WO2010134213A1 - スポット溶接機の電極部 - Google Patents

スポット溶接機の電極部 Download PDF

Info

Publication number
WO2010134213A1
WO2010134213A1 PCT/JP2009/060355 JP2009060355W WO2010134213A1 WO 2010134213 A1 WO2010134213 A1 WO 2010134213A1 JP 2009060355 W JP2009060355 W JP 2009060355W WO 2010134213 A1 WO2010134213 A1 WO 2010134213A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
cooling water
ring groove
supplied
mounting
Prior art date
Application number
PCT/JP2009/060355
Other languages
English (en)
French (fr)
Inventor
直樹 浅井
武夫 蕗澤
Original Assignee
新光機器株式会社
P&C株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新光機器株式会社, P&C株式会社 filed Critical 新光機器株式会社
Priority to JP2011514280A priority Critical patent/JPWO2010134213A1/ja
Priority to EP09844944.0A priority patent/EP2433738A4/en
Priority to CN2009801593872A priority patent/CN102427908A/zh
Publication of WO2010134213A1 publication Critical patent/WO2010134213A1/ja
Priority to US13/274,651 priority patent/US20120031880A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K11/00Resistance welding; Severing by resistance heating
    • B23K11/30Features relating to electrodes
    • B23K11/3009Pressure electrodes
    • B23K11/3018Cooled pressure electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K11/00Resistance welding; Severing by resistance heating
    • B23K11/30Features relating to electrodes
    • B23K11/3054Cooled electrodes

