナ端子ANT2を接続する状態を示す。Mode Tx2-1は、第2の送信端子Tx2と第1のアンテナ端子ANT1を接続する状態を示す。Mode Tx2-2は、第2の送信端子Tx2と第2のアンテナ端子ANT2を接続する状態を示す。Mode Rxは、第1のアンテナ端子と第1の受信端子を接続し、かつ、第2のアンテナ端子と第2の受信端子を接続する状態を示す。
Figure JPOXMLDOC01-appb-T000003
 図23は、図20の高周波回路に用いた双極4投スイッチング回路DP4Tの別の回路構成である。双極4投スイッチ回路DP4T2は、第1のアンテナ端子に単極双投のスイッチSW1tの単極側端子が接続され、この単極双投のスイッチSW1tは双投側端子の一方が第1の受信端子Rx1に接続され、第2のアンテナ端子に別の単極双投のスイッチSW2tの単極側端子が接続され、この単極双投スイッチSW2tは双投側端子の一方が第2の受信端子Rx2に接続されている。また、双極双投スイッチSW3tの双極側端子が、上記2つの単極双投スイッチSW1t、SW2tの双投側端子のそれぞれ他方に繋がるように接続されている。
 各スイッチSW1t、SW2t、SW3tの切り替えによって、第1および第2の受信端子はそれぞれ同時に第1および第2のアンテナ端子ANT1、ANT2に接続可能に構成され、送信端子Tx1およびTx2は前記第1および第2のアンテナ端子ANT1、ANT2を選択して接続可能に構成されている。
 図24は、図23の高周波回路に用いることが可能なスイッチング回路の等価回路の一形態を示す図である。
 このスイッチング回路は第1~第12のFET素子を用いたものである。
 第1のFET素子Tr1は、ドレイン電極かソース電極のどちらか一方が第1のアンテナ端子ANT1に、他方が第1の受信端子Rx1に接続される。また、第1のFET素子Tr1のゲート電極は制御端子Vr1の電源ラインが接続される。
 第3のFET素子Tr3と第4のFET素子Tr4は、第1のアンテナ端子ANT1から第1の送信端子Tx1に繋がる信号経路に配置される。第3のFET素子Tr3はドレイン電極かソース電極のどちらか一方が第1のアンテナ端子ANT1に接続され、他方が第4のFET素子Tr4に接続される。第4のFET素子Tr4はドレイン電極かソース電極のどちらか一方が第3のFET素子Tr3に接続され、他方が第1の送信端子Tx1に接続される。第3のFET素子Tr3のゲート電極は制御端子Vt1の電源ラインに、第4のFET素子Tr4のゲート電極は制御端子Va1の電源ラインに接続される。
 第11のFET素子Tr11はドレイン電極かソース電極のどちらか一方が第1の送信端子Tx1に接続され、他方が後述する第7と第8のFET素子Tr8の間にあるノードに接続される。また、第11のFET素子Tr11のゲート電極は制御端子Vb1の電源ラインが接続される。
 第9のFET素子Tr9はドレイン電極とソース電極のどちらか一方が第3のFET素子Tr3と第4のFET素子Tr4の間にあるノードに接続され、他方が接地される。第9のFET素子Tr9と接地点との間にはキャパシタを配置しても良い。また、第9のFET素子Tr9のゲート電極は、制御端子Vs1の電源ラインに接続される。
 第5のFET素子Tr5はドレイン電極とソース電極のどちらか一方が第2のアンテナ端子ANT2に繋がれ、他方が第2の受信端子Rx2に繋がれる。また、第5のFET素子Tr5のゲート電極は制御端子Vr2の電源ラインが接続される。
 第7のFET素子Tr7と第8のFET素子Tr8が、第2のアンテナ端子ANT2から第2の送信端子Tx2に繋がる信号経路に配置される。第7のFET素子Tr7はドレイン電極とソース電極のどちらか一方が第2のアンテナ端子ANT2に接続され、他方が第8のFET素子Tr8に接続される。第8のFET素子Tr8はドレイン電極とソース電極のどちらか一方が第7のFET素子Tr7に接続され、他方が第2の送信端子Tx2に接続される。第7のFET素子Tr7のゲート電極は制御端子Vt2の電源ラインに、第8のFET素子Tr8のゲート電極は制御端子Va2の電源ラインに接続される。
 第12のFET素子Tr12はドレイン電極かソース電極のどちらか一方が第2の送信端子Tx2に接続され、他方が第4のFET素子Tr4と第9のFET素子Tr9が接続される前記ノードとの間にあるノードに接続される。また、第12のFET素子Tr12のゲート電極は制御端子Vb2の電源ラインに接続される。
 第10のFET素子Tr10は、ドレイン電極とソース電極のどちらか一方が第7のFETと前記の第11のFET素子Tr11が接続されたノードとの間にあるノードに接続され、他方が接地される。第10のFET素子Tr10と接地点との間にはキャパシタを配置しても良い。また、第10のFET素子Tr10のゲート電極は制御端子Vs2の電源ラインに接続される。
 また、第2のFET素子Tr2はドレイン電極とソース電極のどちらか一方が第1のFET素子Tr1と第1の受信端子Rx1の間にあるノードに接続され、他方が接地される。第2のFET素子Tr2のゲート電極は、制御端子Vt1の電源ラインに第3のFET素子Tr3と共有された状態で接続された構成とすることができる。第2のFET素子Tr2と接地の間には、キャパシタを配置しても良い。
 同様に、第6のFET素子Tr6はドレイン電極とソース電極のどちらか一方が第5のFET素子Tr5と第2の受信端子Rx2の間にあるノードに接続され、他方が接地される。第6のFET素子Tr6のゲート電極は、制御端子Vt2の電源ラインが第7のFET素子Tr7と共有された状態で接続された構成とすることができる。第6のFET素子Tr6と接地の間には、キャパシタを配置しても良い。
 第2と第3のFET素子Tr2、Tr3、第6と第7のFET素子Tr6、Tr7は電源ラインが共有化されているため、その接続/非接続が同じになるように制御することができる。このため、例えば第1又は第2の送信端子Tx1,Tx2から第1のアンテナ端子間の経路に信号を流す場合、つまり第3のFET素子Tr3が接続された状態となる場合には、第2のFET素子Tr2が接続された状態となるため、第1の受信端子と第1のFET素子Tr1の間でシャント回路が形成される。これにより第1のFET素子Tr1を介して第2のアンテナ端子へ漏洩する漏洩信号を抑制でき、送信経路と受信経路のアイソレーションを高めることができる。
 また、第1又は第2の送信端子Tx1,Tx2から第1のアンテナ端子間の経路に信号を流す場合、第6のFET素子Tr6をON状態にするので、第2の受信端子と第5のFET素子Tr5の間にシャント回路が形成され、第2の受信端子側に信号が漏洩することを抑制でき、送信経路と受信経路のアイソレーションを高めることができる。
 なお、第1の受信端子と第1のアンテナ端子を接続する際に、第2の受信端子と第2のアンテナ端子を接続するようなスイッチングを行なう場合には、制御端子Vr1及びVr2も共通化することができる。
 なお、第3及び第7のFET素子Tr7が無い構成でも実施形態の高周波回路部品に用いるスイッチング回路として使用できるが、第3のFET素子Trと第6のFET素子Tr6が有る構成のスイッチング回路にすれば、送信経路と受信経路のアイソレーションを確保しやすい。
 また、第9及び第10のFET素子Tr9,10が構成素子の一部となる各シャント回路が無い構成でも実施形態の高周波回路部品に用いるスイッチング回路として使用できるが、第9のFET素子Tr9と第10のFET素子Tr10が有る構成のスイッチング回路にすれば、送信経路と受信経路のアイソレーションを確保しやすい。
 図24のスイッチング回路においても、第2及び第6のFET素子Tr2、Tr6の少なくともどちらか一方は第4、第8、第11、及び第12のFET素子Tr4,Tr8,Tr11,Tr12よりも耐圧が低いものであることが好ましい。第2及び第6のFET素子Tr2,Tr6の両方を第4、第8、第11、及び第12のFET素子Tr4,Tr8,Tr11,Tr12よりも耐圧が低いものであることがなお好ましい。
 また、第3及び第7のFET素子Tr3、Tr7の少なくともどちらか一方は、第4、第8、第11、及び第12のFET素子Tr4,Tr8,Tr11,Tr12よりも耐圧が低いものであることが好ましい。第3及び第7のFET素子Tr3、Tr7の両方を第4、第8、第11、及び第12のFET素子Tr4,Tr8,Tr11,Tr12よりも耐圧が低いものであることがなお好ましい。
 例えば、各アンテナ端子と送信端子、各受信端子の間を接続するためには、各制御端子の電圧を次の表のように制御すればよい。各Modeの説明は表4でした説明と同じである。
Figure JPOXMLDOC01-appb-T000004
ANT:アンテナ端子
SW:スイッチ
DP3T、DP4T:スイッチング回路
BPF:バンドパスフィルタ回路
LPF:ローパスフィルタ回路
HPA:高周波増幅回路
LNA:低雑音増幅器回路
DIP:分波回路
BAL:バラン(平衡不平衡変換回路)
Rx1:第1の受信端子
Rx2:第2の受信端子
Tx:送信端子
Va,Vt,Vr:制御端子
FIL1~6:フィルタ回路が形成される積層体内の領域
BAL1~3:平衡―不平衡変換回路が形成される積層体内の領域

