WO2011034064A1 - 水素化分解方法、および炭化水素油の製造方法 - Google Patents

水素化分解方法、および炭化水素油の製造方法 Download PDF

Info

Publication number
WO2011034064A1
WO2011034064A1 PCT/JP2010/065860 JP2010065860W WO2011034064A1 WO 2011034064 A1 WO2011034064 A1 WO 2011034064A1 JP 2010065860 W JP2010065860 W JP 2010065860W WO 2011034064 A1 WO2011034064 A1 WO 2011034064A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
component
liquid
hydrocracking
hydrocarbon
Prior art date
Application number
PCT/JP2010/065860
Other languages
English (en)
French (fr)
Inventor
和彦 田坂
祐一 田中
真理絵 岩間
Original Assignee
独立行政法人石油天然ガス・金属鉱物資源機構
国際石油開発帝石株式会社
Jx日鉱日石エネルギー株式会社
石油資源開発株式会社
コスモ石油株式会社
新日鉄エンジニアリング株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 独立行政法人石油天然ガス・金属鉱物資源機構, 国際石油開発帝石株式会社, Jx日鉱日石エネルギー株式会社, 石油資源開発株式会社, コスモ石油株式会社, 新日鉄エンジニアリング株式会社 filed Critical 独立行政法人石油天然ガス・金属鉱物資源機構
Priority to CA2773593A priority Critical patent/CA2773593C/en
Priority to EP10817177.8A priority patent/EP2479243A4/en
Priority to BR112012005781A priority patent/BR112012005781B1/pt
Priority to CN201080040837.9A priority patent/CN102498192B/zh
Priority to EA201270414A priority patent/EA021597B1/ru
Priority to US13/395,264 priority patent/US8702969B2/en
Priority to JP2011531934A priority patent/JP5502093B2/ja
Priority to AU2010296406A priority patent/AU2010296406B2/en
Publication of WO2011034064A1 publication Critical patent/WO2011034064A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G47/00Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions
    • C10G47/36Controlling or regulating
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2/00Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon
    • C10G2/30Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2/00Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon
    • C10G2/30Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen
    • C10G2/32Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G7/00Distillation of hydrocarbon oils
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1022Fischer-Tropsch products
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/30Physical properties of feedstocks or products
    • C10G2300/301Boiling range