Definitions

  • the present invention relates to the structure of an electrode part of a spot welder.
  • spot welding is widely used as one of means for welding metal members, in which an electric current is applied while the metal members are crimped and the metals are melted and joined by the electric resistance heat.
  • a spot welder for performing such spot welding is attached to a pair of cylindrical shanks 91 arranged to be detachable from each other, and to the tips of the pair of shanks 91.
  • an electrode portion 90 including the cap chip 95 is provided. Spot welding is performed by passing an electric current while pressing the metal member with a pair of cap tips 95.
  • an attachment portion 91a having a diameter reduced in a tapered shape toward the tip is formed.
  • the cap chip 95 is formed with a mounting recess 95a having a tapered diameter toward the back.
  • the cap chip 95 is attached to the shank 91 by fitting the attachment concave portion 95a to the attachment portion 91a.
  • An inside of the shank 91 is provided with a water injection pipe 92 that faces the bottom of the mounting recess 95a.
  • the electrode holder 191 in which a plate-like protruding portion 191a is formed to protrude. Spot welding was performed with an electrode portion 190 having a substantially cylindrical bean chip 195 attached to the surface of the protruding portion 191a.
  • the protruding portion 191a is formed with a tapered attachment hole 191b whose inner diameter gradually decreases toward the back.
  • a tapered attachment portion 195a corresponding to the attachment hole 191b is formed at the base of the mini chip 195.
  • the mounting part 195a is fitted into the mounting hole 191b, and the mini chip 195 is attached to the protruding part 191a.
  • the tip portion of the mini chip 195 is an abutting portion 195b that comes into contact with the member to be welded, and projects from the surface of the projecting portion 191a.
  • the welding current supplied to the electrode holder 191 is supplied to the mini chip 195 from the contact surface between the mounting hole 191b and the mounting portion 195a.
  • the attachment part 195a gradually expands the attachment hole 191b, and the bean tip 195 gradually enters the attachment hole 191b. End up. Even in such a case, in order to secure a contact area between the mounting portion 195a and the mounting hole 191b, and to maintain the fitting state of the mounting portion 195a and the mounting hole 191b, to prevent the bean chip 195 from falling off. As shown in FIG. 6, it is necessary to form the attachment portion 195a also at the position exposed from the attachment hole 191b, and the protruding amount of the bean chip 195 from the protrusion portion 191a is large.
  • the thickness dimension which combined the bean chip 195 and the protrusion part 191a cannot be enlarged, and as a result, the thickness dimension of the protrusion part 191a cannot be increased. Therefore, the cooling water flow passage could not be formed in the protrusion 191a.
  • the electrode holder 191 has a cooling water channel 191c formed up to the vicinity of the base of the projecting portion 191a, but the projecting portion 191a has no cooling water channel 191c.
  • the cooling of 191a is insufficient, and the protrusion 191a is softened and bent by heat during welding, so that the welding accuracy cannot be ensured.
  • the mounting portion 195a and the mounting hole 191b are oxidized by heat, the current conduction between the electrode holder 191 and the mini chip 195 becomes poor, and a welding failure occurs.
  • the cooling of the protrusion part 191a is insufficient, it is difficult to transfer heat from the bean chip 195 to the protrusion part 191a, and the bean chip 195 is overheated. For this reason, the mini chip 195 is softened and deformed, and there is a problem that the mini chip 195 must be frequently replaced in order to maintain the welding quality.
  • An object of the present invention is to provide an electrode portion of a spot welder that solves the above-described problems, prevents the electrode from falling off the electrode holder, and prevents the electrode from overheating.
  • a feeding surface that is a plane around the opening of the mounting recess, At the base end of the contact part of the electrode, a cylindrical mounting part is formed, Forming a second O-ring groove on the outer peripheral surface of the mounting portion;
  • a power-feeding surface that is a flat surface is formed around the mounting portion at the base end of the contact portion, The mounting portion is inserted into the fitting recess, an O-ring is fitted into the first O-ring groove and the second O-ring groove, the power supply surface and the power-supplied surface are brought into contact with each other, and an electrode is formed. It is attached to the protrusion.
  • the invention according to claim 2 is characterized in that, in the invention according to claim 1, the end face of the attachment portion of the electrode and the bottom portion of the attachment recess are separated.
  • the water injection pipe to which the cooling water is supplied is disposed in the cooling water channel, and the opening of the water injection pipe faces the electrode mounting portion. It is characterized by that.
  • the invention according to claim 4 is a cylindrical electrode holder in which a cooling water channel is formed and a welding current is supplied;
  • the electrode part of the spot welding machine which is attached to the tip of the electrode holder and consists of an electrode that pressurizes the member to be welded at the contact part formed at the tip, At the tip of the electrode holder, communicating with the cooling water channel, forming a mounting recess with a circular cross-sectional shape, Forming a first O-ring groove on the inner peripheral surface of the mounting recess; Forming a feeding surface that is a flat surface around the opening of the mounting recess at the tip of the electrode holder, At the base end of the contact part of the electrode, a cylindrical mounting part is formed, Forming a second O-ring groove on the outer peripheral surface of the mounting portion; A power-feeding surface that is a flat surface is formed around the mounting portion at the base end of the contact portion, The mounting portion is inserted into the fitting recess, an O-ring is fitted into the first O-ring groove
  • the invention according to claim 1 is an electrode holder to which a plate-like protruding portion is formed and supplied with a welding current, and an abutting portion that is attached so as to protrude from the surface of the protruding portion and is formed at the tip.
  • a mounting recess having a circular cross-sectional shape is formed in the protrusion, and a first O-ring groove is formed on the inner peripheral surface of the mounting recess.
  • a cooling water channel to which cooling water is supplied is formed in the electrode holder so as to communicate with the mounting recess, a planar power supply surface is formed around the opening of the mounting recess, and the base end of the contact portion of the electrode
  • a cylindrical mounting portion is formed, a second O-ring groove is formed on the outer peripheral surface of the mounting portion, and a planar power-supply surface is formed around the mounting portion at the base end of the contact portion.
  • the fitting portion is inserted into the fitting recess, and the first O-ring groove and the second O in the ring groove is fitted an O-ring, said contacting the power-supplied face and the feeding surface, characterized in that attached to the electrode to the protrusion. For this reason, since the protrusion part of an electrode and an electrode holder is cooled by the cooling water supplied from a cooling water channel, it becomes possible to prevent overheating of an electrode and an electrode holder.
  • the invention according to claim 2 is characterized in that, in the invention according to claim 1, the end face of the attachment portion of the electrode is separated from the bottom portion of the attachment recess. For this reason, the cooling water also contacts the end face of the electrode mounting portion, and the electrode can be efficiently cooled.
  • the water injection pipe to which the cooling water is supplied is disposed in the cooling water channel, and the opening of the water injection pipe faces the electrode mounting portion. It is characterized by that. For this reason, the cooling water supplied from the front-end
  • a cylindrical electrode holder having a cooling water passage formed therein and supplied with a welding current, and a contact portion formed at the tip of the electrode holder and welded to the tip of the electrode holder
  • a mounting recess having a circular cross section is formed at the tip of the electrode holder, and a first cross section is formed on the inner peripheral surface of the mounting recess.
  • an O-ring groove of the electrode holder Forming an O-ring groove of the electrode holder, forming a flat feeding surface around the opening of the mounting recess at the tip of the electrode holder, and forming a cylindrical mounting portion at the base end of the contact portion of the electrode, A second O-ring groove is formed on the outer peripheral surface of the mounting portion, a planar power-feeding surface is formed around the mounting portion at the base end of the contact portion, and the mounting portion is formed in the fitting recess. And insert an O-ring into the first O-ring groove and the second O-ring groove.
  • the electrode is attached to the electrode holder, the water supply pipe to which cooling water is supplied is disposed in the cooling water channel, and the opening of the water injection pipe is connected to the electrode. It is characterized by facing the mounting part.
  • the power supply surface abuts on the power supply surface, and the force acting on the electrode by pressurization is supported by the power supply surface.
  • the cap chip mounting recess is not expanded and the cap chip does not fall out of the shank, and the O-ring is fitted into the first O-ring groove and the second O-ring groove. Since the electrode is attached to the electrode holder, the electrode does not fall off from the electrode holder. Moreover, since the protrusion part of an electrode and an electrode holder is cooled with the cooling water supplied from a cooling water channel, it becomes possible to prevent overheating of an electrode and an electrode holder.
  • FIG. 2 is a cross-sectional view taken along the line AA in FIG. It is explanatory drawing of the electrode part of the spot welder of use condition. It is sectional drawing of the electrode part of the spot welder of 2nd Embodiment. It is explanatory drawing of the electrode part of the conventional spot welder. It is explanatory drawing of the conventional electrode holder and a miniature chip.
  • Reference numeral 10 denotes an electrode holder, which is attached to a power feeding unit of a spot welder.
