WO2013118664A1 - 高周波モジュール - Google Patents

高周波モジュール Download PDF

Info

Publication number
WO2013118664A1
WO2013118664A1 PCT/JP2013/052440 JP2013052440W WO2013118664A1 WO 2013118664 A1 WO2013118664 A1 WO 2013118664A1 JP 2013052440 W JP2013052440 W JP 2013052440W WO 2013118664 A1 WO2013118664 A1 WO 2013118664A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
signal
circuits
electrode
electrode pattern
Prior art date
Application number
PCT/JP2013/052440
Other languages
English (en)
French (fr)
Inventor
啓之 永森
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to CN201380007060.XA priority Critical patent/CN104094527A/zh
Publication of WO2013118664A1 publication Critical patent/WO2013118664A1/ja
Priority to US14/323,116 priority patent/US20140312978A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/189High-frequency amplifiers, e.g. radio frequency amplifiers
    • H03F3/19High-frequency amplifiers, e.g. radio frequency amplifiers with semiconductor devices only
    • H03F3/193High-frequency amplifiers, e.g. radio frequency amplifiers with semiconductor devices only with field-effect devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/02Transmitters
    • H04B1/04Circuits
    • H04B1/0458Arrangements for matching and coupling between power amplifier and antenna or between amplifying stages
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/189High-frequency amplifiers, e.g. radio frequency amplifiers
    • H03F3/19High-frequency amplifiers, e.g. radio frequency amplifiers with semiconductor devices only
    • H03F3/195High-frequency amplifiers, e.g. radio frequency amplifiers with semiconductor devices only in integrated circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/02Transmitters
    • H04B1/04Circuits
    • H04B1/0475Circuits with means for limiting noise, interference or distortion
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/02Transmitters
    • H04B1/04Circuits
    • H04B1/0483Transmitters with multiple parallel paths
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/294Indexing scheme relating to amplifiers the amplifier being a low noise amplifier [LNA]
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/429Two or more amplifiers or one amplifier with filters for different frequency bands are coupled in parallel at the input or output
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/451Indexing scheme relating to amplifiers the amplifier being a radio frequency amplifier

Definitions

  • the present invention relates to a high-frequency module in which an amplifier circuit is provided on a wiring board.
  • GSM Global System for Mobile Communications
  • DCS Digital Cellular System
  • PCS Personal Communication Service
  • an antenna switch circuit 501 is formed on the right side of the module, an amplifier circuit 502 is formed on the left side, and a shield electrode 503 is formed between the two circuits.
  • a plurality of via electrodes 505 are formed along the shield electrode 503 over all layers in the stacking direction of the multilayer substrate 504, and a ground electrode (ground electrode) and a shield electrode 503 formed in the lower layer of the multilayer substrate 504 are provided. Connection is made via the via electrode 505.
  • JP 2004-166248 A (see paragraphs 0052 and 0053, FIG. 14 and the like)
  • the above-described multiband-compatible high-frequency module between the antenna switch circuit and the amplifier circuit, a matching circuit that performs impedance matching between the demultiplexing circuits including the amplifier circuit and the switch IC, and an unnecessary frequency band signal
  • a plurality of filter circuits, etc., for removing noise are formed corresponding to different frequency bands.
  • the above-described conventional high-frequency module can only prevent mutual interference such as noise between the antenna switch circuit and the amplifier circuit. Further, mutual interference of signals between a plurality of matching circuits and a plurality of filter circuits formed between the antenna switch circuit and the amplifier circuit cannot be prevented, and the high frequency characteristics of the module may be deteriorated.
  • the present invention has been made in view of the above problems, and in addition to the isolation between the amplifier circuit and the antenna switch circuit, a matching circuit corresponding to different frequency bands formed between the antenna switch circuit and the amplifier circuit, An object of the present invention is to provide a high-frequency module capable of ensuring isolation between filter circuits.
  • the high-frequency module of the present invention is connected to the electrode pattern layer and the electrode pattern layer in the high-frequency module that amplifies the signal input from the input terminal and outputs the amplified signal to the antenna terminal.
