WO2010090349A1 - 耐座屈性能及び溶接熱影響部靭性に優れた低温用高強度鋼管およびその製造方法 - Google Patents

耐座屈性能及び溶接熱影響部靭性に優れた低温用高強度鋼管およびその製造方法 Download PDF

Info

Publication number
WO2010090349A1
WO2010090349A1 PCT/JP2010/052118 JP2010052118W WO2010090349A1 WO 2010090349 A1 WO2010090349 A1 WO 2010090349A1 JP 2010052118 W JP2010052118 W JP 2010052118W WO 2010090349 A1 WO2010090349 A1 WO 2010090349A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
temperature
toughness
steel pipe
strength
Prior art date
Application number
PCT/JP2010/052118
Other languages
English (en)
French (fr)
Inventor
嶋村純二
石川信行
岡津光浩
鹿内伸夫
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to CN2010800070305A priority Critical patent/CN102308013B/zh
Priority to RU2011136852/02A priority patent/RU2493286C2/ru
Priority to KR1020117018081A priority patent/KR101231270B1/ko
Priority to US13/147,992 priority patent/US8765269B2/en
Priority to EP10738675.7A priority patent/EP2395122B1/en
Priority to CA2751705A priority patent/CA2751705C/en
Publication of WO2010090349A1 publication Critical patent/WO2010090349A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C37/00Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape
    • B21C37/06Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape of tubes or metal hoses; Combined procedures for making tubes, e.g. for making multi-wall tubes
    • B21C37/08Making tubes with welded or soldered seams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/02Seam welding; Backing means; Inserts
    • B23K9/025Seam welding; Backing means; Inserts for rectilinear seams
    • B23K9/0253Seam welding; Backing means; Inserts for rectilinear seams for the longitudinal seam of tubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/18Submerged-arc welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/23Arc welding or cutting taking account of the properties of the materials to be welded
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/10Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/10Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies
    • C21D8/105Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/08Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/50Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for welded joints
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/04Tubular or hollow articles
    • B23K2101/06Tubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/02Iron or ferrous alloys
    • B23K2103/04Steel or steel alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12861Group VIII or IB metal-base component
    • Y10T428/12951Fe-base component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12861Group VIII or IB metal-base component
    • Y10T428/12951Fe-base component
    • Y10T428/12958Next to Fe-base component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12861Group VIII or IB metal-base component
    • Y10T428/12951Fe-base component
    • Y10T428/12958Next to Fe-base component
    • Y10T428/12965Both containing 0.01-1.7% carbon [i.e., steel]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12861Group VIII or IB metal-base component
    • Y10T428/12951Fe-base component
    • Y10T428/12972Containing 0.01-1.7% carbon [i.e., steel]

