WO2011052695A1 - 球状炭化ケイ素粉末、その製造方法、及びそれを使用する炭化ケイ素セラミックス成形体の製造方法 - Google Patents

球状炭化ケイ素粉末、その製造方法、及びそれを使用する炭化ケイ素セラミックス成形体の製造方法 Download PDF

Info

Publication number
WO2011052695A1
WO2011052695A1 PCT/JP2010/069212 JP2010069212W WO2011052695A1 WO 2011052695 A1 WO2011052695 A1 WO 2011052695A1 JP 2010069212 W JP2010069212 W JP 2010069212W WO 2011052695 A1 WO2011052695 A1 WO 2011052695A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
silicone composition
curable silicone
component
spherical
Prior art date
Application number
PCT/JP2010/069212
Other languages
English (en)
French (fr)
Inventor
青木 良隆
Original Assignee
信越化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 信越化学工業株式会社 filed Critical 信越化学工業株式会社
Priority to US13/505,301 priority Critical patent/US20120219798A1/en
Priority to EP10826827A priority patent/EP2497746A1/en
Priority to JP2011538486A priority patent/JPWO2011052695A1/ja
Priority to CN2010800487775A priority patent/CN102612491A/zh
Publication of WO2011052695A1 publication Critical patent/WO2011052695A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/6269Curing of mixtures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/90Carbides
    • C01B32/914Carbides of single elements
    • C01B32/956Silicon carbide
    • C01B32/963Preparation from compounds containing silicon
    • C01B32/977Preparation from organic compounds containing silicon
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/90Carbides
    • C01B32/914Carbides of single elements
    • C01B32/956Silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • C04B35/571Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide obtained from Si-containing polymer precursors or organosilicon monomers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/6267Pyrolysis, carbonisation or auto-combustion reactions
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/32Spheres
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3826Silicon carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3895Non-oxides with a defined oxygen content, e.g. SiOC, TiON
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/48Organic compounds becoming part of a ceramic after heat treatment, e.g. carbonising phenol resins
    • C04B2235/483Si-containing organic compounds, e.g. silicone resins, (poly)silanes, (poly)siloxanes or (poly)silazanes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/528Spheres
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • C04B2235/6021Extrusion moulding
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • C04B2235/6022Injection moulding
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/604Pressing at temperatures other than sintering temperatures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6565Cooling rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/72Products characterised by the absence or the low content of specific components, e.g. alkali metal free alumina ceramics
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]