  • a plurality of signal paths to the antenna terminal are formed through the matching circuit and the filter circuit, and the electrode pattern layer and the via Electrode is grounded, in a plan view of the wiring substrate, is characterized in that at least one of the electrode pattern layer and the via electrode is disposed between each of the signal paths (claim 1).
  • a plurality of the via electrodes are formed along each of the signal paths.
  • the matching circuit and the filter circuit provided in each signal path are extended in the stacking direction (inside the wiring board). Even if formed, the noise irradiated from the matching circuit and the filter circuit can be mutually cut off between the signal paths, and the high frequency characteristics of the module can be prevented from deteriorating.
  • the wiring board between the region where the amplifier circuits are arranged and the region where the matching circuits and filter circuits provided corresponding to the amplifier circuits are arranged, respectively.
  • at least one of the electrode pattern and the via electrode may be disposed (Claim 3).
  • the matching circuit and the filter circuit provided in this way can mutually block noises that are irradiated with each other, and further can prevent the high frequency characteristics from deteriorating.
  • At least one of the electrode pattern layer and the via electrode is disposed between the region where the matching circuit is disposed and the region where the filter circuit is disposed in a plan view of the wiring board.
  • An electronic component constituting a part of the matching circuit may be conducted to the electrode pattern layer or the via electrode.
  • the signals having different frequency bands to be amplified by the amplifier circuits include a first signal and a second signal in which a harmonic component overlaps with a fundamental component of the first signal,
  • the matching circuit provided in the signal path corresponding to the first signal and the matching circuit provided in the signal path corresponding to the second signal may be spaced apart from each other (Claim 5).
  • the circuit board may further include a demultiplexing circuit that is provided on the wiring board and receives a signal from each of the filter circuits, and the amplification circuits and the demultiplexing circuit may be spaced apart from each other. .
  • the branching circuit may be a switch IC.
  • the present invention since at least one of the grounded electrode pattern layer and the interlayer connection via electrode is disposed between signal paths through which signals of different frequency bands flow, noise leaking from both signal paths is It is blocked by the pattern layer or via electrode, and it is possible to prevent the high frequency characteristics of the high frequency module from deteriorating due to mutual interference in different frequency bands.
  • FIGS. 1 is a block diagram of a high-frequency module according to an embodiment of the present invention
  • FIG. 2 is a plan view of the high-frequency module
  • FIG. 3 is an example of an electrode pattern layer formed inside a wiring substrate constituting the high-frequency module
  • FIG. 5 is a bottom view of the high-frequency module
  • FIG. 6 is a plan view of the conventional high-frequency module.
  • some of the electronic components mounted on the wiring board are omitted in FIG. 2, and some of the wiring patterns and via electrodes are not shown in FIGS.
  • the high-frequency module 1 in this embodiment includes a GSM850 transmission frequency band (824 MHz to 849 MHz), a GSM900 transmission frequency band (880 MHz to 915 MHz), a DCS1800 transmission frequency band (1710 MHz to 1785 MHz), and a PCS1900 transmission frequency.
  • This is a multi-band compatible transmission module that inputs signals in a band (1850 MHz to 1910 MHz) from the input terminal 3, amplifies the signals by the amplifier circuits 4a and 4b, and outputs the amplified signals to the antenna terminal 8. It is mounted on the mother board of the device.
  • the circuit configuration of the high-frequency module 1 includes amplification circuits 4a and 4b that amplify signals in each frequency band input from the input terminal 3, matching circuits 5a and 5b that perform impedance matching, and unnecessary frequency bands.
  • Filter circuit 6a, 6b LPF
  • the matching circuit 5a and the filter circuit 6a are connected in this order from the output side of the amplifier circuit 4a, so that the signal path (1) is formed, and the matching circuit 5b and the filter circuit 6b are connected in order from the output side of the amplifier circuit 4b, thereby forming the signal path (2).
  • the signals of the signal paths (1) and (2) are switched by the branching circuit 7 and output to the antenna terminal 8. In this case, DCS1800 and PCS1900 signals are transmitted using the signal path (1), and GSM850 and GSM900 signals are transmitted using the signal path (2).