  • the electrode holder 10 is supplied with a welding current from the power feeding portion.
  • the electrode holder 10 is made of a tough copper alloy having good electrical conductivity such as chromium copper or beryllium copper.
  • the electrode holder 10 is formed with a plate-like protruding portion 10a.
  • a mounting recess 10b is formed in the surface of the protrusion 10a.
  • the cross-sectional shape of the mounting recess 10b is circular.
  • the mounting recess 10b is not inclined with respect to the surface of the protrusion 10a, and is formed orthogonal to the surface of the protrusion 10a.
  • a first O-ring groove 10c is formed in the inner peripheral surface of the mounting recess 10b so as to extend over the entire periphery.
  • a power supply surface 10d that is a flat surface is formed around the opening of the mounting recess 10b on the surface of the protruding portion 10a.
  • An opening hole 10e is formed from the side surface of the electrode holder 10 to the base of the protruding portion 10a.
  • a screw groove is screwed into the opening 10f of the opening hole 10e, and a cylindrical inlet member 41 is screwed into the opening 10f.
  • a cooling water pipe to which cooling water is supplied is connected to the inlet member 41.
  • a cooling water channel 10g communicating with the mounting recess 10b is formed from the tip of the opening hole 10e.
  • a water injection member 42 is attached to the tip of the inlet member 41.
  • a water injection pipe 42 a is formed at the tip of the water injection member 42, and a flow path 42 b through which cooling water flows is formed from the base end of the water injection member 42 to the tip of the water injection pipe 42 a.
  • the water injection pipe 42a is inserted and disposed in the cooling water passage 10g, and the tip of the water injection pipe 42a faces the mounting recess 10b.
  • the outer diameter of the water injection pipe 42a is smaller than the inner diameter of the cooling water passage 10g.
  • a drainage channel 10h that opens to the side surface of the electrode holder 10 communicates with the tip of the opening hole 10e.
  • a screw groove is screwed into the opening 10i of the drainage channel 10h, and a cylindrical drainage port member 43 is screwed.
  • a drain pipe is connected to the drain port member 43.
  • the electrode 20 is integrally formed with a contact portion 20a that comes into contact with the member to be welded and a mounting portion 20b formed at the base end of the contact portion 20a.
  • the electrode 20 is made of a tough copper alloy having good electrical conductivity, such as chromium copper or beryllium copper.
  • the attachment portion 20b has a cylindrical shape.
  • the outer diameter of the mounting portion 20b is slightly smaller than the inner diameter of the mounting recess 10b.
  • a second O-ring groove 20c is formed in the outer peripheral surface of the mounting portion 20b so as to be recessed over the entire periphery.
  • the width dimension of the contact part 20a is larger than the width dimension of the mounting part 20b.
  • a power supply surface 20d that is a flat surface is formed around the attachment portion 20b at the base end of the contact portion 20a.
  • the O-ring 30 is fitted and attached to the first O-ring groove 10c.
  • the material of the O-ring 30 includes nitrile rubber, hydrogenated nitrile rubber, fluorine rubber, silicon rubber, and urethane rubber.
  • the electrode 20 is attached to the protruding portion 10a of the electrode holder 10 by inserting the attachment portion 20b of the electrode 20 into the attachment recess 10b and fitting the O-ring 30 into the second O-ring groove 20c. In this state, the power supply surface 20d is in contact with the power supply surface 10d.
  • the cooling water supplied from the inlet member 41 flows through the flow path 42b of the water injection member 42, and is supplied from the tip of the water injection pipe 42a to the cooling water channel 10g and the mounting recess 10b to cool the mounting portion 20b of the electrode 20. . Since the opening of the water injection pipe 42a faces the attachment part 20b of the electrode 20, the cooling water supplied from the tip of the water injection pipe 42a directly contacts the attachment part 20b, and the attachment part 20b is efficiently cooled. It has come to be. Further, in order to efficiently cool the mounting portion 20b, the end surface 20e of the mounting portion 20b and the bottom portion 10k of the mounting recess 10b are separated so that the cooling water contacts the end surface 20b of the mounting portion 20b. I have to.
  • the cooling water supplied from the water injection pipe 42a of the water injection member 42 leaks between the mounting recess 10b and the mounting portion 20b. There is no.
  • the cooling water that has cooled the mounting portion 20b of the electrode 20 flows through the flow path 10j between the inside of the cooling water flow passage 10f and the outside of the water injection pipe 42a, and further flows through the opening hole 10e and the drainage path 10h. The water is discharged from the drain port member 43 to the drain pipe.
  • the power-supplied surface 20d comes into contact with the power-supply surface 10d.
  • a welding current is passed between the electrode 20 and the electrode 50 in this state, the welded member 98 and the welded member 99 are melted by the electric resistance heat and welded. Since the power-supplied surface 20d and the power-supply surface 10d are flat surfaces, power is reliably supplied between the power-supply surface 10d and the power-supplied surface 20d during welding. At the time of welding, electric resistance heat generated in the welded members 98 and 99 is transferred to the contact portion 20 a of the electrode 20.
  • the electrode 20 is pushed up by the water pressure acting in the mounting recess 10b, so that the power supply surface 20d is separated from the power supply surface 10d, and the electrode 20 Heat is hardly transferred to the protruding portion 10a side of the electrode holder 10.
  • the protrusion part 10a is cooled by the cooling water which distribute
  • the power-supplied surface 20d is separated from the power-supply surface 10d, so that the power-supplied surface 20d comes into contact with air and is cooled.
  • the power-supplied surface 20d and the power-supply surface 10d come into contact with each other, and the air deprived of heat from the power-supplied surface 20d is discharged from the space between the power-supplied surface 20d and the power-supply surface 10d.
  • the power supply surface 10d is also cooled by air, the power supply surface 20d and the power supply surface 10d are not oxidized and the power supply surface 20d and the power supply surface 10d are reliably energized.
  • the mounting portion 20b of the electrode 20 is always kept by the cooling water supplied from the water injection pipe 42a. Since it is cooled, the electrode 20 is not overheated and softened. For this reason, the deformation
  • the cooling water flowing through the flow path 42b of the water injection member 42 is obtained so that the effect of separating the power-supplied surface 20d from the power-supply surface 10d can be obtained by applying water pressure in the mounting recess 10b.
  • the flow rate and the cross-sectional area of the flow path 10j formed inside the cooling water path 10g and outside the water injection pipe 42a are set.
  • the electrode holder 10 and the electrode 20 are energized by bringing the power supply surface 20d of the electrode 20 into contact with the power supply surface 10d of the protruding portion 10d. It is not necessary to form the taper-shaped attachment hole 90b in the protrusion part 90a and form the taper-shaped attachment part 95a in the bean chip 95, and the protrusion amount of the bean chip 95 from the attachment hole 90b does not increase. For this reason, it becomes possible to make small the protrusion dimension from the protrusion part 10a of the contact part 20a, and it becomes possible to enlarge the thickness dimension of the protrusion part 10a instead, and forms the cooling water channel 10g in the protrusion part 10a. Thus, the electrode 20 could be cooled.
  • the electrode part of the spot welder of 2nd Embodiment is demonstrated about a different point from 1st Embodiment.
  • the electrode holder 110 of the second embodiment is cylindrical. Such an electrode holder 110 is generally called a shank.
  • a cooling water channel 110 d is formed inside the electrode holder 110.
  • a mounting recess 110a communicating with the cooling water channel 110d is formed at the tip of the electrode holder 110.
  • the mounting recess 110a has a circular cross-sectional shape.
  • the mounting recess 110 a is not inclined with respect to the longitudinal direction of the electrode holder 110.
  • a first O-ring groove 110b is formed in the inner peripheral surface of the mounting recess 110a so as to be recessed over the entire periphery.
  • a planar power supply surface 110c is formed around the opening of the mounting recess 110a at the tip of the electrode holder 110.
  • the power feeding surface 110c is orthogonal to the inner peripheral surface of the mounting recess 110a.
  • the electrode 120 of the second embodiment has the same structure as the electrode 20 of the first embodiment.
  • An O-ring 130 is fitted and attached to the first O-ring groove 110b.
  • the electrode 120 is attached to the electrode holder 110 by inserting the attachment portion 120b of the electrode 120 into the attachment recess 110a and fitting the O-ring 130 into the second O-ring groove 120c.
  • the power supply surface 120d is in contact with the power supply surface 110c.
  • a water injection pipe 140 to which cooling water is supplied is disposed in the cooling water passage 110d of the electrode holder 110.
  • the opening at the tip of the water injection pipe 140 faces the end face 120e of the mounting portion of the electrode 120.
  • the cooling water supplied from the water injection pipe 140 increases the water pressure in the mounting recess 110a, and the power supplied surface 120d is separated from the power supplying surface 110c.
  • the effect by this is the same as that of the first embodiment.
  • the power supply surface 120d abuts on the power supply surface 110c, and the force acting on the electrode 120 by pressurization is supported by the power supply surface 110c. For this reason, unlike the conventional case, when the member to be welded is pressurized with the facing cap tip, there is no problem that the cap chip mounting recess is expanded and the cap tip falls off the shank. Further, since the electrode 120 is attached to the electrode holder 110 by fitting the O-ring 130 to the first O-ring groove 110b and the second O-ring groove 120c, the electrode 20 may fall off the electrode holder 110. Absent.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Resistance Welding (AREA)