Definitions

  • the present invention relates to a hydrocracking method for hydrocracking a wax fraction contained in a synthetic oil produced by a Fischer-Tropsch synthesis reaction, and a method for producing a hydrocarbon oil.
  • the liquid hydrocarbon (crude oil) obtained by the FT synthesis reaction is a mixture mainly composed of aliphatic hydrocarbons having a wide carbon number distribution. From this liquid hydrocarbon, a naphtha fraction containing many components having a boiling point lower than about 150 ° C, a middle fraction containing many components having a boiling point of about 150 to about 360 ° C, and heavier than the middle fraction A wax fraction containing a hydrocarbon component (boiling point exceeding about 360 ° C.) (hereinafter sometimes referred to as “FT wax fraction”) can be obtained. Of these fractions, the middle fraction is the most useful fraction corresponding to the kerosene / light oil base, and it is desired to obtain this in a high yield.
  • the FT wax fraction produced together with the middle distillate in the FT synthesis reaction process is reduced to a low molecular weight by hydrocracking to produce an intermediate Conversion to a component corresponding to a fraction is performed to increase the yield of the middle fraction as a whole.
  • the FT wax fraction obtained by fractional distillation from liquid hydrocarbons is hydrocracked in the wax fraction hydrocracking step, and then gas-liquid separated in the gas-liquid separation step, and the obtained liquid component Is sent to a rectifying tower in the subsequent stage together with an intermediate fraction previously fractionated from liquid hydrocarbons and separately hydrorefined, and fractionated there to become a kerosene / light oil base material.
  • the resulting hydrocracked product is not limited to the components corresponding to the middle distillate, but is further lightened to produce the desired middle distillate fraction. Yield decreases.
  • the progress of hydrocracking is insufficient, there is a problem that the yield of middle distillate is not sufficiently improved. Therefore, it is required to grasp the degree of progress of hydrocracking in the wax fraction hydrocracking step and appropriately control this to obtain a middle distillate with high yield.
  • the hydrocracking product produced in the wax fraction hydrocracking step is sampled and analyzed by distillation gas chromatography, and the content of specific hydrocarbon components contained in the hydrocracking product Using the content as an index, it is judged whether the degree of progress of hydrocracking is appropriate.
  • a hydrocarbon component having a boiling point of 25 ° C. or higher and 360 ° C. or lower contained in the hydrocracking product is defined as a specific hydrocarbon component, and the total hydrocracking product having a boiling point of 25 ° C. or higher is used.
  • the content (mass%) of the specific hydrocarbon component based on the mass is obtained, and if the content is within a predetermined range, it is judged that the degree of progress of hydrocracking is properly maintained.
  • the conditions of the wax fraction hydrocracking process i.e., the operating conditions of the hydrocracking apparatus are changed as appropriate, and the specific hydrocarbon component
  • the degree of progress of hydrocracking is controlled by adjusting the content to be within a predetermined range.
  • hydrocracking product refers to the entire effluent from the wax fraction hydrocracking step, unless otherwise specified, and includes a predetermined molecular weight or less by hydrocracking. It includes not only hydrocarbon components that have been reduced to a low level, but also so-called “undecomposed wax” in which hydrocracking does not proceed sufficiently.
  • the present invention has been made in view of the above circumstances, and the content of a specific hydrocarbon component in the hydrocracking product of the wax fraction hydrocracking step is quickly determined, and based on this, the progress of hydrocracking progresses. It is an object of the present invention to provide a hydrocracking method and a hydrocarbon oil production method capable of quickly and appropriately controlling the degree.
  • the present inventor has configured a gas-liquid separator that gas-liquid separates the hydrocracking product of the wax fraction in multiple stages, so that a heavy oil component and a light oil component are separated from the hydrocracking product as liquid components.
  • the production ratio of the heavy oil component to the light oil component was focused on.
  • the hydrocracking method of the present invention includes a wax fraction hydrocracking step of hydrocracking a wax fraction contained in a liquid hydrocarbon synthesized by a Fischer-Tropsch synthesis reaction to obtain a hydrocracked product.
  • the method for producing a hydrocarbon oil of the present invention includes a liquid hydrocarbon synthesis step for synthesizing liquid hydrocarbons from a raw material gas containing carbon monoxide gas and hydrogen gas by a Fischer-Tropsch synthesis reaction, and the liquid hydrocarbon synthesis step.
  • the specific component amount estimation step for obtaining the estimated value of the content of the specific hydrocarbon component contained therein, and based on the estimated value, the content of the specific hydrocarbon component is within a predetermined range, Wax fraction water And a control step of controlling the operation of the reduction decomposition step.
  • the specific hydrocarbon component may be a hydrocarbon component having a boiling point in the range of 25 to 360 ° C.
  • the multi-stage gas-liquid separator includes a first gas-liquid separator, a cooling device that cools a gas component separated in the first gas-liquid separator and liquefies at least a part thereof, and the cooling device
  • a gas-liquid separator for separating the effluent from the gas, and the heavy oil component is a liquid component obtained from the first gas-liquid separator, and the light oil component is a second gas-liquid separator. It may be a liquid component obtained from the separator.
  • the content of a specific hydrocarbon component in the hydrocracking product of the wax fraction hydrocracking step can be quickly determined, and based on this, the degree of progress of hydrocracking can be quickly determined. And it becomes possible to control appropriately and a middle distillate can be stably obtained with a high yield from the liquid hydrocarbon obtained by FT synthesis reaction.
  • FIG. 1 is a schematic diagram of a liquid fuel synthesis system. It is a figure which shows an upgrade unit concretely. It is a graph which shows the relationship between the flow rate ratio of a heavy oil component and a light oil component, and content in the hydrocracking product of a specific hydrocarbon component.
  • FIG. 1 shows a liquid fuel synthesis system 1 that executes a GTL process for converting a hydrocarbon feedstock such as natural gas into liquid fuel.
  • the liquid fuel synthesis system 1 includes a synthesis gas production unit 3, an FT synthesis unit 5, and an upgrading unit 7.
  • the synthesis gas production unit 3 reforms a natural gas that is a hydrocarbon raw material to produce a synthesis gas (raw material gas) containing carbon monoxide gas and hydrogen gas.
  • the FT synthesis unit 5 synthesizes liquid hydrocarbons from the produced synthesis gas by a Fischer-Tropsch synthesis reaction (hereinafter referred to as “FT synthesis reaction”).
  • FT synthesis reaction a Fischer-Tropsch synthesis reaction
  • the upgrading unit 7 produces a liquid fuel (naphtha, kerosene, light oil, wax, etc.) base material by hydrogenating and fractionating the liquid hydrocarbon synthesized by the FT synthesis reaction.
  • a liquid fuel naphtha, kerosene, light oil, wax, etc.
  • the synthesis gas production unit 3 mainly includes a desulfurization reactor 10, a reformer 12, an exhaust heat boiler 14, gas-liquid separators 16 and 18, a decarboxylation device 20, and a hydrogen separator 26.
  • the desulfurization reactor 10 is composed of a hydrodesulfurization device or the like, and removes sulfur components from natural gas as a raw material.
  • the reformer 12 reforms the natural gas supplied from the desulfurization reactor 10 to produce a synthesis gas containing carbon monoxide gas (CO) and hydrogen gas (H 2 ) as main components.
  • the exhaust heat boiler 14 recovers the exhaust heat of the synthesis gas generated in the reformer 12 and generates high-pressure steam.
  • the gas-liquid separator 16 separates water heated by heat exchange with the synthesis gas in the exhaust heat boiler 14 into a gas (high-pressure steam) and a liquid.
  • the gas-liquid separator 18 removes the condensate from the synthesis gas cooled by the exhaust heat boiler 14 and supplies the gas to the decarboxylation device 20.
  • the decarbonation device 20 has an absorption tower 22 for removing carbon dioxide from the synthesis gas supplied from the gas-liquid separator 18 using an absorption solvent, and carbon dioxide is diffused from the absorption solvent containing the carbon dioxide to absorb the absorption liquid. And a regeneration tower 24 for regeneration.
  • the hydrogen separator 26 separates part of the hydrogen gas contained in the synthesis gas from the synthesis gas from which the carbon dioxide gas has been separated by the decarbonation device 20.
  • the FT synthesis unit 5 mainly includes, for example, a bubble column reactor (bubble column hydrocarbon synthesis reactor) 30, a gas-liquid separator 34, a separator 36, and a first rectifying column 40.
  • the bubble column reactor 30 is an example of a reactor that synthesizes liquid hydrocarbons from synthesis gas, and functions as a reactor that synthesizes liquid hydrocarbons from synthesis gas by an FT synthesis reaction.
  • the bubble column reactor 30 is, for example, a bubble column slurry in which a catalyst slurry in which solid catalyst particles are suspended in liquid hydrocarbon (product of FT synthesis reaction) is accommodated inside a column type container. Consists of a bed reactor.
  • the bubble column reactor 30 synthesizes liquid hydrocarbons by reacting carbon monoxide gas and hydrogen gas in the synthesis gas produced in the synthesis gas production unit 3.
  • the gas-liquid separator 34 separates water heated through circulation in the heat transfer tube 32 disposed in the bubble column reactor 30 into water vapor (medium pressure steam) and liquid.
  • the separator 36 separates the catalyst particles and the liquid hydrocarbon in the catalyst slurry accommodated in the bubble column reactor 30.
  • the first fractionator 40 fractionates the liquid hydrocarbons supplied from the bubble column reactor 30 through the separator 36 and the gas-liquid separator 38 into each fraction.
  • the upgrading unit 7 includes, for example, a wax fraction hydrocracking device 50, a middle fraction hydrotreating device 52, a naphtha fraction hydrotreating device 54, gas-liquid separators 56, 58, and 60, A rectifying tower 70 and a naphtha stabilizer 72 are provided.
  • the wax fraction hydrocracking apparatus 50 is connected to the bottom of the first rectifying column 40, and a gas-liquid separator 56 is provided downstream thereof.
  • the middle distillate hydrotreating device 52 is connected to the center of the first rectifying column 40, and a gas-liquid separator 58 is provided downstream thereof.
  • the naphtha fraction hydrotreating apparatus 54 is connected to the top of the first rectifying column 40, and a gas-liquid separator 60 is provided downstream thereof.
  • the second rectification column 70 fractionates the liquid hydrocarbons supplied from the gas-liquid separators 56 and 58 according to the boiling point.
  • the naphtha stabilizer 72 further fractionates the liquid hydrocarbons of the naphtha fraction supplied from the gas-liquid separator 60 and the second fractionator 70, discharges the light component as off-gas, and the heavy component is the product naphtha.
  • the liquid fuel synthesizing system 1 from an external natural gas supply source, such as natural gas field or a natural gas plant (not shown), the natural gas as the hydrocarbon feedstock (whose main component is CH 4) is supplied.
  • the synthesis gas generation unit 3 reforms the natural gas to produce a synthesis gas (a mixed gas containing carbon monoxide gas and hydrogen gas as main components).
  • the natural gas is supplied to the desulfurization reactor 10 together with the hydrogen gas separated by the hydrogen separator 26.
  • the desulfurization reactor 10 converts sulfur contained in natural gas into hydrogen sulfide by the action of a known hydrodesulfurization catalyst using the hydrogen gas, and adsorbs the generated hydrogen sulfide on an adsorbent such as ZnO. Thereby, sulfur content is removed from natural gas.
  • the desulfurized natural gas is mixed with carbon dioxide gas (CO 2 ) supplied from a carbon dioxide supply source (not shown) and water vapor generated in the exhaust heat boiler 14, and is then supplied to the reformer 12. Supplied.
  • the reformer 12 reforms natural gas using carbon dioxide and steam by a steam / carbon dioxide reforming method to produce a high-temperature synthesis gas mainly composed of carbon monoxide gas and hydrogen gas. To do.
  • the high-temperature synthesis gas (for example, 900 ° C., 2.0 MPaG) generated in the reformer 12 in this manner is supplied to the exhaust heat boiler 14 and is exchanged by heat exchange with the water flowing in the exhaust heat boiler 14. It is cooled (for example, 400 ° C.) and the exhaust heat is recovered.
  • the synthesis gas cooled in the exhaust heat boiler 14 is supplied to the absorption tower 22 of the decarbonation apparatus 20 or the bubble column reactor 30 after the condensed liquid component is separated and removed in the gas-liquid separator 18.
  • Carbon dioxide gas is absorbed by the absorbent in the absorption tower 22, and carbon dioxide gas is released from the absorbent that has absorbed the carbon dioxide gas in the regeneration tower 24. The released carbon dioxide gas is sent from the regeneration tower 24 to the reformer 12 and reused in the reforming reaction.
  • the synthesis gas produced in the synthesis gas production unit 3 is supplied to the bubble column reactor 30 of the FT synthesis unit 5.
  • the hydrogen separator 26 separates hydrogen gas contained in the synthesis gas by adsorption and desorption (hydrogen PSA) using a pressure difference.
  • the separated hydrogen gas is supplied from various hydrogen utilization reactors (for example, for performing a predetermined reaction using hydrogen gas in the liquid fuel synthesis system 1 through a compressor (not shown) from a gas holder (not shown)).
  • Desulfurization reactor 10 wax fraction hydrocracking device 50, middle fraction hydrotreating device 52, naphtha fraction hydrotreating device 54, etc.).
  • the FT synthesis unit 5 synthesizes liquid hydrocarbons from the synthesis gas produced in the synthesis gas production unit 3 by an FT synthesis reaction.
  • the synthesis gas produced in the synthesis gas production unit 3 flows from the bottom of the bubble column reactor 30 and rises in the catalyst slurry accommodated in the bubble column reactor 30. At this time, in the bubble column reactor 30, the carbon monoxide gas and the hydrogen gas contained in the synthesis gas react with each other by the above-described FT synthesis reaction to generate hydrocarbons.