  • the high-frequency module 1 includes a wiring board 2, a power amplifier IC (PA-IC) 4 mounted on the surface of the wiring board 2, a switch IC 7a, and an electronic component 9.
  • Amplifier circuits 4a and 4b are formed by PA-IC4, and branching circuit 7 is formed by switch IC7a.
  • matching circuits 5 a and 5 b are formed by electronic components 9 such as a chip inductor, a chip resistor, and a chip capacitor, and a circuit formed inside the wiring board 2.
  • the PA-IC 4 in this embodiment has a function of amplifying each of a plurality of transmission signals having different frequency bands.
  • the PA-IC 4, the switch IC 7a, and the electronic component 9 are mounted on the wiring board 2 by using a well-known surface mounting technique, and are joined to the wiring board 2 by a solder reflow technique or the like.
  • Examples of the wiring substrate 2 include a glass epoxy resin multilayer substrate and a low-temperature co-fired ceramic multilayer substrate (LTCC multilayer substrate), and are formed by laminating a plurality of insulating layers made of glass epoxy resin or ceramic.
  • wiring patterns and electrode pattern layers for blocking noise leaking from each circuit and grounded ground electrodes are formed on the front or back of each insulating layer, and wiring patterns formed on each layer are connected between the layers.
  • a via electrode 11 is formed.
  • land electrodes for mounting electronic components 9 and the like are formed on the surface of the wiring board 2.
  • the wiring pattern, the land electrode 10, the electrode pattern layer 12, and the ground electrode 13 are formed by photolithography, and the via electrode 11 forms a via hole by laser processing or the like in each insulating layer, and Ag or It is formed by filling and sintering a conductive paste containing Cu or the like.
  • an electrode pattern layer 12 for preventing mutual interference due to noise between circuits is formed as shown in FIG.
  • the wiring patterns of the amplifier circuits 4a and 4b are formed in the region A surrounded by the dotted line in the stacking direction of the wiring substrate 2, the wiring pattern of the branching circuit in the region B, and the signal path in the region C.
  • the matching circuit 5a provided in (1) in the region D, the matching circuit 5b provided in the signal path (2), in the region E, the wiring pattern of the filter circuit 6a provided in the signal path (1), the region F In FIG. 2, the wiring pattern of the filter circuit 6b provided in the signal path (2) is formed in the stacking direction of the wiring board 2, respectively.
  • the electrode pattern layer 12 having substantially the same shape as the electrode pattern layer 12 formed on the insulating layer 2 a shown in FIG. 3 is formed on a plurality of insulating layers constituting the wiring board 2. Further, as shown in FIG. 3, the matching circuit 5a (region C) provided in the signal path (1) and the matching circuit 5b (region D) provided in the signal path (2) are spaced apart from each other and are amplified. The circuits 4a and 4b (PA-IC4) and the branching circuit 7 (switch IC7a) are spaced apart.
  • a plurality of via electrodes 11 for interlayer connection are formed along the electrode pattern layer 12 formed in the insulating layer, and the electrode pattern layer 12 formed in the insulating layer 2a shown in FIG. And another insulating layer on which the electrode pattern layer 12 having substantially the same shape is formed, and the insulating layer 2 a are connected via the via electrode 11.
  • the via electrode 11 is formed along the electrode pattern layer, whereby the electrode pattern layers 12 formed in the respective insulating layers are connected to each other. It is connected via the electrode 11.
  • the interval between the via electrodes 11 formed along the electrode pattern layer 12 is a signal in the highest frequency band among a plurality of frequency bands used in the high frequency module 1. It is preferable to set it to 1/4 or less of the wavelength.
  • a grounded ground electrode 13 as shown in FIG. 4 is formed on a layer 2b different from the insulating layer shown in FIG.
  • a plurality of via electrodes 11 are formed in a region where the ground electrode 13 is formed, and an electrode pattern in which a part thereof is formed in another layer (for example, the insulating layer 2a) described above. Connected to layer 12.