Abstract

 電極ホルダー及び豆チップの過熱を防止することができるスポット溶接機の電極部を提供する。 電極ホルダー10の突出部10aの表面に、断面形状が円形状の取付凹部10bを凹陥形成し、取付凹部10bの内周面に、第1のOリング溝10cを形成し、電極ホルダー10に、取付凹部10bに連通する冷却水路10gを形成し、電極20の当接部20aの基端に、円柱形状の取付部20bを形成するとともに、取付部20bの外周面に、第2のOリング溝20cを形成し、取付凹部10b内に、取付部20bを挿通させるとともに、第1のOリング溝10c及び第2のOリング溝20cにOリング30を嵌合させて、電極20を突出部10aに取り付ける。冷却水路10g内を流通する冷却水によって、電極20及び突出部10aが冷却される。

Description

スポット溶接機の電極部
 本発明は、スポット溶接機の電極部の構造に関する。
 従来から、特許文献1に示されるように、金属部材の溶接手段のひとつとして、金属部材を圧着しつつ電流を流し、その電気抵抗熱で金属を溶かして接合するスポット溶接が広く利用されている。このようなスポット溶接を行うためのスポット溶接機は、図5に示されるように、互いに離接可能に配設された筒状の一対のシャンク91と、この一対のシャンク91の先端に取り付けられたキャップチップ95とからなる電極部90を有している。一対のキャップチップ95で金属部材を圧着しつつ電流を流すことによりスポット溶接を行っている。シャンク90の先端には、先端に向かってテーパー状に縮径した取付部91aが形成されている。キャップチップ95には、奥に向かってテーパー状に縮径した取付凹部95aが凹陥形成さている。取付部91aに取付凹部95aを嵌合させて、キャップチップ95をシャンク91に取り付けている。シャンク91の内部には、取付凹部95aの底部に臨む注水管92が配設され、注水管92内に冷却水を供給することにより、キャップチップ95を冷却し、キャップチップ95の過熱を防止している。
 近年において、乗用車の軽量化や安全製の向上を目的として、ハイテン材の使用が増大している。ハイテン材をスポット溶接する場合には、変形し難いハイテン材を密着させる必要があるため、高い加圧力で加圧する必要がある。このためスポット溶接に伴って、テーパー状の取付部91aが取付凹部95aを徐々に押し拡げてしまう。取付部91aの先端が取付凹部95aの底部に当接すると、反動により、キャップチップ95がシャンク91の取付部91aから脱落してしまうという問題があった。この脱落したキャップチップ95を、再び、取付部91aに取り付けるには、キャップチップ95をダイスの穴に通過させることにより、キャップチップ95を絞って、拡がった取付凹部95aを元の形状に戻していたため、大変手間である。
 一方で、溶接箇所が狭く、シャンクやキャップチップが被溶接部材や治具と干渉してしまう場合には、図6に示されるように、板状の突出部191aが突出形成された電極ホルダー191の突出部191aの表面に、略円柱形状の豆チップ195を取り付けた電極部190でスポット溶接を行っていた。突出部191aには、奥に向かって徐々に内径が縮径するテーパー状の取付穴191bが形成されている。豆チップ195の基部には、取付穴191bに対応するテーパー状の取付部195aが形成されている。取付部195aを取付穴191bに嵌合させて、豆チップ195を突出部191aに取り付けている。豆チップ195の先端部分は、被溶接部材と接触する当接部195bとなっていて、突出部191aの表面から突出している。電極ホルダー191に供給される溶接電流は、取付穴191bと取付部195aの接触面から豆チップ195に給電されるようになっている。
 図6に示されるようなスポット溶接機の電極部190の構造では、スポット溶接に伴って、取付部195aが取付穴191bを徐々に押し拡げ、豆チップ195が徐々に取付穴191bに侵入してしまう。このような場合であっても、取付部195aと取付穴191bの接触面積を確保するため、また、取付部195aと取付穴191bの嵌合状態を維持して豆チップ195の脱落を防止するため、図6に示されるように、取付穴191bから露出した位置にも、取付部195aを形成する必要があり、突出部191aからの豆チップ195の突出量が大きくなっていた。そして、干渉を回避する必要があることから、豆チップ195と突出部191aを合わせた厚さ寸法を大きくすることができず、結果として、突出部191aの厚さ寸法を大きくすることができないことから、突出部191aに冷却水流通路を形成することができなかった。
 図6に示されるように、電極ホルダー191には、冷却水路191cが突出部191aの基部の近傍にまで形成されているが、突出部191aには冷却水路191cが形成されていないので、突出部191aの冷却が不十分となり、溶接時には突出部191aが熱により軟化して撓み、溶接の精度が確保できないという問題があった。また、取付部195aや取付穴191bが熱により酸化し、電極ホルダー191と豆チップ195間の通電が不良となり、溶接不良が発生してしまうという問題があった。更に、突出部191aの冷却が不十分であることから、豆チップ195から突出部191aへ伝熱されにくく、豆チップ195が過熱されてしまう。このため、豆チップ195が軟化して変形してしまい、溶接品質を保つために、豆チップ195を頻繁に交換しなければならないという問題があった。
特開2001-87864号公報
 本発明は、上記問題を解決し、電極の電極ホルダーからの脱落を防止し、電極の過熱を防止することができるスポット溶接機の電極部を提供することを目的とする。
 上記課題を解決するためになされた請求項1に記載の発明は、
 板状の突出部が形成され、溶接電流が供給される電極ホルダーと、
 前記突出部の表面から突出するように取り付けられ、先端に形成された当接部で被溶接部材を加圧する電極とからなるスポット溶接機の電極部において、
 突出部に、断面形状が円形状の取付凹部を凹陥形成し、
 前記取付凹部の内周面に、第1のOリング溝を形成し、
 電極ホルダーに、冷却水が供給される冷却水路を取付凹部まで連通形成し、
 前記取付凹部の開口の周囲に、平面である給電面を形成し、
 電極の当接部の基端に、円柱形状の取付部を形成し、
 前記取付部の外周面に、第2のOリング溝を形成し、
 当接部基端の前記取付部の周囲に、平面である被給電面を形成し、
 前記嵌合凹部内に前記取付部を挿通させ、前記第1のOリング溝及び第2のOリング溝にOリングを嵌合させ、前記給電面と前記被給電面を接触させて、電極を突出部に取り付けたことを特徴とする。
 請求項2に記載の発明は、請求項1に記載の発明において、電極の取付部の末端面と、取付凹部の底部を離間させたことを特徴とする。
 請求項3に記載の発明は、請求項1に記載の発明において、冷却水が供給される注水管を冷却水路内に配設し、前記注水管の開口部を、電極の取付部に臨ませたことを特徴とする。
 請求項4に記載の発明は、内部に冷却水路が形成され、溶接電流が供給される筒状の電極ホルダーと、
 前記電極ホルダーの先端に取り付けられ、先端に形成された当接部で被溶接部材を加圧する電極とからなるスポット溶接機の電極部において、
 電極ホルダー先端に、冷却水路と連通し、断面形状が円形状の取付凹部を形成し、
 前記取付凹部の内周面に、第1のOリング溝を形成し、
 電極ホルダー先端の、前記取付凹部の開口の周囲に、平面である給電面を形成し、
 電極の当接部の基端に、円柱形状の取付部を形成し、
 前記取付部の外周面に、第2のOリング溝を形成し、
 当接部基端の前記取付部の周囲に、平面である被給電面を形成し、
 前記嵌合凹部内に前記取付部を挿通させ、前記第1のOリング溝及び第2のOリング溝にOリングを嵌合させ、前記給電面と前記被給電面を接触させて、電極を電極ホルダーに取り付け、