  • the liquid hydrocarbon synthesized in the bubble column reactor 30 is introduced into the separator 36 together with the catalyst particles as a catalyst slurry.
  • the separator 36 separates the catalyst slurry into a solid content such as catalyst particles and a liquid content containing liquid hydrocarbons. Part of the solid content such as the separated catalyst particles is returned to the bubble column reactor 30, and the liquid content is supplied to the first fractionator 40. A gas product containing gaseous hydrocarbons is discharged from the top of the bubble column reactor 30 under the conditions in the unreacted synthesis gas and the generated bubble column reactor 30 to form a gas-liquid separator. 38. The gas-liquid separator 38 cools these gas products, separates the condensed liquid hydrocarbons, and introduces them into the first rectifying column 40.
  • the gas components separated by the gas-liquid separator 38 are mainly composed of unreacted synthesis gas (CO and H 2 ) and hydrocarbon gas having 4 or less carbon atoms, and a part of the gas is separated from the bubble column reactor 30.
  • the unreacted synthesis gas contained in the bottom is recycled and reused in the FT synthesis reaction.
  • the gas that has not been re-introduced into the bubble column reactor 30 is discharged as off-gas and used as fuel gas, or fuel equivalent to LPG (liquefied petroleum gas) is recovered, or the synthesis gas production unit is modified. It is reused as a raw material for the quality device 12.
  • the first rectifying column 40 converts the liquid hydrocarbons supplied from the bubble column reactor 30 through the separator 36 and the gas-liquid separator 38 as described above into a naphtha fraction (boiling point is about 150 ° C.). Lower), a middle fraction corresponding to kerosene / light oil (boiling point of about 150 to 360 ° C.) and a wax fraction (boiling point over about 360 ° C.).
  • the upgrading unit 7 hydrotreats the liquid hydrocarbon synthesized in the FT synthesis unit 5 to produce a base material for liquid fuel (naphtha, kerosene, light oil, wax, etc.).
  • the liquid hydrocarbon (mainly C 21 or more) of the wax fraction taken out from the bottom of the first rectifying column 40 is transferred to the wax fraction hydrocracking apparatus 50 and taken out from the center of the first rectifying column 40.
  • the middle hydrocarbon liquid hydrocarbons (mainly C 11 to C 20 ) are transferred to the middle distillate hydrorefining device 52 and taken out from the top of the first rectifying column 40 naphtha distillate liquid hydrocarbons ( C 5 -C 10 ) is mainly transferred to the naphtha fraction hydrotreating apparatus 54.
  • the wax fraction hydrocracking apparatus 50 uses liquid hydrocarbons (generally C 21 or more) of the wax extracted from the bottom of the first rectifying column 40 and hydrogen gas supplied from the hydrogen separator 26. Utilizing hydrocracking, the carbon number is reduced to approximately 20 or less. In this hydrocracking reaction, using a catalyst and heat, a C—C bond of a hydrocarbon having a large number of carbon atoms is cleaved to generate a hydrocarbon having a small number of carbon atoms.
  • the product containing liquid hydrocarbons hydrocracked in the wax fraction hydrocracking apparatus 50 is separated into gas and liquid in stages by gas-liquid separators 56 and 57 installed in multiple stages, of which liquid
  • the hydrocarbons are transferred to the second rectifying column 70, and the gas component (including hydrogen gas) is transferred to the middle distillate hydrotreating device 52 and the naphtha distillate hydrotreating device 54.
  • the middle distillate hydrotreating device 52 separates the middle distillate liquid hydrocarbons (generally C 11 to C 20 ) extracted from the center of the first rectifying column 40 into hydrogen. Hydrotreating is performed using hydrogen gas supplied from the vessel 26 via the wax fraction hydrocracking apparatus 50. In this hydrorefining, hydrogenation of olefins by-produced by the FT synthesis reaction, conversion to paraffins by hydrodeoxygenation of oxygen-containing compounds such as alcohols, and hydroisomerization of normal paraffins to isoparaffins proceed. .
  • the hydrorefined liquid hydrocarbon-containing product is separated into a gas and a liquid by the gas-liquid separator 58, and the liquid hydrocarbon is transferred to the second rectifying column 70, where a gas component (including hydrogen gas) is contained. ) Is reused in the hydrogenation reaction.
  • the naphtha fraction hydrotreating apparatus 54 removes liquid hydrocarbons (generally C 10 or less) of the naphtha fraction extracted from the top of the first rectifying column 40 from the hydrogen separator 26 with a wax fraction. Hydrorefining is performed using the hydrogen gas supplied via the hydrocracking apparatus 50. The hydrorefined liquid hydrocarbon-containing product is separated into a gas and a liquid by the gas-liquid separator 60, and the liquid hydrocarbon is transferred to the naphtha stabilizer 72, and the gas component (including hydrogen gas) is Reused in the hydrogenation reaction.
  • liquid hydrocarbons generally C 10 or less
  • the second rectifying column 70 converts the liquid hydrocarbons supplied from the wax fraction hydrocracking apparatus 50 and the middle fraction hydrotreating apparatus 52 as described above into hydrocarbons having a C 10 or less (boiling point). It is sufficiently hydrocracked in the kerosene fraction (boiling point is about 150 to 250 ° C.), light oil fraction (boiling point is about 250 to 360 ° C.) and wax fraction hydrocracking apparatus 50. It fractionates into an undecomposed wax fraction (boiling point above about 360 ° C.). An undecomposed wax fraction is mainly obtained from the bottom of the second fractionator 70 and is recycled upstream of the wax fraction hydrocracking apparatus 50.
  • a kerosene fraction and a light oil fraction are taken out from the center of the second rectifying tower 70.
  • hydrocarbons of C 10 or less are taken out from the top of the second rectifying column 70 and supplied to the naphtha stabilizer 72.
  • the naphtha stabilizer 72 and fractionating of C 10 or less of the hydrocarbons supplied from the naphtha fraction hydrotreating apparatus 54 and the second fractionator 70, naphtha as a product (C 5 ⁇ C 10) Get.
  • high-purity naphtha is taken out from the bottom of the naphtha stabilizer 72.
  • off-gas mainly composed of hydrocarbons having 4 or less carbon atoms, which is not a product target, is discharged. This off-gas is used as a fuel gas, or a fuel equivalent to LPG is recovered.
  • FIG. 2 is a diagram showing the upgrading unit 7.
  • the liquid hydrocarbon used as a raw material for the production of the liquid fuel substrate in the upgrading unit 7 is not particularly limited as long as it is synthesized by the FT synthesis method, but from the viewpoint of increasing the yield of the middle distillate, It is preferable that the hydrocarbon having a boiling point of about 150 ° C. or higher is contained in an amount of 80% by mass or more based on the total mass of the liquid hydrocarbon obtained by the FT synthesis reaction. Further, the liquid hydrocarbon produced by a known FT synthesis reaction method is a mixture mainly composed of aliphatic hydrocarbons having a wide carbon number distribution, and a fraction obtained by appropriately fractionating this in advance. It may be.
  • the naphtha fraction is a component that is distilled at a temperature lower than about 150 ° C. in the first rectifying column 40, and the middle distillate is distilled at a temperature of about 150 ° C. or higher and about 360 ° C. or lower in the first rectifying column 40.
  • the wax fraction is a component that is not distilled at about 360 ° C. in the first rectifying column 40 and is extracted from the bottom of the column.
  • two cut points that is, about 150 ° C. and about 360 ° C.
  • a fraction below the cut point is introduced as an intermediate fraction from the line L1 to the middle distillate hydrotreating device 52, and a fraction exceeding the cut point is designated as a wax fraction. You may extract from the line L2.
  • the naphtha fraction hydrotreating apparatus 54 the naphtha fraction is hydrorefined by a known method, the olefin contained in the naphtha fraction is converted into saturated hydrocarbons, and oxygen-containing compounds such as alcohols are paraffin carbonized. Converted to hydrogen and water.
  • the olefin and oxygen-containing compound contained in the middle distillate are converted into paraffin hydrocarbons by a known method, as in the naphtha distillate hydrotreating apparatus 54.
  • the low temperature characteristics (low temperature fluidity) of the produced oil as a fuel oil base at least a part of normal paraffin contained in the middle distillate is hydroisomerized and converted to isoparaffin.
  • the wax fraction hydrocracking apparatus 50 the wax fraction is hydrocracked by a known method using a hydrocracking catalyst and converted into a component corresponding to the middle fraction. At this time, oxygen-containing compounds such as olefins and alcohols contained in the wax fraction are converted into paraffin hydrocarbons. At the same time, the production of isoparaffins by hydroisomerization of normal paraffins that contributes to the improvement of the low-temperature characteristics (low-temperature fluidity) of the produced oil as a fuel oil base also proceeds.
  • a part of the wax fraction is excessively hydrocracked and converted into a hydrocarbon corresponding to a naphtha fraction having a lower boiling point than a hydrocarbon having a boiling range corresponding to the target middle fraction.
  • hydrocracking of some of them proceeds further, and they are converted into gaseous hydrocarbons having 4 or less carbon atoms such as butanes, propane, ethane, and methane.
  • the naphtha stabilizer 72 discharges gaseous hydrocarbons mainly composed of hydrocarbons having 4 or less carbon atoms from the naphtha fraction passed through the naphtha fraction hydrotreating apparatus 54 from a line L3 connected to the top of the column.
  • the naphtha fraction that has passed through the naphtha fraction hydrotreating apparatus 54 is supplied to the gas-liquid separator 60 through a line L4.
  • the naphtha fraction from which the hydrogen gas has been separated in the gas-liquid separator 60 is supplied to the naphtha stabilizer 72 through the line L13.
  • the hydrogen gas separated from the naphtha fraction in the gas-liquid separator 60 is supplied to the wax fraction hydrocracking apparatus 50 through lines L22 and L14.
  • the naphtha fraction from which the gaseous hydrocarbons have been removed by the naphtha stabilizer 72 is introduced into the naphtha tank 80 through the line L5 and stored.
  • oil spilled from the middle distillate hydrotreating device 52 and hydrocracking from the wax distillate hydrocracking device 50 are downstream of the middle distillate hydrotreating device 52 and the wax distillate hydrocracking device 50.
  • the product is supplied and a second rectifying tower 70 for fractionating the mixture is installed.
  • an intermediate fraction tank 90 for storing the middle fraction fractionated in the second fractionator 70 is installed.
  • the spilled oil from the middle distillate hydrotreating apparatus 52 is supplied to the gas-liquid separator 58 through a line L6.
  • the middle distillate from which the hydrogen gas has been separated in the gas-liquid separator 58 is supplied to the second fractionator 70 through the line L21.
  • the spilled oil (hydrocracking product) from the wax fraction hydrocracking apparatus 50 is also supplied to the second rectifying tower 70 through the line L19 and the line L7.
  • the hydrogen gas separated from the middle fraction in the gas-liquid separator 58 is supplied to the wax fraction hydrocracking apparatus 50 through lines L20, L22, and L14.
  • the spilled oil of the middle distillate hydrorefining device 52 and the spilled oil (hydrocracked product) of the wax fraction hydrocracking device 50 supplied to the second fractionator 70 are mixed by line blending. May be mixed by tank blending, and the mixing method is not particularly limited.
  • the middle fraction is obtained as a single fraction in the second fractionator 70, and this is introduced into the middle fraction tank 90 through the line L8 and stored.
  • it may be fractionated as two fractions, a kerosene fraction and a light oil fraction, and each fraction may be introduced into a plurality of tanks and stored.
  • a part of the naphtha fraction hydrorefined in the naphtha fraction hydrotreating apparatus 54 is recycled to the line L10 upstream of the naphtha fraction hydrotreating apparatus 54 through the line L9. Is done. Hydrorefining of the naphtha fraction is a reaction accompanied by a large exotherm. When only the unrefined naphtha fraction is hydrorefined, the naphtha fraction temperature in the naphtha fraction hydrorefining device 54 is excessive. May rise. Therefore, a part of the naphtha fraction after the hydrorefining is recycled to dilute the unrefined naphtha fraction to prevent the excessive temperature rise.
  • the bottom oil of the second fractionator 70 is mainly composed of an undecomposed wax fraction, that is, a wax fraction that has not been sufficiently decomposed in the wax fraction hydrocracking step.
  • the tower bottom oil is recycled to the line L2 upstream of the wax fraction hydrocracking device 50 through the line L11, and is supplied to the wax fraction hydrocracking device 50 to undergo hydrocracking again. Thereby, the middle distillate yield can be improved.
  • the light fraction discharged from the top of the second fractionator 70 is sent to the line L13 via the line L12 and supplied to the naphtha stabilizer 72.
  • the wax fraction hydrocracking apparatus 50 of this example includes a fixed bed flow type reaction tower, and the reaction tower is filled with a hydrocracking catalyst as described in detail later. Then, the FT wax fraction is introduced into the line L2, and the hydrogen gas is introduced into the line L14 connected to the line L2. These are mixed and supplied to the wax fraction hydrocracking apparatus 50, and the wax fraction is supplied with hydrogen. Decomposed.
  • gas-liquid separators described later in detail are provided in multiple stages.
  • wax fraction hydrocracking process In the wax fraction hydrocracking step, as shown in FIG. 2, the FT wax fraction introduced through the line L2 is hydrocracked in the wax fraction hydrocracking apparatus 50 to obtain a hydrocracking product. .
  • Examples of the hydrocracking catalyst used in the wax fraction hydrocracking step include a support in which a metal belonging to Groups 8 to 10 of the periodic table is supported as an active metal on a carrier containing a solid acid.
  • the periodic table refers to a periodic table of long-period elements defined by the International Union of Pure and Applied Chemistry (IUPAC).
  • Suitable supports include crystalline zeolites such as ultrastable Y-type (USY) zeolite, Y-type zeolite, mordenite and beta zeolite, and amorphous composite metals having heat resistance such as silica alumina, silica zirconia, and alumina boria. The thing containing 1 or more types of solid acids chosen from oxides is mentioned.
