TW201033244A - CNT-poly(X-4 styrenesulfonate) composites and CNT-conductive polymer composites produced with the same - Google Patents

CNT-poly(X-4 styrenesulfonate) composites and CNT-conductive polymer composites produced with the same Download PDF

Info

Publication number
TW201033244A
TW201033244A TW098139515A TW98139515A TW201033244A TW 201033244 A TW201033244 A TW 201033244A TW 098139515 A TW098139515 A TW 098139515A TW 98139515 A TW98139515 A TW 98139515A TW 201033244 A TW201033244 A TW 201033244A
Authority
TW
Taiwan
Prior art keywords
poly
cnt
conductive polymer
group
composite
Prior art date
Application number
TW098139515A
Other languages
Chinese (zh)
Inventor
Kwang-Suck Suh
Jong-Eun Kim
Tae-Young Kim
Won-Jung Kim
Tae-Hee Lee
Original Assignee
Kwang-Suck Suh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kwang-Suck Suh filed Critical Kwang-Suck Suh
Publication of TW201033244A publication Critical patent/TW201033244A/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B3/00Manufacture or treatment of nanostructures by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/168After-treatment
    • C01B32/174Derivatisation; Solubilisation; Dispersion in solvents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/44Carbon
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/80Constructional details
    • H10K30/81Electrodes
    • H10K30/82Transparent electrodes, e.g. indium tin oxide [ITO] electrodes
    • H10K30/821Transparent electrodes, e.g. indium tin oxide [ITO] electrodes comprising carbon nanotubes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/113Heteroaromatic compounds comprising sulfur or selene, e.g. polythiophene
    • H10K85/1135Polyethylene dioxythiophene [PEDOT]; Derivatives thereof
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/20Carbon compounds, e.g. carbon nanotubes or fullerenes
    • H10K85/221Carbon nanotubes
    • H10K85/225Carbon nanotubes comprising substituents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/10Particle morphology extending in one dimension, e.g. needle-like
    • C01P2004/13Nanotubes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/22Rheological behaviour as dispersion, e.g. viscosity, sedimentation stability
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Abstract

Disclosed is a carbon nanotube-poly(X-4-styrenesulfonate) composite prepared by introducing poly(X-4-styrenesulfonate) to the surface of carbon nanotubes through ionic bonding, and a carbon nanotube-conductive polymer composite having superior dispersibility, prepared by synthesizing a conductive polymer using the carbon nanotube-poly(X-4-styrenesulfonate) composite as a dopant. The carbon nanotube-conductive polymer composite is provided in the form of the conductive polymer being synthesized on the surface of carbon nanotubes by overcoming the major problem with simple mixing of two components in the preparation of a mixture of conductive polymer and carbon nanotubes, that is, phase separation problems between the conductive polymer and the carbon nanotubes. This composite has improved dispersibility in solvents such as water.

