WO2010058975A2 - Carbon nanotube-poly(x-4-styrenesulphonate) composite, and a carbon nanotube-electrically conductive polymer composite produced using the same - Google Patents

Carbon nanotube-poly(x-4-styrenesulphonate) composite, and a carbon nanotube-electrically conductive polymer composite produced using the same Download PDF

Info

Publication number
WO2010058975A2
WO2010058975A2 PCT/KR2009/006823 KR2009006823W WO2010058975A2 WO 2010058975 A2 WO2010058975 A2 WO 2010058975A2 KR 2009006823 W KR2009006823 W KR 2009006823W WO 2010058975 A2 WO2010058975 A2 WO 2010058975A2
Authority
WO
WIPO (PCT)
Prior art keywords
poly
carbon nanotube
conductive polymer
styrenesulfonate
composite
Prior art date
Application number
PCT/KR2009/006823
Other languages
French (fr)
Korean (ko)
Other versions
WO2010058975A3 (en
Inventor
서광석
김종은
김태영
김원중
이태희
Original Assignee
Suh Kwang Suck
Kim Jong Eun
Kim Tae Young
Kim Won Jung
Lee Tae Hee
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suh Kwang Suck, Kim Jong Eun, Kim Tae Young, Kim Won Jung, Lee Tae Hee filed Critical Suh Kwang Suck
Publication of WO2010058975A2 publication Critical patent/WO2010058975A2/en
Publication of WO2010058975A3 publication Critical patent/WO2010058975A3/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B3/00Manufacture or treatment of nanostructures by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/168After-treatment
    • C01B32/174Derivatisation; Solubilisation; Dispersion in solvents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/44Carbon
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/80Constructional details
    • H10K30/81Electrodes
    • H10K30/82Transparent electrodes, e.g. indium tin oxide [ITO] electrodes
    • H10K30/821Transparent electrodes, e.g. indium tin oxide [ITO] electrodes comprising carbon nanotubes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/113Heteroaromatic compounds comprising sulfur or selene, e.g. polythiophene
    • H10K85/1135Polyethylene dioxythiophene [PEDOT]; Derivatives thereof
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/20Carbon compounds, e.g. carbon nanotubes or fullerenes
    • H10K85/221Carbon nanotubes
    • H10K85/225Carbon nanotubes comprising substituents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/10Particle morphology extending in one dimension, e.g. needle-like
    • C01P2004/13Nanotubes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/22Rheological behaviour as dispersion, e.g. viscosity, sedimentation stability
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • the present invention relates to a carbon nanotube-poly (X-4-styrenesulfonate) composite and a carbon nanotube-conductive polymer composite prepared using the same, and more particularly, to poly (X) by an ionic bond on a surface of a carbon nanotube.
  • Carbon nanotube-poly (X-4-styrenesulfonate) to prepare a carbon nanotube-poly (X-4-styrenesulfonate) by introducing a (4-styrene sulfonate), and a carbon nanotube-conductive polymer composite prepared by synthesizing a conductive polymer using a dopant It relates to a manufacturing method.
  • Carbon nanotubes which are known to have excellent electrical conductivity, have both metallic and semiconducting properties, depending on the angle and structure of the graphite sheet winding, and single-walled carbon nanotubes depending on the number of bonds forming a wall.
  • SWNT single-walled carbon nanotubes
  • MWN multi-walled carbon nanotubes
  • the carbon nanotubes have very high electrical conductivity, and many attempts have been made to apply them to the display industry such as transparent electrode materials.
  • the carbon nanotubes should be coated on the surface of the base material to form a carbon nanotube layer on the surface of the base material, which causes many problems.
  • the biggest problem is that if carbon nanotubes are formed on the surface of a base material by preparing a coating solution containing carbon nanotubes, the carbon nanotubes themselves do not have adhesion to the base material. Use a binder together. As such, when the organic and inorganic binders are mixed together in the preparation of the coating solution, the coating layer including the carbon nanotubes may be firmly adhered to the surface of the base material.
  • a method of mixing conductive polymers together may be used when preparing a coating solution including carbon nanotubes.
  • the most commonly used conductive polymer is poly (3,4-ethylenedioxythiophene), which is a conductive polymer of H. C. Starck, Germany (hereinafter referred to as PEDOT).
  • PEDOT a conductive polymer of H. C. Starck, Germany
  • this method also has problems. In other words, when the conductive polymer and carbon nanotube are simply mixed, the conductive polymer component and the carbon nanotube component are finely separated from each other. There is a disadvantage that the conductivity enhancement effect of the coating layer is not great.
  • the carbon nanotubes when preparing a conductive coating solution containing carbon nanotubes, the carbon nanotubes must be uniformly dispersed in a suitable solvent such as water or alcohol, which causes many problems.
  • the conductive coating solution using carbon nanotubes is mainly manufactured in the form of a composite of carbon nanotubes and a general insulating binder or a conductive polymer, wherein the binder is mixed by the strong van der Waals force of the carbon nanotubes.
  • it is easy to agglomerate in the coating solution it becomes difficult to have a high electrical conductivity when agglomeration occurs, and the light transmittance is reduced because the size of the carbon nanotubes also increases to a micrometer size.
  • the present invention is to improve the dispersibility of the carbon nanotubes in the production of a conductive coating liquid in the form of a mixture of carbon nanotubes and a conductive polymer while minimizing the decrease in electrical conductivity or manufactured through the same It is an object to provide a carbon nanotube-conductive polymer composite.
  • a method of attaching poly (X-4-styrenesulfonate) to the surface of the carbon nanotubes by ionic bonds and using the same as a dopant to form a conductive polymer Synthesis is finally to provide a carbon nanotube-conductive polymer composite and a solution having good solvent dispersibility.
  • poly (X-4-styrenesulfonate) is first ion-bonded to a surface of a carbon nanotube, and then used as a dopant, and a monomer and an oxidant for synthesizing a conductive polymer are mixed together.
  • X of poly (X-4-styrenesulfonate) refers to group 1 elements such as sodium and cesium.
  • the carbon nanotube-poly (X-4-styrenesulfonate) composite plays a role as a compatibilizer as well as a dopant because it plays a role of enhancing compatibility at the interface between the conductive polymer and the carbon nanotube. It can be a better effect.
  • Carbon nanotubes can be used regardless of the type.
  • all kinds of carbon nanotubes may be used, such as single-walled carbon nanotubes, multi-walled carbon nanotubes, purified carbon nanotubes, unrefined carbon nanotubes, and carbon nanotubes produced by different methods.
  • any material that can be used as a dopant in the synthesis of the conductive polymer may be used.
  • Representative compounds are poly (X-4-styrenesulfonate), wherein X is an element of Group 1.
  • Representative compounds include poly (sodib-4-styrenesulfonate) or poly (cex-4-styrenesulfonate) and the like.
  • polymers having a similar structure to them that is, a polymer having an acidity (PH) of 3 or more when one or more hydrogen atoms of the benzene ring are dissolved in water while being substituted with a sulfone group are more effective.
  • Monomers for synthesizing conductive polymers include pyrrole, aniline, thiophene, 3,4-ethylenedioxythiophene, 3,4-alkylenedioxythiophene, 3,4-dialkylthiophene, 3,4-dialkoxyti
  • a material containing offen and 3,4-cycloalkylthiophene and the like can be used, considering the light transmittance of the coating solution, it is most effective to use 3,4-ethylenedioxythiophene (EDOT).
  • EDOT 3,4-ethylenedioxythiophene
  • the conductive polymer is synthesized on the surface of the carbon nanotube by overcoming the phase separation problem of the conductive polymer and the carbon nanotube component, which is the biggest disadvantage of the simple mixture of the two components in the preparation of the conductive polymer and carbon nanotube mixture.
  • Complexes in the form can be prepared.
  • this composite can obtain the effect of improving the dispersibility in a solvent such as water.
  • the technology of the present invention can solve the problems of the conductive material carbon black, surfactants, conductive polymers used in the existing, it is possible to manufacture a conductive coating material with stable electrical properties. In addition, it replaces the expensive indium-tin oxide and has a great advantage that it can be applied to flat panel display products and solar cells using carbon nanotubes and conductive polymers, which are relatively inexpensive and easy to supply.
  • FIG. 1 is a diagram showing a synthesis sequence of a carbon nanotube-poly (X-4-styrenesulfonate) composite according to the present invention.
  • FIG. 2 is a diagram showing the synthesis sequence of the carbon nanotube-conductive polymer composite synthesis using the carbon nanotube-poly (X-4-styrenesulfonate) composite according to the present invention.
  • FIG. 3 is a view showing a carbon nanotube-PEDOT composite structure as an example of the carbon nanotube-conductive polymer composite made of the present invention.
  • the present invention can be broadly divided into three steps. First, a first step for purification and surface treatment of carbon nanotubes, a second step of introducing poly (X-4-styrenesulfonate), and a second step
  • the third step is to synthesize a conductive polymer (eg, poly (3,4-ethylenedioxythiophene): PEDOT) on the surface of the carbon nanotubes using the material produced in the step as a dopant.
  • a conductive polymer eg, poly (3,4-ethylenedioxythiophene): PEDOT
  • FIG. 1 is a diagram showing a synthesis sequence of a carbon nanotube-poly (X-4-styrenesulfonate) composite
  • FIG. 2 is a carbon nanotube-poly (X-4-styrenesulfonate) composite according to the present invention.
  • Fig. 1 shows the synthesis sequence of the used carbon nanotube-conductive polymer composite synthesis.
  • FIGS. 1 and 2 will be described in three steps below.
  • FIG. 1 shows the steps up to the second step below and FIG. 2 shows the steps up to the third step.
  • the carbon nanotubes manufactured by the electric discharge method or other methods have a purity of about 60%, and have high electrical conductivity because impurities such as amorphous carbon, fullerene, and metal catalysts coexist in addition to the carbon nanotubes and thus have poor electrical conductivity.
  • impurities such as amorphous carbon, fullerene, and metal catalysts coexist in addition to the carbon nanotubes and thus have poor electrical conductivity.
  • the method for removing such impurities is not particularly limited, and the purity of the purified carbon nanotubes is preferably 90% or more. When the purity of the carbon nanotubes is less than 90%, the electrical conductivity is lowered due to various impurities, so in the present invention, it is preferable to use those having a purity of 90% or more.
  • the method for purifying carbon nanotubes in the present invention is not significantly different from those described in various documents such as Korean Patent Publication No. 10-2005-0097711, US Patent No. 6878361, and the like.
  • the carbon nanotubes are oxidized at a high temperature of 300-800 ° C. for 10-60 minutes to remove amorphous carbon, which is then refluxed in a nitric acid, sulfuric acid, or hydrochloric acid solution or refluxed for 10-120 minutes or subjected to ultrasonic treatment for 10-120 minutes. Additional carbon is removed, filtered and dried to obtain carbon nanotubes with a purity of over 90%.
  • the compound used at this time is a carboxyl group, an amine group, a nitrate group, a cyan group, It is preferable to use a substance capable of bonding an acryl group, an amide group, an ethylenoxide group, or the like. More preferably, carbon nanotubes having functional groups such as carboxyl groups (hereinafter referred to as carbon nanotubes-COOH) may be added to nitric acid, sulfuric acid, hydrochloric acid alone or mixed acid solutions thereof and refluxed at room temperature to 200 ° C.
  • Carbon nanotube-COOH prepared as described above is water or methanol, ethanol, n-propyl alcohol, isopropyl alcohol, normal butanol, isobutanol, hexanol, ethylene glycol, glycerol, benzene, chlorobenzene, nitromethane, toluene, Ethyl acetate, hexane, cyclohexane, 2-methoxyethanol, 2-butoxyethanol, 2-ethoxyethanol, xylene, chloroform, tetrahydrofuran, dimethylformamide, methylethylketone, N-methyl-2-pi To 100 parts by weight of the total solution using an organic solvent such as rolidone, 2-pyrrolidone, N-vinyl-2-pyrrolidone, N-methylformamide, dimethyl sulfoxide, acetone, n-butyrolactone, etc.
  • organic solvent such as rolidone, 2-pyrrolidon
  • the obtained carbon nanotube-Cl may be water or methanol, ethanol, n-propyl alcohol, isopropyl alcohol, normal butanol, isobutanol, hexanol, ethylene glycol, glycerol, benzene, chloro Benzene, nitromethane, toluene, ethyl acetate, hexane, cyclohexane, 2-methoxyethanol, 2-butoxyethanol, 2-ethoxyethanol, xylene, chloroform, tetrahydrofuran, dimethylformamide, methylethylketone, Using organic solvents such as N-methyl-2-pyrrolidone, 2-pyrrolidone, N-vinyl-2-pyrrolidone, N-methylformamide, dimethyl sulfoxide, acetone, n-butyrolactone, etc.
  • organic solvents such as N-methyl-2-pyrrolidone, 2-pyrrolidone, N
  • carbon nanotubes-Br carbon nanotubes-CO-Br
  • the compound usable in this step is not particularly limited but is preferably poly (X-4-styrenesulfonate) and modified polymers thereof in which one or more hydrogen atoms of the benzene ring of styrene are structurally substituted with sulfone groups. It is preferable to use a polymer, and it is more effective if the acidity is 3 or more when dissolved in water.
  • X is a group 1 element and the representative element means sodium or cesium.
  • the carbon nanotubes incorporating the functional group prepared in the first step are described as carbon nanotubes-Cl, for example.
  • the amount of carbon nanotubes-Cl is not limited, but preferably 100 parts by weight of the total solution to be used. It is used at 0.1-20 parts by weight.
  • the solvent may be, for example, prepared carbon nanotube-Cl in water or methanol, ethanol, n-propyl alcohol, isopropyl alcohol, normal butanol, isobutanol, hexanol, ethylene glycol, glycerol, benzene, chlorobenzene, nitromethane , Toluene, ethyl acetate, hexane, cyclohexane, 2-methoxyethanol, 2-butoxyethanol, 2-ethoxyethanol, xylene, chloroform, tetrahydrofuran, dimethylformamide, methylethylketone, N-methyl- 2-pyrrolidone, 2-pyrrolidone, N-vinyl-2-pyrrolidone, N-methylformamide, dimethyl sulfoxide, acetone, n-butyrolactone and the like dispersed in single or a mixed solvent thereof Then 0.1-50 parts by weight of poly (X-4-st
  • the poly (X-4-styrenesulfonate) is 0.1 parts by weight or less, it is difficult to be sufficiently introduced into the surface of the carbon nanotubes, and if it is 50 parts by weight or more, it is difficult to dissolve in a solvent.
  • After completion of the reaction filtered with a 0.2 micron filter and washed with an excess of alcohol or alcohol such as ethanol and dried to obtain carbon nanotube-poly (X-4-styrenesulfonate).
  • the prepared carbon nanotube-poly (X-4-styrenesulfonate) is dispersed in 0.001-50 parts by weight based on 100 parts by weight of the total solution.
  • the method of dispersing is not limited, but preferably ultrasonic waves may be used. In this case, if the content is less than 0.001 parts by weight, the solid content is too low, and if it is more than 50 parts by weight, the solid content is too high, making dispersion difficult.
  • the above-mentioned dispersing solvents include, but are not limited to, water or methanol, ethanol, n-propyl alcohol, isopropyl alcohol, normal butanol, isobutanol, hexanol, ethylene glycol, glycerol, benzene, chlorobenzene, nitro Methane, toluene, ethyl acetate, hexane, cyclohexane, 2-methoxyethanol, 2-butoxyethanol, 2-ethoxyethanol, xylene, chloroform, tetrahydrofuran, dimethylformamide, methylethylketone, N-methyl Solvents such as -2-pyrrolidone, 2-pyrrolidone, N-vinyl-2-pyrrolidone, N-methylformamide, dimethyl sulfoxide, acetone, n-butyrolactone, etc. The above can be mixed and used in an appropriate ratio.
  • the step of synthesizing the conductive polymer to the carbon nanotube-poly (X-4-styrenesulfonate) dispersion prepared in the second step will be described.
  • the reaction of this step may be carried out using a method known in the art (Ref. U.S. Patent No. 5,300,575).
  • Monomers for the synthesis of conductive polymers include 3,4-ethylenedioxythiophene or other thiophene-based monomers, such as 3,4-dialkylthiophene, 3,4-dialkoxythiophene and 3,4-cycloalkylthiophene. The monomer or modified monomer derived from these may be used.
  • other types of conductive polymer synthesis monomers such as pyrrole and aniline may be used. If the light transmittance is good, 3,4-ethylenedioxythiophene or other light transmittance monomer may be used.
  • a monomer, an oxidizing agent and a dopant were mixed in a predetermined ratio. Induce synthesis after.
  • the monomer used may be 3,4-ethylenedioxythiophene
  • the oxidizing agent may be used ammonium peroxy disulfate (APS), potassium persulfate (KPS) and the like.
  • the dopant uses carbon nanotube-poly (X-4-styrenesulfonate) prepared in the above-described second step.
  • polystyrene sulfonate PSSA
  • SDS sodido dodecyl sulfate
  • the carbon nanotube-poly (X-4-styrene sulfonate) and the polystyrene sulfonate or sodido dodecyl sulfate may be mixed so that the weight ratio is 1:99 to 99: 1.
  • the reason why the compound is used in a mixed state is that the particle size of the synthesized carbon nanotube-conductive polymer is reduced, and the dispersion and post-coating conductivity are superior to those without mixing.
  • the coating solution was prepared such that the carbon nanotube-conductive polymer was 0.001-50 parts by weight with respect to 100 parts by weight of the total solution by using a solvent mixed in an appropriate ratio. If the content of the carbon nanotube-conductive polymer is less than 0.001 parts by weight, the content of the conductive polymer component is too low and the conductivity is too low. If the content is more than 50 parts by weight, the solid content is too high. It is disadvantageous.
  • the conductive coating liquid containing the carbon nanotube-conductive polymer prepared by the above method may be used as it is, and a binder and other additives may be further added to improve electrical conductivity and improve coating properties.
  • FIG. 3 is a diagram illustrating a carbon nanotube-PEDOT composite structure as an example of a carbon nanotube-conductive polymer composite made of the present invention.
  • the carbon nanotube 120 and poly (sodide-4-styrenesulfonate) 110 are illustrated in FIG.
  • PEDOT 100
  • PEDOT 100
  • selecting a suitable binder material can form a conductive layer on the surface regardless of the type of the base material.
  • the conductive layer may be formed by first applying the above-described conductive coating solution to the surface of the base material and then drying the solution at a temperature between 50-200 ° C. for 0.1-10 minutes.
  • a binder curing agent to improve the coating properties of the coating layer may be to improve the coating properties of the coating layer through the secondary heat treatment after drying the coating layer.
  • the base material to which the conductive coating solution of the present invention can be coated includes various ester polymers, carbonate polymers, styrene polymers, olefin polymers such as ethylene or propylene, cellulose polymers, cyclic ethylene polymers, and imide polymers. It can be applied to all polymers, such as amide polymer and various engineering plastic polymer. It can also be applied to the surface of inorganic materials such as glass, metal and ceramics.
  • the product formed with the coating liquid containing the carbon nanotube-conductive polymer composite of the present invention is not limited to any particular class and can be applied to all fields requiring conductivity.
  • the unreacted compound was washed 10 times with water, filtered through a 0.2 ⁇ m polycarbonate filter, and dried in a vacuum oven for 24 hours, followed by carbon nanotube-poly (sodide-4-styrenesulfonate) (hereinafter referred to as carbon nanotube- (Named PSSNa). Thereafter, the carbon nanotube-PSSNa is added to water so that the content of 0.5 wt% is dispersed for 20 minutes by ultrasonic waves.
  • carbon nanotube-PSSNa carbon nanotube-poly (sodide-4-styrenesulfonate)
  • the carbon nanotube-PSSNa aqueous dispersion solution prepared by the above method was diluted with water to 0.1 weight percent, and the amount of PSSNa of carbon nanotube-PSSNa: ethylenedioxythiophene: ammonium peroxydisulfate (1: 1: 1 molar ratio). Addition proceeds at room temperature for 24 hours. After completion of the reaction, the unreacted compound was washed 10 times with water and filtered through a 0.2 ⁇ m polycarbonate filter and dried for 24 hours in a vacuum oven to obtain a carbon nanotube-PEDOT composite.
  • a single-walled carbon nanotube (ILJIN Nanotech, ASA-100F grade) is heat-treated at 450 ° C. for 30 minutes and then placed in 100 ml of hydrochloric acid for 1 hour by ultrasonic purification at 60 ° C. It is then filtered with a 0.2 ⁇ m polycarbonate filter and washed with excess water to neutralize. This was added again to the mixed acid solution of sulfuric acid / nitric acid (3: 1 volume ratio) of 3M concentration, purified for 4 hours at 150 ° C., washed with excess water, filtered, and neutralized, followed by drying in a vacuum oven at 80 ° C. for 24 hours. -COOH was prepared.
  • a conductive coating solution containing carbon nanotubes-PEDOT was prepared in the same manner as in Example 1.
  • the surface resistance was measured at 5 ⁇ 10 2 ohms / area and the light transmittance was reduced by 4% compared to the base film.
  • Example 3 In the synthesis of the conductive polymer to the carbon nanotubes-PSSNa prepared in Example 2, polystyrene sulfonate was further added. The amount was added so that the weight ratio of carbon nanotubes-PSSNa and polystyrenesulfonate was 80:20, except that this was prepared in the same manner as in Example 2. The surface resistance after application to the amorphous polyester film was measured 2.5 ⁇ 10 2 ohms / area and the light transmittance was reduced by 3% compared to the base film.
  • Example 4 was prepared in the same manner as in Example 3 except for using pyrrole instead of ethylenedioxythiophene in synthesizing the conductive polymer in the carbon nanotubes-PSSNa prepared in Example 2.
  • the surface resistance after coating on the amorphous polyester film was measured to 3.0 ⁇ 10 2 ohms / area and the light transmittance was reduced by 5% compared to the base film.
  • the carbon nanotubes when the conductive coating solution containing the carbon nanotubes-conductive polymers were prepared can be found to be advantageous in surface resistance and permeability when using single-walled carbon nanotubes compared to multi-walled carbon nanotubes. have.
  • Examples 1 and 3 it can be seen that it is advantageous in terms of electrical conductivity to mix an additive such as polystyrene sulfonate in the synthesis of the carbon nanotube-conductive polymer composite.
  • the conductive coating solution prepared by introducing poly (X-4-styrenesulfonate) by ion bonding on the surface of the modified carbon nanotube according to the present invention and synthesizing the conductive polymer in the preparation of the mixture of the conductive polymer and the carbon nanotube
  • the biggest disadvantage of the simple mixture of the two components can be seen that the electrical conductivity is excellent and the dispersibility in solvents such as water is improved.
  • the carbon nanotube-conductive polymer composite according to the present invention can be applied as a transparent electrode and a hole injection / transport layer material of the display industry, an active layer of an organic solar cell, and the like.