  • the support preferably contains USY zeolite and one or more solid acids selected from silica alumina, alumina boria and silica zirconia, and includes USY zeolite and alumina boria and / or silica alumina. More preferred.
  • USY zeolite is obtained by ultra-stabilizing Y-type zeolite by hydrothermal treatment and / or acid treatment, and in addition to the fine pore structure called micropores having a pore size inherent to Y-type zeolite of 2 nm or less. New pores having a pore diameter in the range of 10 nm are formed.
  • the average particle size of the USY zeolite is not particularly limited, but is preferably 1.0 ⁇ m or less, more preferably 0.5 ⁇ m or less.
  • the silica / alumina molar ratio is preferably 10 to 200, more preferably 15 to 100, and further preferably 20 to 60.
  • the carrier preferably contains 0.1 to 80% by mass of crystalline zeolite and 0.1 to 60% by mass of amorphous composite metal oxide having heat resistance.
  • the carrier can be produced by molding a carrier composition containing the solid acid and a binder and then baking the carrier composition.
  • the blending ratio of the solid acid is preferably 1 to 70% by mass, more preferably 2 to 60% by mass based on the total amount of the carrier.
  • the carrier contains USY zeolite
  • the blending ratio of USY zeolite is preferably 0.1 to 10% by mass, more preferably 0.5 to 5% by mass based on the mass of the entire carrier.
  • the mixing ratio of USY zeolite and alumina boria is preferably 0.03 to 1 in mass ratio.
  • the mixing ratio of USY zeolite and silica alumina is preferably 0.03 to 1 in mass ratio.
  • the binder is not particularly limited, but alumina, silica, titania and magnesia are preferable, and alumina is more preferable.
  • the blending amount of the binder is preferably 20 to 98% by mass, more preferably 30 to 96% by mass based on the mass of the whole carrier.
  • the firing temperature of the carrier composition is preferably in the range of 400 to 550 ° C., more preferably in the range of 470 to 530 ° C., and still more preferably in the range of 490 to 530 ° C.
  • metals in Groups 8 to 10 of the periodic table include cobalt, nickel, rhodium, palladium, iridium, and platinum. Among these, it is preferable to use a metal selected from nickel, palladium and platinum alone or in combination of two or more. These metals can be supported on the above-mentioned carrier by a conventional method such as impregnation or ion exchange.
  • the amount of metal to be supported is not particularly limited, but the total amount of metal is preferably 0.1 to 3.0% by mass with respect to the mass of the carrier.
  • the hydrogen partial pressure in the wax fraction hydrocracking step is, for example, 0.5 to 12 MPa, and preferably 1.0 to 5.0 MPa.
  • the liquid hourly space velocity (LHSV), for example, 0.1 ⁇ 10.0h -1, preferably 0.3 ⁇ 3.5 h -1.
  • the ratio of hydrogen gas to wax fraction is not particularly limited, but is, for example, 50 to 1000 NL / L, and preferably 70 to 800 NL / L.
  • LHSV liquid hourly space velocity
  • “LHSV (liquid hourly space velocity)” means a standard state (25 ° C., 101325 Pa) per volume of a layer (catalyst layer) made of catalyst packed in a fixed bed flow type reaction tower. ) Is the volume flow rate of the wax fraction, and the unit “h ⁇ 1 ” is the inverse of time.
  • “NL”, which is a unit of the hydrogen gas capacity in the hydrogen gas / oil ratio indicates the hydrogen gas capacity (L) in the standard state (0 ° C., 101325 Pa).
  • the reaction temperature (catalyst bed weight average temperature) in the wax fraction hydrocracking step can be exemplified by 180 to 400 ° C., preferably 200 to 370 ° C., more preferably 250 to 350 ° C., and further preferably 280 to 350 ° C.
  • the reaction temperature exceeds 400 ° C.
  • hydrocracking proceeds excessively, and the yield of the target middle distillate tends to decrease.
  • the hydrocracking product may be colored to restrict use as a fuel base material.
  • the reaction temperature is lower than 180 ° C., the hydrocracking of the wax fraction does not proceed sufficiently, and the yield of the middle fraction tends to decrease.
  • oxygen-containing compounds such as alcohols in the wax fraction tend not to be sufficiently removed.
  • the reaction temperature is controlled by adjusting the set temperature at the outlet of a heat exchanger (not shown) provided in the line L2.
  • the content of a specific hydrocarbon component contained in the hydrocracking product that is, a hydrocarbon component having a boiling point of 25 ° C. or higher and 360 ° C. or lower has a boiling point of 25 ° C.
  • the wax fraction hydrocracking is preferably 20 to 90% by weight, more preferably 30 to 80% by weight, and even more preferably 45 to 70% by weight, based on the weight of the total hydrocracking product. It is preferable to operate the device 50. If the content of the specific hydrocarbon component is within such a range, the degree of progress of hydrocracking is appropriate, and the yield of middle distillate can be increased.
  • the hydrocracking product in the wax fraction hydrocracking step is introduced into a first gas-liquid separator 56 and a second gas-liquid separator 57 provided in multiple stages.
  • a heat exchanger (not shown) for cooling the hydrocracking product is preferably installed in the line L15 connected to the outlet of the wax fraction hydrocracking apparatus 50.
  • the hydrocracked product cooled by this heat exchanger is separated into a gas component and a liquid component by the first gas-liquid separator 56.
  • the temperature in the first gas-liquid separator 56 is preferably about 210 to 260 ° C.
  • the liquid component separated in the first gas-liquid separator 56 is a heavy oil component composed of hydrocarbons that are in a liquid state at the temperature, and includes a large amount of undecomposed wax fraction.
  • the heavy oil component is supplied from the bottom of the first gas-liquid separator 56 to the second rectifying tower 70 through the line L19 and the line L7.
  • the volume flow rate (L / H) per hour of the heavy oil component extracted from the first gas-liquid separator 56 is defined as F H.
  • the gas component separated in the first gas-liquid separator 56 is introduced into the heat exchanger (cooling device) 55 through the line L16 from the top of the first gas-liquid separator 56 and cooled, and at least one of the components is cooled. The part is liquefied.
  • the effluent from the heat exchanger 55 is introduced into the second gas-liquid separator 57.
  • the inlet temperature of the second gas-liquid separator 57 is set to about 90 to 100 ° C. by cooling with the heat exchanger 55.
  • the gas component and the liquid component condensed (liquefied) by cooling in the heat exchanger 55 are separated.
  • the separated gas component is extracted from the top of the second gas-liquid separator 57 through the line L17.
  • a heat exchanger is installed in the line L17 (not shown), and the gas component is preferably cooled to about 40 ° C. Thereby, a part of the light hydrocarbon in the gas component is liquefied and returned to the second gas-liquid separator 57.
  • the remaining gas component is mainly composed of hydrogen gas containing gaseous hydrocarbons, supplied to the middle distillate hydrotreating device 52 or naphtha distillate hydrotreating device 54, and reused as hydrogen gas for the hydrogenation reaction. Is done.
  • a liquid component is extracted from the line L18 connected to the bottom of the second gas-liquid separator 57.
  • This liquid component is a light oil component composed of lighter hydrocarbons that condenses in the second gas-liquid separator 57 that is at a lower temperature than the first gas-liquid separator 56.
  • this light oil component is supplied to the 2nd fractionator 70 through the line L7 with the heavy oil component from the 1st gas-liquid separator 56.
  • FIG. Here, the volume flow rate per hour of light oil components obtained from the second gas-liquid separator 57 (L / H) and F L.
  • the specific component amount estimation step for obtaining the estimated value of the content of the specific hydrocarbon component first, the heavy oil component obtained in the first gas-liquid separator 56 and the second gas-liquid separator 57 are obtained. Determine the ratio of production with light oil components. As said production
  • the flow rate may be either a volume flow rate or a mass flow rate, but here a volume flow rate is adopted.
  • the volume flow rate per hour of the heavy oil component obtained from the first gas-liquid separator 56 is F H (L / H), and 1 of the light oil component obtained from the second gas-liquid separator 57.
  • the volume flow per time and F L (L / H), the ratio of the volumetric flow rate of the light oil component as a reference of these total flow (%, the following formula (1)) determined a "light oil component flow this Ratio "(hereinafter, simply referred to as" flow rate ratio ").
  • the specific hydrocarbon component is a hydrocarbon component having a boiling point of 25 ° C. or higher and 360 ° C. or lower, but the specific hydrocarbon component is not limited to the component. That is, in this example, the upper limit of the boiling point of the hydrocarbon constituting the target middle distillate is set to 360 ° C., and therefore the upper limit of the boiling range of the specific hydrocarbon component is preferably set to 360 ° C. It is. When the upper limit of the boiling range of the hydrocarbon constituting the target middle distillate is set to a temperature other than 360 ° C., the upper limit temperature is preferably set to the upper limit of the boiling range of the specific hydrocarbon component.
  • the content of the specific hydrocarbon component is set within a predetermined range (target range). Control the reaction conditions of the wax fraction hydrocracking process and control this process. Specifically, for example, as described above, the content of the specific hydrocarbon component is preferably in the range of 20 to 90% by mass, more preferably 30 to 80% by mass, and further preferably 45 to 70% by mass. If so, it is judged that the wax fraction hydrocracking process is well controlled and the degree of progress of hydrocracking is properly maintained.
  • the content of the specific hydrocarbon component is less than the lower limit of this range or exceeds the upper limit of this range, it is determined that the degree of wax fraction hydrocracking is not appropriate.
  • reaction conditions such as reaction temperature (catalyst bed weight average temperature), hydrogen partial pressure, liquid space velocity (LHSV), and hydrogen gas / oil ratio in the wax fraction hydrocracking process are appropriately changed.
  • the wax fraction hydrocracking step is controlled by adjusting the content of the specific hydrocarbon component to be within the predetermined range. For example, when controlling the operation by changing the reaction temperature, if the content (estimated value) of a specific hydrocarbon component is less than the lower limit of the above range, the reaction temperature is increased and the upper limit of the above range is exceeded. If so, perform an operation to lower the reaction temperature.
  • a relational expression between the flow rate ratio (x) and the specific hydrocarbon component content (y) is prepared in advance, and by using this relational expression, the wax fraction hydrocracking is performed.
  • the content of specific hydrocarbon components in the hydrocracking products of the process can be estimated easily and quickly. Based on this, the degree of progress of wax fraction hydrocracking can be controlled appropriately in near real time. It becomes possible to do.
  • the flow rate ratio between the heavy oil component and the light oil component is represented by the formula (1) “the ratio of the flow rate of the light oil component to the total flow rate of the heavy oil component and the light oil component (% ) "And a relational expression between this and the content of a specific hydrocarbon component is obtained in advance.
  • the flow rate ratio between the heavy oil component and the light oil component for example, the flow rate ratio (%) of the heavy oil component represented by the formula (2) may be adopted, or the following formula (3) and You may employ
  • each flow rate may be expressed by a mass flow rate.
  • Ratio of volume flow rate of heavy oil component (%) F H ⁇ 100 / (F H + F L ) ... (2)
  • Ratio of light oil component to heavy oil component F L / F H (3)
  • Ratio of heavy oil component to light oil component F H / F L (4)
  • the multistage gas-liquid separator one having two stages of the first gas-liquid separator 56 and the second gas-liquid separator 57 is shown.
  • a third gas-liquid separator may be provided downstream. In that case, only the liquid component obtained from the most upstream gas-liquid separator (first gas-liquid separator 56) is used as the heavy oil component, and the gas-liquid separator (second gas-liquid separation) on the rear side of the heavy oil component.
  • the liquid flow rate obtained from the gas-liquid separator after the vessel 57) may be all light components and the flow rate ratios thereof may be obtained.
  • liquid fuel synthesis system 1 which comprises the plant which converts the natural gas as a hydrocarbon raw material into a liquid fuel base material was described, this invention is applied only when using natural gas as a raw material.
  • the present invention is also applied to a case where hydrocarbons such as asphalt and residual oil are used as a raw material.
  • hydrocarbon oil used in a liquid fuel substrate or the like from a hydrocarbon synthesized by FT synthesis reaction by contact of a raw material gas containing at least carbon monoxide gas and hydrogen gas and a catalyst slurry. It can be applied to a system for manufacturing.
  • the hydrocarbon oil in the method for producing hydrocarbon oil of the present invention refers to the hydrocracked product of the wax fraction produced by the hydrocracking method of the present invention, and the naphtha obtained by fractionating the cracked product.
  • a hydrocarbon oil containing a kerosene fraction and a light oil fraction obtained by further fractionating a fraction, a middle fraction, or a middle fraction, or a mixture of these fractions.
  • the present invention includes a wax fraction hydrocracking step for hydrocracking a wax fraction contained in a liquid hydrocarbon synthesized by an FT synthesis reaction to obtain a hydrocracked product, and a multistage gas-liquid separator, A gas-liquid separation step for separating the hydrocracked product into a gas component, a heavy oil component, and a light oil component, and determining a flow rate ratio between the heavy oil component and the light oil component, from the flow rate ratio, The specific component amount estimation step for obtaining an estimated value of the content of the specific hydrocarbon component contained in the hydrocracking product, and the content of the specific hydrocarbon component is within a predetermined range based on the estimated value
  • the present invention relates to a hydrocracking method comprising a control step for controlling the operation of the wax fraction hydrocracking step, and a method for producing a hydrocarbon oil using the hydrocracking method. According to the present invention, a middle distillate can be stably obtained in a high yield from a liquid hydrocarbon obtained by an FT synthesis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