Definitions

  • the present invention relates to a spherical silicon carbide powder and a method for producing a silicon carbide ceramic molded body using the same.
  • Silicon carbide ceramics are chemically stable at room temperature and high temperature, and have excellent mechanical strength at high temperature, and therefore are used as high temperature materials.
  • a high-purity silicon carbide ceramic sintered body excellent in heat resistance and creep resistance has been used in the process of heat-treating a semiconductor wafer and thermally diffusing trace elements into the semiconductor wafer. And process tubes.
  • This silicon carbide ceramic sintered body is usually manufactured by sintering silicon carbide powder, but a spherical granulated material is used to increase the density of the obtained sintered body.
  • Patent Document 1 As a method for obtaining spherical silicon carbide powder, there are a method using a spray dryer (for example, Patent Document 1) and a method for melting, infusifying and thermally decomposing polycarbosilane (Patent Document 1).
  • Patent Document 1 a method for melting, infusifying and thermally decomposing polycarbosilane
  • Patent Document 1 a method for melting, infusifying and thermally decomposing polycarbosilane
  • silicon carbide powder used for sintering for the manufacture of silicon carbide ceramics contains impurity elements that are harmful to semiconductors
  • the resulting sintered body also contains impurity elements.
  • the impurity element enters the wafer and contamination occurs. Therefore, when a silicon carbide ceramic sintered body is used for such applications, it is desirable that the silicon carbide powder as a raw material be as high as possible.
  • An object of the present invention is to solve the above-mentioned problems of the prior art and provide a spherical silicon carbide powder that can be easily obtained, a method for producing the same, and a method for producing a silicon carbide ceramic molded body using the silicon carbide powder. .
  • the present invention first provides a spherical silicon carbide powder obtained by thermally decomposing a spherical cured silicone powder in a non-oxidizing atmosphere.
  • the present invention provides a method for producing spherical silicon carbide powder, characterized by thermally decomposing spherical cured silicone powder in a non-oxidizing atmosphere.
  • the present invention is to form a curable silicone composition containing the spherical silicon carbide powder into a desired shape and cure to obtain a cured silicone molded product having the desired shape, Next, the silicone part of the cured silicone molding is thermally decomposed in a non-oxidizing atmosphere.
  • a method for producing a silicon carbide molded body having a step is provided.
  • the starting material is a spherical cured silicone powder
  • the required spherical silicon carbide powder can be easily obtained only by thermal decomposition.
  • the spherical cured silicone powder is easily obtained from the curable silicone composition, high purity spherical silicon carbide powder can be provided by increasing the purity at the stage of the curable silicone composition.
  • a relatively large amount of the spherical silicon carbide powder can be mixed with the curable silicone composition, so that a silicon carbide molded body with higher density can be easily obtained. Can be manufactured.
  • a high-purity curable silicone composition as a base material is selected and the above-described high-purity product is selected as a spherical silicon carbide powder, a high-purity silicon carbide molded body can be easily obtained.
  • room temperature means ambient temperature and can usually vary within a range of 10 to 35 ° C.
  • the spherical cured silicone powder used as a starting material in the method of the present invention can be produced by molding and curing a curable silicone composition.
  • the average particle size is preferably 0.1 to 100 ⁇ m, and more preferably 0.5 to 20 ⁇ m.
  • the average particle diameter of the particles means a volume average particle diameter, and is usually measured by a laser diffraction / scattering particle measuring apparatus.
  • the type of the curable silicone composition used in the production method is not particularly limited, and any curable silicone composition can be used. Specific examples thereof include organic peroxide curable, radiation curable reactivity, addition curable reactive type, and condensation curable silicone compositions.
  • an organic peroxide-curable and radiation-curable reactive silicone composition is advantageous, and the total content of impurity elements in the obtained silicon carbide powder is 1 ppm or less. , Preferably 0.5 ppm or less, and more preferably 0.1 ppm or less.
  • the impurity element include Fe, Cr, Ni, Al, Ti, Cu, Na, Zn, Ca, Zr, Mg, and B, and the total content thereof can be suppressed as described above.
  • organic peroxide curable silicone composition examples include a linear chain having an alkenyl group such as a vinyl group at one or both of a molecular chain terminal part (one terminal or both terminal) and a molecular chain non-terminal part.
  • a silicone composition that cures by radical polymerization of an organopolysiloxane in the presence of an organic peroxide can be given.
  • Examples of the radiation curable silicone composition include an ultraviolet curable silicone composition and an electron beam curable silicone composition.
  • the ultraviolet curable silicone composition examples include a silicone composition that is cured by ultraviolet energy having a wavelength of 200 to 400 nm.
  • the curing mechanism is not particularly limited.
  • Specific examples thereof include an acryl silicone-based silicone composition containing an organopolysiloxane having an acryloyl group or a methacryloyl group and a photopolymerization initiator, a mercapto group-containing organopolysiloxane and an organopolysiloxane having an alkenyl group such as a vinyl group.
  • Mercapto-vinyl addition polymerization type silicone composition containing photopolymerization initiator, addition reaction type silicone composition using the same platinum group metal catalyst as thermosetting addition reaction type, organopolysiloxane containing epoxy group And a cationic polymerization type silicone composition containing an onium salt catalyst, and any of them can be used as an ultraviolet curable silicone composition.
  • any silicone composition that is cured by radical polymerization initiated by irradiating an electron beam to an organopolysiloxane having a radical polymerizable group can be used.
  • the addition-curable silicone composition is cured by a reaction (hydrosilylation addition reaction) in the presence of the above-described linear organopolysiloxane having an alkenyl group, an organohydrogenpolysiloxane, and a platinum group metal catalyst.
  • the silicone composition to be mentioned can be mentioned.
  • condensation curable silicone composition for example, a silanol-blocked organopolysiloxane at both ends and an organohydrogenpolysiloxane or a hydrolyzable silane such as tetraalkoxysilane or organotrialkoxysilane and / or a partially hydrolyzed condensate thereof are used.
  • Silicone compositions that are cured by reaction in the presence of a condensation reaction catalyst such as an organotin catalyst, or both ends are trialkoxy groups, dialkoxyorgano groups, trialkoxysiloxyethyl groups, dialkoxyorganosiloxyethyl groups, etc. Examples thereof include a silicone composition that is cured by reacting the blocked organopolysiloxane in the presence of a condensation reaction such as an organotin catalyst.
  • a radiation curable silicone composition and an organic peroxide curable silicone composition are desirable from the viewpoint of avoiding contamination of impurity elements as much as possible.
  • Organic peroxide curable silicone composition As an organic peroxide curable silicone composition, specifically, for example, (A) an organopolysiloxane containing at least two alkenyl groups bonded to a silicon atom; and (b) an organic peroxide and, as an optional component, (c) at least two hydrogen atoms bonded to the silicon atom (ie, SiH groups). Organohydrogenpolysiloxane contained in an amount of 0.1 to 2 mol of hydrogen atoms bonded to silicon atoms in the component (c) per mol of alkenyl groups in the total curable silicone composition And organic peroxide-curable silicone compositions.
  • the organopolysiloxane of a component is a base polymer of an organic peroxide curable silicone composition.
  • the degree of polymerization of the organopolysiloxane of component (a) is not particularly limited, and as component (a), liquid organopolysiloxanes at 25 ° C. to raw rubber-like organopolysiloxane can be used, but the average degree of polymerization is preferred.
  • An organopolysiloxane of about 50 to 20,000, more preferably about 100 to 10,000, and still more preferably about 100 to 2,000 is preferably used.
  • the organopolysiloxane of component (a) is basically composed of repeating diorganosiloxane units (R 1 2 SiO 2/2 units) from the viewpoint of easy availability of raw materials, both molecular chain terminals are blocked with triorganosiloxy groups (R 1 3 SiO 1/2) or hydroxy diorganosiloxy group ((HO) R 1 2 SiO 1/2 units), linear structure having no branch, Alternatively, although the molecular chain has a cyclic structure having no branch, consisting of repeating diorganosiloxane units, it may partially contain a branched structure such as a trifunctional siloxane unit or SiO 2 unit.
  • R 1 is as defined in formula (1) described below.
  • R 1 for example, the following average composition formula (1): R 1 a SiO (4-a) / 2 (1)
  • R 1 represents the same or different unsubstituted or substituted monovalent hydrocarbon group having 1 to 10 carbon atoms, more preferably 1 to 8 carbon atoms, and 50 to 99 mol% of R 1 represents alkenyl.
  • A is a positive number in the range of 1.5 to 2.8, more preferably 1.8 to 2.5, and even more preferably 1.95 to 2.05.
  • Organopolysiloxanes having at least two alkenyl groups in the molecule are used.
  • R 1 examples include alkyl groups such as methyl, ethyl, propyl, butyl, pentyl, and hexyl; aryl groups such as phenyl, tolyl, xylyl, and naphthyl; cyclopentyl A cycloalkyl group such as a cyclohexyl group; an alkenyl group such as a vinyl group, an allyl group, a propenyl group, an isopropenyl group, and a butenyl group; a part or all of the hydrogen atoms of these hydrocarbon groups are halogens such as fluorine, bromine, and chlorine A group substituted with an atom, a cyano group or the like, for example, a chloromethyl group, a chloropropyl group, a bromoethyl group, a trifluoropropyl group, a cyanoethyl group, and the like can be mentioned. From the viewpoint of
  • R 1 are alkenyl groups (particularly alkenyl groups having preferably 2 to 8, more preferably 2 to 6 carbon atoms).
  • the content of the alkenyl group is in the total organic group bonded to the silicon atom (that is, in the unsubstituted or substituted all monovalent hydrocarbon group represented by R 1 in the average composition formula (1)), preferably 50. It is ⁇ 99 mol%, particularly preferably 75 to 95 mol%.
  • the organopolysiloxane as the component (a) has a linear structure, this alkenyl group is bonded to a silicon atom only in one of the molecular chain terminal and the non-molecular chain terminal, and both of them are silicon. It may be bonded to an atom.
  • component (b) component is an organic peroxide used as a catalyst for accelerating the crosslinking reaction of component (a) in the organic peroxide-curable organopolysiloxane composition.
  • component (b) conventionally known organic peroxides can be used as long as the crosslinking reaction of the component (a) can be promoted.
  • benzoyl peroxide 2,4-dichlorobenzoyl peroxide, p-methylbenzoyl peroxide, o-methylbenzoyl peroxide, 2,4-dicumyl peroxide, 2,5- Examples include dimethyl-bis (2,5-t-butylperoxy) hexane, di-t-butylperoxide, t-butylperbenzoate, 1,1-bis (t-butylperoxycarboxy) hexane, and the like. However, it is not particularly limited to these.
  • the amount of component (b) added is an effective amount as a catalyst for promoting the crosslinking reaction of component (a).
  • the amount of the component (a) is preferably 0.1 to 10 parts by mass, more preferably 0.2 to 2 parts by mass with respect to 100 parts by mass of the component.
  • the added amount is less than 0.1 parts by mass with respect to 100 parts by mass of component (a)
  • the amount added is more than 10 parts by mass relative to 100 parts by mass of component (a)
  • foaming derived from component (b) occurs, and the strength and heat resistance of the cured reaction product are adversely affected. Receive.
  • component (c) The organohydrogenpolysiloxane of component (c), which is an optional component, has at least two hydrogen atoms (SiH groups) bonded to silicon atoms (usually 2 to 200), preferably three or more. (Usually 3 to 100).
  • component alone can be cured by adding the component (b) and heating, but by adding the component (c), compared to the case of the component (a) alone, ) Since it easily reacts with the component, it can be cured at a lower temperature and in a shorter time.
  • the molecular structure of component (c) is not particularly limited.
  • any conventionally produced organohydrogenpolysiloxane such as linear, cyclic, branched, and three-dimensional network (resin-like) can be used as component (c).
  • the SiH group is bonded to the silicon atom only in one of the molecular chain terminal and the non-molecular chain terminal, but is bonded to the silicon atom in both of them. Also good.
  • the number of silicon atoms in one molecule (or the degree of polymerization) is usually 2 to 300, preferably about 4 to 150, and the organohydrogenpolysiloxane that is liquid at room temperature (25 ° C.) (C) It can use preferably as a component.
  • R 2 for example, the following average composition formula (2): R 2 b H c SiO (4-bc) / 2 (2) (Wherein, R 2 is identical or different unsubstituted or substituted, containing no aliphatic unsaturated bond, a monovalent hydrocarbon group having carbon atoms 1 to 10, more preferably 1 ⁇ 8, b And c are preferably 0.7 ⁇ b ⁇ 2.1, 0.001 ⁇ c ⁇ 1.0, and 0.8 ⁇ b + c ⁇ 3.0, more preferably 1.0 ⁇ b ⁇ 2.0, (It is a positive number satisfying 0.01 ⁇ c ⁇ 1.0 and 1.5 ⁇ b + c ⁇ 2.5.)
  • R 2 include the same groups as R 1 in the average composition formula (1) (excluding alkenyl groups).
  • organohydrogenpolysiloxane represented by the above average composition formula (2) examples include 1,1,3,3-tetramethyldisiloxane, 1,3,5,7-tetramethylcyclotetrasiloxane, tris ( Hydrogendimethylsiloxy) methylsilane, tris (hydrogendimethylsiloxy) phenylsilane, methylhydrogencyclopolysiloxane, methylhydrogensiloxane-dimethylsiloxane cyclic copolymer, both ends trimethylsiloxy group-blocked methylhydrogenpolysiloxane, both ends Trimethylsiloxy group-blocked methylhydrogensiloxane / dimethylsiloxane copolymer, both ends methylhydrogensiloxy group-blocked dimethylpolysiloxane, both ends methylhydrogensiloxy group-blocked methylhydro Polysiloxane / dimethylsiloxane copolymer, tri
  • the amount of component (c) added is preferably 0 to 100 parts by weight, more preferably 0 to 50 parts by weight, per 100 parts by weight of component (a).
  • the added amount is more than 100 parts by mass with respect to 100 parts by mass of component (a)
  • foaming derived from component (c) occurs, and the strength and heat resistance of the cured reaction product are adversely affected. .
  • UV curable silicone composition Specific examples of the ultraviolet curable silicone composition include, for example, an ultraviolet curable silicone composition containing (d) an ultraviolet reactive organopolysiloxane and (e) a photopolymerization initiator.
  • the ultraviolet-reactive organopolysiloxane of (d) component normally acts as a base polymer in an ultraviolet curable silicone composition.
  • the component (d) is not particularly limited, and is preferably an organopolysiloxane having at least 2, more preferably 2 to 20, and particularly preferably 2 to 10 UV-reactive groups in one molecule.
  • a plurality of the ultraviolet curable groups present in the organopolysiloxane may be the same or different.
  • the organopolysiloxane of component (d) is basically composed of repeating diorganosiloxane units (R 1 2 SiO 2/2 units) in the molecular chain (main chain).
  • R 1 is as described in relation to the formula (1).
  • the organopolysiloxane of component (d) has a linear structure, it has an ultraviolet-reactive group only at one of the molecular chain terminal and the part that is not the molecular chain terminal. However, it is preferable to have UV reactive groups at least at both ends of the molecular chain.
  • Examples of the ultraviolet reactive group include alkenyl groups such as vinyl group, allyl group and propenyl group; alkenyloxy groups such as vinyloxy group, allyloxy group, propenyloxy group and isopropenyloxy group; acryloyl group and methacryloyl group.
  • the viscosity of the organopolysiloxane is not particularly limited, but is 100 mPa.s at 25 ° C. s to 1,000,000 mPa.s s, preferably 200 to 500,000 mPa.s. s, more preferably 200 to 100,000 mPa.s. Particularly preferred is s.
  • component (d) for example, the following general formula (3a);
  • R 3 is the same or different, unsubstituted or substituted monovalent hydrocarbon group having no UV-reactive group, and R 4 is the same or different group having an UV-reactive group, R 5 is the same or different group having an ultraviolet reactive group, m is an integer of 5 to 1,000, n is an integer of 0 to 100, f is an integer of 0 to 3, g is an integer of 0 to 3, provided that f + g + n ⁇ 2] Or the following general formula (3b);
  • R 3 , R 4 , R 5 , m, n, f, and g are as defined in the general formula (3a), h is an integer of 2 to 4, and i and j are each 1 Is an integer of ⁇ 3, where fi + gj + n ⁇ 2]
  • an organopolysiloxane having at least two ultraviolet-reactive groups represented by the formula:
  • R 3 is preferably the same or different, unsubstituted or substituted monovalent, monovalent carbon atoms having no UV-reactive group, preferably 1 to 20, more preferably 1 to 10 is still more preferably 1 to 8 monovalent hydrocarbon group.
  • the monovalent hydrocarbon group represented by R 3 include alkyl groups such as methyl, ethyl, propyl, butyl, pentyl, and hexyl groups; aryl such as phenyl, tolyl, xylyl, and naphthyl groups.
  • a cycloalkyl group such as a cyclopentyl group, a cyclohexyl group or a cyclopentyl group; an aralkyl group such as a benzyl group or a phenylethyl group; a part or all of the hydrogen atoms bonded to these hydrocarbon groups are halogen atoms or cyano groups
  • a group substituted with a carboxyl group such as a chloromethyl group, a chloropropyl group, a bromoethyl group, a trifluoropropyl group, a cyanoethyl group, and a 3-cyanopropyl group, preferably a methyl group and a phenyl group, More preferably, a methyl group is mentioned.
  • the monovalent hydrocarbon group represented by R 3 may have one or more sulfonyl groups, ether bonds (—O—), carbonyl groups and the like in its skeleton.
  • examples of the ultraviolet reactive group contained in R 4 and R 5 include alkenyl groups such as vinyl group, allyl group, propenyl group; vinyloxy group, allyloxy group, propenyloxy Group, alkenyloxy group such as isopropenyloxy group; aliphatic unsaturated group other than alkenyl group such as acryloyl group and methacryloyl group; mercapto group; epoxy group; hydrosilyl group and the like, preferably acryloyl group, methacryloyl group, An epoxy group and a hydrosilyl group are mentioned, More preferably, an acryloyl group and a methacryloyl group are mentioned.
  • the group having an ultraviolet reactive group represented by R 4 and R 5 is, for example, a monovalent group having the ultraviolet reactive group exemplified above.
  • Specific examples thereof include a vinyl group, an allyl group, 3 -Glycidoxypropyl group, 2- (3,4-epoxycyclohexyl) ethyl group, 3-methacryloxypropyl group, 3-acryloxypropyl group, 3-mercaptopropyl group, 2- ⁇ bis (2-methacryloxyethoxy) ) Methylsilyl ⁇ ethyl group, 2- ⁇ bis (2-acryloxyethoxy) methylsilyl ⁇ ethyl group, 2- ⁇ (2-acryloxyethoxy) dimethylsilyl ⁇ ethyl group, 2- ⁇ bis (1,3-dimethacryloxy-2) -Propoxy) methylsilyl ⁇ ethyl group, 2- ⁇ (1,3-dimethacryloxy-2-propoxy) dimethylsilyl ⁇ ethyl
  • m is usually an integer of 5 to 1,000, preferably 10 to 800, more preferably 50 to 500, and n is usually 0 to 100, preferably Is an integer from 0 to 50, more preferably from 0 to 20, f is an integer from 0 to 3, preferably from 0 to 2, more preferably from 1 to 2, and g is from 0 to 3, preferably from 0 to 2.
  • h is usually an integer of 2 to 4, preferably 2 or 3.
  • i and j are each an integer of 1 to 3, preferably 1 or 2.
  • organopolysiloxane represented by the general formulas (3a) and (3b) has at least two ultraviolet-reactive groups as described above, f + g + n ⁇ 2 in the formula (3a), and in the formula (3b) fi + gj + n ⁇ 2.
  • organopolysiloxane represented by the above formulas (3a) and (3b) include the following.
  • R 6 is 90 mol% methyl group and 10 mol% phenyl group
  • the photoinitiator of (e) component has the effect
  • the component (e) is not particularly limited, and specific examples thereof include acetophenone, propiophenone, benzophenone, xanthol, fluorin, benzaldehyde, anthraquinone, triphenylamine, 4-methylacetophenone, 3-pentylacetophenone, 4- Methoxyacetophenone, 3-bromoacetophenone, 4-allylacetophenone, p-diacetylbenzene, 3-methoxybenzophenone, 4-methylbenzophenone, 4-chlorobenzophenone, 4,4'-dimethoxybenzophenone, 4-chloro-4'-benzylbenzophenone 3-chloroxanthone, 3,9-dichloroxanthone, 3-chloro-8-nonylxanthone, benzo
  • benzophenone, 4-methoxyacetophenone, 4-methylbenzophenone, diethoxyacetophenone, 1-hydroxycyclohexyl phenyl ketone and 2-hydroxy-2-methyl-1-phenylpropan-1-one are preferable, and diethoxyacetophene is more preferable.
  • photopolymerization initiators may be used alone or in combination of two or more.
  • the amount of the component (e) added is not particularly limited, but is preferably 0.01 to 10 parts by mass, more preferably 0.1 to 3 parts by mass, and still more preferably with respect to 100 parts by mass of the component (d). Is 0.5 to 3 parts by mass. When this addition amount is within this range, it is easy to control the curing of the silicone composition.
  • Addition curable silicone composition specifically, for example, (f) an organopolysiloxane containing at least two alkenyl groups bonded to a silicon atom, (G) Organohydrogenpolysiloxane containing at least two hydrogen atoms bonded to silicon atoms (i.e., SiH groups) The silicon atoms in this component (g) per mole of alkenyl groups in the total curable silicone composition And an addition curable silicone composition containing an amount of 0.1 to 5 moles of hydrogen atoms bonded to and (h) an effective amount of a platinum group metal catalyst.
  • the organopolysiloxane of the (f) component is a base polymer of the addition-curable silicone composition and contains at least two alkenyl groups bonded to silicon atoms.
  • a known organopolysiloxane can be used as the component (f).
  • the weight average molecular weight of the organopolysiloxane of component (f) measured by gel permeation chromatography (hereinafter referred to as “GPC”) is preferably about 3,000 to 300,000 in terms of polystyrene.
  • the viscosity of the organopolysiloxane of component (f) at 25 ° C. is 100 to 1,000,000 mPa.s.
  • the organopolysiloxane of the component is basically from the viewpoint of easy availability of raw materials because the molecular chain (main chain) is a repeating diorganosiloxane unit (R 7 2 SiO 2/2 unit).
  • R 7 is as described in relation to equation (4) described below.
  • R 7 l SiO (4-1) / 2 (4) (Wherein R 7 is the same or different, unsubstituted or substituted monovalent hydrocarbon group having 1 to 10, more preferably 1 to 8, carbon atoms, and l is preferably 1.5 to 2.8, more preferably 1.8 to 2.5, and even more preferably a positive number in the range of 1.95 to 2.05), and at least two alkenyl groups in one molecule.
  • the organopolysiloxane having is used.
  • R 7 include the groups exemplified for R 1 in the average composition formula (1).
  • R 7 are alkenyl groups (particularly alkenyl groups having preferably 2 to 8, more preferably 2 to 6 carbon atoms).
  • the content of the alkenyl group is in the total organic group bonded to the silicon atom (that is, in the unsubstituted or substituted all monovalent hydrocarbon group represented by R 7 in the average composition formula (4)), preferably 50. It is ⁇ 99 mol%, particularly preferably 75 to 95 mol%.
  • the organopolysiloxane of component (f) has a linear structure, this alkenyl group is bonded to a silicon atom only in one of the molecular chain terminal and the non-molecular chain terminal, and both of them are silicon.
  • At least one alkenyl group is bonded to a silicon atom at the end of the molecular chain in view of the curing speed of the composition, the physical properties of the cured product, and the like.
  • the organohydrogenpolysiloxane has at least two hydrogen atoms (SiH groups) bonded to silicon atoms (usually 2 to 200), preferably 3 or more (usually 3 to 100).
  • the component (g) reacts with the component (f) and acts as a crosslinking agent.