Abstract

The present invention relates to a technique for making carbon nanotube-poly(X-4-styrenesulphonate) by using ionic bonding to introduce poly(X-4-styrenesulphonate) onto the surfaces of carbon nanotubes, and it relates to a method in which the carbon nanotube-poly(X-4-styrenesulphonate) is used as a dopant in the synthesis of an electrically conductive polymer in such a way as to finally produce a carbon nanotube-electrically conductive polymer composite which has outstanding dispersion properties. When producing a mixture of an electrically conductive polymer and carbon nanotubes, the technique of the present invention can be used in order to overcome the problem of phase separation between the electrically conductive polymer and the carbon nanotube components which is the greatest disadvantage exhibited by simple mixtures of the two components. Thus the present invention makes it possible to produce a composite in which an electrically conductive polymer has been synthesised on the surfaces of carbon nanotubes. Further, an advantageous effect can be obtained in that the composite has improved dispersion properties in solvents such as water.

Description

탄소나노튜브-폴리(X-4-스티렌술포네이트) 복합체 및 이를 이용하여 제조되는 탄소나노튜브-전도성 고분자 복합체Carbon nanotube-poly (X-4-styrenesulfonate) composite and carbon nanotube-conductive polymer composite prepared using the same
본 발명은 탄소나노튜브-폴리(X-4-스티렌술포네이트) 복합체 및 이를 이용하여 제조되는 탄소나노튜브-전도성 고분자 복합체에 관한 것으로서, 보다 상세하게는 탄소나노튜브 표면에 이온 결합으로 폴리(X-4-스티렌술포네이트)를 도입하여 탄소나노튜브-폴리(X-4-스티렌술포네이트)를 제조하고, 그리고 이를 도판트로 사용하여 전도성 고분자를 합성하여 제조되는 탄소나노튜브-전도성 고분자 복합체 및 이를 제조하는 방법에 관한 것이다.The present invention relates to a carbon nanotube-poly (X-4-styrenesulfonate) composite and a carbon nanotube-conductive polymer composite prepared using the same, and more particularly, to poly (X) by an ionic bond on a surface of a carbon nanotube. Carbon nanotube-poly (X-4-styrenesulfonate) to prepare a carbon nanotube-poly (X-4-styrenesulfonate) by introducing a (4-styrene sulfonate), and a carbon nanotube-conductive polymer composite prepared by synthesizing a conductive polymer using a dopant It relates to a manufacturing method.
전기전도도가 우수한 것으로 알려져 있는 탄소나노튜브는 흑연면 (graphite sheet)이 감기는 각도와 구조에 따라 금속성과 반도체성 성질을 동시에 가지고 있고, 벽을 이루고 있는 결합수에 따라 크게 단일벽 탄소나노튜브 (single-walled carbon nanotube; SWNT)와 다중벽 탄소나노튜브 (multi-walled carbon nanotube; MWNT)로 분류된다. 이 탄소나노튜브는 자체적으로 전기전도도가 매우 높아 투명 전극 재료 등 디스플레이 산업에 응용하려는 시도가 많이 이루어지고 있다.Carbon nanotubes, which are known to have excellent electrical conductivity, have both metallic and semiconducting properties, depending on the angle and structure of the graphite sheet winding, and single-walled carbon nanotubes depending on the number of bonds forming a wall. single-walled carbon nanotubes (SWNT) and multi-walled carbon nanotubes (MWN). The carbon nanotubes have very high electrical conductivity, and many attempts have been made to apply them to the display industry such as transparent electrode materials.
이러한 탄소나노튜브를 기저 물질 표면에 도포하여 기저 물질 표면에 탄소나노튜브층을 형성해야 하는데, 실제 이를 사용함에 많은 문제점이 발생한다. 가장 큰 문제점은 탄소나노튜브를 포함하는 코팅액을 제조하여 기저 물질 표면에 탄소나노튜브를 형성할 경우 탄소나노튜브 자체가 기저 물질과의 접착력이 없기 때문에 코팅액 제조 시 기저 물질과의 접착력 증진을 위해 유무기 바인더를 함께 사용해야 한다. 이와 같이 코팅액 제조 시 유무기 바인더를 함께 혼합하면 탄소나노튜브를 포함하는 코팅층이 기저 물질 표면에 단단하게 접착될 수는 있다. 그러나 이러한 경우, 탄소나노튜브와 바인더 물질이 균일하게 혼합되면 탄소나노튜브와 탄소나노튜브 사이에 전기절연성의 바인더 성분이 존재하게 되는데, 이 전기절연성의 바인더 성분 때문에 전체 코팅층의 전기전도도가 저하되는 문제가 발생한다.The carbon nanotubes should be coated on the surface of the base material to form a carbon nanotube layer on the surface of the base material, which causes many problems. The biggest problem is that if carbon nanotubes are formed on the surface of a base material by preparing a coating solution containing carbon nanotubes, the carbon nanotubes themselves do not have adhesion to the base material. Use a binder together. As such, when the organic and inorganic binders are mixed together in the preparation of the coating solution, the coating layer including the carbon nanotubes may be firmly adhered to the surface of the base material. However, in this case, when the carbon nanotubes and the binder material are uniformly mixed, an electrically insulating binder component exists between the carbon nanotubes and the carbon nanotubes, and the electrical conductivity of the entire coating layer is lowered due to the electrically insulating binder component. Occurs.
상술한 문제점을 보완하기 위한 방법의 하나로 탄소나노튜브를 포함하는 코팅액 제조 시 전도성 고분자를 함께 혼합하는 방법이 사용되기도 한다. 이때 가장 많이 사용되는 전도성 고분자가 독일 H. C. Starck 사의 전도성 고분자인 폴리(3,4-에틸렌디옥시티오펜) (이하 PEDOT라 칭하기로 한다). 그러나 이 방법 또한 문제점을 가지고 있다. 즉, 전도성 고분자와 탄소나노튜브를 단순하게 혼합하면 전도성 고분자 성분과 탄소나노튜브 성분이 미세하게 서로 분리되어 코팅층을 보면 결국 전도성 고분자 부분과 탄소나노튜브 부분으로 분리되어 존재하기 때문에 탄소나노튜브를 포함하는 코팅층의 전도도 증진 효과가 크지 않다는 단점이 있다.As one of the methods for supplementing the above problems, a method of mixing conductive polymers together may be used when preparing a coating solution including carbon nanotubes. At this time, the most commonly used conductive polymer is poly (3,4-ethylenedioxythiophene), which is a conductive polymer of H. C. Starck, Germany (hereinafter referred to as PEDOT). But this method also has problems. In other words, when the conductive polymer and carbon nanotube are simply mixed, the conductive polymer component and the carbon nanotube component are finely separated from each other. There is a disadvantage that the conductivity enhancement effect of the coating layer is not great.
또한 탄소나노튜브를 포함하는 전도성 코팅액을 제조할 경우 탄소나노튜브를 물 또는 알콜 등 적당한 용매에 균일하게 분산시켜야 하는데, 이때 많은 문제가 발생한다. 탄소나노튜브를 이용한 전도성 코팅액은 주로 탄소나노튜브와 일반 절연성 바인더 또는 전도성 고분자를 단순히 혼합한 복합체 형태로 제조되는데, 이때 탄소나노튜브의 강한 반데르발스 힘(Van der Waals force)에 의해서 혼합된 바인더 또는 코팅액 내에서 응집되기 쉽고, 응집 발생 시 높은 전기전도도를 띠기 힘들어지며, 탄소나노튜브의 크기 또한 마이크로미터 사이즈로 증가하기 때문에 광투과도가 감소하게 된다.In addition, when preparing a conductive coating solution containing carbon nanotubes, the carbon nanotubes must be uniformly dispersed in a suitable solvent such as water or alcohol, which causes many problems. The conductive coating solution using carbon nanotubes is mainly manufactured in the form of a composite of carbon nanotubes and a general insulating binder or a conductive polymer, wherein the binder is mixed by the strong van der Waals force of the carbon nanotubes. Alternatively, it is easy to agglomerate in the coating solution, it becomes difficult to have a high electrical conductivity when agglomeration occurs, and the light transmittance is reduced because the size of the carbon nanotubes also increases to a micrometer size.
탄소나노튜브를 포함하는 전도성 코팅액 제조 시 이러한 응집 문제를 해결하기 위해 코팅층의 전기전도도를 증진시키기 위한 연구가 많이 이루어져 왔는데, 주로 탄소나노튜브의 표면에 분산 용매와 상용성이 높은 관능기를 도입하는 화학적 방법과 탄소나노튜브 분산 용액에 계면활성제 또는 분산제를 첨가하는 방법이 일반적이다. 그러나 이러한 방법은 분산성을 증가시킬 수는 있지만 결국 전기절연성인 성분의 함량 증가로 인해 결국 코팅층의 전기전도도를 증가시키는데 한계가 있다.In order to solve the coagulation problem when manufacturing a conductive coating solution containing carbon nanotubes, many studies have been conducted to improve the electrical conductivity of the coating layer. The chemicals mainly introducing functional groups having high compatibility with a dispersion solvent on the surface of the carbon nanotubes are used. A method and a method of adding a surfactant or a dispersant to a carbon nanotube dispersion solution are common. However, this method can increase the dispersibility, but there is a limit to eventually increase the electrical conductivity of the coating layer due to the increase in the content of the electrically insulating component.
상기와 같은 문제점을 해소하기 위해서, 본 발명은 탄소나노튜브와 전도성 고분자가 혼합된 형태의 전도성 코팅액 제조 시 탄소나노튜브의 분산성을 향상시키면서도 전기전도도의 저하를 최소화할 수 있는 방법 또는 이를 통해 제조된 탄소나노튜브-전도성 고분자 복합체를 제공하는 것을 목적으로 한다.In order to solve the above problems, the present invention is to improve the dispersibility of the carbon nanotubes in the production of a conductive coating liquid in the form of a mixture of carbon nanotubes and a conductive polymer while minimizing the decrease in electrical conductivity or manufactured through the same It is an object to provide a carbon nanotube-conductive polymer composite.
또한 본 발명에서는 용매분산성이 좋은 탄소나노튜브-전도성고분자 복합체를 제공하기 위하여 탄소나노튜브 표면에 폴리(X-4-스티렌술포네이트)를 이온 결합으로 붙이는 방법 및 이를 도판트로 사용하여 전도성 고분자를 합성하여 최종적으로 용매분산성이 좋은 탄소나노튜브-전도성 고분자 복합체 및 용액을 제공하고자 한다.In addition, in the present invention, in order to provide a carbon nanotube-conductive polymer composite having good solvent dispersion, a method of attaching poly (X-4-styrenesulfonate) to the surface of the carbon nanotubes by ionic bonds and using the same as a dopant to form a conductive polymer Synthesis is finally to provide a carbon nanotube-conductive polymer composite and a solution having good solvent dispersibility.