Definitions

  • the present invention relates to a high strength steel pipe having a strength of API (American Petroleum Institute) X100 grade, and in particular, an earthquake zone with a ground thickness of about 20 mm to 40 mm and a severe ground deformation. ) And buckling resistance suitable for steel pipes for transporting natural gas and crude oil used in the permafrost region and welded heat affected zone toughness It is related with the thing excellent in (toughness).
  • the high-strength steel pipes according to the present invention satisfy all the standards of APIX 100 class, and also have the tensile strength of APIX 100 class and other characteristics adjusted outside the API standard range. included.
  • Non-Patent Document 3 and Patent Document 1 include a seam weld heat-affected zone near a fusion line due to diffusion of B contained in a weld metal into a base metal in a seam weld zone of a steel pipe. It has also been shown to improve toughness.
  • island martensite which is harmful to toughness even when the prior austenite grain size, which is slightly away from the melting line, is as small as 150 ⁇ m or less.
  • Upper bainite structure containing a large amount of Martensite-Austenite Constituent, which may lead to a decrease in toughness.
  • Patent documents 2 to 5 relate to a high-strength welded steel pipe and a method for producing the same, and in all cases, when adding B to the base metal component, an appropriate amount is added in consideration of the toughness of the weld heat affected zone. ing. Further, Patent Documents 4 and 5 propose that different parameter formulas (parameter formulas) are used depending on whether or not B is added when the alloy amount of the base material is appropriate.
  • Patent Document 2 discloses a technique for improving the toughness of a weld heat affected zone, but does not discuss the deformation performance of the base material.
  • Patent Document 3 is intended for the X80 class, and the target strength level is different from the present invention.
  • Patent Documents 4 and 5 stipulate uniform elongation in a tensile test in the pipe axis direction of the base metal part, but have a buckling resistance as described later. In order to improve, it is important to control the ratio of 0.5% proof strength (yield ratio (YR)) with respect to the tensile strength to a low level.
  • welded steel pipes such as UOE steel pipes and ERW steel pipes used in line pipes are formed by cold forming the steel sheet into a tubular shape, and welding the butt portion.
  • the present invention clarifies the effect of B addition on the weldability and the toughness of the heat affected zone of the base steel plate used for the APIX100 grade thick steel pipe, and the tensile strength is 760 MPa or more and 930 MPa or less, Welding at ⁇ 30 ° C. while having a uniform elongation of 5% or more and a base material performance of yield ratio (YR: Yield ratio) of 85% or less with respect to tensile strength
  • Yield ratio yield ratio
  • the present invention further aims to provide a high-strength welded steel pipe having strength characteristics and deformation performance equivalent to those described above even in a steel pipe after coating treatment in consideration of buckling resistance performance after coating treatment. To do.
  • HAZ Heat Affected Zone
  • LBZ Local Brittle Zone
  • HAZ Coarse-grain HAZ
  • ICHGHAZ Inter-critically Coarse-Grain-Grain
  • the root portion refers to the vicinity of the meeting portion where the inner surface weld metal and the outer surface weld metal cross.
  • the CGHAZ microstructure is divided into the lower bainite structure, the upper bainite containing a large amount of hard phase MA, and high-strength martensite. Toughness is improved by making the structure mainly composed of lower bainite below the rate. In particular, when the lower bainite has a structure in which at least 50% of the area fraction is secured, the toughness is most improved and the Charpy absorbed energy at ⁇ 30 ° C. is greatly improved.
  • the P CM is .19 to .25% of the component composition APIX100 class base material strength can be ensured, a suitable B amount in the range is 5 ⁇ 15 ppm.
  • the ratio of the 0.5% yield strength to the tensile strength is 85% or less, and the uniform elongation is 5% or more.
  • Coarse island martensite structure promotes the generation and propagation of fracture, and in order to ensure the desired low temperature toughness, the structure size of island martensite and tempered martensite is controlled with high precision (control). It is important to.
  • DWTT Drop Weight Tear Test
  • the ductile fracture surface ratio at 20 ° C is correlated with the size of island martensite, and the Charpy absorbed energy of the base material is the bainitic nature of island martensite and base metal. Correlation is observed with the size of the ferrite (bainitic ferrite). 8).
  • the strain aging resistance is improved, and excellent buckling resistance can be ensured even after the coating treatment. For this purpose, it is important to control the area fraction of island martensite with high accuracy.
  • the present invention has been made by further study based on the above knowledge, that is, the present invention, 1.
  • the component composition of the base material is mass%, C: more than 0.03%, 0.08% or less, Si: 0.01 to 0.5%, Mn: 1.5 to 3.0%, P: 0 .015% or less, S: 0.003% or less, Al: 0.01 to 0.08%, Nb: 0.005 to 0.025%, Ti: 0.005 to 0.025%, N: 0.0.
  • the component composition of the weld metal of seam welding is mass%, C: 0.03-0.10%, Si: 0.5% or less, Mn: 1.5-3.0%, P: 0.015%
  • the balance consists of weld metal parts with Fe and inevitable impurities, The microstructure of the weld heat affected zone where the prior austenite grain size is 50 ⁇ m or more
  • the main axis is a bainite structure containing island martensite having an area ratio of 4% or more and 12% or less.
  • the chemical composition of the base metal part and / or the weld metal part is, by mass%, Ca: 0.0005 to 0.01%, REM: 0.0005 to 0.02%, Zr: 0.0005 to 0.00.
  • the steel having the base material component described in 7.1 or 5 is heated to a temperature of 1000 to 1300 ° C., and the cumulative rolling reduction exceeding 950 ° C. is 10% or more and the accumulation is 750 ° C. or less.
  • accelerated cooling is performed to a temperature of 450 ° C. or higher and lower than 650 ° C. at a cooling rate of 10 ° C./s or higher.
  • Buckling resistance and welding characterized by reheating to 500 to 750 ° C.
  • the steel sheet obtained by the manufacturing method described in 9.7 or 8 is formed into a cylindrical shape, and the welding heat input of each of the inner and outer surfaces when the butt portion is welded layer by layer from the inner and outer surfaces is 80 kJ / cm or less, Production of high strength welded steel pipe for low temperature excellent in buckling resistance and toughness of weld heat affected zone, characterized in that heat input balance on outer surface side and inner surface side satisfies following formula (3) Method. Inner surface heat input ⁇ Outer surface heat input (3) 10. 10.
  • the composition of the base metal constituting the steel pipe, the base metal microstructure and the tensile strength characteristics, the constituent composition of the weld metal in the seam weld of the steel pipe, and the old austenite near the fusion line in the longitudinal seam weld of the steel pipe The microstructure of the region where the particle size is 50 ⁇ m or more is defined.
  • C 0.03% or more and 0.08% or less C is a solid solution in a supersaturation in a low-temperature transformation structure such as a martensite structure or an island martensite structure in a second phase ( (Solid solution) contributes to an increase in strength. In order to obtain this effect, it is necessary to add more than 0.03%. However, if added over 0.08%, the hardness of the circumferential welded portion of the steel pipe is remarkably increased and cold cracking is likely to occur. Therefore, the upper limit is made 0.08%. In order to secure the amount of island martensite that is a hard phase necessary for controlling the yield ratio to be low, 0.05% or more is preferably added.
  • Si 0.01 to 0.5% Si is an element that acts as a deoxidizing agent and increases the strength of the steel by solid solution strengthening. However, if it is less than 0.01%, there is no effect, and if added over 0.5%, toughness Is significantly reduced, so the upper limit is made 0.5%. More preferably, it is 0.01 to 0.2%. By suppressing to 0.2% or less, it becomes possible to suppress the formation of island martensite (MA) contained in the upper bainite structure in the CGHAZ structure of the steel pipe seam welded portion, and to improve the joint HAZ toughness Can do.
  • MA island martensite
  • an upper limit shall be 0.2%.
  • Mn acts as a hardenability improving element.
  • the effect can be obtained by addition of 1.5% or more, but in the continuous casting process, the concentration rises at the center segregation part, and if it exceeds 3.0%, it causes delayed fracture at the center segregation part. Therefore, the upper limit is made 3.0%. More preferably, it is 1.6 to 2.5%.
  • Al acts as a deoxidizing element. A sufficient deoxidation effect can be obtained with addition of 0.01% or more, but if added over 0.08%, the cleanliness in the steel is lowered and the toughness is deteriorated, so the upper limit is 0.08%. And More preferably, it is 0.02 to 0.06%.
  • Nb 0.005 to 0.025%
  • Nb has an effect of expanding the austenite non-recrystallized region during hot rolling, and 0.005% or more is added to make the non-recrystallized region 950 ° C. or less.
  • the Charpy absorbed energy is significantly impaired among the toughness of HAZ and the toughness of the base material, so the upper limit is made 0.025%. More preferably, it is 0.010 to 0.025%.
  • Ti forms nitrides and is effective in reducing the amount of solute N in the steel.
  • the precipitated TiN suppresses the coarsening of austenite grains by the pinning effect, and contributes to the improvement of the toughness of the base material and HAZ. Addition of 0.005% or more is necessary to obtain the pinning effect, but if added over 0.025%, carbides are formed, and the toughness is significantly deteriorated by precipitation hardening. Is 0.025%. More preferably, it is 0.008 to 0.020%.
  • N 0.001 to 0.010%
  • N usually exists as an inevitable impurity in steel, but TiN is formed by addition of Ti.
  • TiN is formed by addition of Ti.
  • it is necessary to be present in the steel in an amount of 0.001% or more, but if it exceeds 0.010%, 1450 in the vicinity of the weld, particularly in the vicinity of the weld bond. Since TiN decomposes in a region heated to a temperature higher than or equal to 0 ° C. and the adverse effect of solute N is significant, the upper limit is made 0.010%. More preferably, it is 0.002 to 0.005%.
  • B 0.0003 to 0.0020%
  • B is an element that plays an important role in the present invention. Since the steel according to the present invention contains B, generation of polygonal ferrite is suppressed. For this reason, compared to steel not containing B, it becomes possible to carry out austenite zone rolling even at a lower temperature range, and as a result, the toughness evaluated in the DWTT test or the like is improved. In addition, B segregates at the austenite grain boundary in the heat affected zone, has the effect of improving hardenability, suppresses the formation of upper bainite containing MA harmful to toughness, and facilitates the formation of lower bainite or martensite. To do.
  • This effect is significant when added in an amount of 0.0003% or more and 0.0020% or less, and if added over 0.0020%, the toughness of both the base metal and the weld heat affected zone decreases due to precipitation of B-based carbides.
  • the upper limit is made 0.0020%.
  • a preferable range is 0.0005% or more and 0.0015% or less. More preferably, it is 0.0007 to 0.0012%.
  • Cu, Ni, Cr, Mo, V, one or more of Cu, Ni, Cr, Mo, V all act as a hardenability improving element, so for the purpose of increasing the strength, one of these elements, Or two or more of them are added.
  • Cu 0.01 to 1% Cu contributes to the hardenability improvement of steel by adding 0.01% or more. However, since addition of 1% or more causes toughness deterioration, the upper limit is set to 1%, and when Cu is added, 0.01 to 1%. More preferably, it is 0.1 to 0.5%.
  • Ni 0.01 to 1% Ni contributes to improving the hardenability of steel by adding 0.01% or more. In particular, even if added in a large amount, it does not cause toughness deterioration, so it is effective for toughening. However, since it is an expensive element, when Ni is added, the upper limit is 1%, and when Ni is added, it is 0. .01 to 1%. More preferably, it is 0.1 to 0.5%.
  • Cr 0.01 to 1% Cr also contributes to improving the hardenability of steel by adding 0.01% or more. On the other hand, if added over 1%, the toughness deteriorates, so the upper limit is made 1%, and when adding Cr, the content is made 0.01 to 1%. More preferably, it is 0.1 to 0.5%.
  • Mo 0.01 to 1% Mo also contributes to improving the hardenability of steel by adding 0.01% or more. On the other hand, if adding over 1%, the toughness deteriorates, so the upper limit is made 1%, and when adding Mo, 0.01 to 1%. More preferably, it is 0.1 to 0.5%.
  • V 0.01 to 0.1%
  • V forms precipitation strengthening by forming carbonitride, and contributes especially to the softening prevention of a weld heat affected zone. This effect can be obtained by addition of 0.01% or more, but if added over 0.1%, precipitation strengthening remarkably reduces toughness, so the upper limit is made 0.1% and 0 is added when V is added. .01 to 0.1%. More preferably, it is 0.01 to 0.05%.
  • O 0.005% or less
  • P 0.015% or less
  • S 0.003% or less
  • O, P, and S are inevitable impurities and define the upper limit of the content.
  • O is 0.005% or less in order to suppress the formation of inclusions that are coarse and adversely affect toughness. If the P content is large, the central segregation is remarkable and the base material toughness is deteriorated. If the content of S is large, the amount of MnS produced increases remarkably and the toughness of the base material deteriorates. More preferably, they are O: 0.003% or less, P: 0.01% or less, and S: 0.001% or less.
  • the present invention 760 MPa or more in tensile strength of the base material, and, in order to achieve the above 760 MPa in joint strength, the P CM was 0.19% or more, 0.25% or less in terms of the circumferential weld ensuring the To do. More preferably, it is 0.23% or less.
  • the above is the basic component composition of the base material part of the steel pipe according to the present invention.
  • one or more of Ca, REM, Zr, and Mg can be added.
  • Ca, REM, Zr, Mg Ca, REM, Zr, and Mg form oxysulfides or carbonitrides in steel, mainly for the purpose of suppressing the austenite grain coarsening in the weld heat affected zone by the pinning effect and improving toughness. Can be added.
  • Ca 0.0005 to 0.01%
  • the lower limit of Ca is 0.0005%.
  • the Ca addition amount exceeds 0.01%, coarse CaO is likely to be generated, and the toughness including the base material is reduced, and the ladle nozzle blockage is caused.
  • the upper limit is made 0.01%, and when added, 0.0005 to 0.01%. More preferably, it is 0.001 to 0.005%.
  • REM 0.0005 to 0.02% REM forms an oxysulfide in steel, and when added in an amount of 0.0005% or more, provides a pinning effect that prevents the weld heat affected zone from becoming coarse.
  • the upper limit is made 0.02%, and when added, it is made 0.0005 to 0.02%. More preferably, it is 0.001 to 0.005%.
  • Zr forms carbonitrides in the steel and brings about a pinning effect that suppresses the austenite grain coarsening particularly in the weld heat affected zone.
  • addition of 0.0005% or more is necessary.
  • the upper limit is made 0.03%, and when added, 0.0005 to 0.03%. More preferably, it is 0.001 to 0.01%.
  • Mg 0.0005 to 0.01%
  • Mg is produced as fine oxides in the steel during the steelmaking process, and in particular, has a pinning effect that suppresses the coarsening of austenite grains in the weld heat affected zone.
  • addition of 0.0005% or more is necessary, but if added over 0.01%, the cleanliness in the steel is lowered and the toughness is lowered.
  • the upper limit is 0.01%, and when added, the content is 0.0005 to 0.01%. More preferably, it is 0.001 to 0.005%.
  • composition composition of weld metal In the description of [Composition composition of weld metal],% means mass%.
  • C 0.03-0.10%
  • the weld metal part also needs to have a tensile strength of 760 MPa or more, and in order to obtain this strength, it is necessary to contain 0.03% or more. .
  • the upper limit was made 0.10%. More preferably, it is 0.05 to 0.08%.
  • Si 0.5% or less Si is useful for deoxidizing the weld metal and ensuring good workability. However, if it exceeds 0.5%, the weld workability is deteriorated. 5%. More preferably, it is 0.3% or less.
  • Mn 1.5 to 3.0% Mn is an important element for increasing the strength of the weld metal. In particular, in order to make the tensile strength 760 MPa or more, it is necessary to contain 1.5% or more. However, if it exceeds 3.0%, the weldability deteriorates, so the upper limit was made 3.0%. More preferably, it is 1.6 to 2.5%.
  • P 0.015% or less
  • S 0.005% or less
  • P and S are segregated at grain boundaries in the weld metal and deteriorate their toughness, so the upper limits were made 0.015% and 0.005%, respectively. . More preferably, they are 0.01% or less and 0.003% or less, respectively.
  • Al acts as a deoxidizing element.
  • the upper limit is set to 0.05%. More preferably, it is 0.03% or less.
  • Nb 0.005 to 0.05%
  • Nb is an element effective for increasing the strength of the weld metal.
  • it is necessary to contain 0.005% or more, but if it exceeds 0.05%, the toughness deteriorates, so the upper limit was made 0.05%. More preferably, it is 0.005 to 0.04%, and still more preferably 0.005 to 0.03%.
  • Ti acts as a deoxidizing element in the weld metal and is effective in reducing oxygen in the weld metal. To obtain this effect, 0.005% or more must be contained, but when it exceeds 0.03%, the excess Ti forms carbides and degrades the toughness of the weld metal. Was 0.03%. More preferably, it is 0.005 to 0.02%.
  • Reduction of the solid solution N in the weld metal also has an effect of improving toughness, and the upper limit is made 0.010% because it is remarkably improved especially by setting it to 0.010% or less. More preferably, it is 0.008% or less.
  • Reduction of the amount of oxygen in the weld metal has an effect of improving toughness, and the upper limit is made 0.045% because it is remarkably improved especially by setting it to 0.045% or less.
  • the amount of oxygen in the weld metal is less than 0.015%, the amount of oxide effective for refining the structure of the weld metal decreases, and conversely the toughness of the weld metal deteriorates, so the lower limit was made 0.015%. . More preferably, it is 0.015 to 0.035%.
  • B 0.0003 to 0.0050%
  • addition of B is effective in order to make the microstructure of the weld metal a fine bainite main structure. Addition of 0003% or more and 0.0050% or less is necessary.
  • a more preferable range is 0.0005 to 0.0050%, and a more preferable range is 0.0005 to 0.0030% or less. Even more preferably, it is 0.0007 to 0.0020%.
  • Cu, Ni, Cr, Mo, V one or more of Cu, Ni, Cr, Mo, V, when adding one or more of Cu, Ni, Cr, Mo, V, Cu: 0.01 to 1.0%, Ni: 0.0. 01 to 2.5%, Cr: 0.01 to 1.0%, Mo: 0.01 to 1.5%.
  • V 0.1% or less
  • An appropriate amount of V addition is an effective element because it increases strength without degrading toughness and weldability, and in order to exert this effect, it must contain 0.01% or more. preferable. On the other hand, if it exceeds 0.1%, the toughness of the reheated portion of the weld metal deteriorates significantly, so the upper limit was made 0.1%. More preferably, it is 0.05% or less.
  • the above is the basic component composition of the weld metal part of the steel pipe according to the present invention, but when further improving the toughness of the weld metal part, one or more of Ca, REM, Zr, and Mg can be added.
  • Ca, REM, Zr, Mg Ca, REM, Zr, and Mg can be added for the purpose of forming an oxysulfide or carbonitride in the steel, suppressing the austenite grain coarsening in the weld metal part by a pinning effect, and improving toughness.
  • Ca 0.0005 to 0.01%
  • the lower limit of Ca is 0.0005%.
  • the upper limit is 0.01%, and when added, 0.0005 to 0.01% And More preferably, it is 0.001 to 0.005%.
  • REM 0.0005 to 0.02% REM forms an oxysulfide in steel, and adding 0.0005% or more brings about a pinning effect that prevents coarsening of austenite grains in the weld metal part.
  • the upper limit is made 0.02%, and when added, it is made 0.0005 to 0.02%. More preferably, it is 0.001 to 0.01%.
  • Zr forms carbonitride in steel and brings about a pinning effect that suppresses coarsening of austenite grains in the weld metal part.
  • addition of 0.0005% or more is necessary, but if added over 0.03%, the cleanliness of the weld metal part is remarkably lowered and the toughness is lowered. Therefore, the upper limit is made 0.03%, and when added, 0.0005 to 0.03%. More preferably, it is 0.001 to 0.01%.
  • Mg 0.0005 to 0.01%
  • Mg is formed as a fine oxide and has a pinning effect that suppresses the coarsening of austenite grains in the weld metal part.
  • addition of 0.0005% or more is necessary.
  • the upper limit is made 0.01%, and when added, 0.0005 to 0.01%. More preferably, it is 0.001 to 0.005%.
  • Microstructure of base material In the present invention, excellent buckling resistance and a target of the Charpy impact test at ⁇ 40 ° C., the absorbed energy of 210 J or more when the plate thickness is less than 25 mm, and 150 J or more when the plate thickness is 25 mm or more are achieved. Therefore, in order to obtain excellent strain aging characteristics, it is preferable to define the microstructure of the base material. By defining the microstructure of the base material, it is possible to achieve the target ductile fracture surface ratio of 85% or more at ⁇ 20 ° C. in the DWTT test.
  • the tensile strength characteristic of the base material is a round house type and an SS curve (curve) having a high work hardening coefficient (n value).
  • the yield ratio (0.5% yield strength / tensile strength) is an index equivalent to the n value, and a soft phase and a hard phase are combined in order to achieve a low yield ratio of 85% or less. Organize in two phases.
  • bainite is used as the soft phase
  • island martensite is used as the hard phase.
  • the area ratio of island martensite is preferably 4% or more.
  • the bainite of the microstructure of the base material refers to bainitic ferrite in a narrow sense.
  • the long axis diameter of the island martensite exceeds 2 ⁇ m, it becomes difficult to achieve a ductile fracture surface ratio of 85% or more in the DWTT test (test temperature: ⁇ 20 ° C.).
  • the major axis diameter of island martensite exceeds 2 ⁇ m and the major axis diameter of bainitic ferrite surrounded by a boundary having a misorientation angle of 15 ° or more exceeds 20 ⁇ m, the thickness is less than 25 mm.
  • the Charpy absorption energy at ⁇ 40 ° C. is 210 J or more and the plate thickness is 25 mm or more, it becomes difficult to achieve Charpy absorption energy at ⁇ 40 ° C. of 150 J or more.
  • the area ratio of island martensite exceeds 12%, it is difficult to achieve the above-mentioned base material toughness due to refinement of the microstructure. If the area ratio of the island-shaped martensite is in the range of 4 to 12%, a yield ratio of 85% or less can be achieved.
  • the area ratio of the island-like martensite is in the range of 4 to 12% means that the microstructure includes the bainite and the island-like martensite as well as the remaining structure within the allowable range as described later. This means that the area ratio of island martensite to the whole is in the range of 4 to 12%.
  • the microstructure of the base steel sheet mainly composed of a bainite structure containing island martensite having an area ratio of 4% or more and 12% or less excellent strain aging characteristics can be obtained as described later.
  • C is concentrated to an untransformed austenite phase by bainite transformation that occurs during accelerated cooling and subsequent reheating, and the untransformed austenite that is enriched in C becomes island-like martensite. Therefore, the amount of solute C in the bainite phase is smaller than in the case of steel of the prior art.