  • the molecular structure of the component (g) is not particularly limited.
  • any conventionally produced organohydrogenpolysiloxane such as linear, cyclic, branched, and three-dimensional network (resinous) can be used as the component (b).
  • the SiH group is bonded to the silicon atom only in one of the molecular chain terminal and the non-molecular chain terminal, but is bonded to the silicon atom in both of them. Also good.
  • the number of silicon atoms in one molecule (or the degree of polymerization) is usually 2 to 300, preferably about 4 to 150, and the organohydrogenpolysiloxane that is liquid at room temperature (25 ° C.) (G) It can use preferably as a component.
  • R 8 is a monovalent hydrocarbon group having 1 to 10 carbon atoms, more preferably 1 to 8 carbon atoms, having the same or different unsubstituted or substituted, aliphatic unsaturated bonds, and p And q are preferably 0.7 ⁇ p ⁇ 2.1, 0.001 ⁇ q ⁇ 1.0, and 0.8 ⁇ p + q ⁇ 3.0, more preferably 1.0 ⁇ p ⁇ 2.0, (It is a positive number satisfying 0.01 ⁇ q ⁇ 1.0 and 1.5 ⁇ p + q ⁇ 2.5.)
  • R 8 include the groups exemplified for R 1 in the average composition formula (1) (excluding alkenyl groups).
  • organohydrogenpolysiloxane represented by the above average composition formula (3) examples include 1,1,3,3-tetramethyldisiloxane, 1,3,5,7-tetramethylcyclotetrasiloxane, tris ( Hydrogendimethylsiloxy) methylsilane, tris (hydrogendimethylsiloxy) phenylsilane, methylhydrogencyclopolysiloxane, methylhydrogensiloxane-dimethylsiloxane cyclic copolymer, both ends trimethylsiloxy group-blocked methylhydrogenpolysiloxane, both ends Trimethylsiloxy group-blocked methylhydrogensiloxane / dimethylsiloxane copolymer, both ends methylhydrogensiloxy group-blocked dimethylpolysiloxane, both ends methylhydrogensiloxy group-blocked methylhydro Polysiloxane / dimethylsiloxane copolymer, tri
  • the amount of component (g) added is, in particular, per mole of alkenyl groups in the total curable silicone composition, in particular per mole of alkenyl groups bonded to silicon atoms in the total curable silicone composition.
  • the amount of SiH groups in this component (g) is 0.1 to 5.0 moles, preferably 0.5 to 3.0 moles, more preferably 0.8 moles per mole of alkenyl groups bonded to silicon atoms.
  • the amount is 8 to 2.0 mol.
  • the ratio of the alkenyl group bonded to the silicon atom in the component (f) to the alkenyl group present in the total curable silicone composition is preferably 80 to 100 mol%, and more preferably 90 to 100 mol%.
  • the amount of SiH in the component (g) is about 0.1 per mole of the alkenyl group in the component (f).
  • the amount is 1 to 5.0 mol, preferably 0.5 to 3.0 mol, more preferably 0.8 to 2.0 mol.
  • the added amount is such that the amount of SiH is less than 0.1 mol, it takes a long time to cure, which is economically disadvantageous.
  • the amount added is such that the amount of SiH is more than 5.0 mol, foaming due to dehydrogenation reaction occurs in the cured reaction product, and the strength and heat resistance of the cured reaction product are adversely affected. Receive.
  • the platinum group metal catalyst of the (h) component is used as a catalyst for promoting an addition curing reaction (hydrosilylation reaction) between the (f) component and the (g) component.
  • a known platinum group metal catalyst can be used, but it is preferable to use platinum or a platinum compound.
  • Specific examples of the component (h) include platinum black, platinous chloride, chloroplatinic acid, alcohol-modified products of chloroplatinic acid, and complexes of chloroplatinic acid with olefins, aldehydes, vinyl siloxanes, or acetylene alcohols. .
  • the amount of component (h) added is an effective amount as a catalyst, and may be increased or decreased in a timely manner according to the desired curing reaction rate. Is in the range of 0.1 to 1,000 ppm, more preferably 0.2 to 100 ppm.
  • condensation curable silicone composition specifically, for example, (I) an organopolysiloxane containing at least two silanol groups (that is, silicon atom-bonded hydroxyl groups) or silicon atom-bonded hydrolyzable groups, preferably at both ends of the molecular chain; (J) A hydrolyzable silane and / or a partially hydrolyzed condensate thereof as an optional component, and (k) a condensation curable silicone composition containing a condensation reaction catalyst as an optional component.
  • Component is an organopolysiloxane containing at least two silanol groups or silicon atom-bonded hydrolyzable groups, and is a base polymer of a condensation curable silicone composition.
  • the organopolysiloxane of component (i) is basically composed of repeating diorganosiloxane units (R 9 2 SiO 2/2 units) in terms of molecular chain (main chain). A chain structure in which both ends of the molecular chain are blocked with a triorganosiloxy group (R 9 3 SiO 1/2 ), a linear structure having no branches, or a molecular chain consisting of repeating diorganosiloxane units.
  • R 9 represents an unsubstituted or substituted monovalent hydrocarbon group having 1 to 10 carbon atoms, more preferably 1 to 8 carbon atoms.
  • examples of hydrolyzable groups other than silanol groups include acyl groups such as acetoxy group, octanoyloxy group, benzoyloxy group; dimethyl ketoxime group, methyl ethyl ketoxime group, diethyl Ketoxime groups such as ketoxime groups (ie, iminoxy groups); alkoxy groups such as methoxy groups, ethoxy groups, and propoxy groups; alkoxyalkoxy groups such as methoxyethoxy groups, ethoxyethoxy groups, and methoxypropoxy groups; vinyloxy groups, isopropenyloxy Groups, alkenyloxy groups such as 1-ethyl-2-methylvinyloxy group; amino groups such as dimethylamino group, diethylamino group, butylamino group and cyclohexylamino group; aminoxy groups such as dimethylaminoxy group and diethylaminoxy group ;
  • hydrolyzable groups include, for example, trialkoxysiloxy groups, dialkoxyorganosiloxy groups, triacyloxysiloxy groups, diacyloxyorganosiloxy groups, triiminoxysiloxy groups (ie, triketoxime siloxy groups), diiminoxy groups
  • Siloxy groups containing 2 or 3 hydrolyzable groups such as organosiloxy groups, trialkenoxysiloxy groups, dialkenoxy otsuganosyloxy groups, trialkoxysiloxyethyl groups, dialkoxyorganosiloxyethyl groups, or two Alternatively, it is desirable to be located at both ends of the molecular chain of the linear diorganopolysiloxane in the form of a siloxyalkyl group containing three hydrolyzable groups.
  • Examples of the other monovalent hydrocarbon group bonded to the silicon atom include the same unsubstituted or substituted monovalent hydrocarbon groups as those exemplified for R 1 in the average composition formula (1).
  • X is a hydrolyzable group other than the silanol group, a is 1, 2 or 3, and n and m are each an integer of 1 to 1,000] Is mentioned.
  • component (i) examples include molecular chain both ends silanol-blocked dimethylpolysiloxane, molecular chain both ends silanol-blocked dimethylsiloxane / methylphenylsiloxane copolymer, molecular chain both ends silanol-blocked dimethylsiloxane / diphenylpolysiloxane.
  • Siloxane copolymer trimethoxysiloxy group-capped dimethylpolysiloxane with molecular chain at both ends, trimethoxysiloxy group-capped dimethylsiloxane / methylphenylsiloxane copolymer with molecular chain at both ends, trimethoxysiloxy group-capped dimethylsiloxane / diphenyl Examples thereof include polysiloxane copolymers, 2-trimethoxysiloxyethyl group-capped dimethylpolysiloxane having both molecular chain ends. These can be used singly or in combination of two or more.
  • hydrolysable silane of the (j) component and / or its partial hydrolysis-condensation product are optional components, and act as a curing agent.
  • component (i) which is a base polymer is an organopolysiloxane containing at least two silicon-bonded hydrolyzable groups other than silanol groups in one molecule
  • component (j) component is a condensation-curable silicone composition It can be omitted.
  • a silane containing at least 3 silicon atom-bonded hydrolyzable groups in one molecule and / or a partial hydrolysis condensate thereof that is, at least one, preferably two or more hydrolysis products
  • An organopolysiloxane in which a functional group remains is preferably used.
  • Examples of the silane include a formula: R 10 r SiX 4-r (6) (Wherein R 10 is an unsubstituted or substituted monovalent hydrocarbon group having 1 to 10 carbon atoms, more preferably 1 to 8 carbon atoms, X is a hydrolyzable group, and r is 0 or 1.) What is represented by these is used preferably.
  • R 10 is particularly preferably an alkyl group such as a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group or a hexyl group; an aryl group such as a phenyl group or a tolyl group; an alkenyl group such as a vinyl group or an allyl group. can give.
  • component (j) examples include, for example, methyltriethoxysilane, vinyltriethoxysilane, vinyltriacetoxysilane, ethyl orthosilicate and the like, and partial hydrolysis condensates thereof. These can be used singly or in combination of two or more.
  • the amount added is preferably 0.01 to 20 parts by mass, particularly preferably 0 with respect to 100 parts by mass of the component (i). 1 to 10 parts by mass.
  • the storage stability and curing reaction rate of the composition of the present invention are particularly good when the amount added is within the above range.
  • the condensation reaction catalyst of component (k) is an optional component, and the hydrolyzable silane and / or its partial hydrolysis-condensation product of component (j) is, for example, an aminoxy group, amino group, ketoxime group It is not necessary to use it when it has.
  • the condensation reaction catalyst for component (k) include organic titanates such as tetrabutyl titanate and tetraisobropyrutitanate; diisopropoxybis (acetylacetonato) titanium, diisopropoxybis (ethylacetoacetate) titanium and the like.
  • Organic titanium chelate compounds Organoaluminum compounds such as aluminum tris (acetylacetonate) and aluminum tris (ethylacetoacetate); organozirconium compounds such as zirconium tetra (acetylacetonate) and zirconium tetrabutyrate; dibutyltin dioctoate, Organotin compounds such as dibutyltin dilaurate and dibutyltin di (2-ethylhexanoate); tin naphthenate, tin oleate, tin butyrate, cobalt naphthenate, stearic acid Metal salts of organic carboxylic acids such as ammonia; amine compounds such as hexylamine and dodecylamine phosphate; and salts thereof; quaternary ammonium salts such as benzyltriethylammonium acetate; and lower fatty acids of alkali metals such as potassium acetate and
  • the amount added is not particularly limited and may be an effective amount as a catalyst, but is preferably 0.01 to 20 parts by mass with respect to 100 parts by mass of component (i). Particularly preferred is 0.1 to 10 parts by mass.
  • the component (k) it is economically advantageous from the viewpoint of curing time and curing temperature when the amount added is within the above range.
  • a conventionally known method can be used to form and cure the curable silicone composition into a spherical shape.
  • a method for example, a method in which a curable organopolysiloxane is heated and cured in a sprayed state (Japanese Patent Laid-Open No. 59-68333), curable using a homomixer, a homogenizer, a microfluidizer, or a colloid mill.
  • the emulsifier used when selecting the method using the above emulsification is not particularly limited, and examples thereof include polyoxyethylene alkyl ether, polyoxyethylene polyoxypropylene alkyl ether, polyoxyethylene alkylphenyl ether, polyethylene glycol alcohol ester, etc. Is mentioned.
  • This heat treatment is performed in a non-oxidizing atmosphere, preferably in an inert gas atmosphere.
  • the inert gas include nitrogen gas, argon gas, helium gas and the like, and argon gas is particularly preferable for obtaining high-purity silicon carbide.
  • the heat treatment is performed at a temperature in the range of 1500 to 2300 ° C., for example, in a carbon furnace.
  • the heat treatment is preferably carried out in two stages, and in the first stage, the heat treatment for mineralization is preferably in the range of 400 ° C to 1500 ° C.
  • the second stage is performed in a carbon furnace at a temperature in the range of above 1500 ° C. and below 2300 ° C.
  • the heating temperature is preferably 1600 ° C. or higher.
  • the heating temperature is preferably 2200 ° C. or lower.
  • the average particle size of the spherical silicon carbide powder particles thus obtained is preferably from 0.1 to 100 ⁇ m, more preferably from 0.5 to 20 ⁇ m, when the silicon carbide sintered body is densified by blending into the curable silicone composition. If the average particle size is too small, handling becomes difficult due to the problem of dust scattering, and if it is too large, the specific gravity with respect to the specific surface area is increased, and when the spherical silicon carbide powder is mixed and used in the next step, sedimentation, etc. Problem arises.
  • curable silicone composition containing the spherical silicon carbide powder obtained above, for example, the spherical silicon carbide powder is added to the base curable silicone composition and mixed using a planetary mixer or the like. Good.
  • the curable silicone composition that can be used here as the base composition is as described for the production of silicon carbide powder.
  • the blending amount of the spherical silicon carbide in the curable silicone composition containing the spherical silicon carbide powder is preferably 10 to 95% by volume, more preferably 40 to 90% by volume, and further preferably 50 to 80% by volume.
  • the curable silicone composition containing the spherical silicon carbide powder is molded into a desired shape, cured into a silicone-cured molded body, and then heat-treated at a high temperature in a non-oxidizing atmosphere to heat the cured silicone portion. By being decomposed, a silicon carbide ceramic sintered body having a required shape is obtained.
  • the molding and curing methods of the curable silicone composition may be performed by methods well known to those skilled in the art for each curing reaction type. Hereinafter, particularly typical and preferred press molding, extrusion molding and injection molding methods will be described.
  • a silicone cured product having a desired shape can be obtained by filling the mold with the curable silicone composition, sandwiching the mold between hot plates, and curing the composition while applying pressure.
  • Press molding is suitable for obtaining complex shapes.
  • the pressure is released after pressing at a molding temperature of 100 to 250 ° C. for 1 to 30 minutes.
  • the pressing pressure is preferably 10 to 200 kgf / cm 2 .
  • secondary curing may be performed in the range of 100 to 250 ° C. for 1 to 10 hours.
  • Extrusion molding By rotating the screw in the cylinder of the extruder and continuously extruding the curable silicone composition from the die, the curable silicone composition was passed through a hollow electric hot air oven having a length of 1 to 2 m arranged near the die outlet. A cured silicone product having a desired shape can be obtained.
  • Extrusion molding is suitable for forming a continuous long object such as a tube, a rod, a tube, or a strip.
  • the heating temperature of the electrothermal hot stove is preferably 80 to 500 ° C., particularly 100 to 250 ° C., and the heating time is preferably 1 to 30 minutes. If necessary, secondary curing may be performed in the range of 100 to 250 ° C. for 1 to 10 hours.
  • a silicone cured product having a desired shape can be obtained by injection-injecting the curable silicone composition into a heated mold.
  • Injection molding can be shaped freely, and is suitable for small varieties and mass production.
  • the heating temperature of the mold is preferably 80 to 500 ° C., particularly 100 to 250 ° C., and the heating time is preferably 1 to 30 minutes. If necessary, secondary curing may be performed in the range of 100 to 250 ° C. for 1 to 10 hours.
  • the obtained cured silicone molded body is then heat-treated in a non-oxidizing atmosphere.
  • the non-oxidizing atmosphere used here is as described above, and is preferably an inert gas atmosphere.
  • the inert gas include nitrogen gas, argon gas, helium gas, and argon gas is particularly preferable.
  • the heat treatment is preferably performed in two stages, and in the first stage, the mineralization heat treatment is preferably in the range of 400 ° C to 1500 ° C.
  • the second stage is performed in a carbon furnace at a temperature in the range of 1500-2300 ° C.
  • the heating temperature is preferably 1600 ° C. or higher.
  • the heating temperature is preferably 2200 ° C. or lower.
  • Example 1 Manufacture of silicon carbide powder
  • a cylindrical porous glass membrane (trade name: SPG membrane, manufactured by SPG Techno Co., Ltd.) 1 having a diameter of 10 mm ⁇ length of 10 mm and having continuous pores having an average pore diameter of 2.1 ⁇ m is placed on the metal tube 5 side. It was attached to the part.
  • the metal tube 5 is closed at one end 2 a by a fixed lid 3 and has a hole 4 on a side portion.
  • the cylindrical porous glass membrane 1 is attached to the side portion of the metal tube 5 via O-rings 6 and 7.
  • the other end (open end) 2b of the metal tube 5 was attached to the lower end 11 of the lower tubular portion (shaft) 10 of the siloxane container 9, as shown in FIG.
  • the SPG membrane portion of the assembly thus assembled was immersed in ion-exchanged water, and ultrasonic waves were applied for 30 seconds to soak water in the pores of the SPG membrane.
  • a polysiloxane mixture composed of 15 g of methyl vinyl polysiloxane represented by the following formula (7) and 5 g of methyl hydrogen polysiloxane represented by the following formula (8) was charged into the siloxane container 9.
  • 84 g of a 0.6% by mass polyoxyethylene decyl ether (HLB 13.2)
  • aqueous solution 22 was charged into a 200 ml beaker 21.
  • the SPG film was pulled up from the beaker.
  • the aqueous dispersion of the polysiloxane mixture thus obtained was uniform.
  • a mixture of 0.04 g of a chloroplatinic acid-olefin complex toluene solution (chloroplatinic acid content 0.05 mass%) and polyoxyethylene lauryl ether 0.04 g was added to the aqueous dispersion of the resulting polysiloxane mixture. After further stirring for 24 hours, the reaction mixture was passed through a 60 mesh wire mesh to obtain an aqueous dispersion of a cured silicone.
  • the volume average particle size was 8.0 ⁇ m.
  • the aqueous dispersion of cured silicone particles was subjected to solid-liquid separation using a filter paper, and the solid content was dried with a drier at 105 ° C. to obtain a white powder. Observation of this white powder with an optical microscope revealed spherical particles.
  • This spherical cured silicone powder is placed in an alumina boat and heated in an atmosphere furnace in a nitrogen gas atmosphere at a rate of 100 ° C./hour from room temperature to 1000 ° C. for about 10 hours, and then 1000 ° C. for 1 hour. Retained. Thereafter, it was cooled to room temperature at a rate of 200 ° C./hour. This gave a black powder. When this powder was observed with an electron microscope, it was spherical and the volume average particle diameter was 8.0 ⁇ m.
  • this black spherical powder is put into a carbon container, and the temperature is increased to 2000 ° C. over 20 hours at a rate of 100 ° C./hour in an argon gas atmosphere in a carbon atmosphere furnace, and the temperature is maintained at 2000 ° C. for 2 hours. Then, it was cooled to room temperature and cooled to room temperature at a rate of 200 ° C./hour. This gave a green powder. When this powder was observed with an electron microscope, it was spherical and the volume average particle diameter was 6.5 ⁇ m.
  • Example 2 Manufacture of silicon carbide powder
  • Into a 5 liter glass container 3,510 g of pH 7 ion exchange water was charged and the water temperature was adjusted to 3 ° C. Then, 1.8 g of trimethylsiloxymethoxysilane and 180 g of methyltrimethoxysilane were added thereto and stirred for 1 hour. 90 g of an aqueous ammonia solution (concentration: 28% by mass) was added thereto and stirred for 10 minutes while maintaining the liquid temperature at 3 to 7 ° C. Then, 540 g of methyltrimethoxysilane was added to the resulting reaction mixture, and the liquid temperature was adjusted to 5 to 10 ° C.
  • the mixture was added over 2.5 hours while maintaining the temperature and stirred for 1 hour while maintaining the liquid temperature at 5 to 10 ° C. even after completion of the addition. Thereafter, the reaction solution was heated to 75 to 80 ° C., and further stirred at that temperature for 1 hour. After cooling the reaction solution to room temperature, solid-liquid separation is performed using filter paper, the obtained solid content is dried at 105 ° C. using a dryer, and the resulting dried product is pulverized with a jet mill to obtain a white powder. was gotten. When this white powder was observed with an optical microscope, it was spherical, and its volume average particle size was 0.7 ⁇ m.
  • This spherical cured silicone powder is placed in an alumina boat, heated in an atmosphere furnace in a nitrogen gas atmosphere at a rate of 100 ° C./hour from room temperature to 1000 ° C. for about 10 hours, and then at 1000 ° C. for 1 hour. Retained. Thereafter, it was cooled to room temperature at a rate of 200 ° C./hour. This gave a black powder. When this powder was observed with an electron microscope, it was spherical and the volume average particle diameter was 0.7 ⁇ m.
  • this black spherical powder is put into a carbon container, and the temperature is increased to 2000 ° C. over 20 hours at a rate of 100 ° C./hour in an argon gas atmosphere in a carbon atmosphere furnace, and the temperature is maintained at 2000 ° C. for 2 hours. Then, it was cooled to room temperature and cooled to room temperature at a rate of 200 ° C./hour. This gave a green powder. When this powder was observed with an electron microscope, it was spherical and the volume average particle diameter was 0.5 ⁇ m.
  • Example 3 Manufacture of silicon carbide moldings
  • A 100 parts by mass of methyl vinyl polysiloxane represented by the above formula (7),
  • B 0.7 parts by mass with respect to the total amount of benzoyl peroxide polysiloxane,
  • C 33 parts by mass of methyl hydrogen polysiloxane represented by the above formula (8), and
  • D 792 parts by mass of spherical silicon carbide powder obtained in Example 1 (that is, 65% by volume of the total silicone composition) Amount)
  • the above components (A) to (D) are put into a planetary mixer (registered trademark, manufactured by Inoue Seisakusho Co., Ltd.) and stirred at room temperature for 1 hour to obtain a clay-like curable silicone composition at room temperature. It was.
  • This curable silicone composition was press-cured at 150 ° C. for 5 minutes at a pressure of 100 kgf / cm 2 to obtain a sheet-like cured silicone molded product having a length of 40 mm ⁇ width of 40 mm ⁇ thickness of 2 mm.
  • This cured silicone molded product is placed in an alumina boat and heated in an atmosphere furnace in a nitrogen gas atmosphere at a heating rate of 100 ° C./hour from room temperature to 1000 ° C. over about 10 hours. Hold for 1 hour. Thereafter, it was cooled to room temperature at a rate of 200 ° C./hour. This obtained the molding which consists of a black inorganic substance.
  • the size of this inorganic molded product was 39.2 mm long ⁇ 39.2 mm wide ⁇ 2 mm thick.
  • this black inorganic molded product was put in a carbon container, and the temperature was increased to 2000 ° C. over 20 hours at a temperature increase rate of 100 ° C./hour in an argon gas atmosphere in a carbon atmosphere furnace. After holding for a time, it was cooled to room temperature and cooled to room temperature at a rate of 200 ° C./hour. Thereby, a green silicon carbide molded product was obtained.
  • the silicon carbide molded product had dimensions of 39.0 mm in length, 39.0 mm in width, and 2 mm in thickness, and the shape was almost the same as that of the cured silicone product.
  • Example 3 a planetary was obtained in the same manner as in Example 3 except that 792 parts by mass of GP # 1000 (silicon carbide amorphous powder) manufactured by Shinano Denki Seiki was used instead of 792 parts by mass of the spherical silicon carbide powder of component (D).
  • GP # 1000 silicon carbide amorphous powder
  • component (D) 792 parts by mass of the spherical silicon carbide powder of component (D).
  • a mixer registered trademark of a mixer manufactured by Inoue Seisakusho Co., Ltd.
  • the spherical silicon carbide powder of the present invention is useful for producing a dense silicon carbide molded body.
  • the silicon carbide molded body is useful for a board, a process tube, or the like in a process of heat-treating a semiconductor wafer or thermally diffusing a trace element into the semiconductor wafer.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Structural Engineering (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Ceramic Products (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本発明は、球状炭化ケイ素粉末及びそれを使用する炭化ケイ素セラミックス成形体の製造方法に関する。 本発明は、球状硬化シリコーン粉末を非酸化性雰囲気下で加熱分解させることにより、高純度の球状炭化ケイ素粉末を得るものである。本発明によれば、出発原料が球状硬化シリコーン粉末であるため、加熱分解することのみで、所要の球状炭化ケイ素粉末を容易に得ることができる。