본 발명의 목적을 달성하기 위해, 먼저 탄소나노튜브 표면에 폴리(X-4-스티렌술포네이트)를 먼저 이온 결합하여 도입한 후 이를 도판트로 사용하고 여기에 전도성 고분자 합성용 모노머와 산화제를 함께 혼합하여 탄소나노튜브-전도성 고분자 복합체를 합성한다. 여기에서 폴리(X-4-스티렌술포네이트)의 X는 소디움, 세슘 등의 1족 원소들을 말한다. 또한 본 발명에서 탄소나노튜브-폴리(X-4-스티렌술포네이트) 복합체는 전도성 고분자와 탄소나노튜브 사이 계면에서의 상용성을 증진시키는 역할을 하기 때문에 도판트로서 뿐만 아니라 상용화제역할도 같이 할 수 있어 더 좋은 효과를 발휘할 수 있다.In order to achieve the object of the present invention, first, poly (X-4-styrenesulfonate) is first ion-bonded to a surface of a carbon nanotube, and then used as a dopant, and a monomer and an oxidant for synthesizing a conductive polymer are mixed together. To synthesize a carbon nanotube-conductive polymer composite. Herein, X of poly (X-4-styrenesulfonate) refers to group 1 elements such as sodium and cesium. In addition, in the present invention, the carbon nanotube-poly (X-4-styrenesulfonate) composite plays a role as a compatibilizer as well as a dopant because it plays a role of enhancing compatibility at the interface between the conductive polymer and the carbon nanotube. It can be a better effect.
탄소나노튜브는 종류에 상관없이 모두 사용될 수 있다. 예를 들어, 단일벽 탄소나노튜브, 다중벽 탄소나노튜브, 정제된 탄소나노튜브, 정제되지 않은 탄소나노튜브, 서로 다른 방법에 의해 제조된 탄소나노튜브 등 모든 종류의 탄소나노튜브를 사용할 수 있다. 탄소나노튜브 표면에 이온 결합시킬 관능기의 경우 전도성 고분자 합성 시 도판트로 사용될 수 있는 물질은 모두 사용할 수 있다. 대표적인 화합물로는 폴리(X-4-스티렌술포네이트)로서, 여기에서 X는 1족의 원소가 사용 가능하다. 대표적인 화합물로는 폴리(소디윰-4-스티렌술포네이트) 또는 폴리(세슘-4-스티렌술포네이트) 등이 이에 속한다. 또한 이들과 비슷한 구조를 갖는 고분자, 즉 벤젠고리의 수소원자 하나 혹은 그 이상이 술폰기로 치환되어 있으면서 물에 녹였을 때 산도 (PH)가 3 이상인 고분자가 더욱 효과적이다. 전도성 고분자를 합성하기 위한 모노머는 피롤, 아닐린, 티오펜, 3,4-에틸렌디옥시티오펜, 3,4-알킬렌디옥시티오펜, 3,4-디알킬티오펜, 3,4-디알콕시티오펜 및 3,4-시클로알킬티오펜 등을 포함하는 물질을 사용할 수 있으나, 코팅용액의 광투과도를 고려하면 3,4-에틸렌디옥시티오펜 (EDOT)를 사용하는 것이 가장 효과적이다. 본 발명의 내용은 주로 3,4-에틸렌디옥시티오펜에 대하여 기술되어 있으나 이는 예시일 뿐 종류에 국한되지 않고 모든 전도성 고분자용 모노머에 적용할 수 있다.Carbon nanotubes can be used regardless of the type. For example, all kinds of carbon nanotubes may be used, such as single-walled carbon nanotubes, multi-walled carbon nanotubes, purified carbon nanotubes, unrefined carbon nanotubes, and carbon nanotubes produced by different methods. . In the case of the functional group to be ion-bonded to the surface of the carbon nanotubes, any material that can be used as a dopant in the synthesis of the conductive polymer may be used. Representative compounds are poly (X-4-styrenesulfonate), wherein X is an element of Group 1. Representative compounds include poly (sodib-4-styrenesulfonate) or poly (cex-4-styrenesulfonate) and the like. In addition, polymers having a similar structure to them, that is, a polymer having an acidity (PH) of 3 or more when one or more hydrogen atoms of the benzene ring are dissolved in water while being substituted with a sulfone group are more effective. Monomers for synthesizing conductive polymers include pyrrole, aniline, thiophene, 3,4-ethylenedioxythiophene, 3,4-alkylenedioxythiophene, 3,4-dialkylthiophene, 3,4-dialkoxyti Although a material containing offen and 3,4-cycloalkylthiophene and the like can be used, considering the light transmittance of the coating solution, it is most effective to use 3,4-ethylenedioxythiophene (EDOT). Although the contents of the present invention are mainly described with respect to 3,4-ethylenedioxythiophene, this is only an example and can be applied to all conductive polymer monomers.
본 발명의 기술을 이용하면 전도성 고분자와 탄소나노튜브 혼합물 제조에 있어서 두 성분의 단순 혼합물이 보이는 최대 단점인 전도성고분자와 탄소나노튜브 성분의 상분리 문제를 극복하여 탄소나노튜브 표면에 전도성 고분자가 합성된 형태의 복합체를 제조할 수 있다. 또한 이 복합체는 물 등의 용매에 대한 분산성이 향상되는 효과를 얻을 수 있다.By using the technology of the present invention, the conductive polymer is synthesized on the surface of the carbon nanotube by overcoming the phase separation problem of the conductive polymer and the carbon nanotube component, which is the biggest disadvantage of the simple mixture of the two components in the preparation of the conductive polymer and carbon nanotube mixture. Complexes in the form can be prepared. In addition, this composite can obtain the effect of improving the dispersibility in a solvent such as water.
또한 본 발명의 기술을 이용하면 기존에 사용되던 전도성 재료인 카본블랙, 계면활성제, 전도성 고분자가 가지는 문제점을 해결가능하며 전기적 특성이 안정적인 전도성 코팅 재료를 제조할 수 있다. 그리고 값비싼 인듐-주석 산화물을 대체하여 상대적으로 저렴하고 수급이 편리한 탄소나노튜브와 전도성 고분자를 사용하여 평판디스플레이 제품, 태양전지 등에 적용이 가능하다는 큰 장점이 있다.In addition, by using the technology of the present invention can solve the problems of the conductive material carbon black, surfactants, conductive polymers used in the existing, it is possible to manufacture a conductive coating material with stable electrical properties. In addition, it replaces the expensive indium-tin oxide and has a great advantage that it can be applied to flat panel display products and solar cells using carbon nanotubes and conductive polymers, which are relatively inexpensive and easy to supply.
도 1은 본 발명에 따른 탄소나노튜브-폴리(X-4-스티렌술포네이트) 복합체의 합성 순서를 나타내는 도이다.1 is a diagram showing a synthesis sequence of a carbon nanotube-poly (X-4-styrenesulfonate) composite according to the present invention.
도 2는 본 발명에 따른 탄소나노튜브-폴리(X-4-스티렌술포네이트) 복합체를 이용한 탄소나노튜브-전도성 고분자 복합체 합성의 합성 순서를 나타내는 도이다. 2 is a diagram showing the synthesis sequence of the carbon nanotube-conductive polymer composite synthesis using the carbon nanotube-poly (X-4-styrenesulfonate) composite according to the present invention.
도 3은 본 발명으로 이루어진 탄소나노튜브-전도성 고분자 복합체의 예시로써 탄소나노튜브-PEDOT 복합체 구조를 나타내는 도이다.3 is a view showing a carbon nanotube-PEDOT composite structure as an example of the carbon nanotube-conductive polymer composite made of the present invention.
본 발명은 크게 3단계로 나누어 설명할 수 있는데, 먼저 탄소나노튜브의 정제 및 표면처리를 위한 제1단계, 그 후 폴리(X-4-스티렌술포네이트)를 도입하는 제2단계, 그리고 제2단계에서 만들어진 물질을 도판트로 사용하여 탄소나노튜브 표면에 전도성 고분자 (예를 들어 폴리(3,4-에틸렌디옥시티오펜): PEDOT)를 합성하는 제3단계로 이루어져 있다.The present invention can be broadly divided into three steps. First, a first step for purification and surface treatment of carbon nanotubes, a second step of introducing poly (X-4-styrenesulfonate), and a second step The third step is to synthesize a conductive polymer (eg, poly (3,4-ethylenedioxythiophene): PEDOT) on the surface of the carbon nanotubes using the material produced in the step as a dopant.
이하 본 발명을 단계별로 나누어 상세히 설명한다.Hereinafter, the present invention will be described in detail by dividing step by step.
도 1은 탄소나노튜브-폴리(X-4-스티렌술포네이트) 복합체의 합성 순서를 나타내는 도이며, 그리고 도 2는 본 발명에 따른 탄소나노튜브-폴리(X-4-스티렌술포네이트) 복합체를 이용한 탄소나노튜브-전도성 고분자 복합체 합성의 합성 순서를 나타내는 도이다. 이하 도 1및 도2를 참고하여 아래의 3단계로 설명한다.1 is a diagram showing a synthesis sequence of a carbon nanotube-poly (X-4-styrenesulfonate) composite, and FIG. 2 is a carbon nanotube-poly (X-4-styrenesulfonate) composite according to the present invention. Fig. 1 shows the synthesis sequence of the used carbon nanotube-conductive polymer composite synthesis. Hereinafter, with reference to FIGS. 1 and 2 will be described in three steps below.
도 1은 아래의 제 2단계까지를 도 2는 제 3단계까지의 순서를 나타내고 있다.FIG. 1 shows the steps up to the second step below and FIG. 2 shows the steps up to the third step.
제 1단계:First step:
본 단계에서는 본 발명에서 사용되는 탄소나노튜브의 정제방법과 클로린기 혹은 브롬기를 도입하는 단계를 설명한다. 그러나 아래 방법에 의해 미리 정제된 탄소나노튜브를 사용할 경우 제1단계의 정제과정을 생략할 수도 있다.In this step, the method of purifying carbon nanotubes used in the present invention and introducing a chlorine group or a bromine group will be described. However, if the carbon nanotubes previously purified by the following method are used, the purification process of the first step may be omitted.
전기방전법 또는 기타 방법으로 제조된 탄소나노튜브는 순도가 약 60%이며 탄소나노튜브 외에 비정질 탄소, 플러렌(fullerene), 금속 촉매 등의 불순물이 공존하여 전기전도도가 좋지 않기 때문에 높은 전기전도도를 얻기 위해서는 순도 낮은 탄소나노튜브를 정제 과정을 통해 순도를 90%이상으로 높여야 한다. 이러한 불순물을 제거하는 방법은 특별히 제한되지 않으며, 정제된 탄소나노튜브의 순도는 90% 이상인 것이 바람직하다. 탄소나노튜브의 순도가 90% 미만인 경우에는 여러 가지 불순물에 의해 전기전도도가 저하되는 문제가 발생하므로 본 발명에서는 탄소나노튜브의 순도가 90% 이상인 것을 사용하는 것이 바람직하다. The carbon nanotubes manufactured by the electric discharge method or other methods have a purity of about 60%, and have high electrical conductivity because impurities such as amorphous carbon, fullerene, and metal catalysts coexist in addition to the carbon nanotubes and thus have poor electrical conductivity. In order to purify low-purity carbon nanotubes to increase the purity to more than 90%. The method for removing such impurities is not particularly limited, and the purity of the purified carbon nanotubes is preferably 90% or more. When the purity of the carbon nanotubes is less than 90%, the electrical conductivity is lowered due to various impurities, so in the present invention, it is preferable to use those having a purity of 90% or more.
본 발명에서 탄소나노튜브의 정제 방법은 대한민국 공개특허 제10-2005-0097711호, 미국 특허 제 6878361호 등과 같은 여러 문헌에 기술되어 있는 것과 크게 다르지 않다. 먼저 탄소나노튜브를 300-800 ℃의 고온에서 10-60분 동안 산화시켜 비정질의 탄소를 제거한 후, 이를 질산, 황산, 또는 염산 용액에 넣어 환류시키거나 10-120분 초음파 처리하여 금속 촉매와 비정질 탄소를 추가로 제거하고 필터 및 건조과정을 거쳐 90% 이상의 순도를 가진 탄소나노튜브를 얻을 수 있다. The method for purifying carbon nanotubes in the present invention is not significantly different from those described in various documents such as Korean Patent Publication No. 10-2005-0097711, US Patent No. 6878361, and the like. First, the carbon nanotubes are oxidized at a high temperature of 300-800 ° C. for 10-60 minutes to remove amorphous carbon, which is then refluxed in a nitric acid, sulfuric acid, or hydrochloric acid solution or refluxed for 10-120 minutes or subjected to ultrasonic treatment for 10-120 minutes. Additional carbon is removed, filtered and dried to obtain carbon nanotubes with a purity of over 90%.