 この水素化分解方法は、フィッシャー・トロプシュ合成油に含まれるワックス留分を水素化分解し、水素化分解生成物を得るワックス留分水素化分解工程と、多段の気液分離器により、前記水素化分解生成物を気体成分と重質油成分と軽質油成分とに分離する気液分離工程と、前記重質油成分と前記軽質油成分との流量比率を求め、該流量比率から、前記水素化分解生成物中に含まれる、特定の炭化水素成分の含有量の推算値を求める特定成分量推算工程と、前記推算値に基づいて、特定の炭化水素成分の含有量が所定の範囲となるように、前記ワックス留分水素化分解工程の運転を制御する制御工程とを備える。

Description

水素化分解方法、および炭化水素油の製造方法
 本発明は、フィッシャー・トロプシュ合成反応により製造された合成油に含まれるワックス留分を水素化分解する水素化分解方法、および炭化水素油の製造方法に関する。
 本願は、2009年9月16日に出願された特願2009-214907号について優先権を主張し、その内容をここに援用する。
 近年、環境負荷低減の観点から、硫黄分および芳香族炭化水素の含有量が低く、環境にやさしいクリーンな液体燃料が求められている。このような観点から、硫黄分および芳香族炭化水素を含まず、脂肪族炭化水素に富む燃料油基材、特に灯油・軽油基材を製造できる技術として、一酸化炭素ガスと水素ガスを含むガスを原料としたフィッシャー・トロプシュ合成反応(以下、「FT合成反応」という場合もある)を利用する方法が検討されている(例えば特許文献1参照)。
 FT合成反応によって得られる液体炭化水素(粗油)は、広い炭素数分布を有する脂肪族炭化水素類を主成分とする混合物である。この液体炭化水素からは、沸点が約150℃よりも低い成分を多く含むナフサ留分と、沸点が約150~約360℃の成分を多く含む中間留分と、中間留分よりも重質な(沸点が約360℃を超える)炭化水素成分を含むワックス留分(以下、「FTワックス留分」という場合もある)とを得ることができる。そして、これら各留分のうち中間留分は、灯油・軽油基材に相当する最も有用な留分であり、これを高い収率で得ることが望まれる。そのため、液体炭化水素から燃料油基材を得るためのアップグレーディング工程においては、FT合成反応工程において中間留分とともに相当量併産されるFTワックス留分を、水素化分解により低分子量化して中間留分に相当する成分へと転換し、全体としての中間留分の収率を高めることが行われている。
 具体的には、液体炭化水素から分留により得られるFTワックス留分は、ワックス留分水素化分解工程において水素化分解された後、気液分離工程において気液分離され、得られた液体成分は、液体炭化水素から予め分留され別途水素化精製された中間留分とともに後段の精留塔へと送られ、そこで分留され、灯油・軽油基材となる。
特開2004-323626号公報
 しかしながら、ワックス留分水素化分解工程において、水素化分解が過度に進行すると、得られる水素化分解生成物は中間留分に相当する成分にとどまらず、さらに軽質化し、目的とする中間留分の収率が低下する。一方、水素化分解の進行が不十分である場合にも、中間留分の収率が十分に向上しないという問題がある。
 そこで、ワックス留分水素化分解工程における水素化分解の進行の度合いを把握し、これを適切に制御して、高い収率で中間留分を得ることが求められる。
 そのため、従来は、ワックス留分水素化分解工程において生成した水素化分解生成物をサンプリングして蒸留ガスクロマトグラフィー法により分析し、該水素化分解生成物に含まれる特定の炭化水素成分の含有量を求め、その含有量を指標として、水素化分解の進行の度合いが適切かどうかを判断している。
 具体的には、前記水素化分解生成物中に含まれる、沸点が25℃以上、360℃以下の炭化水素成分を特定の炭化水素成分とし、沸点が25℃以上の全水素化分解生成物の質量を基準とした該特定の炭化水素成分の含有量(質量%)を求め、この含有量が所定の範囲にあれば、水素化分解の進行の度合いが適切に維持されているものと判断する。一方、特定の炭化水素成分の含有量が所定の範囲外にあれば、ワックス留分水素化分解工程の条件、すなわち、水素化分解装置の運転条件を適宜変更して、特定の炭化水素成分の含有量が所定の範囲内となるように調整することで、水素化分解の進行の度合いを制御する。
 ところが、広い炭素数分布を有するFTワックス留分の水素化分解生成物を、蒸留ガスクロマトグラフィー法により分析する場合、1回の分析に長時間を要し、1台の分析装置において可能な分析の頻度は最大1時間30分に1回程度である。よって、このような従来の方法によれば、「リアルタイム」で水素化分解の進行の度合いを把握し、これに基づいて迅速且つ適切に運転の制御を行うことは困難であった。
 なお、本願明細書においては、「水素化分解生成物」とは、特に断らない限り、ワックス留分水素化分解工程からの流出物全体をいい、その中には水素化分解により所定の分子量以下まで低下した炭化水素成分だけでなく、水素化分解が十分に進行しない、所謂「未分解ワックス」も含まれる。
 本発明は上記事情に鑑みてなされたもので、ワックス留分水素化分解工程の水素化分解生成物中の特定の炭化水素成分の含有量を速やかに求め、それに基づき、水素化分解の進行の度合いを迅速かつ適切に制御できる水素化分解方法、並びに炭化水素油の製造方法の提供を課題とする。
 本発明者は、ワックス留分の水素化分解生成物を気液分離する気液分離器を多段に構成することにより、前記水素化分解生成物から液体成分として重質油成分と軽質油成分とを得て、更に前記重質油成分と軽質油成分との生成比率に着目した。そして、この生成比率と、上述した水素化分解生成物中の特定の炭化水素成分の含有量とについて検討したところ、これらの間には相関関係があることを見出し、本発明を完成するに至った。
 すなわち、本発明の水素化分解方法は、フィッシャー・トロプシュ合成反応によって合成される液体炭化水素に含まれるワックス留分を水素化分解し、水素化分解生成物を得るワックス留分水素化分解工程と、多段の気液分離器により、前記水素化分解生成物を気体成分と重質油成分と軽質油成分とに分離する気液分離工程と、前記重質油成分と前記軽質油成分との流量比率を求め、該流量比率から、前記水素化分解生成物中に含まれる、特定の炭化水素成分の含有量の推算値を求める特定成分量推算工程と、前記推算値に基づいて、特定の炭化水素成分の含有量が所定の範囲となるように、前記ワックス留分水素化分解工程の運転を制御する制御工程とを備える。
 本発明の炭化水素油の製造方法は、一酸化炭素ガスと水素ガスとを含む原料ガスから、フィッシャー・トロプシュ合成反応により液体炭化水素を合成する液体炭化水素合成工程と、前記液体炭化水素合成工程にて合成された液体炭化水素に含まれるワックス留分を水素化分解し、水素化分解生成物を得るワックス留分水素化分解工程と、多段の気液分離器により、前記水素化分解生成物を気体成分と重質油成分と軽質油成分とに分離する気液分離工程と、前記重質油成分と前記軽質油成分との流量比率を求め、該流量比率から、前記水素化分解生成物中に含まれる、特定の炭化水素成分の含有量の推算値を求める特定成分量推算工程と、前記推算値に基づいて、特定の炭化水素成分の含有量が所定の範囲となるように、前記ワックス留分水素化分解工程の運転を制御する制御工程とを備える。
 前記特定の炭化水素成分は、25~360℃の範囲に沸点を有する炭化水素成分であってもよい。
 また、前記多段の気液分離器は、第一気液分離器と、該第一気液分離器において分離された気体成分を冷却してその少なくとも一部を液化する冷却装置と、前記冷却装置からの流出物を気液分離する第二気液分離器とを備え、前記重質油成分は、第一気液分離器から得られる液体成分であり、前記軽質油成分は、第二気液分離器から得られる液体成分であってもよい。
 本発明によれば、ワックス留分水素化分解工程の水素化分解生成物中の特定の炭化水素成分の含有量を速やかに求めることができ、これに基づき、水素化分解の進行の度合いを迅速且つ適切に制御することが可能となり、FT合成反応によって得られる液体炭化水素から中間留分を安定して高い収率で得ることができる。
液体燃料合成システムの概略図である。 アップグレーディングユニットを具体的に示す図である。 重質油成分と軽質油成分との流量比率と、特定の炭化水素成分の水素化分解生成物中の含有量との関係を示すグラフである。
 以下、本発明を詳細に説明する。
 図1に、天然ガス等の炭化水素原料を液体燃料に転換するGTLプロセスを実行する液体燃料合成システム1を示す。この液体燃料合成システム1は、合成ガス製造ユニット3と、FT合成ユニット5と、アップグレーディングユニット7とから構成される。
 合成ガス製造ユニット3は、炭化水素原料である天然ガスを改質して一酸化炭素ガスと水素ガスを含む合成ガス(原料ガス)を製造する。
 FT合成ユニット5は、製造された合成ガスからフィッシャー・トロプシュ合成反応(以下、「FT合成反応」という)により液体炭化水素を合成する。
 アップグレーディングユニット7は、FT合成反応により合成された液体炭化水素を水素化・分留して液体燃料(ナフサ、灯油、軽油、ワックス等)の基材を製造する。以下、これら各ユニットの構成要素について説明する。
 合成ガス製造ユニット3は、脱硫反応器10と、改質器12と、排熱ボイラー14と、気液分離器16,18と、脱炭酸装置20と、水素分離器26とを主に備える。
 脱硫反応器10は、水素化脱硫装置等で構成され、原料である天然ガスから硫黄成分を除去する。
 改質器12は、脱硫反応器10から供給された天然ガスを改質して、一酸化炭素ガス(CO)と水素ガス(H)とを主成分として含む合成ガスを製造する。
 排熱ボイラー14は、改質器12にて生成した合成ガスの排熱を回収して高圧スチームを発生する。
 気液分離器16は、排熱ボイラー14において合成ガスとの熱交換により加熱された水を気体(高圧スチーム)と液体とに分離する。
 気液分離器18は、排熱ボイラー14にて冷却された合成ガスから凝縮分を除去し気体分を脱炭酸装置20に供給する。
 脱炭酸装置20は、気液分離器18から供給された合成ガスから吸収溶剤を用いて炭酸ガスを除去する吸収塔22と、当該炭酸ガスを含む吸収溶剤から炭酸ガスを放散させて吸収液を再生する再生塔24とを有する。
 水素分離器26は、脱炭酸装置20により炭酸ガスが分離された合成ガスから、当該合成ガスに含まれる水素ガスの一部を分離する。
 FT合成ユニット5は、例えば、気泡塔型反応器(気泡塔型炭化水素合成反応器)30と、気液分離器34と、分離器36と、第1精留塔40とを主に備える。
 気泡塔型反応器30は、合成ガスから液体炭化水素を合成する反応器の一例であり、FT合成反応により合成ガスから液体炭化水素を合成する反応器として機能する。この気泡塔型反応器30は、例えば、塔型の容器内部に、液体炭化水素(FT合成反応の生成物)中に固体の触媒粒子を懸濁させた触媒スラリーが収容された気泡塔型スラリー床式反応器で構成される。この気泡塔型反応器30は、上記合成ガス製造ユニット3において製造された合成ガス中の一酸化炭素ガスと水素ガスとを反応させて液体炭化水素を合成する。
 気液分離器34は、気泡塔型反応器30内に配設された伝熱管32内を流通して加熱された水を、水蒸気(中圧スチーム)と液体とに分離する。
 分離器36は、気泡塔型反応器30の内部に収容された触媒スラリー中の触媒粒子と液体炭化水素とを分離する。
 第1精留塔40は、気泡塔型反応器30から分離器36、気液分離器38を介して供給された液体炭化水素を各留分に分留する。
 アップグレーディングユニット7は、例えば、ワックス留分水素化分解装置50と、中間留分水素化精製装置52と、ナフサ留分水素化精製装置54と、気液分離器56,58,60と、第2精留塔70と、ナフサスタビライザー72とを備える。
 ワックス留分水素化分解装置50は、第1精留塔40の塔底に接続されており、その下流に気液分離器56が設けられている。
 中間留分水素化精製装置52は、第1精留塔40の中央部に接続されており、その下流に気液分離器58が設けられている。
 ナフサ留分水素化精製装置54は、第1精留塔40の塔頂に接続されており、その下流に気液分離器60が設けられている。
 第2精留塔70は、気液分離器56,58から供給された液体炭化水素を沸点に応じて分留する。
ナフサスタビライザー72は、気液分離器60及び第2精留塔70から供給されたナフサ留分の液体炭化水素を更に分留して、軽質成分はオフガスとして排出し、重質成分は製品のナフサとして分離・回収する。
 次に、以上のような構成の液体燃料合成システム1により、天然ガスから液体燃料基材を製造する工程(GTLプロセス)について説明する。
 液体燃料合成システム1には、天然ガス田または天然ガスプラントなどの外部の天然ガス供給源(図示せず)から、炭化水素原料としての天然ガス(主成分がCH)が供給される。上記合成ガス生成ユニット3は、この天然ガスを改質して合成ガス(一酸化炭素ガスと水素ガスを主成分とする混合ガス)を製造する。
 まず、上記天然ガスは、水素分離器26によって分離された水素ガスとともに脱硫反応器10に供給される。脱硫反応器10は、当該水素ガスを用いて天然ガスに含まれる硫黄分を公知の水素化脱硫触媒の作用によって硫化水素に転換し、生成した硫化水素を例えばZnOなどの吸着材に吸着させる。これにより、天然ガスから硫黄分を除去する。
 脱硫された天然ガスは、二酸化炭素供給源(図示せず)から供給される二酸化炭素ガス(CO)と、排熱ボイラー14で発生した水蒸気とが混合された後で、改質器12に供給される。改質器12は、水蒸気・炭酸ガス改質法により、二酸化炭素と水蒸気とを用いて天然ガスを改質して、一酸化炭素ガスと水素ガスとを主成分とする高温の合成ガスを製造する。
 このようにして改質器12で生成された高温の合成ガス(例えば、900℃、2.0MPaG)は、排熱ボイラー14に供給され、排熱ボイラー14内を流通する水との熱交換により冷却(例えば400℃)されて、排熱回収される。
 排熱ボイラー14において冷却された合成ガスは、凝縮液分が気液分離器18において分離・除去された後、脱炭酸装置20の吸収塔22、又は気泡塔型反応器30に供給される。吸収塔22において炭酸ガスが吸収剤に吸収され、再生塔24において炭酸ガスを吸収した吸収剤から炭酸ガスが放出される。なお、放出された炭酸ガスは、再生塔24から改質器12に送られて、上記改質反応に再利用される。
 このようにして、合成ガス製造ユニット3において製造された合成ガスは、上記FT合成ユニット5の気泡塔型反応器30に供給される。このとき、気泡塔型反応器30に供給される合成ガスの組成比は、FT合成反応に適した組成比(例えば、H:CO=2:1(モル比))に調整されている。
 また、水素分離器26は、圧力差を利用した吸着、脱着(水素PSA)により、合成ガスに含まれる水素ガスを分離する。当該分離された水素ガスは、不図示のガスホルダー等から不図示の圧縮機を介して、液体燃料合成システム1内において水素ガスを利用して所定の反応を行う各種の水素利用反応装置(例えば、脱硫反応器10、ワックス留分水素化分解装置50、中間留分水素化精製装置52、ナフサ留分水素化精製装置54など)に、連続して供給される。