Description

球状炭化ケイ素粉末、その製造方法、及びそれを使用する炭化ケイ素セラミックス成形体の製造方法
 本発明は、球状炭化ケイ素粉末及びそれを使用する炭化ケイ素セラミックス成形体の製造方法に関する。
 炭化ケイ素セラミックスは常温及び高温において化学的に安定で、高温における機械的強度も優れているため、高温材料として利用されている。近年では、半導体製造分野において、耐熱性、耐クリープ性に優れた高純度の炭化ケイ素セラミックス焼結体が、半導体ウエハーを熱処理したり、半導体ウエハーに微量元素を熱拡散したりする工程でのボードやプロセスチューブなどに利用されるようになった。
 この炭化ケイ素セラミックス焼結体は通常炭化ケイ素粉末を焼結して製造されるが、得られる焼結体の緻密度を高めるために球状に造粒したものが用いられている。
 球状炭化ケイ素粉末を得る方法として、噴霧乾燥機を用いる方法(例えば特許文献1)、ポリカルボシランを溶融、不融化、加熱分解する方法(特許文献1)がある。しかしながらいずれも特別の装置が必要であったり、製造プロセスが煩雑であるという問題があった。
 炭化ケイ素セラミックス焼結体の製造のために焼結に用いる炭化ケイ素粉末に半導体に有害な不純物元素が含まれていると、得られる焼結体も不純物元素を含むため、それでできた容器などを使用して例えば半導体ウエハーを加熱すると、該不純物元素がウエハーに侵入して汚染が起こる。したがって、このような用途に炭化ケイ素セラミックス焼結体が用いられる場合には、原料である炭化ケイ素粉末はできるだけ高純度であることが望まれる。
特開2003-063874号公報 特開2007-112683号公報
 本発明の課題は、上記従来技術の問題を解決し、簡便に得られる球状炭化ケイ素粉末、その製造方法、及び該炭化ケイ素粉末を使用する炭化ケイ素セラミックス成形体の製造方法を提供することにある。
 本発明者らは、上記課題を解決するため検討を重ねた結果、球状硬化シリコーン粉末を非酸化性雰囲気下で加熱分解させるより上記課題を解決できることを見出した。
 即ち、本発明は、第一に、球状硬化シリコーン粉末を非酸化性雰囲気下で加熱分解することにより得られる球状炭化ケイ素粉末を提供する。
 本発明は、第二に、球状硬化シリコーン粉末を非酸化性雰囲気下で加熱分解することを特徴とする球状炭化ケイ素粉末の製造方法を提供する。
 本発明は、第三に、上記の球状炭化ケイ素粉末を含有する硬化性シリコーン組成物を所望の形状に成形し、硬化させて所望の形状を有するシリコーン硬化成形体を得、
 次に、該シリコーン硬化成形体のシリコーン部分を非酸化性雰囲気下で加熱分解させる、
工程を有する炭化ケイ素成形体の製造方法を提供する。
 本発明によれば、出発原料が球状硬化シリコーン粉末であるため、加熱分解することのみで、所要の球状炭化ケイ素粉末を容易に得ることができる。
 球状硬化シリコーン粉末は硬化性シリコーン組成物から容易に得られるので、該硬化性シリコーン組成物の段階で純度を高めることにより、高純度の球状炭化ケイ素粉末が提供できる。
 また、炭化ケイ素成形体の製造方法によれば、硬化性シリコーン組成物に上記球状炭化ケイ素粉末を比較的大量に混合することが可能であるので、より緻密度の高い炭化ケイ素成形体を容易に製造することができる。
 また、母材である硬化性シリコーン組成物を高純度のものを選択し、球状炭化ケイ素粉末として上述した高純度品を選択すれば高純度炭化ケイ素成形体を容易に得ることができる。
本発明の実施例1で使用したシリコーン組成物の乳化装置に用いる円筒状多孔質ガラス膜の取り付け治具の概略図で、該ガラス膜は縦断面図で示されている。 該乳化装置の組み立てを説明する図。 同乳化装置を使用する乳化を説明する図。
 以下、本発明を詳細に説明する。なお、本明細書において、「室温」とは周囲温度を意味し、通常、10~35℃の範囲で変りうる。
-球状硬化シリコーン粉末-
 本発明の方法において出発材料として用いる球状硬化シリコーン粉末は硬化性シリコーン組成物を成形、硬化することにより製造することができる。
 球状硬化シリコーン粉末は後述の熱分解により球状炭化ケイ素粉末になるとおよそ  10~50体積%収縮するので、平均粒径は0.1~100μmが好ましく、0.5~20μmがより好ましい。なお、本明細書で粒子の平均粒径は体積平均粒径を意味し、通常、レーザー回折・散乱式粒子測定装置により測定されたものである。
 該製造方法で使用される硬化性シリコーン組成物の種類は特に制限されず、いずれの硬化型の硬化性シリコーン組成物も使用することができる。その具体例としては有機過酸化物硬化性、放射線硬化性反応性、付加硬化反性型、縮合硬化性のシリコーン組成物等が挙げられる。得られる炭化ケイ素粉末を高純度にする点では、有機過酸化物硬化性及び放射線硬化性反応性のシリコーン組成物が有利であり、得られる炭化ケイ素粉末中の不純物元素の合計含有量を1ppm以下、好ましくは0.5ppm以下、さらに好ましくは0.1ppm以下に抑制することができる。不純物元素としては、特にFe, Cr, Ni, Al, Ti, Cu, Na, Zn, Ca, Zr, Mg, 及びBが挙げられ、これらの合計含有量を上記のように抑制することができる。
 有機過酸化物硬化性シリコーン組成物としては、例えば、分子鎖末端部分(片末端又は両末端)及び分子鎖非末端部分のどちらか一方又はその両方にビニル基等のアルケニル基を有する直鎖状オルガノポリシロキサンを有機過酸化物存在下でラジカル重合させることによって硬化するシリコーン組成物を挙げることができる。
 放射線硬化性シリコーン組成物としては、紫外線硬化性シリコーン組成物及び電子線硬化性シリコーン組成物を挙げられる。
 紫外線硬化性シリコーン組成物としては、例えば、波長200~400nmの紫外線のエネルギーにより硬化するシリコーン組成物が挙げられる。この場合、硬化機構には特に制限はない。その具体例としてはアクリロイル基あるいはメタクリロイル基を有するオルガノポリシロキサンと光重合開始剤とを含有するアクリルシリコーン系シリコーン組成物、メルカプト基含有オルガノポリシロキサンとビニル基等のアルケニル基を有するオルガノポリシロキサンと光重合開始剤とを含有するメルカプト-ビニル付加重合系シリコーン組成物、熱硬化性の付加反応型と同じ白金族金属系触媒を用いた付加反応系シリコーン組成物、エポキシ基を含有するオルガノポリシロキサンとオニウム塩触媒とを含有するカチオン重合系シリコーン組成物などが挙げられ、いずれも紫外線硬化性シリコーン組成物として使用することができる。
 電子線硬化性シリコーン組成物としては、ラジカル重合性基を有するオルガノポリシロキサンに電子線を照射することで開始するラジカル重合により硬化するいずれのシリコーン組成物も使用することができる。
 付加硬化性シリコーン組成物としては、例えば、上記のアルケニル基を有する直鎖状オルガノポリシロキサンとオルガノハイドロジェンポリシロキサンと白金族金属系触媒の存在下で反応(ヒドロシリル化付加反応)させることにより硬化するシリコーン組成物を挙げることができる。
 縮合硬化性シリコーン組成物としては、例えば、両末端シラノール封鎖オルガノポリシロキサンとオルガノハイドロジェンポリシロキサン又はテトラアルコキシシラン、オルガノトリアルコキシシラン等の加水分解性シラン及び/もしくはその部分加水分解縮合物とを有機錫系触媒等の縮合反応触媒の存在下で反応させることにより硬化するシリコーン組成物、あるいは両末端がトリアルコキシ基、ジアルコキシオルガノ基、トリアルコキシシロキシエチル基、ジアルコキシオルガノシロキシエチル基等で封鎖されたオルガノポリシロキサンを有機錫触媒等の縮合反応存在下で反応させることにより硬化するシリコーン組成物などを挙げることができる。
 ただし、不純物元素の混入を極力避ける観点から、放射線硬化性シリコーン組成物及び有機過酸化物硬化性シリコーン組成物が望ましい。
 以下、各硬化性シリコーン組成物について詳述する。
 ・有機過酸化物硬化性シリコーン組成物:
 有機過酸化物硬化性シリコーン組成物として、具体的には、例えば、
 (a)ケイ素原子に結合したアルケニル基を少なくとも2個含有するオルガノポリシロキサン及び
 (b)有機過酸化物及び任意成分として
 (c)ケイ素原子に結合した水素原子(即ち、SiH基)を少なくとも2個含有するオルガノハイドロジェンポリシロキサン 全硬化性シリコーン組成物中のアルケニル基1モル当たり、本(c)成分中のケイ素原子に結合した水素原子の量が0.1~2モルとなる量
を含有する有機過酸化物硬化性シリコーン組成物があげられる。
 ・・(a)成分
 (a)成分のオルガノポリシロキサンは、有機過酸化物硬化性シリコーン組成物のベースポリマーである。(a)成分のオルガノポリシロキサンの重合度は特に限定されず、(a)成分としては、25℃で液状のオルガノポリシロキサンから生ゴム状のオルガノポリシロキサンまで使用できるが、平均重合度が好ましくは50~20,000、より好ましくは100~10,000、更により好ましくは100~2,000程度のオルガノポリシロキサンが好適に使用される。また、(a)成分のオルガノポリシロキサンは、基本的には、原料の入手のしやすさの観点から、分子鎖がジオルガノシロキサン単位(R1 SiO2/2単位)の繰返しからなり、分子鎖両末端がトリオルガノシロキシ基(R1 SiO1/2)もしくはヒドロキシジオルガノシロキシ基((HO)R1 SiO1/2単位)で封鎖された、分岐を有しない直鎖構造、又は分子鎖が該ジオルガノシロキサン単位の繰返しからなる、分岐を有しない環状構造を有するが、三官能性シロキサン単位やSiO単位等の分岐状構造を部分的に含有してもよい。ここで、Rは下に説明する式(1)において定義の通りである。
(a)成分としては、例えば下記平均組成式(1);
1 SiO(4-a)/2   (1)
(式中、R1は同一又は異種の非置換もしくは置換の、炭素原子数が1~10、より好ましくは1~8の一価炭化水素基を表し、R1の50~99モル%はアルケニル基であり、aは1.5~2.8、より好ましくは1.8から2.5、さらにより好ましくは1.95~2.05の範囲の正数である。)で示され、一分子中に少なくとも2個のアルケニル基を有するオルガノポリシロキサンが用いられる。
 上記R1の具体的例としては、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基等のアルキル基;フェニル基、トリル基、キシリル基、ナフチル基等のアリール基;シクロペンチル基、シクロヘキシル基等のシクロアルキル基;ビニル基、アリル基、プロペニル基、イソプロペニル基、ブテニル基等のアルケニル基これらの炭化水素基の水素原子の一部又は全部をフッ素、臭素、塩素等のハロゲン原子、シアノ基等で置換した基例えばクロロメチル基、クロロプロピル基、ブロモエチル基、トリフロロプロピル基、シアノエチル基等が挙げられるが、高純度の観点から炭化水素基のみで構成されるほうが好ましい。
 この場合、Rのうち少なくとも2個はアルケニル基(特に、炭素原子が好ましくは2~8、より好ましくは2~6のアルケニル基)である。なお、アルケニル基の含有量はケイ素原子に結合する全有機基中(即ち、前記平均組成式(1)においてRで示される非置換又は置換の全一価炭化水素基中)、好ましくは50~99モル%、特に好ましくは75~95モル%である。(a)成分のオルガノポリシロキサンが直鎖状構造を有する場合、このアルケニル基は、分子鎖末端及び分子鎖末端でない部分のどちらか一方でのみケイ素原子に結合していても、その両方でケイ素原子に結合していてもよい。
 ・・(b)成分
 (b)成分は、有機過酸化物硬化性オルガノポリシロキサン組成物において(a)成分の架橋反応を促進するための触媒として使用される有機過酸化物である。(b)成分としては、(a)成分の架橋反応を促進することができる限り、従来公知の有機過酸化物を使用することができる。その具体例としては、ベンソイルパーオキサイド、2,4-ジクロロベンソイルパーオキサイド、p-メチルベンソイルパーオキサイド、o-メチルベンソイルパーオキサイド、2,4-ジクミルパーオキサイド、2,5-ジメチル-ビス(2,5-t-ブチルパーオキシ)へキサン、ジ-t-ブチルパーオキサイド、t-ブチルパーベンゾエート、1,1-ビス(t-ブチルパーオキシカルボキシ)へキサン等が挙げられるが特にこれらに限定されるものではない。
 (b)成分の添加量は、(a)成分の架橋反応を促進するための触媒としての有効量である。(a)成分100質量部に対して好ましくは0.1~10質量部、より好ましくは0.2~2質量部の範囲とすることができる。該添加量が(a)成分100質量部に対して0.1質量部より少なくなる量であると、硬化するまでの時間が長くかかり、経済的に不利である。また、該添加量が(a)成分100質量部に対して10質量部より多くなる量であると(b)成分由来の発泡が生じてしまい、さらに該硬化反応物の強度及び耐熱性が悪影響を受ける。
 ・・(c)成分
 任意成分である(c)成分のオルガノハイドロジェンポリシロキサンは、ケイ素原子に結合した水素原子(SiH基)を少なくとも2個(通常2~200個)、好ましくは3個以上(通常3~100個)含有する。(a)成分単独でも(b)成分を添加し、加熱することで硬化させることが可能であるが、(c)成分を添加することで、(a)成分単独の場合と比べて、(a)成分と反応しやすいため、より低温かつ短時間で、硬化させることができる。(c)成分の分子構造は特に限定されず、例えば、線状、環状、分岐状、三次元網状(樹脂状)等の、従来製造されているいずれのオルガノハイドロジェンポリシロキサンも(c)成分として使用することができる。(c)成分が線状構造を有する場合、SiH基は、分子鎖末端及び分子鎖末端でない部分のどちらか一方でのみケイ素原子に結合していても、その両方でケイ素原子に結合していてもよい。また、1分子中のケイ素原子の数(又は重合度)が、通常、2~300個、好ましくは4~150個程度であり、室温(25℃)において液状であるオルガノハイドロジェンポリシロキサンが、(c)成分として好ましく使用できる。
 (c)成分としては、例えば、下記平均組成式(2);
SiO(4-b-c)/2   (2)
(式中、Rは同一又は異種の非置換もしくは置換の、脂肪族不飽和結合を含有しない、炭素原子数が1~10、より好ましくは1~8の一価炭化水素基であり、b及びcは、好ましくは0.7≦b≦2.1、0.001≦c≦1.0、かつ0.8≦b+c≦3.0、より好ましくは1.0≦b≦2.0、0.01≦c≦1.0、かつ1.5≦b+c≦2.5を満足する正数である。)
で示されるオルガノハイドロジェンポリシロキサンが用いられる。上記Rとしては、例えば、上記平均組成式(1)中のRと同様の基(ただし、アルケニル基を除く。)が挙げられる。
 上記平均組成式(2)で表されるオルガノハイドロジェンポリシロキサンの具体例としては1,1,3,3-テトラメチルジシロキサン、1,3,5,7-テトラメチルシクロテトラシロキサン、トリス(ハイドロジェンジメチルシロキシ)メチルシラン、トリス(ハイドロジェンジメチルシロキシ)フェニルシラン、メチルハイドロジェンシクロポリシロキサン、メチルハイドロジェンシロキサン・ジメチルシロキサン環状共重合体、両末端トリメチルシロキシ基封鎖メチルハイドロジェンポリシロキサン、両末端トリメチルシロキシ基封鎖メチルハイドロジェンシロキサン・ジメチルシロキサン共重合体、両末端メチルハイドロジェンシロキシ基封鎖ジメチルポリシロキサン、両末端メチルハイドロジェンシロキシ基封鎖メチルハイドロジェンシロキサン・ジメチルシロキサン共重合体、両末端トリメチルシロキシ基封鎖メチルハイドロジェンシロキサン・ジフェニルシロキサン共重合体、両末端トリメチルシロキシ基封鎖メチルハイドロジェンシロキサン・ジフェニルシロキサン・ジメチルシロキサン共重合体、両末端トリメチルシロキシ基封鎖メチルハイドロジェンシロキサン・メチルフェニルシロキサン・ジメチルシロキサン共重合体、両末端メチルハイドロジェンシロキシ基封鎖メチルハイドロジェンシロキサン・ジフェニルシロキサン・ジメチルシロキサン共重合体、両末端メチルハイドロジェンシロキシ基封鎖メチルハイドロジェンシロキサン・メチルフェニルシロキサン・ジメチルシロキサン共重合体、(CHHSiO1/2単位と(CHSiO2/2単位とSiO4/2単位とからなる共重合体、(CHHSiO1/2単位とSiO4/2単位とからなる共重合体、(CHHSiO1/2単位とSiO4/2単位と(CSiO1/2単位とからなる共重合体などが挙げられる。
 (c)成分の添加量は、(a)成分100質量部に対して好ましくは0~100質量部、より好ましくは0~50質量部の範囲とすることができる。該添加量が(a)成分100質量部に対して100質量部より多くなる量であると(c)成分由来の発泡が生じてしまい、さらに該硬化反応物の強度及び耐熱性が悪影響を受ける。
 ・紫外線硬化性シリコーン組成物:
 紫外線硬化性シリコーン組成物として、具体的には、例えば
 (d)紫外線反応性オルガノポリシロキサン、及び
 (e)光重合開始剤
を含有する紫外線硬化性シリコーン組成物が挙げられる。
 ・・(d)成分
 (d)成分の紫外線反応性オルガノポリシロキサンは、通常、紫外線硬化性シリコーン組成物においてベースポリマーとして作用する。(d)成分は、特に限定されず、好ましくは1分子中に少なくとも2個、より好ましくは2~20個、特に好ましくは2~10個の紫外線反応性基を有するオルガノポリシロキサンである。このオルガノポリシロキサン中に複数存在する前記紫外線硬化性基は、すべて同一でも異なっていてもよい。
 (d)成分のオルガノポリシロキサンは、基本的には、原料の入手のしやすさの観点から、分子鎖(主鎖)がジオルガノシロキサン単位(R SiO2/2単位)の繰返しからなり、分子鎖両末端がトリオルガノシロキシ基(R SiO1/2)で封鎖された、分岐を有しない直鎖状構造、又は分子鎖が該ジオルガノシロキサン単位の繰返しからなる、分岐を有しない環状構造を有するが、三官能性シロキサン単位やSiO単位等の分岐状構造を部分的に含有してもよい。ここで、Rは式(1)に関して述べた通りである。(d)成分のオルガノポリシロキサンは、直鎖状構造を有する場合、紫外線反応性基を、分子鎖末端及び分子鎖末端でない部分のどちらか一方にのみ有していても、その両方に有していてもよいが、少なくとも分子鎖両末端に紫外線反応性基を有することが好ましい。
 該紫外線反応性基としては、例えば、ビニル基、アリル基、プロペニル基等のアルケニル基;ビニルオキシ基、アリルオキシ基、プロペニルオキシ基、イソプロペニルオキシ基等のアルケニルオキシ基;アクリロイル基、メタクリロイル基等のアルケニル基以外の脂肪族不飽和基;エポキシ基;ヒドロシリル基等が挙げられ、好ましくはアクリロイル基、メタクリロイル基、メルカプト基、エポキシ基、及びヒドロシリル基が挙げられ、より好ましくはアクリロイル基及びメタクリロイル基が挙げられる。
 前記オルガノポリシロキサンの粘度は、特に限定されないが、25℃において100mPa.s~1,000,000mPa.sであることが好ましく、200~500,000mPa.sであることがより好ましく、200~100,000mPa.sであることが特に好ましい。
 (d)成分の好ましい一形態として例えば、下記一般式(3a);
Figure JPOXMLDOC01-appb-C000005
[式中、Rは同一又は異種の、紫外線反応性基を有しない非置換もしくは置換の一価炭化水素基であり、Rは同一又は異種の、紫外線反応性基を有する基であり、Rは同一又は異種の、紫外線反応性基を有する基であり、mは5~1,000の整数であり、nは0~100の整数であり、fは0~3の整数であり、gは0~3の整数であり、ただし、f+g+n≧2である]
又は下記一般式(3b);
Figure JPOXMLDOC01-appb-C000006
[式中、R、R、R、m、n、f、gは上記一般式(3a)で定義した通りであり、hは2~4の整数であり、i及びjは各々1~3の整数であり、ただしfi+gj+n≧2である]