상기와 같은 방법으로 정제된 탄소나노튜브는 다발상태로 응집되어 있으므로 이를 특정 화합물을 사용하여 분리 및 절단하는 과정이 필요한데, 이때 사용되는 화합물은 절단 부위에 카르복실기, 아민기, 질산기, 시안기, 아크릴기, 아마이드기, 에틸린옥사이드기 등을 결합시킬 수 있는 물질을 사용하는 것이 바람직하다. 더욱 바람직하게는 질산, 황산, 염산의 단독 혹은 이들의 혼합산 용액에 넣고 상온 내지 200 ℃에서 환류시키거나 1-48시간 초음파 처리하여 카르복실기 등의 관능기를 갖는 탄소나노튜브 (이하 탄소나노튜브-COOH라 한다)를 제조한다. 상기와 같이 제조된 탄소나노튜브-COOH를 물 또는 메탄올, 에탄올, n-프로필알코올, 이소프로필알코올, 노르말부탄올, 이소부탄올, 헥산올, 에틸렌글리콜, 글리세롤, 벤젠, 클로로벤젠, 니트로메탄, 톨루엔, 에틸아세테이트, 헥산, 씨클로헥산, 2-메톡시에탄올, 2-부톡시에탄올, 2-에톡시에탄올, 자일렌, 클로로포름, 테트라하이드로 퓨란, 디메틸포름아마이드, 메틸에틸케톤, N-메틸-2-피롤리돈, 2-피롤리돈, N-비닐-2-피롤리돈, N-메틸포름아미드, 디메틸설폭사이드, 아세톤, n-부티로락톤 등의 유기 용매를 사용하여 전체 용액 100 중량부에 대하여 0.1-15 중량부를 넣고 티오닐클로라이드를 0.1-60 중량부 첨가하여 40-120 ℃의 온도에서 24-48 시간 교반하고, 0.2 미크론 필터로 필터링한 후 과량의 티오닐클로라이드를 제거하기 위해 테트라하이드로퓨란 등의 용매로 여러 번 세척 후 건조하여 카르복실기, 즉 -COOH의 -OH를 -Cl로 치환된 탄소나노튜브-COCl (이하 탄소나노튜브-Cl이라 한다)을 수득한다. 이와 같이 클로린기를 갖는 탄소나노튜브를 그대로 사용해도 되고, 제조한 탄소나노튜브-Cl에서 -Cl을 -Br로 치환하여 사용할 수 있다. 또는 이 외에 음이온성을 가지는 말단기를 도입하여 사용할 수도 있다. 만약 여기에 브롬기를 도입하기 위해서는 상기 수득된 탄소나노튜브-Cl을 다시 물 또는 메탄올, 에탄올, n-프로필알코올, 이소프로필알코올, 노르말부탄올, 이소부탄올, 헥산올, 에틸렌글리콜, 글리세롤, 벤젠, 클로로벤젠, 니트로메탄, 톨루엔, 에틸아세테이트, 헥산, 씨클로헥산, 2-메톡시에탄올, 2-부톡시에탄올, 2-에톡시에탄올, 자일렌, 클로로포름, 테트라하이드로 퓨란, 디메틸포름아마이드, 메틸에틸케톤, N-메틸-2-피롤리돈, 2-피롤리돈, N-비닐-2-피롤리돈, N-메틸포름아미드, 디메틸설폭사이드, 아세톤, n-부티로락톤 등의 유기용매를 사용하여 전체 용액 100 중량부에 대하여 0.1-20 중량부 첨가하고 2-하이드록시에틸-2-브로모이소부티레이트 (2-hydroxyethyl-2-bromoisobutyrate) 또는 2-브로모-2-메틸프로피오닐 브로마이드 (2-bromo-2-methylpropionyl bromide)를 0.1-60 중량부 첨가하여 80-150 ℃의 온도에서 48-72 시간 환류시켜 필터링하고 에탄올 (ethanol)과 디에틸에테르 (diethyl ether)로 여러 번 세척하여 탄소나노튜브-CO-Br (이하 탄소나노튜브-Br 이라 한다)을 수득한다. Since the carbon nanotubes purified in the above-described manner are aggregated in a bundle state, a process of separating and cleaving the carbon nanotubes using a specific compound is necessary. The compound used at this time is a carboxyl group, an amine group, a nitrate group, a cyan group, It is preferable to use a substance capable of bonding an acryl group, an amide group, an ethylenoxide group, or the like. More preferably, carbon nanotubes having functional groups such as carboxyl groups (hereinafter referred to as carbon nanotubes-COOH) may be added to nitric acid, sulfuric acid, hydrochloric acid alone or mixed acid solutions thereof and refluxed at room temperature to 200 ° C. or sonicated for 1 to 48 hours. To be prepared). Carbon nanotube-COOH prepared as described above is water or methanol, ethanol, n-propyl alcohol, isopropyl alcohol, normal butanol, isobutanol, hexanol, ethylene glycol, glycerol, benzene, chlorobenzene, nitromethane, toluene, Ethyl acetate, hexane, cyclohexane, 2-methoxyethanol, 2-butoxyethanol, 2-ethoxyethanol, xylene, chloroform, tetrahydrofuran, dimethylformamide, methylethylketone, N-methyl-2-pi To 100 parts by weight of the total solution using an organic solvent such as rolidone, 2-pyrrolidone, N-vinyl-2-pyrrolidone, N-methylformamide, dimethyl sulfoxide, acetone, n-butyrolactone, etc. Add 0.1-15 parts by weight, add 0.1-60 parts by weight of thionyl chloride, stir for 24-48 hours at a temperature of 40-120 ° C., filter with a 0.2 micron filter, and then remove tetrahydrofuran to remove excess thionyl chloride. With solvents Drying after washing several times to give a carboxyl group, that is, the carbon nanotube replacing the -OH in the -COOH -Cl (hereinafter referred to as CNT -Cl) -COCl. As such, the carbon nanotube having a chlorine group may be used as it is, and -Cl may be substituted with -Br in the prepared carbon nanotube-Cl. Alternatively, other terminal groups having anionic properties may be introduced and used. In order to introduce a bromine group here, the obtained carbon nanotube-Cl may be water or methanol, ethanol, n-propyl alcohol, isopropyl alcohol, normal butanol, isobutanol, hexanol, ethylene glycol, glycerol, benzene, chloro Benzene, nitromethane, toluene, ethyl acetate, hexane, cyclohexane, 2-methoxyethanol, 2-butoxyethanol, 2-ethoxyethanol, xylene, chloroform, tetrahydrofuran, dimethylformamide, methylethylketone, Using organic solvents such as N-methyl-2-pyrrolidone, 2-pyrrolidone, N-vinyl-2-pyrrolidone, N-methylformamide, dimethyl sulfoxide, acetone, n-butyrolactone, etc. 0.1-20 parts by weight based on 100 parts by weight of the total solution is added and 2-hydroxyethyl-2-bromoisobutyrate or 2-bromo-2-methylpropionyl bromide (2- bromo-2-methylpropionyl bromide) 0.1-60 wt% Filtered by refluxing at 80-150 ℃ for 48-72 hours, washed several times with ethanol and diethyl ether to be called carbon nanotubes-CO-Br (hereinafter referred to as carbon nanotubes-Br). ).
제 2단계:Second step:
본 단계에서는 제 1단계에서 제조된 탄소나노튜브-Cl 혹은 탄소나노튜브-Br의 분산성을 향상시키고 전도성 고분자와의 합성을 위해 도판트로 사용할 수 있는 화합물을 도입하는 단계를 설명한다. In this step, the steps of improving the dispersibility of carbon nanotube-Cl or carbon nanotube-Br prepared in the first step and introducing a compound which can be used as a dopant for synthesis with a conductive polymer will be described.
이 단계에 사용할 수 있는 화합물은 특별히 제한적이지 않지만 바람직하게는 폴리(X-4-스티렌술포네이트) 및 이들의 변성 고분자로써 구조적으로 스티렌의 벤젠고리의 수소원자 하나 혹은 그 이상이 설폰기로 치환되어있는 고분자를 사용하는 것이 바람직하며, 물에 녹였을 때 산도가 3이상이면 더욱 효과적이다. 여기에서 X는 1족 원소들로서 대표적인 원소로는 나트륨 또는 세슘 등을 의미한다. 이들의 분자량 또한 크게 제한적이지는 않지만 분자량이 200,000 그램/몰 이상이면 탄소나노튜브의 전기전도도를 약화시키고 분자량이 5,000 그램/몰 미만이면 분산성에 도움을 주지 않기 때문에 분자량이 5,000-200,000 그램/몰인 고분자를 사용하면 된다.The compound usable in this step is not particularly limited but is preferably poly (X-4-styrenesulfonate) and modified polymers thereof in which one or more hydrogen atoms of the benzene ring of styrene are structurally substituted with sulfone groups. It is preferable to use a polymer, and it is more effective if the acidity is 3 or more when dissolved in water. Here, X is a group 1 element and the representative element means sodium or cesium. Their molecular weight is also not very limited, but polymers having molecular weights of 5,000-200,000 grams / mol because molecular weights above 200,000 grams / mole weaken the electrical conductivity of carbon nanotubes and molecular weights below 5,000 grams / mole do not help dispersibility. You can use
제1단계에서 제조된 관능기를 도입한 탄소나노튜브는 탄소나노튜브-Cl로 예를 들어 설명하면, 먼저 탄소나노튜브-Cl의 사용량은 제한적이지 않지만, 바람직하게는 사용하는 전체 용액 100 중량부에 대하여 0.1-20 중량부로 사용한다. 용매는 예를 들어, 제조된 탄소나노튜브-Cl을 물 또는 메탄올, 에탄올, n-프로필알코올, 이소프로필알코올, 노르말부탄올, 이소부탄올, 헥산올, 에틸렌글리콜, 글리세롤, 벤젠, 클로로벤젠, 니트로메탄, 톨루엔, 에틸아세테이트, 헥산, 씨클로헥산, 2-메톡시에탄올, 2-부톡시에탄올, 2-에톡시에탄올, 자일렌, 클로로포름, 테트라하이드로 퓨란, 디메틸포름아마이드, 메틸에틸케톤, N-메틸-2-피롤리돈, 2-피롤리돈, N-비닐-2-피롤리돈, N-메틸포름아미드, 디메틸설폭사이드, 아세톤, n-부티로락톤 등을 단독 혹은 이들의 혼합용매에 분산시킨 후 0.1-50 중량부의 폴리(X-4-스티렌술포네이트)를 첨가하여 상온-120 ℃ 사이 온도의 질소 분위기에서 12-72시간 교반한다. 이때 폴리(X-4-스티렌술포네이트)가 0.1 중량부 이하이면 탄소나노튜브의 표면에 충분히 도입되기 어려워 불리하고, 50 중량부 이상이면 용매에 용해시키기 어려워 오히려 불리하다. 반응종료 후 0.2 미크론 필터로 필터링한 후 과량의 물 또는 에탄올 등의 알코올로 미반응 물질을 세척 후 건조하여 탄소나노튜브-폴리(X-4-스티렌술포네이트)를 수득한다. 제조된 탄소나노튜브-폴리(X-4-스티렌술포네이트)는 전체 용액 100 중량부 대비 0.001-50 중량부에 넣고 분산시킨다. 분산하는 방법은 제한적이지 않지만 바람직하게는 초음파를 사용하면 된다. 이때 0.001 중량부 이하이면 고형분 함량이 너무 낮아 불리하고 50 중량부 이상이면 고형분 함량이 너무 높아 분산이 어려워져 오히려 불리하다.The carbon nanotubes incorporating the functional group prepared in the first step are described as carbon nanotubes-Cl, for example. First, the amount of carbon nanotubes-Cl is not limited, but preferably 100 parts by weight of the total solution to be used. It is used at 0.1-20 parts by weight. The solvent may be, for example, prepared carbon nanotube-Cl in water or methanol, ethanol, n-propyl alcohol, isopropyl alcohol, normal butanol, isobutanol, hexanol, ethylene glycol, glycerol, benzene, chlorobenzene, nitromethane , Toluene, ethyl acetate, hexane, cyclohexane, 2-methoxyethanol, 2-butoxyethanol, 2-ethoxyethanol, xylene, chloroform, tetrahydrofuran, dimethylformamide, methylethylketone, N-methyl- 2-pyrrolidone, 2-pyrrolidone, N-vinyl-2-pyrrolidone, N-methylformamide, dimethyl sulfoxide, acetone, n-butyrolactone and the like dispersed in single or a mixed solvent thereof Then 0.1-50 parts by weight of poly (X-4-styrenesulfonate) is added and stirred for 12-72 hours in a nitrogen atmosphere at a temperature between room temperature and 120 ° C. At this time, if the poly (X-4-styrenesulfonate) is 0.1 parts by weight or less, it is difficult to be sufficiently introduced into the surface of the carbon nanotubes, and if it is 50 parts by weight or more, it is difficult to dissolve in a solvent. After completion of the reaction, filtered with a 0.2 micron filter and washed with an excess of alcohol or alcohol such as ethanol and dried to obtain carbon nanotube-poly (X-4-styrenesulfonate). The prepared carbon nanotube-poly (X-4-styrenesulfonate) is dispersed in 0.001-50 parts by weight based on 100 parts by weight of the total solution. The method of dispersing is not limited, but preferably ultrasonic waves may be used. In this case, if the content is less than 0.001 parts by weight, the solid content is too low, and if it is more than 50 parts by weight, the solid content is too high, making dispersion difficult.