  • each electrode pattern layer 12 and the ground electrode 13 are connected via the via electrode 11.
  • the ground electrode 13 may be formed over a plurality of layers.
  • the electrodes of the electronic component 9 constituting part of the matching circuits 5a and 5b shown in FIG. 2 are, for example, vias disposed between the matching circuit 5a (region C) and the filter circuit 6a (region E). Conductive to the electrode 11 (or electrode pattern layer 12) and the via electrode 11 (or electrode pattern layer 12) disposed between the matching circuit 5b (region D) and the filter circuit 6b (region F). Since the via electrode 11 and the electrode pattern layer 12 are connected to the grounded ground electrode 13, the electrode of the electronic component 9 is grounded.
  • each insulating layer at least one of the electrode pattern layer 12 and the plurality of via electrodes 11 formed along the electrode pattern layer 12 is formed in each circuit formation region A, B, C, D, E, F.
  • the regions A, B, C, D, E, and F are partitioned in the stacking direction of the wiring board 2 and the direction perpendicular to the stacking direction.
  • connection electrode 14 for connection with the mother board is formed on the bottom surface of the wiring board 2, and the connection electrode 14 and the mounting electrode on the mother board side are connected via solder or the like. By being connected, the high frequency module 1 and the mother board are connected.
  • the electrode pattern layer 12 and the via electrode connected to the grounded ground electrode 13 between the arrangement regions of the transmission circuits (signal paths (1) and (2)) of different frequency bands. 11 is arranged in the stacking direction of the wiring board 2, so that the circuit arrangement area of both signal paths (1) and (2) arranged in the stacking direction of the wiring board 2 has a shield function. Since it is partitioned by the pattern layer 12 and the via electrode 11, noise leaking from the matching circuits 5a and 5b and the filter circuits 6a and 6b provided in both signal paths (1) and (2) is detected in both signal paths (1) and (1). 2), the high frequency characteristics of the high frequency module 1 can be prevented from deteriorating.
  • each of the signal paths (1) and (2) between the region where the matching circuits 5a and 5b are arranged and the region where the filter circuits 6a and 6b are arranged (between the region C and the region E, the region D- Since the electrode pattern layer 12 and the via electrode 11 are arranged in the stacking direction between the regions F), mutual interference between the two circuits can be suppressed, and deterioration of the high frequency characteristics of the high frequency module 1 can be suppressed.
  • the matching circuits 5a and 5b in which a signal with a large amount of power easily flows are arranged apart from each other, mutual interference between both signal paths (1) and (2) can be effectively suppressed.
  • the frequency band (DCS1800, PCS1900) of the signal flowing through the signal path (1) overlaps with the harmonic component of the frequency band (GSM850, GSM900) of the signal flowing through the signal path (2),
  • the signal flowing through 1) is easily affected by noise from the signal path (2), and in such a case, it is particularly effective.
  • the electrodes of the electronic component 9 constituting a part of the matching circuit are the via electrode 11 (or the electrode pattern layer 12) disposed between the matching circuit 5a (region C) and the filter circuit 6a, and the matching circuit 5b.
  • the via electrode 11 (or electrode pattern layer 12) disposed between the (region D) and the filter circuit 6b (region F) is electrically connected, and the via electrode 11 and the electrode pattern 12 are connected to the ground electrode 13. Therefore, there is no need to separately provide a ground electrode for the electronic component 9, and the high-frequency module can be reduced in size.
  • two signal paths (1) and (2) are formed in the wiring board 2, but more paths may be formed in the wiring board 2.
  • a circuit is configured by dividing in the stacking direction of the wiring board 2, and the electrode pattern layer 12 and the via electrode 11 may be arranged in the stacking direction between the respective signal paths. .
  • the frequency band of the signal used for the high-frequency module 1 is not limited to the above-described embodiment, and may be changed as appropriate according to the communication method used.
  • one PA-IC 4 has a plurality of amplifier circuits that amplify signals in different frequency bands. However, a PA-IC is provided for each different frequency band, and one frequency band is provided. The signal may be amplified.