で表される少なくとも2個の紫外線反応性基を有するオルガノポリシロキサンが挙げられる。
 上記一般式(3a)及び(3b)中、Rは、同一又は異種の、紫外線反応性基を有しない非置換もしくは置換の一価の、炭素原子数が好ましくは1~20、より好ましくは1~10更により好ましくは、1~8の一価炭化水素基である。Rで表される一価炭化水素基としては例えばメチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基等のアルキル基;フェニル基、トリル基、キシリル基、ナフチル基等のアリール基;シクロペンチル基、シクロヘキシル基、シクロペンチル基等のシクロアルキル基;ベンジル基、フェニルエチル基等のアラルキル基;これらの炭化水素基に結合している水素原子の一部又は全部をハロゲン原子、シアノ基、カルボキシル基等で置換した基、例えばクロロメチル基、クロロプロピル基、ブロモエチル基、トリフロロプロピル基、シアノエチル基、3-シアノプロピル基等が挙げられ、好ましくはメチル基及びフェニル基が挙げられ、より好ましくはメチル基が挙げられる。また上記Rで表される一価炭化水素基は、その骨格中にスルホニル基、エーテル結合(-O-)、カルボニル基等を1種又は2種以上有してもよい。
 上記一般式(3a)及び(3b)中、R及びRに含まれる紫外線反応性基としては、例えば、ビニル基、アリル基、プロペニル基等のアルケニル基;ビニルオキシ基、アリルオキシ基、プロペニルオキシ基、イソプロペニルオキシ基等のアルケニルオキシ基;アクリロイル基、メタクリロイル基等のアルケニル基以外の脂肪族不飽和基;メルカプト基;エポキシ基;ヒドロシリル基等が挙げられ、好ましくはアクリロイル基、メタクロイル基、エポキシ基、及びヒドロシリル基が挙げられ、より好ましくはアクリロイル基及びメタクリロイル基が挙げられる。従って、R及びRで表される紫外線反応性基を有する基は、例えば上で例示した紫外線反応基を有する一価の基であり、その具体例としては、ビニル基、アリル基、3-グリシドキシプロピル基、2-(3,4-エポキシシクロヘキシル)エチル基、3-メタクリロキシプロピル基、3-アクリロキシプロピル基、3-メルカプトプロピル基、2-{ビス(2-メタクリロキシエトキシ)メチルシリル}エチル基、2-{ビス(2-アクリロキシエトキシ)メチルシリル}エチル基、2-{(2-アクリロキシエトキシ)ジメチルシリル}エチル基、2-{ビス(1,3-ジメタクリロキ-2-プロポキシ)メチルシリル}エチル基、2-{(1,3-ジメタクリロキ-2-プロポキシ)ジメチルシリル}エチル基、2-{ビス(1-アクリロキシ-3-メタクリロキ-2-プロポキシ)メチルシリル}エチル基、及び2-{ビス(1-アクリロキシ-3-メタクリロキ-2-プロポキシ)ジメチルシリル}エチル基等が挙げられ、好ましくは3-メタクリロキシプロピル基、3-アクリロキシプロピル基、2-{ビス(2-メタクリロキシエトキシ)メチルシリル}エチル基、2-{ビス(2-アクリロキシエトキシ)メチルシリル}エチル基、2-{(2-アクリロキシエトキシ)ジメチルシリル}エチル基、2-{(1,3-ジメタクリロキ-2-プロポキシ)ジメチルシリル}エチル基、2-{ビス(1-アクリロキシ-3-メタクリロキ-2-プロポキシ)メチルシリル}エチル基、及び2-{ビス(1-アクリロキシ-3-メタクリロキ-2-プロポキシ)ジメチルシリル}エチル基が挙げられる。R及びRは各々同一であっても異なっていてもよく、R及びRどうしが同一であっても異なっていてもよい。
 上記一般式(3a)及び(3b)中、mは、通常、5~1,000、好ましくは10~800、より好ましくは50~500の整数であり、nは、通常、0~100、好ましくは0~50、より好ましくは0~20の整数であり、fは0~3、好ましくは0~2、より好ましくは1~2の整数であり、gは0~3、好ましくは0~2の整数、より好ましくは1又は2である。上記式(3b)中、hは通常2~4の整数、好ましくは2又は3である。i及びjは各々1~3の整数、好ましくは1又は2整数である。更に、上記一般式(3a)及び(3b)で表されるオルガノポリシロキサンは前述の通り、前記紫外線反応性基を少なくとも2個有するので、式(3a)ではf+g+n≧2となり式(3b)ではfi+gj+n≧2となる。
  上記式(3a)及び(3b)で表されるオルガノポリシロキサンの具体例としては、下記に示すものなどが挙げられる。
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010
[上記式中、Rは90モル%がメチル基であり、10モル%がフェニル基である]
 ・・(e)成分
 (e)成分の光重合開始剤は、前記(d)成分中の紫外線反応性基の光重合を促進させる作用を有する。(e)成分は特に限定されず、その具体例としては、アセトフェノン、プロピオフェノン、ベンゾフェノン、キサントール、フルオレイン、ベンズアルデヒド、アンスラキノン、トリフェニルアミン、4-メチルアセトフェノン、3-ペンチルアセトフェノン、4-メトキシアセトフェノン、3-ブロモアセトフェノン、4-アリルアセトフェノン、p-ジアセチルベンゼン、3-メトキシベンゾフェノン、4-メチルベンゾフェノン、4-クロロベンゾフェノン、4,4’-ジメトキシベンゾフェノン、4-クロロ-4’-ベンジルベンゾフェノン、3-クロロキサントン、3,9-ジクロロキサントン、3-クロロ-8-ノニルキサントン、ベンゾイン、ベンゾインメチルエーテル、ベンゾインブチルエーテル、ビス(4-ジメチルアミノフェニル)ケトン、ベンジルメトキシアセタール、2-クロロチオキサントン、ジエチルアセトフェノン、1-ヒドロキシクロロフェニルケトン、1-ヒドロキシシクロヘキシルフェニルケトン、2-メチル-(4-(メチルチオ)フェニル)-2-モルホリノ-1-プロパン、2,2-ジメトキシ-2-フェニルアセトフェノン、ジエトキシアセトフェノン及び2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン等が挙げられ、好ましくは高純度の観点からベンゾフェノン、4-メトキシアセトフェノン、4-メチルベンゾフェノン、ジエトキシアセトフェノン、1-ヒドロキシシクロヘキシルフェニルケトン及び2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オンが挙げられ、より好ましくはジエトキシアセトフェノン、1-ヒドロキシシクロヘキシルフェニルケトン及び2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オンが挙げられる。これらの光重合開始剤は1種単独で用いても2種以上を併用してもよい。
 (e)成分の添加量は、特に限定されないが、(d)成分100質量部に対して、好ましくは、0.01~10質量部、より好ましくは0.1~3質量部、更により好ましくは0.5~3質量部である。この添加量がこの範囲内であると、シリコーン組成物の硬化制御が行い易い。
 ・付加硬化性シリコーン組成物:
 付加硬化性シリコーン組成物として、具体的には、例えば
(f)ケイ素原子に結合したアルケニル基を少なくとも2個含有するオルガノポリシロキサン、
(g)ケイ素原子に結合した水素原子(即ち、SiH基)を少なくとも2個含有するオルガノハイドロジェンポリシロキサン 全硬化性シリコーン組成物中のアルケニル基1モル当たり、本(g)成分中のケイ素原子に結合した水素原子の量が0.1~5モルとなる量、及び
(h)白金族金属系触媒 有効量
を含有する付加硬化性シリコーン組成物が挙げられる。
 ・・(f)成分
 (f)成分のオルガノポリシロキサンは、付加硬化性シリコーン組成物のベースポリマーであり、ケイ素原子に結合したアルケニル基を少なくとも2個含有する。(f)成分としては公知のオルガノポリシロキサンを使用することが出来る。ゲルパーミッションクロマトグラフィー(以下、「GPC」とする。)により測定された(f)成分のオルガノポリシロキサンの重量平均分子量はポリスチレン換算で好ましくは3,000~300,000程度である。さらに(f)成分のオルガノポリシロキサンの25℃に置ける粘度は、100~1,000,000mPa.sであることが好ましく、1,000~100,000mPa.s程度であることが特に好ましい。100mPa.s以下であると曳糸性が低く、繊維の細径化が困難となり、1,000,000mPa.s以上では取扱が困難となる。(f)成分のオルガノポリシロキサンは、基本的には、原料の入手のしやすさの観点から、分子鎖(主鎖)がジオルガノシロキサン単位(R SiO2/2単位)の繰返しからなり、分子鎖両末端がトリオルガノシロキシ基(R SiO1/2)で封鎖された、分岐を有しない直鎖状構造、又は分子鎖が該ジオルガノシロキサン単位の繰返しからなる、分岐を有しない環状構造を有するが、RSiO3/2単位やSiO4/2単位を含んだ分岐状構造を部分的に有してもよい。ここで、Rは下に説明する式(4)に関して述べる通りである。
 (f)成分としては、例えば下記平均組成式(4);
SiO(4-l)/2   (4)
(式中、Rは、同一又は異種の、非置換もしくは置換の、炭素原子数が1~10、より好ましくは1~8の一価炭化水素基であり、lは好ましくは1.5~2.8、より好ましくは1.8から2.5、さらにより好ましくは1.95~2.05の範囲の正数である。)で示され、一分子中に少なくとも2個のアルケニル基を有するオルガノポリシロキサンが用いられる。上記Rとしては、例えば、上記平均組成式(1)中のRについて例示した基が挙げられる。
 この場合、Rのうち少なくとも2個はアルケニル基(特に、炭素原子が好ましくは2~8、より好ましくは2~6のアルケニル基)である。なお、アルケニル基の含有量はケイ素原子に結合する全有機基中(即ち、前記平均組成式(4)においてRで示される非置換又は置換の全一価炭化水素基中)、好ましくは50~99モル%、特に好ましくは75~95モル%である。(f)成分のオルガノポリシロキサンが直鎖状構造を有する場合、このアルケニル基は、分子鎖末端及び分子鎖末端でない部分のどちらか一方でのみケイ素原子に結合していても、その両方でケイ素原子に結合していてもよいが、組成物の硬化速度、硬化物の物性等の点から、少なくとも一個のアルケニル基が分子鎖末端のケイ素原子に結合していることが望ましい。
 ・・(g)成分
(g)成分のオルガノハイドロジェンポリシロキサンは、ケイ素原子に結合した水素原子(SiH基)を少なくとも2個(通常2~200個)、好ましくは3個以上(通常3~100個)含有する。(g)成分は、(f)成分と反応し架橋剤として作用する。(g)成分の分子構造は特に限定されず、例えば、線状、環状、分岐状、三次元網状(樹脂状)等の、従来製造されているいずれのオルガノハイドロジェンポリシロキサンも(b)成分として使用することができる。(g)成分が線状構造を有する場合、SiH基は、分子鎖末端及び分子鎖末端でない部分のどちらか一方でのみケイ素原子に結合していても、その両方でケイ素原子に結合していてもよい。また、1分子中のケイ素原子の数(又は重合度)が、通常、2~300個、好ましくは4~150個程度であり、室温(25℃)において液状であるオルガノハイドロジェンポリシロキサンが、(g)成分として好ましく使用できる。
 (g)成分としては、例えば、下記平均組成式(5);
SiO(4-p-q)/2   (5)
(式中、Rは同一又は異種の非置換もしくは置換の、脂肪族不飽和結合を有しない、炭素原子数が1~10、より好ましくは1~8の一価炭化水素基であり、p及びqは、好ましくは0.7≦p≦2.1、0.001≦q≦1.0、かつ0.8≦p+q≦3.0、より好ましくは1.0≦p≦2.0、0.01≦q≦1.0、かつ1.5≦p+q≦2.5を満足する正数である。)
で示されるオルガノハイドロジェンポリシロキサンが用いられる。上記Rとしては、例えば、上記平均組成式(1)中のRについて例示した基(ただし、アルケニル基を除く。)が挙げられる。
 上記平均組成式(3)で表されるオルガノハイドロジェンポリシロキサンの具体例としては1,1,3,3-テトラメチルジシロキサン、1,3,5,7-テトラメチルシクロテトラシロキサン、トリス(ハイドロジェンジメチルシロキシ)メチルシラン、トリス(ハイドロジェンジメチルシロキシ)フェニルシラン、メチルハイドロジェンシクロポリシロキサン、メチルハイドロジェンシロキサン・ジメチルシロキサン環状共重合体、両末端トリメチルシロキシ基封鎖メチルハイドロジェンポリシロキサン、両末端トリメチルシロキシ基封鎖メチルハイドロジェンシロキサン・ジメチルシロキサン共重合体、両末端メチルハイドロジェンシロキシ基封鎖ジメチルポリシロキサン、両末端メチルハイドロジェンシロキシ基封鎖メチルハイドロジェンシロキサン・ジメチルシロキサン共重合体、両末端トリメチルシロキシ基封鎖メチルハイドロジェンシロキサン・ジフェニルシロキサン共重合体、両末端トリメチルシロキシ基封鎖メチルハイドロジェンシロキサン・ジフェニルシロキサン・ジメチルシロキサン共重合体、両末端トリメチルシロキシ基封鎖メチルハイドロジェンシロキサン・メチルフェニルシロキサン・ジメチルシロキサン共重合体、両末端メチルハイドロジェンシロキシ基封鎖メチルハイドロジェンシロキサン・ジフェニルシロキサン・ジメチルシロキサン共重合体、両末端メチルハイドロジェンシロキシ基封鎖メチルハイドロジェンシロキサン・メチルフェニルシロキサン・ジメチルシロキサン共重合体、(CHHSiO1/2単位と(CHSiO2/2単位とSiO4/2単位とからなる共重合体、(CHHSiO1/2単位とSiO4/2単位とからなる共重合体、(CHHSiO1/2単位とSiO4/2単位と(CSiO1/2単位とからなる共重合体などが挙げられる。
 (g)成分の添加量は、全硬化性シリコーン組成物中のアルケニル基1モル当たり、特に、全硬化性シリコーン組成物中のケイ素原子に結合したアルケニル基1モル当たり、とりわけ、(f)成分中のケイ素原子に結合したアルケニル基1モル当たり、本(g)成分中のSiH基の量が0.1~5.0モル、好ましくは0.5~3.0モル、より好ましくは0.8~2.0モルとなる量である。このとき、全硬化性シリコーン組成物中に存在するアルケニル基に対する(f)成分中のケイ素原子と結合したアルケニル基の割合は80~100モル%が好ましく、90~100モル%がより好ましい。全硬化性シリコーン組成物中にアルケニル基を有する成分として(f)成分しか存在しない場合には、(f)成分中のアルケニル基1モル当たり、本(g)成分中のSiHの量が0.1~5.0モル、好ましくは0.5~3.0モル、より好ましくは0.8~2.0モルとなる量である。該添加量が上記SiHの量が0.1モルより少なくなる量であると、硬化するまでの時間が長くかかり、経済的に不利である。
また、該添加量が上記SiHの量が5.0モルより多くなる量であると該硬化反応物中に脱水素反応による発泡が生じてしまい、さらに該硬化反応物の強度及び耐熱性が悪影響を受ける。
 ・・(h)成分
 (h)成分の白金族金属系触媒は、(f)成分と(g)成分との付加硬化反応(ヒドロシリル化反応)を促進させるための触媒として使用される。(h)成分としては、公知の白金族金属系触媒を用いることができるが、白金もしくは白金化合物を用いることがこのましい。(h)成分の具体例としては、白金黒、塩化第二白金、塩化白金酸、塩化白金酸のアルコール変性物、塩化白金酸とオレフィン、アルデヒド、ビニルシロキサン又はアセチレンアルコール類との錯体が挙げられる。
 (h)成分の添加量は、触媒として有効量であり、希望する硬化反応速度に応じて適時増減すればよいが、(f)成分に対して白金族金属に換算して質量基準で、好ましくは0.1~1,000ppm、より好ましくは0.2~100ppmの範囲である。
 ・縮合硬化性シリコーン組成物:
 縮合硬化性シリコーン組成物として、具体的には、例えば、
 (i)シラノール基(即ちケイ素原子結合水酸基)又はケイ素原子結合加水分解性基を少なくとも2個、好ましくは分子鎖両末端に含有するオルガノポリシロキサン、
 (j)任意成分として、加水分解性シラン及び/又はその部分加水分解縮合物、ならびに
 (k)任意成分として、縮合反応触媒
を含有する縮合硬化性シリコーン組成物が挙げられる。
 ・・(i)成分
 (i)成分はシラノール基又はケイ素原子結合加水分解性基を少なくとも2個含有するオルガノポリシロキサンであり、縮合硬化性シリコーン組成物のベースポリマーである。(i)成分のオルガノポリシロキサンは、基本的には、原料の入手のしやすさの観点から、分子鎖(主鎖)がジオルガノシロキサン単位(R SiO2/2単位)の繰返しからなり、分子鎖両末端がトリオルガノシロキシ基(R SiO1/2)で封鎖された、分岐を有しない直鎖状構造、又は分子鎖が該ジオルガノシロキサン単位の繰返しからなる、分岐を有しない環状構造を有するが、分岐状構造を部分的に含有してもよい。ここで、Rは非置換もしくは置換の、炭素原子数が1~10、より好ましくは1~8の一価炭化水素基を表す。
 (i)成分のオルガノポリシロキサンにおいて、シラノール基以外の加水分解性基としては、例えば、アセトキシ基、オクタノイルオキシ基、ベンゾイルオキシ基等のアシロキし基;ジメチルケトオキシム基、メチルエチルケトオキシム基、ジエチルケトオキシム基等のケトオキシム基(即ち、イミノキシ基);メトキシ基、エトキシ基、プロポキシ基等のアルコキシ基;メトキシエトキシ基、エトキシエトキシ基、メトキシプロポキシ基等のアルコキシアルコキシ基;ビニロキシ基、イソプロペニルオキシ基,1-エチル-2-メチルビニルオキシ基等のアルケニルオキシ基;ジメチルアミノ基、ジエチルアミノ基、ブチルアミノ基、シクロヘキシルアミノ基等のアミノ基;ジメチルアミノキシ基、ジエチルアミノキシ基等のアミノキシ基;N-メチルアセトアミド、N-エチルアセトアミド基、N-メチルベンズアミド基等のアミド基等が挙げられる。
 これらの加水分解性基は、例えば、トリアルコキシシロキシ基、ジアルコキシオルガノシロキシ基、トリアシロキシシロキシ基、ジアシロキシオルガノシロキシ基、トリイミノキシシロキシ基(即ち、トリケトオキシムシロキシ基)、ジイミノキシオルガノシロキシ基、トリアルケノキシシロキシ基、ジアルケノキシオツガノシロキシ基、トリアルコキシシロキシエチル基、ジアルコキシオルガノシロキシエチル基等の、2個もしくは3個の加水分解性基を含有するシロキシ基又は2個もしくは3個の加水分解性基を含有するシロキシアルキル基等の形で直鎖状ジオルガノポリシロキサンの分子鎖両末端に位置していることが望ましい。
 ケイ素原子に結合した他の一価炭化水素基としては、例えば、上記平均組成式(1)における
について例示したものと同じ非置換又は置換の一価炭化水素基が挙げられる。
 (i)成分としては、例えば、
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000016
[上記の式中、Xは前記シラノール基以外の加水分解性基、aは1、2又は3、n及びmはそれぞれ1~1,000の整数である]
が挙げられる。
 (i)成分の具体例としては、分子鎖両末端シラノール基封鎖ジメチルポリシロキサン、分子鎖両末端シラノール基封鎖ジメチルシロキサン・メチルフェニルシロキサン共重合体、分子鎖両末端シラノール基封鎖ジメチルシロキサン・ジフェニルポリシロキサン共重合体、分子鎖両末端トリメトキシシロキシ基封鎖ジメチルポリシロキサン、分子鎖両末端トリメトキシシロキシ基封鎖ジメチルシロキサン・メチルフェニルシロキサン共重合体、分子鎖両末端トリメトキシシロキシ基封鎖ジメチルシロキサン・ジフェニルポリシロキサン共重合体、分子鎖両末端2-トリメトキシシロキシエチル基封鎖ジメチルポリシロキサン等が挙げられる。これらは1種単独でも2種以上を組み合わせても使用することができる。
・(j)成分
 (j)成分の加水分解性シラン及び/又はその部分加水分解縮合物は任意成分であり、硬化剤として作用する。ベースポリマーである(i)成分がシラノール基以外のケイ素原子結合加水分解性基を1分子中に少なくとも2個含有するオルガノポリシロキサンである場合には、(j)成分を縮合硬化性シリコーン組成物に添加するのを省略することができる。(j)成分としては、1分子中に少なくとも3個のケイ素原子結合加水分解性基を含有するシラン及び/又はその部分加水分解縮合物(即ち、少なくとも1個、好ましくは2個以上の加水分解性基が残存するオルガノポリシロキサン)が好適に使用される。