Description

201033244 六、發明說明: 【發明所屬之技術領域】 本發明係關於一種奈米碳管-聚(X-4-笨乙烯磺酸鹽)複合物、 及一種利用該複合物所製備的奈米碳管-導電高分子複合物。具體 而言’本發明係關於一種將聚(X4-苯乙烯磺酸鹽)利用離子鍵結引 入到奈米碳管表面所製得的奈米碳管-聚(X-4-苯乙烯磺酸鹽)複合 物;以及關於一種利用奈米碳管-聚(X-4-苯乙烯續酸鹽)複合物作 為摻雜劑以合成導電高分子、因而製得的奈米碳管_導電高分 合物及其製備方法。 【先前技術】 已知具有優異導電率之奈米碳管,具有金屬特性及半導 性兩者(根據石墨薄片在其中所捲繞的結構及角度),且主八 類解壁奈米碳管(SWNTs)及錄奈米碳f (Μ·Τ : ,該壁的鍵結數目)。因為奈米絲本身具有非常高的^= g已進订許乡嘗靖其應用於包括翻電極材料_示器產業 層。3的基材表面,以在其上形成奈米碳管 :於:、、當使①奈造成許多問題。最大的_ 管時,奈米碳管本身與、^沒有附著奋mu面上形成奈米碳 應該加入有機或無機接合劑力盘其因^錢備塗佈溶液時, 無機接合劑在製備塗佈溶液“二與力。當有機或 ,牢固地附著於基材表面。然而:如此 合劑均勻地混合時,奈米碳管n左果虽不未妷官與接 非期望地造成塗佈層的總導電率^低^絕緣的接合劑成分, 液時、加入導電高分子的方法。特:碳管的塗佈溶 國H. C. Starck公司的聚(3,仁味r ?甘▲、蜍电鬲分子為購自德 上面的方法也具有下述的問題。吩)(咖OT)。然而, 具體而吕,當導電高分子與奈米 201033244 碳管單純地被混合時’導電高分子成分與争总 變成完全地分離’所以塗佈層係配置成導電彼此之間 .;部率増加包 許多問題產生。使用奈米碳管的導電塗佈溶液主二 劑或導電高分子加以混合而獲得、然而,由於夺 〇 很混合的接合劑或塗伟溶 _ 奴,且奈錢管的大小也 目此’為了解決在製備包括奈米碳管的導電塗 電率的徹底研究已經持續進行,包 =:ϊϊί於分散溶劑的官能基的化學方法;並且 ϊίΐίίί。ί然這些方法可增加分散性,但是因為增加了ΐ 絕緣成为的1,所以塗佈層導電率的增加受到了限制。 ❹ 【發明内容】 r太Γί關先前技術中所遭遇的上述問題謹記於心,而獲 敎提供—麵奈米碳#及導電高分子彼此混 ii 製備方法、或該方法製備的奈米 導電使纽善奈麵#的分錄時,降低 潘人本發明希望提供—種奈米碳管·聚(χ-4·苯乙烯續酸鹽) 用;之為CNT•聚(χ·4_苯乙稀績酸鹽)複合物),適合使 下避夕有良好溶劑分散性的奈米竣管-導電高分子複合物(以 酸鹽藉加 201033244 良好溶劑分散性的CNT-導電高分子複合物或溶液,其係利用CNT_ 聚(X-4-苯乙稀續酸鹽)作為摻雜劑以合成導電高分子而加以製備。 本發明的一態樣提供一種CNT_聚(X_4_苯乙烯磺酸鹽)複合 物,其製備係藉由將聚(X-4-苯乙烯磺酸鹽)利用離子鍵結引入^奈 米碳管的表面。本發明的另一態樣提供一種CNT_導電高分子複^ 物,其合成係藉由將導電高分子的單體'及使用CNT_聚(χ_4_苯I 烯磺酸鹽)複合物作為摻雜劑的氧化劑加以混合。就其本身而言, 聚(Χ-4-本乙浠確酸鹽)的X係例如鈉、铯之類的第I族元素。在本 發明中’CNT-聚(Χ-4-苯乙烯磺酸鹽)複合物係用來增加導電高分子 與奈米碳管之界面處的相容性,因此其扮演的角色不僅是^雜 劑,而且也是相容劑。 ^ ® ❿ 斤在本發明中可使用各種的奈米碳管。例如,可使用單壁奈米 碳官、多壁奈米碳管、純化奈米碳管、未純化奈米碳管、及利用' 其它方法所獲得的奈米碳管。可使用任何材料作為利用離子鍵社 而引入到奈米碳管表面的官能基,只要其能夠在合成導電高分;^ 時作為摻雜劑。一個代表性的例子包括聚(Χ_4_苯乙烯磺酸鹽 中X係第I族元素。上述化合物的具體例子包括聚(納_4_苯2烯^ 酸鹽)、及聚(鉋-4-苯乙烯續酸鹽)。此外,具有與其結構類似的^ 分子是有用的;具體而言,其苯環上的一或多個氫原子被\風基所 取代、且當溶解在水中時具有酸度(ρΗ) 3或更高的高分子是 用的。導電高分子單體的例子包括吡各、苯胺、隹吩、3,4_伸乙二 氧基嗟吩、3,4-伸貌二氧基嚷吩、3,4-二烧基嗟吩、3,4_二烧氧 吩、及3,4-環烷基嘆吩。若考慮塗佈溶液的透光率,使用3,4_5乙 二氧基噻吩(EDOT)是最有效的。在本發明中,主要揭示的 用3,4-伸乙二氧基噻吩’其僅為說明之用,任何類型的八 單體都可以使用,並無限制。 同刀 根據本發明’可以克服在製備導電高分子與奈米碳管的混合 物%·、早純地混合兩個成分的主要問題(亦即,導電高分子盘太 米碳管間相分離的問題);因而能夠製備出被合成在碟管表^ 上的導電高分子之形式的複合物。而且,此複合物可展現出在例 201033244 如水的溶劑中的改良分散性。 根據本發明,可以解決習知的導電材料(例如石炭里)、 導電塗佈材料。再者,可以使用相對而言較不昂貴、且* 的奈米碳管及導電高分子’而不是昂貴的銦錫氧化因' = 應用在平板顯示器產品、太陽能電池料 奶口而可以 及ί!高d.並,製備㈣性穩忒 【實施方式】 ❹ 驟H本發二月’⑽-導電高分子複合物的製備係藉由三個 ,,包括第一步驟,奈米碳管的純化及表面處理;第二步 笨乙婦續酸鹽)的引人;及第三步驟,_在第二步称備 料作為摻_,在奈米碳絲面合成導電高分子( 、 伸乙二氧基噻吩)(PED0T))。 ^(3>4· 接著,具體地說明上龜的步驟。 士圖1顯示合成本發明的CNT_聚(x冬苯乙烯磺酸鹽)複合物的 /•^,、圖2顯示使用本發明的CNT_聚(χ斗苯乙烯續酸鹽)複合物 = ίίΝ+Τ•導電高分子複合物的流程。如下將參照著圖1及圖2, 以説明河述的三個步驟。 圖1說明第一及第二步驟,圖2說明第三步驟。 第一步駿 知此步驟包括將使用於本發明中的奈米碳管加以純化、以及引 ^基賴基。然而,若使_由下述方法所預先純化的奈米礙 g時,可省略第一步驟的純化程序。 利用放電法或其它方法所製備的奈米碳管具有約60%的純 因此其包括例如非晶形碳'碳簇化物(^llerene)、及金屬催 」等的肺’造减導電料佳。為了麟高導電率,應該利 =純化將不純的奈米碳管的純度增加到9〇%或更高。移除這類雜 方?"並未制地受限,且經純化的奈米碳管的純度可能是90 〇或更咼。如果奈米碳管的純度低於9〇%,種種的雜質可能使導 201033244 電率降低。因此,在本發明巾,使用純度為9G%或更高的奈米碳 管是較佳的。 在本發明中,奈米碳管的純化方法與例如韓國專利公開案 10-2005-0097711或美國專利第6878361號之類的文獻中所揭示的 各種方法並無太大的不同。具體而言,奈米碳管在3〇〇〜8〇〇。匸 的高溫下氧化10〜6G分鐘,因而移除了非晶形礙;其次,經氧化 的奈米碳管在硝酸、硫酸、或鹽酸溶液中迴流,或以超音波震盪 =〜120分鐘’因而更進一步移除了金屬催化劑及非晶形碳;接 者,進行過濾及乾燥’因此獲得具有9〇 %或更高純度的奈米石炭管。 以此方式純化的奈米碳管可能聚結成繩索狀,因此應該使用 特疋的化合物將其分散及切斷。就其本身而言,所使用的化合物 可能包夠連接羧基、胺基、硝酸基、氰基、丙烯酸基、醯胺 基、或環氧^烷(ethyleneoxide)基到被切斷部分的材料。較佳 地,奈米碳官被加入由選自於硝酸、硫酸、及鹽酸其中任一者或 广者以上的混合物所組成的溶液之中,接著在範圍從室溫到2〇〇 C的溫度下迴流、或以超音波震盈j〜48小時,因而製得具有例 如羧基之類官能基的奈米碳管(以下稱之為cnt_c〇〇h)。以此方 ^製得的CNT-COOH ’以〇.1〜Μ重量等分的量(基於1〇〇重量 等分的溶液)被加入,其中該溶液係使用水或例如曱醇、乙醇、 正=醇、異丙醇、正丁醇、異丁醇、己醇、乙二醇、甘油、苯、 氯苯:硝^曱烧、甲苯、乙酸乙酷、己烧、環己燒、2_甲氧乙醇、 2三丁氧乙醇、2-乙氧乙醇、二甲苯、氣仿、四氫呋喃、二甲基曱醯 胺、甲基乙基明、N-甲基-2-«比咯酮、2-吼咯酮、N-乙烯基-2-吼咯 酮、N-甲基甲醯胺:二甲基亞碾、丙酮、或丁酸㈣的有機溶劑; 接著0.1 60.重罝等为的亞硫酿氯(出chi〇ride ).被加入。 然後,在40〜120 °C下攪拌所產生的混合物24〜48小時;使用 ’、有0.2 111孔/同大小的過遽器進行過滤;以例如四氫咳味的溶劑 清洗數次,以移除過量的亞硫醯氯;接著進行乾燥,因此獲得 -COOH的-OH被-C1取代的奈米碳管-c〇cl (以下稱之為 CNT-C1)。以此方式獲得的cnt_q可以不經過改變而使用、或將 201033244 CNT-C1的-Cm-Br取代後使用。也可以引入陰離子性末端美 了引入溴基’CNT-C1以0.1〜20重量等分的量(基於1〇〇 ^量^ 分的溶液)再被加入,其中該溶液係使用水或例如甲醇、乙醇、 正丙醇、異丙醇、正丁醇、異丁醇、己醇、乙二醇、甘油、Λ 氯苯、石肖基甲烷、甲苯、乙酸乙酯、己烷、環已烷、2_ 2-丁氧乙醇、2_乙氧乙醇、二甲苯、氣仿、四氫咬喃、二甲基= 胺、甲基乙基酮、Ν-甲基·2_吼洛酮、2·对酮、①乙烯基冬 甲基㈣胺、二曱基亞颯、丙酮、或丁__有機溶劑; 接者,0.1〜60重量等分的2-溴異丁酸_2_羥乙酯 dhy^xyethyUbromoisobutyrate)或 2-溴-2 甲基丙醯溴 • (2-bromo-2-methyl 、 pmpionyl bromide)可被加入。然後,使所產生的混合物在8〇〜i5〇 °C下迴流48〜72小時;進行濾;接著以乙醇及二乙崎洗數 次,因此獲得奈米碳管_CO-Br (以下稱之為CNT_Br)。 第二步驟 此步驟包括-化合物的引入,該化合物改善第 製得的CNT-C1或CNT_Br的分散性、並且 & 被用來作為摻賴。 _ 在此步驟中有用的化合物並未特別地被限定,但包括聚 苯乙料賴)及錢異高分子,亦即苯乙烯的苯環的—或多個氮 取代的高分子。當溶解在水帽具有酸度3或更高201033244 6. Technical Description: The present invention relates to a carbon nanotube-poly(X-4-dual ethylene sulfonate) composite, and a nanocarbon prepared by using the composite Tube-conductive polymer composite. Specifically, the present invention relates to a carbon nanotube-poly(X-4-styrenesulfonic acid) prepared by introducing a poly(X4-styrenesulfonate) into a surface of a carbon nanotube by ion bonding. Salt) composite; and a carbon nanotube-conductive high score obtained by using a carbon nanotube-poly(X-4-styrene hydride) complex as a dopant to synthesize a conductive polymer And its preparation method. [Prior Art] A carbon nanotube having excellent conductivity is known, which has both metallic properties and semi-conductivity (according to the structure and angle in which the graphite flake is wound), and the main eight types of uncoated silicon nanotubes (SWNTs) and recorded nano carbon f (Μ·Τ : , the number of bonds in the wall). Because nanowire itself has a very high ^= g has been ordered by Xuxiang Tingjing for its application to include the electrode material _ display industry layer. The surface of the substrate of 3 to form a carbon nanotube on it: to cause many problems. When the largest tube is used, the carbon nanotubes themselves and the non-adhesive surface of the nano-carbon should be added to the organic or inorganic bonding agent. When the coating solution is used, the inorganic bonding agent is prepared and coated. The solution "two and force. When organic or firmly adhered to the surface of the substrate. However: when the mixture is uniformly mixed, the carbon nanotubes are not unsatisfactory and undesirably cause the total coating layer. Conductivity ^ low ^ Insulating bonding agent component, liquid method, adding conductive polymer method. Special: carbon tube coating solution HC Starck company's poly (3, Renwei r? Gan ▲, 蜍 鬲 鬲The method purchased from the above also has the following problem: phen) (Coffee OT). However, specifically, when the conductive polymer and the carbon nanotubes of 201033244 are simply mixed, the conductive polymer component and the total Completely separated 'so the coating layer is configured to be electrically conductive to each other. There are many problems in the rate of the package. The conductive coating solution using a carbon nanotube is mainly obtained by mixing two main agents or a conductive polymer, however, Enriched very mixed cement or coated with _ And the size of the money tube is also in view of this. In order to solve the thorough research on the preparation of the conductive coating rate including the carbon nanotubes, the chemical method of the functional group of the solvent is dispersed; and ϊίΐίίί. However, these methods can increase the dispersibility, but the increase in the conductivity of the coating layer is limited because the ΐ insulation becomes 1. Therefore, the above problems encountered in the prior art are kept in mind. The heart is obtained by the method of preparing the surface-surface nanocarbon # and the conductive polymer mixed with each other, or the nano-conductivity prepared by the method makes the entry of the New Zealand Nai No. Nano carbon tube · poly (χ-4·styrene sulphate); CNT• poly(χ·4_ phenylethylene salt) compound, suitable for good solvent dispersion under the eve Nano-tube-conductive polymer complex (added to 201033244 good solvent-dispersible CNT-conductive polymer composite or solution, which utilizes CNT_ poly(X-4-phenylethyl sulfonate) It is prepared as a dopant by synthesizing a conductive polymer. One aspect of the invention provides a CNT_poly(X_4_styrene sulfonate) complex prepared by introducing poly(X-4-styrene sulfonate) into a carbon nanotube by ion bonding Another aspect of the present invention provides a CNT_conductive polymer compound synthesized by combining a monomer of a conductive polymer and a CNT_poly(χ_4_benzene ene sulfonate) The material is mixed as an oxidizing agent for the dopant. As such, the X of the poly(p--4-benzidine) salt is a Group I element such as sodium or cesium. In the present invention, 'CNT - Poly(Χ-4-styrenesulfonate) complex is used to increase the compatibility of the interface between the conductive polymer and the carbon nanotube, so it plays a role not only