Claims (30)

  1.  第1及び第2のアンテナ端子と、第1の通信システム用の送信端子並びに第1及び第2の受信端子が形成され、電極パターンが形成される複数の層を積層一体化した積層体と、
     前記積層体の搭載面上に搭載されるスイッチング回路を少なくとも備え、
     前記スイッチング回路は、前記送信端子が前記第1及び第2のアンテナ端子のどちらかを選択して接続可能であると共に、前記第1の受信端子が前記第1のアンテナ端子側のみとの接続/非接続を切り替えられ、前記第2の受信端子が前記第2のアンテナ端子側のみとの接続/非接続を切り替えられる高周波回路部品であって、
     前記積層体は内層に形成された第1のグランド電極と、前記第1のグランド電極と重なり他のグランド電極を挟まず前記搭載面とは反対側の層に形成された第2のグランド電極を備え、
     第1のフィルタ回路が前記スイッチング回路と前記第1の受信端子を繋ぐ受信経路に配置され、
     第2のフィルタ回路が前記スイッチング回路と前記第2の受信端子を繋ぐ受信経路に配置され、
     前記積層体の前記第1と第2のグランド電極に挟まれた層において、前記第1と第2のフィルタ回路の電極パターンの少なくとも一部が形成されると共に、前記第1のフィルタ回路と第2のフィルタ回路が、前記積層体の積層方向に見て異なる領域に形成されており、
     かつ、その領域の間には複数のビアによるシールドが形成されていることを特徴とする高周波回路部品。
  2.  請求項1に記載の高周波回路部品であって、
     前記スイッチング回路と前記第1の受信端子を繋ぐ受信経路には、第1のフィルタ回路の後段に第3のフィルタ回路が配置され、
     前記スイッチング回路と前記第2の受信端子を繋ぐ受信経路には、第2のフィルタ回路の後段に第4のフィルタ回路が配置され、
     前記積層体の前記第1と第2のグランド電極に挟まれた層において、第3及び第4のフィルタ回路のそれぞれの電極パターンの少なくとも一部が形成されると共に、
     前記第3と第4のフィルタ回路が前記積層体の積層方向に見て異なる領域に形成され、
     前記第3と第4のフィルタ回路の間にはそれぞれ複数のビアによるシールドが形成されていることを特徴とする高周波回路部品。
  3.  請求項2に記載の高周波回路部品であって、
     前記シールドを境に、前記スイッチング回路と前記第1の受信端子を繋ぐ受信経路の各回路(第1のフィルタ回路、第3のフィルタ回路)の電極パターンと、前記スイッチング回路と前記第2の受信端子を繋ぐ受信経路の各回路(第2のフィルタ回路、第4のフィルタ回路)の電極パターンが分かれて配置されていることを特徴とする高周波回路部品。
  4.  第1及び第2のアンテナ端子と、第1の通信システム用の送信端子並びに第1及び第2の受信端子が形成され、電極パターンが形成される複数の層を積層一体化した積層体と、
     前記積層体の搭載面上に搭載されるスイッチング回路を少なくとも備え、
     前記スイッチング回路は、前記送信端子が前記第1及び第2のアンテナ端子のどちらかを選択して接続可能であると共に、前記第1の受信端子が前記第1のアンテナ端子側のみとの接続/非接続を切り替えられ、前記第2の受信端子が前記第2のアンテナ端子側のみとの接続/非接続を切り替えられる高周波回路部品であって、
     前記積層体は、その上層側の内層に形成された第1のグランド電極と、下層側の内層に形成された第2のグランド電極を備え、
     第1のフィルタ回路が前記スイッチング回路と前記第1の受信端子を繋ぐ受信経路に配置され、
     第2のフィルタ回路が前記スイッチング回路と前記第2の受信端子を繋ぐ受信経路に配置され、
     第6のフィルタ回路が前記スイッチング回路と前記送信端子を繋ぐ送信経路に配置され、
     前記積層体の前記第1と第2のグランド電極に挟まれた層において、前記第1、第2、及び第6のフィルタ回路の電極パターンの少なくとも一部が形成されると共に、各フィルタ回路が、前記積層体の積層方向に見て異なる領域に形成されており、
     かつ、第1のフィルタ回路の電極パターンが形成される領域と第6のフィルタ回路の電極パターンが形成される領域、及び、第2のフィルタ回路の電極パターンが形成される領域と第6のフィルタ回路の電極パターンが形成される領域の間には複数のビアによるシールドが形成されていることを特徴とする高周波回路部品。
  5.  請求項4に記載の高周波回路部品であって、
     前記スイッチング回路と前記第1の受信端子を繋ぐ受信経路には、第1のフィルタ回路の後段に第3のフィルタ回路が配置され、
     前記スイッチング回路と前記第2の受信端子を繋ぐ受信経路には、第2のフィルタ回路の後段に第4のフィルタ回路が配置され、
     前記送信経路には、前記第6のフィルタ回路の前段に第5のフィルタ回路が配置され、
     前記積層体の前記第1と第2のグランド電極に挟まれた層において、前記第3、第4、及び第5のフィルタ回路の電極パターンの少なくとも一部が形成されると共に、各フィルタ回路が、前記積層体の積層方向に見て異なる領域に形成されており、
     かつ、第3のフィルタ回路の電極パターンが形成される領域と第5のフィルタ回路の電極パターンが形成される領域、及び、第4のフィルタ回路の電極パターンが形成される領域と第5のフィルタ回路の電極パターンが形成される領域の間には複数のビアによるシールドが形成されていることを特徴とする高周波回路部品。