상기에 언급한 분산 용매는 제한적이지는 않지만 예를 들면, 물 또는 메탄올, 에탄올, n-프로필알코올, 이소프로필알코올, 노르말부탄올, 이소부탄올, 헥산올, 에틸렌글리콜, 글리세롤, 벤젠, 클로로벤젠, 니트로메탄, 톨루엔, 에틸아세테이트, 헥산, 씨클로헥산, 2-메톡시에탄올, 2-부톡시에탄올, 2-에톡시에탄올, 자일렌, 클로로포름, 테트라하이드로 퓨란, 디메틸포름아마이드, 메틸에틸케톤, N-메틸-2-피롤리돈, 2-피롤리돈, N-비닐-2-피롤리돈, N-메틸포름아미드, 디메틸설폭사이드, 아세톤, n-부티로락톤 등과 같은 용매를 단독으로 사용하거나 두 종류 이상을 적정 비율로 혼합하여 사용할 수 있다. The above-mentioned dispersing solvents include, but are not limited to, water or methanol, ethanol, n-propyl alcohol, isopropyl alcohol, normal butanol, isobutanol, hexanol, ethylene glycol, glycerol, benzene, chlorobenzene, nitro Methane, toluene, ethyl acetate, hexane, cyclohexane, 2-methoxyethanol, 2-butoxyethanol, 2-ethoxyethanol, xylene, chloroform, tetrahydrofuran, dimethylformamide, methylethylketone, N-methyl Solvents such as -2-pyrrolidone, 2-pyrrolidone, N-vinyl-2-pyrrolidone, N-methylformamide, dimethyl sulfoxide, acetone, n-butyrolactone, etc. The above can be mixed and used in an appropriate ratio.
제 3단계:Third step:
본 단계에서는 제 2단계에서 제조된 탄소나노튜브-폴리(X-4-스티렌술포네이트) 분산액에 전도성 고분자를 합성하는 단계를 설명한다. 본 단계의 반응은 종래에 알려져 있는 방법을 사용하면 된다 (참고문헌: 미국공개특허 5,300,575). 전도성 고분자 합성용 모노머는 3,4-에틸렌디옥시티오펜 또는 기타 티오펜계 모노머들, 즉 3,4-디알킬티오펜, 3,4-디알콕시티오펜 및 3,4-시클로알킬티오펜 등의 모노머 또는 이들로부터 유도된 변성 모노머를 사용하면 된다. 또한 피롤, 아닐린 등 다른 종류의 전도성 고분자 합성용 모노머를 사용해도 무방하다. 만일 광투과성을 좋게 하려면 3,4-에틸렌디옥시티오펜 또는 기타 광투과성이 좋은 모노머를 사용하면 된다.In this step, the step of synthesizing the conductive polymer to the carbon nanotube-poly (X-4-styrenesulfonate) dispersion prepared in the second step will be described. The reaction of this step may be carried out using a method known in the art (Ref. U.S. Patent No. 5,300,575). Monomers for the synthesis of conductive polymers include 3,4-ethylenedioxythiophene or other thiophene-based monomers, such as 3,4-dialkylthiophene, 3,4-dialkoxythiophene and 3,4-cycloalkylthiophene. The monomer or modified monomer derived from these may be used. In addition, other types of conductive polymer synthesis monomers such as pyrrole and aniline may be used. If the light transmittance is good, 3,4-ethylenedioxythiophene or other light transmittance monomer may be used.
제2단계에서 수득한 탄소나노튜브-폴리(X-4-스티렌술포네이트)를 사용하여 폴리(3,4-에틸렌디옥시티오펜)을 합성하기 위해서는 모노머, 산화제 그리고 도판트를 일정 비율로 혼합한 후 합성을 유도한다. 이때 사용하는 모노머는 3,4-에틸렌디옥시티오펜을, 산화제는 암모늄퍼옥시디설페이트 (APS), 포타슘퍼설페이트 (KPS) 등을 사용할 수 있다. 그리고 도판트는 상술한 제2단계에서 만들어진 탄소나노튜브-폴리(X-4-스티렌술포네이트)를 사용한다. 이때 전도성 고분자의 합성 반응을 용이하게 하기 위해 폴리스티렌술포네이트 (PSSA)나 소디윰도데실설페이트 (SDS) 등을 더 추가하여 사용할 수 있다. 이때 탄소나노튜브-폴리(X-4-스티렌술포네이트)와 폴리스티렌술포네이트 혹은 소디윰도데실설페이트의 중량비가 1:99 - 99:1이 되도록 혼합하면 된다. 상기의 화합물을 혼합하여 사용하는 이유는 합성된 탄소나노튜브-전도성고분자의 입자크기가 작아지고, 분산도 및 코팅 후 전도도가 혼합하지 않았을 때보다 우수하기 때문이다. 이때 폴리스티렌술포네이드 또는 소디윰도데실설페이트의 함량이 1 중량퍼센트 이하이면 상기 효과가 미미하여 큰 효과가 없고 99 중량퍼센트 이상이면 이는 탄소나노튜브-폴리(X-4-스티렌술포네이트)의 함량이 너무 적게 사용되는 것이므로 이는 본 발명의 목적상 큰 의미가 없게 된다.In order to synthesize poly (3,4-ethylenedioxythiophene) using the carbon nanotube-poly (X-4-styrenesulfonate) obtained in the second step, a monomer, an oxidizing agent and a dopant were mixed in a predetermined ratio. Induce synthesis after. At this time, the monomer used may be 3,4-ethylenedioxythiophene, the oxidizing agent may be used ammonium peroxy disulfate (APS), potassium persulfate (KPS) and the like. In addition, the dopant uses carbon nanotube-poly (X-4-styrenesulfonate) prepared in the above-described second step. In this case, in order to facilitate the synthesis reaction of the conductive polymer, polystyrene sulfonate (PSSA) or sodido dodecyl sulfate (SDS) may be further added and used. In this case, the carbon nanotube-poly (X-4-styrene sulfonate) and the polystyrene sulfonate or sodido dodecyl sulfate may be mixed so that the weight ratio is 1:99 to 99: 1. The reason why the compound is used in a mixed state is that the particle size of the synthesized carbon nanotube-conductive polymer is reduced, and the dispersion and post-coating conductivity are superior to those without mixing. At this time, if the content of polystyrene sulfonide or sodido dodecyl sulfate is less than 1% by weight, the effect is insignificant and there is no significant effect. Since it is used less, it does not have much meaning for the purposes of the present invention.
본 단계의 합성 시 용매는 물을 사용하고, 개시제, 산화제 및 탄소나노튜브-폴리(X-4-스티렌술포네이트) 분산 용액을 일정 몰비로 첨가하여 12-96시간 교반한다. 여기서 얻어진 용액은 약간의 갈색을 띠는 남색이며, 이 용액을 이하 탄소나노튜브-폴리(X-4-스티렌술포네이트)-전도성 고분자 용액 또는 탄소나노튜브-전도성 고분자 용액으로 명명한다. 이 후 탄소나노튜브-전도성 고분자 용액은 별도의 세척과정을 거칠 수도 있고 그대로 사용할 수도 있다.In the synthesis of this step, water is used as a solvent, and an initiator, an oxidizing agent, and a carbon nanotube-poly (X-4-styrenesulfonate) dispersion solution are added at a constant molar ratio and stirred for 12-96 hours. The solution obtained here is a slightly brownish indigo, which is hereinafter referred to as carbon nanotube-poly (X-4-styrenesulfonate) -conductive polymer solution or carbon nanotube-conductive polymer solution. After that, the carbon nanotube-conductive polymer solution may be subjected to a separate washing process or may be used as it is.
상기의 방법으로 제조된 탄소나노튜브-전도성 고분자 용액에 물 또는 메탄올, 에탄올, n-프로필알코올, 이소프로필알코올, 노르말부탄올, 이소부탄올, 헥산올, 에틸렌글리콜, 글리세롤, 벤젠, 클로로벤젠, 니트로메탄, 톨루엔, 에틸아세테이트, 헥산, 씨클로헥산, 2-메톡시에탄올, 2-부톡시에탄올, 2-에톡시에탄올, 자일렌, 클로로포름, 테트라하이드로 퓨란, 디메틸포름아마이드, 메틸에틸케톤, N-메틸-2-피롤리돈, 2-피롤리돈, N-비닐-2-피롤리돈, N-메틸포름아미드, 디메틸설폭사이드, 아세톤, n-부티로락톤 등과 같은 용매를 단독으로 사용하거나 두 종류 이상을 적정 비율로 혼합한 용매를 사용하여 전체 용액 100 중량부 대비 탄소나노튜브-전도성 고분자가 0.001-50 중량부가 되도록 코팅 용액을 제조하였다. 탄소나노튜브-전도성 고분자의 함량이 0.001 중량부보다 적으면 전도성 고분자 성분의 함량이 너무 낮아 전도도가 너무 낮게 나와 불리하고, 50 중량부 이상이면 고형분 함량이 너무 높아 오히려 코팅에 의한 도막 형성이 잘 안되어 불리하다. 상기의 방법으로 제조된 탄소나노튜브-전도성고분자가 포함된 전도성 코팅액은 그대로 사용해도 무방하고, 전기전도도 향상 및 코팅 특성을 향상시키기 위해 바인더 및 기타 첨가제를 더 첨가할 수도 있다.Water or methanol, ethanol, n-propyl alcohol, isopropyl alcohol, normal butanol, isobutanol, hexanol, ethylene glycol, glycerol, benzene, chlorobenzene, nitromethane in the carbon nanotube-conductive polymer solution prepared by the above method , Toluene, ethyl acetate, hexane, cyclohexane, 2-methoxyethanol, 2-butoxyethanol, 2-ethoxyethanol, xylene, chloroform, tetrahydrofuran, dimethylformamide, methylethylketone, N-methyl- Solvents such as 2-pyrrolidone, 2-pyrrolidone, N-vinyl-2-pyrrolidone, N-methylformamide, dimethyl sulfoxide, acetone, n-butyrolactone, etc. may be used alone or in combination of two or more. The coating solution was prepared such that the carbon nanotube-conductive polymer was 0.001-50 parts by weight with respect to 100 parts by weight of the total solution by using a solvent mixed in an appropriate ratio. If the content of the carbon nanotube-conductive polymer is less than 0.001 parts by weight, the content of the conductive polymer component is too low and the conductivity is too low. If the content is more than 50 parts by weight, the solid content is too high. It is disadvantageous. The conductive coating liquid containing the carbon nanotube-conductive polymer prepared by the above method may be used as it is, and a binder and other additives may be further added to improve electrical conductivity and improve coating properties.
도 3은 본 발명으로 이루어진 탄소나노튜브-전도성 고분자 복합체의 예시로써, 탄소나노튜브-PEDOT 복합체 구조를 나타내는 도로서, 탄소나노튜브(120)와 폴리(소디윰-4-스티렌술포네이트)(110)로 탄소나노튜브-폴리(소디윰-4-스티렌술포네이트) 복합체를 제조 후 여기에 전도성 고분자인 PEDOT(100)를 합성 시의 구조를 나타내고 있다.FIG. 3 is a diagram illustrating a carbon nanotube-PEDOT composite structure as an example of a carbon nanotube-conductive polymer composite made of the present invention. The carbon nanotube 120 and poly (sodide-4-styrenesulfonate) 110 are illustrated in FIG. After preparing a carbon nanotube-poly (sodi 윰 -4-styrenesulfonate) composite, PEDOT (100), which is a conductive polymer, is shown.
본 발명에서 제조된 탄소나노튜브-전도성고분자가 포함된 전도성 코팅액 사용 시 적당한 바인더 물질을 선택하면 기저 물질의 종류에 상관없이 표면에 전도층을 형성할 수 있다. 이 전도층을 형성하는 방법은 먼저 상술한 바 있는 전도성 코팅액을 기저 물질 표면에 도포한 후 50-200 ℃ 사이 온도에서 0.1-10분간 건조하면 된다. 또한 코팅층의 도막 물성을 증진시키기 위해 바인더 경화제를 함께 사용하는 경우에는 코팅층 건조 후 2차 열처리를 통해 코팅층의 도막 물성을 증진시킬 수 있다. 코팅층 형성시 필요하면 코팅특성 및 전기전도도 증진효과가 있는 첨가물을 혼합하거나 기저 물질 표면을 코로나 처리 혹은 이온빔 처리하여 표면의 접착력을 향상시키는 방법을 사용하면 더욱 효과적이다. When using a conductive coating solution containing a carbon nanotube-conductive polymer prepared in the present invention, selecting a suitable binder material can form a conductive layer on the surface regardless of the type of the base material. The conductive layer may be formed by first applying the above-described conductive coating solution to the surface of the base material and then drying the solution at a temperature between 50-200 ° C. for 0.1-10 minutes. In addition, in the case of using a binder curing agent to improve the coating properties of the coating layer may be to improve the coating properties of the coating layer through the secondary heat treatment after drying the coating layer. When the coating layer is formed, it is more effective to use a method of improving the adhesion of the surface by mixing additives having an effect of improving the coating properties and electrical conductivity or corona treatment or ion beam treatment of the surface of the base material.
본 발명의 전도성 코팅액을 코팅할 수 있는 기저 물질로는 각종 에스터계 고분자, 카보네이트계 고분자, 스티렌계 고분자, 에틸렌 또는 프로필렌계 등의 올레핀계 고분자, 셀루로스계 고분자, 환형에틸렌계 고분자, 이미드계 고분자, 아미드계 고분자, 각종 엔지니어링 플라스틱계 고분자 등 모든 고분자에 적용 가능하다. 또한 유리, 금속, 세라믹 등 무기계 물질 표면에도 적용할 수 있다.The base material to which the conductive coating solution of the present invention can be coated includes various ester polymers, carbonate polymers, styrene polymers, olefin polymers such as ethylene or propylene, cellulose polymers, cyclic ethylene polymers, and imide polymers. It can be applied to all polymers, such as amide polymer and various engineering plastic polymer. It can also be applied to the surface of inorganic materials such as glass, metal and ceramics.