 前記冷却水路内に、冷却水が供給される注水管を配設し、前記注水管の開口部を電極の取付部に臨ませたことを特徴とする。
 請求項1に記載の発明は、板状の突出部が形成され、溶接電流が供給される電極ホルダーと、前記突出部の表面から突出するように取り付けられ、先端に形成された当接部で被溶接部材を加圧する電極とからなるスポット溶接機の電極部において、突出部に、断面形状が円形状の取付凹部を凹陥形成し、前記取付凹部の内周面に、第1のOリング溝を形成し、電極ホルダーに、冷却水が供給される冷却水路を取付凹部まで連通形成し、前記取付凹部の開口の周囲に、平面である給電面を形成し、電極の当接部の基端に、円柱形状の取付部を形成し、前記取付部の外周面に、第2のOリング溝を形成し、当接部基端の前記取付部の周囲に、平面である被給電面を形成し、前記嵌合凹部内に前記取付部を挿通させ、前記第1のOリング溝及び第2のOリング溝にOリングを嵌合させ、前記給電面と前記被給電面を接触させて、電極を突出部に取り付けたことを特徴とする。
 このため、電極及び電極ホルダーの突出部が、冷却水路から供給される冷却水によって冷却されるので、電極及び電極ホルダーの過熱を防止することが可能となる。
 請求項2に記載の発明は、請求項1に記載の発明において、電極の取付部の末端面と、取付凹部の底部を離間させたことを特徴とする。
 このため、電極の取付部の末端面にも冷却水が接触し、効率良く電極を冷却することが可能となる。
 請求項3に記載の発明は、請求項1に記載の発明において、冷却水が供給される注水管を冷却水路内に配設し、前記注水管の開口部を、電極の取付部に臨ませたことを特徴とする。
 このため、注水部の先端から供給される冷却水が、直接、電極の取付部に接触し、効率良く豆チップを冷却することが可能となる。
 請求項4に記載の発明は、内部に冷却水路が形成され、溶接電流が供給される筒状の電極ホルダーと、前記電極ホルダーの先端に取り付けられ、先端に形成された当接部で被溶接部材を加圧する電極とからなるスポット溶接機の電極部において、電極ホルダー先端に、冷却水路と連通し、断面形状が円形状の取付凹部を形成し、前記取付凹部の内周面に、第1のOリング溝を形成し、電極ホルダー先端の、前記取付凹部の開口の周囲に、平面である給電面を形成し、電極の当接部の基端に、円柱形状の取付部を形成し、前記取付部の外周面に、第2のOリング溝を形成し、当接部基端の前記取付部の周囲に、平面である被給電面を形成し、前記嵌合凹部内に前記取付部を挿通させ、前記第1のOリング溝及び第2のOリング溝にOリングを嵌合させ、前記給電面と前記被給電面を接触させて、電極を電極ホルダーに取り付け、前記冷却水路内に、冷却水が供給される注水管を配設し、前記注水管の開口部を電極の取付部に臨ませたことを特徴とする。
 このため、溶接時には、被給電面が給電面に当接し、加圧により電極に作用する力が、給電面で支持されるので、従来のように、対向するキャップチップで被溶接部材を加圧した際に、キャップチップの取付凹部が押し拡げられて、キャップチップがシャンクから脱落してしまうことが無く、また、第1のOリング溝及び第2のOリング溝にOリングを嵌合させて、電極を電極ホルダーに取り付けているので、電極が電極ホルダーから脱落することがない。
 また、電極及び電極ホルダーの突出部が、冷却水路から供給される冷却水によって冷却されるので、電極及び電極ホルダーの過熱を防止することが可能となる。
第1の実施形態のスポット溶接機の電極部の断面図である。 図1のA-A断面図である。 使用状態のスポット溶接機の電極部の説明図である。 第2の実施形態のスポット溶接機の電極部の断面図である。 従来のスポット溶接機の電極部の説明図である。 従来の電極ホルダー及び豆チップの説明図である。
(第1の実施形態)
 以下に図面を参照しつつ、本発明の好ましい実施の形態を示す。10は電極ホルダーであり、スポット溶接機の給電部に取り付けられている。電極ホルダー10には前記給電部から溶接電流が給電されるようになっている。電極ホルダー10は、クロム銅やベリリウム銅等の強靱で電気伝導率が良好な銅合金で構成されている。電極ホルダー10には、板状の突出部10aが突出形成されている。突出部10aの表面には、取付凹部10bが凹陥形成されている。取付凹部10bの断面形状は、円形状となっている。取付凹部10bは、突出部10aの表面に対して傾いておらず、突出部10aの表面に対して直交して形成されている。取付凹部10bの内周面には、全周に渡って第1のOリング溝10cが凹陥形成されている。突出部10a表面の、取付凹部10bの開口部の周囲には、平面である給電面10dが形成されている。
 電極ホルダー10の側面から突出部10aの基部まで、開口穴10eが形成されている。開口穴10eの開口部10fにはネジ溝が螺刻され、この開口部10fに筒状の流入口部材41が螺入して取り付けられている。流入口部材41には、冷却水が供給される冷却水配管が接続している。開口穴10eの先端から、取付凹部10bに連通する冷却水路10gが形成されている。流入口部材41の先端には、注水部材42が取り付けられている。注水部材42の先端には、注水管42aが形成されていて、注水部材42の基端から注水管42aの先端にまで、冷却水が流通する流路42bが連通形成されている。注水管42aは冷却水路10g内に挿通されて配設され、注水管42aの先端は取付凹部10bに臨んでいる。注水管42aの外径は、冷却水路10gの内径よりも小さくなっている。図2に示されるように、開口穴10eの先端には、電極ホルダー10の側面に開口する排水路10hが連通している。排水路10hの開口部10iには、ネジ溝が螺刻され、筒状の排水口部材43が螺入している。排水口部材43には排水管が接続している。
 電極20は、被溶接部材と当接する当接部20aと、当接部20aの基端に形成された取付部20bとが、一体に形成されている。電極20は、クロム銅やベリリウム銅等の強靱で電気伝導率が良好な銅合金で構成されている。取付部20bは円柱形状である。取付部20bの外径は、取付凹部10bの内径よりも僅かに小さくなっている。取付部20bの外周面には、全周に渡って第2のOリング溝20cが凹陥形成されている。当接部20aの幅寸法は、取付部20bの幅寸法よりも大きくなっている。当接部20a基端の、取付部20bの周囲には、平面である被給電面20dが形成されている。
 第1のOリング溝10cには、Oリング30が嵌合して取り付けられている。Oリング30の材質には、ニトリルゴム、水素化ニトリルゴム、フッ素ゴム、シリコンゴム、ウレタンゴムが含まれる。取付凹部10b内に、電極20の取付部20bを挿通させ、Oリング30を第2のOリング溝20cに嵌合させて、電極20を電極ホルダー10の突出部10aに取り付けている。この状態では、被給電面20dは給電面10dに接触している。
 流入口部材41から供給される冷却水は、注水部材42の流路42bを流通し、注水管42aの先端から、冷却水路10g及び取付凹部10bに供給され、電極20の取付部20bを冷却する。注水管42aの開口部を、電極20の取付部20bに臨ませているので、注水管42a先端から供給される冷却水が、直接、取付部20bに接触し、取付部20bが効率的に冷却されるようになっている。また、取付部20bが効率的に冷却されるように、取付部20bの末端面20eと取付凹部10bの底部10kを離間させて、取付部20bの末端面20bにも、冷却水が接触するようにしている。本発明では、取付凹部10bと取付部20bの間に、Oリング30を設けたので、注水部材42の注水管42aから供給される冷却水が、取付凹部10bと取付部20b間から漏洩することがない。電極20の取付部20bを冷却した冷却水は、冷却水流通路10fの内側と注水管42aの外側との間の流路10jを流通し、更に、開口穴10e、排水路10hを流通して、排水口部材43から排水管に排水される。