  6.  請求項5に記載の高周波回路部品であって、
     前記スイッチング回路と前記第1の受信端子を繋ぐ受信経路の各回路(第1のフィルタ回路、第3のフィルタ回路)の電極パターンと前記送信経路の各回路(第6のフィルタ回路、第5のフィルタ回路)の電極パターンが前記シールドを境に分かれて配置され、かつ、前記送信経路のフィルタ回路(第6のフィルタ回路、第5のフィルタ回路)の電極パターンと前記スイッチング回路と前記第2の受信端子を繋ぐ受信経路の各回路(第2のフィルタ回路、第4のフィルタ回路)の電極パターンが前記シールドを境に分かれて配置されていることを特徴とする高周波回路部品。
  7.  請求項5に記載の高周波回路部品であって、
     放熱用のビアを境に、前記スイッチング回路と前記第1の受信端子を繋ぐ受信経路の各回路(第1のフィルタ回路、第3のフィルタ回路)の電極パターンの少なくとも一部と、前記スイッチング回路と前記第2の受信端子を繋ぐ受信経路の各回路(第2のフィルタ回路、第4のフィルタ回路)の電極パターンの少なくとも一部が、前記放熱用のビアを境に分かれて配置されていることを特徴とする高周波回路部品。
  8.  請求項1乃至7のいずれか1項に記載の高周波回路部品であって、
     前記スイッチング回路が、積層体内の前記第6のフィルタ回路の電極パターンのすなくとも一部と重なるように、搭載面上に配置されることを特徴とする高周波回路部品。
  9.  請求項1乃至7のいずれか1項に記載の高周波回路部品であって、
     前記スイッチング回路は、
     前記第1のアンテナ端子が前記送信端子及び前記第1の受信端子のどちらかを選択して接続を可能とする第1のスイッチと、
     前記第2のアンテナ端子が前記送信端子及び前記第2の受信端子のどちらかを選択して接続を可能とする第2のスイッチと、
     前記送信端子が前記第1及び第2のアンテナ端子のどちらかを選択して接続を可能とする第3のスイッチを備え、
     前記第1~第3のスイッチは前記積層体の搭載面に設置され、所定の方向に見て、その並び順が、第1のスイッチ、第3のスイッチ、第2のスイッチの順に並び、かつ第1のスイッチと第3のスイッチ、第2のスイッチと第3のスイッチを互いに接続するための各端子間の距離が実質的に同じであることを特徴とする高周波回路部品。
  10.  請求項9に記載の高周波回路部品であって、
     前記第1~第3のスイッチは単極双投スイッチであり、
     前記第1のアンテナ端子に第1の単極双投スイッチの単極側端子が接続され、
     前記第1の単極双投スイッチは双投側端子の片方が前記第1の通信システム用の第1の受信端子と接続され、
     前記第2のアンテナ端子に第2の単極双投スイッチの単極側端子が接続され、
     前記第2の単極双投スイッチは双投側端子の片方が前記第1の通信システム用の第2の受信端子と接続され、
     第3の単極双投スイッチが、前記第1と第2の単極双投スイッチの双投側端子のそれぞれ片方に、前記第3の単極双投スイッチの双投側端子が繋がるように接続され、
     前記第3の単極双投スイッチの単極側端子が前記第1の通信システム用の送信端子と接続され、
     前記各スイッチの切り替えによって、前記第1および第2の受信端子はそれぞれ同時に前記第1および第2のアンテナ端子に接続可能に構成され、前記送信端子は前記第1および第2のアンテナ端子を選択して接続可能に構成されていることを特徴とする高周波回路部品。
  11.  請求項1乃至7のいずれか1項に記載の高周波回路部品であって、
     前記スイッチング回路は複数のトランジスタ回路からなり、
     前記第1のアンテナ端子と前記第1の受信端子間の接続又は非接続を切り替える第1のトランジスタ回路と、
     前記第2のアンテナ端子と前記第2の受信端子間の接続又は非接続を切り替える第5のトランジスタ回路と、
     前記第1の受信端子と前記第1のトランジスタ回路の間にあるノード、及びグランド間の接続又は非接続を切り替える第2のトランジスタ回路と、
     前記第2の受信端子と前記第5のトランジスタ回路の間にあるノード、及びグランド間の接続又は非接続を切り替える第6のトランジスタ回路を備え、
     前記第1のアンテナ端子と前記送信端子が接続された状態においては前記第6のトランジスタ回路が前記第2の受信端子と前記第5のトランジスタ回路の間にあるノードとグランドの間を接続した状態となり、
     前記第2のアンテナ端子と前記送信端子が接続された状態においては前記第2のトランジスタ回路が前記第2の受信端子と前記第5のトランジスタ回路の間にあるノードとグランドの間を接続した状態となることを特徴とする高周波回路部品。
  12.  請求項1乃至7のいずれか1項に記載の高周波回路部品であって、
     前記スイッチング回路は複数のトランジスタ回路からなり、
     前記第1のアンテナ端子と前記第1の受信端子間の接続又は非接続を切り替える第1のトランジスタ回路と、
     前記第1のアンテナ端子と前記送信端子間の接続又は非接続を切り替える第4のトランジスタ回路と、
     前記第2のアンテナ端子と前記第2の受信端子間の接続又は非接続を切り替える第5のトランジスタ回路と、