또한 본 발명의 탄소나노튜브-전도성고분자 복합체를 포함하는 코팅액을 형성한 제품은 어느 특정한 부류에 한정되지 않고 전도도가 필요한 모든 분야에 적용 가능하다.In addition, the product formed with the coating liquid containing the carbon nanotube-conductive polymer composite of the present invention is not limited to any particular class and can be applied to all fields requiring conductivity.
상기 언급된 내용을 실시예를 이용하여 보다 구체적으로 설명하고자 한다. 그러나 본 발명의 범위는 실시예에 국한되는 것은 아니다.The above-mentioned contents will be described in more detail using examples. However, the scope of the present invention is not limited to the examples.
<실시예 1><Example 1>
다중벽 탄소나노튜브 (일진나노텍, CM-95 grade) 0.5 g을 100 ml의 3M 농도의 황산/질산 (3:1 v/v%) 혼합산 용액에 첨가하고 80 ℃에서 4시간 동안 정제 처리한다. 그 후 0.2 ㎛ 폴리카보네이트 필터로 필터링하고 과량의 물로 씻어 중성화시킨다. 이를 80 ℃ 진공오븐에서 24시간 건조하여 카르복실기가 도입된 탄소나노튜브 (탄소나노튜브-COOH)를 수득한다. 그 후 다중벽 탄소나노튜브-COOH 0.5 g와 2 g의 티오닐 클로라이드를 500 ml의 디메틸포름아마이드에 넣고 100 ℃에서 48시간 동안 교반한 후 0.2 ㎛의 폴리카보네이트 필터로 필터링하면서 테트라하이드로퓨란으로 10회 세척 후 60 ℃ 진공오븐에서 24시간 건조하여 탄소나노튜브 표면에 도입된 카르복실산기를 아실클로라이드기로 치환한 탄소나노튜브-Cl을 수득한다. 상기에서 제조된 탄소나노튜브-Cl과 물에 10 중량퍼센트로 용해시킨 폴리(소디윰-4-스티렌술포네이트) 용액 15 g을 천천히 떨어뜨리면서 50 ℃ 온도에서 48시간 교반한다. 반응이 끝나면 0.2 ㎛의 폴리카보네이트 필터로 필터링하면서 미반응한 화합물을 물로 10회 세척하고 진공오븐에서 24 시간 건조하여 탄소나노튜브-폴리(소디윰-4-스티렌술포네이트) (이하 탄소나노튜브-PSSNa로 명명한다)를 제조한다. 그 후 탄소나노튜브-PSSNa의 함량이 0.5 중량퍼센트가 되도록 물에 넣고 초음파로 20분간 분산시킨다. 0.5 g of multi-walled carbon nanotubes (Iljin Nanotech, CM-95 grade) are added to 100 ml of 3M sulfuric acid / nitric acid (3: 1 v / v%) mixed acid solution and purified at 80 ° C. for 4 hours. . It is then filtered with a 0.2 μm polycarbonate filter and washed with excess water to neutralize. This was dried for 24 hours in a vacuum oven at 80 ℃ to obtain a carbon nanotube (carbon nanotube-COOH) introduced carboxyl group. Then, 0.5 g of multi-walled carbon nanotubes-COOH and 2 g of thionyl chloride were added to 500 ml of dimethylformamide, and stirred at 100 ° C. for 48 hours, followed by filtering with a 0.2 μm polycarbonate filter. After washing twice, dried at 60 ° C. in a vacuum oven for 24 hours to obtain carbon nanotube-Cl in which the carboxylic acid group introduced on the carbon nanotube surface was substituted with an acyl chloride group. 15 g of poly (sodieth-4-styrenesulfonate) solution dissolved in 10 wt% of carbon nanotube-Cl and water prepared above was slowly dropped at 50 ° C. for 48 hours. After the reaction was completed, the unreacted compound was washed 10 times with water, filtered through a 0.2 μm polycarbonate filter, and dried in a vacuum oven for 24 hours, followed by carbon nanotube-poly (sodide-4-styrenesulfonate) (hereinafter referred to as carbon nanotube- (Named PSSNa). Thereafter, the carbon nanotube-PSSNa is added to water so that the content of 0.5 wt% is dispersed for 20 minutes by ultrasonic waves.
상기의 방법으로 제조된 탄소나노튜브-PSSNa 수분산 용액을 0.1 중량퍼센트가 되도록 물로 희석하고 탄소나노튜브-PSSNa의 PSSNa 양 : 에틸렌디옥시티오펜 : 암모늄퍼옥시디설페이트 (1:1:1 몰비)로 첨가하여 상온에서 24 시간 합성을 진행한다. 반응 종료 후 0.2 ㎛의 폴리카보네이트 필터로 필터링하면서 미반응한 화합물을 물로 10회 세척하고 진공오븐에서 24 시간 건조하여 탄소나노튜브-PEDOT 복합체를 수득한다. 제조된 탄소나노튜브-PEDOT 복합체 0.01g을 물:이소프로필알코올 (40:60) 혼합용매 9.99g에 혼합하여 초음파로 20분간 분산 후 탄소나노튜브-PEDOT가 포함된 전도성 코팅용액을 제조하였다. 이를 비정질 폴리에스터 필름에 도포한 결과 표면저항은 5 X 103 오움/면적으로 측정되고 광투과도는 기저 필름 대비 10% 감소하였다.The carbon nanotube-PSSNa aqueous dispersion solution prepared by the above method was diluted with water to 0.1 weight percent, and the amount of PSSNa of carbon nanotube-PSSNa: ethylenedioxythiophene: ammonium peroxydisulfate (1: 1: 1 molar ratio). Addition proceeds at room temperature for 24 hours. After completion of the reaction, the unreacted compound was washed 10 times with water and filtered through a 0.2 μm polycarbonate filter and dried for 24 hours in a vacuum oven to obtain a carbon nanotube-PEDOT composite. 0.01 g of the prepared carbon nanotube-PEDOT composite was mixed with 9.99 g of a water: isopropyl alcohol (40:60) mixed solvent to disperse ultrasonically for 20 minutes to prepare a conductive coating solution including carbon nanotube-PEDOT. When applied to an amorphous polyester film, the surface resistance was measured by 5 X 10 3 ohms / area and the light transmittance was reduced by 10% compared to the base film.
<실시예 2><Example 2>
단일벽 탄소나노튜브 (일진나노텍, ASA-100F grade) 0.5 g을 450 ℃에서 30분간 열처리한 후 염산 100 ml에 넣어 60 ℃에서 초음파로 1시간 정제 처리한다. 그 후 0.2 ㎛ 폴리카보네이트 필터로 필터링하고 과량의 물로 씻어 중성화시킨다. 이를 다시 3M 농도의 황산/질산 (3:1 부피비) 혼합산 용액에 첨가하고 150 ℃에서 4시간 동안 정제 처리하고 필터링하면서 과량의 물로 씻어 중화시킨 후 80 ℃ 진공오븐에서 24시간 건조하여 탄소나노튜브-COOH를 제조하였다. 그 후 실시예 1과 동일한 방법으로 탄소나노튜브-PEDOT가 포함된 전도성 코팅용액을 제조하였다. 이를 비정질 폴리에스터 필름에 도포한 결과 표면저항은 5×102 오움/면적으로 측정되었고 광투과도는 기저필름 대비 4% 감소하였다.0.5 g of a single-walled carbon nanotube (ILJIN Nanotech, ASA-100F grade) is heat-treated at 450 ° C. for 30 minutes and then placed in 100 ml of hydrochloric acid for 1 hour by ultrasonic purification at 60 ° C. It is then filtered with a 0.2 μm polycarbonate filter and washed with excess water to neutralize. This was added again to the mixed acid solution of sulfuric acid / nitric acid (3: 1 volume ratio) of 3M concentration, purified for 4 hours at 150 ° C., washed with excess water, filtered, and neutralized, followed by drying in a vacuum oven at 80 ° C. for 24 hours. -COOH was prepared. Thereafter, a conductive coating solution containing carbon nanotubes-PEDOT was prepared in the same manner as in Example 1. As a result of coating on the amorphous polyester film, the surface resistance was measured at 5 × 10 2 ohms / area and the light transmittance was reduced by 4% compared to the base film.
<실시예 3> <Example 3>
실시예 3은 실시예 2에서 제조한 탄소나노튜브-PSSNa에 전도성 고분자를 합성 시 추가로 폴리스티렌술포네이트를 첨가하였다. 첨가량은 탄소나노튜브-PSSNa와 폴리스티렌술포네이트의 중량비가 80:20이 되도록 하였으며, 이를 제외하고 실시예 2와 동일한 방법으로 제조하였다. 비정질 폴리에스터 필름에 도포 후의 표면저항은 2.5×102 오움/면적으로 측정되었고 광투과도는 기저필름 대비 3% 감소하였다. Example 3 In the synthesis of the conductive polymer to the carbon nanotubes-PSSNa prepared in Example 2, polystyrene sulfonate was further added. The amount was added so that the weight ratio of carbon nanotubes-PSSNa and polystyrenesulfonate was 80:20, except that this was prepared in the same manner as in Example 2. The surface resistance after application to the amorphous polyester film was measured 2.5 × 10 2 ohms / area and the light transmittance was reduced by 3% compared to the base film.
<실시예 4><Example 4>
실시예 4는 실시예 2에서 제조한 탄소나노튜브-PSSNa에 전도성 고분자를 합성 시 에틸렌디옥시티오펜 대신 피롤을 사용하는 것 외에 실시예 3과 동일한 방법으로 제조하였다. 이를 비정질 폴리에스터 필름에 도포 후의 표면저항은 3.0×102 오움/면적으로 측정되었고 광투과도는 기저필름 대비 5% 감소하였다.Example 4 was prepared in the same manner as in Example 3 except for using pyrrole instead of ethylenedioxythiophene in synthesizing the conductive polymer in the carbon nanotubes-PSSNa prepared in Example 2. The surface resistance after coating on the amorphous polyester film was measured to 3.0 × 10 2 ohms / area and the light transmittance was reduced by 5% compared to the base film.
상기의 실시예를 통해 나타난 바와 같이 탄소나노튜브-전도성 고분자를 포함한 전도성 코팅 용액 제조 시 탄소나노튜브는 다중벽 탄소나노튜브에 비해 단일벽 탄소나노튜브를 사용 시 표면저항 및 투과도에 유리한 것을 확인할 수 있다. 또한 실시예 1과 실시예 3에서 보는바와 같이 탄소나노튜브-전도성 고분자 복합체의 합성 시 폴리스티렌술포네이트와 같은 첨가물을 혼합하는 것이 전기전도도 측면에서 유리함을 알 수 있다. As shown through the above examples, the carbon nanotubes when the conductive coating solution containing the carbon nanotubes-conductive polymers were prepared can be found to be advantageous in surface resistance and permeability when using single-walled carbon nanotubes compared to multi-walled carbon nanotubes. have. In addition, as shown in Examples 1 and 3, it can be seen that it is advantageous in terms of electrical conductivity to mix an additive such as polystyrene sulfonate in the synthesis of the carbon nanotube-conductive polymer composite.
따라서 본 발명의 기술인 개질된 탄소나노튜브 표면에 폴리(X-4-스티렌술포네이트)를 이온결합에 의해 도입하고 전도성 고분자를 합성하여 제조한 전도성 코팅 용액은 전도성 고분자와 탄소나노튜브 혼합물 제조에 있어서 두 성분의 단순 혼합물이 보이는 최대 단점인 전도성고분자와 탄소나노튜브 성분의 상분리 문제를 극복하여 전기전도도가 우수하고 물 등의 용매에 대한 분산성이 향상되는 효과가 있음을 알 수 있다.Therefore, the conductive coating solution prepared by introducing poly (X-4-styrenesulfonate) by ion bonding on the surface of the modified carbon nanotube according to the present invention and synthesizing the conductive polymer in the preparation of the mixture of the conductive polymer and the carbon nanotube Overcoming the phase separation problem between the conductive polymer and the carbon nanotube component, the biggest disadvantage of the simple mixture of the two components, can be seen that the electrical conductivity is excellent and the dispersibility in solvents such as water is improved.
본 발명에 따른 탄소나노튜브-전도성 고분자 복합체는 디스플레이 산업의 투명전극 및 정공주입/수송층 재료와, 유기태양전지의 활성층 등으로 응용할 수 있다.The carbon nanotube-conductive polymer composite according to the present invention can be applied as a transparent electrode and a hole injection / transport layer material of the display industry, an active layer of an organic solar cell, and the like.