as a dopant but also as a compatible Agent. ^ ® 斤 Various types of carbon nanotubes can be used in the present invention. For example, single-walled nanocarbons, multi-walled carbon nanotubes, purified carbon nanotubes, unpurified carbon nanotubes, and carbon nanotubes obtained by 'other methods' can be used. Any material may be used as a functional group introduced to the surface of the carbon nanotube by using an ion bond as long as it can be used as a dopant in synthesizing a conductive high score. A representative example includes a poly(N-styrene sulfonate) X-based Group I element. Specific examples of the above compounds include poly(n-4-4-benzene-2-enelate), and poly(planing-4- Further, it is useful to have a molecule similar in structure to it; specifically, one or more hydrogen atoms on the benzene ring are replaced by a wind group, and have acidity when dissolved in water. (ρΗ) 3 or higher polymer is used. Examples of conductive polymer monomers include pyridinium, aniline, porphin, 3,4-ethylenedioxy porphin, 3,4-extension dioxin Base porphin, 3,4-dialkyl porphin, 3,4 dioxin, and 3,4-cycloalkyl sinter. If considering the light transmittance of the coating solution, use 3,4_5 乙二Oxythiophene (EDOT) is the most effective. In the present invention, the mainly disclosed 3,4-extended ethylenedioxythiophene is used for illustrative purposes only, and any type of eight monomer can be used without According to the invention, the main problem of the two components in the preparation of the mixture of the conductive polymer and the carbon nanotube can be overcome, that is, the conductive polymer disk is too The problem of phase separation between carbon tubes); thus, it is possible to prepare a composite in the form of a conductive polymer synthesized on the surface of the disk. Moreover, the composite exhibits improved dispersibility in a solvent such as water of Example 201033244. According to the present invention, a conventional conductive material (for example, in charcoal), a conductive coating material can be solved. Further, a relatively inexpensive carbon nanotube and a conductive polymer can be used instead of being expensive. Indium tin oxidation due to '= applied to flat panel display products, solar cell material milk mouth and can be ί! high d. And, preparation (four) stability [embodiment] 骤 H H this February 2 '(10) - conductive polymer The preparation of the composite is carried out by three, including the first step, the purification and surface treatment of the carbon nanotubes; the second step of the introduction of the stupin; and the third step, _ in the second step The feedstock is referred to as a doped _, and a conductive polymer ((ethylene dioxythiophene) (PED0T)) is synthesized on the surface of the nanofiber. ^(3>4. Next, the step of the turtle is specifically described. Figure 1 shows the synthesis of the CNT_poly(x-t-stellinylsulfonate) complex of the present invention, and Figure 2 shows the use of the present invention. The CNT_poly (powder styrene sulphonate) complex = ίίΝ + Τ • conductive polymer composite process. The following three steps will be described with reference to Figs. 1 and 2. The first and second steps, Figure 2 illustrates the third step. The first step is that the step comprises purifying the carbon nanotubes used in the present invention, and introducing the thiol group. The purification procedure of the first step may be omitted when the method is pre-purified by nanometer g. The carbon nanotube prepared by the discharge method or other methods has a purity of about 60%, so that it includes, for example, an amorphous carbon 'carbon cluster. The lungs of the compound (^llerene), and the metal reminder are good for reducing the conductive material. For the high conductivity of the lining, the purity of the impure carbon nanotube should be increased to 9〇% or higher. Such a hybrid?" is not limited in production, and the purity of the purified carbon nanotubes may be 90 〇 or more. The purity of the carbon nanotubes is less than 9%, and various impurities may lower the electrical conductivity of the guide 201033244. Therefore, in the present invention, it is preferred to use a carbon nanotube having a purity of 9 G% or more. Among them, the purification method of the carbon nanotubes is not much different from the various methods disclosed in the documents such as the Korean Patent Publication No. 10-2005-0097711 or the US Pat. No. 6,087,361. Specifically, the nanocarbon The tube is oxidized at a temperature of 3 〇〇 to 8 〇〇 for 10 to 6 G minutes at a high temperature, thereby removing the amorphous barrier; secondly, the oxidized carbon nanotube is refluxed in a solution of nitric acid, sulfuric acid, or hydrochloric acid, or Ultrasonic vibration = ~120 minutes' thus further removing the metal catalyst and amorphous carbon; pick-up, filtering and drying' thus obtaining a carbon nanotube tube having a purity of 9% or higher. Purified in this way The carbon nanotubes may coalesce into a rope shape, so they should be dispersed and cut with a special compound. For its part, the compound used may be linked to a carboxyl group, an amine group, a nitrate group, a cyano group, or an acrylic acid. Base, amidino group, Or a material of an ethylene oxide group to the cut portion. Preferably, the carbon carbon is added to a mixture selected from the group consisting of nitric acid, sulfuric acid, and hydrochloric acid or a mixture thereof. In the solution, it is then refluxed at a temperature ranging from room temperature to 2 〇〇C, or ultrasonic shock for j to 48 hours, thereby producing a carbon nanotube having a functional group such as a carboxyl group (hereinafter referred to as Cnt_c〇〇h). The CNT-COOH' prepared by this method is added in an amount equal to Μ.1~Μ by weight (based on a 1 〇〇 weight aliquot of the solution), wherein the solution is water or For example, decyl alcohol, ethanol, n-alcohol, isopropanol, n-butanol, isobutanol, hexanol, ethylene glycol, glycerin, benzene, chlorobenzene: nitrous oxide, toluene, ethyl acetate, hexane, Cyclohexane, 2-methoxyethanol, tributoloxyethanol, 2-ethoxyethanol, xylene, gas, tetrahydrofuran, dimethyl decylamine, methyl ethylamine, N-methyl-2- «Oralicone, 2-pyrrolidone, N-vinyl-2-furoxone, N-methylformamide: an organic solvent of dimethyl argon, acetone, or butyric acid (iv); followed by 0.1 60. Catching rabbits as the brewing thionyl chloride (chi〇ride out). Were added. Then, the resulting mixture is stirred at 40 to 120 ° C for 24 to 48 hours; it is filtered using a 0.2 111 hole/same size filter; it is washed several times with a solvent such as tetrahydrogen cough to remove Except for an excess of sulphur oxychloride, followed by drying, thereby obtaining a carbon nanotube-c〇cl (hereinafter referred to as CNT-C1) in which -OH of -COOH was substituted with -C1. The cnt_q obtained in this way can be used without modification, or after the substitution of -Cm-Br of 201033244 CNT-C1. It is also possible to introduce an anionic terminal to introduce a bromine-based 'CNT-C1 in an amount of 0.1 to 20 parts by weight (based on a solution), wherein the solution is water or, for example, methanol. Ethanol, n-propanol, isopropanol, n-butanol, isobutanol, hexanol, ethylene glycol, glycerol, chlorobenzene, succinyl methane, toluene, ethyl acetate, hexane, cyclohexane, 2_ 2- Butoxyethanol, 2_ethoxyethanol, xylene, gas, tetrahydroanion, dimethyl = amine, methyl ethyl ketone, hydrazine-methyl 2 naloxone, 2 · ketone, 1 Vinyl winter methyl (tetra)amine, dimercaptoarylene, acetone, or butyl __ organic solvent; acceptor, 0.1 to 60 weight aliquots of 2-bromoisobutyric acid 2-hydroxyethyl ester dhy^xyethyUbromoisobutyrate) or 2-Bromo-2-methylpropionyl bromide (2-bromo-2-methyl, pmpionyl bromide) can be added. Then, the resulting mixture is refluxed at 8 Torr to 5 ° C for 48 to 72 hours; filtered; followed by washing with ethanol and diacetyl, several times, thereby obtaining a carbon nanotube _CO-Br (hereinafter referred to as CNT_Br). Second Step This step includes the introduction of a compound which improves the dispersibility of the prepared CNT-C1 or CNT_Br, and is used as a blend. The compound useful in this step is not particularly limited, but includes polyphenylene phthalate and a heteropolypolymer, that is, a benzene ring of styrene or a plurality of nitrogen-substituted polymers. When dissolved in a water cap with an acidity of 3 or higher