  • the present invention can be applied to any high-frequency module as long as the circuit board has an amplifier circuit.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Transceivers (AREA)
  • Transmitters (AREA)
  • Structure Of Printed Boards (AREA)

Abstract

 アンテナスイッチ回路に形成された異なる周波数帯域に対応する整合回路やフィルタ回路間のアイソレーションを確保することができる高周波モジュールを提供する。 電極パターン層と、ビア電極とが形成された配線基板2と、入力端子3から入力される異なる周波数帯域の信号をそれぞれ増幅する複数の増幅回路4a,4bと、各増幅回路4a,4bそれぞれに対応して、各増幅回路4a,4bの出力側から順に接続された整合回路5a,5bおよびフィルタ回路6a,6bとを備え、各増幅回路4a,4bの出力側から、それぞれ対応する整合回路5a,5bおよびフィルタ回路6a,6bを介して、アンテナ端子8に至る複数の信号経路(1),(2)が形成され、電極パターン層およびビア電極は接地されて、電極パターン層およびビア電極の少なくとも一方が各信号経路(1),(2)の間に配置される。

Description

高周波モジュール
 本発明は、配線基板に増幅回路が設けられた高周波モジュールに関する。
 携帯電話には、例えば、GSM(Global System for Mobile Communications)方式、DCS(Digital Cellular System)方式、PCS(Personal Communication Service)方式など、種々の通信方式が用いられるが、近年の携帯電話の普及により、複数の通信方式あるいは通信周波数帯により信号の送受信を行うことができる、いわゆるマルチバンド対応の高周波モジュールが提案されている。
 また、携帯電話の小型化を図るため、上記した高周波モジュールにおいて、アンテナスイッチ回路と、各送信信号を増幅する増幅回路とが一つのモジュール内に設けられた高周波モジュールも提案されている。
 しかしながら、アンテナスイッチ回路と増幅回路とを一つのモジュールに設ける構成では、両回路を近接配置する必要があり、これにより、両回路間の信号の相互干渉によりモジュールの高周波特性が劣化するおそれがある。そこで、従来では、図6に示すように、両回路を多層基板の積層方向全てに渡って2つの領域に区分して構成し、それらの領域間を接地されたシールド電極およびビア電極で仕切る技術が提案されている(特許文献1参照)。
 この場合、モジュールの右側にアンテナスイッチ回路501、左側に増幅回路502を形成し、両回路の間にシールド電極503を形成する。また、多層基板504の積層方向の全層に渡って、シールド電極503に沿って複数のビア電極505が形成され、多層基板504の下層に形成された接地電極(グランド電極)とシールド電極503がビア電極505を介して接続される。このようにすることで、両回路で発生するノイズが相互に遮断され、両回路間の信号の相互干渉によりモジュールの高周波特性が劣化することを防止できる。
特開2004-166248号(段落0052、0053、図14等参照)
 ところで、上記したマルチバンド対応の高周波モジュールでは、アンテナスイッチ回路と増幅回路の間には、増幅回路とスイッチICなどを含む分波回路間のインピーダンス整合を行う整合回路や、不要な周波数帯域の信号を除去するフィルタ回路などが異なる周波数帯域それぞれに対応して複数形成される場合があるが、上記した従来技術の高周波モジュールでは、アンテナスイッチ回路と増幅回路間のノイズなどの相互干渉しか防止できないため、アンテナスイッチ回路と増幅回路間に形成される複数の整合回路や複数のフィルタ回路間の信号の相互干渉を防止できず、モジュールの高周波特性が劣化するおそれがある。
 本発明は、上記した課題に鑑みてなされたものであり、増幅回路とアンテナスイッチ回路間のアイソレーションに加えて、アンテナスイッチ回路と増幅回路間に形成された異なる周波数帯域に対応する整合回路やフィルタ回路間のアイソレーションを確保することができる高周波モジュールを提供することを目的とする。