 冷却水路10gの内側と注水管42aの外側との間に形成される流路10jの断面積が、注水部材42の流路42bを流通する冷却水の流量に対して、十分に大きくない場合には、取付凹部10b内の水圧が高くなり、図3の(A)に示されるように、電極20が前記水圧により押し上げられて、被給電面20dが給電面10dから離間する。本発明では、電極20の取付部20bの外周面に、Oリング30と嵌合する第2のOリング溝20cを形成したので、電極20が前記水圧により押し上げられたとしても、電極20が取付凹部10bから脱落することがない。また、取付凹部10bの内周面に、第1のOリング溝10cを形成したので、Oリング30が取付凹部10bから脱落することがない。
 図3の(B)に示されるように、被溶接部材98、99を、電極20と、これと対向する電極50で圧着すると、被給電面20dが給電面10dに接触する。この状態で、電極20と電極50間に溶接電流を通電させると、被溶接部材98と被溶接部材99が、その電気抵抗熱で溶融して、溶接される。被給電面20dと給電面10dは平面であるので、溶接時に給電面10dと被給電面20dとの間で確実に通電する。溶接時には、被溶接部材98、99で発生する電気抵抗熱が、電極20の当接部20aに伝熱する。しかし、溶接が完了すると、図3の(A)に示されるように、取付凹部10b内に作用する水圧によって、電極20が押し上げられて、被給電面20dが給電面10dから離間し、電極20から電極ホルダー10の突出部10a側に殆ど伝熱しないようになっている。また、冷却水路10g内を流通する冷却水によって、突出部10aが冷却される。このため、突出部10aが、熱により軟化し、変形することがない。
 溶接時以外では、被給電面20dが給電面10dから離間しているので、被給電面20dが空気と接触し、冷却される。溶接時には、被給電面20dと給電面10dが接触し、被給電面20dの熱を奪った空気が、被給電面20dと給電面10d間の空間から排出される。また、給電面10dも空気によって冷却されるので、被給電面20d及び給電面10dが酸化することなく、被給電面20dと給電面10d間で確実に通電するようになっている。被給電面20dが給電面10dから離間し、電極20から電極ホルダー10の突出部10a側に殆ど伝熱しなくても、電極20の取付部20bは、注水管42aから供給される冷却水により常時冷却されるので、電極20が過熱して軟化することがない。このため、電極20の当接部20aの溶接による変形が抑制され、従来に比べて、電極20の交換期間を約3倍に延ばすことが可能となった。
 本発明では、取付凹部10b内に水圧を作用させて、被給電面20dが給電面10dから離間することによる効果を得ることができるように、注水部材42の流路42bを流通する冷却水の流量と、冷却水路10gの内側と注水管42aの外側に形成される流路10jの断面積を設定している。
 本発明では、電極20の被給電面20dを、突出部10dの給電面10dに接触させることにより、電極ホルダー10と電極20を通電させることにしているので、従来のように、電極ホルダー90の突出部90aにテーパー状の取付穴90bを形成し、豆チップ95にテーパー状の取付部95aを形成する必要がなく、取付穴90bからの豆チップ95の突出量が大きくなるということがない。このため、当接部20aの突出部10aからの突出寸法を小さくすることが可能となり、代わりに、突出部10aの厚さ寸法を大きくすることが可能となり、突出部10aに冷却水路10gを形成して、電極20を冷却することが可能なった。また、突出部10aの厚さ寸法を大きくすることが可能となることから、突出部10aの剛性が増大し、溶接時の突出部10aの変形を抑制して、溶接品質を保つことが可能となった。
(第2の実施形態)
 第1の実施形態と異なる点について第2の実施形態のスポット溶接機の電極部の説明をする。第2の実施形態の電極ホルダー110は筒状である。このような電極ホルダー110は一般的にシャンクと呼ばれている。電極ホルダー110の内部には、冷却水路110dが形成されている。電極ホルダー110先端には、冷却水路110dに連通する取付凹部110aが形成されている。取付凹部110aの断面形状は円形状となっている。取付凹部110aは、電極ホルダー110の長手方向に対して傾いていない。取付凹部110aの内周面には、全周に渡って第1のOリング溝110bが凹陥形成されている。電極ホルダー110の先端の取付凹部110aの開口の周囲には、平面である給電面110cが形成されている。給電面110cは、取付凹部110aの内周面と直交している。
 第2の実施形態の電極120は、第1の実施形態の電極20と同じ構造である。第1のOリング溝110bには、Oリング130が嵌合して取り付けられている。取付凹部110a内に、電極120の取付部120bを挿通させ、Oリング130を第2のOリング溝120cに嵌合させて、電極120を電極ホルダー110に取り付けている。この状態では、被給電面120dは給電面110cに接触している。電極ホルダー110の冷却水路110d内には、冷却水が供給される注水管140が配設されている。注水管140先端の開口部は、電極120の取付部の末端面120eに臨んでいる。
 第2の実施形態も第1の実施形態と同様に、注水管140から供給される冷却水によって、取付凹部110a内の水圧が高くなり、被給電面120dが給電面110cから離間する。このことによる効果は、第1の実施形態と同様である。
 溶接時には、被給電面120dが給電面110cに当接し、加圧により電極120に作用する力が、給電面110cで支持されるようになっている。このため従来のように、対向するキャップチップで被溶接部材を加圧した際に、キャップチップの取付凹部が押し拡げられて、キャップチップがシャンクから脱落してしまうという問題がない。また、第1のOリング溝110b及び第2のOリング溝120cにOリング130を嵌合させて、電極120を電極ホルダー110に取り付けているので、電極20が電極ホルダー110から脱落することがない。
 以上、現時点において、もっとも、実践的であり、かつ好ましいと思われる実施形態に関連して本発明を説明したが、本発明は、本願明細書中に開示された実施形態に限定されるものではなく、請求の範囲および明細書全体から読み取れる発明の要旨あるいは思想に反しない範囲で適宜変更可能であり、そのような変更を伴うスポット溶接機の電極部もまた技術的範囲に包含されるものとして理解されなければならない。
 10   電極ホルダー
 10a  突出部
 10b  取付凹部
 10c  第1のOリング溝
 10d  給電面
 10e  開口穴
 10f  開口穴の開口部
 10g  冷却水路
 10h  排水路
 10i  排水路の開口部
 10j  流路
 10k  取付凹部の底部
 20   電極
 20a  当接部
 20b  取付部
 20c  第2のOリング溝
 20d  被給電面
 20e  取付部の末端面
 41   流入口部材
 42   注水部材
 42a  注水管
 42b  流路
 43   排水口部材
 50   電極部
 90   従来のスポット溶接機の電極部
 91   シャンク
 91a  取付部
 92   注水管
 95   キャップチップ
 95a  取付凹部
 110  電極ホルダー
 110a 取付凹部
 110b 第1のOリング溝
 110c 給電面
 110d 冷却水路
 120  電極
 120a 当接部
 120b 取付部
 120c 第2のOリング溝
 120d 被給電面
 120e 取付部の末端面
 140  注水管
 190  従来のスポット溶接機の電極部
 191  電極ホルダー
 191a 突出部
 191b 取付穴
 191c 冷却水路
 195  豆チップ
 195a 取付部
 195b 当接部
 198  被溶接部材
 199  被溶接部材