 前記シランとしては、例えば、式:
10 SiX4-r   (6)
(式中、R10は非置換もしくは置換の、炭素原子数が1~10、より好ましくは1~8の一価炭化水素基、Xは加水分解性基、rは0又は1である。)で表されるものが好ましく用いられる。前記R10としては、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基等のアルキル基;フェニル基、トリル基等のアリール基;ビニル基、アリル基等のアルケニル基が特に好ましくあげられる。
 (j)成分の具体的例としては、例えば、メチルトリエトキシシラン、ビニルトリエトキシシラン、ビニルトリアセトキシシラン、エチルオルソシリケート等及びこれらの部分加水分解縮合物が挙げられる。これらは1種単独でも2種以上組み合わせても使用することができる。
 (j)成分の加水分解性シラン及び/又はその部分加水分解縮合物を用いる場合、その添加量は(i)成分100質量部に対して好ましくは0.01~20質量部、特に好ましくは0.1~10質量部である。(j)成分を用いる場合、その添加量が上記範囲内にあると本発明組成物の貯蔵安定性及び硬化反応速度は特に良好である。
・(k)成分
 (k)成分の縮合反応触媒は任意成分であり、上記(j)成分の加水分解性シラン及び/又はその部分加水分解縮合物が、例えば、アミノキシ基、アミノ基、ケトオキシム基を有する場合には使用しなくてもよい。(k)成分の縮合反応触媒としては、例えばテトラブチルチタネート、テトライソブロピルチタネート、等の有機チタン酸エステル;ジイソプロポキシビス(アセチルアセトナート)チタン、ジイソプロポキシビス(エチルアセトアセテート)チタン等の有機チタンキレート化合物;アルミニウムトリス(アセチルアセトナート)、アルミニウムトリス(エチルアセトアセテート)等の有機アルミニウム化合物;ジルコニウムテトラ(アセチルアセトナート)、ジルコニウムテトラブチレート等の有機ジルコニウム化合物;ジブチルスズジオクトエート、ジブチルスズジラウレート、ジブチルスズジ(2-エチルヘキサノエート)等の有機スズ化合物;ナフテン酸スズ、オレイン酸スズ、ブチル酸スズ、ナフテン酸コバルト、ステアリン酸亜鉛等の有機カルボン酸の金属塩;アンモニア;へキシルアミン、リン酸ドデシルアミン等のアミン化合物、及びその塩;ベンジルトリエチルアンモニウムアセテート等の4級アンモニウム塩;酢酸カリウム、硝酸リチウム等のアルカリ金属の低級脂肪酸塩;ジメチルヒドロキシルアミン、ジエチルヒドロキシルアミン等のジアルキルヒドロキシルアミン:グアニジル基含有有機珪素化合物等が挙げられる。これらは1種単独でも2種以上を組み合わせても使用することができる。
 (k)成分の縮合反応触媒を用いる場合、その添加量は、特に限定されず、触媒としての有効量でよいが、(i)成分100質量部に対して好ましくは0.01~20質量部、特に好ましくは0.1~10質量部である。(k)成分を用いる場合、その添加量が上記範囲内にあると、硬化時間と硬化温度の観点から経済的に有利である。
 硬化性シリコーン組成物を球状に成形、硬化させるには、従来公知の方法を利用することができる。このような方法として、例えば、硬化性オルガノポリシロキサンを噴霧状態で加熱硬化させる方法(特開昭59-68333号公報)、ホモミキサー、ホモジェナイザー、マイクロフルイダイザー又はコロイドミルを用いて硬化性オルガノポリシロキサンを水中に乳化した後、硬化させる方法(特開昭56-36546号公報、特開昭62-243621号公報、特開昭62-257939号公報、特開昭63-77942号公報、特開昭63-202658号公報、特開平1-306471号公報、特開平3-93834号公報、特開平3-95268号公報、特開平11-293111号公報、特開2001-2786号公報、特開2001-113147号公報)、硬化型オルガノポリシロキサンをノズルを通して水中に投入した後、水中で硬化させる方法(特開昭61-223032号公報、特開平1-178523号公報、特開平2-6109号公報)が提案されている。
 上記の乳化を利用する方法を選択する場合に用いる乳化剤としては特に限定されず、例えばポリオキシエチレンアルキルエーテル、ポリオキシエチレンポリオキシプロピレンアルキルエーテル、ポリオキシエチレンアルキルフェニルエーテル、ポリエチレンフリコール脂肪酸エステル等が挙げられる。
-球状硬化シリコーン粉末の球状炭化ケイ素粉末化-
 上記球状硬化シリコーン粉末は、非酸化性雰囲気下でさらに高温で加熱処理され、加熱分解することにより、球状炭化ケイ素粉末となる。
 この加熱処理は非酸化性雰囲気下、好ましくは不活性ガス雰囲気下で行う。不活性ガスとしては、例えば窒素ガス、アルゴンガス、ヘリウムガス等が挙げられ、特に高純度のもの炭化ケイ素を得るにはアルゴンガスが好ましい。
 該加熱処理は、例えばカーボン炉内で、1500~2300℃の範囲の温度で行われる。該加熱処理は二段階で行うことが好ましく、第一段階は無機化の熱処理は400℃~1500℃の範囲が好ましい。第二段階はカーボン炉で1500℃を超え、2300℃以下の範囲の温度で行われる。この加熱の温度は1600℃以上が好ましい。また、該加熱の温度は2200℃以下が好ましい。この加熱処理によりベースポリマーであるシリコーン樹脂から一酸化ケイ素及び一酸化炭素の脱離が始まり、炭化ケイ素セラミックス焼結体となる。また2200℃を超えると炭素炉材の分解が激しい。この加熱処理により球状硬化シリコーン粉末から一酸化ケイ素及び一酸化炭素の脱離が始まり、球状炭化ケイ素粉末となる。
 こうして得られる球状炭化ケイ素粉末粒子の平均粒径は、硬化性シリコーン組成物に配合して炭化ケイ素焼結体を緻密化させる上で0.1~100μmが好ましく、0.5~20μmがより好ましい。該平均粒径が小さすぎると粉塵飛散の問題より、取扱性が難しくなり、大きすぎると今度は比表面積に対する比重が大きくなり、球状炭化ケイ素粉末を次工程で混合して使用する際、沈降などの問題が生じる。
-球状炭化ケイ素粉末含有硬化性シリコーン組成物の調製方法-
 上記で得られた球状炭化ケイ素粉末を含有する硬化性シリコーン組成物を調製するには、例えば、ベースの硬化性シリコーン組成物に球状炭化ケイ素粉末を添加しプラネタリーミキサー等を用いて混合すればよい。ここでベース組成物として使用することができる硬化性シリコーン組成物は、炭化ケイ素粉末の製造に関して説明した通りである。
 球状炭化ケイ素粉末を含む硬化性シリコーン組成物における球状炭化ケイ素の配合量は、10~95体積%が好ましく、40~90体積%がより好ましく、50~80体積%がさらに好ましい。
-炭化ケイ素セラミックス成形体の製造方法-
 球状炭化ケイ素粉末を含有する硬化性シリコーン組成物は、所望の形状に成形され、硬化されてシリコーン硬化成形体とされた後に、非酸化性雰囲気下において高温で加熱処理され、硬化シリコーン部分が加熱分解されることにより、所要形状の炭化ケイ素セラミックス焼結体となる。
 上記硬化性シリコーン組成物の成形、硬化の方法は各硬化反応型について当業者に周知の方法により行えばよい。以下、特に代表的で好ましいプレス成形、押出成形及び射出成形の方法について説明する。
 [プレス成形] 
 硬化性シリコーン組成物を金型に充填して、金型を熱板間にはさみ、加圧しながら硬化することにより、所望の形状を有するシリコーン硬化物を得ることができる。プレス成形は複雑な形状を得ることに適している。この場合、成形する温度100~250℃の範囲で1~30分間、プレスを行った後、除圧する。プレス圧については10~200kgf/cmが好ましい。また、必要に応じて、100~250℃の範囲で1~10時間二次硬化を施してもよい。
 [押出成形] 
 硬化性シリコーン組成物を押出成形機のシリンダー内のスクリューを回転させ、連続的にダイから押出した後、ダイ出口近くに配置した長さ1~2mの中空の電熱式熱風炉を通過させことにより、所望の形状を有するシリコーン硬化物を得ることができる。押出成形はチューブなど棒状、管状、帯状の連続した長尺物を成形するのに適している。この場合、電熱式熱風炉の加熱温度は80~500℃、特に100~250℃、加熱時間は1~30分間であることが好ましい。また、必要に応じて、100~250℃の範囲で1~10時間二次硬化を施してもよい。
 [射出成形] 
 硬化性シリコーン組成物を、加熱された金型中に射出注入することにより、所望の形状を有するシリコーン硬化物を得ることができる。射出成形は自由に造形ができ、少品種、大量生産に適している。この場合、金型の加熱温度は80~500℃、特に100~250℃、加熱時間は1~30分間であることが好ましい。また、必要に応じて、100~250℃の範囲で1~10時間二次硬化を施してもよい。
 得られたシリコーン硬化成形体は次に非酸化性雰囲気中において加熱処理される。ここで用いられる非酸化性雰囲気は上述した通りであり、好ましくは不活性ガス雰囲気である。不活性ガスとしては、例えば窒素ガス、アルゴンガス、ヘリウムガス等が挙げられ、特にアルゴンガスが好ましい。
 該加熱処理は二段階で行うことが好ましく、第一段階は無機化の熱処理は400℃~1500℃の範囲が好ましい。第二段階はカーボン炉で1500~2300℃の範囲の温度で行われる。この加熱の温度は1600℃以上が好ましい。また、該加熱の温度は2200℃以下が好ましい。この加熱処理によりベースポリマーであるシリコーン樹脂から一酸化ケイ素及び一酸化炭素の脱離が始まり、炭化ケイ素セラミックス焼結体となる。また2200℃を超えると炭素炉材の分解が激しい。
以下に、実施例を示し、本発明をより詳細に説明するが、本発明はこれら実施例に限定されるものではない。
[実施例1]
(炭化ケイ素粉末の製造)
 直径10mm×長さ10mmで、平均細孔径2.1μmの連続細孔を有する円筒状多孔質ガラス膜(商品名:SPG膜、エス・ピー・ジーテクノ(株)製)1を金属管5の側部に取り付けた。金属管5は、図1に示すように一方の端2aが固定蓋3で閉鎖され、側部に穴4を有する。円筒状多孔質ガラス膜1は、金属管5の側部にO-リング6及び7を介してフィットするように取り付けられる。次に、該金属管5の他端(開放端)2bをねじ8により、図2に示すように、シロキサン用容器9の下部管状部(シャフト)10の下端11に取り付けた。
 こうして組み立てたもののSPG膜部分をイオン交換水に浸し、超音波を30秒かけ、SPG膜の細孔に水をしみこませた。一方、シロキサン用容器9に、下記式(7)で示されるメチルビニルポリシロキサン15gと下記式(8)で示されるメチルハイドロジェンポリシロキサン5gとからなるポリシロキサン混合物を仕込んだ。図3に示すように、200mlビーカー21に0.6質量%ポリオキシエチレンデシルエーテル(HLB=13.2)水溶液22を84g仕込んだ。上記のSPG膜/シャフト/シロキサン用容器組立て体のSPG膜部分が該ポリオキシエチレンデシルエーテル水溶液22中に浸漬するようにした後、ポリオキシエチレンデシルエーテル水溶液をマグネチックスターラー23で攪拌しながら、シロキサン用容器上部のガス導入口24から導入した高圧窒素ガスにより45kPaの圧力をかけ、前記ポリシロキサン混合物を、SPG膜を通してポリオキシエチレンデシルエーテル水溶液22に圧入した。圧力をかけると直ぐにポリオキシエチレンデシルエーテル水溶液は白濁し始め、5時間50分後にシロキサン用容器内のポリシロキサン混合物がなくなった。そこで、SPG膜をビーカーから引き上げた。こうして得られたポリシロキサン混合物の水性分散液は、均一であった。得られたポリシロキサン混合物の水性分散液に、塩化白金酸-オレフィン錯体のトルエン溶液(塩化白金酸含有量0.05質量%)0.04gとポリオキシエチレンラウリルエーテル0.04gの混合物を添加し、さらに24時間攪拌した後、反応混合液を60メッシュ金網に通し、シリコーン硬化物の水性分散液を得た。
 粒径測定装置マルチサイザーII(ベックマン・コールター(株)製)で、その分散液中のシリコーン硬化物粒子の粒径を測定したところ体積平均粒径は8.0μmであった。シリコーン硬化物粒子の水性分散液を、濾紙を用いて固液分離し、固形分を105℃の乾燥機で乾燥させたところ、白色粉末が得られた。この白色粉末を光学顕微鏡で観察したところ球状の粒子であった。
Figure JPOXMLDOC01-appb-C000017
(式中n、mはn/m=4/1で該シロキサンの25℃における粘度が600mPa・Sとなるような数である。)
Figure JPOXMLDOC01-appb-C000018
 この球状硬化シリコーン粉末をアルミナボートに入れ、雰囲気炉中で、窒素ガス雰囲気下、100℃/時間の昇温速度で室温から1000℃まで約10時間かけて加熱し、続けて1000℃を1時間保持した。その後、200℃/時間の速度で室温まで冷却した。これにより黒色の粉末を得た。この粉末を電子顕微鏡にて観察したところ球状の粒子であり、体積平均粒径は8.0μmであった。
 さらに、この黒色球状粉末を炭素容器に入れ、カーボン雰囲気炉内で、アルゴンガス雰囲気下、100℃/時間の昇温速度で20時間かけて温度を2000℃まで高め、その2000℃で2時間保持した後、室温まで冷却し、200℃/時間の速度で室温まで冷却した。これにより緑色の粉末を得た。この粉末を電子顕微鏡にて観察したところ球状の粒子であり、体積平均粒径は6.5μmであった。
・元素比の測定:
 得られた緑色の粉末について、酸素分析装置(LECO社製、商品名:TC436)を用いて、酸素分析を行ったところ、酸素の含有量は0.2質量%以下であった。元素比はSi1C1.00であった。
・不純物元素の分析:
 得られた緑色の粉末をICP発光分析に供したところ、種々の元素の含有量について表1に示す結果が得られた。「<0.1」は測定限界である0.1ppm未満であったことを意味する。
Figure JPOXMLDOC01-appb-T000019
 上記の結果から、半導体装置分野で通常問題となる不純物元素であるニッケル、クロム、鉄、アルミニウムを初めとして多くの不純物元素が検出限界未満であった。
[実施例2]
(炭化ケイ素粉末の製造)
 5リットルのガラス容器にpH7のイオン交換水3,510gを仕込み、水温を3℃とした後、ここにトリメチルシロキシメトキシシラン1.8gとメチルトリメトキシシラン180gを添加して1時間攪拌した。ここにアンモニア水溶液(濃度28質量%)を90g添加し液温を3~7℃に保ちながら10分間攪拌し、次いで得られた反応混合物にメチルトリメトキシシラン540gを、液温を5~10℃に保ちながら2.5時間かけて投入し、投入終了後も液温を5~10℃に保ちながら1時間攪拌をした。その後、反応液を75~80℃に加熱し、その温度でさらに1時間攪拌を行った。反応液を室温まで冷却後、濾紙を用いて固液分離を行い、得られた固形分を乾燥機を用いて105℃で乾燥し、得られた乾燥物をジェットミルで粉砕したところ、白色粉末が得られた。この白色粉末を光学顕微鏡で観察したところ球状の粒子であり、体積平均粒径は0.7μmであった。
 この球状硬化シリコーン粉末をアルミナボートに入れ、雰囲気炉中で、窒素ガス雰囲気下、100℃/時間の昇温速度で室温から1000℃まで約10時間かけて加熱し、続けて1000℃で1時間保持した。その後、200℃/時間の速度で室温まで冷却した。これにより黒色の粉末を得た。この粉末を電子顕微鏡にて観察したところ球状の粒子であり、体積平均粒径は0.7μmであった。
 さらに、この黒色球状粉末を炭素容器に入れ、カーボン雰囲気炉内で、アルゴンガス雰囲気下、100℃/時間の昇温速度で20時間かけて温度を2000℃まで高め、その2000℃で2時間保持した後、室温まで冷却し、200℃/時間の速度で室温まで冷却した。これにより緑色の粉末を得た。この粉末を電子顕微鏡にて観察したところ球状の粒子であり、体積平均粒径は0.5μmであった。
・元素比の測定
 この緑色の粉末について炭素分析を行ったところ、炭素の含有量は30.3質量%であった。また、酸素分析装置(LECO社製、商品名:TC436)を用いて酸素分析を行ったところ、酸素の含有量は0.2質量%以下であった。元素比はSi1C1.02であった。
・不純物元素の分析:
 実施例1と同様にして元素分析用試料を作製し、ICP発光分析に供したところ、表2に示す結果が得られた。「<0.1」は測定限界である0.1ppm未満であったことを意味する。
Figure JPOXMLDOC01-appb-T000020
 上記の結果から、半導体装置分野で通常問題となる不純物元素であるニッケル、クロム、鉄、アルミニウムを初めとして多くの不純物元素が検出限界未満であった。
[実施例3]
(炭化ケイ素成形体の製造)
(A)上記式(7)で示されるメチルビニルポリシロキサン100質量部、
(B)ベンソイルパーオキサイド全ポリシロキサン量に対し0.7質量部、
(C)上記式(8)で示されるメチルハイドロジェンポリシロキサン33質量部、及び
(D)実施例1で得られた球状炭化ケイ素粉末792質量部
(即ち、該シリコーン組成物全体の65体積%となる量)
 上記の(A)~(D)成分をプラネタリーミキサー(登録商標、井上製作所(株)製混合機)に投入し室温にて一時間攪拌し、室温で粘土状の硬化性シリコーン組成物を得た。この硬化性シリコーン組成物を100kgf/cmの圧力で150℃にて5分間プレス硬化させ、縦40mm×横40mm×厚さ2mmのシート状のシリコーン硬化成形物を得た。
 このシリコーン硬化成形物をアルミナボートに入れ、雰囲気炉中で、窒素ガス雰囲気下、100℃/時間の昇温速度で室温から1000℃まで約10時間かけて加熱し、続けて1000℃の温度を1時間保持した。その後、200℃/時間の速度で室温まで冷却した。これにより黒色の無機物質からなる成形物を得た。この無機成形物の寸法は縦39.2mm×横39.2mm×厚さ2mmであった。
 次に、この黒色無機成形物を炭素容器に入れ、カーボン雰囲気炉内で、アルゴンガス雰囲気下、100℃/時間の昇温速度で20時間かけて温度を2000℃まで高め、その2000℃で2時間保持した後、室温まで冷却し、200℃/時間の速度で室温まで冷却した。これにより緑色の炭化ケイ素成形物を得た。この炭化ケイ素成形物の寸法は縦39.0mm×横39.0mm×厚さ2mmであり、形状は上記シリコーン硬化成形物とほぼ同じ形状を保持していた。
・元素比の測定
 この緑色の成形物の表面部を一部切り出して炭素分析を行ったところ、炭素の含有量は30.3質量%であった。また、酸素分析装置(LECO社製、商品名:TC436)を用いて酸素分析を行ったところ、酸素の含有量は0.2質量%以下であった。元素比はSi1C1.02であった。
・不純物元素の分析:
 実施例1と同様にして元素分析用試料を作製し、ICP発光分析に供したところ、表3に示す結果が得られた。「<0.1」は測定限界である0.1ppm未満であったことを意味する。
Figure JPOXMLDOC01-appb-T000021
 上記の結果から、半導体装置分野で通常問題となる不純物元素であるニッケル、クロム、鉄、アルミニウムを初めとして多くの不純物元素が検出限界未満であった。
[比較例]
 実施例3において(D)成分の球状炭化ケイ素粉末の792質量部代わりに信濃電気精錬製GP#1000(炭化ケイ素不定形粉末)792質量部を用いた以外は実施例3と同様にしてプラネタリーミキサー(井上製作所(株)製混合機の登録商標)にて、室温にて一時間攪拌したところ、粘土状シリコーン組成物は得られず、粉末のままであった。
 本発明の球状炭化ケイ素粉末は緻密な炭化ケイ素成形体の製造に有用である。該炭化ケイ素成形体は、例えば、半導体装置製造分野において、半導体ウエハーを熱処理したり、半導体ウエハーに微量元素を熱拡散したりする工程においてボード、プロセスチューブなどに有用である。