 上記した目的を達成するために、本発明の高周波モジュールは、入力端子から入力される信号を増幅してアンテナ端子へと出力する高周波モジュールにおいて、電極パターン層と、前記電極パターン層に接続された層間接続用のビア電極とが形成された配線基板と、前記配線基板に設けられ、前記入力端子から入力される異なる周波数帯域の信号をそれぞれ増幅する複数の増幅回路と、前記複数の増幅回路それぞれに対応して前記配線基板に設けられ、前記各増幅回路それぞれの出力側から順に接続された複数の整合回路および複数のフィルタ回路とを備え、前記各増幅回路の出力側から、それぞれ対応する前記整合回路および前記フィルタ回路を介して、アンテナ端子に至る複数の信号経路が形成され、前記電極パターン層および前記ビア電極は接地されて、前記配線基板の平面視において、前記電極パターン層および前記ビア電極の少なくとも一方が前記各信号経路それぞれの間に配置されることを特徴としている(請求項1)。
 このようにすることで、各信号経路間のアイソレーションを確保できるため、各信号経路に設けられた整合回路やフィルタ回路から照射するノイズを各信号経路間で相互に遮断でき、モジュールの高周波特性が劣化することを防止できる。
 また、前記ビア電極は、前記各信号経路に沿って複数形成されていることが好ましい(請求項2)。このようにすることで、積層方向においても、各信号経路間のアイソレーション特性を向上させることができるため、各信号経路に設けられた整合回路やフィルタ回路を積層方向(配線基板内部)に渡って形成した場合であっても、整合回路やフィルタ回路から照射するノイズを各信号経路間で相互に遮断でき、モジュールの高周波特性が劣化することを防止できる。
 また、前記配線基板の平面視において、前記各増幅回路が配置されている領域と、前記各増幅回路それぞれに対応して設けられた前記各整合回路およびフィルタ回路が配置されている領域との間に、前記電極パターンおよび前記ビア電極の少なくとも一方が配置されていてもよい(請求項3)。
 このようにすることで、各増幅回路と、各増幅回路それぞれに対応して設けられた整合回路およびフィルタ回路との間のアイソレーションを確保できるため、各増幅回路と、その増幅回路に対応して設けられた整合回路およびフィルタ回路で相互に照射されるノイズを相互に遮断でき、さらに高周波特性が劣化することを防止できる。
 また、前記各信号経路それぞれにおいて、前記配線基板の平面視で、整合回路が配置される領域とフィルタ回路が配置される領域との間に、前記電極パターン層およびビア電極の少なくとも一方が配置され、前記電極パターン層またはビア電極に、前記整合回路の一部を構成する電子部品が導通するようにしてもよい(請求項4)。
 このようにすることで、整合回路の一部を構成する電子部品用に、別途、グランド電極を設ける必要がなくなるため、高周波モジュールの小型化を図ることができる。
 また、前記各増幅回路が増幅する周波数帯域の異なる信号には、第1の信号と、高調波成分が、第1の信号の基本波成分と重複する第2の信号とが含まれており、前記第1の信号に対応する信号経路に設けられた前記整合回路と第2の信号に対応する信号経路に設けられた前記整合回路とが離間配置されていてもよい(請求項5)。
 このようにすることで、一つの周波数帯域と、高調波成分がこの周波数帯域と重複する別の周波数帯域を使用するマルチバンド対応の高周波モジュールであっても、電力の大きい信号が流れやすい整合回路どうしが離間して配置されているため、両信号経路間のノイズなどの相互干渉を効果的に抑制できる。
 また、前記配線基板に設けられ、前記各フィルタ回路からの信号が入力される分波回路をさらに備え、前記各増幅回路と前記分波回路とが離間配置されていてもよい(請求項6)。このようにすることで、各増幅回路と分波回路それぞれで照射するノイズが相互干渉することを抑制できるため、高周波特性が劣化することを抑制することができる。
 また、前記分波回路がスイッチICであってもよい(請求項7)。このようにすることで、この発明を、分波回路がスイッチICである高周波モジュールに適用することができる。