 次いで、上記FT合成ユニット5は、上記合成ガス製造ユニット3において製造された合成ガスから、FT合成反応により、液体炭化水素を合成する。
 上記合成ガス製造ユニット3において製造された合成ガスは、気泡塔型反応器30の底部から流入して、気泡塔型反応器30内に収容された触媒スラリー内を上昇する。この際、気泡塔型反応器30内では、上述したFT合成反応により、当該合成ガスに含まれる一酸化炭素ガスと水素ガスとが反応して、炭化水素が生成する。
 気泡塔型反応器30で合成された液体炭化水素は、触媒スラリーとして触媒粒子ともに分離器36に導入される。
 分離器36は、触媒スラリーを触媒粒子等の固形分と液体炭化水素を含んだ液体分とに分離する。分離された触媒粒子等の固形分は、その一部が気泡塔型反応器30に戻され、液体分は第1精留塔40に供給される。
 また、気泡塔型反応器30の塔頂からは、未反応の合成ガス及び生成した気泡塔型反応器30内の条件においてガス状の炭化水素を含む気体生成物が排出され、気液分離器38に供給される。気液分離器38は、これらの気体生成物を冷却して、凝縮した液体炭化水素を分離して第1精留塔40に導入する。気液分離器38で分離されたガス分は、未反応の合成ガス(COとH)、炭素数4以下の炭化水素ガスを主成分としており、その一部は気泡塔型反応器30の底部に再投入されて、その中に含まれる未反応の合成ガスはFT合成反応に再利用される。また、気泡塔型反応器30に再投入されなかったガス分は、オフガスとして排出され、燃料ガスとして使用されたり、LPG(液化石油ガス)相当の燃料が回収されたり、合成ガス製造ユニットの改質器12の原料として再利用されたりする。
 次いで、第1精留塔40は、上記のようにして気泡塔型反応器30から分離器36、気液分離器38を介して供給された液体炭化水素をナフサ留分(沸点が約150℃より低い)と、灯油・軽油に相当する中間留分(沸点が約150~360℃)と、ワックス留分(沸点が約360℃を超える)とに分留する。
 次いで、上記アップグレーディングユニット7は、上記FT合成ユニット5において合成された液体炭化水素を水素化処理して液体燃料(ナフサ、灯油、軽油、ワックス等)の基材を製造する。
 この第1精留塔40の底部から取り出されるワックス留分の液体炭化水素(主としてC21以上)は、ワックス留分水素化分解装置50に移送され、第1精留塔40の中央部から取り出される中間留分の液体炭化水素(主としてC11~C20)は、中間留分水素化精製装置52に移送され、第1精留塔40の塔頂から取り出されるナフサ留分の液体炭化水素(主としてC~C10)は、ナフサ留分水素化精製装置54に移送される。
 ワックス留分水素化分解装置50は、第1精留塔40の塔底から抜き出されたワックス分の液体炭化水素(概ねC21以上)を、上記水素分離器26から供給された水素ガスを利用して水素化分解して、炭素数を概ね20以下に低減する。この水素化分解反応では、触媒と熱を利用して、炭素数の多い炭化水素のC-C結合を切断して、炭素数の少ない炭化水素を生成する。このワックス留分水素化分解装置50において水素化分解された液体炭化水素を含む生成物は、多段に設置された気液分離器56、57で気体と液体とに段階的に分離され、そのうち液体炭化水素は、第2精留塔70に移送され、気体分(水素ガスを含む)は、中間留分水素化精製装置52及びナフサ留分水素化精製装置54に移送される。
 中間留分水素化精製装置52は、第1精留塔40の中央部から抜き出された炭素数が中程度である中間留分の液体炭化水素(概ねC11~C20)を、水素分離器26からワックス留分水素化分解装置50を介して供給された水素ガスを用いて、水素化精製する。この水素化精製においては、FT合成反応により副生するオレフィンの水素化、アルコール等の含酸素化合物の水素化脱酸素によるパラフィンへの転換、及びノルマルパラフィンのイソパラフィンへの水素化異性化が進行する。
 水素化精製された液体炭化水素を含む生成物は、気液分離器58で気体と液体に分離され、そのうち液体炭化水素は、第2精留塔70に移送され、気体分(水素ガスを含む)は、上記水素化反応に再利用される。
 ナフサ留分水素化精製装置54は、第1精留塔40の塔頂から抜き出された炭素数が少ないナフサ留分の液体炭化水素(概ねC10以下)を、水素分離器26からワックス留分水素化分解装置50を介して供給された水素ガスを用いて、水素化精製する。水素化精製された液体炭化水素を含む生成物は、気液分離器60で気体と液体に分離され、そのうち液体炭化水素は、ナフサスタビライザー72に移送され、気体分(水素ガスを含む)は、上記水素化反応に再利用される。
 次いで、第2精留塔70は、上記のようにしてワックス留分水素化分解装置50及び中間留分水素化精製装置52から供給された液体炭化水素を、C10以下の炭化水素(沸点が約150℃より低い)と、灯油留分(沸点が約150~250℃)と、軽油留分(沸点が約250~360℃)及びワックス留分水素化分解装置50において十分に水素化分解されなかった未分解ワックス留分(沸点が約360℃を超える)とに分留する。第2精留塔70の塔底からは主として未分解ワックス留分が得られ、これはワックス留分水素化分解装置50の上流にリサイクルされる。第2精留塔70の中央部からは灯油留分及び軽油留分が取り出される。一方、第2精留塔70の塔頂からは、C10以下の炭化水素が取り出されて、ナフサスタビライザー72に供給される。
 さらに、ナフサスタビライザー72では、上記ナフサ留分水素化精製装置54及び第2精留塔70から供給されたC10以下の炭化水素を分留して、製品としてのナフサ(C~C10)を得る。これにより、ナフサスタビライザー72の塔底からは、高純度のナフサが取り出される。一方、ナフサスタビライザー72の塔頂からは、製品対象外である炭素数が概ね4以下の炭化水素を主成分とするオフガスが排出される。このオフガスは、燃料ガスとして使用されたり、LPG相当の燃料が回収されたりする。
 図2は、アップグレーディングユニット7を示す図である。
 アップグレーディングユニット7において液体燃料基材製造の原料に使用する液体炭化水素としては、FT合成法により合成されるものであれば特に限定されないが、中間留分の収率を高めるとの観点から、沸点約150℃以上の炭化水素を、FT合成反応によって得られる液体炭化水素全体の質量を基準として80質量%以上含むことが好ましい。
 また、公知のFT合成反応方法により製造される液体炭化水素は、広い炭素数分布を有する脂肪族炭化水素を主成分とする混合物であるが、これを予め適宜分留することにより得られる留分であってもよい。
 ナフサ留分は、第1精留塔40において約150℃より低い温度で留出する成分であり、中間留分は、第1精留塔40において約150℃以上約360℃以下の温度で留出する成分であり、ワックス留分は、第1精留塔40において約360℃で留出せず、塔底から抜き出される成分である。
 なお、ここでは、好ましい形態として、第1精留塔40において2つのカットポイント(すなわち、約150℃および約360℃)を設定して、3つの留分に分留する例を示しているが、例えば1つのカットポイントを設定して、そのカットポイント以下の留分を中間留分としてラインL1から中間留分水素化精製装置52に導入し、そのカットポイントを超える留分をワックス留分としてラインL2から抜き出してもよい。
 ナフサ留分水素化精製装置54においては、ナフサ留分は公知の方法によって水素化精製され、ナフサ留分に含まれるオレフィンは飽和炭化水素に変換され、またアルコール類などの含酸素化合物はパラフィン炭化水素と水とに変換される。
 中間留分水素化精製装置52においては、公知の方法により、前記ナフサ留分水素化精製装置54と同様に、中間留分に含まれるオレフィンおよび含酸素化合物はパラフィン炭化水素に変換される。また同時に、生成油の燃料油基材としての低温特性(低温流動性)を向上する目的で、中間留分に含まれるノルマルパラフィンの少なくとも一部が水素化異性化されてイソパラフィンに転換される。
 ワックス留分水素化分解装置50においては、水素化分解触媒を用いた公知の方法により、ワックス留分が水素化分解されて、中間留分に相当する成分へと転換される。この際、ワックス留分に含まれるオレフィンやアルコール類などの含酸素化合物はパラフィン炭化水素に転換される。また、同時に、生成油の燃料油基材としての低温特性(低温流動性)の向上に寄与するノルマルパラフィンの水素化異性化によるイソパラフィンの生成も進行する。
 一方、ワックス留分の一部は過度に水素化分解を受け、目的とする中間留分に相当する沸点範囲の炭化水素よりもさらに低沸点のナフサ留分に相当する炭化水素に転換される。また、その一部については水素化分解が更に進行し、ブタン類、プロパン、エタン、メタンなどの炭素数4以下のガス状炭化水素へと転換される。
 図2のアップグレーディングユニット7は、ナフサ留分水素化精製装置54の下流に、気液分離器60と、ナフサスタビライザー72と、ナフサタンク80とを備えている。ナフサスタビライザー72は、ナフサ留分水素化精製装置54を経たナフサ留分から、炭素数4以下の炭化水素を主成分とするガス状炭化水素を、その塔頂に接続されたラインL3から排出する。ナフサ留分水素化精製装置54を経たナフサ留分は、ラインL4を通じて気液分離器60に供給される。気液分離器60において水素ガスを分離されたナフサ留分は、ラインL13を通じてナフサスタビライザー72に供給される。気液分離器60においてナフサ留分から分離された水素ガスは、ラインL22、L14を通じてワックス留分水素化分解装置50に供給される。ナフサスタビライザー72においてガス状炭化水素が除去されたナフサ留分は、ラインL5を通じてナフサタンク80に導入され、貯留される。
 また、中間留分水素化精製装置52およびワックス留分水素化分解装置50の下流には、中間留分水素化精製装置52からの流出油とワックス留分水素化分解装置50からの水素化分解生成物とが供給され、これらの混合物を分留する第2精留塔70が設置される。更に、第2精留塔70で分留された中間留分を貯留する中間留分タンク90が設置される。ここで中間留分水素化精製装置52の流出油は、ラインL6を通じて気液分離器58に供給される。気液分離器58において水素ガスを分離された中間留分は、ラインL21を通じて第2精留塔70に供給される。ワックス留分水素化分解装置50からの流出油(水素化分解生成物)も、ラインL19およびラインL7を通じて第2精留塔70に供給される。気液分離器58において中間留分と分離された水素ガスは、ラインL20、L22、L14を通じてワックス留分水素化分解装置50に供給される。第2精留塔70に供給される中間留分水素化精製装置52の流出油と、ワックス留分水素化分解装置50の流出油(水素化分解生成物)とは、ラインブレンドで混合されてもタンクブレンドで混合されてもよく、その混合方法は特に限定されない。
 また、この例では、第2精留塔70において中間留分を単一の留分として得、これをラインL8を通じて中間留分タンク90に導入し貯留するが、これを適宜複数の留分、例えば、灯油留分と軽油留分の2つの留分として分留し、複数のタンクにそれぞれの留分を導入し、貯留してもよい。
 また、このアップグレーディングユニット7においては、ナフサ留分水素化精製装置54において水素化精製されたナフサ留分の一部は、ラインL9を通じてナフサ留分水素化精製装置54の上流のラインL10にリサイクルされる。ナフサ留分の水素化精製は大きな発熱を伴う反応であり、未精製のナフサ留分のみを水素化精製する場合には、ナフサ留分水素化精製装置54において、ナフサ留分の温度が過度に上昇する虞がある。そこで、前記水素化精製後のナフサ留分の一部をリサイクルすることにより未精製のナフサ留分を希釈し、前記過度の温度上昇を防止するものである。
 第2精留塔70の塔底油は、未分解のワックス留分、すなわち、ワックス留分水素化分解工程において十分に分解されなかったワックス留分を主成分とする。前記塔底油はラインL11を通じてワックス留分水素化分解装置50の上流のラインL2へリサイクルされ、ワックス留分水素化分解装置50に供給されて再び水素化分解を受ける。これにより、中間留分収率を向上させることができる。
 一方、第2精留塔70の塔頂から排出される軽質留分は、ラインL12を介してラインL13へ送られ、ナフサスタビライザー72に供給される。
 次に、ワックス留分水素化分解装置50の周辺を詳細に示す図を図2に示し、図2を参照しながら、ワックス留分の水素化分解方法について説明する。
 この例のワックス留分水素化分解装置50は、固定床流通式反応塔を備え、前記反応塔には、詳しくは後述するような水素化分解触媒が充填される。そして、ラインL2にはFTワックス留分が、ラインL2に接続されるラインL14には水素ガスが導入され、これらが混合されてワックス留分水素化分解装置50に供給され、ワックス留分が水素化分解される。
 また、ワックス留分水素化分解装置50の下流には、詳しくは後述する気液分離器が多段に設けられている。
 以下、ワックス留分の水素化分解方法の各工程について具体的に説明する。
(ワックス留分水素化分解工程)
 ワックス留分水素化分解工程においては、図2に示すように、ラインL2を通じて導入されたFTワックス留分はワックス留分水素化分解装置50において水素化分解され、水素化分解生成物が得られる。
 ワックス留分水素化分解工程において使用される水素化分解触媒としては、例えば、固体酸を含む担体に、活性金属として周期表第8~10族に属する金属を担持したものが挙げられる。なおここで、周期表とは、国際純粋応用化学連合(IUPAC(International Union of Pure and Applied Chemistry))により規定される長周期型の元素の周期表をいう。
 好適な担体としては、超安定Y型(USY)ゼオライト、Y型ゼオライト、モルデナイトおよびβゼオライトなどの結晶性ゼオライト、ならびに、シリカアルミナ、シリカジルコニア、およびアルミナボリアなどの耐熱性を有する無定形複合金属酸化物の中から選ばれる1種類以上の固体酸を含むものが挙げられる。さらに、担体は、USYゼオライトと、シリカアルミナ、アルミナボリアおよびシリカジルコニアの中から選ばれる1種以上の固体酸とを含むものがより好ましく、USYゼオライトと、アルミナボリアおよび/またはシリカアルミナとを含むものがさらに好ましい。
 USYゼオライトは、Y型ゼオライトを水熱処理および/または酸処理により超安定化したものであり、Y型ゼオライトが本来有する細孔径が2nm以下のミクロ細孔と呼ばれる微細細孔構造に加え、2~10nmの範囲に細孔径を有する新たな細孔が形成されている。USYゼオライトの平均粒子径に特に制限はないが、好ましくは1.0μm以下、より好ましくは0.5μm以下である。また、USYゼオライトにおいて、シリカ/アルミナのモル比(アルミナに対するシリカのモル比)は10~200であることが好ましく、15~100であることがより好ましく、20~60であることがさらに好ましい。