Claims (35)

  1.  球状硬化シリコーン粉末を非酸化性雰囲気下で加熱分解することにより得られる球状炭化ケイ素粉末。
  2.  球状硬化シリコーン粉末を非酸化性雰囲気下で加熱分解することを特徴とする球状炭化ケイ素粉末の製造方法。
  3.  前記の加熱分解が、1500℃を超え2300℃以下の範囲の温度で行われる請求項2に記載の製造方法。
  4.  前記の加熱分解の前に、前記球状硬化シリコーン粉末を、非酸化性雰囲気下で、400℃~1500℃の範囲の温度で加熱して無機セラミック化する段階を含む請求項3に記載の球状炭化ケイ素粉末の製造方法。
  5.  前記の加熱分解が、こうして得られた球状無機セラミック粉末を、1500℃を超え2300℃以下の範囲の温度で加熱して行われ、球状無機セラミック粉末が炭化ケイ素化される請求項4に記載の製造方法。
  6.  前記の球状硬化シリコーン粉末が、硬化性シリコーン組成物を球状に成形し硬化させることにより得られたものである請求項2に記載の製造方法。
  7. 前記硬化性シリコーン組成物が、有機過酸化物硬化性シリコーン組成物である請求項2に係る方法。
  8. 前記有機過酸化物硬化性シリコーン組成物が、
     (a)ケイ素原子に結合したアルケニル基を少なくとも2個含有するオルガノポリシロキサン及び
     (b)有機過酸化物、及び、
     (c)任意成分として、ケイ素原子に結合した水素原子を少なくとも2個含有するオルガノハイドロジェンポリシロキサン 全硬化性シリコーン組成物中のアルケニル基1モル当たり、本(c)成分中のケイ素原子に結合した水素原子の量が0.1~2モルとなる量
    を含有する有機過酸化物硬化性シリコーン組成物
    である請求項7に係る方法。
  9. 前記硬化性シリコーン組成物が、放射線硬化性シリコーン組成物である請求項2に係る方法。
  10. 前記の放射線硬化性シリコーン組成物が、
     (d)紫外線反応性オルガノポリシロキサン、及び
     (e)光重合開始剤
    を含有する紫外線硬化性シリコーン組成物である請求項6に係る方法。
  11. 前記(d)成分の紫外線反応性オルガノポリシロキサンが、
    下記一般式(3a):
    Figure JPOXMLDOC01-appb-C000001
     [式中、Rは同一又は異種の、紫外線反応性基を有しない非置換もしくは置換の一価炭化水素基であり、Rは同一又は異種の、紫外線反応性基を有する基であり、Rは同一又は異種の、紫外線反応性基を有する基であり、mは5~1,000の整数であり、nは0~100の整数であり、fは0~3の整数であり、gは0~3の整数であり、ただし、f+g+n≧2である]
    で表される少なくとも2個の紫外線反応性基を有するポリオルガノシロキサンである請求項9に係る方法。
  12. 前記の紫外線反応性基が、アルケニル基、アルケニルオキシ基、アクリロイル基、メタクリロイル基、メルカプト基、エポキシ基又はヒドロシリル基である請求項8に係る方法。
  13. 前記(d)成分の紫外線反応性オルガノポリシロキサンが、
    下記一般式(3b):
    Figure JPOXMLDOC01-appb-C000002
     [式中、Rは同一又は異種の、紫外線反応性基を有しない非置換もしくは置換の一価炭化水素基であり、Rは同一又は異種の、紫外線反応性基を有する基であり、Rは同一又は異種の、紫外線反応性基を有する基であり、mは5~1,000の整数であり、nは0~100の整数であり、fは0~3の整数であり、gは0~3の整数であり、hは2~4の整数であり、i及びjは各々1~3の整数であり、ただしfi+gj+n≧2である]
    で表される少なくとも2個の紫外線反応性基を有するオルガノポリシロキサンである請求項7に係る方法。
  14. 前記の紫外線反応性基が、アルケニル基、アルケニルオキシ基、アクリロイル基、メタクリロイル基、メルカプト基、エポキシ基又はヒドロシリル基である請求項10に係る方法。
  15. (e)成分が、(d)成分100質量部に対して0.01~10質量部含有される請求項7に係る方法。
  16. 前記硬化性シリコーン組成物が、付加硬化性シリコーン組成物である請求項6に係る方法。
  17. 該付加硬化性シリコーン組成物が、
    (f)ケイ素原子に結合したアルケニル基を少なくとも2個含有するオルガノポリシロキサン、
    (g)ケイ素原子に結合した水素原子を少なくとも2個含有するオルガノハイドロジェンポリシロキサン 全硬化性シリコーン組成物中のアルケニル基1モル当たり、本(g)成分中のケイ素原子に結合した水素原子の量が0.1~5モルとなる量、及び
    (h)白金族金属系触媒 有効量
    を含有する組成物である請求項13に係る方法。
  18. 前記硬化性シリコーン組成物が、縮合硬化性シリコーン組成物である請求項6に係る方法。
  19. 該縮合硬化性シリコーン組成物が、
     (i)シラノール基又はケイ素原子結合加水分解性基を少なくとも2個含有するオルガノポリシロキサン、
     (j)任意成分として、加水分解性シラン、その部分加水分解縮合物又はそれらの組み合わせ、ならびに
     (k)任意成分として、縮合反応触媒
    を含有する組成物である請求項15に係る方法。
  20.  請求項1に記載の球状炭化ケイ素粉末を含有する硬化性シリコーン組成物を所望の形状に成形し、硬化させて所望の形状を有するシリコーン硬化成形体を得、
     次に、該シリコーン硬化成形体のシリコーン部分を非酸化性雰囲気下で加熱分解させる、
    工程を有する炭化ケイ素成形体の製造方法。
  21. 前記硬化性シリコーン組成物が、有機過酸化物硬化性シリコーン組成物である請求項20に係る方法。
  22. 前記有機過酸化物硬化性シリコーン組成物が、前記の球状炭化ケイ素粉末のほかに、
     (a)ケイ素原子に結合したアルケニル基を少なくとも2個含有するオルガノポリシロキサン及び
     (b)有機過酸化物、及び、
     (c)任意成分として、ケイ素原子に結合した水素原子を少なくとも2個含有するオルガノハイドロジェンポリシロキサン 全硬化性シリコーン組成物中のアルケニル基1モル当たり、本(c)成分中のケイ素原子に結合した水素原子の量が0.1~2モルとなる量
    を含有する有機過酸化物硬化性シリコーン組成物
    である請求項21に係る方法。
  23. 前記硬化性シリコーン組成物が、放射線硬化性シリコーン組成物である請求項20に係る方法。
  24. 前記の放射線硬化性シリコーン組成物が、前記の球状炭化ケイ素粉末のほかに、
     (d)紫外線反応性オルガノポリシロキサン、及び
     (e)光重合開始剤
    を含有する紫外線硬化性シリコーン組成物である請求項23に係る方法。
  25. 前記(d)成分の紫外線反応性オルガノポリシロキサンが、
    下記一般式(3a):
    Figure JPOXMLDOC01-appb-C000003
     [式中、Rは同一又は異種の、紫外線反応性基を有しない非置換もしくは置換の一価炭化水素基であり、Rは同一又は異種の、紫外線反応性基を有する基であり、Rは同一又は異種の、紫外線反応性基を有する基であり、mは5~1,000の整数であり、nは0~100の整数であり、fは0~3の整数であり、gは0~3の整数であり、ただし、f+g+n≧2である]
    で表される少なくとも2個の紫外線反応性基を有するポリオルガノシロキサンである請求項24に係る方法。
  26. 前記の紫外線反応性基が、アルケニル基、アルケニルオキシ基、アクリロイル基、メタクリロイル基、メルカプト基、エポキシ基又はヒドロシリル基である請求項8に係る方法。
  27. 前記(d)成分の紫外線反応性オルガノポリシロキサンが、
    下記一般式(3b):
    Figure JPOXMLDOC01-appb-C000004
     [式中、Rは同一又は異種の、紫外線反応性基を有しない非置換もしくは置換の一価炭化水素基であり、Rは同一又は異種の、紫外線反応性基を有する基であり、Rは同一又は異種の、紫外線反応性基を有する基であり、mは5~1,000の整数であり、nは0~100の整数であり、fは0~3の整数であり、gは0~3の整数であり、hは2~4の整数であり、i及びjは各々1~3の整数であり、ただしfi+gj+n≧2である]
    で表される少なくとも2個の紫外線反応性基を有するオルガノポリシロキサンである請求項24に係る方法。
  28. 前記の紫外線反応性基が、アルケニル基、アルケニルオキシ基、アクリロイル基、メタクリロイル基、メルカプト基、エポキシ基又はヒドロシリル基である請求項27に係る方法。
  29. (e)成分が、(d)成分100質量部に対して0.01~10質量部含有される請求項24係る方法。
  30. 前記硬化性シリコーン組成物が、付加硬化性シリコーン組成物である請求項20に係る方法。
  31. 該付加硬化性シリコーン組成物が、前記の球状炭化ケイ素粉末のほかに、
    (f)ケイ素原子に結合したアルケニル基を少なくとも2個含有するオルガノポリシロキサン、
    (g)ケイ素原子に結合した水素原子を少なくとも2個含有するオルガノハイドロジェンポリシロキサン 全硬化性シリコーン組成物中のアルケニル基1モル当たり、本(g)成分中のケイ素原子に結合した水素原子の量が0.1~5モルとなる量、及び
    (h)白金族金属系触媒 有効量
    を含有する組成物である請求項30に係る方法。
  32. 前記硬化性シリコーン組成物が、縮合硬化性シリコーン組成物である請求項20に係る方法。
  33. 該縮合硬化性シリコーン組成物が、前記の球状炭化ケイ素粉末のほかに、
     (i)シラノール基又はケイ素原子結合加水分解性基を少なくとも2個含有するオルガノポリシロキサン、
     (j)任意成分として、加水分解性シラン、その部分加水分解縮合物又はそれらの組み合わせ、ならびに
     (k)任意成分として、縮合反応触媒
    を含有する組成物である請求項32に係る方法。
  34.  前記球状炭化ケイ素粉末粒子の平均粒径が0.1~100μmである請求項20に係る方法。
  35.  前記硬化性シリコーン組成物中の前記球状炭化ケイ素の配合量が10~95体積%である請求項20に係る方法。
PCT/JP2010/069212 2009-11-02 2010-10-28 球状炭化ケイ素粉末、その製造方法、及びそれを使用する炭化ケイ素セラミックス成形体の製造方法 WO2011052695A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US13/505,301 US20120219798A1 (en) 2009-11-02 2010-10-28 Spherical silicon carbide powder, method of producing same, and method of producing silicon carbide ceramic molded product using same
EP10826827A EP2497746A1 (en) 2009-11-02 2010-10-28 Spherical silicon carbide powder, process for production of same, and process for production of silicon carbide ceramic molded article utilizing same
JP2011538486A JPWO2011052695A1 (ja) 2009-11-02 2010-10-28 球状炭化ケイ素粉末、その製造方法、及びそれを使用する炭化ケイ素セラミックス成形体の製造方法
CN2010800487775A CN102612491A (zh) 2009-11-02 2010-10-28 球形碳化硅粉末、其制造方法、及使用其的碳化硅陶瓷成形体的制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-252213 2009-11-02
JP2009252213 2009-11-02