  • the yield stress (YS) rises due to strain aging and is accompanied by a high temperature and a long thermal history in a general steel pipe coating process at 250 ° C. for 30 minutes.
  • the yield ratio and the decrease in uniform elongation can be suppressed, and even if the steel according to the present invention is subjected to a thermal history that deteriorates the characteristics due to strain aging, the present invention steel has a uniform elongation of 5% or more. And, yield ratio: 85% or less can be secured.
  • the microstructure of the base steel sheet is mainly composed of a bainite structure containing island martensite having an area ratio of 4% or more and 12% or less, and the major axis diameter of the island martensite contained is 2 ⁇ m or less.
  • the major axis diameter of bainitic ferrite surrounded by a boundary having a misorientation angle of 15 ° or more is specified to be 20 ⁇ m or less.
  • mainly a bainite structure including island-shaped martensite means that 95% or more of the entire structure is the structure, and that the remainder includes pearlite or martensite.
  • the area ratio of island martensite is identified by observing at least 10 fields of view randomly with a scanning electron microscope (magnification ratio 2000 times) at the center of the plate thickness.
  • the lower bainite structure in which fine cementite is precipitated in the lath is excellent in toughness while maintaining high strength, and this structure can be obtained by increasing the hardenability.
  • a method by adding a component such as B or a method by increasing the cooling rate in the ⁇ - ⁇ transformation section of the weld heat affected zone by a decrease in welding heat input can be considered.
  • the ratio of the most brittle structure (LBZ) is 50 ⁇ m near the melting line.
  • the prior austenite grain size is 50 ⁇ m near the melting line.
  • the steel having the above-described component composition is heated to a temperature of 1000 to 1300 ° C., and the cumulative reduction rate at over 950 ° C. is 10% or more, and the cumulative reduction rate at 750 ° C. or less is 75% or more.
  • accelerated cooling to a temperature of 450 ° C. or higher and lower than 650 ° C. is performed at a cooling rate of 10 ° C./s or higher. Reheating to 500 to 750 ° C. above the accelerated cooling stop temperature at a speed to produce a base steel plate.
  • the heating temperature, rolling end temperature, cooling end temperature, reheating temperature, and other temperatures are the average temperature of the steel sheet.
  • the average temperature is obtained by calculation based on the surface temperature of the slab or steel plate, taking into account parameters such as plate thickness and thermal conductivity.
  • the cooling rate is an average cooling rate obtained by dividing the temperature difference necessary for cooling to the cooling end temperature (less than 450 to 650 ° C.) by the time required for the cooling after the hot rolling is completed.
  • the heating rate is an average temperature increase rate obtained by dividing the temperature difference required for reheating up to the reheating temperature (500 to 750 ° C.) by the time required for reheating after cooling.
  • each manufacturing condition will be described in detail.
  • Heating temperature 1000-1300 °C
  • the lower limit temperature for complete austenite is 1000 ° C.
  • the upper limit was set to 1300 ° C. More preferably, it is 1000 to 1150 ° C.
  • Cumulative rolling reduction above 950 ° C . Rolling in the austenite recrystallization region for 10% or more suppresses mixing of grains such as formation of coarse austenite grains. Since the effect cannot be expected when the cumulative rolling reduction is less than 10%, the cumulative rolling reduction at over 950 ° C. is set to 10% or more.
  • Cumulative rolling reduction at 750 ° C. and 950 ° C. or less 20% or more Rolling on the relatively high temperature side of the austenite non-recrystallized region suppresses mixing of grains such as formation of coarse austenite grains. If the cumulative rolling reduction at 750 ° C. and 950 ° C. corresponding to this temperature range is less than 20%, the effect is small. Therefore, the cumulative rolling reduction at 750 ° C. and 950 ° C. or less is preferably 20% or more.
  • Cumulative rolling reduction at 750 ° C. or lower: 75% or more A bay in which austenite grains are expanded by accumulating large pressure in this temperature region on the low temperature side of the austenite non-recrystallized region, and then transformed by accelerated cooling. Nitic ferrite and island martensite are refined and toughness is greatly improved.
  • the cumulative rolling reduction at 750 ° C. or less is set to 75% or more. More preferably, it is 80% or more. It is a feature of the present invention that cumulative large pressure reduction is performed in this temperature region on the low temperature side of the austenite non-recrystallized region. As described above, since the steel according to the present invention contains B, generation of polygonal ferrite is suppressed.
  • austenite non-recrystallized region spreads to a lower temperature region than steel not containing B. For this reason, even if it is simply austenite non-recrystallized zone rolling, it becomes possible to carry out austenite non-recrystallized zone rolling in a temperature range lower than that of conventional steel, so the effect of improving toughness through refinement of the structure is remarkable. It will be.
  • Rolling end temperature 650 ° C. or more
  • the hot rolling end temperature is less than 650 ° C.
  • proeutectoid ferrite is generated from the austenite grain boundaries in the subsequent air cooling process, which causes a decrease in the base material strength.
  • the lower limit temperature was set to 650 ° C. More preferably, it is 650 to 700 ° C.
  • Cooling rate of accelerated cooling 10 ° C./s or more
  • the microstructure needs to be a bainite-based structure. For this reason, accelerated cooling is performed after hot rolling.
  • the cooling rate of accelerated cooling is set to 10 ° C./s or more. More preferably, it is 12 to 50 ° C./s.
  • Cooling stop temperature of accelerated cooling less than 450 to 650 ° C. This process is an important production condition in the present invention.
  • accelerated cooling is completed during the bainite transformation, that is, in a temperature range where untransformed austenite exists. Immediately after that, reheating is performed, and transformation from untransformed austenite to bainite occurs.
  • the bainitic ferrite in bainite that is formed at such a relatively high temperature, the amount of C solid solution is small, so that C Discharged into untransformed austenite. Therefore, as the bainite transformation proceeds during reheating, the amount of C in the untransformed austenite increases.
  • the cooling stop temperature is less than 450 ° C, it is difficult to secure sufficient untransformed austenite, and sufficient island martensite cannot be obtained during air cooling after reheating, and a low yield ratio of 85% or less is achieved. Can not.
  • the cooling stop temperature is 650 ° C. or higher, C is consumed in the pearlite that precipitates during cooling and no island-like martensite is generated, so the upper limit was made less than 650 ° C.
  • the temperature is more preferably 500 to 550 ° C.
  • Reheating rate after stopping cooling 0.5 ° C / s or more Concentrating C in untransformed austenite by reheating immediately after accelerated cooling, and generating island martensite in the subsequent air cooling process Can do.
  • reheating immediately after accelerated cooling means starting reheating at a temperature rising rate of 0.5 ° C./s or more within 3 minutes after stopping accelerated cooling.
  • the rate of temperature increase is less than 0.5 ° C./s, cementite in the bainite becomes coarse and the base material toughness decreases, so the rate of temperature increase is 0.5 ° C./s or more. More preferably, it is 1.0 to 10 ° C./s.
  • Reheating temperature after stopping cooling 500 ⁇ 750 °C
  • the reheating temperature is less than 500 ° C., C concentration to austenite does not occur sufficiently, and the required island-like martensite area ratio cannot be ensured.
  • the reheating temperature is specified to be 750 ° C. or less. Preferably, it is 700 degrees C or less. From the viewpoint of balance between strength and toughness, the temperature is more preferably 580 to 680 ° C. There is no need to set the temperature holding time at the reheating temperature.
  • the cooling after reheating is preferably basically air cooling.
  • reheating after accelerated cooling is performed with a radio-frequency heating apparatus arranged on the same line (inline) as the accelerated cooling apparatus, it is possible to heat immediately after the accelerated cooling. Is preferable.
  • the area ratio and particle size of island martensite are controlled, the tensile strength is 760 MPa or more and 930 MPa or less, the uniform elongation is 5% or more, and the ratio of 0.5% proof stress to the tensile strength
  • the ductile fracture surface ratio is 85% or more
  • the Charpy absorbed energy at -40 ° C is less than 25 mm
  • the plate is 210 J or more.
  • the thickness is 25 mm or more, a steel sheet having a high toughness of 150 J or more can be obtained.
  • the high-temperature steel pipe for low temperature excellent in buckling resistance performance and toughness of the heat affected zone according to the present invention is obtained by using a U-press and an O-press in accordance with a conventional method using a base steel plate having the above-described tensile strength characteristics.
  • O-press is made into a cylindrical shape, and then manufactured by seam welding.
  • Seam welding is performed by submerged arc welding on the inner and outer surfaces one after the other after tack welding, and the flux used for submerged arc welding is not particularly limited. (Fused flux) or calcined flux (baked flux) may be used. Moreover, preheating before welding or heat treatment after welding (post weld treatment: abbreviated as PWHT) is performed as necessary.
  • the plate thickness P CM is from 0.19 to 0.25% of the base material steel plate in the above-mentioned composition of ingredients at about 20 mm ⁇ 40 mm, the following heat input 80 kJ / cm
  • Such a structure is effective in improving the low-temperature toughness of LBZ (Local Brittle Zone) where the toughness is most deteriorated in the joint HAZ shown in FIG.
  • FIG. 1A shows a Charpy test piece 1 having an outer surface FL notch
  • FIG. 1B shows a Charpy test piece 3 having a root-FL notch
  • the most brittle structure 4 (LBZ) at the notch position means a HAZ coarse grain 8 (CGHAZ) structure (former austenite grain size of 50 ⁇ m or more) in the vicinity of the bond 7 in the outer surface side welding, and the HAZ on the inner surface in the root part of the inner surface side welding.
  • the heat input balance between the outer surface side welding and the inner surface side welding satisfies the following formula (3), the ⁇ grain coarsening of the HAZ coarse grain (CGHAZ) portion on the inner surface side can be suppressed, and the outer surface
  • the joint HAZ toughness sampled from the FL (Fusion line) position on the side and the root side can be stably achieved.
  • “Securing stably” means that the cumulative failure probability when the joint HAZ Charpy test is performed 100 times or more at a test temperature of ⁇ 30 ° C. or less is 1% or less.
  • the lower bainite structure refers to the precipitation of carbides mainly composed of cementite in the lath of bainitic ferrite having a lath width of 1 ⁇ m or less, and the upper bainite is an island martensite (MA) and / or between the laths. Or it contains cementite.
  • the hardness is 250 ⁇ HV (98N) ⁇ 350, and the joint HAZ Charpy is tested 100 times or more at a test temperature of ⁇ 30 ° C.
  • Excellent weld heat-affected zone toughness with a cumulative failure probability of 1% or less when the test is carried out is achieved.
  • tube expansion is performed at a tube expansion rate of 0.4% or more and 2.0% or less according to the required roundness.
  • the tube expansion ratio is less than 0.4%, it is difficult to achieve the usually required roundness particularly when the plate thickness is 20 mm or more.
  • the pipe expansion rate is more than 2.0%, there is a concern that the strain concentration at the bond portion at the boundary between the weld metal and the weld heat affected zone is excessively increased and the pipe expansion cracks.
  • the joint characteristics may deteriorate due to excessive strain introduction. From the viewpoint of improving the roundness and securing the joint strength and toughness, it is preferably 0.5 to 1.5%.
  • the microstructure of the HAZ coarse grain (CGHAZ) in the weld heat affected zone where the prior austenite grain size is 50 ⁇ m or more near the melting line is randomly located at a position 6 mm from the outer surface with a scanning electron microscope (5000 times magnification). Observe over 10 fields of view to identify.
  • Steels having various chemical compositions shown in Table 1 are melted in a converter and made into slabs having a thickness of 170 to 250 mm by continuous casting, followed by hot rolling and accelerated cooling shown in Table 2.
  • Steel plates 1 to 10 were produced under reheating conditions. The reheating was performed using an induction heating type heating device installed on the same line as the accelerated cooling facility.
  • these steel sheets were formed by U-press and O-press, and then subjected to internal seam welding by submerged arc welding and then external seam welding. Thereafter, the tube was expanded at a tube expansion ratio of 0.6 to 1.2% to obtain a steel tube having an outer diameter of 400 to 1626 mm.
  • Tables 3-1 and 3-2 show chemical compositions of the weld metal parts 6 and 5 of the inner surface seam welding and the outer surface seam welding of the steel pipes 1-1 to 10.
  • a full thickness tensile test piece based on API-5L was taken from the pipe axis direction for the base metal part and from the pipe circumferential direction for the seam welded part, and subjected to a tensile test. Carried out.
  • V-notch Charpy impact test specimens 1 and 3 were collected from two positions of outer surface FL and Root-FL shown in FIGS. A Charpy impact test was performed at a test temperature of ⁇ 30 ° C. The notch position 2 was a position where HAZ and weld metal exist at a ratio of 1: 1.
  • HAZ toughness The test results of the hardness of HAZ coarse particles (CGHAZ) and the toughness of HAZ coarse particles (CGHAZ) (hereinafter referred to as HAZ toughness) are collectively shown in Tables 4-1 and 4-2.
  • V-notch Charpy impact test piece of JIS Z2202 (1980) was collected from the center position of the thickness of the base material portion of the steel pipe, and the Charpy impact test was performed at a test temperature of ⁇ 40 ° C.
  • a DWTT test piece compliant with API-5L was taken from the steel pipe and tested at a test temperature of ⁇ 20 ° C. to obtain an SA value (Share Area: ductile fracture surface ratio).
  • the tensile strength of the base steel sheet is 760 MPa or more and 930 MPa or less, has a uniform elongation of 5% or more, and the ratio of 0.5% proof stress to the tensile strength is 85% or less and the test temperature in the base material is ⁇ 40 ° C. If the Charpy absorbed energy is less than 25 mm, 210 J or more, if the thickness is 25 mm or more, 150 J or more, DWTSA-20 ° C. is 85% or more, and the strength of the seam welded joint of the steel pipe is 760 MPa or more and 930 MPa or less. Charpy absorbed energy at a test temperature of ⁇ 30 ° C. in the grains (CGHAZ) of 100 J or more is within the target range of the present invention.
  • Test No. 1, 2, and 3 are examples of the invention in which the base material and the welded portion satisfy the provisions of claims 1 and 4, and the desired strength, yield ratio, uniform elongation, toughness of the base material part and the seam welded part It exhibits high HAZ toughness, and in the microstructure of the base material part, it mainly comprises a bainite structure containing island martensite with an area ratio of 4% or more and 12% or less, and the major axis diameter of the contained island martensite is 2 ⁇ m or less. In addition, the major axis diameter of bainitic ferrite surrounded by a boundary having a misorientation angle of 15 ° or more was 20 ⁇ m or less.
  • test no. 4, 5 and 6 have base material components within the scope of the invention described in claim 1, but the rolling reduction of 750 ° C. or less in the rolling of the steel sheet was less than 75% (see Table 2). Toughness decreased. The microstructure of the welded portion satisfies the provisions of claim 1 and good toughness is obtained.
  • Test No. 7, 8, and 9 have base metal components within the scope of the invention described in claim 1, but have high welding heat input, and the lower bainite fraction in the microstructure of the HAZ coarse grain (CGHAZ) portion of the joint is described in claim 1. Since the fraction of the upper bainite structure was higher than the prescribed lower limit, the HAZ toughness was reduced in both the outer surface side and the inner surface side Root portion.
  • CGHAZ coarse grain
  • Test No. No. 10 was a B-free system, and because the fraction of the upper bainite structure was high, the HAZ toughness was reduced in both the outer surface side and the inner surface side Root portion.
  • P CM is below the lower limit of the present invention, the tensile strength and the tensile strength of the joint of the base metal is less than 760 MPa,
  • the HAZ coarse grain (CGHAZ) structure became the upper bainite structure, and the HAZ toughness decreased in both the outer surface side and the inner surface side Root portion.
  • HAZ coarse (CGHAZ) structure becomes martensite, the outer surface side, HAZ toughness on the inner surface side Root portion both decreased.
  • Test No. 13 is a welding heat input of 80 kJ / cm or less on both the inner surface side and the outer surface side, but the welding heat input on the inner surface side is higher than the welding heat input on the outer surface side, and the austenite grain size is large in the microstructure of the Root part. Therefore, a coarse upper bainite structure was obtained, and the HAZ toughness on the root side was lowered. [Example 2]
  • Steels having various chemical compositions shown in Table 5 were melted in a converter and made into slabs having a thickness of 160 to 250 mm by continuous casting, followed by hot rolling and accelerated cooling shown in Table 6.
  • Steel plates 11 to 24 were produced under reheating conditions. The reheating was performed using an induction heating type heating device installed on the same line as the accelerated cooling facility.
  • these steel sheets were formed by U-press and O-press, and then subjected to internal seam welding by submerged arc welding and then external seam welding. Thereafter, the tube was expanded at a tube expansion ratio of 0.6 to 1.2% to obtain a steel tube having an outer diameter of 400 to 1626 mm.
  • Tables 7-1 and 7-2 show the chemical compositions of the weld metal parts of the inner surface seam welding and outer surface seam welding of the steel pipes 11-1 to 11-24.
  • a full thickness tensile test piece based on API-5L was taken from the pipe axis direction for the base metal part and from the pipe circumferential direction for the seam welded part, and subjected to a tensile test. Carried out.
  • V-notch Charpy impact test specimens 1 and 3 were collected from two positions of outer surface FL and Root-FL shown in FIGS. A Charpy impact test was performed at a test temperature of ⁇ 30 ° C. The notch position 2 was a position where HAZ and weld metal exist at a ratio of 1: 1.
  • HAZ toughness The test results of the hardness of HAZ coarse particles (CGHAZ) and the toughness of HAZ coarse particles (CGHAZ) (hereinafter referred to as HAZ toughness) are collectively shown in Tables 8-1 and 8-3.
  • V-notch Charpy impact test piece of JIS Z2202 (1980) was collected from the center position of the thickness of the base material portion of the steel pipe, and the Charpy impact test was performed at a test temperature of ⁇ 40 ° C.
  • a DWTT test piece compliant with API-5L was taken from the steel pipe and tested at a test temperature of ⁇ 20 ° C. to obtain an SA value (Share Area: ductile fracture surface ratio).
  • the tensile strength of the base steel sheet is 760 MPa or more and 930 MPa or less, has a uniform elongation of 5% or more, and the ratio of 0.5% proof stress to the tensile strength is 85% or less and the test temperature in the base material is ⁇ 40 ° C. If the Charpy absorbed energy is less than 25 mm, 210 J or more, if the thickness is 25 mm or more, 150 J or more, DWTSA-20 ° C. is 85% or more, and the strength of the seam welded joint of the steel pipe is 760 MPa or more and 930 MPa or less. Charpy absorbed energy at a test temperature of ⁇ 30 ° C.
  • the tensile test of the base material, the Charpy test, and the Charpy test of the welding heat affected zone (HAZ) were similarly implemented and evaluated.
  • the evaluation criteria after the strain aging treatment were determined based on the same criteria as the evaluation criteria before the strain aging treatment described above.
  • Test No. 14, 15, 16, 17, and 18 are examples of the invention in which the base material and the welded portion satisfy the provisions of claims 1 and 4, and the desired base material strength, yield ratio, uniform elongation, toughness, and The high HAZ toughness of seam welds is shown, and in the microstructure of the base metal part, the major axis diameter of the island-like martensite is mainly composed of a bainite structure containing island-like martensite with an area ratio of 4% to 12%.
  • the major axis diameter of bainitic ferrite which is 2 ⁇ m or less and surrounded by a boundary having an orientation difference angle of 15 ° or more was 20 ⁇ m or less.
  • test no. 19, 20, 21, and 22 the base material component is within the scope of the invention of claim 1, but the rolling reduction of 750 ° C. or less was less than 75% in rolling the steel sheet (see Table 6).
  • Base material toughness decreased. The microstructure of the welded portion satisfies the provisions of claim 1 and good toughness is obtained.
  • Test No. Nos. 23, 24, 25, and 26 have the base material component within the scope of the invention of claim 1, but have high welding heat input, and the lower bainite fraction is claimed in the microstructure of the HAZ coarse grain (CGHAZ) portion of the joint. Since the upper limit of the upper bainite structure was higher than the prescribed lower limit of 1 described above, the HAZ toughness was reduced in both the outer surface side and the inner surface side Root portion.
  • Test No. No. 27 was a B-free system, and the HAB toughness was reduced in both the outer surface side and the inner surface side Root portion because the fraction of the upper bainite structure was increased.
  • P CM is below the lower limit of the present invention, the tensile strength and the tensile strength of the joint of the base metal is less than 760 MPa,
  • the HAZ coarse grain (CGHAZ) structure became the upper bainite structure, and the HAZ toughness decreased in both the outer surface side and the inner surface side Root portion.
  • HAZ coarse (CGHAZ) structure becomes martensite, the outer surface side, HAZ toughness on the inner surface side Root portion both decreased.
  • the base material toughness also deteriorated.
  • Test No. No. 30 is a welding heat input of 80 kJ / cm or less on both the inner surface side and the outer surface side, but the welding heat input on the inner surface side is higher than the welding heat input on the outer surface side, and the austenite grain size is large in the microstructure of the root part. Therefore, a coarse upper bainite structure was obtained, and the HAZ toughness on the root side was lowered.
  • Test No. 14 to 18 the results of the tensile test and Charpy test of the base metal, the Charpy test of the weld heat affected zone (HAZ), etc. after the strain aging treatment of holding at 250 ° C. for 30 minutes are the same as those before strain aging. It was an excellent one.
  • test no. In the comparative example of 31, since the cooling stop temperature at the time of steel plate production was too low, the necessary MA fraction could not be secured, and before and after the strain aging treatment of holding at 250 ° C. for 30 minutes, The evaluation criteria for yield ratio were not met.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Plasma & Fusion (AREA)
  • Manufacturing & Machinery (AREA)
  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

耐座屈性能と溶接熱影響部靭性に優れたAPIX100級高強度鋼管およびその製造方法を提供する。具体的には、質量%で、C:0.03%超え、0.08%以下、Si:0.01~0.5%、Mn:1.5~3.0%、P:0.015%以下、S:0.005%以下、Al:0.01~0.08%、Nb:0.005~0.025%、Ti:0.005~0.025%、N:0.001~0.010%、O:0.005%以下、B:0.0003~0.0020%、更にCu、Ni、Cr、Mo、Vの一種または二種以上、0.19≦PCM≦0.25、残部Feおよび不可避的不純物、TS760~930MPa、5%以上の一様伸び、YR85%以下の母材で、シーム溶接金属の成分組成が特定され、溶接熱影響部で旧オーステナイト粒径が50μm以上のミクロ組織が、下部ベイナイトまたは面積率で少なくとも50%以上の下部ベイナイトと、上部ベイナイトおよび/またはマルテンサイトを備えた混合組織とする。

Description

耐座屈性能及び溶接熱影響部靭性に優れた低温用高強度鋼管およびその製造方法
 本発明は、API(American Petroleum Institute)X100級の強度を有する高強度鋼管(high strength steel pipe)に関し、特に、板厚が20mm~40mm程度で地盤変動(ground deformation)の激しい地震地帯(seismic region)や凍土地帯(permafrost region)で用いる天然ガス(natural gas)及び原油(crude oil)の輸送用鋼管に好適な耐座屈性能(buckling resistance)及び溶接熱影響部(welded heat affected zone)の靭性(toughness)に優れたものに関する。なお、本発明に係る高強度鋼管には、APIX100級の規格すべてを満足するもののほか、APIX100級の引張強さを有しつつ、その他の一部の特性をAPI規格範囲外に調整したものも含まれる。
 近年、天然ガスや原油の輸送用として使用される溶接鋼管は、高圧化による輸送効率(transport efficiency)の向上や薄肉化による現地溶接(on−site welding)の施工能率の向上が課題とされ、年々高強度化するとともに、厚肉化も進展しつつある。
 また、鋼管の用いられる環境が寒冷かつ地盤変動地帯へと拡大しているため、溶接部の低温靭性(low−temperature toughness)や耐座屈性能の向上も課題とされ、これらの課題を解決する厚肉のX100級の鋼管の開発が要望されている。
 X100級の鋼管に用いられる高強度鋼板の成分設計では、強度・靭性を確保する上で、B添加が有効とされているが、鋼管の場合は低温割れ感受性(cold cracking susceptibility)などの溶接性も満足させることが重要で、従来、X100級の鋼管の成分設計では、小入熱溶接(low heat input welding)となる鋼管同士をつなぐ円周溶接部(circumferential weld zone)における低温割れ(cold cracking)を防止するため、母材鋼板に焼入性(hardenability)の高いボロン(B)を添加しない成分設計(chemical composition design)が基本とされていた(例えば、非特許文献1,2)。
 しかし、鋼板の強度が高くなるにつれて、シーム溶接部(seam weld zone)の溶接入熱(welding heat input)によってはB添加により、優れたシーム溶接熱影響部の靭性が得られることも報告され(例えば、非特許文献3)、特許文献1には鋼管のシーム溶接部において溶接金属(weld metal)に含有するBの母材への拡散により溶融線(fusion line)近傍のシーム溶接熱影響部の靭性を向上することも示されている。
 一方、B添加系高強度鋼の溶接熱影響部においては、溶融線からやや離れた旧オーステナイト粒径(prior austenite grain size)が150μm以下と小さい場合においても靭性に有害な島状マルテンサイト(MAとも称す:Martensite−Austenite Constituent)を多量に含む上部ベイナイト組織(upper bainite structure)主体となり靭性が低下する場合もあり、高強度鋼においてはB添加が溶接熱影響部の靭性に及ぼす影響は十分把握されているとは言い難い。
 管厚20mmを超える厚肉のX100級の鋼管の成分設計においても、強度・靭性・変形性能や円周溶接性を確保しつつ、シーム溶接部で優れた溶接熱影響部の低温靭性を確保するため、溶接熱影響部の組織に及ぼすB添加の影響が種々検討されている。
 特許文献2~5は、高強度溶接鋼管およびその製造方法に関し、いずれも母材成分にBを添加する場合は、溶接熱影響部の靭性を考慮して適正量の添加とすることが記載されている。更に、特許文献4,5では、母材の合金量を適正とする場合、B添加の有無によって異なるパラメータ式(parameter formula)を使い分けることが提案されている。
特開2006−328523号公報 特開2008−56961号公報 特開2004−131799号公報 特開2003−306749号公報 特開2003−293078号公報
NKK技報No.138(1992),pp24−31 NKK Technical Review No.66(1992) 溶接学会誌No.50(1981)
 近年、APIX100級の高強度溶接鋼管には、耐座屈性能が要求される場合があるが、特許文献2~5では、この点について十分な検討がなされていない。たとえば、特許文献2では、溶接熱影響部の靭性改善技術が開示されているものの、母材の変形性能については検討されていない。
 特許文献3は、X80級を対象としたものであり、本発明とは、対象とする強度レベルが異なる。特許文献4および5では、母材部の管軸方向(pipe axis direction)の引張試験(tensile test)における一様伸び(uniform elongation)を規定しているが、後述のように耐座屈性能を向上させるためには引張強度に対する0.5%耐力(proof strength)の割合(降伏比(YR:Yield ratio))を低く制御することが重要であるところ、これらに関する検討がなされていない。
 一方、ラインパイプに用いられるUOE鋼管やERW鋼管のような溶接鋼管は、鋼板を冷間で管状に成形して、突合せ部を溶接後、通常防食等の観点から鋼管外面にコーティング処理が施されるため、製管時の加工歪みとコーティング処理時の加熱により歪時効が生じ、0.5%耐力が上昇し、コーティング処理後の鋼管における降伏比は鋼板における降伏比よりも大きくなってしまうという問題がある。しかしながら、特許文献1~5に記載の技術では、この点について解決されていない。このため、コーティング処理後も低降伏比を有し、その結果、高い耐座屈性能を有する高強度溶接鋼管が求められていた。
 本発明は、APIX100級の厚肉鋼管に用いられる母材鋼板を対象に溶接性(weldability)や溶接熱影響部の靭性に及ぼすB添加の影響を明らかとし、引張強度が760MPa以上930MPa以下で、5%以上の一様伸びを有し、かつ引張強度に対する0.5%耐力の割合(降伏比(YR:Yield ratio))が85%以下の母材性能を有しながら、−30℃における溶接ボンド部のシャルピー吸収エネルギー(charpy absorbed energy)が100J以上のAPIX100級で耐座屈特性、溶接熱影響部の靭性に優れる、管厚20mm以上の低温用高強度鋼管を提供することを目的とする。また、本発明は、さらに、コーティング処理後の耐座屈性能をも考慮し、コーティング処理後の鋼管においても上記と同等の強度特性および変形性能を有する高強度溶接鋼管を提供することを目的とする。
 本発明者等は、耐座屈性能および溶接熱影響部靭性に優れた管厚20mm以上の低温用高強度鋼管を開発するため、鋭意研究を行い、以下の知見を得た。
1.鋼管のシーム溶接部の溶接熱影響部(HAZ:Heat Affected Zone)において靭性が最も低下する部位(最脆化組織LBZ:Local Brittle Zoneと称す)は、外面側ではボンド近傍のHAZ粗粒(以下、CGHAZ(Coarse−grain HAZ)と称す)組織であり、内面側のRoot部では内面のCGHAZ組織が2相域(Ac~Ac点)に再加熱されるICCGHAZ(Inter−critically Coarse−grain HAZ)組織であり、いずれもHAZ粗粒域(溶融線近傍の旧オーステナイト粒径が50μm以上となる領域:Coarse−grain HAZ、CGHAZ)が起因となる。なお、Root部とは内面溶接金属と外面溶接金属がクロスする会合部近傍を指す。
2.母材のPCM値と、溶接後の冷却においてγ(austenite)−α(ferrite)相変態する800℃から500℃の温度域の冷却速度(cooling rate)を調整することによって、外面側や内面側によらず、CGHAZのミクロ組織を、下部ベイナイト組織(lower bainite structure)あるいは、硬質相(hard phase)のMAを大量に含む上部ベイナイトや、強度の高いマルテンサイト(martensite)を一定の面積分率以下とした下部ベイナイト主体の組織とすることで靭性が向上する。特に、下部ベイナイトを少なくとも面積分率(area fraction)で50%以上確保した組織とすると最も靭性が向上し、−30℃におけるシャルピー吸収エネルギーが大幅に向上する。
 3.上述したミクロ組織(microstructure)のCGHAZ組織を得るためには、母材へのボロン(B)添加が最も有効であり、溶接入熱が80kJ/cm以下(800−500℃の冷却速度で4℃/sec以上に相当)の場合、APIX100級の母材強度が確保されるPCMが0.19~0.25%の成分組成において、好適なB添加量の範囲は5~15ppmである。
 4.耐座屈性能を向上させる場合、座屈開始時の曲げ圧縮側(flexural compression side)の圧縮座屈(compressive buckling)の限界歪(limit strain)と曲げ引張側(flexural tensile side)の破断(fracture)の限界歪の向上が必要で、それぞれ引張強度に対する0.5%耐力の比(降伏比)を85%以下とし、一様伸びを5%以上とすることが有効である。
 5.板厚20mmを超える厚肉かつ高強度の鋼板において、DWTT試験に代表される靱性評価試験で目標の−20℃での延性破面率(ductile fracture surface area retio)85%以上を達成するためには、従来以上にミクロ組織を微細化する必要がある。
 6.粗大な島状マルテンサイト組織は破壊の発生・伝播を促進し、所望の低温靱性を確保するためには島状マルテンサイトや焼戻しマルテンサイト(tempered martensite)の組織サイズを高精度にコントロール(control)することが重要である。
 7.母材靱性のDWTT(drop weight tear test)−20℃の延性破面率は島状マルテンサイトのサイズと相関が認められ、母材のシャルピー吸収エネルギーは島状マルテンサイトおよび母地のベイニティックフェライト(bainitic ferrite)のサイズと相関が認められる。
 8.母材組織を島状マルテンサイトを有するベイナイト組織とすることにより、耐歪時効性が向上し、コーティング処理後も優れた耐座屈性を確保できる。このためには、島状マルテンサイトの面積分率を高精度にコントロールすることが重要である。
 本発明は上記知見を基に更に検討を加えてなされたもので、すなわち、本発明は、
1.母材の成分組成が、質量%で、C:0.03%超え、0.08%以下、Si:0.01~0.5%、Mn:1.5~3.0%、P:0.015%以下、S:0.003%以下、Al:0.01~0.08%、Nb:0.005~0.025%、Ti:0.005~0.025%、N:0.001~0.010%、O:0.005%以下、B:0.0003~0.0020%を含有し、
更に、Cu:0.01~1%、Ni:0.01~1%、Cr:0.01~1%、Mo:0.01~1%、V:0.01~0.1%の一種または二種以上を含有し、
下記式(1)で計算されるPCM値(単位は%)が0.19≦PCM≦0.25を満足し、残部がFeおよび不可避的不純物であり、
母材の引張特性が、760MPa以上930MPa以下の引張強度と5%以上の一様伸びで、降伏比が85%以下であり、かつ試験温度−40℃でのシャルピー吸収エネルギーが、板厚25mm未満の場合には210J以上であり、板厚25mm以上の場合には150J以上である母材部と、
シーム溶接の溶接金属の成分組成が、質量%で、C:0.03~0.10%、Si:0.5%以下、Mn:1.5~3.0%、P:0.015%以下、S:0.005%以下、Al:0.05%以下、Nb:0.005~0.05%、Ti:0.005~0.03%、N:0.010%以下、O:0.015~0.045%、B:0.0003~0.0050%を含有し、
更に、Cu:0.01~1%、Ni:0.01~2.5%、Cr:0.01~1%、Mo:0.01~1.5%、V:0.1%以下の一種または二種以上を含有し、
残部がFe及び不可避的不純物である溶接金属部からなり、
鋼管のシーム溶接部における溶融線近傍で旧オーステナイト粒径が50μm以上となる溶接熱影響部のミクロ組織が、下部ベイナイト、または、面積率で少なくとも50%以上の下部ベイナイトと、上部ベイナイトおよび/またはマルテンサイトを備えた混合組織であることを特徴とする耐座屈性能および溶接熱影響部靭性に優れた低温用高強度鋼管。
CM(%)=C+Si/30+Mn/20+Cu/20+Ni/60+Cr/20+Mo/15+V/10+5×B…(1)
但し、各元素は含有量(質量%)を示す。
2.鋼管の長手方向に内外面から1層ずつ溶接した鋼管のシーム溶接部において、外面側の溶融線近傍の溶接熱影響部硬さが下記式(2)を満たすことを特徴とする1に記載の耐座屈性能および溶接熱影響部靭性に優れた低温用高強度鋼管。
250≦HV(98N)≦350 …(2)
但し、HV(98N):10kgfで測定したビッカース硬度を示す。
3.鋼管のシーム溶接部の継手強度が760MPa以上930MPa以下であることを特徴とする1または2に記載の耐座屈性能および溶接熱影響部靭性に優れた低温用高強度鋼管。
4.鋼管の母材部のミクロ組織において、面積率4%以上12%以下の島状マルテンサイトを含むベイナイト組織を主体とし、含有する島状マルテンサイトの長軸径が2μm以下であり、かつ、方位差角15°以上の境界で囲まれるベイニティックフェライトの長軸径(long axes size)が20μm以下であることを特徴とする、1乃至3のいずれか一つに記載の耐座屈性能および溶接熱影響部の靭性に優れた低温用高強度鋼管。
5.更に、母材部及び/または溶接金属部の化学成分に、質量%で、Ca:0.0005~0.01%、REM:0.0005~0.02%、Zr:0.0005~0.03%、Mg:0.0005~0.01%の一種または二種以上を含有することを特徴とする1乃至4のいずれか一つに記載の耐座屈性能および溶接熱影響部靭性に優れた低温用高強度鋼管。
6.さらに250℃以下の温度で30分以下の歪時効処理を施した後においても一様伸びが5%以上、降伏比が85%以下であることを特徴とする4または5に記載の耐座屈性能および溶接熱影響部靭性に優れた低温用高強度鋼管。
7.1または5に記載の母材成分を有する鋼を、1000~1300℃の温度に加熱し、950℃超えでの累積圧下率(cumulative rolling reduction)が10%以上、750℃以下での累積圧下率が75%以上となるように650℃以上の圧延終了温度で熱間圧延した後、10℃/s以上の冷却速度で450℃以上650℃未満の温度まで加速冷却し、その後ただちに0.5℃/s以上の昇温速度(heating rate)で加速冷却(accelerated cooling)の停止温度(stopping temperature)以上の500~750℃まで再加熱を行うことを特徴とする、耐座屈性能および溶接熱影響部靭性に優れた低温用高強度鋼管用鋼板の製造方法。
8.さらに、前記熱間圧延において750℃超え950℃以下での累積圧下率が20%以上であることを特徴とする、7に記載の耐座屈性能および溶接熱影響部靭性に優れた低温用高強度鋼管用鋼板の製造方法。
9.7または8に記載の製造方法により得られる鋼板を筒状に成形し、その突合せ部を内外面から1層ずつ溶接する際の内外面それぞれの溶接入熱が80kJ/cm以下であり、外面側および内面側の入熱バランス(heat input balance)が下記式(3)を満たすことを特徴とする、耐座屈性能および溶接熱影響部の靭性に優れた低温用高強度溶接鋼管の製造方法。
内面入熱≦外面入熱 …(3)
10.鋼管の長手方向に内外面から1層ずつ溶接した後、0.4%以上、2.0%以下の拡管率(expansion ratio)にて拡管(pipe expansion)することを特徴とする9記載の低温用高強度溶接鋼管の製造方法。
 本発明によれば、耐座屈性能、母材靱性およびシーム溶接部の溶接熱影響部靭性に優れた、APIX100級の、管厚が20mm以上の低温用高強度鋼管が得られ、産業上極めて有用である。
溶接継手シャルピー試験における外面FLノッチ(notch)のシャルピー試験片1のノッチ位置2を説明する図である。 溶接継手シャルピー試験におけるRoot−FLノッチのシャルピー試験片3のノッチ位置2を説明する図である。
 本発明では、鋼管を構成する母材の成分組成、母材ミクロ組織および引張強度特性、鋼管のシーム溶接部における溶接金属の成分組成、更には鋼管の縦シーム溶接部における溶融線近傍の旧オーステナイト粒径が50μm以上となる領域のミクロ組織を規定する。
 [母材の成分組成]説明において%は質量%とする。
C:0.03%超え、0.08%以下
Cはマルテンサイト組織等の低温変態組織(low−temperature transformation structure)や第2相の島状マルテンサイト組織においては過飽和(supersaturation)に固溶(solid solution)することで強度上昇に寄与する。この効果を得るためには0.03%を超える添加が必要であるが、0.08%を超えて添加すると、鋼管の円周溶接部の硬度上昇が著しくなり、溶接低温割れが発生しやすくなるため、上限を0.08%とする。なお、降伏比を低く制御する上で必要な硬質相である島状マルテンサイトの量を確保するためには、好ましくは0.05%以上添加する。
 Si:0.01~0.5%
Siは脱酸材(deoxidizing agent)として作用し、さらに固溶強化により鋼材の強度を増加させる元素であるが、0.01%未満ではその効果がなく、0.5%を超えて添加すると靱性が著しく低下するため上限を0.5%とする。より好ましくは、0.01~0.2%である。0.2%以下に抑制することで、鋼管シーム溶接部のCGHAZ組織中の上部ベイナイト組織に含まれる島状マルテンサイト(MA)の生成を抑制することが可能となり、継手HAZ靱性を向上させることができる。また、0.2%以下に抑制することで、鋼管母材部ミクロ組織中の島状マルテンサイトの過剰な生成を抑制し、母材靱性を向上させることができる。このため、好ましくは、上限を0.2%とする。
 Mn:1.5~3.0%
Mnは焼入性向上元素として作用する。1.5%以上の添加によりその効果が得られるが、連続鋳造プロセスでは中心偏析部での濃度上昇が著しく、3.0%を超える添加を行うと、中心偏析部での遅れ破壊の原因となるため、上限を3.0%とする。より好ましくは、1.6~2.5%である。
 Al:0.01~0.08%
Alは脱酸元素として作用する。0.01%以上の添加で十分な脱酸効果が得られるが、0.08%を超えて添加すると鋼中の清浄度が低下し、靱性劣化の原因となるため、上限を0.08%とする。より好ましくは、0.02~0.06%である。
 Nb:0.005~0.025%
Nbは熱間圧延時のオーステナイト未再結晶領域を拡大する効果があり、950℃以下を未再結晶領域とするため、0.005%以上添加する。一方、0.025%を超えて添加すると、HAZの靱性および母材の靱性のうち特にシャルピー吸収エネルギーを著しく損ねることから上限を0.025%とする。より好ましくは、0.010~0.025%である。
 Ti:0.005~0.025%
Tiは窒化物を形成し、鋼中の固溶N量低減に有効で、析出したTiNはピンニング効果でオーステナイト粒の粗大化を抑制して、母材、HAZの靱性向上に寄与する。当該ピンニング効果を得るためには0.005%以上の添加が必要であるが、0.025%を超えて添加すると炭化物を形成するようになり、その析出硬化で靱性が著しく劣化するため、上限を0.025%とする。より好ましくは、0.008~0.020%である。
 N:0.001~0.010%
Nは通常鋼中の不可避不純物として存在するが、Ti添加により、TiNを形成する。TiNによるピンニング効果で、オーステナイト粒の粗大化を抑制するために0.001%以上鋼中に存在することが必要であるが、0.010%を超える場合、溶接部、特に溶接ボンド近傍で1450℃以上に加熱された領域でTiNが分解し、固溶Nの悪影響が著しいため、上限を0.010%とする。より好ましくは、0.002~0.005%である。
 B:0.0003~0.0020%
Bは、本発明において重要な役割を果たす元素である。本発明にかかる鋼はBを含有するので、ポリゴナルフェライトの生成が抑制される。このため、Bを含有しない鋼に比べて、より低温域でも、オーステナイト域圧延を実施することが可能となり、その結果、DWTT試験などで評価される靱性が向上する。また、Bは溶接熱影響部においてオーステナイト粒界に偏析し、焼入性を高める効果があり、靭性に有害なMAを含む上部ベイナイトの生成を抑制し、下部ベイナイトあるいはマルテンサイトの生成を容易にする。
 この効果は0.0003%以上、0.0020%以下の添加で顕著であり、0.0020%を超えて添加すると、B系炭化物の析出により母材および溶接熱影響部ともに靭性が低下するため、上限を0.0020%とする。また、0.0003%未満の場合、溶接熱影響部において上部ベイナイト組織の生成が顕著となるため、下限を0.0003%とする。なお、好ましい範囲は0.0005%以上0.0015%以下である。より好ましくは、0.0007~0.0012%である。
 Cu、Ni、Cr、Mo、Vの一種または二種以上
Cu、Ni、Cr、Mo、Vはいずれも焼入性向上元素として作用するため、高強度化を目的に、これらの元素の一種、または二種以上を添加する。
 Cu:0.01~1%
Cuは、0.01%以上添加することで鋼の焼入性向上に寄与する。しかし、1%以上の添加を行うと、靱性劣化が生じるため、上限を1%とし、Cuを添加する場合は、0.01~1%とする。より好ましくは、0.1~0.5%である。
 Ni:0.01~1%
Niは、0.01%以上添加することで鋼の焼入性向上に寄与する。特に、多量に添加しても靭性劣化を生じないため、強靱化に有効であるが、高価な元素であるため、Niを添加する場合は、上限を1%とし、Niを添加する場合は0.01~1%とする。より好ましくは、0.1~0.5%である。
 Cr:0.01~1%
 Crもまた0.01%以上添加することで鋼の焼入性向上に寄与する。一方、1%を超えて添加すると、靱性が劣化するため、上限を1%とし、Crを添加する場合は0.01~1%とする。より好ましくは、0.1~0.5%である。
 Mo:0.01~1%
 Moもまた0.01%以上添加することで鋼の焼入性向上に寄与する。一方、1%を超えて添加すると、靱性が劣化するため、上限を1%とし、Moを添加する場合は0.01~1%とする。より好ましくは、0.1~0.5%である。
 V:0.01~0.1%
 Vは炭窒化物を形成することで析出強化し、特に溶接熱影響部の軟化防止に寄与する。0.01%以上の添加によりこの効果が得られるが、0.1%を超えて添加すると、析出強化が著しく靱性が低下するため、上限を0.1%とし、Vを添加する場合は0.01~0.1%とする。より好ましくは、0.01~0.05%である。
 O:0.005%以下、P:0.015%以下、S:0.003%以下
本発明でO、P、Sは不可避的不純物であり含有量の上限を規定する。Oは、粗大で靱性に悪影響を及ぼす介在物生成を抑制するため、0.005%以下とする。Pは、含有量が多いと中央偏析が著しく、母材靭性が劣化するため、0.015%以下とする。Sは、含有量が多いとMnSの生成量が著しく増加し、母材の靭性が劣化するため、0.003%以下とする。より好ましくは、O:0.003%以下、P:0.01%以下、S:0.001%以下である。
 PCM(%):0.19~0.25
CMはC+Si/30+Mn/20+Cu/20+Ni/60+Cr/20+Mo/15+V/10+5×Bで表す溶接割れ感受性指数で、各元素は含有量(質量%)とし、含有しない元素は0とする。
 本発明では、母材の引張強さで760MPa以上、および、継手強度で760MPa以上を達成するため、PCMを0.19%以上とし、円周溶接性確保の観点から0.25%以下とする。さらに、より好ましくは、0.23%以下である。
 以上が本発明に係る鋼管の母材部の基本成分組成であるが、溶接部の靭性を更に向上させる場合、Ca、REM、Zr、Mgの一種または二種以上を添加することができる。
Ca、REM、Zr、Mg
 Ca、REM、Zr、Mgは鋼中で酸硫化物あるいは炭窒化物を形成し、主に溶接熱影響部におけるオーステナイト粒粗大化をピンニング効果(pinning effect)で抑制し、靱性を向上させる目的で添加することができる。
 Ca:0.0005~0.01%
製鋼プロセスにおいて、Ca添加量が0.0005%未満の場合、脱酸反応支配でCaSの確保が難しく靱性改善効果が得られないので、Caを添加する場合にはCaの下限を0.0005%とする。
 一方、Ca添加量が0.01%を超えた場合、粗大CaOが生成しやすくなり、母材を含めて靱性が低下するうえに、取鍋(ladle)のノズル閉塞(nozzle blockage)の原因となり、生産性を阻害するため、上限は0.01%とし、添加する場合は、0.0005~0.01%とする。より好ましくは、0.001~0.005%である。
 REM:0.0005~0.02%
REMは鋼中で酸硫化物(oxysulphide)を形成し、0.0005%以上添加することで溶接熱影響部の粗大化を防止するピンニング効果をもたらす。しかし、高価な元素であり、かつ0.02%を超えて添加しても効果が飽和するため、上限を0.02%とし、添加する場合は、0.0005~0.02%とする。より好ましくは、0.001~0.005%である。
 Zr:0.0005~0.03%
Zrは鋼中で炭窒化物(carbonitride)を形成し、とくに溶接熱影響部においてオーステナイト粒の粗大化を抑制するピンニング効果をもたらす。十分なピンニング効果を得るためには、0.0005%以上の添加が必要であるが、0.03%を超えて添加すると、鋼中の清浄度が著しく低下し、靱性が低下するようになるため、上限を0.03%とし、添加する場合は、0.0005~0.03%とする。より好ましくは、0.001~0.01%である。
 Mg:0.0005~0.01%
Mgは製鋼過程で鋼中に微細な酸化物として生成し、特に、溶接熱影響部においてオーステナイト粒の粗大化を抑制するピンニング効果をもたらす。十分なピンニング効果を得るためには、0.0005%以上の添加が必要であるが、0.01%を超えて添加すると、鋼中の清浄度が低下し、靱性が低下するようになるため、上限を0.01%とし、添加する場合は、0.0005~0.01%とする。より好ましくは、0.001~0.005%である。
 [溶接金属の成分組成]説明において%は質量%とする。
 C:0.03~0.10%
溶接金属においてもCは鋼の強化元素として重要な元素である。特に、継手部のオーバーマッチング(over matching)を達成するため、溶接金属部においても引張強度を760MPa以上とする必要があり、この強度を得るために0.03%以上含有している必要がある。一方、0.10%を超えていると、溶接金属の高温割れが発生しやすくなるため、上限を0.10%とした。より好ましくは、0.05~0.08%である。
 Si:0.5%以下
Siは溶接金属の脱酸ならびに良好な作業性を確保するために有用であるが、0.5%を超えると、溶接作業性の劣化を引き起こすため、上限を0.5%とした。より好ましくは、0.3%以下である。
 Mn:1.5~3.0%
Mnは溶接金属の高強度化に重要な元素である。特に、引張強度を760MPa以上とするためには1.5%以上含有させる必要があるが、3.0%を超えると溶接性が劣化するため、上限を3.0%とした。より好ましくは、1.6~2.5%である。
 P:0.015%以下,S:0.005%以下
P,Sは溶接金属中では粒界に偏析し、その靱性を劣化させるため、上限をそれぞれ0.015%,0.005%とした。より好ましくは、それぞれ0.01%以下,0.003%以下である。
 Al:0.05%以下
Alは脱酸元素として作用するが、溶接金属部においてはむしろTiによる脱酸の方が靱性改善効果が大きく、かつAl酸化物系の介在物が多くなると溶接金属シャルピーの吸収エネルギーの低下が起こるため、積極的には添加せず、その上限を0.05%とする。より好ましくは、0.03%以下である。
 Nb:0.005~0.05%
Nbは溶接金属の高強度化に有効な元素である。特に、引張強度を760MPa以上とするためには0.005%以上含有させる必要があるが、0.05%を超えると靭性が劣化するため、上限を0.05%とした。より好ましくは、0.005~0.04%であり、さらに好ましくは、0.005~0.03%である。
 Ti:0.005~0.03%
Tiは溶接金属中では脱酸元素として働き、溶接金属中の酸素の低減に有効である.この効果を得るためには0.005%以上の含有が必要であるが、0.03%を超えた場合、余剰となったTiが炭化物を形成し、溶接金属の靱性を劣化させるため、上限を0.03%とした。より好ましくは、0.005~0.02%である。
 N:0.010%以下
溶接金属中の固溶Nの低減もまた靱性改善効果があり、特に0.010%以下とすることで著しく改善されるため、上限を0.010%とした。より好ましくは、0.008%以下である。
 O:0.015~0.045%
溶接金属中の酸素量の低減は靱性改善効果があり、特に0.045%以下とすることで著しく改善されるため、上限を0.045%とした。一方、溶接金属中の酸素量を0.015%未満とすると溶接金属の組織微細化に有効な酸化物量が低下し、逆に溶接金属の靭性が劣化するため、下限を0.015%とした。より好ましくは、0.015~0.035%である。
 B:0.0003~0.0050%
 強度グレードが760MPa以上930MPa以下のラインパイプ用溶接管においては、溶接金属のミクロ組織を微細なベイナイト主体組織とするために、B添加が有効であり、このような効果を得るためには0.0003%以上、0.0050%以下の添加が必要である。なお、より好ましい範囲は、0.0005~0.0050%であり、さらに好適な範囲は0.0005~0.0030%以下である。より一層好ましくは、0.0007~0.0020%である。
 Cu、Ni、Cr、Mo、Vの一種または二種以上
 Cu、Ni、Cr、Mo、Vの一種または二種以上を添加する場合、Cu:0.01~1.0%、Ni:0.01~2.5%、Cr:0.01~1.0%、Mo:0.01~1.5%とする。
 母材と同様にCu,Ni,Cr,Moは溶接金属においても焼入性を向上させるので、ベイナイト組織化のために、一種または二種以上を、いずれも0.01%以上含有させる。ただし、その量が多くなると溶接ワイヤへの合金元素添加量が多大となり、ワイヤ強度が著しく上昇する結果、サブマージアーク溶接時のワイヤ送給性に障害が生じるためCu,Ni,Cr,Moはそれぞれ上限を、1.0%,2.5%,1.0%,1.5%とした。より好ましくは、Cu:0.01~0.5%、Ni:0.01~2.3%、Cr:0.01%以上0.5%未満、Mo:0.01~1.2%である。NiおよびMoのさらに好ましい範囲は、それぞれ、Ni:0.01~2.0%、Mo:0.01~1.0%であり、よりいっそう好ましい範囲は、それぞれ、Ni:0.5~2.0%、Mo:0.1~1.0%である。
 V:0.1%以下
適量のV添加は靱性および溶接性を劣化させずに強度を高めることから有効な元素であり、この効果を発揮させるためには0.01%以上を含有することが好ましい。一方、0.1%を超えると溶接金属の再熱部の靱性が著しく劣化するため、上限を0.1%とした。より好ましくは、0.05%以下である。
 以上が本発明に係る鋼管の溶接金属部の基本成分組成であるが、溶接金属部の靭性を更に向上させる場合、Ca、REM、Zr、Mgの一種または二種以上を添加することができる。
 Ca、REM、Zr、Mg
 Ca、REM、Zr、Mgは鋼中で酸硫化物あるいは炭窒化物を形成し、溶接金属部におけるオーステナイト粒粗大化をピンニング効果で抑制し、靱性を向上させる目的で添加することができる。
 Ca:0.0005~0.01%
製鋼プロセスにおいて、Ca添加量が0.0005%未満の場合、脱酸反応支配でCaSの確保が難しく靱性改善効果が得られないので、Caを添加する場合にはCaの下限を0.0005%とする。
 一方、Ca添加量が0.01%を超えた場合、粗大CaOが生成しやすくなり、靱性が低下するため、上限は0.01%とし、添加する場合は、0.0005~0.01%とする。より好ましくは、0.001~0.005%である。
 REM:0.0005~0.02%
REMは鋼中で酸硫化物を形成し、0.0005%以上添加することで溶接金属部のオーステナイト粒の粗大化を防止するピンニング効果をもたらす。しかし、高価な元素であり、かつ0.02%を超えて添加しても効果が飽和するため、上限を0.02%とし、添加する場合は、0.0005~0.02%とする。より好ましくは、0.001~0.01%である。
 Zr:0.0005~0.03%
Zrは鋼中で炭窒化物を形成し、溶接金属部においてオーステナイト粒の粗大化を抑制するピンニング効果をもたらす。十分なピンニング効果を得るためには、0.0005%以上の添加が必要であるが、0.03%を超えて添加すると、溶接金属部の清浄度が著しく低下し、靱性が低下するようになるため、上限を0.03%とし、添加する場合は、0.0005~0.03%とする。より好ましくは、0.001~0.01%である。
 Mg:0.0005~0.01%
Mgは微細な酸化物として生成し、溶接金属部においてオーステナイト粒の粗大化を抑制するピンニング効果をもたらす。十分なピンニング効果を得るためには、0.0005%以上の添加が必要であるが、0.01%を超えて添加すると、溶接金属中の清浄度が低下し、靱性が低下するようになるため、上限を0.01%とし、添加する場合は、0.0005~0.01%とする。より好ましくは、0.001~0.005%である。
 [母材のミクロ組織]
 本発明では、優れた耐座屈性能と、−40℃でのシャルピー衝撃試験で目標の、板厚25mm未満の場合には210J以上、板厚25mm以上の場合には150J以上の吸収エネルギーを達成するため、そして、優れた耐歪時効特性を得るため、母材のミクロ組織を規定することが好ましい。母材のミクロ組織を規定することにより、DWTT試験で目標の−20℃での延性破面率85%以上を達成することもできる。
 耐座屈性能を有する鋼管を得るため、母材の引張強度特性をラウンドハウス型、かつ高い加工硬化指数(work hardening coefficient)(n値)を有するS−Sカーブ(curve)とする。n値と同等の指標として降伏比(0.5%降伏強度(yield strength)/引張強度)があり、85%以下の低降伏比を達成するため軟質相(soft phase)と硬質相を組み合わせて2相組織化する。
 本発明では、軟質相としてベイナイト、を、硬質相として島状マルテンサイトを用いる。上記降伏比を達成するためには島状マルテンサイトの面積率を4%以上が好ましい。なお、本発明において、母材のミクロ組織のベイナイトとは、狭義には、ベイニティックフェライトのことを指すものとする。
 島状マルテンサイトの長軸径が2μmを超えると、DWTT試験(試験温度:−20℃)において85%以上の延性破面率を達成することが困難となる。また、島状マルテンサイトの長軸径が2μmを超え、かつ、方位差角15°以上の境界で囲まれるベイニティックフェライトの長軸径が20μmを超えると、板厚25mm未満の場合には−40℃でのシャルピー吸収エネルギー210J以上、板厚25mm以上の場合には−40℃でのシャルピー吸収エネルギー150J以上を達成することが困難となる。
 一方、島状マルテンサイトの面積率が12%を超えると、ミクロ組織の微細化により上記母材靱性を達成することが困難である。なお、上記の島状マルテンサイトの面積率4~12%の範囲であれば、85%以下の降伏比を達成することが可能である。ここで、島状マルテンサイトの面積率が4~12%の範囲であるとは、ベイナイトおよび島状マルテンサイトのほか、後述するように許容される範囲内の残部組織をも含めた、ミクロ組織全体に対する島状マルテンサイトの面積率が4~12%の範囲であることを指すものである。
 また、母材鋼板のミクロ組織を、面積率4%以上12%以下の島状マルテンサイトを含むベイナイト組織を主体とすることにより、後述するように、優れた耐歪時効特性を得ることができる。
 これは、後述の製造プロセスにおいて、加速冷却時、および、その後の再加熱時に生じるベイナイト変態によって、Cが未変態オーステナイト相に濃化し、このCが濃化した未変態オーステナイトが島状マルテンサイトになるため、ベイナイト相の固溶C量が従来技術の鋼の場合に比べ少なくなるためである。
 その結果、本発明においては、250℃で30分という、一般的な鋼管のコーティング工程では高温かつ長時間に相当する熱履歴を経ても、歪時効による降伏応力(YS)上昇や、これに伴う降伏比の上昇や一様伸びの低下を抑制することができ、従来鋼であれば歪時効により特性劣化するような熱履歴を受けても、本発明鋼では、一様伸び:5%以上、および、降伏比:85%以下を確保することができる。
 そのため、本発明では、母材鋼板のミクロ組織は、面積率4%以上12%以下の島状マルテンサイトを含むベイナイト組織を主体とし、含有する島状マルテンサイトの長軸径が2μm以下であり、かつ、方位差角(misorientation)15°以上の境界で囲まれるベイニティックフェライトの長軸径が20μm以下となるように規定する。
 なお、島状マルテンサイトを含むベイナイト組織を主体とするとは、全体の95%以上が該組織であることを意味し、残部にパーライト(pearlite)やマルテンサイトを含むことを許容する。島状マルテンサイトの面積率は、板厚中心位置で走査型電子顕微鏡(electron scanning microscope)(倍率(magnification ratio)2000倍)でランダム(random)に10視野以上観察して同定する。
 [溶接熱影響部のミクロ組織]
 鋼管の高強度化に伴い、従来の溶接入熱では溶接熱影響部のミクロ組織として粗大な島状マルテンサイトを含む上部ベイナイトを形成しやすく、低温靱性が劣化する。そこで粗大な島状マルテンサイトを含む上部ベイナイトを一定面積率以下に抑制することが必要となる。
 特に、ラス(lath)内に微細なセメンタイト(cementite)が析出した下部ベイナイト組織は高強度を保ちながら、靱性に優れることが知られており、焼入れ性を高めることで本組織が得られる。焼入れ性を高める手段としては、B等の成分添加による方法あるいは溶接入熱低下による溶接熱影響部のγ—α変態区間の冷却速度を増加させる方法が考えられる。
 一方、シャルピー試験に代表される靱性評価試験において、特に溶接熱影響部の試験では様々な最高到達温度に加熱された熱影響部組織や、溶接金属等の複合的な組織をノッチ底に有しており、各熱影響部組織の材質だけではなく、各熱影響部の組織サイズの影響を受けるため、靱性のばらつきが生じやすい。
 このため、安定して優れた低温靱性を確保するためには、最脆化組織(LBZ:Local Brittle Zone)の割合を一定分率以下に抑制する必要がある。特に、−30℃の試験温度で100回以上の継手HAZシャルピー試験を実施したときの累積破損確率(cumulative failure probability)が1%以下となるためには、溶融線近傍で旧オーステナイト粒径が50μm以上となる溶接熱影響部において、粗大な島状マルテンサイトを含有する上部ベイナイト組織を面積率で50%以下に抑制し、面積率で少なくとも50%以上の下部ベイナイト組織を得ることが重要となる。
 [母材鋼板の製造条件]
 本発明では、上述した成分組成を有する鋼を、1000~1300℃の温度に加熱し、950℃超えでの累積圧下率が10%以上、750℃以下での累積圧下率が75%以上となるように650℃以上の圧延終了温度で熱間圧延した後、10℃/s以上の冷却速度で450℃以上650℃未満の温度まで加速冷却し、その後ただちに0.5℃/s以上の昇温速度で加速冷却停止温度以上の500~750℃まで再加熱を行い、母材鋼板を製造する。
 鋼板の製造方法の限定理由について説明する。
 なお、本発明において、加熱温度、圧延終了温度、冷却終了温度および、再加熱温度等の温度は鋼板の平均温度とする。平均温度は、スラブもしくは鋼板の表面温度より、板厚、熱伝導率等のパラメータを考慮して、計算により求めたものである。また、冷却速度は、熱間圧延終了後、冷却終了温度(450~650℃未満)まで冷却するのに必要な温度差をその冷却を行うのに要した時間で割った平均冷却速度である。
 また、加熱速度は、冷却後、再加熱温度(500~750℃)までの再加熱に必要な温度差を再加熱するのに要した時間で割った平均昇温速度である。以下、各製造条件について詳しく説明する。
 加熱温度:1000~1300℃
熱間圧延を行うにあたり、完全にオーステナイト化するための下限温度は1000℃である。一方、1300℃を超える温度まで鋼片を加熱すると、TiNピンニングを行っていても、オーステナイト粒成長が著しく、母材靱性が劣化するため、上限を1300℃とした。より好ましくは、1000~1150℃である。
 950℃超えでの累積圧下率:10%以上
オーステナイト再結晶域で圧延を行うことで、粗大オーステナイト粒の生成等の混粒化が抑制される。累積圧下率が10%未満では効果が期待できないため、950℃超えでの累積圧下率を10%以上とした。
 750℃超え950℃以下での累積圧下率:20%以上
オーステナイト未再結晶域の比較的高温側で圧延を行うことで、粗大オーステナイト粒の生成等の混粒化が抑制される。この温度域に相当する750℃超え950℃以下での累積圧下率が20%未満では効果が小さいため、750℃超え950℃以下での累積圧下率を20%以上とすることが好ましい。
 750℃以下での累積圧下率:75%以上
オーステナイト未再結晶域の低温側のこの温度域にて累積で大圧下を行うことにより、オーステナイト粒が伸展し、その後の加速冷却で変態生成するベイニティックフェライトおよび島状マルテンサイトが微細化し、靱性が大幅に向上する。
 本発明では、低降伏比を達成するために、第2相に島状マルテンサイトを分散させるため、特に圧下率を75%以上としてベイナイトの微細化を促進し、靱性低下を防ぐ必要がある。よって、750℃以下での累積圧下率を75%以上とした。より好ましくは、80%以上である。
 なお、オーステナイト未再結晶域の低温側のこの温度域にて累積で大圧下を行うのは、本発明の特徴である。前述のように、本発明に係る鋼はBを含有するので、ポリゴナルフェライトの生成が抑制される。すなわち、Bを含有しない鋼に比べて、オーステナイト未再結晶域が、より低温域に広がる。このため、単にオーステナイト未再結晶域圧延といっても、従来鋼よりも低い温度域でオーステナイト未再結晶域圧延を実施することが可能となるので、組織の微細化を通じた靭性向上効果が顕著になるものである。
 圧延終了温度:650℃以上
熱間圧延終了温度が650℃未満では、その後の空冷過程においてオーステナイト粒界から初析フェライトが生成し、母材強度低下の原因となることから、初析フェライト生成を抑制するため、下限温度を650℃とした。より好ましくは、650~700℃である。
 加速冷却の冷却速度:10℃/s以上
引張強度760MPa以上の高強度を達成するため,ミクロ組織をベイナイト主体の組織にする必要がある。このため,熱間圧延後加速冷却を実施する。冷却速度が10℃/s未満の場合、比較的高温でベイナイト変態が開始するため、十分な強度を得ることができない。よって、加速冷却の冷却速度を10℃/s以上とした。より好ましくは、12~50℃/sである。
 加速冷却の冷却停止温度:450~650℃未満
このプロセスは本発明において、重要な製造条件である。本発明では、まず、加速冷却をベイナイト変態途中すなわち未変態オーステナイトが存在する温度域で終了する。その後ただちに再加熱を行い、未変態オーステナイトからベイナイトへの変態が生じるが、このように比較的高温で生成するベイナイト中のベイニティックフェライトでは、そのC固溶量が少ないため、Cが周囲の未変態オーステナイトへ排出される。そのため、再加熱時のベイナイト変態の進行に伴い、未変態オーステナイト中のC量が増加する。このとき、オーステナイト安定化元素である、Mn、Si等が一定以上含有されていると、再加熱終了時でもCが濃縮した未変態オーステナイトが残存する。そして、再加熱後の冷却過程(空冷)でMAへと変態する。こうして、最終的に、母材組織は島状マルテンサイトを含むベイナイト組織となる。
 すなわち、加速冷却においては、ベイナイト変態途中の未変態オーステナイトが存在する温度域で冷却を停止する必要がある。冷却停止温度が450℃未満では、十分な未変態オーステナイトを確保することが困難であり、再加熱後の空冷時に十分な島状マルテンサイトが得られず、85%以下の低降伏比化が達成できない。
 一方、冷却停止温度が650℃以上になると冷却中に析出するパーライトにCが消費され島状マルテンサイトが生成しないため、上限を650℃未満とした。強度・靱性バランスの観点から、より好ましくは、500~550℃である。
 冷却停止後の再加熱の昇温速度:0.5℃/s以上
 加速冷却後ただちに再加熱することで、未変態オーステナイトにCを濃縮させ、その後の空冷過程で島状マルテンサイトを生成させることができる。なお、ここで、加速冷却後ただちに再加熱するとは、加速冷却停止後、3分以内に0.5℃/s以上の昇温速度での再加熱を開始することをいう。
 昇温速度が0.5℃/s未満の場合、ベイナイト中のセメンタイトが粗大化し、母材靱性が低下するため、昇温速度は0.5℃/s以上とする。より好ましくは、1.0~10℃/sである。
 冷却停止後の再加熱温度:500~750℃
 再加熱温度が500℃未満では、十分にオーステナイトへのC濃化が起こらず、必要とする島状マルテンサイト面積率を確保することができない。
 一方、再加熱温度が750℃を超えると、加速冷却で変態させたベイナイトが再びオーステナイト化してしまい十分な強度が得られないため、再加熱温度を750℃以下に規定する。好ましくは、700℃以下である。強度・靱性バランスの観点から、より好ましくは、580~680℃である。再加熱温度において、特に温度保持時間を設定する必要はない。
 また、再加熱後の冷却過程において冷却速度によらず島状マルテンサイトは生成するため、再加熱後の冷却は基本的には空冷とすることが好ましい。ここで、加速冷却後の再加熱は、加速冷却装置と同一ライン上(インライン(inline))に配置した高周波加熱装置(radio−frequency heating apparatus)で行うと加速冷却後、直ちに加熱することが可能で好ましい。
 なお、鋼の製鋼方法については特に限定しないが、経済性の観点から、転炉法による製鋼プロセスと、連続鋳造プロセスによる鋼片の鋳造を行うことが望ましい。
 以上の製造プロセスにより、島状マルテンサイトの面積率および粒径を制御し、760MPa以上930MPa以下の引張強度で、5%以上の一様伸びを有し、引張強度に対する0.5%耐力の割合が85%以下の高変形性能を有しながら、−20℃でのDWTT試験において延性破面率85%以上、−40℃でのシャルピー吸収エネルギーが板厚25mm未満の場合には210J以上、板厚25mm以上の場合には150J以上の高靱性を有する鋼板を得ることが可能となる。
 なお、以上の製造プロセスにより、上記の母材ミクロ組織に制御することで、すなわち、面積率4%以上12%以下の島状マルテンサイトを含むベイナイト組織を主体とすることにより、鋼管とした後250℃程度のコーティング加熱(coating heating)を受けても降伏比85%以下を維持することが可能となり、加速冷却ままの製造プロセスでは得られない優位な耐歪時効特性(strain ageing resistance)が得られる。
 [鋼管の製造条件]
 本発明に係る耐座屈性能および溶接熱影響部の靭性に優れた低温用高強度鋼管は上述した引張強度特性を備えた母材鋼板を常法に従い、Uプレス(U−press)、Oプレス(O−press)で円筒形(pipe shape)とした後、シーム溶接(seam welding)を行って製造する。
 シーム溶接は、仮付溶接(tack welding)後,内面,外面を1層ずつサブマージアーク溶接(submerged arc welding)で行い、サブマージアーク溶接に用いられるフラックス(flux)は特に制限はなく、溶融型フラックス(fused flux)であっても焼成型フラックス(baked flux)であってもかまわない。また、必要に応じ、溶接前の予熱(preheating)、あるいは溶接後の熱処理(post weld heat treatment:略称PWHT)を行う。
 サブマージアーク溶接の溶接入熱(kJ/cm)は、板厚が20mm~40mm程度で上述した成分組成において母材鋼板のPCMが0.19~0.25%、入熱80kJ/cm以下の範囲内で、溶融線近傍で旧オーステナイト粒径が50μm以上となる溶接熱影響部のミクロ組織として、下部ベイナイト、または、面積率で少なくとも50%以上の下部ベイナイトと、上部ベイナイトおよび/またはマルテンサイトを備えた混合組織が得られるように調整する。
 このような組織とした場合、図1に示す継手HAZで靱性の最も劣化するLBZ(Local Brittle Zone)の低温靱性の向上に有効である。
 尚、図1Aは外面FLノッチのシャルピー試験片1、図1BはRoot−FLノッチのシャルピー試験片3を示す。ノッチ位置における最脆化組織4(LBZ)は外面側溶接ではボンド7近傍のHAZ粗粒8(CGHAZ)組織(旧オーステナイト粒径が50μm以上)をいい、内面側溶接のRoot部では内面のHAZ粗粒8(CGHAZ)組織が2相域(Ac1~Ac3点)に加熱されるHAZ粗粒11(ICCGHAZ)組織をいう。
 特に、外面側溶接および内面側溶接の入熱バランスが下記式(3)を満たす溶接条件とすれば、内面側のHAZ粗粒(CGHAZ)部のγ粒粗大化を抑制することができ、外面側およびRoot側のFL(Fusion line)位置から採取された継手HAZ靱性を安定的に達成可能となる。
 なお、安定的に確保とは、—30℃以下の試験温度で100回以上の継手HAZシャルピー試験を実施したときの累積破損確率が1%以下となることを意味する。
内面入熱≦外面入熱 …(3)
 ここで、下部ベイナイト組織は、ラス幅が1μm以下のベイニティックフェライトのラス内にセメンタイトを主体とする炭化物が析出したものを指し、上部ベイナイトはラス間に島状マルテンサイト(MA)および/またはセメンタイトを含むものである。外面側のシーム溶接で得られる溶融線近傍の溶接熱影響部が上記ミクロ組織の場合、その硬度は250≦HV(98N)≦350となり、−30℃の試験温度で100回以上の継手HAZシャルピー試験を実施したときの累積破損確率が1%以下という優れた溶接熱影響部靱性が達成される。
 シーム溶接後、要求される真円度(roundness)に応じて、0.4%以上2.0%以下の拡管率にて拡管を行う。拡管率が0.4%未満であると、特に板厚20mm以上の厚肉の場合、通常要求される真円度を達成することが困難である。また、拡管率が2.0%超の場合には、溶接金属と溶接熱影響部の境界のボンド部への歪集中が増大しすぎて拡管割れの懸念がある。また、過度の歪導入により継手特性の劣化が懸念される。真円度や継手強度・靱性確保を向上する観点から、好ましくは、0.5~1.5%である。溶融線近傍で旧オーステナイト粒径が50μm以上となる溶接熱影響部のHAZ粗粒(CGHAZ)のミクロ組織は、外面側の表面から6mmの位置を走査型電子顕微鏡(倍率5000倍)でランダムに10視野以上観察して同定する。
[実施例1]
 表1に示す種々の化学組成の鋼を転炉(steel converter)で溶製し、連続鋳造(continuous cast)によって170~250mm厚の鋳片とした後、表2に示す熱間圧延、加速冷却、再加熱条件で鋼板1~10を作製した。なお、再加熱は加速冷却設備と同一ライン上に設置した誘導加熱型の加熱装置を用いて行った。
 更に、これらの鋼板をUプレス、Oプレスによって成形した後、サブマージアーク溶接で内面シーム溶接(internal seam welding)後、外面シーム溶接(external seam welding)を行った。その後、0.6~1.2%の拡管率にて拡管して外径400~1626mmの鋼管にした。表3−1および表3−2に鋼管1−1~10の内面シーム溶接と外面シーム溶接の溶接金属部6および5の化学組成を示す。
 得られた鋼管の継手強度を評価するため、API−5Lに準拠した全厚引張試験片を母材部については管軸方向から、シーム溶接部については管の円周方向より採取し、引張試験を実施した。
 また、鋼管の溶接継手部からJIS Z2202(1980)のVノッチシャルピー衝撃試験片1および3を図1—Aおよび図1−Bに示す外面FL、Root−FLの2通りの位置から採取し、−30℃の試験温度でシャルピー衝撃試験を実施した。なお、ノッチ位置2はHAZと溶接金属が1:1の割合で存在する位置とした。
 CGHAZのミクロ組織は、外面側のシーム溶接のHAZ粗粒(CGHAZ)を表面から6mmの位置を走査型電子顕微鏡(倍率5000倍)で観察した。
HAZ粗粒(CGHAZ)の硬度、HAZ粗粒(CGHAZ)の靱性(以下HAZ靭性)の試験結果をまとめて表4−1および表4−2に示す。
 また、鋼管の母材部の板厚中央位置からJIS Z2202(1980)のVノッチシャルピー衝撃試験片を採取し、−40℃の試験温度でシャルピー衝撃試験を実施した。さらに、API−5Lに準拠したDWTT試験片を鋼管から採取し、−20℃の試験温度で試験を行い、SA値(Shear Area:延性破面率)を求めた。
 母材鋼板の引張強度が760MPa以上930MPa以下で、5%以上の一様伸びを有し、かつ引張強度に対する0.5%耐力の割合が85%以下且つ、母材における試験温度−40℃でのシャルピー吸収エネルギーが板厚25mm未満の場合210J以上、板厚25mm以上の場合150J以上、DWTTSA−20℃が85%以上であり、鋼管のシーム溶接継手強度が760MPa以上930MPa以下、上述したHAZ粗粒(CGHAZ)における試験温度−30℃でのシャルピー吸収エネルギー100J以上、を本発明の目標範囲内とする。
 表4−1および表4−2に試験結果を示す。試験No.1,2,3は母材、溶接部が、請求項1、4記載の規定を満足する発明例で、所望の母材部の強度・降伏比・一様伸び・靱性および、シーム溶接部の高HAZ靭性を示し、母材部のミクロ組織において、面積率4%以上12%以下の島状マルテンサイトを含むベイナイト組織を主体とし、含有する島状マルテンサイトの長軸径が2μm以下であり、かつ、方位差角15°以上の境界で囲まれるベイニティックフェライトの長軸径が20μm以下となっていた。
 また、HAZ粗粒(CGHAZ部)のミクロ組織において、面積率で少なくとも50%以上の下部ベイナイトと、残部が上部ベイナイトおよび/またはマルテンサイトを備えた混合組織が得られていた。
 一方、試験No.4、5、6は母材成分が請求項1記載の発明範囲内であるが、鋼板の圧延において750℃以下の累積圧下率が75%を下回っていた(表2参照)ために、母材靭性が低下した。溶接部のミクロ組織は請求項1記載の規定を満足し、良好な靭性が得られている。
 試験No.7,8,9は母材成分が請求項1記載の発明範囲内であるが溶接入熱が高く、継手のHAZ粗粒(CGHAZ)部のミクロ組織において、下部ベイナイト分率が請求項1記載の規定の下限を下回り、上部ベイナイト組織の分率が高くなったために、外面側、内面側Root部ともにHAZ靭性が低下した。
 試験No.10はB無添加系で、上部ベイナイト組織の分率が高くなったために、外面側、内面側Root部ともにHAZ靭性が低下した。
 試験No.11は、PCMが本発明の下限を下回り、母材の引張強度および継手の引張強度が760MPa未満となり、また、継手のHAZ粗粒(CGHAZ)部のミクロ組織中の下部ベイナイト分率が低く、HAZ粗粒(CGHAZ)組織が上部ベイナイト組織となり、外面側、内面側Root部ともにHAZ靭性が低下した。
 試験No.12は、PCM値が本発明の上限を上回り、HAZ粗粒(CGHAZ)組織がマルテンサイト組織となり、外面側、内面側Root部ともにHAZ靭性が低下した。
 試験No.13は、内面側および外面側ともに溶接入熱80kJ/cm以下であるが、内面側の溶接入熱が外面側の溶接入熱よりも高く、Root部のミクロ組織において、オーステナイト粒径が大きい状態で速い冷却を受けるために、粗大な上部ベイナイト組織となり、Root側のHAZ靱性が低下した。
[実施例2]
 表5に示す種々の化学組成の鋼を転炉(steel converter)で溶製し、連続鋳造(continuous cast)によって160~250mm厚の鋳片とした後、表6に示す熱間圧延、加速冷却、再加熱条件で鋼板11~24を作製した。なお、再加熱は加速冷却設備と同一ライン上に設置した誘導加熱型の加熱装置を用いて行った。
 更に、これらの鋼板をUプレス、Oプレスによって成形した後、サブマージアーク溶接で内面シーム溶接(internal seam welding)後、外面シーム溶接(external seam welding)を行った。その後、0.6~1.2%の拡管率にて拡管して外径400~1626mmの鋼管にした。表7−1および表7−2に鋼管11−1~24の内面シーム溶接と外面シーム溶接の溶接金属部の化学組成を示す。
 得られた鋼管の継手強度を評価するため、API−5Lに準拠した全厚引張試験片を母材部については管軸方向から、シーム溶接部については管の円周方向より採取し、引張試験を実施した。
 また、鋼管の溶接継手部からJIS Z2202(1980)のVノッチシャルピー衝撃試験片1および3を図1—Aおよび図1−Bに示す外面FL、Root−FLの2通りの位置から採取し、−30℃の試験温度でシャルピー衝撃試験を実施した。なお、ノッチ位置2はHAZと溶接金属が1:1の割合で存在する位置とした。
 CGHAZのミクロ組織は、外面側のシーム溶接のHAZ粗粒(CGHAZ)を表面から6mmの位置を走査型電子顕微鏡(倍率5000倍)で観察した。
HAZ粗粒(CGHAZ)の硬度、HAZ粗粒(CGHAZ)の靱性(以下HAZ靭性)の試験結果をまとめて表8−1および表8−3に示す。
 また、鋼管の母材部の板厚中央位置からJIS Z2202(1980)のVノッチシャルピー衝撃試験片を採取し、−40℃の試験温度でシャルピー衝撃試験を実施した。さらに、API−5Lに準拠したDWTT試験片を鋼管から採取し、−20℃の試験温度で試験を行い、SA値(Shear Area:延性破面率)を求めた。
 母材鋼板の引張強度が760MPa以上930MPa以下で、5%以上の一様伸びを有し、かつ引張強度に対する0.5%耐力の割合が85%以下且つ、母材における試験温度−40℃でのシャルピー吸収エネルギーが板厚25mm未満の場合210J以上、板厚25mm以上の場合150J以上、DWTTSA−20℃が85%以上であり、鋼管のシーム溶接継手強度が760MPa以上930MPa以下、上述したHAZ粗粒(CGHAZ)における試験温度−30℃でのシャルピー吸収エネルギー100J以上、を本発明の目標範囲内とする。
 なお、製造した鋼板を250℃にて30分間保持して、歪時効処理した後、母材の引張試験およびシャルピー試験、溶接熱影響部(HAZ)のシャルピー試験を同様に実施し、評価した。なお、歪時効処理後の評価基準は、上述した歪時効処理前の評価基準と同一の基準で判定した。
 表8−1、表8−2、表8−3および表8−4に試験結果を示す。試験No.14、15、16、17、18は母材および溶接部が、請求項1、4記載の規定を満足する発明例で、所望の母材部の強度・降伏比・一様伸び・靱性および、シーム溶接部の高HAZ靭性を示し、母材部のミクロ組織において、面積率4%以上12%以下の島状マルテンサイトを含むベイナイト組織を主体とし、含有する島状マルテンサイトの長軸径が2μm以下であり、かつ、方位差角15°以上の境界で囲まれるベイニティックフェライトの長軸径が20μm以下となっていた。
 また、HAZ粗粒(CGHAZ部)のミクロ組織において、面積率で少なくとも50%以上の下部ベイナイトと、残部が上部ベイナイトおよび/またはマルテンサイトを備えた混合組織が得られていた。
 一方、試験No.19、20、21、22は母材成分が請求項1記載の発明範囲内であるが、鋼板の圧延において750℃以下の累積圧下率が75%を下回っていた(表6参照)ために、母材靭性が低下した。溶接部のミクロ組織は請求項1記載の規定を満足し、良好な靭性が得られている。
 試験No.23、24、25、26は母材成分が請求項1記載の発明範囲内であるが溶接入熱が高く、継手のHAZ粗粒(CGHAZ)部のミクロ組織において、下部ベイナイト分率が請求項1記載の規定の下限を下回り、上部ベイナイト組織の分率が高くなったために、外面側、内面側Root部ともにHAZ靭性が低下した。
 試験No.27はB無添加系で、上部ベイナイト組織の分率が高くなったために、外面側、内面側Root部ともにHAZ靭性が低下した。
 試験No.28は、PCMが本発明の下限を下回り、母材の引張強度および継手の引張強度が760MPa未満となり、また、継手のHAZ粗粒(CGHAZ)部のミクロ組織中の下部ベイナイト分率が低く、HAZ粗粒(CGHAZ)組織が上部ベイナイト組織となり、外面側、内面側Root部ともにHAZ靭性が低下した。
 試験No.29は、PCM値が本発明の上限を上回り、HAZ粗粒(CGHAZ)組織がマルテンサイト組織となり、外面側、内面側Root部ともにHAZ靭性が低下した。また、母材靱性も劣化した。
 試験No.30は、内面側および外面側ともに溶接入熱80kJ/cm以下であるが、内面側の溶接入熱が外面側の溶接入熱よりも高く、Root部のミクロ組織において、オーステナイト粒径が大きい状態で速い冷却を受けるために、粗大な上部ベイナイト組織となり、Root側のHAZ靱性が低下した。
 なお、試験No.14~18の本発明例では、250℃にて30分間保持の歪時効処理後も、母材の引張試験およびシャルピー試験、溶接熱影響部(HAZ)のシャルピー試験などの結果は、歪時効前と同等の優れたものであった。これに対して、試験No.31の比較例においては、鋼板製造時の冷却停止温度が低すぎたため、必要なMA分率を確保できず、250℃にて30分間保持の歪時効処理の前も後も、鋼管母材の降伏比の評価基準を満たさなかった。
 1:外面FLノッチのシャルピー試験片
 2:シャルピー試験片のノッチ位置
 3:Root−FLノッチのシャルピー試験片
 4:ノッチ位置における最脆化組織
 5:外面溶接金属
 6:内面溶接金属
 7:溶融線
 8:溶融線近傍の旧オーステナイト粒径50μm以上となるHAZ粗粒領域(CGHAZ)
 9:Ac3点に加熱された位置
10:Ac1点に加熱された位置
11:内面のHAZ粗粒組織が、2相域(Ac1点(10)~Ac3点(9))に加熱された領域(ICGHAZ)
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014

Claims (10)

  1. 母材の成分組成が、質量%で、
    C:0.03%超え、0.08%以下、
    Si:0.01~0.5%、
    Mn:1.5~3.0%、
    P:0.015%以下、
    S:0.003%以下、
    Al:0.01~0.08%、
    Nb:0.005~0.025%、
    Ti:0.005~0.025%、
    N:0.001~0.010%、
    O:0.005%以下、
    B:0.0003~0.0020%
    を含有し、更に、
    Cu:0.01~1%、
    Ni:0.01~1%、
    Cr:0.01~1%、
    Mo:0.01~1%、
    V:0.01~0.1%
    の一種または二種以上を含有し、
    下記式(1)で計算されるPCM値(単位は%)が0.19≦PCM≦0.25を満足し、残部がFeおよび不可避的不純物であり、
    母材の引張特性が、760MPa以上930MPa以下の引張強度と5%以上の一様伸びで、降伏比が85%以下であり、かつ試験温度−40℃でのシャルピー吸収エネルギーが、板厚25mm未満の場合には210J以上であり、板厚25mm以上の場合には150J以上である母材部と、
    シーム溶接の溶接金属の成分組成が、質量%で、
    C:0.03~0.10%、
    Si:0.5%以下、
    Mn:1.5~3.0%、
    P:0.015%以下、
    S:0.005%以下、
    Al:0.05%以下、
    Nb:0.005~0.05%、
    Ti:0.005~0.03%、
    N:0.010%以下、
    O:0.015~0.045%、
    B:0.0003~0.0050%
    を含有し、更に、
    Cu:0.01~1%、
    Ni:0.01~2.5%、
    Cr:0.01~1%、
    Mo:0.01~1.5%、
    V:0.1%以下
    の一種または二種以上を含有し、
    残部がFe及び不可避的不純物である溶接金属部からなり、
    鋼管のシーム溶接部における溶融線近傍で旧オーステナイト粒径が50μm以上となる溶接熱影響部のミクロ組織が、下部ベイナイト、または、面積率で少なくとも50%以上の下部ベイナイトと、上部ベイナイトおよび/またはマルテンサイトを備えた混合組織である低温用高強度鋼管。
    CM(%)=C+Si/30+Mn/20+Cu/20+Ni/60+Cr/20+Mo/15+V/10+5×B…(1)
    但し、各元素は含有量(質量%)を示す。
  2.  鋼管の長手方向に内外面から1層ずつ溶接した鋼管のシーム溶接部において、外面側の溶融線近傍の溶接熱影響部硬さが下記式(2)を満たす請求項1に記載の低温用高強度鋼管。
    250≦HV(98N)≦350 …(2)
    但し、HV(98N):10kgfで測定したビッカース硬度を示す。
  3.  鋼管のシーム溶接部の継手強度が760MPa以上930MPa以下である請求項1または2に記載の低温用高強度鋼管。
  4.  鋼管の母材部のミクロ組織において、面積率4%以上12%以下の島状マルテンサイトを含むベイナイト組織を主体とし、含有する島状マルテンサイトの長軸径が2μm以下であり、かつ、方位差角15°以上の境界で囲まれるベイニティックフェライトの長軸径が20μm以下である請求項1乃至3のいずれか一つに記載の低温用高強度鋼管。
  5.  更に、母材部及び/または溶接金属部の化学成分に、質量%で、
    Ca:0.0005~0.01%、
    REM:0.0005~0.02%、
    Zr:0.0005~0.03%、
    Mg:0.0005~0.01%
    の一種または二種以上を含有する請求項1乃至4のいずれか一つに記載の低温用高強度鋼管。
  6.  さらに250℃以下の温度で30分以下の歪時効処理を施した後においても一様伸びが5%以上、降伏比が85%以下であることを特徴とする4または5に記載の低温用高強度鋼管。
  7.  請求項1または5に記載の母材成分を有する鋼を、1000~1300℃の温度に加熱し、950℃超えでの累積圧下率が10%以上、750℃以下での累積圧下率が75%以上となるように650℃以上の圧延終了温度で熱間圧延した後、10℃/s以上の冷却速度で450℃以上650℃未満の温度まで加速冷却し、その後ただちに0.5℃/s以上の昇温速度で加速冷却停止温度以上の500~750℃まで再加熱を行う低温用高強度鋼管用鋼板の製造方法。
  8.  さらに、前記熱間圧延において750℃超え950℃以下での累積圧下率が20%以上であることを特徴とする、請求項7に記載の低温用高強度鋼管用鋼板の製造方法。
  9.  請求項7または8に記載の製造方法により得られる鋼板を筒状に成形し、その突合せ部を内外面から1層ずつ溶接する際の内外面それぞれの溶接入熱が80kJ/cm以下であり、外面側および内面側の入熱バランスが下記式(3)を満たす低温用高強度溶接鋼管の製造方法。
    内面入熱≦外面入熱 …(3)
  10.  鋼管の長手方向に内外面から1層ずつ溶接した後、0.4%以上2.0%以下の拡管率にて拡管する請求項9記載の低温用高強度溶接鋼管の製造方法。
PCT/JP2010/052118 2009-02-06 2010-02-05 耐座屈性能及び溶接熱影響部靭性に優れた低温用高強度鋼管およびその製造方法 WO2010090349A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN2010800070305A CN102308013B (zh) 2009-02-06 2010-02-05 耐屈曲性及焊接热影响部韧性优良的低温用高强度钢管及其制造方法
RU2011136852/02A RU2493286C2 (ru) 2009-02-06 2010-02-05 Высокопрочная стальная труба для применения при низких температурах с превосходной прочностью при продольном изгибе и ударной прочностью зоны термического влияния при сварке
KR1020117018081A KR101231270B1 (ko) 2009-02-06 2010-02-05 내좌굴성능 및 용접열 영향부 인성이 우수한 저온용 고강도 강관 및 그 제조 방법
US13/147,992 US8765269B2 (en) 2009-02-06 2010-02-05 High strength steel pipe for low-temperature usage having excellent buckling resistance and toughness of welded heat affected zone and method for producing the same
EP10738675.7A EP2395122B1 (en) 2009-02-06 2010-02-05 High-strength steel tube for low-temperature use with superior buckling resistance and toughness in weld heat-affected areas, and manufacturing method for same
CA2751705A CA2751705C (en) 2009-02-06 2010-02-05 High strength steel pipe for low-temperature usage having excellent buckling resistance and toughness of welded heat affected zone and method for producing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009025477 2009-02-06
JP2009-025477 2009-02-06

Publications (1)

Publication Number Publication Date
WO2010090349A1 true WO2010090349A1 (ja) 2010-08-12

Family

ID=42542230

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/052118 WO2010090349A1 (ja) 2009-02-06 2010-02-05 耐座屈性能及び溶接熱影響部靭性に優れた低温用高強度鋼管およびその製造方法

Country Status (8)

Country Link
US (1) US8765269B2 (ja)
EP (1) EP2395122B1 (ja)
JP (1) JP4853575B2 (ja)
KR (1) KR101231270B1 (ja)
CN (2) CN102308013B (ja)
CA (1) CA2751705C (ja)
RU (1) RU2493286C2 (ja)
WO (1) WO2010090349A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013051249A1 (ja) * 2011-10-03 2013-04-11 Jfeスチール株式会社 溶接熱影響部靱性に優れた溶接鋼管およびその製造方法
EP2644731A1 (en) * 2010-11-22 2013-10-02 Nippon Steel & Sumitomo Metal Corporation Electron-beam welded joint, steel material for electron-beam welding, and manufacturing method therefor
US20150090370A1 (en) * 2012-03-29 2015-04-02 Jfe Steel Corporation High strength steel plate having low yield ratio excellent in terms of strain ageing resistance, method of manufacturing the same and high strength welded steel pipe made of the same
CN110616311A (zh) * 2019-07-17 2019-12-27 首钢京唐钢铁联合有限责任公司 一种降低带钢冷瓢曲风险的方法

Families Citing this family (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2599755C (en) * 2005-12-15 2015-03-31 Jfe Steel Corporation Local buckling performance evaluating method for steel pipe, steel pipe designing methiod, steel pipe manufacturing method, and steel pipe
JP5442456B2 (ja) 2007-02-27 2014-03-12 エクソンモービル アップストリーム リサーチ カンパニー 軸方向の大きい塑性歪みに適応する炭素鋼構造およびパイプライン中の耐食合金溶接部
EP2532765B1 (en) 2010-02-04 2020-01-15 Nippon Steel Corporation High-strength welded steel pipe and method for producing the same
JP5316721B2 (ja) * 2011-03-30 2013-10-16 新日鐵住金株式会社 塗装加熱後における降伏比の上昇が防止された電縫鋼管及びその製造方法
JP5842473B2 (ja) * 2011-08-31 2016-01-13 Jfeスチール株式会社 高一様伸び特性を備えかつ溶接部靱性に優れた高強度溶接鋼管、およびその製造方法
CN102560284B (zh) * 2012-02-21 2014-03-19 宝山钢铁股份有限公司 高强度高韧性x100管线钢热轧钢带及其制造方法
DE102012006017A1 (de) * 2012-03-20 2013-09-26 Salzgitter Flachstahl Gmbh Hochfester Mehrphasenstahl und Verfahren zur Herstellung eines Bandes aus diesem Stahl
JP5516784B2 (ja) 2012-03-29 2014-06-11 Jfeスチール株式会社 低降伏比高強度鋼板およびその製造方法並びにそれを用いた高強度溶接鋼管
JP2013204103A (ja) * 2012-03-29 2013-10-07 Jfe Steel Corp 耐座屈性能に優れた低温用高強度溶接鋼管とその製造方法および耐座屈性能に優れた低温用高強度溶接鋼管用鋼板の製造方法
CN102601502B (zh) * 2012-04-01 2014-03-26 哈尔滨工业大学 纳米贝氏体钢的再纳米化焊接装置及方法
JP5516659B2 (ja) 2012-06-28 2014-06-11 Jfeスチール株式会社 中温域の長期耐軟化性に優れた高強度電縫鋼管及びその製造方法
KR101388308B1 (ko) * 2012-07-30 2014-04-25 현대제철 주식회사 석출 경화형 강판 및 그 제조 방법
CN102888571B (zh) * 2012-10-26 2014-05-21 江苏省沙钢钢铁研究院有限公司 一种690MPa级低焊接裂纹敏感性钢及其制造方法
KR101428201B1 (ko) * 2012-10-30 2014-08-07 주식회사 포스코 서브머지드 아크 용접이음부
KR101710816B1 (ko) * 2013-01-31 2017-02-27 제이에프이 스틸 가부시키가이샤 전봉 강관
JP6008042B2 (ja) * 2013-03-29 2016-10-19 Jfeスチール株式会社 厚肉鋼管用鋼板、その製造方法、および厚肉高強度鋼管
BR112015024840B1 (pt) 2013-04-15 2020-03-31 Nippon Steel Corporation Chapa de aço laminada a quente
CN103350289A (zh) * 2013-06-21 2013-10-16 江苏省沙钢钢铁研究院有限公司 一种低温韧性优异的高强度埋弧焊丝熔敷金属
JP5708723B2 (ja) 2013-07-09 2015-04-30 Jfeスチール株式会社 低温破壊靭性に優れたラインパイプ用厚肉電縫鋼管およびその製造方法
EP3034643B1 (en) * 2013-08-16 2020-06-17 Nippon Steel Corporation Electric-resistance-welded steel pipe with excellent weld quality and method for producing same
CN105143487B (zh) * 2013-08-30 2017-03-08 新日铁住金株式会社 耐酸性、耐压碎特性及低温韧性优异的厚壁高强度线管用钢板和线管
KR20150135452A (ko) * 2013-09-27 2015-12-02 내셔날 인스티튜트 오브 어드밴스드 인더스트리얼 사이언스 앤드 테크놀로지 스테인리스강 부재의 접합 방법 및 스테인리스강
KR101910875B1 (ko) * 2013-11-07 2018-10-23 제이에프이 스틸 가부시키가이샤 고강도 강판의 마찰 교반 접합 방법
ES2864159T3 (es) * 2014-01-24 2021-10-13 Rautaruukki Oyj Producto de banda de acero laminado en caliente de ultra alta resistencia
CN105899702B (zh) * 2014-03-17 2017-12-22 杰富意钢铁株式会社 焊接用钢材
EP3128024B1 (en) 2014-03-31 2018-09-26 JFE Steel Corporation Welded joint
KR20160000963A (ko) * 2014-06-25 2016-01-06 주식회사 포스코 저온 충격인성이 우수한 초고강도 가스 메탈 아크 용접금속부
JP6065989B2 (ja) * 2014-06-30 2017-01-25 Jfeスチール株式会社 鋼板の突合せ溶接方法および鋼板の突合せ溶接継手の製造方法
CN105506494B (zh) 2014-09-26 2017-08-25 宝山钢铁股份有限公司 一种屈服强度800MPa级高韧性热轧高强钢及其制造方法
JP6515324B2 (ja) * 2015-02-18 2019-05-22 日本製鉄株式会社 耐sr特性に優れた高強度uoe鋼管のサブマージアーク溶接金属
BR112017013229A2 (ja) 2015-02-20 2018-01-09 Nippon Steel & Sumitomo Metal Corporation Hot-rolled steel product
WO2016132549A1 (ja) 2015-02-20 2016-08-25 新日鐵住金株式会社 熱延鋼板
EP3263729B1 (en) 2015-02-25 2019-11-20 Nippon Steel Corporation Hot-rolled steel sheet
WO2016135898A1 (ja) 2015-02-25 2016-09-01 新日鐵住金株式会社 熱延鋼板
JP6256655B2 (ja) * 2015-03-26 2018-01-10 Jfeスチール株式会社 構造管用鋼板、構造管用鋼板の製造方法、および構造管
RU2612109C2 (ru) * 2015-04-27 2017-03-02 Открытое акционерное общество "Российский научно-исследовательский институт трубной промышленности" (ОАО "РосНИТИ") Стальной лист и его применение для трубы магистрального трубопровода
CN106011622B (zh) * 2016-06-11 2018-07-31 青岛果子科技服务平台有限公司 一种超高强度高变形性能的焊接钢管的制造方法
JP6354910B2 (ja) * 2016-06-22 2018-07-11 Jfeスチール株式会社 厚肉高強度ラインパイプ用熱延鋼板、ならびに、厚肉高強度ラインパイプ用溶接鋼管およびその製造方法
BR112019000422B1 (pt) 2016-08-05 2023-03-28 Nippon Steel Corporation Chapa de aço e chapa de aço galvanizada
CN109563580A (zh) 2016-08-05 2019-04-02 新日铁住金株式会社 钢板及镀覆钢板
JP6315044B2 (ja) 2016-08-31 2018-04-25 Jfeスチール株式会社 高強度鋼板およびその製造方法
BR112019015630A2 (pt) * 2017-04-04 2020-03-17 Nippon Steel Corporation Tubo de aço soldado com costura longitudinal
KR20190124253A (ko) * 2017-04-04 2019-11-04 닛폰세이테츠 가부시키가이샤 세로 심 용접 강관
JP6816739B2 (ja) * 2018-04-05 2021-01-20 Jfeスチール株式会社 鋼板およびその製造方法
CN108796364B (zh) * 2018-05-21 2020-07-28 中国石油天然气集团有限公司 一种适用低温的x80大口径厚壁直缝埋弧焊管及其制造方法
US20220390044A1 (en) * 2019-11-29 2022-12-08 Jfe Steel Corporation Electric resistance welded steel pipe and method for manufacturing the same
CN111098059A (zh) * 2020-01-20 2020-05-05 西安理工大学 增材制造低碳贝氏体钢的焊丝及制造低碳贝氏体钢的方法
EP4098764A4 (en) * 2020-01-29 2022-12-21 JFE Steel Corporation WELDED STEEL PIPE AND METHOD OF MANUFACTURING IT
BR112022013767A2 (pt) * 2020-03-04 2022-10-11 Nippon Steel Corp Tubo de aço e placa de aço
CN115121907B (zh) * 2022-07-26 2023-12-22 南京工程学院 一种提高双相不锈钢焊缝中奥氏体含量的方法
CN117467902B (zh) * 2023-12-25 2024-03-01 河北钨泰固机械设备有限公司 一种焊缝金属粉末及低温弯管的焊接和热处理方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003293078A (ja) 2002-03-29 2003-10-15 Nippon Steel Corp 溶接熱影響部靭性及び変形能に優れた鋼管及び鋼管用鋼板の製造法
JP2003306749A (ja) 2002-04-19 2003-10-31 Nippon Steel Corp 変形能に優れた高強度鋼管及び鋼管用鋼板の製造法
JP2004131799A (ja) 2002-10-10 2004-04-30 Nippon Steel Corp 変形性能および低温靱性ならびにhaz靱性に優れた高強度鋼管およびその製造方法
JP2006233263A (ja) * 2005-02-24 2006-09-07 Jfe Steel Kk 低降伏比且つ溶接部靭性に優れた高強度溶接鋼管の製造方法
JP2006265577A (ja) * 2005-03-22 2006-10-05 Jfe Steel Kk 高強度高靱性鋼板の製造方法
JP2006328523A (ja) 2005-04-26 2006-12-07 Nippon Steel Corp 低温用高強度鋼管
JP2008056961A (ja) 2006-08-30 2008-03-13 Jfe Steel Kk 溶接熱影響部靭性に優れた、引張り強さ760MPa以上の高強度溶接鋼管およびその製造方法
JP2008248330A (ja) * 2007-03-30 2008-10-16 Jfe Steel Kk 低降伏比高強度高靱性鋼管およびその製造方法
JP2008248328A (ja) * 2007-03-30 2008-10-16 Jfe Steel Kk 低降伏比高強度高靱性鋼板及びその製造方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69607702T2 (de) * 1995-02-03 2000-11-23 Nippon Steel Corp Hochfester Leitungsrohrstahl mit niedrigem Streckgrenze-Zugfestigkeit-Verhältnis und ausgezeichneter Tieftemperaturzähigkeit
JPH10237583A (ja) * 1997-02-27 1998-09-08 Sumitomo Metal Ind Ltd 高張力鋼およびその製造方法
CA2231985C (en) * 1997-03-26 2004-05-25 Sumitomo Metal Industries, Ltd. Welded high-strength steel structures and methods of manufacturing the same
KR100375086B1 (ko) * 1997-07-28 2003-03-28 닛폰 스틸 가부시키가이샤 초저온 인성이 탁월한 초고강도 용접성 강판 및 이의 제조방법
JP4319817B2 (ja) * 2001-11-19 2009-08-26 新日本製鐵株式会社 耐塩酸腐食性および耐硫酸腐食性に優れた低合金鋼およびその溶接継手
JP3968011B2 (ja) * 2002-05-27 2007-08-29 新日本製鐵株式会社 低温靱性および溶接熱影響部靱性に優れた高強度鋼とその製造方法および高強度鋼管の製造方法
WO2005024171A2 (en) * 2003-09-05 2005-03-17 Enventure Global Technology, Llc Expandable tubular
JP4645593B2 (ja) * 2004-07-16 2011-03-09 Jfeスチール株式会社 機械構造用部品およびその製造方法
RU2359770C2 (ru) * 2004-11-05 2009-06-27 Сумитомо Метал Индастриз, Лтд. Высокопрочная сварная стальная труба
US8715430B2 (en) * 2005-04-04 2014-05-06 Nippon Steel & Sumitomo Metal Corporation High strength steel plate and high strength welded pipe excellent in ductile fracture characteristic and methods of production of same
JP4058097B2 (ja) * 2006-04-13 2008-03-05 新日本製鐵株式会社 アレスト性に優れた高強度厚鋼板
JP4969915B2 (ja) * 2006-05-24 2012-07-04 新日本製鐵株式会社 耐歪時効性に優れた高強度ラインパイプ用鋼管及び高強度ラインパイプ用鋼板並びにそれらの製造方法
JP5217556B2 (ja) * 2007-08-08 2013-06-19 Jfeスチール株式会社 耐座屈性能及び溶接熱影響部靭性に優れた低温用高強度鋼管およびその製造方法
JP4962440B2 (ja) * 2008-07-31 2012-06-27 Jfeスチール株式会社 高強度冷延鋼板の製造方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003293078A (ja) 2002-03-29 2003-10-15 Nippon Steel Corp 溶接熱影響部靭性及び変形能に優れた鋼管及び鋼管用鋼板の製造法
JP2003306749A (ja) 2002-04-19 2003-10-31 Nippon Steel Corp 変形能に優れた高強度鋼管及び鋼管用鋼板の製造法
JP2004131799A (ja) 2002-10-10 2004-04-30 Nippon Steel Corp 変形性能および低温靱性ならびにhaz靱性に優れた高強度鋼管およびその製造方法
JP2006233263A (ja) * 2005-02-24 2006-09-07 Jfe Steel Kk 低降伏比且つ溶接部靭性に優れた高強度溶接鋼管の製造方法
JP2006265577A (ja) * 2005-03-22 2006-10-05 Jfe Steel Kk 高強度高靱性鋼板の製造方法
JP2006328523A (ja) 2005-04-26 2006-12-07 Nippon Steel Corp 低温用高強度鋼管
JP2008056961A (ja) 2006-08-30 2008-03-13 Jfe Steel Kk 溶接熱影響部靭性に優れた、引張り強さ760MPa以上の高強度溶接鋼管およびその製造方法
JP2008248330A (ja) * 2007-03-30 2008-10-16 Jfe Steel Kk 低降伏比高強度高靱性鋼管およびその製造方法
JP2008248328A (ja) * 2007-03-30 2008-10-16 Jfe Steel Kk 低降伏比高強度高靱性鋼板及びその製造方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
JOURNAL OF THE JAPAN WELDING SOCIETY, 1981
NKK TECHNICAL REVIEW, 1992
NKK TECHNICAL REVIEW, 1992, pages 24 - 31
See also references of EP2395122A4 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2644731A1 (en) * 2010-11-22 2013-10-02 Nippon Steel & Sumitomo Metal Corporation Electron-beam welded joint, steel material for electron-beam welding, and manufacturing method therefor
EP2644731A4 (en) * 2010-11-22 2014-05-07 Nippon Steel & Sumitomo Metal Corp ELECTRON BEAM WELDING COMPOUND, STEEL MATERIAL FOR ELECTRON BEAM WELDING, AND METHOD OF MANUFACTURING THEREOF
WO2013051249A1 (ja) * 2011-10-03 2013-04-11 Jfeスチール株式会社 溶接熱影響部靱性に優れた溶接鋼管およびその製造方法
JP2013078775A (ja) * 2011-10-03 2013-05-02 Jfe Steel Corp 溶接熱影響部靱性に優れた溶接鋼管およびその製造方法
US20150090370A1 (en) * 2012-03-29 2015-04-02 Jfe Steel Corporation High strength steel plate having low yield ratio excellent in terms of strain ageing resistance, method of manufacturing the same and high strength welded steel pipe made of the same
US10358708B2 (en) * 2012-03-29 2019-07-23 Jfe Steel Corporation High strength steel plate having low yield ratio excellent in terms of strain ageing resistance, method of manufacturing the same and high strength welded steel pipe made of the same
CN110616311A (zh) * 2019-07-17 2019-12-27 首钢京唐钢铁联合有限责任公司 一种降低带钢冷瓢曲风险的方法

Also Published As

Publication number Publication date
CA2751705A1 (en) 2010-08-12
CN102308013A (zh) 2012-01-04
RU2493286C2 (ru) 2013-09-20
US8765269B2 (en) 2014-07-01
CN103334053B (zh) 2014-12-31
RU2011136852A (ru) 2013-03-20
KR20110100317A (ko) 2011-09-09
EP2395122A4 (en) 2014-11-12
CN102308013B (zh) 2013-07-03
JP4853575B2 (ja) 2012-01-11
JP2010202976A (ja) 2010-09-16
EP2395122B1 (en) 2016-10-05
EP2395122A1 (en) 2011-12-14
CA2751705C (en) 2018-10-09
CN103334053A (zh) 2013-10-02
KR101231270B1 (ko) 2013-02-07
US20120018028A1 (en) 2012-01-26

Similar Documents

Publication Publication Date Title
JP4853575B2 (ja) 耐座屈性能及び溶接熱影響部靭性に優れた低温用高強度鋼管およびその製造方法
JP5217556B2 (ja) 耐座屈性能及び溶接熱影響部靭性に優れた低温用高強度鋼管およびその製造方法
JP4969915B2 (ja) 耐歪時効性に優れた高強度ラインパイプ用鋼管及び高強度ラインパイプ用鋼板並びにそれらの製造方法
JP5590253B2 (ja) 変形性能と低温靭性に優れた高強度鋼管、高強度鋼板、および前記鋼板の製造方法
JP5251092B2 (ja) 低温靱性に優れた高強度ラインパイプ用溶接鋼管及びその製造方法
JP5217773B2 (ja) 溶接熱影響部靭性に優れた引張強度が570MPa以上760MPa以下の低温用高強度溶接鋼管およびその製造方法
JP4977876B2 (ja) 母材および溶接部靱性に優れた超高強度高変形能溶接鋼管の製造方法
JP4837807B2 (ja) 高強度溶接鋼管及びその製造方法
JP2013204103A (ja) 耐座屈性能に優れた低温用高強度溶接鋼管とその製造方法および耐座屈性能に優れた低温用高強度溶接鋼管用鋼板の製造方法
JP5782827B2 (ja) 高圧縮強度耐サワーラインパイプ用鋼管及びその製造方法
JP2004052104A (ja) 低温靱性および溶接熱影響部靱性に優れた高強度鋼とその製造方法および高強度鋼管の製造方法
JP4655670B2 (ja) 低降伏比且つ溶接部靭性に優れた高強度溶接鋼管の製造方法
JP2006291349A (ja) 高変形性能を有するラインパイプ用鋼板およびその製造方法。
JP2008248330A (ja) 低降伏比高強度高靱性鋼管およびその製造方法
JP2010037567A (ja) 低温靭性に優れた厚肉高張力熱延鋼板およびその製造方法
JP5151034B2 (ja) 高張力ラインパイプ用鋼板の製造方法および高張力ラインパイプ用鋼板
JP6648736B2 (ja) 母材低温靱性とhaz靱性に優れたクラッド鋼板およびその製造方法
JP4116817B2 (ja) 低温靭性と変形能に優れた高強度鋼管および鋼管用鋼板の製造法
JP2002285283A (ja) 高速延性破壊特性に優れた超高強度鋼管
JP5020691B2 (ja) 低温靱性に優れた高強度ラインパイプ用鋼板および高強度ラインパイプならびにこれらの製造方法
JP2009084599A (ja) 変形能ならびに低温靱性に優れた超高強度ラインパイプ用鋼板および鋼管の製造方法
JP2012193446A (ja) 高延性超高強度溶接鋼管用鋼板および鋼管ならびにその製造方法
JP2004197190A (ja) 高速延性破壊伝播停止特性に優れた高張力鋼及びその製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080007030.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10738675

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20117018081

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2751705

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 3415/KOLNP/2011

Country of ref document: IN

REEP Request for entry into the european phase

Ref document number: 2010738675

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010738675

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011136852

Country of ref document: RU

WWE Wipo information: entry into national phase

Ref document number: 13147992

Country of ref document: US