 また、担体は、結晶性ゼオライト0.1~80質量%と、耐熱性を有する無定形複合金属酸化物0.1~60質量%とを含むものであることが好ましい。
 担体は、上記固体酸とバインダーとを含む担体組成物を成形した後、焼成することにより製造できる。固体酸の配合割合は、担体全量を基準として1~70質量%であることが好ましく、2~60質量%であることがより好ましい。また、担体がUSYゼオライトを含む場合、USYゼオライトの配合割合は、担体全体の質量を基準として0.1~10質量%であることが好ましく、0.5~5質量%であることがより好ましい。さらに、担体がUSYゼオライトおよびアルミナボリアを含む場合、USYゼオライトとアルミナボリアの配合比(USYゼオライト/アルミナボリア)は、質量比で0.03~1であることが好ましい。また、担体がUSYゼオライトおよびシリカアルミナを含む場合、USYゼオライトとシリカアルミナとの配合比(USYゼオライト/シリカアルミナ)は、質量比で0.03~1であることが好ましい。
 バインダーとしては、特に制限はないが、アルミナ、シリカ、チタニア、マグネシアが好ましく、アルミナがより好ましい。バインダーの配合量は、担体全体の質量を基準として20~98質量%であることが好ましく、30~96質量%であることがより好ましい。
 前記担体組成物の焼成温度は、400~550℃の範囲内にあることが好ましく、470~530℃の範囲内であることがより好ましく、490~530℃の範囲内であることがさらに好ましい。
 周期表第8~10族の金属としては、具体的にはコバルト、ニッケル、ロジウム、パラジウム、イリジウム、白金などが挙げられる。これらのうち、ニッケル、パラジウムおよび白金の中から選ばれる金属を1種単独または2種以上組み合わせて用いることが好ましい。これらの金属は、含浸やイオン交換などの常法によって上述の担体に担持することができる。担持する金属量には特に制限はないが、金属の合計量が担体質量に対して0.1~3.0質量%であることが好ましい。
 ワックス留分水素化分解工程における水素分圧としては、例えば0.5~12MPaであり、1.0~5.0MPaが好ましい。
 液空間速度(LHSV)としては、例えば0.1~10.0h-1であり、0.3~3.5h-1が好ましい。水素ガスとワックス留分との比(水素ガス/油比)は、特に制限はないが、例えば50~1000NL/Lであり、70~800NL/Lが好ましい。
 なお、ここで「LHSV(liquid hourly space velocity;液空間速度)」とは、固定床流通式反応塔に充填された触媒からなる層(触媒層)の容量当たりの、標準状態(25℃、101325Pa)におけるワックス留分の体積流量のことであり、単位「h-1」は時間の逆数である。また、水素ガス/油比における水素ガス容量の単位である「NL」は、標準状態(0℃、101325Pa)における水素ガス容量(L)を示す。
 また、ワックス留分水素化分解工程の反応温度(触媒床重量平均温度)としては、180~400℃が例示でき、好ましくは200~370℃、より好ましくは250~350℃、さらに好ましくは280~350℃である。反応温度が400℃を超えると、水素化分解が過度に進行して、目的とする中間留分の収率が低下する傾向にある。また、水素化分解生成物が着色して、燃料基材としての使用が制限される場合もある。一方、反応温度が180℃より低い場合は、ワックス留分の水素化分解が十分に進行せず、中間留分の収率が低下する傾向にある。また、ワックス留分中のアルコール類等の含酸素化合物が十分に除去されない傾向にある。
 なお、反応温度は、ラインL2に設けられた熱交換器(図示略)出口の設定温度を調整することにより制御される。
 このようなワックス留分水素化分解工程においては、水素化分解生成物中に含まれる特定の炭化水素成分、すなわち、沸点が25℃以上360℃以下の炭化水素成分の含有量が、沸点25℃以上の全水素化分解生成物の質量を基準として、好ましくは20~90質量%、より好ましくは30~80質量%、さらに好ましくは45~70質量%となるように、ワックス留分水素化分解装置50を運転することが好ましい。前記特定の炭化水素成分の含有量がこのような範囲内にあれば、水素化分解の進行の度合いが適切であり、中間留分の収率を高めることができる。
(気液分離工程)
 ワックス留分水素化分解工程における水素化分解生成物は、多段に設けられた第一気液分離器56および第二気液分離器57に導入される。ワックス留分水素化分解装置50出口に接続されたラインL15には、水素化分解生成物を冷却するための熱交換器(図示略)が設置されていることが好ましい。この熱交換器により冷却された水素化分解生成物は、第一気液分離器56により気体成分と液体成分とに分離される。第一気液分離器56内の温度は210~260℃程度であることが好ましい。すなわち、第一気液分離器56において分離される液体成分は、前記温度において液体状態となる炭化水素からなる重質油成分であり、未分解のワックス留分を多く含む。前記重質油成分は、第一気液分離器56の底部から、ラインL19およびラインL7を通じて、第2精留塔70に供給される。
 なお、ここで第一気液分離器56から抜き出される重質油成分の1時間当たりの体積流量(L/H)をFとする。
 一方、第一気液分離器56において分離された気体成分は、第一気液分離器56の頂部からラインL16を介して熱交換器(冷却装置)55に導入されて冷却され、その少なくとも一部が液化される。熱交換器55からの流出物は、第二気液分離器57に導入される。第二気液分離器57の入口温度は、熱交換器55による冷却により、90~100℃程度とされる。
 第二気液分離器57においては、気体成分と熱交換器55における冷却により凝縮(液化)した液体成分とが分離される。分離された気体成分は、第二気液分離器57の頂部からラインL17を通じて抜き出される。ラインL17には熱交換器が設置され(図示略)、気体成分は40℃程度に冷却されることが好ましい。これにより、気体成分中の軽質炭化水素の一部は液化して第二気液分離器57に戻る。残った気体成分は、気体状炭化水素を含んだ水素ガスを主成分とし、中間留分水素化精製装置52あるいはナフサ留分水素化精製装置54に供給され、水素化反応用水素ガスとして再利用される。
 一方、第二気液分離器57の底部に接続されたラインL18からは、液体成分が抜き出される。この液体成分は、第一気液分離器56よりも低温である第二気液分離器57において凝縮する、より軽質な炭化水素からなる軽質油成分である。そして、この軽質油成分は、第一気液分離器56からの重質油成分とともに、ラインL7を通じて第2精留塔70に供給される。
 なお、ここで第二気液分離器57から得られる軽質油成分の1時間あたりの体積流量(L/H)をFとする。
 なお、このように気液分離器を多段に設け、段階的に冷却する手法を採用することにより、ワックス留分水素化分解工程の水素化分解生成物中に含まれる凝固点の高い成分(特に未分解のワックス留分)が急冷により固化して、装置閉塞を起こすなどのトラブルを防止することができる。
(特定成分量推算工程)
 ついで、特定の炭化水素成分の含有量の推算値を求める特定成分量推算工程では、まず、第一気液分離器56において得られる重質油成分と、第二気液分離器57から得られる軽質油成分との生成比率を求める。前記生成比率としては、第一気液分離器56および第二気液分離器57のそれぞれから流出する重質油成分および軽質油成分の単位時間あたりの流量比を用いる。流量としては、体積流量、質量流量のいずれであっても構わないが、ここでは体積流量を採用する。
 この例では、第一気液分離器56から得られる重質油成分の1時間あたりの体積流量をF(L/H)とし、第二気液分離器57から得られる軽質油成分の1時間あたりの体積流量をF(L/H)とし、これらの合計流量を基準とした軽質油成分の体積流量の比率(%、下記式(1))を求め、これを「軽質油成分流量比率」(以下、単に「流量比率」という場合もある)とする。
 軽質油成分流量比率(%)=F×100/(F+F ・・・(1)
 本発明者が検討を重ねた結果、前記流量比率と、ワックス留分水素化分解工程の水素化分解生成物中に含まれる特定の炭化水素成分の含有量、すなわち、沸点が25℃以上360℃以下の炭化水素成分の含有量とは、図3に示すような線形の相関関係があることが見出された。
 図3に示すように、(x,y)=(軽質油成分流量比率、沸点25℃以上360℃以下の炭化水素成分の含有量)の実測データを多数採取し、これらをプロットする。そして、これら実測データの線形近似(例えば最小二乗法によるフィッティング)により、流量比率(x)と特定の炭化水素成分の含有量(y)との関係を示す関係式を作成しておく。図3の例では、関係式:y=1.2x+14.8が得られている。
 これにより、ワックス留分水素化分解装置50の運転時に、F(L/H)およびF(L/H)を、例えばラインL19およびラインL18に設置した流量計(図示略)により求め、これらの値から流量比率を計算し、この値を関係式に代入するだけで、図3のグラフの縦軸であるワックス留分水素化分解工程の水素化分解生成物中の特定の炭化水素成分の含有量(推算値)を求めることができる。このような方法によれば、流量比率さえ求まれば、直ちに特定の炭化水素成分の含有量、すなわち水素化分解の進行の度合いを知ることができる。
 なお、上記においては、特定の炭化水素成分を沸点が25℃以上360℃以下の炭化水素成分としたが、特定の炭化水素成分は、当該成分に限定されるものではない。すなわち、この例においては、目的とする中間留分を構成する炭化水素の沸点の上限を360℃と設定しており、そのため特定の炭化水素成分の沸点範囲の上限を360℃とすることが好ましいのである。目的とする中間留分を構成する炭化水素の沸点範囲の上限を360℃以外の温度とする場合には、その上限温度を特定の炭化水素成分の沸点範囲の上限とすることが好ましい。
(制御工程)
 ついで、特定成分量推算工程において推算された前記特定の炭化水素成分の含有量(推算値)に基づいて、該特定の炭化水素成分の含有量が所定の範囲(目標範囲)内となるように、ワックス留分水素化分解工程の反応条件を操作し、この工程を制御する。
 具体的には、例えば先に説明したように、特定の炭化水素成分の含有量が好ましくは20~90質量%、より好ましくは30~80質量%、さらに好ましくは45~70質量%の範囲内であれば、ワックス留分水素化分解工程は良好に制御され、水素化分解の進行の度合いが適切に維持されているものと判断される。一方、特定の炭化水素成分の含有量がこの範囲の下限未満あるいはこの範囲の上限を超える場合には、ワックス留分水素化分解の度合いが適当でないものと判断される。その場合には、例えば、ワックス留分水素化分解工程における反応温度(触媒床重量平均温度)、水素分圧、液空間速度(LHSV)、水素ガス/油比などの反応条件を適宜変更して、特定の炭化水素成分の含有量が上記所定の範囲内となるように調整することで、ワックス留分水素化分解工程を制御する。例えば、反応温度の変更により運転の制御を行おうとする場合、特定の炭化水素成分の含有量(推算値)が上記範囲の下限未満の場合には反応温度を上げ、上記範囲の上限を超えている場合には反応温度を下げる操作を行う。
 このような方法によれば、予め流量比率(x)と特定の炭化水素成分の含有量(y)との関係式を作成しておき、この関係式を用いることにより、ワックス留分水素化分解工程の水素化分解生成物中の特定の炭化水素成分の含有量を容易且つ速やかに推算することができ、これに基づき、ワックス留分水素化分解の進行の度合いをほぼリアルタイムで、適切に制御することが可能となる。
 なお、この例では、重質油成分と軽質油成分の流量比率として、式(1)で示される「重質油成分と軽質油成分との合計の流量に対する軽質油成分の流量の割合(%)」を採用し、これと特定の炭化水素成分の含有量との関係式を予め求めている。しかしながら、重質油成分と軽質油成分の流量比率としては、例えば、式(2)で示される重質油成分の流量の比率(%)を採用してもよいし、下記式(3)および(4)で示される比率を採用してもよい。また前述のように、各流量は質量流量で表したものであってもよい。
 重質油成分の体積流量の比率(%)=F×100/(F+F ・・・(2)
 軽質油成分の重質油成分に対する比率=F/FH ・・・(3)
 重質油成分の軽質油成分に対する比率=F/FL ・・・(4)
 また、この例では、多段の気液分離器として、第一気液分離器56および第二気液分離器57の2段からなるものを示しているが、多段であれば、例えばさらにこれらの下流に、第3の気液分離器を備えていてもよい。その場合には、最も上流の気液分離器(第一気液分離器56)から得られる液体成分のみを重質油成分とし、それよりも後段側の気液分離器(第二気液分離器57以降の気液分離器)から得られる液体成分を全て軽質油成分として、これらの流量比率を求めてもよい。
 以上、本発明の好ましい実施形態を説明したが、本発明は上記の実施形態に限定されることはない。本発明の趣旨を逸脱しない範囲で、構成の付加、省略、置換、およびその他の変更が可能である。本発明は前述した説明によって限定されることはなく、添付のクレームの範囲によってのみ限定される。
 上記実施形態においては、炭化水素原料としての天然ガスを液体燃料基材に転換するプラントを構成する液体燃料合成システム1について述べたが、本発明は天然ガスを原料とする場合のみに適用されるものではなく、例えばアスファルトや残油などの炭化水素を原料とする場合にも適用される。つまり、少なくとも一酸化炭素ガスと水素ガスとを含む原料ガスと触媒スラリーとの接触によるFT合成反応によって炭化水素を合成し、得られた炭化水素から液体燃料基材等に使用される炭化水素油を製造するシステムに適用することができる。
なお、本発明の炭化水素油の製造方法における炭化水素油とは、本発明の水素化分解方法によって生成するワックス留分の水素化分解生成物、該分解生成物を分留して得られるナフサ留分、中間留分、あるいは中間留分を更に分留して得られる灯油留分及び軽油留分、あるいはこれらの留分の混合物を含む炭化水素油をいう。
 本発明は、FT合成反応によって合成された液体炭化水素に含まれるワックス留分を水素化分解し、水素化分解生成物を得るワックス留分水素化分解工程と、多段の気液分離器により、前記水素化分解生成物を気体成分と重質油成分と軽質油成分とに分離する気液分離工程と、前記重質油成分と前記軽質油成分との流量比率を求め、該流量比率から、前記水素化分解生成物中に含まれる、特定の炭化水素成分の含有量の推算値を求める特定成分量推算工程と、前記推算値に基づいて、特定の炭化水素成分の含有量が所定の範囲となるように、前記ワックス留分水素化分解工程の運転を制御する制御工程とを備える水素化分解方法、および該水素化分解方法を利用した炭化水素油の製造方法に関する。
 本発明によれば、FT合成反応によって得られる液体炭化水素から、中間留分を安定して高い収率で得ることができる。
50 ワックス留分水素化分解装置、
55 熱交換器(冷却装置)、
56 第一気液分離器、
57 第二気液分離器