Claims (11)

  1. 탄소나노튜브의 표면처리를 통해 관능기를 도입하고 이 관능기를 이용해 이온 결합시켜서 제조된 탄소나노튜브-폴리(X-4-스티렌술포네이트) 복합체(여기서 X는 1족 원소)를 도판트, 또는 도판트 겸 상용화제로 사용하여 전도성 고분자 합성으로 제조되는 탄소나노튜브-전도성 고분자 복합체.A carbon nanotube-poly (X-4-styrenesulfonate) composite (where X is a group 1 element) prepared by introducing a functional group through surface treatment of carbon nanotubes and ion-bonding using the functional group is used as a dopant or a plate Carbon nanotube-conductive polymer composite prepared by synthesizing conductive polymer by using as a compatibilizer.
  2. 제 1항에 있어서, 폴리(X-4-스티렌술포네이트)는 폴리스티렌술포네이트, 폴리(소디윰-4-스티렌술포네이트) 및 도데실벤젠 설폰산 및 이들의 변성된 고분자로서, 벤젠고리의 수소원자 하나 혹은 그 이상이 설폰기로 치환된 구조를 가진 고분자를 특징으로 하는 탄소나노튜브-전도성 고분자 복합체.The poly (X-4-styrenesulfonate) according to claim 1, wherein the poly (X-4-styrenesulfonate) is a polystyrenesulfonate, a poly (sodidec-4-styrenesulfonate) and dodecylbenzene sulfonic acid and modified polymers thereof, and the hydrogen of the benzene ring A carbon nanotube-conductive polymer composite characterized by a polymer having a structure in which one or more atoms are substituted with sulfone groups.
  3. 제 1항 또는 제 2항에 있어서, 폴리(X-4-스티렌술포네이트)의 중량분자량이 5,000 - 200,000 그램/몰임을 특징으로 하는 탄소나노튜브-전도성 고분자 복합체.The carbon nanotube-conductive polymer composite according to claim 1 or 2, wherein the weight molecular weight of the poly (X-4-styrenesulfonate) is 5,000 to 200,000 grams / mole.
  4. 제 1항 내지 제 3항 중 어느 한 항에 있어서, 상기의 전도성 고분자는 폴리피롤, 폴리아닐린, 폴리티오펜, 폴리(3,4-에틸렌디옥시티오펜), 폴리(3,4-알킬렌디옥시티오펜), 폴리(3,4-디알킬티오펜), 폴리(3,4-디알콕시티오펜) 및 폴리(3,4-시클로알킬티오펜)을 포함하는 이들의 유도체인 변성 전도성 고분자인 것을 특징으로 하는 탄소나노튜브-전도성 고분자 복합체.The method according to any one of claims 1 to 3, wherein the conductive polymer is polypyrrole, polyaniline, polythiophene, poly (3,4-ethylenedioxythiophene), poly (3,4-alkylenedioxythiophene. ), A modified conductive polymer which is a derivative thereof including poly (3,4-dialkylthiophene), poly (3,4-dialkoxythiophene) and poly (3,4-cycloalkylthiophene). Carbon nanotubes-conductive polymer composite.
  5. 제 1항 내지 제 4항 중 어느 한 항에 있어서, 상기 전도성 고분자 합성을 위해 단량체를 사용하며, 상기 단량체는 피롤, 아닐린, 티오펜, 3,4-에틸렌디옥시티오펜, 3,4-디알킬티오펜, 3,4-디알콕시티오펜 및 3,4-시클로알킬티오펜을 포함하는 이들의 유도체인 변성 고분자 단량체임을 특징으로 하는 탄소나노튜브-전도성 고분자 복합체.The method according to any one of claims 1 to 4, wherein a monomer is used for synthesizing the conductive polymer, wherein the monomer is pyrrole, aniline, thiophene, 3,4-ethylenedioxythiophene, 3,4-dialkyl. A carbon nanotube-conductive polymer composite, characterized in that it is a modified polymer monomer which is a derivative thereof including thiophene, 3,4-dialkoxythiophene and 3,4-cycloalkylthiophene.
  6. 제 1항 내지 제 5항 중 어느 한 항에 있어서, 상기 전도성 고분자를 합성할 때, 탄소나노튜브-폴리(X-4-스티렌술포네이트)와 폴리스티렌술포네이트, 소디움도데실술포네이드를 포함하는 기존 전도성 고분자 합성용 도판트를 (1:99)-(99:1) 비로 혼합하여 제조된 탄소나노튜브-전도성 고분자 복합체.The method according to any one of claims 1 to 5, wherein, when synthesizing the conductive polymer, existing carbon nanotube-poly (X-4-styrenesulfonate), polystyrenesulfonate, and sodium dodecylsulfonide A carbon nanotube-conductive polymer composite prepared by mixing a conductive polymer dopant in a (1:99)-(99: 1) ratio.
  7. 대전방지 코팅 용액에 있어서, 상기 용액이 제 1항 내지 제 6항 중 어느 한 항의 탄소나노튜브-전도성 고분자 복합체를 전체 함량 중에 0.001-50 중량퍼센트 포함하는 것을 특징으로 하는 대전방지 코팅 용액.An antistatic coating solution, wherein the solution comprises 0.001-50% by weight of the carbon nanotube-conductive polymer composite of any one of claims 1 to 6 in the total content.
  8. 제 7항에 있어서, 용매는 물 또는 메탄올, 에탄올, n-프로필알코올, 이소프로필알코올, 노르말부탄올, 이소부탄올, 헥산올, 에틸렌글리콜, 글리세롤, 벤젠, 클로로벤젠, 니트로메탄, 톨루엔, 에틸아세테이트, 헥산, 씨클로헥산, 2-메톡시에탄올, 2-부톡시에탄올, 2-에톡시에탄올, 자일렌, 클로로포름, 테트라하이드로 퓨란, 디메틸포름아마이드, 메틸에틸케톤, N-메틸-2-피롤리돈, 2-피롤리돈, N-비닐-2-피롤리돈, N-메틸포름아미드, 디메틸설폭사이드, 아세톤, n-부티로락톤 등과 같은 유기용매 중 어느 하나 또는 그 이상을 사용함을 특징으로 하는 코팅 용액.8. The solvent of claim 7, wherein the solvent is water or methanol, ethanol, n-propyl alcohol, isopropyl alcohol, normal butanol, isobutanol, hexanol, ethylene glycol, glycerol, benzene, chlorobenzene, nitromethane, toluene, ethyl acetate, Hexane, cyclohexane, 2-methoxyethanol, 2-butoxyethanol, 2-ethoxyethanol, xylene, chloroform, tetrahydrofuran, dimethylformamide, methylethylketone, N-methyl-2-pyrrolidone, A coating characterized by using any one or more of organic solvents such as 2-pyrrolidone, N-vinyl-2-pyrrolidone, N-methylformamide, dimethylsulfoxide, acetone, n-butyrolactone and the like solution.
  9. 탄소나노튜브의 표면처리를 통해 관능기를 도입하고 이 관능기와 이온 결합시켜서 제조된 탄소나노튜브-폴리(X-4-스티렌술포네이트) 복합체(여기서 X는 1족 원소).A carbon nanotube-poly (X-4-styrenesulfonate) composite (where X is a group 1 element) prepared by introducing a functional group through surface treatment of carbon nanotubes and ion-bonding the functional group.
  10. 제 9항에 있어서 폴리(X-4-스티렌술포네이트)는 폴리스티렌술포네이트, 폴리(소디윰-4-스티렌술포네이트) 및 도데실벤젠 설폰산 및 이들의 변성된 고분자로서, 벤젠고리의 수소원자 하나 혹은 그 이상이 설폰기로 치환된 구조를 가진 고분자임을 특징으로 하는 탄소나노튜브-폴리(X-4-스티렌술포네이트) 복합체.10. The poly (X-4-styrenesulfonate) of claim 9 is a polystyrenesulfonate, a poly (sodidec-4-styrenesulfonate) and dodecylbenzene sulfonic acid and modified polymers thereof, wherein the hydrogen atom of the benzene ring Carbon nanotube-poly (X-4-styrenesulfonate) composite, characterized in that one or more polymers having a structure substituted with a sulfone group.
  11. 제 10항에 있어서, 폴리(X-4-스티렌술포네이트)의 중량 분자량이 5,000 - 200,000 그램/몰임을 특징으로 하는 탄소나노튜브-폴리(X-4-스티렌술포네이트) 복합체.11. The carbon nanotube-poly (X-4-styrenesulfonate) composite according to claim 10, wherein the weight molecular weight of the poly (X-4-styrenesulfonate) is 5,000-200,000 grams / mole.
PCT/KR2009/006823 2008-11-20 2009-11-19 Carbon nanotube-poly(x-4-styrenesulphonate) composite, and a carbon nanotube-electrically conductive polymer composite produced using the same WO2010058975A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020080115615A KR101089300B1 (en) 2008-11-20 2008-11-20 CNT -polyX-4 Styrenesulfonate composites and CNT - Conductive polymer composites produced with the same
KR10-2008-0115615 2008-11-20