Publications (1)

Publication Number Publication Date
WO2011052695A1 true WO2011052695A1 (ja) 2011-05-05

Family

ID=43922118

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/069212 WO2011052695A1 (ja) 2009-11-02 2010-10-28 球状炭化ケイ素粉末、その製造方法、及びそれを使用する炭化ケイ素セラミックス成形体の製造方法

Country Status (6)

Country Link
US (1) US20120219798A1 (ja)
EP (1) EP2497746A1 (ja)
JP (1) JPWO2011052695A1 (ja)
KR (1) KR20120101666A (ja)
CN (1) CN102612491A (ja)
WO (1) WO2011052695A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017206678A (ja) * 2016-05-11 2017-11-24 信越化学工業株式会社 シリコーン樹脂フィルムおよびその製造方法、並びに半導体デバイスの製造方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5630333B2 (ja) * 2011-03-08 2014-11-26 信越化学工業株式会社 易焼結性炭化ケイ素粉末及び炭化ケイ素セラミックス焼結体
CN102863636B (zh) * 2012-09-19 2014-07-23 清华大学 一种原位聚合法制备含氟聚芳醚复合阴离子交换膜的方法
DE102012110831A1 (de) * 2012-11-12 2014-05-15 Rehau Ag + Co Verfahren zur Herstellung eines Schlauches zum Transport von Flüssigkeit innerhalb eines Backofens
US9919972B2 (en) * 2013-05-02 2018-03-20 Melior Innovations, Inc. Pressed and self sintered polymer derived SiC materials, applications and devices
CN110921670B (zh) * 2018-09-19 2022-01-07 比亚迪股份有限公司 碳化硅及其制备方法
CN110440998B (zh) * 2019-07-30 2021-10-29 核工业第八研究所 一种碳化硅复合材料圆管漏率性能检测方法
US20240043348A1 (en) * 2022-08-02 2024-02-08 Raytheon Technologies Corporation Environmental barrier coating and method of making the same

Citations (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5636546A (en) 1979-08-31 1981-04-09 Dow Corning Production of silicon elastomer emulsion
JPS57156316A (en) * 1981-03-17 1982-09-27 Toshiba Corp Production of silicon carbide powder
JPS5968333A (ja) 1982-10-12 1984-04-18 Toray Silicone Co Ltd 線状オルガノポリシロキサンブロツクを含有するポリマもしくはポリマ組成物の球状硬化物およびその製造方法
JPS61223032A (ja) 1985-03-29 1986-10-03 Shin Etsu Polymer Co Ltd シリコ−ンゴム球状体の製造方法
JPS62243621A (ja) 1986-04-17 1987-10-24 Toray Silicone Co Ltd シリコ−ンゴム粒状物の製造方法
JPS62257939A (ja) 1986-05-02 1987-11-10 Shin Etsu Chem Co Ltd シリコ−ンエラストマ−球状微粉末の製造方法
JPS6377942A (ja) 1986-09-22 1988-04-08 Toray Silicone Co Ltd シリコ−ンゴム粒状物の製造方法
JPS63202658A (ja) 1987-02-18 1988-08-22 Toray Silicone Co Ltd シリコ−ンゴム粒状物の製造方法
US4818732A (en) * 1987-03-19 1989-04-04 The Standard Oil Company High surface area ceramics prepared from organosilane gels
JPH01178523A (ja) 1988-01-06 1989-07-14 Toray Silicone Co Ltd シリコーンゲル球状体の製造方法
JPH01306471A (ja) 1988-06-02 1989-12-11 Tonen Sekiyukagaku Kk シリコーン樹脂微粒子の製造方法
JPH026109A (ja) 1988-06-24 1990-01-10 Toray Dow Corning Silicone Co Ltd シリコーン成形品の製造方法
JPH0393834A (ja) 1989-09-05 1991-04-18 Shin Etsu Chem Co Ltd シリコーンエラストマー微粉末の製造方法
JPH0395268A (ja) 1989-09-08 1991-04-19 Shin Etsu Chem Co Ltd 固体シリコーン球状微粒子の製造方法
JPH03193617A (ja) * 1989-12-22 1991-08-23 Toshiba Ceramics Co Ltd 炭化けい素粉末の製造方法
JPH07102075A (ja) * 1993-10-06 1995-04-18 Toray Dow Corning Silicone Co Ltd 粉状シリコーン硬化物およびその製造方法
JPH07215712A (ja) * 1993-12-10 1995-08-15 Dow Corning Corp 気化したポリシロキサンから炭化ケイ素粉末を製造する方法
JPH11293111A (ja) 1998-02-10 1999-10-26 Dow Corning Toray Silicone Co Ltd 粒状シリコーン硬化物サスペンジョン、およびその製造方法
JP2000178448A (ja) * 1998-12-15 2000-06-27 Dow Corning Toray Silicone Co Ltd シリコーン硬化物粒子の水分散液
JP2001002786A (ja) 1999-06-18 2001-01-09 Dow Corning Toray Silicone Co Ltd シリコーンゴムサスペンジョンの製造方法
JP2001113147A (ja) 1999-10-20 2001-04-24 Dow Corning Toray Silicone Co Ltd 乳化機、およびシリコーンオイルエマルジョンもしくは架橋シリコーン粒子サスペンジョンの製造方法
JP2002274830A (ja) * 2001-03-14 2002-09-25 Shin Etsu Chem Co Ltd β−炭化珪素微粉末の製造方法
JP2003063874A (ja) 2001-08-27 2003-03-05 Toray Ind Inc セラミックス球状物の製造方法
JP2006199752A (ja) * 2005-01-18 2006-08-03 Shin Etsu Chem Co Ltd 電極保護用シリコーンゴム組成物
JP2007112683A (ja) 2005-10-21 2007-05-10 Morita Kagaku Kogyo Kk 回収フッ化カルシウムを用いたフッ化水素の製造方法
JP2008081396A (ja) * 2006-09-01 2008-04-10 Shin Etsu Chem Co Ltd 非晶質無機セラミック物質及びその製造方法
JP2009155185A (ja) * 2007-12-27 2009-07-16 National Institute For Materials Science 炭化ケイ素の製造方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120093938A (ko) * 2009-10-09 2012-08-23 신에쓰 가가꾸 고교 가부시끼가이샤 탄화규소 성형체의 제조 방법

Patent Citations (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5636546A (en) 1979-08-31 1981-04-09 Dow Corning Production of silicon elastomer emulsion
JPS57156316A (en) * 1981-03-17 1982-09-27 Toshiba Corp Production of silicon carbide powder
JPS5968333A (ja) 1982-10-12 1984-04-18 Toray Silicone Co Ltd 線状オルガノポリシロキサンブロツクを含有するポリマもしくはポリマ組成物の球状硬化物およびその製造方法
JPS61223032A (ja) 1985-03-29 1986-10-03 Shin Etsu Polymer Co Ltd シリコ−ンゴム球状体の製造方法
JPS62243621A (ja) 1986-04-17 1987-10-24 Toray Silicone Co Ltd シリコ−ンゴム粒状物の製造方法
JPS62257939A (ja) 1986-05-02 1987-11-10 Shin Etsu Chem Co Ltd シリコ−ンエラストマ−球状微粉末の製造方法
JPS6377942A (ja) 1986-09-22 1988-04-08 Toray Silicone Co Ltd シリコ−ンゴム粒状物の製造方法
JPS63202658A (ja) 1987-02-18 1988-08-22 Toray Silicone Co Ltd シリコ−ンゴム粒状物の製造方法
US4818732A (en) * 1987-03-19 1989-04-04 The Standard Oil Company High surface area ceramics prepared from organosilane gels
JPH01178523A (ja) 1988-01-06 1989-07-14 Toray Silicone Co Ltd シリコーンゲル球状体の製造方法
JPH01306471A (ja) 1988-06-02 1989-12-11 Tonen Sekiyukagaku Kk シリコーン樹脂微粒子の製造方法
JPH026109A (ja) 1988-06-24 1990-01-10 Toray Dow Corning Silicone Co Ltd シリコーン成形品の製造方法
JPH0393834A (ja) 1989-09-05 1991-04-18 Shin Etsu Chem Co Ltd シリコーンエラストマー微粉末の製造方法
JPH0395268A (ja) 1989-09-08 1991-04-19 Shin Etsu Chem Co Ltd 固体シリコーン球状微粒子の製造方法
JPH03193617A (ja) * 1989-12-22 1991-08-23 Toshiba Ceramics Co Ltd 炭化けい素粉末の製造方法
JPH07102075A (ja) * 1993-10-06 1995-04-18 Toray Dow Corning Silicone Co Ltd 粉状シリコーン硬化物およびその製造方法
JPH07215712A (ja) * 1993-12-10 1995-08-15 Dow Corning Corp 気化したポリシロキサンから炭化ケイ素粉末を製造する方法
JPH11293111A (ja) 1998-02-10 1999-10-26 Dow Corning Toray Silicone Co Ltd 粒状シリコーン硬化物サスペンジョン、およびその製造方法
JP2000178448A (ja) * 1998-12-15 2000-06-27 Dow Corning Toray Silicone Co Ltd シリコーン硬化物粒子の水分散液
JP2001002786A (ja) 1999-06-18 2001-01-09 Dow Corning Toray Silicone Co Ltd シリコーンゴムサスペンジョンの製造方法
JP2001113147A (ja) 1999-10-20 2001-04-24 Dow Corning Toray Silicone Co Ltd 乳化機、およびシリコーンオイルエマルジョンもしくは架橋シリコーン粒子サスペンジョンの製造方法
JP2002274830A (ja) * 2001-03-14 2002-09-25 Shin Etsu Chem Co Ltd β−炭化珪素微粉末の製造方法
JP2003063874A (ja) 2001-08-27 2003-03-05 Toray Ind Inc セラミックス球状物の製造方法
JP2006199752A (ja) * 2005-01-18 2006-08-03 Shin Etsu Chem Co Ltd 電極保護用シリコーンゴム組成物
JP2007112683A (ja) 2005-10-21 2007-05-10 Morita Kagaku Kogyo Kk 回収フッ化カルシウムを用いたフッ化水素の製造方法
JP2008081396A (ja) * 2006-09-01 2008-04-10 Shin Etsu Chem Co Ltd 非晶質無機セラミック物質及びその製造方法
JP2009155185A (ja) * 2007-12-27 2009-07-16 National Institute For Materials Science 炭化ケイ素の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DOUGLAS A. WHITE ET AL.: "Preparation of silicon carbide from organosilicon gels: II, gel pyrolysis and SiC characterizaion", ADVANCED CERAMIC MATERIALS, vol. 2, no. 1, 1987, pages 53 - 59, XP008156319 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017206678A (ja) * 2016-05-11 2017-11-24 信越化学工業株式会社 シリコーン樹脂フィルムおよびその製造方法、並びに半導体デバイスの製造方法
JP7032052B2 (ja) 2016-05-11 2022-03-08 信越化学工業株式会社 シリコーン樹脂フィルムおよびその製造方法、並びに半導体デバイスの製造方法

Also Published As

Publication number Publication date
CN102612491A (zh) 2012-07-25
EP2497746A1 (en) 2012-09-12
US20120219798A1 (en) 2012-08-30
KR20120101666A (ko) 2012-09-14
JPWO2011052695A1 (ja) 2013-03-21

Similar Documents

Publication Publication Date Title
JP5630333B2 (ja) 易焼結性炭化ケイ素粉末及び炭化ケイ素セラミックス焼結体
WO2011052695A1 (ja) 球状炭化ケイ素粉末、その製造方法、及びそれを使用する炭化ケイ素セラミックス成形体の製造方法
JP5177793B2 (ja) 炭化ケイ素の製造方法
JP5488607B2 (ja) 炭化ケイ素被覆炭素材料の製造方法
WO2011043425A1 (ja) 炭化ケイ素成形体の製造方法
WO2011043426A1 (ja) 炭化ケイ素接合体及び炭化ケイ素部材の接合方法
JPWO2011059041A1 (ja) 炭化ケイ素粉末組成物及びそれを用いる炭化ケイ素成形体の製造方法
JP2011079725A (ja) 炭化ケイ素含浸炭素質材料
US20080053051A1 (en) Method of producing heat-resistant inorganic textile and heat-resistant inorganic textile produced using the method
WO2011043427A1 (ja) 多孔質炭化ケイ素基材の緻密化方法
JP5477445B2 (ja) 炭化ケイ素の製造方法
JP2008081397A (ja) 無機成形体の製造方法、及び該方法により得られる無機成形体

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080048777.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10826827

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011538486

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13505301

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2010826827

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20127014219

Country of ref document: KR

Kind code of ref document: A