ΐ尚i 有用ί。就其本身而言,χ表示例如鈉或铯的第I 族兀素。雖…、分子罝並未大大地受限,但是如果超過200,000 g/md,奈米碳管的導群下降。反之,如果分子量小於5,_ g/mol ’此化合物無助於錄性善。因此 _ 〜200,000g/m〇l分子量的高分子。 糾Ξ 作Λ具有在第一步驟中獲得的官能基的奈米碳管 的例子。CNT-C1的1並未受限,但被設定為〇1〜2 於謂重量等分的使用溶液)。CNT_a被分散在選自於水、甲醇、 201033244 乙醇、正丙醇、異丙醇、正丁醇、異丁醇、己醇、乙二醇、甘油、 苯、氯苯、硝基甲烷、曱苯、乙酸乙酯、己烧、環己烷、2_曱氧乙 醇、2-丁氧乙醇、2-乙氧乙醇、二曱苯、氯仿、四氫呋喃、二曱基 曱醯胺、曱基乙基酮、N-曱基-2-n比咯酮、2_吼洛幽、]si-乙烯基-2-吡洛酮、N-甲基甲醯胺、二曱基亞砜、丙酮、及丁酸内酯之一或 多個溶劑中。隨後’將0.1〜5〇重量等分的聚(χ_4_苯乙烯磺酸鹽) 加入到CNT-C1的分散溶液,然後在氮氣環境及範圍從室溫到12〇 °C的溫度下攪拌12〜72小時。如果聚(χ_4_苯乙烯磺酸鹽)的量小 於0.1重量等分,此成分不易充分地引入到奈米碳管的表面。反 之,如果它的量超過50重量等分,此成分不易溶解在溶劑中。在 反應完成後,使用具有0.2 m孔洞大小的過濾器過濾該反應產 ,;以過^的水或例如乙醇的醇類清洗,以移除未反應材料;接 著進行乾燥’因此獲得CNT-聚(X-4-苯乙烯磺酸鹽)複合物。以此 ^式獲得的CNT-聚(X-4-苯乙烯磺酸鹽)複合物以〇 〇〇1〜5〇重量 等分(基於100重量等分的溶液)的量被分散。分散方法並未受 限,但較佳地包括超音波震盪。如果上述複合物的量小於〇 〇〇1 重量等分,固體含量太低。反之,如果它的量超過5〇重量等分, 固體含量太高’且因此其分散變得困難。 上述分散溶劑的例子並未受限,但包括水、曱醇、乙醇、正 ,醇、,異丙醇、正丁醇、異丁醇、己醇、乙二醇、甘油、苯、氯 苯ϋ曱烷、甲苯、乙酸乙酯、己貌、環己烷、2_甲氧乙醇、2_ 丁氧乙醇、2-乙氧乙醇、二甲苯、氯仿、四氫0夫喃、二甲基曱醯胺、 甲基乙基酮、Ν-甲基-2-吡咯酮、2-吡咯酮、乙烯基-2-吡咯酮、 Ν-甲基甲醯胺、二甲基亞硬、丙酮、及丁酸内酯,其可以單獨加 以使用、或以兩者以上的適當混合比例結合物加以使用。 第三步驟 此步驟包括利用在第二步驟中製得的CNT_聚(χ_4-苯乙烯磺 酸鹽)分散溶液,以合成導電高分子。此反應的進行係採用習知的 方法(美國專利第5,300,575號)。導電高分子單體的例子可包括 201033244 ί ίί ίΐΐ齡、或其它齡基單體,例如3,4_二絲嗟吩、 . 如吡^ 、认環烷基噻吩、及其衍生出的變異單體。例 的另一種單體,也可以被用來合成導電高分子。 =4^善物,侧3,4_伸乙二氧純吩或其它具有高 遵人i 了,用在第二步驟中所獲得的cnt-聚佐4·苯乙烯谱酸鹽} 以伸乙二氧基噻吩),單體、氧化劑、及摻雜劑 合,然後進行合成。修,單體可包括3,4-伸乙 (KpHli化劑可包括過氧二琉酸錢(APS)或過硫酸卸 ❹確酸劑7包括在第二步驟中製得的CNT•聚(χ-4-苯乙烯 躺就碑本身而言,為了促進導電高分子的合成,摻 ;其二t括作為添加材料的聚苯乙婦續酸醋(pssa)或十二 ^ 取SDS)。具體而言’摻雜劑可包括重量比為1:99〜99:1 苯乙婦續酸鹽μ合物、及聚苯乙烯磺酸酯或十二 合物。使用上述添加材料的原因為,經合成的 子的粒徑大小被縮小,且塗佈後的分散性及傳導率 就其本身而言,如果聚苯 、 次十一烷基硫駄鈉的罝小於1 Wt°/Q,上述效果變得不 ❹=量H如果它的量超過99秦CNT聚(x-4_苯乙稀雜 # r,I成時,溶劑(例如水)、啟始劑、氧化劑、及CNT-聚(X-4- =乙,酸鹽)分散溶液以預$的莫耳比率被添加、並域摔12〜 “小^^魅的溶液是稍微呈褐色及深藍色,被稱為CNT-聚(X-4· ^^=鹽)_導電高分子溶液、或CNT•導電高分子溶液。隨後, cm+電—子溶液可以秘過改變而使用,或可以進行額外的 清洗。 r此H獲f的1ΝΤ-導電高分子溶液被製備成塗佈溶液,俾 電咼分子的置為0.001〜5〇重量等分(基於1〇〇重量等 分的溶液),該溶液使用的溶劑係由選自於水、曱醇:乙醇、正丙 醇、異丙醇、正丁醇、異丁醇、己醇、乙二醇、甘油、苯、氯苯、 11 201033244 硝^曱烷、甲苯、乙酸乙酯、己烧、環己院、2-曱氧乙醇、2-丁氧 =醇、2-乙氧乙醇、二曱苯、氯仿、四氫呋喃、二曱基曱醯胺、甲 土乙基酮、N-甲基-2_吡咯酮、2-吼咯酿j、N-乙烯基-2·-比咯_、N-曱基甲醯胺、二甲基亞颯、丙酮、及丁酸内酯其中任一者、或兩 者以上的適當比例混合物所組成。如果CNT導電高分子的量小於 0=1重量等分’導電高分子的量太少’非期望地造成非常低的傳 =率丄反之,如果它的量超過50重量等分,則固體含量太高因 此不容易形成塗佈膜。包括以此方式製得的CNT_導電高分子的導 ,塗佈溶液可以秘過改變而使用,或可_外地與接合劑或其 它添加物混合,以改善導電率及塗佈性質。 圖3顯示本發明的CNT_導電高分子複合物,例如, 複合物,其中CNT聚(納I苯乙烯猶鹽)複合物係 ==¾管120及聚(納苯乙烯磺酸鹽)11〇所製得,然後被用於 合成導電高分子PEDOT100。 、 伟爾導電高分子的導電塗佈溶液時,當選擇性地 接'劑時可以在基材的表面上形成導電層,不論基材 志;可。形成導電層的方法包括將導電塗佈溶液塗在基材的 ί tel ΐ後在50〜200 〇C下使其乾燥0.1〜10分鐘。此外,當 ❹ 而使用接合綱化劑時,經乾燥的塗 外熱處理,因而加強了塗佈層的塗佈性質。在塗 ‘从1時’若有需要,可加人能夠改善塗佈性質及導電率的添 加了表基材的表面進行電暈處理或離子束處理,因而增 萨其:發明的導電塗佈溶液塗佈於其上的基材可包括各種的 子、气烯基高分子、乙稀或丙烯的 分子二八子、=分子、⑦乙縣高分子、醯亞胺基高 可被而塗璃:金屬種材=表ίΓ容液 製造的婉 12 201033244 領域。 經由下述的範例,可以更加了解本發明;這些範例僅用來說 明’不可被視為用來限制本發明。 〈範例1〉 將〇.5克的多壁奈米碳管(MWNTs) (CM-95等級,購自於 IljinNanotech)加到10〇毫升的3M硫略X肖酸(體積比3:1)混合 液中,接著在80。(:下進行純化4小時。然後,將經純化的]VTWNTs 以具有0.2 m孔洞大小的聚碳酸酯過濾器加以過濾;以過量的水 清洗加以中和;接著在真空烘箱中以80 0C乾燥24小時,因而獲 得引入羧基的MWNT^ (MWNT^COOH)。然後,將0.5克的 MWNT-COOH及2克的亞硫醯氯加到500毫升的二曱基甲醯胺; 在100 °C下擾拌48小時;以具有0.2 m孔洞大小的聚碳酸酯過 :慮器加以過濾;以四氫吱嚼清洗十次;接著在真空烘箱中以6〇 〇c 乾燥24小時,因而獲得]vrwNT-Cl,其中被引入MWNTs表面的 叛基被醯氯基所取代。然後,將15克的1〇 wt%聚(納_4_苯乙烯 磺酸鹽)水溶液緩慢地逐滴加到MWNT-C1,在50。0下授拌48小 時。在反應完成後,將反應產物以具有0.2 m孔洞大小的聚碳酸 酯過濾器加以過濾;以水清洗十次以移除未反應的化合物;接著 ❹ 在真空烘箱中乾燥24小時,因而獲得MWNT-聚(納-4-苯乙烯磺酸 鹽)(以下稱之為MWNT-PSSNa)。然後,將MWNT-PSSNa加到 水中,俾使它的量為0.5 wt % ;接著利用超音波震盪使其分散2〇 分鐘。ΐ尚 i useful ί. For its part, χ denotes a Group I element such as sodium or strontium. Although the molecular enthalpy is not greatly limited, if it exceeds 200,000 g/md, the conductance of the carbon nanotubes decreases. On the other hand, if the molecular weight is less than 5, _ g / mol ' this compound does not contribute to good recording. Therefore _ ~200,000g / m 〇l molecular weight of the polymer. An example of a carbon nanotube having a functional group obtained in the first step is exemplified. The CNT-C1 1 is not limited, but is set to a 使用1 to 2 aliquot of the use solution). CNT_a is dispersed in water, methanol, 201033244 ethanol, n-propanol, isopropanol, n-butanol, isobutanol, hexanol, ethylene glycol, glycerin, benzene, chlorobenzene, nitromethane, benzene , ethyl acetate, hexane, cyclohexane, 2-methoxyethanol, 2-butoxyethanol, 2-ethoxyethanol, diphenylbenzene, chloroform, tetrahydrofuran, decylguanamine, mercaptoethyl ketone , N-mercapto-2-n pyrrolidone, 2_吼洛幽,]si-vinyl-2-pyrone, N-methylformamide, dimercaptosulfoxide, acetone, and butyric acid One or more solvents in the lactone. Then, add 0.1~5〇 aliquot of poly(χ_4_styrenesulfonate) to the dispersion solution of CNT-C1, and then stir under a nitrogen atmosphere and a temperature ranging from room temperature to 12 °C. 72 hours. If the amount of poly(χ_4_styrenesulfonate) is less than 0.1 weight aliquot, this component is not easily introduced sufficiently into the surface of the carbon nanotube. Conversely, if its amount exceeds 50 parts by weight, the ingredient is not easily dissolved in the solvent. After the reaction is completed, the reaction is filtered using a filter having a pore size of 0.2 m; washed with water or an alcohol such as ethanol to remove unreacted material; followed by drying 'thus obtaining CNT-poly ( X-4-styrene sulfonate) complex. The CNT-poly(X-4-styrenesulfonate) complex obtained by this formula was dispersed in an amount of 〇1 to 5 〇 by weight (based on a solution of 100 parts by weight). The dispersion method is not limited, but preferably includes ultrasonic oscillation. If the amount of the above composite is less than 〇 重量 1 by weight, the solid content is too low. On the other hand, if its amount exceeds 5 〇 by weight, the solid content is too high 'and thus its dispersion becomes difficult. Examples of the above dispersion solvent are not limited, but include water, decyl alcohol, ethanol, n-, alcohol, isopropanol, n-butanol, isobutanol, hexanol, ethylene glycol, glycerin, benzene, chlorophenyl hydrazine.曱, toluene, ethyl acetate, hexane, cyclohexane, 2-methoxyethanol, 2-butoxyethanol, 2-ethoxyethanol, xylene, chloroform, tetrahydrofuran, dimethyl decylamine , methyl ethyl ketone, hydrazine-methyl-2-pyrrolidone, 2-pyrrolidone, vinyl-2-pyrrolidone, hydrazine-methylformamide, dimethyl-hard, acetone, and butyric acid The ester may be used singly or in combination at a suitable mixing ratio of two or more. Third Step This step involves the use of a CNT_poly(χ_4-styrenesulfonate) dispersion solution prepared in the second step to synthesize a conductive polymer. This reaction is carried out by a conventional method (U.S. Patent No. 5,300,575). Examples of the conductive high molecular monomer may include 201033244 ί, or other age-based monomers, such as 3,4-dioxaphene, such as pyridinium, cycloalkylthiophene, and derived variants thereof. body. Another monomer of the example can also be used to synthesize a conductive polymer. =4^good things, side 3,4_extended ethylene dioxane pure phenanthrene or other with high compliance, used in the second step of the cnt-polyzo 4 styrene photoacid salt} The thiophene), the monomer, the oxidizing agent, and the dopant are combined and then synthesized. The monomer may include 3,4-Extension (KpHliating agent may include peroxydiphthalic acid (APS) or persulfate deacidification acid 7 including CNT•poly(χ) prepared in the second step. -4- styrene lies on the monument itself, in order to promote the synthesis of conductive polymers, doping; the two include the polystyrene vinegar (pssa) or twelve (take SDS) as an additive material. The 'dopant' may include a weight ratio of 1:99 to 99:1 phenethyl phthalate complex, and a polystyrene sulfonate or a dodecyl compound. The reason for using the above additive material is that it is synthesized. The particle size of the child is reduced, and the dispersibility and conductivity after coating are, as such, if the enthalpy of polyphenylene and sodium undecylidene sulphide is less than 1 Wt°/Q, the above effect becomes Not ❹ = amount H if its amount exceeds 99 Qin CNT poly (x-4_ phenylethylene #r, I, solvent (such as water), initiator, oxidant, and CNT-poly (X-4) - = B, acid salt) The dispersion solution was added at a pre-$ molar ratio, and the field fell 12~ "The solution of the small ^^ charm is slightly brown and dark blue, called CNT-poly (X-4· ^^=Salt)_ Conductive polymer solution, or CNT• Conductive polymer solution. Subsequently, the cm+ electro-sub-solution can be used for secret modification, or additional cleaning can be performed. r This H-received 1ΝΤ-conductive polymer solution is prepared as a coating solution. Set to 0.001 to 5 〇 weight aliquot (based on a 1 〇〇 weight aliquot of the solution), the solvent used in the solution is selected from the group consisting of water, sterol: ethanol, n-propanol, isopropanol, n-butanol, Isobutanol, hexanol, ethylene glycol, glycerin, benzene, chlorobenzene, 11 201033244 nitrate, toluene, ethyl acetate, hexane, cyclohexyl, 2-oxoethanol, 2-butoxy = alcohol , 2-ethoxyethanol, diphenylbenzene, chloroform, tetrahydrofuran, dimethyl decylamine, methyl ethyl ketone, N-methyl-2-pyrrolidone, 2-pyroxene, N-vinyl- Any combination of 2,-pyrrolidine, N-mercaptomethylamine, dimethylhydrazine, acetone, and butyrolactone, or a mixture of two or more thereof, if CNT conductive polymer An amount less than 0 = 1 weight aliquot 'too small amount of conductive polymer' undesirably results in a very low transmission rate. Conversely, if its amount exceeds 50 weight aliquot, The solid content is too high, so that it is not easy to form a coating film. Including the conduction of the CNT_conductive polymer prepared in this manner, the coating solution may be used in a secret change, or may be externally mixed with a bonding agent or other additives. To improve conductivity and coating properties. Figure 3 shows a CNT_conductive polymer composite of the present invention, for example, a composite in which a CNT poly(n-styrene sulfonate) complex system ==3⁄4 tube 120 and poly( The stilbene sulfonate is prepared by 11 ,, and then used to synthesize the conductive polymer PEDOT100. When the conductive coating solution of the Weir conductive polymer is used, it can be on the surface of the substrate when selectively attached to the agent. Forming a conductive layer on the substrate, regardless of the substrate; The method of forming the conductive layer comprises applying a conductive coating solution to the substrate and drying it at 50 to 200 Torr C for 0.1 to 10 minutes. Further, when the bonding agent is used, the dried coating is heat-treated, thereby enhancing the coating property of the coating layer. When coating 'from 1', if necessary, a surface of the surface substrate to which the coating property and conductivity can be improved can be subjected to corona treatment or ion beam treatment, thereby adding the conductive coating solution of the invention. The substrate coated thereon may include various kinds of sub-, alkenyl polymer, ethylene or propylene molecules, quaternary, numerator, 7-Ben, and yttrium-based high-coating: Metallic material = table Γ 制造 制造 12 201033244 field. The invention may be further understood by the following examples which are not to be construed as limiting the invention. <Example 1> 〇.5 g of multi-walled carbon nanotubes (MWNTs) (CM-95 grade, purchased from Iljin Nanotech) was added to 10 ml of a 3 M sulfuric acid (3:1 by volume) mixture. Medium, then at 80. (: Purification was carried out for 4 hours. Then, the purified] VTWNTs were filtered with a polycarbonate filter having a pore size of 0.2 m; neutralized with an excess of water for washing; then dried at 80 ° C in a vacuum oven 24 Hours, thus obtaining MWNT^ (MWNT^COOH) with carboxyl group introduced. Then, 0.5 g of MWNT-COOH and 2 g of sulfinium chloride were added to 500 ml of dimethylformamide; It was mixed for 48 hours; it was filtered with a polycarbonate filter having a pore size of 0.2 m; it was washed ten times with tetrahydrocyanate; then dried in a vacuum oven at 6 ° C for 24 hours, thus obtaining] vrwNT-Cl , wherein the thiol group introduced into the surface of the MWNTs is replaced by a chloro group. Then, 15 grams of a 1% by weight aqueous solution of poly(na- 4 styrene sulfonate) is slowly added dropwise to the MWNT-C1. The mixture was mixed for 50 hours at 50 ° C. After the reaction was completed, the reaction product was filtered with a polycarbonate filter having a pore size of 0.2 m; washed 10 times with water to remove unreacted compound; then ❹ in a vacuum oven Drying for 24 hours, thus obtaining MWNT-poly(n--4-styrenesulfonate) Referred MWNT-PSSNa) Then, water was added to the MWNT-PSSNa to enabling it in an amount of 0.5 wt%;. And then dispersed by sonication 2〇 minutes.

在分散於水的MWNT-PSSNa溶液中加入水,以將其稀釋為 〇·1 wt % ;之後,將MWNT-PSSNa、伸乙二氧基噻吩、及過氧二 硫酸錢加以混合,俾使MWNT-PSSNa的PSSNa、伸乙二氧基嗟 吩、及過氧二硫酸銨的莫耳比為1:1:1。隨後,在室溫下進行合成 步驟24小時。在反應完成後,將反應產物以具有〇 2 m孔洞大 小的聚碳酸酯過濾器加以過濾;以水清洗十次以移除未反應的化 合物;接著在真空烘箱中乾燥24小時,因而獲得MWNT-PEDOT 13 201033244 複合物。然後’將0.01克的MWNT-PEDOT複合物與9 99券 /異丙醇(40:60)溶劑混合物加以混合;接著利用超音波 盆 分散20分鐘,因此製得包括MWNT-PEDOT的導電塗佈、、容液。: 將此塗佈溶液塗在非晶形聚酯膜上,測得的表面電阻率為5 * I Ω/sq ’且透光率相較於基膜係減少1〇 %。 〈範例2〉 將=5 壁奈米碳管,(SWNTs) (Aw晴等級 於IljmNanotech)在450 〇C下進行熱處理30分鐘; ❹ 的鹽酸中;在6G T下_超纽錢進行純化;^ m孔洞大小的聚她旨 過濾,接者以過I的水加以清洗、並且因此中和。將 力二靡硫_酸(體積比3:1)混合液中;在15〇產 匕4小時,過濾;以過量的水清洗加以 、由 以8〇 乾燥24小時,因而製得讀T_c瞻接= 田f此塗^谷液塗在非晶形聚醋膜上,測得的 1〇叫,錢光率她於細係減少4%。,阻羊為5 〈範例3〉 面電阻率為Ζ5 ”一q,二二;目==二:的表 〈範例4〉 且與,以°比略取代伸乙二氧基噻吩,並 相同的方式製備導電冷=T_PSSNa'^合之外’利用與範例3中 表備¥電塗佈溶液。當將此導電塗佈溶液塗在非晶形 14 201033244 Ξί少:的表面電阻率為3.〇”。2Ω/〒且透光率相較於 帝,上述範例可明顯地看出,在製備包括CNT-導電 時的表面電阻率^穿透率係優於使用 用額外;9及3 ’在合成CNT_導電高分子複合物時,使 額2枓(例如聚苯乙烯猶S旨)對鱗電率方面是有利的。 入到,賴X_4_苯乙烯雜鹽)糊離子鍵結引 ❹ ❹ =的Γίί兩成分的主要問題,亦即,導電高分子及奈米碳 ; _改# 了導電率、以及在溶劑(例如水) 陽能3ii=CNT•導電高分子複合物可以應用於包括有機太 池的活性層、透明電極及電洞注,送層等材料的顯示器 来I說明之目的,已經揭示本發明的較佳實施例,但熟 ^的)·主、/者應當了解’在不偏離附加請求項所揭稍精神及g 圍的k況下,可能有各種的變化、增加及替代。 【圖式簡單說明】 流程圖1顯示本發明的CNTj(x_4_苯乙烯績酸鹽)複合物的合成 示使用本發明的CNT—聚(χ-4-苯乙婦績酸鹽)複合物以 合成CNT-導電高分子複合物的流程。 分子=^&quot;贿齡物,崎林侧⑽·導電高 【主要元件符號說明】 100聚(3,4-伸乙二氧基嗔吩(PEJ)0T) 15 201033244 110聚(鈉-4-苯乙烯磺酸鹽) 120奈米碳管Water was added to the MWNT-PSSNa solution dispersed in water to dilute it to 〇·1 wt%; after that, MWNT-PSSNa, ethylenedioxythiophene, and peroxydisulfate were mixed to make MWNT The molar ratio of PSSNa, ethylenedioxythiophene, and ammonium peroxodisulfate of PSSNa is 1:1:1. Subsequently, the synthesis step was carried out at room temperature for 24 hours. After completion of the reaction, the reaction product was filtered with a polycarbonate filter having a pore size of 〇2 m; washed 10 times with water to remove unreacted compound; then dried in a vacuum oven for 24 hours, thereby obtaining MWNT- PEDOT 13 201033244 Composite. Then, 0.01 g of the MWNT-PEDOT composite was mixed with a 9 99 coupon/isopropanol (40:60) solvent mixture; then dispersed in an ultrasonic basin for 20 minutes, thereby producing a conductive coating comprising MWNT-PEDOT, , liquid. : This coating solution was coated on an amorphous polyester film, and the measured surface resistivity was 5 * I Ω/sq ' and the light transmittance was reduced by 1% compared with the base film system. <Example 2> Heat treatment of =5 wall-nanocarbon tubes, (SWNTs) (Aw-clear grade at IljmNanotech) at 450 °C for 30 minutes; in hydrochloric acid of ❹; at 6G T _ super-new money for purification; The size of the m-hole is filtered, and the pick-up is washed with water of I, and thus neutralized. The mixture was prepared in a mixture of sulfur and sulfur (3:1 by volume); it was filtered at 15 〇 for 4 hours, filtered; washed with excess water, dried by 8 24 for 24 hours, thus preparing read T_c = Tian f This coating is applied to the amorphous polyester film. The measured 1 〇, the money light rate she reduced the fine system by 4%. , Blocking sheep is 5 <Example 3> The surface resistivity is Ζ5 ”-q, two-two; mesh==two: the table <example 4> and, in a ° ratio slightly substituted ethylenedioxythiophene, and the same The method of preparing conductive cold = T_PSSNa'^ is combined with the use of the electrode coating solution in Example 3. When this conductive coating solution is applied to the amorphous 14 201033244 Ξί: The surface resistivity is 3.〇" . 2 Ω / 〒 and light transmittance compared to the Emperor, the above examples can clearly see that in the preparation of CNT-conducting surface resistivity ^ penetration rate is superior to the use of additional; 9 and 3 ' in the synthesis of CNT_ In the case of a conductive polymer composite, it is advantageous to have a frontal amount of 2 Å (for example, polystyrene). Into, Lai X_4_styrene hybrid salt) paste ion bonding ❹ Γ = Γ ί ί ί ί ί ί ί ί ί ί ί ί ί ί ί ί ί ί ί ί ί ί ί ί ί ί ί ί ί ί ί ί Water) cation 3ii=CNT•conductive polymer composite can be applied to a display including an active layer of an organic Taichi, a transparent electrode, a hole injection, a feed layer, etc., and the preferred embodiment of the present invention has been disclosed. The examples, but the masters, should understand that there may be various changes, additions and substitutions without deviating from the spirit of the additional claims. BRIEF DESCRIPTION OF THE DRAWINGS Flowchart 1 shows the synthesis of the CNTj (x_4_styrylic acid salt) complex of the present invention using the CNT-poly(indol-4-phenylethyl citrate) complex of the present invention. The process of synthesizing a CNT-conductive polymer composite. Molecule = ^ &"; bribe age, Saki forest side (10) · Conductive high [main component symbol description] 100 poly (3,4-extended ethylene dioxy porphin (PEJ) 0T) 15 201033244 110 poly (sodium -4- Styrene sulfonate) 120 nm carbon tube

Claims (1)

201033244 七、申請專利範圍: 子複合物,其製備係利用表面處理法將一官 “離子鍵因:以:聚(χ-4·苯乙埽磺酸鹽) 豆中聚(Χ·4_苯乙烯續酸鹽)複合物, i餘二魏,及使職⑽-聚(χ-4_苯乙烯俩鹽)複合 物作為-掺_、或—摻_及—相_,以合成—導電高分子。 請專1範圍第1項之CNT導電高分子複合物,其中該聚 本乙烯%酸鹽)係選自於由聚苯乙埽磺酸醋、聚(鈉_4_苯乙烯 ❹ 1酸T、^~二基苯續酸、及其苯環之一或多個氫原子被魏所取 代之變異高分子所組成之群組。 3^如申,專利範圍第i或2項之CNT_導電高分子複合物其中該 聚(X-4-苯乙烯磺酸鹽)具有範圍從5,〇〇〇 到2〇〇,〇〇〇的^之 分子量。 4.如申請專利範圍第1或2項之CNT-導電高分子複合物,其中該 ,電高分子係選自於由聚此洛、聚苯胺、聚噻吩、聚(3,4_伸乙二 氧基嗟吩)、聚(3,4-伸烷二氧基噻吩)、聚(3,4_二烷基噻吩)、聚(3,4_ ❹ 二烧氧基噻吩)、聚(3,4-環烷基噻吩)、及其衍生出的變異導電高分 子所組成之群組。 5. 如申請專利範圍第1或2項之CNT-導電高分子複合物,其中一 單體用於合成該導電高分子,該單體係選自於由吡咯、苯胺、噻 吩、3,4-伸乙二氧基噻吩、3,4-二烷基噻吩、3,4-二烷氧基噻吩、3,4-環姨^基噻吩、及其衍生出的變異高分子單體所組成之群組。 6. 如申請專利範圍第1或2項之CNT-導電高分子複合物,其中, 當合成該導電高分子時,該CNT-聚(X-4-苯乙烯磺酸鹽)複合物係 以混合物加以使用,該混合物具有包括聚苯乙烯磺酸酯或十二烷 17 201033244 基硫酸納之其它摻雜劑,比例為1:99〜99:1。 7. —種抗靜電塗佈溶液’包括0·〇〇1〜50树% (基於該溶液的绅 · 量)之申請專利範圍第1至6項其中任一項2CNT_導電高分;^ 複合物。 回刀 8. 如申請專利範圍第7項之抗靜電塗佈溶液,其中一溶劑被使 用包括選自於由水及包括曱醇、乙醇、正丙醇、異丙醇、正丁 醇、異丁醇、己醇、乙二醇、甘油、苯、氣苯、硝基曱燒、曱苯、 乙酸乙酯、己烷、環己烷、2-曱氧乙醇、2-丁氧乙醇、2_乙氧乙醇、 二甲苯、氯仿、四氫呋喃、二曱基甲醯胺、甲基乙基酮、N_甲基 @ -2-吼'各酿J、2-°比洛_、N-乙烯基-2-。比嘻酮、N-曱基甲醯胺、二甲 基亞砜、丙酮、及丁酸内酯之有機溶劑所構成之群組其中一&amp;多 者。 9. 一種CNT-聚(X-4_苯乙烯磺酸鹽)複合物(其中χ係第一族元 素),其製備係利用表面處理法將一官能基引入到一奈米碳管表 面;及使該官能基與聚(X-4-苯乙稀續酸鹽)形成離子鍵結。 10. 如申請專利範圍第9項之CNT-聚(X-4-苯乙烯磺酸鹽)複合 ◎ 物’其中該聚(Χ-4-苯乙坤確酸鹽)係選自於由聚苯乙稀石黉酸酯、聚 (納-4-苯乙烯續酸鹽)、十二基苯續酸、及其苯環之一或多個氫原子 被磯基所取代之變異高分子所組成之群組。 11. 如申請專利範圍第10項之CNT-聚(Χ-4-苯乙烯磺酸鹽)複合 物,其中該聚(Χ-4-苯乙稀續酸鹽)具有範圍從5,〇〇〇 g/mol到 200,000 g/mol 之分子量。 八、圖式· 18201033244 VII. Patent application scope: Sub-composite, its preparation is to use a surface treatment method to treat an official "ion bond: to: poly(χ-4·phenylethyl sulfonate)) in the bean poly(Χ·4_benzene Ethylene sulphate complex, i-di-Wei, and in-service (10)-poly(χ-4_styrene salt) complex as-doped-, or-doped-and-phase- Molecular. Please select the CNT conductive polymer complex of the first item, wherein the polyethyl methacrylate is selected from polystyrene sulfonic acid vinegar, poly (sodium _4_styrene oxime acid). a group consisting of T, ^~ dibasic benzoic acid, and a variant polymer in which one or more hydrogen atoms of the benzene ring are replaced by Wei. 3^如申, CNT_ of item i or 2 of the patent scope The conductive polymer composite wherein the poly(X-4-styrenesulfonate) has a molecular weight ranging from 5, 〇〇〇 to 2〇〇, 〇〇〇. 4. As claimed in the first or second patent range The CNT-conductive polymer composite, wherein the electric polymer is selected from the group consisting of polylocene, polyaniline, polythiophene, poly(3,4-ethylenedioxy porphin), poly(3, 4-alkylenedioxythiophene), poly(3,4-dioxane) a group consisting of thiophene), poly(3,4_ fluorene oxythiophene), poly(3,4-cycloalkylthiophene), and a derivative of the derivative conductive polymer thereof. a CNT-conductive polymer composite of 1 or 2, wherein a monomer is used for synthesizing the conductive polymer, and the single system is selected from pyrrole, aniline, thiophene, 3,4-ethylenedioxythiophene, a group consisting of 3,4-dialkylthiophene, 3,4-dialkoxythiophene, 3,4-cyclodecylthiophene, and a variant polymer monomer derived therefrom. The CNT-conductive polymer composite of the first or second aspect, wherein, when the conductive polymer is synthesized, the CNT-poly(X-4-styrenesulfonate) complex is used as a mixture, the mixture Other dopants comprising polystyrene sulfonate or dodecane 17 201033244 sodium sulphate in a ratio of 1:99 to 99:1. 7. Antistatic coating solution 'including 0·〇〇1~ 50% of the tree (based on the amount of the solution) of the patent range 1 to 6 of any of the 2CNT_ conductive high scores; ^ composite. Backhoe 8. If the scope of application The antistatic coating solution of item 7, wherein a solvent is used, which is selected from the group consisting of water and including decyl alcohol, ethanol, n-propanol, isopropanol, n-butanol, isobutanol, hexanol, ethylene glycol, Glycerin, benzene, gas benzene, nitro oxime, benzene, ethyl acetate, hexane, cyclohexane, 2-methoxyethanol, 2-butoxyethanol, 2-ethoxyethanol, xylene, chloroform, tetrahydrofuran , dimethyl carbamide, methyl ethyl ketone, N_methyl @ -2- 吼 ', each brewing J, 2-° pirox, N-vinyl-2-. ketone, N-曱One of the groups of organic solvents such as carbamide, dimethyl sulfoxide, acetone, and butyrolactone. 9. A CNT-poly(X-4_styrene sulfonate) complex (in which a lanthanide first group element) is prepared by surface treatment to introduce a functional group to a surface of a carbon nanotube; and This functional group is ionically bonded to poly(X-4-phenylethyl sulfide). 10. The CNT-poly(X-4-styrenesulfonate) complex ◎ of the ninth application of the patent scope, wherein the poly(p--4-phenylethyl sulphate) is selected from polyphenylene Ethyl phthalate, poly(n--4-styrene hydride), dodecyl benzoic acid, and a variant polymer in which one or more hydrogen atoms of the benzene ring are replaced by a rocky group. Group. 11. The CNT-poly(anthracene-4-styrene sulfonate) complex according to claim 10, wherein the poly(indol-4-phenylethyl sulfonate) has a range from 5, 〇〇〇 Molecular weight from g/mol to 200,000 g/mol. Eight, schema · 18
TW098139515A 2008-11-20 2009-11-20 CNT-poly(X-4 styrenesulfonate) composites and CNT-conductive polymer composites produced with the same TW201033244A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020080115615A KR101089300B1 (en) 2008-11-20 2008-11-20 CNT -polyX-4 Styrenesulfonate composites and CNT - Conductive polymer composites produced with the same

Publications (1)

Publication Number Publication Date
TW201033244A true TW201033244A (en) 2010-09-16

Family

ID=42198669

Family Applications (1)

Application Number Title Priority Date Filing Date
TW098139515A TW201033244A (en) 2008-11-20 2009-11-20 CNT-poly(X-4 styrenesulfonate) composites and CNT-conductive polymer composites produced with the same

Country Status (3)

Country Link
KR (1) KR101089300B1 (en)
TW (1) TW201033244A (en)
WO (1) WO2010058975A2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105778571A (en) * 2014-12-24 2016-07-20 中国科学院宁波材料技术与工程研究所 Graphene composite slurry and preparation method thereof
CN105778572A (en) * 2014-12-24 2016-07-20 中国科学院宁波材料技术与工程研究所 Composite graphene powder and preparation method thereof
TWI632169B (en) * 2016-12-09 2018-08-11 鈺邦科技股份有限公司 Polymer composite material, method for manufacturing the polymer composite material, capacitor package structure using the polymer composite material and method for manufacturing the capacitor package structure

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102102243B (en) * 2010-12-13 2012-07-25 中国航空工业集团公司北京航空材料研究院 Method for preparing polythiophene derivative-carbon nano tube nano composite fibers at low temperature
CN102660801B (en) * 2012-02-24 2013-12-25 长春理工大学 Method for preparing erbium and ytterbium double-doped yttrium lithium tetrafluoride up-conversion luminescent nanobelt
CN102660800B (en) * 2012-02-24 2014-02-12 长春理工大学 Method for preparing erbium and ytterbium co-doped sodium yttrium tetrafluoride upconversion luminescent nanofibers
CN102660802B (en) * 2012-02-24 2014-01-15 长春理工大学 Preparation method for erbium and ytterbium double-doped up-conversion luminescence nano-fiber
GB2515004B (en) * 2013-05-16 2020-08-26 Technical Fibre Products Ltd Carbon nanotube derivatives
KR101690543B1 (en) * 2015-07-29 2016-12-28 창원대학교 산학협력단 Method for Preparing Polymer Coated Fludized Bed Carbon Electrode, and Fludized Bed Carbon Electrode By The Same
CN111100255B (en) * 2018-10-25 2022-11-01 中国石油化工股份有限公司 Carbon nano tube-styrene derivative compound, preparation method and application
CN109449296A (en) * 2018-10-31 2019-03-08 浙江海洋大学 A kind of flexible solar battery material and preparation method based on carbon nanotube
CN115044949B (en) * 2022-06-09 2023-10-20 合肥工业大学 Preparation device and method of modified organic anti-corrosion coating

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060062983A1 (en) 2004-09-17 2006-03-23 Irvin Glen C Jr Coatable conductive polyethylenedioxythiophene with carbon nanotubes

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105778571A (en) * 2014-12-24 2016-07-20 中国科学院宁波材料技术与工程研究所 Graphene composite slurry and preparation method thereof
CN105778572A (en) * 2014-12-24 2016-07-20 中国科学院宁波材料技术与工程研究所 Composite graphene powder and preparation method thereof
CN105778572B (en) * 2014-12-24 2018-05-01 中国科学院宁波材料技术与工程研究所 A kind of graphene composite powder and preparation method thereof
CN105778571B (en) * 2014-12-24 2018-05-04 中国科学院宁波材料技术与工程研究所 A kind of graphene composite mortar and preparation method thereof
TWI632169B (en) * 2016-12-09 2018-08-11 鈺邦科技股份有限公司 Polymer composite material, method for manufacturing the polymer composite material, capacitor package structure using the polymer composite material and method for manufacturing the capacitor package structure

Also Published As

Publication number Publication date
WO2010058975A3 (en) 2010-09-10
KR101089300B1 (en) 2011-12-02
KR20100056689A (en) 2010-05-28
WO2010058975A2 (en) 2010-05-27

Similar Documents

Publication Publication Date Title
TW201033244A (en) CNT-poly(X-4 styrenesulfonate) composites and CNT-conductive polymer composites produced with the same
Li et al. From precision synthesis of block copolymers to properties and applications of nanoparticles
Zhang et al. Pyrene-functionalized PTMA by NRC for greater π–π stacking with rGO and enhanced electrochemical properties
JP5177572B2 (en) Carbon nanotube solubilizer
Zhang et al. Single-walled carbon nanotube-based coaxial nanowires: synthesis, characterization, and electrical properties
Ghosh et al. Candle soot derived carbon nanodot/polyaniline hybrid materials through controlled grafting of polyaniline chains for supercapacitors
Yuan et al. Electronic interactions and polymer effect in the functionalization and solvation of carbon nanotubes by pyrene-and ferrocene-containing poly (1-alkyne) s
Kuila et al. Soluble P3HT-grafted carbon nanotubes: synthesis and photovoltaic application
Xu et al. Fused heterocyclic molecule-functionalized N-doped reduced graphene oxide by non-covalent bonds for high-performance supercapacitors
Xiong et al. Preparation of high-performance covalently bonded polyaniline nanorods/graphene supercapacitor electrode materials using interfacial copolymerization approach
JP2005281672A (en) Carbon nanotube-containing composition, complex having coating film comprising it, and method for manufacturing them
KR20070077334A (en) Aromatic imide-based dispersant for carbon nanotube and carbon nanotube composition comprising the same
JP2010163570A (en) Carbon nanotube dispersing and solubilizing agent
KR20160055838A (en) A process for the preparation of a conductive polymer composite
Meuer et al. α-Pyrene polymer functionalized multiwalled carbon nanotubes: Solubility, stability and depletion phenomena
Petrov et al. Dispersion of multi-walled carbon nanotubes with pyrene-functionalized polymeric micelles in aqueous media
EP2834305B1 (en) Block copolymers that disperse nanofillers in water
KR20110064317A (en) Carbon nanotube-polymeric ionic liquid composites and carbon nanotube - conductive polymer composites produced with the same
Ramasamy et al. Functionalization of graphene with self-doped conducting polypyrrole by click coupling
JP2010523452A (en) Carbon nanotube dispersant containing metal complex
KR20070076875A (en) Dispersant for dispersing carbon nanotube and carbon nanotube composition comprising the same
Kumari et al. Poly (3‐hexyl thiophene)‐b‐poly (N‐isopropyl acrylamide): Synthesis and its composition dependent structural, solubility, thermoresponsive, electrochemical, and electronic properties
JP4761436B2 (en) CARBON NANOTUBE-CONTAINING POLYMER, COMPOSITE HAVING COATING COMPRISING THE SAME, AND METHOD FOR PRODUCING THEM
Kim et al. Multidimensional polyaniline/reduced graphene oxide/silica nanocomposite for efficient supercapacitor electrodes
JP5475645B2 (en) Carbon nanotube solubilizer composed of aroylbiphenyl-based hyperbranched polymer