Claims (4)

  1.  板状の突出部(10a)が形成され、溶接電流が供給される電極ホルダー(10)と、
     前記突出部(10a)の表面から突出するように取り付けられ、先端に形成された当接部(20a)で被溶接部材を加圧する電極(20)とからなるスポット溶接機の電極部(50)において、
     突出部(10a)に、断面形状が円形状の取付凹部(10b)を凹陥形成し、
     前記取付凹部(10b)の内周面に、第1のOリング溝(10c)を形成し、
     電極ホルダー(10)に、冷却水が供給される冷却水路(10g)を取付凹部(10b)まで連通形成し、
     前記取付凹部(10b)の開口の周囲に、平面である給電面(10d)を形成し、
     電極(20)の当接部(20a)の基端に、円柱形状の取付部(20b)を形成し、
     前記取付部(20b)の外周面に、第2のOリング溝(20c)を形成し、
     当接部(20a)基端の前記取付部(20b)の周囲に、平面である被給電面(20d)を形成し、
     前記嵌合凹部(10b)内に前記取付部(20b)を挿通させ、前記第1のOリング溝(10c)及び第2のOリング溝(20c)にOリング(30)を嵌合させ、前記給電面(10d)と前記被給電面(20d)を接触させて、電極(20)を突出部(10a)に取り付けたことを特徴とするスポット溶接機の電極部。
  2.  電極(20)の取付部(20b)の末端面(20e)と、取付凹部の底部(10k)を離間させたことを特徴とする請求項1に記載のスポット溶接機の電極部。
  3.  冷却水が供給される注水管(42a)を冷却水路(10g)内に配設し、前記注水管(42a)の開口部を、電極(20)の取付部(20b)に臨ませたことを特徴とする請求項1に記載のスポット溶接機の電極部。
  4.  内部に冷却水路(110d)が形成され、溶接電流が供給される筒状の電極ホルダー(110)と、
     前記電極ホルダー(110)の先端に取り付けられ、先端に形成された当接部(120a)で被溶接部材を加圧する電極(120)とからなるスポット溶接機の電極部(150)において、
     電極ホルダー(110)先端に、冷却水路(110d)と連通し、断面形状が円形状の取付凹部(110a)を形成し、
     前記取付凹部(110a)の内周面に、第1のOリング溝(110b)を形成し、
     電極ホルダー(110)先端の、前記取付凹部(110a)の開口の周囲に、平面である給電面(110c)を形成し、
     電極(120)の当接部(120a)の基端に、円柱形状の取付部(120b)を形成し、
     前記取付部(120b)の外周面に、第2のOリング溝(120c)を形成し、
     当接部(120a)基端の前記取付部(120b)の周囲に、平面である被給電面(120d)を形成し、
     前記嵌合凹部(110a)内に前記取付部(120b)を挿通させ、前記第1のOリング溝(110b)及び第2のOリング溝(120c)にOリング(130)を嵌合させ、前記給電面(110c)と前記被給電面(120d)を接触させて、電極(120)を電極ホルダー(110)に取り付け、
     前記冷却水路(110d)内に、冷却水が供給される注水管(140)を配設し、前記注水管(140)の開口部を電極(120)の取付部(120b)に臨ませたことを特徴とするスポット溶接機の電極部。
PCT/JP2009/060355 2009-05-21 2009-06-05 スポット溶接機の電極部 WO2010134213A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2011514280A JPWO2010134213A1 (ja) 2009-05-21 2009-06-05 スポット溶接機の電極部
EP09844944.0A EP2433738A4 (en) 2009-05-21 2009-06-05 Spot welder electrode part
CN2009801593872A CN102427908A (zh) 2009-05-21 2009-06-05 点焊机的电极部
US13/274,651 US20120031880A1 (en) 2009-05-21 2011-10-17 Electrode unit of spot welding machine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-122621 2009-05-21
JP2009122621 2009-05-21