Claims (6)

  1.  フィッシャー・トロプシュ合成反応によって合成された液体炭化水素に含まれるワックス留分を水素化分解し、水素化分解生成物を得るワックス留分水素化分解工程と、
     多段の気液分離器により、前記水素化分解生成物を気体成分と重質油成分と軽質油成分とに分離する気液分離工程と、
     前記重質油成分と前記軽質油成分との流量比率を求め、該流量比率から、前記水素化分解生成物中に含まれる、特定の炭化水素成分の含有量の推算値を求める特定成分量推算工程と、
     前記推算値に基づいて、特定の炭化水素成分の含有量が所定の範囲となるように、前記ワックス留分水素化分解工程の運転を制御する制御工程とを備えるワックス留分の水素化分解方法。
  2.  前記特定の炭化水素成分は、25~360℃の範囲に沸点を有する炭化水素成分である請求項1に記載のワックス留分の水素化分解方法。
  3.  前記多段の気液分離器は、第一気液分離器と、該第一気液分離器において分離された気体成分を冷却してその少なくとも一部を液化する冷却装置と、前記冷却装置からの流出物を気液分離する第二気液分離器とを備え、
     前記重質油成分は、第一気液分離器から得られる液体成分であり、前記軽質油成分は、第二気液分離器から得られる液体成分である請求項1または2に記載のワックス留分の水素化分解方法。
  4.  一酸化炭素ガスと水素ガスとを含む原料ガスから、フィッシャー・トロプシュ合成反応により液体炭化水素を合成する液体炭化水素合成工程と、
     前記液体炭化水素合成工程にて合成された液体炭化水素に含まれるワックス留分を水素化分解し、水素化分解生成物を得るワックス留分水素化分解工程と、
     多段の気液分離器により、前記水素化分解生成物を気体成分と重質油成分と軽質油成分とに分離する気液分離工程と、
     前記重質油成分と前記軽質油成分との流量比率を求め、該流量比率から、前記水素化分解生成物中に含まれる、特定の炭化水素成分の含有量の推算値を求める特定成分量推算工程と、
     前記推算値に基づいて、特定の炭化水素成分の含有量が所定の範囲となるように、前記ワックス留分水素化分解工程の運転を制御する制御工程とを備える炭化水素油の製造方法。
  5.  前記特定の炭化水素成分は、25~360℃の範囲に沸点を有する炭化水素成分である請求項4に記載の炭化水素油の製造方法。
  6.  前記多段の気液分離器は、第一気液分離器と、該第一気液分離器において分離された気体成分を冷却してその少なくとも一部を液化する冷却装置と、前記冷却装置からの流出物を気液分離する第二気液分離器とを備え、
     前記重質油成分は、第一気液分離器から得られる液体成分であり、前記軽質油成分は、第二気液分離器から得られる液体成分である請求項4または5に記載の炭化水素油の製造方法。
PCT/JP2010/065860 2009-09-16 2010-09-14 水素化分解方法、および炭化水素油の製造方法 WO2011034064A1 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
CA2773593A CA2773593C (en) 2009-09-16 2010-09-14 Hydrocracking process and process for producing hydrocarbon oil
EP10817177.8A EP2479243A4 (en) 2009-09-16 2010-09-14 HYDROCRACKING PROCESS AND PROCESS FOR PRODUCING LIQUID HYDROCARBON
BR112012005781A BR112012005781B1 (pt) 2009-09-16 2010-09-14 processo de hidrocraqueamento e processo para produzir óleo de hidrocarboneto
CN201080040837.9A CN102498192B (zh) 2009-09-16 2010-09-14 加氢裂解方法、以及烃油的制造方法
EA201270414A EA021597B1 (ru) 2009-09-16 2010-09-14 Способ гидрокрекинга и способ получения минерального масла
US13/395,264 US8702969B2 (en) 2009-09-16 2010-09-14 Hydrocracking process and process for producing hydrocarbon oil
JP2011531934A JP5502093B2 (ja) 2009-09-16 2010-09-14 水素化分解方法、および炭化水素油の製造方法
AU2010296406A AU2010296406B2 (en) 2009-09-16 2010-09-14 Hydrocracking process and process for producing hydrocarbon oil

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-214907 2009-09-16
JP2009214907 2009-09-16

Publications (1)

Publication Number Publication Date
WO2011034064A1 true WO2011034064A1 (ja) 2011-03-24

Family

ID=43758667

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/065860 WO2011034064A1 (ja) 2009-09-16 2010-09-14 水素化分解方法、および炭化水素油の製造方法

Country Status (9)

Country Link
US (1) US8702969B2 (ja)
EP (1) EP2479243A4 (ja)
JP (1) JP5502093B2 (ja)
CN (1) CN102498192B (ja)
BR (1) BR112012005781B1 (ja)
CA (1) CA2773593C (ja)
EA (1) EA021597B1 (ja)
MY (1) MY160953A (ja)
WO (1) WO2011034064A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106520186B (zh) * 2015-09-09 2018-08-17 中国石化工程建设有限公司 一种重油临氢热裂化方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004323626A (ja) 2003-04-23 2004-11-18 Japan Energy Corp 環境対応燃料油とその製造方法
JP2007520582A (ja) * 2003-06-19 2007-07-26 シェブロン ユー.エス.エー. インコーポレイテッド フィッシャー−トロプシュワックスを包含する含蝋供給原料の水素化処理における層状床触媒、更に溶媒脱蝋を使用する燃料油及び潤滑油
JP2009214907A (ja) 2008-03-10 2009-09-24 Tokyo Automatic Machinery Works Ltd 包装袋及び縦形製袋充填包装機

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3497449A (en) * 1966-05-17 1970-02-24 Mobil Oil Corp Controlling a continuous process by concentration measurements
US7282139B2 (en) * 2004-07-07 2007-10-16 Conocophillips Company Optimization of gas-to-liquids hydrocracker
CN1814703A (zh) * 2005-08-10 2006-08-09 上海兖矿能源科技研发有限公司 一种用费托合成产物生产柴油或柴油组分的方法
CN101177619A (zh) * 2007-04-13 2008-05-14 中科合成油技术有限公司 由费-托合成蜡生产柴油和化工原料的方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004323626A (ja) 2003-04-23 2004-11-18 Japan Energy Corp 環境対応燃料油とその製造方法
JP2007520582A (ja) * 2003-06-19 2007-07-26 シェブロン ユー.エス.エー. インコーポレイテッド フィッシャー−トロプシュワックスを包含する含蝋供給原料の水素化処理における層状床触媒、更に溶媒脱蝋を使用する燃料油及び潤滑油
JP2009214907A (ja) 2008-03-10 2009-09-24 Tokyo Automatic Machinery Works Ltd 包装袋及び縦形製袋充填包装機

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2479243A4

Also Published As

Publication number Publication date
MY160953A (en) 2017-03-31
EP2479243A4 (en) 2014-11-19
JP5502093B2 (ja) 2014-05-28
CN102498192B (zh) 2015-09-09
EA021597B1 (ru) 2015-07-30
US8702969B2 (en) 2014-04-22
JPWO2011034064A1 (ja) 2013-02-14
CN102498192A (zh) 2012-06-13
CA2773593A1 (en) 2011-03-24
BR112012005781B1 (pt) 2018-09-25
EA201270414A1 (ru) 2012-08-30
CA2773593C (en) 2014-08-05
BR112012005781A2 (pt) 2016-03-08
EP2479243A1 (en) 2012-07-25
AU2010296406A1 (en) 2012-04-05
US20120168349A1 (en) 2012-07-05

Similar Documents

Publication Publication Date Title
JP5757704B2 (ja) 炭化水素油の製造方法及び炭化水素油の製造システム
JP5443508B2 (ja) 水素化分解方法、および炭化水素油の製造方法
JP5367412B2 (ja) Ft合成炭化水素の精製方法及びft合成炭化水素蒸留分離装置
JP5730102B2 (ja) 気泡塔型スラリー床反応器のスタートアップ方法及びスタートアップ用溶媒並びに炭化水素油の製造方法
JP5502093B2 (ja) 水素化分解方法、および炭化水素油の製造方法
AU2010228740B2 (en) Liquid fuel producing method and liquid fuel producing system
JP5367727B2 (ja) 中間留分水素化精製反応器の操業方法及び中間留分水素化精製反応器
JP5675146B2 (ja) 炭化水素の製造方法
JP5745305B2 (ja) マグネット式液面計、炭化水素合成反応装置および炭化水素合成反応システム
JP5990389B2 (ja) 炭化水素油の製造方法、気泡塔型スラリー床反応装置及び炭化水素油の製造システム

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080040837.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10817177

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011531934

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2773593

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 13395264

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2010296406

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2010817177

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1201001108

Country of ref document: TH

ENP Entry into the national phase

Ref document number: 2010296406

Country of ref document: AU

Date of ref document: 20100914

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 201270414

Country of ref document: EA

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112012005781

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112012005781

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20120314