     前記第2のアンテナ端子と前記送信端子の接続又は非接続を切り替える第8のトランジスタ回路と、
     前記第1の受信端子と前記第1のトランジスタ回路の間にあるノード、及びグランド間の接続又は非接続を切り替える第2のトランジスタ回路と、
     前記第2の受信端子と前記第5のトランジスタ回路の間にあるノード、及びグランド間の接続又は非接続を切り替える第6のトランジスタ回路を備え、
     前記第1のアンテナ端子と前記送信端子が接続された状態においては前記第6のトランジスタ回路が前記第2の受信端子と前記第5のトランジスタ回路の間にあるノードとグランドの間を接続した状態となり、
     前記第2のアンテナ端子と前記送信端子が接続された状態においては前記第2のトランジスタ回路が前記第2の受信端子と前記第5のトランジスタ回路の間にあるノードとグランドの間を接続した状態となることを特徴とする高周波回路部品。
  13.  請求項12に記載の高周波回路部品であって、
     この高周波回路は、前記第1のアンテナ端子と前記第4のトランジスタ回路間の接続又は非接続を切り替える第3のトランジスタ回路と、前記第2のアンテナ端子と前記第8のトランジスタ回路間の接続又は非接続を切り替える第7のトランジスタ回路を備え、前記第2と第3のトランジスタ回路、前記第6と第7のトランジスタ回路が、それぞれ同じ電源端子に接続されることを特徴とする高周波回路部品。
  14.  請求項13に記載の高周波回路部品であって、
     前記第3のトランジスタ回路と第4のトランジスタ回路の間にあるノード、及びグランド間の接続又は非接続を切り替える第9のトランジスタ回路と、前記第7のトランジスタ回路と第8のトランジスタ回路の間にあるノード、及びグランド間の接続又は非接続を切り替える第10のトランジスタ回路を備え、前記第4のトランジスタ回路と第10のトランジスタ回路、前記第8のトランジスタ回路と第9のトランジスタ回路は同じ電源端子に接続されることを特徴とする高周波回路部品。
  15.  請求項1乃至7のいずれか1項に記載の高周波回路部品であって、
     前記スイッチング回路は複数のトランジスタ回路からなり、
     前記第1のアンテナ端子と前記第1の受信端子間の接続又は非接続を切り替える第1のトランジスタ回路と、
     前記第1のアンテナ端子と前記送信端子間の接続又は非接続を切り替える第3、第4のトランジスタ回路と、
     前記第2のアンテナ端子と前記第2の受信端子間の接続又は非接続を切り替える第5のトランジスタ回路と、
     前記第2のアンテナ端子と前記送信端子間の接続又は非接続を切り替える第7、第8のトランジスタ回路と、
     前記第3のトランジスタ回路と第4のトランジスタ回路の間にあるノード、及びグランド間の接続又は非接続を切り替える第9のトランジスタ回路と、
     前記第7のトランジスタ回路と第8のトランジスタ回路の間にあるノード、及びグランド間の接続又は非接続を切り替える第10のトランジスタ回路を備え、
     前記第4のトランジスタ回路と第10のトランジスタ回路、前記第8のトランジスタ回路と第9のトランジスタ回路は同じ電源端子に接続されることを特徴とする高周波回路部品。
  16.  請求項11に記載の高周波回路部品であって、
     前記第2及び第6のトランジスタ回路は、そのソース又はドレインの一方が接地され、他方のソース又はドレインが信号経路のノードに接続され、抵抗が前記ソース及びドレイン間に接続されていることを特徴とする高周波回路部品。
  17.  請求項12に記載の高周波回路部品であって、
     前記第2及び第6のトランジスタ回路に用いるトランジスタ素子の少なくとも一つは、前記第1、第5、第4および第8のトランジスタ回路に用いるトランジスタ素子よりも耐圧が小さいことを特徴とする高周波回路部品。
  18.  請求項13又は14に記載の高周波回路部品であって、
     前記第3及び第7のトランジスタ回路に用いるトランジスタ素子の少なくとも一つは、前記第4および第8のトランジスタ回路に用いるトランジスタ素子よりも耐圧が小さいことを特徴とする高周波回路部品。
  19.  請求項11に記載の高周波回路部品であって、
     前記スイッチング回路は、各トランジスタ素子が一体の半導体基板上に配置されたものであることを特徴とする高周波回路部品。
  20.  請求項19に記載の高周波回路部品であって、
     前記半導体基板は矩形状であり、前記半導体基板上に前記第1および第2のアンテナ端子に接続される電極と、前記第1および第2の受信端子に接続される電極と、送信端子に接続される電極が形成されており、
     前記第1と第2のアンテナ端子に接続される電極が、隣接する角にそれぞれ配置され、前記第1と第2の受信端子に接続される電極が他の2つの角にそれぞれ配置されることを特徴とする高周波回路部品。
  21.  請求項19に記載の高周波回路部品であって、
     前記送信端子に接続される電極が前記第1と第2の受信端子に接続される電極の中間点に配置され、前記送信端子に接続される電極と第1の受信端子に接続される電極の間、前記送信端子に接続される電極と第2の受信端子に接続される電極の間に、グランド電極が形成されていることを特徴とする高周波回路部品。
  22.  請求項19に記載の高周波回路部品であって、
     誘電体基板上に形成される前記各トランジスタ素子に接続される電源ラインが、前記第1および第2のアンテナ端子に接続される電極、前記第1および第2の受信端子に接続される電極、送信端子に接続される電極の少なくとも一つの電極よりも前記誘電体基板の外周側で引き回されていることを特徴とする高周波回路部品。
  23.  請求項22に記載の高周波回路部品であって、
     前記半導体基板上において、電源端子に接続される電源ラインが、基板の少なくとも一辺に沿って形成されていることを特徴とする高周波回路部品。
  24.  請求項1乃至3のいずれか1項に記載の高周波回路部品であって、
     前記高周波回路部品は第2の通信システム用の送信端子を備え、
     前記第1及び第2の通信システム用の送信端子が、
     第4のスイッチを介して前記スイッチング回路と接続されていることを特徴とする高周波回路部品。
  25.  請求項24に記載の高周波回路部品であって、
     前記第2のスイッチング回路と前記第1の通信システム用の送信端子の間、前記第2のスイッチング回路と前記第2の通信システム用の送信端子の間には、それぞれ高周波増幅回路が配置され、前記高周波増幅回路の少なくとも一つと前記第4のスイッチがそれぞれ同じ電源端子に接続されることを特徴とする高周波回路部品。
  26.  請求項1乃至3のいずれか1項に記載の高周波回路部品であって、
     前記高周波回路部品は第2の通信システム用の第1と第2の受信端子と、第2の通信システム用の送信端子を備え、
     前記第1の通信システム用の第1の受信端子と前記第2の通信システム用の第1の受信端子は、第5のスイッチング回路又は第1の分波回路を介して前記スイッチング回路に接続され、
     前記第1の通信システム用の第2の受信端子と前記第2の通信システム用の第2の受信端子は、第6のスイッチ回路又は第2の分波回路を介して前記スイッチング回路に接続されていることを特徴とする高周波回路部品。
  27.  第1及び第2のアンテナ端子と、第1及び第2の送信端子と、第1及び第2の受信端子と、スイッチング回路を少なくとも有する高周波回路であって、
     前記スイッチング回路は、前記第1及び第2の送信端子のどちらか一方が前記第1及び第2のアンテナ端子のどちらかを選択して接続可能であると共に、前記第1の受信端子が前記第1のアンテナ端子側のみとの接続/非接続を切り替え、前記第2の受信端子が前記第2のアンテナ端子側のみとの接続/非接続を切り替えることを特徴とする高周波回路。
  28.  請求項27に記載の高周波回路であって、
     前記スイッチング回路は
     前記第1のアンテナ端子に単極3投の第7のスイッチの単極側端子が接続され、
     前記第7のスイッチは3投側端子の1つが前記第1の受信端子と接続され、
     前記第2のアンテナ端子に単極3投の第8のスイッチの単極側端子が接続され、
     前記第8のスイッチは3投側端子の1つが前記第2の受信端子と接続され、
     前記第1の送信端子に単極双投の第9のスイッチの単極側端子が接続され、前記第7と第8のスイッチの3投側端子のそれぞれ1つに、前記第9のスイッチの双投側端子が接続され、
     前記第2の送信端子に単極双投の第10のスイッチの単極側端子が接続され、前記第7と第8のスイッチの3投側端子のそれぞれ1つに、前記第10のスイッチの双投側端子が接続されていることを特徴とする高周波回路。
  29.  請求項27に記載の高周波回路であって、
     前記スイッチング回路は
     前記第1のアンテナ端子に単極双投の第11のスイッチの単極側端子が接続され、
     前記第11のスイッチは双投側端子の1つが前記第1の受信端子と接続され、
     前記第2のアンテナ端子に単極双投の第12のスイッチの単極側端子が接続され、
     前記第12のスイッチは双投側端子の1つが前記第2の受信端子と接続され、
     前記第1及び第2の送信端子に双極双投の第13のスイッチの一方の双極側端子が接続され、前記第11と第12のスイッチの双極側端子のそれぞれ1つに、前記第13のスイッチの他方の双投側端子が接続されていることを特徴とする高周波回路。
  30.  請求項1乃至7のいずれか1項に記載の高周波回路部品を用いたことを特徴とする通信装置。
PCT/JP2010/006814 2009-11-20 2010-11-19 高周波回路、高周波回路部品、及び通信装置 WO2011061946A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020127015883A KR101680927B1 (ko) 2009-11-20 2010-11-19 고주파 회로, 고주파 회로 부품 및 통신 장치
US13/510,850 US9252819B2 (en) 2009-11-20 2010-11-19 High frequency circuit, high frequency circuit component, and communication apparatus
JP2011541822A JP5630441B2 (ja) 2009-11-20 2010-11-19 高周波回路、高周波回路部品、及び通信装置

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2009265587 2009-11-20
JP2009-265587 2009-11-20
JP2010183686 2010-08-19
JP2010-183686 2010-08-19

Publications (1)

Publication Number Publication Date
WO2011061946A1 true WO2011061946A1 (ja) 2011-05-26

Family

ID=44059432

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/006814 WO2011061946A1 (ja) 2009-11-20 2010-11-19 高周波回路、高周波回路部品、及び通信装置

Country Status (5)

Country Link
US (1) US9252819B2 (ja)
JP (1) JP5630441B2 (ja)
KR (1) KR101680927B1 (ja)
TW (1) TWI519083B (ja)
WO (1) WO2011061946A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013085721A1 (en) * 2011-12-08 2013-06-13 Apple Inc. System and methods for performing antenna transmit diversity
CN104285380A (zh) * 2012-05-11 2015-01-14 夏普株式会社 高频电路以及具有该高频电路的高频模块
JP5983773B2 (ja) * 2012-12-26 2016-09-06 株式会社村田製作所 スイッチモジュール
CN106486742A (zh) * 2015-08-31 2017-03-08 富泰华工业(深圳)有限公司 电子装置及其天线和用该电子装置接收或发射信号的方法
US10070513B2 (en) 2016-09-09 2018-09-04 Murata Manufacturing Co., Ltd. High-frequency module and communication apparatus
JP2019050542A (ja) * 2017-09-12 2019-03-28 株式会社村田製作所 高周波回路、高周波フロントエンド回路および通信装置
JP2020183872A (ja) * 2019-04-26 2020-11-12 パナソニックIpマネジメント株式会社 検出装置、電波センサ及び移動体
JP2022525778A (ja) * 2019-03-22 2022-05-19 維沃移動通信有限公司 無線周波数フロントエンド回路及び移動端末
JP2022528039A (ja) * 2019-03-22 2022-06-08 維沃移動通信有限公司 無線周波数フロントエンド回路及び移動端末