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/274,651 Continuation US20120031880A1 (en) 2009-05-21 2011-10-17 Electrode unit of spot welding machine

Publications (1)

Publication Number Publication Date
WO2010134213A1 true WO2010134213A1 (ja) 2010-11-25

Family

ID=43125908

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/060355 WO2010134213A1 (ja) 2009-05-21 2009-06-05 スポット溶接機の電極部

Country Status (5)

Country Link
US (1) US20120031880A1 (ja)
EP (1) EP2433738A4 (ja)
JP (1) JPWO2010134213A1 (ja)
CN (1) CN102427908A (ja)
WO (1) WO2010134213A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101374560B1 (ko) 2012-04-26 2014-03-13 (주)지엔에스케이텍 프로젝션 용접용 전극

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103962699B (zh) * 2013-02-05 2016-03-16 扬州市三江焊接机械制造有限公司 新型钢筋笼滚焊机水冷机头
RU2578865C1 (ru) * 2014-08-25 2016-03-27 Кожокин Тимофей Иванович Неподвижный держатель-электрод сварочных клещей
RU2618285C1 (ru) * 2015-12-08 2017-05-03 Кожокин Тимофей Иванович Электрододержатель сварочных клещей для контактной точечной сварки (ктс)
RU2621083C1 (ru) * 2015-12-25 2017-05-31 Кожокин Тимофей Иванович Способ охлаждения электрода сварочных клещей контактной точечной сварки (КТС) и устройство его реализации
RU2635639C2 (ru) * 2016-01-29 2017-11-14 Кожокин Тимофей Иванович Электрододержатель сварочных клещей для контактной точечной сварки (ктс)
RU2626259C1 (ru) * 2016-03-09 2017-07-25 Кожокин Тимофей Иванович Электрододержатель для контактной точечной сварки
RU2625142C1 (ru) * 2016-03-09 2017-07-11 Кожокин Тимофей Иванович Электрододержатель для контактной точечной сварки
RU2625143C1 (ru) * 2016-03-09 2017-07-11 Кожокин Тимофей Иванович Электрододержатель для контактной точечной сварки
RU2649483C1 (ru) * 2017-01-19 2018-04-03 Кожокин Тимофей Иванович Держатель электрода-ролика
CN113597355B (zh) * 2019-03-27 2023-06-09 新光机器株式会社 电极装置
RU2723853C1 (ru) * 2019-12-12 2020-06-17 Тимофей Иванович Кожокин Электрод с хвостовиком для контактной точечной сварки
RU2723850C1 (ru) * 2019-12-12 2020-06-17 Тимофей Иванович Кожокин Электрод с хвостовиком для контактной точечной сварки
RU2723851C1 (ru) * 2019-12-12 2020-06-17 Тимофей Иванович Кожокин Электрод с хвостовиком для контактной точечной сварки

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59190486U (ja) * 1983-06-06 1984-12-17 株式会社日立製作所 スポツト溶接電極
JPS60231578A (ja) * 1984-04-30 1985-11-18 Nissan Shatai Co Ltd スポツト溶接機の電極チツプ
JPS6167978U (ja) * 1984-10-04 1986-05-09
JPH07328776A (ja) * 1994-06-06 1995-12-19 Kanto Auto Works Ltd 電極チップ冷却装置
JP2001087864A (ja) 1999-09-24 2001-04-03 Kawasaki Heavy Ind Ltd スポット溶接ガン

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2134110A (en) * 1937-02-23 1938-10-25 American Coach And Body Compan Fluid conduit

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59190486U (ja) * 1983-06-06 1984-12-17 株式会社日立製作所 スポツト溶接電極
JPS60231578A (ja) * 1984-04-30 1985-11-18 Nissan Shatai Co Ltd スポツト溶接機の電極チツプ
JPS6167978U (ja) * 1984-10-04 1986-05-09
JPH07328776A (ja) * 1994-06-06 1995-12-19 Kanto Auto Works Ltd 電極チップ冷却装置
JP2001087864A (ja) 1999-09-24 2001-04-03 Kawasaki Heavy Ind Ltd スポット溶接ガン

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2433738A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101374560B1 (ko) 2012-04-26 2014-03-13 (주)지엔에스케이텍 프로젝션 용접용 전극

Also Published As

Publication number Publication date
EP2433738A4 (en) 2017-07-12
EP2433738A1 (en) 2012-03-28
JPWO2010134213A1 (ja) 2012-11-08
CN102427908A (zh) 2012-04-25
US20120031880A1 (en) 2012-02-09

Similar Documents

Publication Publication Date Title
WO2010134213A1 (ja) スポット溶接機の電極部
US4760235A (en) Male spot welding electrode
US8455786B2 (en) Electrode head of the plasma cutting machine
CN105579181B (zh) 电阻点焊装置、复合电极以及电阻点焊方法
CN102202830A (zh) 电阻焊接电极
JPS5953155B2 (ja) 抵抗溶接用電極とその製法
WO2010146702A1 (ja) スポット溶接機の電極部
JP5455112B2 (ja) 多点打ち電極装置
CN117595004A (zh) 用于接触元件的散热体、用于插接机构的接触元件以及插接机构
US4947019A (en) Composite electrode for resistance welding
WO2010143294A1 (ja) スポット溶接機の電極部
JP7281786B2 (ja) 溶接用チップ
JP6075254B2 (ja) スポット溶接用チップの整形方法
CN110225805B (zh) 电极头
JP5659365B2 (ja) スポット溶接用電極
KR100436793B1 (ko) 점용접용전극과전극팁
JP6650043B2 (ja) 電極チップ
KR20140081609A (ko) 용접구조
CN213614718U (zh) 电极头和焊接设备
JP2004017070A (ja) 抵抗溶接機
JP5873402B2 (ja) スポット溶接用電極チップ
JP2562755Y2 (ja) 抵抗溶接用電極ホルダー
JP3008447B2 (ja) プラズマアーク加工用電極およびその製造方法
JP2004249343A (ja) スポット溶接用圧痕防止具
JP5099582B2 (ja) 抵抗溶接用カラー、抵抗溶接用電極および抵抗溶接方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980159387.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09844944

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2011514280

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 8141/DELNP/2011

Country of ref document: IN

REEP Request for entry into the european phase

Ref document number: 2009844944

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2009844944

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE