WO2010047250A1 - 高周波スイッチモジュール及び高周波スイッチ装置 - Google Patents

高周波スイッチモジュール及び高周波スイッチ装置 Download PDF

Info

Publication number
WO2010047250A1
WO2010047250A1 PCT/JP2009/067748 JP2009067748W WO2010047250A1 WO 2010047250 A1 WO2010047250 A1 WO 2010047250A1 JP 2009067748 W JP2009067748 W JP 2009067748W WO 2010047250 A1 WO2010047250 A1 WO 2010047250A1
Authority
WO
WIPO (PCT)
Prior art keywords
switch circuit
frequency
terminal
substrate
current path
Prior art date
Application number
PCT/JP2009/067748
Other languages
English (en)
French (fr)
Inventor
永徳 村瀬
孝紀 上嶋
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to JP2010534774A priority Critical patent/JP5158205B2/ja
Publication of WO2010047250A1 publication Critical patent/WO2010047250A1/ja
Priority to US13/089,338 priority patent/US8248144B2/en
Priority to US13/547,084 priority patent/US8373492B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/005Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges
    • H04B1/0053Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges with common antenna for more than one band
    • H04B1/006Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges with common antenna for more than one band using switches for selecting the desired band

Definitions

  • the present invention relates to a high-frequency switch module and a high-frequency switch device, and more particularly to a high-frequency switch module and a high-frequency switch device used for a radio device that can be used for a plurality of different communication methods.
  • GSM900 Global System for Mobile Communications 900
  • GSM1800 Global System for Mobile Communications 1800
  • GSM850 GlobforGlobStybloStyle
  • CDMA systems used in parallel with GSM include CdmaOne (Code Division Multiple Access One), IMT-2000 (International Mobile Telecommunications 2000), and the like.
  • the antenna switch circuit includes an antenna and a switch circuit.
  • the antenna transmits / receives transmission / reception signals of a plurality of frequency bands.
  • the switch circuit switches the transmission path of the signal so that the reception signals of a plurality of frequency bands input from the antenna are accurately output to the corresponding reception circuit, and the transmission signal from the transmission circuit is accurately transmitted to the antenna. Switch the transmission path so that it is output.
  • Such a switch circuit is composed of a plurality of FET transistors, and the FET transistors are switched between ON and OFF by a control signal to switch the transmission path. According to the antenna switch circuit as described above, it becomes possible to handle transmission / reception signals of a plurality of types of frequency bands in a mobile phone.
  • the antenna switch circuit it is necessary to prevent noise generated in the printed wiring board on which the antenna switch circuit is mounted from being input to the switch circuit of the antenna switch circuit. Therefore, a capacitor having one end grounded is connected to a path through which a control signal for controlling the switch circuit is transmitted. Thereby, the noise generated in the printed wiring board is transmitted to the ground side via the capacitor via the ground electrode in the printed wiring board and is not input to the switch circuit.
  • FIG. 5 is a cross-sectional structure diagram of the antenna switch circuit 100 and the printed wiring board 102 on which the antenna switch circuit 100 is mounted.
  • An antenna switch circuit 100 and a capacitor 104 are mounted on the printed wiring board 102.
  • the capacitor 104 is grounded via a ground electrode 106 built in the printed wiring board 102 (a state where the ground electrode 106 is grounded is omitted).
  • the antenna switch circuit 100 is also grounded via the ground electrode 106.
  • noise generated in a switch circuit (not shown) of the antenna switch circuit 100 also exists. These noises are transmitted to the ground side through the capacitor 104 and the ground electrode 106 in the printed wiring board 102.
  • part of the noise is input to the antenna switch circuit 100 via the ground electrode 106.
  • noise is also input to the switch circuit of the antenna switch circuit 100, and the transmission signal is modulated by the noise.
  • the harmonics of the transmission signal are distorted, and the high frequency characteristics of the switch circuit are degraded.
  • an object of the present invention is to provide a high-frequency switch device and a high-frequency switch module that can suppress noise from returning to a switch circuit via a capacitor.
  • a high-frequency switch module includes a first substrate and a switch circuit mounted on the first substrate, and the first substrate has a plurality of high frequency bands.
  • a common terminal for inputting / outputting a signal; a plurality of switching terminals; a control terminal to which a control signal for controlling the switch circuit is applied in accordance with a frequency band of the high-frequency signal input / output to / from the common terminal;
  • the switch circuit connects the switching terminal and the common terminal based on the control signal.
  • a high-frequency switch device includes a first substrate, a second substrate on which the first substrate is mounted, and a switch circuit mounted on the first substrate.
  • the first substrate includes a common terminal for inputting and outputting high-frequency signals in a plurality of frequency bands, a plurality of switching terminals, and the switch circuit according to a frequency band of the high-frequency signals input and output to the common terminals.
  • a control terminal to which a control signal for performing control is applied, and the switch circuit connects the switching terminal and the common terminal based on the control signal, and the second substrate includes: A current path having one end connected to the control terminal and a current path provided in series on the current path, having a resistance value larger than the resistance value of the current path, and reducing noise passing through the current path The resistance part of Dale it, and said.
  • noise can be prevented from returning to the switch circuit via the capacitor.
  • FIG. 2A is a diagram illustrating the back surface of the multilayer substrate
  • FIG. 2B is a diagram illustrating the surface of the multilayer substrate.
  • FIG. 3A is a graph showing the experimental results in the first experimental example
  • FIG. 3B is a graph showing the experimental results in the second experimental example.
  • It is a block diagram of a high frequency switch apparatus. It is sectional drawing of the conventional antenna switch circuit and the printed wiring board with which this was mounted.
  • FIG. 1 is a block diagram of a high-frequency switch device 70 including a high-frequency switch module 10.
  • the high-frequency switch device 70 is used in a mobile phone that can handle transmission / reception signals of a plurality of types of frequency bands.
  • the high-frequency switch device 70 switches the transmission path of the signal so that the reception signals in a plurality of frequency bands input from the antenna are accurately output to the corresponding reception circuit, and transmits the transmission signal from the transmission circuit.
  • the transmission path is switched so that it is output accurately to the antenna.
  • the high-frequency switch device 70 is configured by mounting the high-frequency switch module 10 on a printed wiring board 50.
  • the printed wiring board 50 is provided with an antenna 30 and capacitors C1 to C3.
  • the high frequency switch module 10 includes a multilayer substrate 12, a switch circuit 14, SAW filters 20, 22, 24, 26, and 28, resistors R1 to R3, and current paths S1 to S3.
  • the resistors R1 to R3 are connected in series to the current paths S1 to S3, respectively, and the SAW filters 20, 22, 24, 26, and 28 have balanced output terminals.
  • the multilayer substrate 12 is a substrate having a circuit formed therein.
  • FIG. 2A is a diagram illustrating the back surface of the multilayer substrate 12
  • FIG. 2B is a diagram illustrating the surface of the multilayer substrate 12.
  • the back surface of the multilayer substrate 12 is a surface facing the printed wiring board 50 when the multilayer substrate 12 is mounted on the printed wiring board 50, and the surface of the multilayer substrate 12 is parallel to the back surface of the multilayer substrate 12. This is a serious aspect.
  • terminals T1 to T28 are provided on the back surface of the multilayer substrate 12.
  • terminals T1 and T2 are transmission system terminals through which GSM transmission signals GSM-Tx1 and GSM-Tx2 are input from a transmission circuit (not shown).
  • Terminals T3 to T12 are reception system terminals through which GSM reception signals Rx1 to Rx5 are output to a reception circuit (not shown).
  • Each of the terminals T13 to T15 is a control terminal to which control signals Vc1 to Vc3 for controlling the switch circuit 14 in accordance with the frequency band of the high frequency signal input to and output from the antenna 30 are applied.
  • the terminal T16 is a power supply terminal to which a power supply voltage Vdd for driving the switch circuit 14 is applied.
  • the terminals T17 to T25 are grounded via a GND terminal (not shown).
  • the terminal T26 is a common terminal to which the antenna 30 is connected and through which high frequency signals in a plurality of frequency bands are input and output. Note that the terminals T27 and T28 in FIG. 2A may be grounded via a GND terminal on the printed circuit board 50.
  • the terminals T27 and T28 have a larger area than the other terminals T1 to T26, and are fixed to an electrode on the side of the printed wiring board 50 (not shown), so that the printed wiring board 50 of FIG. It plays a role of bonding the substrate 12.
  • a switch circuit 14 using semiconductor elements such as CMOS, SAW filters (surface wave filters) 20, 22, 24, 26, 28, a resistor R1 To R3 and inductors L1 to L5 are mounted.
  • the switch circuit 14, the SAW filters 20, 22, 24, 26, and 28, the resistors R1 to R3, and the inductors L1 to L5 are terminals T1 to T26 and via holes provided in the multilayer substrate 12 shown in FIG. It is electrically connected via a conductor and wiring.
  • the SAW filters 20 and 22 and the SAW filters 24 and 26 are obtained by integrating two filters in one package, and the SAW filters 20, 22, 24, 26, and 28 have a balanced / unbalanced conversion function. It is a filter provided with.
  • the circles shown in FIG. 2B are via-hole conductors provided in the uppermost layer of the multilayer substrate 12.
  • Via hole conductors b1 to b39 are provided in the uppermost layer of the multilayer substrate 12.
  • Terminals T1 and T2 are electrically connected to the switch circuit 14 via via-hole conductors b1 and b2, respectively.
  • the terminals T3 and T4 are electrically connected to the SAW filter 20 via via-hole conductors b3 and b4. Furthermore, the via-hole conductors b3 and b4 are connected to the balanced terminal of the SAW filter 20, and the via-hole conductor b17 is connected to the unbalanced terminal of the SAW filter 20. Furthermore, the via-hole conductor b17 is electrically connected to the switch circuit 14 via the wiring in the multilayer substrate 12 and the via-hole conductor b20. Thereby, as shown in FIG. 1, the switch circuit 14 and the terminals T ⁇ b> 3 and T ⁇ b> 4 are electrically connected via the SAW filter 20. That is, the SAW filter 20 is connected between the terminals T3 and T4 and the switch circuit 14.
  • the terminals T5 and T6 are electrically connected to the SAW filter 22 via via-hole conductors b5 and b6. Furthermore, the via-hole conductors b5 and b6 are connected to the balanced terminal of the SAW filter 22, and the via-hole conductor b21 is connected to the unbalanced terminal of the SAW filter 22. Furthermore, the via-hole conductor b21 is electrically connected to the switch circuit 14 via wiring in the multilayer substrate 12 and the via-hole conductor b24. Thereby, as shown in FIG. 1, the switch circuit 14 and the terminals T ⁇ b> 5 and T ⁇ b> 6 are electrically connected via the SAW filter 22. That is, the SAW filter 22 is connected between the terminals T5 and T6 and the switch circuit 14.
  • the terminals T7 and T8 are electrically connected to the SAW filter 24 via via-hole conductors b7 and b8. Furthermore, the via-hole conductors b7 and b8 are connected to the balanced terminal of the SAW filter 24, and the via-hole conductor b25 is connected to the unbalanced terminal of the SAW filter 24. Furthermore, the via-hole conductor b25 is electrically connected to the switch circuit 14 via wiring in the multilayer substrate 12 and the via-hole conductor b27. Thereby, as shown in FIG. 1, the switch circuit 14 and the terminals T ⁇ b> 7 and T ⁇ b> 8 are electrically connected via the SAW filter 24. That is, the SAW filter 24 is connected between the terminals T7 and T8 and the switch circuit 14.
  • the terminals T9 and T10 are electrically connected to the SAW filter 26 via via-hole conductors b9 and b10. Further, the via-hole conductors b9 and b10 are connected to the balanced terminal of the SAW filter 26, and the via-hole conductor b25 is connected to the unbalanced terminal of the SAW filter 26. Furthermore, the via-hole conductor b25 is electrically connected to the switch circuit 14 via wiring in the multilayer substrate 12 and the via-hole conductor b27. Thereby, as shown in FIG. 1, the switch circuit 14 and the terminals T ⁇ b> 9 and T ⁇ b> 10 are electrically connected via the SAW filter 26. That is, the SAW filter 26 is connected between the terminals T9 and T10 and the switch circuit 14.
  • the terminals T11 and T12 are electrically connected to the SAW filter 28 via via-hole conductors b11 and b12. Furthermore, the via-hole conductors b11 and b12 are connected to the balanced terminal of the SAW filter 28, and the via-hole conductor b28 is connected to the unbalanced terminal of the SAW filter 28. Further, the via-hole conductor b28 is electrically connected to the switch circuit 14 via the wiring in the multilayer substrate 12 and the via-hole conductor b30. Thereby, as shown in FIG. 1, the switch circuit 14 and the terminals T ⁇ b> 11 and T ⁇ b> 12 are electrically connected via the SAW filter 28. That is, the SAW filter 28 is connected between the terminals T11 and T12 and the switch circuit 14.
  • the terminal T13 is electrically connected to the resistor R1 through the via-hole conductor b13.
  • the via-hole conductor b13 is electrically connected to the via-hole conductor b31 in the resistor R1.
  • the via hole conductor b31 is electrically connected to the switch circuit 14 via the via hole conductor b32. Thereby, as shown in FIG. 1, the switch circuit 14 and the terminal T13 are electrically connected via the resistor R1.
  • the terminal T14 is electrically connected to the resistor R2 via the via-hole conductor b14.
  • the via hole conductor b14 is electrically connected to the via hole conductor b33 in the resistor R2.
  • the via hole conductor b33 is electrically connected to the switch circuit 14 via the via hole conductor b34. Thereby, as shown in FIG. 1, the switch circuit 14 and the terminal T14 are electrically connected via the resistor R2.
  • the terminal T15 is electrically connected to the resistor R3 through the via-hole conductor b15.
  • the via hole conductor b15 is electrically connected to the via hole conductor b35 in the resistor R3.
  • the via hole conductor b35 is electrically connected to the switch circuit 14 via the via hole conductor b36. Thereby, as shown in FIG. 1, the switch circuit 14 and the terminal T15 are electrically connected via the resistor R3.
  • Terminal T16 is electrically connected to the switch circuit 14 via the via-hole conductor b16.
  • Terminals T17 to T25 are GND terminals, and are connected to any of the via-hole conductors to which reference numerals in FIG. 2B are not attached.
  • the terminal T26 is electrically connected to the switch circuit 14 via the wiring in the multilayer substrate 12 and the via hole conductor b39.
  • the multilayer substrate 12 includes low-pass filters 16 and 18 connected between the terminals T1 and T2 and the switch circuit 14.
  • via hole conductors and wirings existing between the switch circuit 14 and the terminals T13 to T15 constitute current paths S1 to S3.
  • each of the capacitors C1 to C3 is provided on the printed wiring board 50, and one end thereof is connected to the wiring connected to the terminals T13 to T16, and the other end is grounded. One end of each of the capacitors C1 to C3 is connected to the wiring at a position farther from the resistors R1 to R3 than the terminals T13 to T16. Capacitors C1 to C3 play a role of causing noise generated in the control signals Vc1 to Vc3 to flow to the ground side.
  • the capacitors C1 to C3 may be mounted on the multilayer substrate 12.
  • the switch circuit 14 connects the terminals T3 to T12 and the terminal T26 according to the frequency band of the received signal received by the antenna 30 based on the control signals Vc1 to Vc3. To do.
  • the switch circuit 14 connects the terminals T1 and T2 and the terminal T26 corresponding to the frequency band of the transmission signal to be transmitted from the antenna 30 based on the control signals Vc1 to Vc3.
  • the high frequency switch module 10 can handle transmission / reception signals of a plurality of types of frequency bands.
  • the noise attenuated by passing through the resistors R1 to R3 is input to the capacitors C1 to C3. Therefore, in the high frequency switch module 10, the magnitude of noise input to the switch circuit 14 via the capacitors C1 to C3 and the ground electrode (not shown) in the printed wiring board 50 is suppressed. As a result, in the high frequency switch module 10, it is possible to suppress the transmission signal from being modulated by noise, thereby suppressing distortion in the harmonics of the transmission signal, and it is possible to suppress deterioration of the high frequency characteristics of the switch circuit 14.
  • the resistors R1 to R3 have the switch circuit 14 closest to the connection point between the current paths S1 to S3 and the switch circuit 14 (that is, the via-hole conductors b32, b34, and b36). It is provided along the side. As a result, the distance between the resistors R1 to R3 and the switch circuit 14 is shortened, and the inflow of noise between them can be suppressed.
  • the resistors R1 to R3 are provided between the switch circuit 14 and the SAW filter 28.
  • the SAW filter 28 receives reception signals Rx1 to Rx5, and the switch circuit 14 receives transmission signals GSM-Tx1 and GSM-Tx2. Therefore, by providing the resistors R1 to R3 between the SAW filter 28 and the switch circuit 14, it is possible to improve the isolation between the reception signals Rx1 to Rx5 and the transmission signals GSM-Tx1 and GSM-Tx2. it can.
  • the static electricity can be controlled by the resistors R1 to R3, and the switch circuit 14 can be prevented from being damaged by static electricity.
  • the inventor of the present application conducted an experiment described below in order to make the effect of the high-frequency switch module 10 clearer.
  • the high-frequency switch module 10 provided with 1 k ⁇ resistors R1 to R3 (first experimental example)
  • the high-frequency switch module 10 provided with 500 ⁇ resistors R1 to R3 (second experimental example)
  • resistors A high-frequency switch module 10 (third experimental example) in which the devices R1 to R3 were not provided was manufactured, and signals observed at these RF ports were examined.
  • 3A is a graph showing the experimental results in the first experimental example
  • FIG. 3B is a graph showing the experimental results in the second experimental example
  • the vertical axis represents the amount of noise
  • the horizontal axis represents the frequency.
  • FIG. 3A to FIG. 3C it can be understood that the amount of noise is reduced by providing the resistors R1 to R3. Therefore, by providing the resistors R1 to R3, it is possible to suppress noise from returning to the switch circuit 14 via the capacitors C1 to C3. Further, comparing FIG. 3A and FIG. 3B, when the resistors R1 to R3 are 500 ⁇ , a slight noise is generated, whereas the resistors R1 to R3 are generated. Is 1 k ⁇ , almost no noise is generated. Therefore, it is desirable that the resistors R1 to R3 have a resistance value of 1 k ⁇ or more.
  • the inventor of the present application measured the harmonics in the first experimental example and the third experimental example.
  • Harmonics is a phenomenon in which, when power is applied to a semiconductor element at a certain frequency, the power is observed at a frequency corresponding to a higher harmonic of that frequency.
  • the harmonics in the third experimental example was ⁇ 68 dBc
  • the harmonics in the first experimental example was ⁇ 85 dBc. That is, the magnitude of the harmonic signal can be reduced in the first experimental example in which the resistors R1 to R3 are provided, compared to the third experimental example in which the resistors R1 to R3 are not provided. I understand. This indicates that when the noise enters the switch circuit 14, the harmonic signal is prevented from being modulated by the noise.
  • FIG. 4 is a block diagram of the high-frequency switch device 70 ′. In the following, the description will focus on differences from the high-frequency switch device 70 of FIG.
  • the difference between the high-frequency switch device 70 ′ and the high-frequency switch device 70 is a position where resistors R1 to R3 for reducing noise passing through the current paths S1 ′ to S3 ′ are provided.
  • the resistors R1 to R3 are provided on the multilayer substrate 12 as shown in FIG.
  • the resistors R1 to R3 are provided on the printed wiring board 50 as shown in FIG. More specifically, the printed wiring board 50 is provided with current paths S1 ′ to S3 ′ whose one ends are connected to the terminals T13 to T15.
  • the resistors R1 to R3 are provided on the current paths S1 ′ to S3 ′.
  • the resistors R1 to R3 are provided outside the high frequency switch module 10 ′. Further, the capacitors C1 to C3 are connected at one end to the current paths S1 ′ to S3 ′ at positions farther from the terminals T13 to T15 than the resistor portions R1 to R3, and the other end is grounded. Even with such a configuration, it is possible to suppress noise from returning to the switch circuit 14 via the capacitors C1 to C3.
  • the resistors R1 to R3 are provided in the vicinity of the connection portion between the multilayer substrate 12 and the printed wiring board 50. As a result, noise from the switch circuit 14 can be removed in the vicinity of the switch circuit 14, and noise sneaking into other ports of the switch circuit 14 can be reduced.
  • the printed wiring board 50 includes control terminal electrodes (not shown) connected to the other ends of the current paths S1 ′ to S3 ′, and the resistors R1 to R3 are in the vicinity of the control terminal electrodes. May be provided. As a result, noise wraparound from other control terminal electrodes to the control terminal electrodes provided with the resistors R1 to R3 can be reduced.
  • the high frequency switch module 10 and the high frequency switch device 70 are not limited to those shown in the embodiment. Therefore, these can be changed within the scope of the gist of the invention.
  • the resistors R1 to R3 are resistance elements and are mounted on the multilayer substrate 12 or the printed wiring board 50.
  • a resistance portion may be provided directly on the multilayer substrate 12 or the printed wiring board 50.
  • the resistance portion may be configured by a wiring coated with a material having a higher resistance value than the current paths S1 to S3, or may be configured by a wiring having a narrower line width than the current paths S1 to S3. It may be.
  • resistors R1 to R3 are provided for all of the terminals T13 to T15, but resistors R1 to R3 are provided for all of the terminals T13 to T15. There is no need to be. Even if the resistors R1 to R3 are not provided at any of the terminals T13 to T15, the influence of noise may not occur. In such a case, the resistors R1 to R3 need not be provided at the terminals T13 to T15 that are not involved in noise.
  • the present invention is useful for high-frequency switch devices and high-frequency switch modules, and is particularly excellent in that noise can be prevented from returning to the switch circuit via a capacitor.
  • C1 to C3 Capacitors S1 to S3, S1 ′ to S3 ′ Current path R1 to R3 Resistors T1 to T28 Terminals 10, 10 ′ High frequency switch module 12 Multilayer substrate 14 Switch circuit 16, 18 Low pass filter 20, 22, 24, 26, 28 SAW filter 30 Antenna 50 Printed wiring board 70, 70 'High frequency switch device

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Transceivers (AREA)
  • Electronic Switches (AREA)

Abstract

ノイズがコンデンサを経由してスイッチ回路に戻ることを抑制できる高周波スイッチ装置及び高周波スイッチモジュールを提供する。 高周波スイッチモジュール(10)は、多層基板(12)と、多層基板(12)に実装されているスイッチ回路(14)と、を備えている。多層基板(12)は、複数の周波数帯域の高周波信号が入出力する端子(T26)と、複数の端子(T1~T12)と、スイッチ回路(14)の制御を行う制御信号が印加される端子(T13~T15)と、制御信号が印加される端子(T13~T15)とスイッチ回路(14)とを接続する電流経路(S1~S3)と、電流経路(S1~S3)上に設けられ、電流経路(S1~S3)の抵抗値よりも大きな抵抗値を有している抵抗器(R1~R3)と、を含んでいる。スイッチ回路(14)は、制御信号に基づいて切り替えの動作をする。

Description

高周波スイッチモジュール及び高周波スイッチ装置
 本発明は、高周波スイッチモジュール及び高周波スイッチ装置に関し、より特定的には、複数の異なる通信方式に使用できる無線機に用いる高周波スイッチモジュール及び高周波スイッチ装置に関する。
 携帯無線システムには、例えば、欧州で広く用いられているGSM900(Global System for Mobile Communications 900)方式及びGSM1800(Global System for Mobile Communications 1800)方式、又は北米で広く用いられているGSM850(Global System for Mobile Communications 850)方式、日本で広く用いられているPDC(Personal Digital Celluar)方式等がある。また、GSMと並んで用いられているCDMA方式では、CdmaOne(Code Division Multiple Access One)、IMT-2000(International Mobile Telecommunications 2000)等がある。近年の携帯電話の急激な普及に伴い、特に、大都市近郊において各無線システムに割り当てられた周波数帯域では、全システム利用者をまかないきれず、通信が途中切断されたり、接続が困難になったりするといった問題が生じていた。そこで、利用者が複数の無線システムを利用できるようにして、実質的に利用可能な周波数の増加を図り、サービスの向上やインフラの有効活用をすることが提案されている。
 そこで、特許文献1に記載のアンテナスイッチ回路が提案されている。該アンテナスイッチ回路は、アンテナ及びスイッチ回路を備えている。アンテナは、複数の周波数帯域の送受信信号を送受信する。スイッチ回路は、アンテナから入力してくる複数の周波数帯域の受信信号が対応する受信回路に正確に出力されるように、信号の伝送経路を切り替えると共に、送信回路からの送信信号がアンテナに正確に出力されるように伝送経路を切り替える。このようなスイッチ回路は、複数のFETトランジスタにより構成され、該FETトランジスタは、制御信号によりONとOFFとに切り替えられることにより、伝送経路を切り替えている。以上のようなアンテナスイッチ回路によれば、携帯電話において、複数種類の周波数帯域の送受信信号を取り扱うことが可能となる。
 ところで、アンテナスイッチ回路では、アンテナスイッチ回路が実装されるプリント配線基板にて発生するノイズが、アンテナスイッチ回路のスイッチ回路に入力することを防止する必要がある。そこで、スイッチ回路を制御するための制御信号が伝送される経路に、一端が接地されたコンデンサが接続される。これにより、プリント配線基板にて発生したノイズは、コンデンサを介してプリント配線基板内のグランド電極を経由して接地側へと伝送され、スイッチ回路に入力しなくなる。
 しかしながら、前記アンテナスイッチ回路では、以下に説明するように、依然として、ノイズによって、スイッチ回路の高周波特性が劣化するという問題がある。図5は、アンテナスイッチ回路100及びこれが実装されたプリント配線基板102の断面構造図である。プリント配線基板102上には、アンテナスイッチ回路100及びコンデンサ104が実装されている。コンデンサ104は、プリント配線基板102に内蔵されたグランド電極106を介して、接地されている(グランド電極106が接地されている様子は省略)。また、アンテナスイッチ回路100も、グランド電極106を介して接地されている。
 アンテナスイッチ回路100では、プリント配線基板102にて発生したノイズの他に、アンテナスイッチ回路100のスイッチ回路(図示せず)にて発生するノイズも存在する。これらのノイズは、前記コンデンサ104を介して、プリント配線基板102内のグランド電極106を経由して、接地側へと伝送される。ところが、図5の矢印に示すように、アンテナスイッチ回路100がグランド電極106と接続されていると、ノイズの一部は、グランド電極106を経由して、アンテナスイッチ回路100に入力してしまう。これにより、アンテナスイッチ回路100のスイッチ回路にもノイズが入力し、送信信号がノイズによって変調される。その結果、送信信号の高調波に歪みが発生し、スイッチ回路の高周波特性が劣化してしまう。
特開2004-253953号公報
 そこで、本発明の目的は、ノイズがコンデンサを経由してスイッチ回路に戻ることを抑制できる高周波スイッチ装置及び高周波スイッチモジュールを提供することである。
 本発明の一形態に係る高周波スイッチモジュールは、第1の基板と、前記第1の基板に実装されているスイッチ回路と、を備えており、前記第1の基板は、複数の周波数帯域の高周波信号が入出力する共通端子と、複数の切り替え端子と、前記共通端子に入出力する前記高周波信号の周波数帯域に応じて前記スイッチ回路の制御を行う制御信号が印加される制御端子と、前記制御端子と前記スイッチ回路とを接続する電流経路と、前記電流経路上に直列に設けられ、該電流経路の抵抗値よりも大きな抵抗値を有し、該電流経路を通過するノイズを低減するための抵抗部と、を含んでおり、前記スイッチ回路は、前記制御信号に基づいて、前記切り替え端子と該共通端子とを接続すること、を特徴とする。
 本発明の一形態に係る高周波スイッチ装置は、第1の基板と、前記第1の基板が実装されている第2の基板と、前記第1の基板に実装されているスイッチ回路と、を備えており、前記第1の基板は、複数の周波数帯域の高周波信号が入出力する共通端子と、複数の切り替え端子と、前記共通端子に入出力する前記高周波信号の周波数帯域に応じて前記スイッチ回路の制御を行う制御信号が印加される制御端子と、を含んでおり、前記スイッチ回路は、前記制御信号に基づいて、前記切り替え端子と該共通端子とを接続し、前記第2の基板は、前記制御端子に一端が接続されている電流経路と、前記電流経路上に直列に設けられ、該電流経路の抵抗値よりも大きな抵抗値を有し、該電流経路を通過するノイズを低減するための抵抗部と、を含んでいること、を特徴とする。
 本発明によれば、ノイズがコンデンサを経由してスイッチ回路に戻ることを抑制できる。
高周波スイッチモジュールを備えた高周波スイッチ装置のブロック図である。 図2(a)は、多層基板の裏面を示した図であり、図2(b)は、多層基板の表面を示した図である。 図3(a)は、第1の実験例での実験結果を示したグラフであり、図3(b)は、第2の実験例での実験結果を示したグラフであり、図3(c)は、第3の実験例での実験結果を示したグラフである。 高周波スイッチ装置のブロック図である。 従来のアンテナスイッチ回路及びこれが実装されたプリント配線基板の断面構造図である。
 以下に、本発明の実施形態に係る高周波スイッチモジュール及び高周波スイッチ装置について説明する。
(高周波スイッチモジュール)
 以下に、本発明の一実施形態に係る高周波スイッチモジュールについて図面を参照しながら説明する。図1は、高周波スイッチモジュール10を備えた高周波スイッチ装置70のブロック図である。高周波スイッチ装置70は、複数種類の周波数帯域の送受信信号を取り扱うことができる携帯電話に用いられる。そして、高周波スイッチ装置70は、アンテナから入力してくる複数の周波数帯域の受信信号が対応する受信回路に正確に出力されるように、信号の伝送経路を切り替えると共に、送信回路からの送信信号がアンテナに正確に出力されるように伝送経路を切り替える。
 高周波スイッチ装置70は、図1に示すように、プリント配線基板50上に高周波スイッチモジュール10が実装されることにより構成されている。また、プリント配線基板50には、アンテナ30及びコンデンサC1~C3が設けられている。高周波スイッチモジュール10は、多層基板12、スイッチ回路14、SAWフィルタ20,22,24,26,28、抵抗器R1~R3及び電流経路S1~S3を備えている。なお、抵抗器R1~R3はそれぞれ、電流経路S1~S3に対して直列に接続されており、SAWフィルタ20,22,24,26,28は、平衡出力端子を有している。
 多層基板12は、内部に回路が形成された基板である。図2(a)は、多層基板12の裏面を示した図であり、図2(b)は、多層基板12の表面を示した図である。多層基板12の裏面とは、多層基板12がプリント配線基板50上に実装される際に、プリント配線基板50と対向する面であり、多層基板12の表面とは、多層基板12の裏面と平行な面である。
 図2(a)に示すように、多層基板12の裏面には、端子T1~T28が設けられている。図1に示すように、端子T1,T2はそれぞれ、GSM方式の送信信号GSM-Tx1,GSM-Tx2が図示しない送信回路から入力してくる送信系端子である。端子T3~T12はそれぞれ、GSM方式の受信信号Rx1~Rx5が図示しない受信回路へと出力していく受信系端子である。端子T13~T15のそれぞれは、アンテナ30に入出力する高周波信号の周波数帯域に応じてスイッチ回路14の制御を行う制御信号Vc1~Vc3が印加される制御端子である。端子T16は、スイッチ回路14を駆動させるための電源電圧Vddが印加される電源端子である。端子T17~T25には、図示しないGND端子を介して接地される。端子T26は、アンテナ30が接続され、複数の周波数帯域の高周波信号が入出力する共通端子である。なお、図2(a)の端子T27,T28は、プリント配線基板50上のGND端子を介して接地されていてもよい。該端子T27,T28は、他の端子T1~T26よりも大きな面積を有しており、図示しないプリント配線基板50側の電極に対して固定されることにより、図1のプリント配線基板50と多層基板12とを接着する役割を果たしている。
 多層基板12の表面には、図2(b)に示すように、CMOS等の半導体素子を用いたスイッチ回路14、SAWフィルタ(表面波フィルタ)20,22,24,26,28、抵抗器R1~R3及びインダクタL1~L5が実装されている。スイッチ回路14、SAWフィルタ20,22,24,26,28、抵抗器R1~R3及びインダクタL1~L5は、図2(a)に示す端子T1~T26と多層基板12内に設けられているビアホール導体及び配線を介して電気的に接続されている。以下に、図2を参照しながらより詳細に説明する。なお、SAWフィルタ20,22及びSAWフィルタ24,26はそれぞれ、2つのフィルタを1つのパッケージに一体化したものであり、SAWフィルタ20,22,24,26,28は、平衡・不平衡変換機能を備えたフィルタである。
 図2(b)に示した丸印は、多層基板12の最上層に設けられているビアホール導体である。多層基板12の最上層には、ビアホール導体b1~b39が設けられている。端子T1,T2はそれぞれ、ビアホール導体b1,b2を介してスイッチ回路14と電気的に接続されている。
 端子T3,T4は、ビアホール導体b3,b4を介してSAWフィルタ20と電気的に接続されている。更に、ビアホール導体b3,b4は、SAWフィルタ20の平衡端子に接続され、ビアホール導体b17は、SAWフィルタ20の不平衡端子に接続されている。更に、ビアホール導体b17は、多層基板12内の配線等及びビアホール導体b20を介してスイッチ回路14と電気的に接続されている。これにより、図1に示すように、スイッチ回路14と端子T3,T4とは、SAWフィルタ20を介して電気的に接続されている。すなわち、SAWフィルタ20は、端子T3,T4とスイッチ回路14との間に接続されている。
 端子T5,T6は、ビアホール導体b5,b6を介してSAWフィルタ22と電気的に接続されている。更に、ビアホール導体b5,b6は、SAWフィルタ22の平衡端子に接続され、ビアホール導体b21は、SAWフィルタ22の不平衡端子に接続されている。更に、ビアホール導体b21は、多層基板12内の配線等及びビアホール導体b24を介してスイッチ回路14と電気的に接続されている。これにより、図1に示すように、スイッチ回路14と端子T5,T6とは、SAWフィルタ22を介して電気的に接続されている。すなわち、SAWフィルタ22は、端子T5,T6とスイッチ回路14との間に接続されている。
 端子T7,T8は、ビアホール導体b7,b8を介してSAWフィルタ24と電気的に接続されている。更に、ビアホール導体b7,b8は、SAWフィルタ24の平衡端子に接続され、ビアホール導体b25は、SAWフィルタ24の不平衡端子に接続されている。更に、ビアホール導体b25は、多層基板12内の配線等及びビアホール導体b27を介してスイッチ回路14と電気的に接続されている。これにより、図1に示すように、スイッチ回路14と端子T7,T8とは、SAWフィルタ24を介して電気的に接続されている。すなわち、SAWフィルタ24は、端子T7,T8とスイッチ回路14との間に接続されている。
 端子T9,T10は、ビアホール導体b9,b10を介してSAWフィルタ26と電気的に接続されている。更に、ビアホール導体b9,b10は、SAWフィルタ26の平衡端子に接続され、ビアホール導体b25は、SAWフィルタ26の不平衡端子に接続されている。更に、ビアホール導体b25は、多層基板12内の配線等及びビアホール導体b27を介してスイッチ回路14と電気的に接続されている。これにより、図1に示すように、スイッチ回路14と端子T9,T10とは、SAWフィルタ26を介して電気的に接続されている。すなわち、SAWフィルタ26は、端子T9,T10とスイッチ回路14との間に接続されている。
 端子T11,T12は、ビアホール導体b11,b12を介してSAWフィルタ28と電気的に接続されている。更に、ビアホール導体b11,b12は、SAWフィルタ28の平衡端子に接続され、ビアホール導体b28は、SAWフィルタ28の不平衡端子に接続されている。更に、ビアホール導体b28は、多層基板12内の配線等及びビアホール導体b30を介してスイッチ回路14と電気的に接続されている。これにより、図1に示すように、スイッチ回路14と端子T11,T12とは、SAWフィルタ28を介して電気的に接続されている。すなわち、SAWフィルタ28は、端子T11,T12とスイッチ回路14との間に接続されている。
 端子T13は、ビアホール導体b13を介して抵抗器R1と電気的に接続されている。ビアホール導体b13は、抵抗器R1においてビアホール導体b31と電気的に接続されている。また、ビアホール導体b31は、ビアホール導体b32を介してスイッチ回路14と電気的に接続されている。これにより、図1に示すように、スイッチ回路14と端子T13とは、抵抗器R1を介して電気的に接続されている。
 端子T14は、ビアホール導体b14を介して抵抗器R2と電気的に接続されている。ビアホール導体b14は、抵抗器R2においてビアホール導体b33と電気的に接続されている。また、ビアホール導体b33は、ビアホール導体b34を介してスイッチ回路14と電気的に接続されている。これにより、図1に示すように、スイッチ回路14と端子T14とは、抵抗器R2を介して電気的に接続されている。
 端子T15は、ビアホール導体b15を介して抵抗器R3と電気的に接続されている。ビアホール導体b15は、抵抗器R3においてビアホール導体b35と電気的に接続されている。また、ビアホール導体b35は、ビアホール導体b36を介してスイッチ回路14と電気的に接続されている。これにより、図1に示すように、スイッチ回路14と端子T15とは、抵抗器R3を介して電気的に接続されている。
 端子T16は、ビアホール導体b16を介してスイッチ回路14と電気的に接続されている。端子T17~端子T25は、GND端子であり、図2(b)の参照符号が付されていないビアホール導体のいずれかに接続されている。
 端子T26は、多層基板12内の配線等及びビアホール導体b39を介して、スイッチ回路14と電気的に接続されている。
 多層基板12の内部には、所定の層の大部分を覆うグランド電極が設けられている。また、その他の層には、コイル電極及びコンデンサ電極が設けられている。該コイル電極及びコンデンサ電極は、図1のローパスフィルタ16,18を構成している。多層基板12は、端子T1,T2とスイッチ回路14との間に接続されているローパスフィルタ16,18を含んでいる。また、多層基板12内において、スイッチ回路14と端子T13~T15間に存在するビアホール導体及び配線は、電流経路S1~S3を構成している。
 次に、図1のコンデンサC1~C3について説明する。コンデンサC1~C3はそれぞれ、プリント配線基板50に設けられており、一端が端子T13~T16に接続されている配線に接続されていると共に、他端が接地されている。コンデンサC1~C3の一端はそれぞれ、抵抗器R1~R3から端子T13~T16よりも離れた位置において配線に接続されている。コンデンサC1~C3は、制御信号Vc1~Vc3に発生したノイズを接地側へと流す役割を果たしている。なお、コンデンサC1~C3は、多層基板12上に搭載されていてもよい。
 以上のように構成された高周波スイッチモジュール10では、スイッチ回路14は、制御信号Vc1~Vc3に基づいて、アンテナ30が受信した受信信号の周波数帯域に応じた端子T3~T12と端子T26とを接続する。また、スイッチ回路14は、制御信号Vc1~Vc3に基づいて、アンテナ30から送信すべき送信信号の周波数帯域に応じた端子T1,T2と端子T26とを接続する。これにより、高周波スイッチモジュール10は、複数種類の周波数帯域の送受信信号を取り扱うことができる。
(効果)
 以上のように構成された高周波スイッチモジュール10では、以下に説明するように、ノイズがコンデンサC1~C3を経由してスイッチ回路14に戻ることを抑制できる。より詳細には、図1及び図2に示すように、スイッチ回路14と端子T13~T15とを接続する電流経路S1~S3上に、電流経路S1~S3を通過するノイズを低減するための抵抗器R1~R3が設けられている。この抵抗器R1~R3は、電流経路S1~S3の抵抗値よりも大きな抵抗値を有している。そのため、抵抗器R1~R3が存在しない電流経路S1~S3にノイズが流れた場合よりも、抵抗器R1~R3が存在する電流経路S1~S3にノイズが流れた場合の方が、多くのノイズが熱エネルギーに変換されて、ノイズが大きく減衰する。そして、コンデンサC1~C3には、抵抗器R1~R3を通過することにより減衰したノイズが入力する。よって、高周波スイッチモジュール10では、コンデンサC1~C3及びプリント配線基板50内のグランド電極(図示せず)を経由して、スイッチ回路14に入力するノイズの大きさが抑制されるようになる。その結果、高周波スイッチモジュール10では、送信信号がノイズにより変調されて、送信信号の高調波に歪みが発生することを抑制でき、スイッチ回路14の高周波特性が劣化することを抑制できる。
 また、図2(b)に示すように、抵抗器R1~R3は、電流経路S1~S3とスイッチ回路14との接続箇所(すなわち、ビアホール導体b32,b34,b36)に最も近い該スイッチ回路14の辺に沿って設けられている。これにより、抵抗器R1~R3とスイッチ回路14との間の距離が短くなり、これらの間においてノイズが流入することを抑制できる。
 また、図2(b)に示すように、抵抗器R1~R3は、スイッチ回路14とSAWフィルタ28との間に設けられている。SAWフィルタ28には、受信信号Rx1~Rx5が入力しており、スイッチ回路14には送信信号GSM-Tx1,GSM-Tx2が入力している。そのため、SAWフィルタ28とスイッチ回路14との間に抵抗器R1~R3が設けられることにより、受信信号Rx1~Rx5と送信信号GSM-Tx1,GSM-Tx2との間のアイソレーションを向上させることができる。
 更に、電流経路S1~S3を介してスイッチ回路14へ静電気が流入する場合、その静電気の流入を抵抗器R1~R3により制御でき、スイッチ回路14の静電気による破壊を防止できる。
(実験結果)
 本願発明者は、高周波スイッチモジュール10が奏する効果をより明確なものとするために、以下に説明する実験を行った。具体的には、1kΩの抵抗器R1~R3を設けた高周波スイッチモジュール10(第1の実験例)、500Ωの抵抗器R1~R3を設けた高周波スイッチモジュール10(第2の実験例)及び抵抗器R1~R3が設けられていない高周波スイッチモジュール10(第3の実験例)を作製し、これらのRFポートで観測される信号を調べた。図3(a)は、第1の実験例での実験結果を示したグラフであり、図3(b)は、第2の実験例での実験結果を示したグラフであり、図3(c)は、第3の実験例での実験結果を示したグラフである。縦軸は、ノイズ量を示し、横軸は、周波数を示している。
 図3(a)ないし図3(c)を比較すると分かるように、抵抗器R1~R3が設けられることにより、ノイズ量が低減していることが理解できる。よって、抵抗器R1~R3が設けられることにより、ノイズがコンデンサC1~C3を経由してスイッチ回路14に戻ることを抑制できている。更に、図3(a)と図3(b)とを比較すると、抵抗器R1~R3が500Ωの場合には、僅かではあるがノイズが発生しているのに対して、抵抗器R1~R3が1kΩの場合には、ノイズが殆ど発生していない。よって、抵抗器R1~R3は、1kΩ以上の抵抗値を有していることが望ましい。
 また、本願発明者は、第1の実験例と第3の実験例において、ハーモニックスを測定した。ハーモニックスとは、ある周波数において半導体素子にパワーを印加した場合に、その周波数の高次高調波に相当する周波数において、パワーが観測される現象である。その結果、第3の実験例でのハーモニックスは、-68dBcであったのに対して、第1の実験例でのハーモニックスは、-85dBcであった。すなわち、抵抗器R1~R3が設けられた第1の実験例の方が、抵抗器R1~R3が設けられていない第3の実験例よりも、高調波信号の大きさを低減できていることが分かる。これは、スイッチ回路14にノイズが侵入することにより、該ノイズにより高調波信号が変調されることを抑制できていることを示している。
(高周波スイッチ装置)
 以下に、本発明の一実施形態に係る高周波スイッチ装置について図面を参照しながら説明する。図4は、高周波スイッチ装置70'のブロック図である。以下に、図1の高周波スイッチ装置70との相違点を中心に説明を行う。
 高周波スイッチ装置70'と高周波スイッチ装置70との相違点は、電流経路S1'~S3'を通過するノイズを低減するための抵抗器R1~R3が設けられている位置である。高周波スイッチ装置70では、抵抗器R1~R3は、図1に示すように、多層基板12上に設けられていた。一方、高周波スイッチ装置70'では、抵抗器R1~R3は、図4に示すように、プリント配線基板50に設けられている。より詳細には、プリント配線基板50には、端子T13~T15に一端が接続されている電流経路S1'~S3'が設けられている。抵抗器R1~R3は、電流経路S1'~S3'上に設けられている。すなわち、高周波スイッチ装置70'では、抵抗器R1~R3は、高周波スイッチモジュール10'外に設けられている。更に、コンデンサC1~C3は、一端が抵抗部R1~R3よりも端子T13~T15から離れた位置において電流経路S1'~S3'に対して接続され、かつ、他端が接地されている。このような構成によっても、ノイズがコンデンサC1~C3を経由してスイッチ回路14に戻ることを抑制できる。
 なお、高周波スイッチ装置70'のその他の構成については、高周波スイッチ装置70のその他の構成と同じであるので、説明を省略する。
 なお、高周波スイッチ装置70'では、抵抗器R1~R3は、多層基板12とプリント配線基板50との接続部分の近傍に設けられていることが望ましい。これにより、スイッチ回路14から出るノイズをスイッチ回路14近傍で除去することができ、スイッチ回路14の他のポートへのノイズの回りこみを低減できる。
 更に、プリント配線基板50は、電流経路S1'~S3'の他端に接続されている制御端子用電極(図示せず)を備えており、抵抗器R1~R3は、制御端子用電極の近傍に設けられていてもよい。これにより、他の制御端子電極から抵抗器R1~R3を備えた制御端子電極へのノイズの回りこみを低減できる。
(変形例)
 高周波スイッチモジュール10及び高周波スイッチ装置70は、前記実施形態に示したものに限らない。よって、これらは、発明の要旨の範囲内において変更可能である。例えば、抵抗器R1~R3は、抵抗素子であり、多層基板12又はプリント配線基板50に実装されるものとした。しかしながら、抵抗器R1~R3の代わりに、抵抗部が多層基板12又はプリント配線基板50に直接に設けられていてもよい。この場合、抵抗部は、電流経路S1~S3よりも高い抵抗値を有する材料が塗布されてなる配線により構成されていてもよいし、電流経路S1~S3よりも細い線幅の配線により構成されていてもよい。
 また、高周波スイッチモジュール10及び高周波スイッチ装置70では、端子T13~T15の全てに対して抵抗器R1~R3が設けられているが、端子T13~T15の全てに抵抗器R1~R3が設けられている必要はない。端子T13~T15のいずれかに抵抗器R1~R3が設けられなくても、ノイズの影響が生じない場合がある。このような場合には、ノイズに関与しない端子T13~T15には、抵抗器R1~R3を設けなくてもよい。
 本発明は、高周波スイッチ装置及び高周波スイッチモジュールに有用であり、特に、ノイズがコンデンサを経由してスイッチ回路に戻ることを抑制できる点において優れている。
 C1~C3 コンデンサ
 S1~S3,S1'~S3' 電流経路
 R1~R3 抵抗器
 T1~T28 端子
 10,10' 高周波スイッチモジュール
 12 多層基板
 14 スイッチ回路
 16,18 ローパスフィルタ
 20,22,24,26,28 SAWフィルタ
 30 アンテナ
 50 プリント配線基板
 70,70'  高周波スイッチ装置

Claims (16)

  1.  第1の基板と、
     前記第1の基板に実装されているスイッチ回路と、
     を備えており、
     前記第1の基板は、
      複数の周波数帯域の高周波信号が入出力する共通端子と、
      複数の切り替え端子と、
      前記共通端子に入出力する前記高周波信号の周波数帯域に応じて前記スイッチ回路の制御を行う制御信号が印加される制御端子と、
      前記制御端子と前記スイッチ回路とを接続する電流経路と、
      前記電流経路上に直列に設けられ、該電流経路の抵抗値よりも大きな抵抗値を有し、該電流経路を通過するノイズを低減するための抵抗部と、
     を含んでおり、
     前記スイッチ回路は、前記制御信号に基づいて、前記切り替え端子と該共通端子とを接続すること、
     を特徴とする高周波スイッチモジュール。
  2.  前記第1の基板は、
      一端が前記抵抗部よりも前記制御端子から離れた位置において、前記電流経路に対して接続され、かつ、他端が接地されているコンデンサを、
     更に含んでいること、
     を特徴とする請求項1に記載の高周波スイッチモジュール。
  3.  前記複数の切り替え端子は、送信系端子及び受信系端子からなり、
     前記第1の基板は、
      前記送信系端子と前記スイッチ回路との間に接続されているローパスフィルタを、
     更に含んでいること、
     を特徴とする請求項1又は請求項2のいずれかに記載の高周波スイッチモジュール。
  4.  前記複数の切り替え端子は、送信系端子及び受信系端子からなり、
     前記受信系端子と前記スイッチ回路との間に接続されている表面波フィルタを、
     更に備えていること、
     を特徴とする請求項1ないし請求項3のいずれかに記載の高周波スイッチモジュール。
  5.  前記抵抗部は、前記スイッチ回路と前記表面波フィルタとの間に配置されていること、
     を特徴とする請求項4に記載の高周波スイッチモジュール。
  6.  前記抵抗部は、前記電流経路と前記スイッチ回路との接続箇所に最も近い該スイッチ回路の辺に沿って設けられていること、
     を特徴とする請求項1ないし請求項5のいずれかに記載の高周波スイッチモジュール。
  7.  前記抵抗部は、1kΩ以上の抵抗値を有していること、
     を特徴とする請求項1ないし請求項6のいずれかに記載の高周波スイッチモジュール。
  8.  前記スイッチ回路は、半導体スイッチであること、
     を特徴とする請求項1ないし請求項7のいずれかに記載の高周波スイッチモジュール。
  9.  第1の基板と、
     前記第1の基板が実装されている第2の基板と、
     前記第1の基板に実装されているスイッチ回路と、
     を備えており、
     前記第1の基板は、
      複数の周波数帯域の高周波信号が入出力する共通端子と、
      複数の切り替え端子と、
      前記共通端子に入出力する前記高周波信号の周波数帯域に応じて前記スイッチ回路の制御を行う制御信号が印加される制御端子と、
     を含んでおり、
     前記スイッチ回路は、前記制御信号に基づいて、前記切り替え端子と該共通端子とを接続し、
     前記第2の基板は、
      前記制御端子に一端が接続されている電流経路と、
      前記電流経路上に直列に設けられ、該電流経路の抵抗値よりも大きな抵抗値を有し、該電流経路を通過するノイズを低減するための抵抗部と、
     を含んでいること、
     を特徴とする高周波スイッチ装置。
  10.  前記抵抗部は、前記第1の基板と前記第2の基板との接続部分の近傍に設けられていること、
     を特徴とする請求項9に記載の高周波スイッチ装置。
  11.  前記第2の基板は、
      前記電流経路の他端に接続されている制御端子用電極を、
     更に含み、
     前記抵抗部は、前記制御端子用電極の近傍に設けられていること、
     を特徴とする請求項9又は請求項10のいずれかに記載の高周波スイッチ装置。
  12.  前記第2の基板は、
      一端が前記抵抗部よりも前記制御端子から離れた位置において前記電流経路に対して接続され、かつ、他端が接地されているコンデンサを、
     更に含んでいること、
     を特徴とする請求項9ないし請求項11のいずれかに記載の高周波スイッチ装置。
  13.  前記複数の切り替え端子は、送信系端子及び受信系端子からなり、
     前記第1の基板は、
      前記送信系端子と前記スイッチ回路との間に接続されているローパスフィルタを、
     更に含んでいること、
     を特徴とする請求項9ないし請求項12のいずれかに記載の高周波スイッチ装置。
  14.  前記複数の切り替え端子は、送信系端子及び受信系端子からなり、
     前記受信系端子と前記スイッチ回路との間に接続されている表面波フィルタを、
     更に備えていること、
     を特徴とする請求項9ないし請求項13のいずれかに記載の高周波スイッチ装置。
  15.  前記抵抗部は、1kΩ以上の抵抗値を有していること、
     を特徴とする請求項9ないし請求項14のいずれかに記載の高周波スイッチ装置。
  16.  前記スイッチ回路は、半導体スイッチであること、
     を特徴とする請求項9ないし請求項15のいずれかに記載の高周波スイッチ装置。
PCT/JP2009/067748 2008-10-20 2009-10-14 高周波スイッチモジュール及び高周波スイッチ装置 WO2010047250A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2010534774A JP5158205B2 (ja) 2008-10-20 2009-10-14 高周波スイッチモジュール
US13/089,338 US8248144B2 (en) 2008-10-20 2011-04-19 High-frequency switch module and high-frequency switch apparatus
US13/547,084 US8373492B2 (en) 2008-10-20 2012-07-12 High-frequency switch module and high-frequency switch apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-269642 2008-10-20
JP2008269642 2008-10-20

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/089,338 Continuation US8248144B2 (en) 2008-10-20 2011-04-19 High-frequency switch module and high-frequency switch apparatus

Publications (1)

Publication Number Publication Date
WO2010047250A1 true WO2010047250A1 (ja) 2010-04-29

Family

ID=42119291

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/067748 WO2010047250A1 (ja) 2008-10-20 2009-10-14 高周波スイッチモジュール及び高周波スイッチ装置

Country Status (3)

Country Link
US (2) US8248144B2 (ja)
JP (1) JP5158205B2 (ja)
WO (1) WO2010047250A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013251637A (ja) * 2012-05-30 2013-12-12 Nsk Ltd ラインドライバの入力ノイズ除去回路及びモータシステム

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021145282A (ja) * 2020-03-13 2021-09-24 株式会社村田製作所 高周波モジュールおよび通信装置
JP2021158554A (ja) * 2020-03-27 2021-10-07 株式会社村田製作所 高周波モジュールおよび通信装置
JP2021158556A (ja) * 2020-03-27 2021-10-07 株式会社村田製作所 高周波モジュールおよび通信装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002037709A1 (fr) * 2000-11-01 2002-05-10 Hitachi Metals, Ltd. Module de commutation
JP2002368646A (ja) * 2001-03-29 2002-12-20 Matsushita Electric Ind Co Ltd 高周波スイッチ、無線通信機器、および高周波スイッチング方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6224992Y2 (ja) * 1981-06-05 1987-06-26
JP3703083B2 (ja) * 2001-01-10 2005-10-05 松下電器産業株式会社 波形発生装置
JP2002290153A (ja) * 2001-03-22 2002-10-04 Nippon Dempa Kogyo Co Ltd 二周波切替型高周波発振器
WO2002080388A2 (en) 2001-03-29 2002-10-10 Matsushita Electric Industrial Co., Ltd. High frequency switch, radio communication apparatus, and high frequency switching method
JP2003060408A (ja) 2001-06-05 2003-02-28 Murata Mfg Co Ltd フィルタ部品および通信機装置
JP2004253953A (ja) 2003-02-19 2004-09-09 Hitachi Metals Ltd アンテナスイッチ回路及びこれを用いたアンテナスイッチモジュール並びに通信装置
US7525926B2 (en) * 2004-08-02 2009-04-28 Atheros Communications, Inc. Wireless communication using beam forming and diversity
JP4300171B2 (ja) 2004-09-17 2009-07-22 株式会社ルネサステクノロジ アンテナスイッチ回路及びそれを搭載した高周波モジュール
JP4632176B2 (ja) * 2006-01-20 2011-02-16 株式会社村田製作所 アンテナ及び無線通信機
US20090117859A1 (en) * 2006-04-07 2009-05-07 Belair Networks Inc. System and method for frequency offsetting of information communicated in mimo based wireless networks
US7881690B2 (en) * 2006-04-07 2011-02-01 Belair Networks Inc. System and method for zero intermediate frequency filtering of information communicated in wireless networks
JP2008011503A (ja) * 2006-05-31 2008-01-17 Matsushita Electric Ind Co Ltd 高周波スイッチ回路、高周波スイッチ装置、及び送信モジュール装置
US8943112B2 (en) * 2009-06-26 2015-01-27 Syntropy Systems, Llc Sampling/quantization converters
EP2522077B1 (en) * 2010-01-05 2019-05-29 Syntropy Systems, LLC Sampling/quantization converters

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002037709A1 (fr) * 2000-11-01 2002-05-10 Hitachi Metals, Ltd. Module de commutation
JP2002368646A (ja) * 2001-03-29 2002-12-20 Matsushita Electric Ind Co Ltd 高周波スイッチ、無線通信機器、および高周波スイッチング方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013251637A (ja) * 2012-05-30 2013-12-12 Nsk Ltd ラインドライバの入力ノイズ除去回路及びモータシステム

Also Published As

Publication number Publication date
US8373492B2 (en) 2013-02-12
US8248144B2 (en) 2012-08-21
JPWO2010047250A1 (ja) 2012-08-02
US20120293237A1 (en) 2012-11-22
US20110193614A1 (en) 2011-08-11
JP5158205B2 (ja) 2013-03-06

Similar Documents

Publication Publication Date Title
US7515879B2 (en) Radio frequency circuit module
JP4466788B2 (ja) 高周波スイッチモジュール
JP5316544B2 (ja) 高周波回路、高周波部品、及びマルチバンド通信装置
JP6471810B2 (ja) 分波装置及びその設計方法
JP5152409B2 (ja) 高周波スイッチモジュール
JP4715973B2 (ja) 高周波スイッチモジュール
JP5029946B2 (ja) スイッチモジュール
JPWO2013021626A1 (ja) フィルタモジュール
GB2486758A (en) Combined balun and impedance matching circuit
JP2005057375A (ja) 高周波スイッチモジュールおよび高周波スイッチモジュール用多層基板
JP5158205B2 (ja) 高周波スイッチモジュール
WO2018030278A1 (ja) 電力増幅モジュール、フロントエンド回路および通信装置
JP3147878U (ja) 高周波スイッチモジュール
JP2008109535A (ja) スイッチ回路、それを有するフロントエンドモジュール及び無線端末
WO2013118664A1 (ja) 高周波モジュール
JP2014090402A (ja) 無線通信回路
WO2010137405A1 (ja) 高周波モジュール
WO2009157283A1 (ja) 高周波モジュール
JP5280595B1 (ja) 無線通信装置
JP6074800B2 (ja) 無線通信装置
JP2014090330A (ja) 無線通信装置
JP4257855B2 (ja) 高周波モジュール
JP2024027983A (ja) 高周波回路、及び、通信装置
JP5280576B1 (ja) 無線通信装置及び無線通信用回路
JP2007097066A (ja) 高周波スイッチ回路

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09821947

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010534774

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09821947

Country of ref document: EP

Kind code of ref document: A1