Publications (2)

Publication Number Publication Date
WO2010058975A2 true WO2010058975A2 (en) 2010-05-27
WO2010058975A3 WO2010058975A3 (en) 2010-09-10

Family

ID=42198669

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2009/006823 WO2010058975A2 (en) 2008-11-20 2009-11-19 Carbon nanotube-poly(x-4-styrenesulphonate) composite, and a carbon nanotube-electrically conductive polymer composite produced using the same

Country Status (3)

Country Link
KR (1) KR101089300B1 (en)
TW (1) TW201033244A (en)
WO (1) WO2010058975A2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102102243A (en) * 2010-12-13 2011-06-22 中国航空工业集团公司北京航空材料研究院 Method for preparing polythiophene derivative-carbon nano tube nano composite fibers at low temperature
GB2515004A (en) * 2013-05-16 2014-12-17 Technical Fibre Products Ltd Carbon nanotube derivatives
CN109449296A (en) * 2018-10-31 2019-03-08 浙江海洋大学 A kind of flexible solar battery material and preparation method based on carbon nanotube
CN111100255A (en) * 2018-10-25 2020-05-05 中国石油化工股份有限公司 Carbon nano tube-styrene derivative compound, preparation method and application
CN115044949A (en) * 2022-06-09 2022-09-13 合肥工业大学 Preparation device and method of modified organic anticorrosive coating

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102660801B (en) * 2012-02-24 2013-12-25 长春理工大学 Method for preparing erbium and ytterbium double-doped yttrium lithium tetrafluoride up-conversion luminescent nanobelt
CN102660802B (en) * 2012-02-24 2014-01-15 长春理工大学 Preparation method for erbium and ytterbium double-doped up-conversion luminescence nano-fiber
CN102660800B (en) * 2012-02-24 2014-02-12 长春理工大学 Method for preparing erbium and ytterbium co-doped sodium yttrium tetrafluoride upconversion luminescent nanofibers
CN105778571B (en) * 2014-12-24 2018-05-04 中国科学院宁波材料技术与工程研究所 A kind of graphene composite mortar and preparation method thereof
CN105778572B (en) * 2014-12-24 2018-05-01 中国科学院宁波材料技术与工程研究所 A kind of graphene composite powder and preparation method thereof
KR101690543B1 (en) * 2015-07-29 2016-12-28 창원대학교 산학협력단 Method for Preparing Polymer Coated Fludized Bed Carbon Electrode, and Fludized Bed Carbon Electrode By The Same
TWI632169B (en) * 2016-12-09 2018-08-11 鈺邦科技股份有限公司 Polymer composite material, method for manufacturing the polymer composite material, capacitor package structure using the polymer composite material and method for manufacturing the capacitor package structure

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006137846A2 (en) * 2004-09-17 2006-12-28 Eastman Kodak Company Coatable conductive polyethylenedioxythiophene with carbon nanotubes

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006137846A2 (en) * 2004-09-17 2006-12-28 Eastman Kodak Company Coatable conductive polyethylenedioxythiophene with carbon nanotubes

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
KHABASHESKU, V.N. ET AL.: 'Sidewall Carboxylic Acid Functionalization of Single- Walled Carbon Nanotubes' JOURNAL OF THE AMERICAN CHEMICAL SOCIETY vol. 125, 15 November 2003, pages 15174 - 15182 *
LIU, P.: 'Modifications of carbon nanotubes with polymers' EUROPEAN POLYMER JOURNAL vol. 41, 11 July 2005, pages 2693 - 2703 *
ZHITOMIRSKY, I. ET AL.: 'Electrodeposition of composite materials containing functionalized carbon nanotubes' MATERIALS CHEMISTRY AND PHYSICS vol. 111, 15 September 2008, pages 42 - 49 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102102243A (en) * 2010-12-13 2011-06-22 中国航空工业集团公司北京航空材料研究院 Method for preparing polythiophene derivative-carbon nano tube nano composite fibers at low temperature
GB2515004A (en) * 2013-05-16 2014-12-17 Technical Fibre Products Ltd Carbon nanotube derivatives
GB2515004B (en) * 2013-05-16 2020-08-26 Technical Fibre Products Ltd Carbon nanotube derivatives
CN111100255A (en) * 2018-10-25 2020-05-05 中国石油化工股份有限公司 Carbon nano tube-styrene derivative compound, preparation method and application
CN111100255B (en) * 2018-10-25 2022-11-01 中国石油化工股份有限公司 Carbon nano tube-styrene derivative compound, preparation method and application
CN109449296A (en) * 2018-10-31 2019-03-08 浙江海洋大学 A kind of flexible solar battery material and preparation method based on carbon nanotube
CN115044949A (en) * 2022-06-09 2022-09-13 合肥工业大学 Preparation device and method of modified organic anticorrosive coating
CN115044949B (en) * 2022-06-09 2023-10-20 合肥工业大学 Preparation device and method of modified organic anti-corrosion coating

Also Published As

Publication number Publication date
WO2010058975A3 (en) 2010-09-10
KR20100056689A (en) 2010-05-28
TW201033244A (en) 2010-09-16
KR101089300B1 (en) 2011-12-02

Similar Documents

Publication Publication Date Title
WO2010058975A2 (en) Carbon nanotube-poly(x-4-styrenesulphonate) composite, and a carbon nanotube-electrically conductive polymer composite produced using the same
KR101196370B1 (en) Carbon nanotube-polymeric ionic liquid composites and carbon nanotube - conductive polymer composites produced with the same
KR101224739B1 (en) Aromatic imide-based dispersant for carbon nanotube and carbon nanotube composition comprising the same
US8961830B2 (en) Electroactive polymers containing pendant pi-interacting/binding substituents, their carbon nanotube composites, and processes to form the same
JP4689261B2 (en) Carbon nanotube-containing composition, composite having coating film made thereof, and method for producing them
TWI300419B (en) Process for the preparation of neutral polyethylenedioxythiophene, and corresponding polyethlenedioxythiophenes
JP4807817B2 (en) Method for producing conductive molded body and conductive molded body
US9558863B2 (en) Electrically conductive polymers with enhanced conductivity
US20080241390A1 (en) Insulating polymers containing polyaniline and carbon nanotubes
JP2005097499A (en) Carbon nanotube-containing composition, composite having coated film composed thereof, and method for producing the same
WO2009113585A1 (en) Film for an electrochemical element, electrode for an electrochemical element, and a battery
KR100949399B1 (en) Organic solvent dispersible conductive polymers and producing method for the same
KR20070076875A (en) Dispersant for dispersing carbon nanotube and carbon nanotube composition comprising the same
Saidu et al. Characterization and electrochemical studies on poly (1-naphthylamine)-graphene oxide nanocomposites prepared by in situ chemical oxidative polymerization
WO2014030169A1 (en) Process for synthesizing hybride bifunctionalized multiwalled carbon nanotubes and applications thereof
Riaz et al. Conductive polymer composites and blends: recent trends
JP2010033889A (en) Method of manufacturing water-resistant conductor
KR100374719B1 (en) Method for Preparation of the Soluble Poly(3,4-ethylenedioxythiophene) Powder
US20040232390A1 (en) Highly conductive carbon/inherently conductive polymer composites
Rao et al. Studies on biphenyl disulphonic acid doped polyanilines: Synthesis, characterization and electrochemistry
JP3413958B2 (en) Novel conductive polymer and method for producing the same
JP4091765B2 (en) Method for producing indole derivative trimer composite conductor
JP5324517B2 (en) Conductive coating composition
CN110563973A (en) Carbon nano tube/polyaniline composite material and preparation method thereof
JP3747167B2 (en) Conductive composition, conductor and method for forming the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09827740

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09827740

Country of ref document: EP

Kind code of ref document: A2