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE602008002322D1 (de) * 2008-02-29 2010-10-07 Research In Motion Ltd Mobile drahtlose Kommunikationsvorrichtung mit selektiver Lastschaltung für Antennen und entsprechende Verfahren
US9203489B2 (en) 2010-05-05 2015-12-01 Google Technology Holdings LLC Method and precoder information feedback in multi-antenna wireless communication systems
US9705558B2 (en) * 2011-02-08 2017-07-11 Qorvo Us, Inc. Harmonic rejected antenna switch
US8761688B2 (en) * 2011-06-08 2014-06-24 Htc Corporation Radio frequency circuit and signal transmission method
JP5704114B2 (ja) * 2012-05-07 2015-04-22 株式会社村田製作所 高周波モジュール
TWI445332B (zh) * 2012-06-18 2014-07-11 Hon Hai Prec Ind Co Ltd 多輸入多輸出收發裝置
US9425705B2 (en) 2012-08-13 2016-08-23 Rockwell Automation Technologies, Inc. Method and apparatus for bypassing cascaded H-bridge (CHB) power cells and power sub cell for multilevel inverter
US9813262B2 (en) 2012-12-03 2017-11-07 Google Technology Holdings LLC Method and apparatus for selectively transmitting data using spatial diversity
US9591508B2 (en) 2012-12-20 2017-03-07 Google Technology Holdings LLC Methods and apparatus for transmitting data between different peer-to-peer communication groups
US9979531B2 (en) 2013-01-03 2018-05-22 Google Technology Holdings LLC Method and apparatus for tuning a communication device for multi band operation
US10229697B2 (en) 2013-03-12 2019-03-12 Google Technology Holdings LLC Apparatus and method for beamforming to obtain voice and noise signals
US9386542B2 (en) 2013-09-19 2016-07-05 Google Technology Holdings, LLC Method and apparatus for estimating transmit power of a wireless device
US9549290B2 (en) 2013-12-19 2017-01-17 Google Technology Holdings LLC Method and apparatus for determining direction information for a wireless device
US9491007B2 (en) 2014-04-28 2016-11-08 Google Technology Holdings LLC Apparatus and method for antenna matching
US9478847B2 (en) 2014-06-02 2016-10-25 Google Technology Holdings LLC Antenna system and method of assembly for a wearable electronic device
US9472837B1 (en) * 2015-04-22 2016-10-18 Honeywell International Inc. (M+1)-for-M ferrite redundancy switch and switch system
US9748862B2 (en) * 2015-05-13 2017-08-29 Rockwell Automation Technologies, Inc. Sparse matrix multilevel actively clamped power converter
TWI729112B (zh) * 2016-04-09 2021-06-01 美商天工方案公司 具有可切換雙工器的前端架構
US10498521B2 (en) * 2016-08-31 2019-12-03 Skyworks Solutions, Inc. Switched-filter duplexing architecture for front-end systems
CN110392926B (zh) * 2017-03-14 2022-12-06 株式会社村田制作所 高频模块
TWI642235B (zh) * 2017-07-07 2018-11-21 耀登科技股份有限公司 雙頻天線裝置及低頻天線模組
CN111865352B (zh) * 2019-04-24 2022-07-15 株式会社村田制作所 高频信号收发电路以及高频信号收发装置
JP2020182205A (ja) * 2019-04-24 2020-11-05 株式会社村田製作所 高周波信号送受信回路及び高周波信号送受信装置
JP2021052376A (ja) * 2019-09-20 2021-04-01 株式会社村田製作所 高周波モジュールおよび通信装置
JP2021048565A (ja) * 2019-09-20 2021-03-25 株式会社村田製作所 高周波モジュールおよび通信装置
JP2021158425A (ja) * 2020-03-25 2021-10-07 株式会社村田製作所 高周波モジュール及び通信装置
US11838070B2 (en) * 2020-03-30 2023-12-05 Intel Corporation Amplification apparatus, device, and method for a tap of a cable communication network
JP2021170702A (ja) * 2020-04-14 2021-10-28 株式会社村田製作所 高周波モジュール及び通信装置
US11342878B1 (en) 2021-04-09 2022-05-24 Rockwell Automation Technologies, Inc. Regenerative medium voltage drive (Cascaded H Bridge) with reduced number of sensors
CN115529849A (zh) * 2021-04-25 2022-12-27 华为技术有限公司 开关电路、通信装置和终端设备

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002009679A (ja) * 2000-06-26 2002-01-11 Matsushita Electric Ind Co Ltd 無線端末装置
JP2004297456A (ja) * 2003-03-27 2004-10-21 Kyocera Corp 高周波モジュール
JP2006352532A (ja) * 2005-06-16 2006-12-28 Tdk Corp 高周波モジュール

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06237101A (ja) 1993-02-10 1994-08-23 Matsushita Electric Ind Co Ltd 高周波スイッチ
JPH10150395A (ja) 1996-11-20 1998-06-02 Hitachi Ltd スイッチ回路およびスイッチならびに無線装置
JP3208343B2 (ja) 1997-01-28 2001-09-10 三洋電機株式会社 ダイバーシチ装置
US7149496B2 (en) 2003-03-27 2006-12-12 Kyocera Corporation High-frequency module and radio communication apparatus
JP4868275B2 (ja) 2005-08-31 2012-02-01 日立金属株式会社 高周波スイッチ回路
US8150454B2 (en) 2005-12-19 2012-04-03 Sony Ericsson Mobile Communications Ab System and method for implementing antenna diversity
JP2007295327A (ja) * 2006-04-26 2007-11-08 Hitachi Metals Ltd 高周波回路、高周波部品及び通信装置
CN201374693Y (zh) * 2008-12-24 2009-12-30 鸿富锦精密工业(深圳)有限公司 无线通信装置
JP2013009251A (ja) * 2011-06-27 2013-01-10 Nec Casio Mobile Communications Ltd 無線通信装置および無線アクセス制御方法
JP2013042462A (ja) * 2011-08-19 2013-02-28 Sumitomo Electric Networks Inc 無線通信モジュール

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002009679A (ja) * 2000-06-26 2002-01-11 Matsushita Electric Ind Co Ltd 無線端末装置
JP2004297456A (ja) * 2003-03-27 2004-10-21 Kyocera Corp 高周波モジュール
JP2006352532A (ja) * 2005-06-16 2006-12-28 Tdk Corp 高周波モジュール

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9444540B2 (en) 2011-12-08 2016-09-13 Apple Inc. System and methods for performing antenna transmit diversity
WO2013085721A1 (en) * 2011-12-08 2013-06-13 Apple Inc. System and methods for performing antenna transmit diversity
CN104285380A (zh) * 2012-05-11 2015-01-14 夏普株式会社 高频电路以及具有该高频电路的高频模块
CN104285380B (zh) * 2012-05-11 2017-05-17 夏普株式会社 高频电路以及具有该高频电路的高频模块
JP5983773B2 (ja) * 2012-12-26 2016-09-06 株式会社村田製作所 スイッチモジュール
JPWO2014103532A1 (ja) * 2012-12-26 2017-01-12 株式会社村田製作所 スイッチモジュール
US9602147B2 (en) 2012-12-26 2017-03-21 Murata Manufacturing Co., Ltd. Switch module
CN106486742B (zh) * 2015-08-31 2020-06-23 富泰华工业(深圳)有限公司 电子装置及其天线和用该电子装置接收或发射信号的方法
CN106486742A (zh) * 2015-08-31 2017-03-08 富泰华工业(深圳)有限公司 电子装置及其天线和用该电子装置接收或发射信号的方法
US10070513B2 (en) 2016-09-09 2018-09-04 Murata Manufacturing Co., Ltd. High-frequency module and communication apparatus
JP2019050542A (ja) * 2017-09-12 2019-03-28 株式会社村田製作所 高周波回路、高周波フロントエンド回路および通信装置
JP2022525778A (ja) * 2019-03-22 2022-05-19 維沃移動通信有限公司 無線周波数フロントエンド回路及び移動端末
JP2022528039A (ja) * 2019-03-22 2022-06-08 維沃移動通信有限公司 無線周波数フロントエンド回路及び移動端末
US11569850B2 (en) 2019-03-22 2023-01-31 Vivo Mobile Communication Co., Ltd. Radio frequency front-end circuit and controller
JP7270763B2 (ja) 2019-03-22 2023-05-10 維沃移動通信有限公司 無線周波数フロントエンド回路及び移動端末
JP7271706B2 (ja) 2019-03-22 2023-05-11 維沃移動通信有限公司 無線周波数フロントエンド回路及び移動端末
US11757484B2 (en) 2019-03-22 2023-09-12 Vivo Mobile Communication Co., Ltd. Radio frequency front-end circuit and mobile terminal
JP2020183872A (ja) * 2019-04-26 2020-11-12 パナソニックIpマネジメント株式会社 検出装置、電波センサ及び移動体
JP7199037B2 (ja) 2019-04-26 2023-01-05 パナソニックIpマネジメント株式会社 検出装置、電波センサ及び移動体

Also Published As

Publication number Publication date
TWI519083B (zh) 2016-01-21
KR20120107965A (ko) 2012-10-04
KR101680927B1 (ko) 2016-11-29
US20120306716A1 (en) 2012-12-06
US9252819B2 (en) 2016-02-02
JP5630441B2 (ja) 2014-11-26
TW201141091A (en) 2011-11-16
JPWO2011061946A1 (ja) 2013-04-04

Similar Documents

Publication Publication Date Title
JP5630441B2 (ja) 高周波回路、高周波回路部品、及び通信装置
US8582547B2 (en) High frequency circuit, high frequency component and communication device
JP5316544B2 (ja) 高周波回路、高周波部品、及びマルチバンド通信装置
JP4618461B2 (ja) 高周波回路、高周波部品及び通信装置
JP5024445B2 (ja) 高周波部品及び通信装置
WO2009157357A1 (ja) 高周波回路、高周波部品及び通信装置
JP4465286B2 (ja) 高周波選択回路、高周波モジュール及び無線通信装置
JP5648901B2 (ja) 高周波回路、高周波部品及び通信装置
JP4134004B2 (ja) 高周波モジュール
JP2010147589A (ja) 高周波回路、高周波部品及び通信装置
JP2009246624A (ja) 積層型バラントランス及びこれを用いた高周波スイッチモジュール
JP4134005B2 (ja) 高周波モジュール
JP2010041316A (ja) ハイパスフィルタ、高周波モジュールおよびそれを用いた通信機器
JP4936119B2 (ja) 積層型バラントランス及び高周波部品
JP2009027319A (ja) 高周波回路、高周波部品及び通信装置
JP4794247B2 (ja) 高周波モジュール

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10831345

Country of ref document: EP

Kind code of ref document: A1

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2011541822

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20127015883

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13510850

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 10831345

Country of ref document: EP

Kind code of ref document: A1