 本発明によれば、それぞれ異なる周波数帯域の信号が流れる信号経路間に、接地された電極パターン層および層間接続用のビア電極の少なくとも一つが配置されるため、両信号経路から漏洩するノイズが電極パターン層またはビア電極により遮断され、異なる周波数帯域の相互干渉による高周波モジュールの高周波特性が劣化することを防止できる。
本発明の一実施形態にかかる高周波モジュールのブロック図である。 本発明の一実施形態にかかる高周波モジュールを構成する配線基板の平面図である。 本発明の一実施形態にかかる高周波モジュールを構成する配線基板の内層に形成された電極パターン層の一例である。 本発明の一実施形態にかかる高周波モジュールを構成する配線基板の内層に形成されたグランド電極の一例である。 本発明の一実施形態にかかる高周波モジュールを構成する配線基板の底面図である。 従来技術の高周波モジュールの平面図である。
 本発明の一実施形態にかかる高周波モジュールについて、図1~図5を参照して説明する。図1は本発明の一実施形態にかかる高周波モジュールのブロック図、図2は高周波モジュールの平面図、図3は高周波モジュールを構成する配線基板の内部に形成された電極パターン層の一例、図4は配線基板の内部に形成されたグランド電極の一例、図5は高周波モジュールの底面図、図6は従来技術の高周波モジュールの平面図である。なお、説明を簡単にするため、図2において配線基板に実装する電子部品の一部を省略し、図3および図4において一部の配線パターンやビア電極を図示省略している。
 この実施形態における高周波モジュール1は、通信規格であるGSM850の送信周波数帯域(824MHz~849MHz)、GSM900の送信周波数帯域(880MHz~915MHz)、DCS1800の送信周波数帯域(1710MHz~1785MHz)、PCS1900の送信周波数帯域(1850MHz~1910MHz)の信号を入力端子3から入力し、それらの信号を増幅回路4a,4bにより増幅し、アンテナ端子8に出力するマルチバンド対応の送信モジュールであり、携帯電話などの携帯端末装置のマザー基板などに実装される。
 高周波モジュール1の回路構成は、図1に示すように、入力端子3から入力される各周波数帯域の信号を増幅する増幅回路4a,4b、インピーダンス整合を行う整合回路5a,5b、不要な周波数帯域の信号を除去するフィルタ回路6a,6b(LPF)、送信信号の切り替えを行う分波回路7からなり、増幅回路4aの出力側から順に整合回路5a、フィルタ回路6aが接続されることにより信号経路(1)が形成され、増幅回路4bの出力側から順に整合回路5b、フィルタ回路6bが接続されることにより信号経路(2)が形成される。そして、各信号経路(1),(2)の信号が分波回路7により切り替えられてアンテナ端子8に出力される。この場合、DCS1800およびPCS1900の信号は信号経路(1)を利用して送信し、GSM850およびGSM900の信号は信号経路(2)を利用して送信する。
 この実施形態にかかる高周波モジュール1は、図2に示すように、配線基板2と、配線基板2の表面に実装されるパワーアンプIC(PA-IC)4、スイッチIC7a、電子部品9を備え、PA-IC4により増幅回路4a,4bが形成され、スイッチIC7aにより分波回路7が形成される。また、チップインダクタ、チップ抵抗、チップコンデンサなどの電子部品9と配線基板2の内部に形成された回路とにより整合回路5a,5bが形成される。なお、この実施形態におけるPA-IC4は、周波数帯域の異なる複数の送信信号それぞれを増幅する機能を有する。また、PA-IC4、スイッチIC7a、電子部品9は、周知の表面実装技術を用いて配線基板2に実装されるとともに、半田リフロー技術などにより配線基板2と接合される。
 配線基板2としては、ガラスエポキシ樹脂多層基板や低温同時焼成セラミック多層基板(LTCC多層基板)などが挙げられ、ガラスエポキシ樹脂やセラミックからなる絶縁層を複数層積層することにより形成される。また、各絶縁層の表面または裏面に配線パターンや各回路から漏洩するノイズを遮断するための電極パターン層や接地されたグランド電極などが形成され、各層に形成された配線パターンなどを層間で接続するためのビア電極11が形成される。また、図2に示すように配線基板2の表面には電子部品9などを実装するためのランド電極が形成される。この場合、配線パターン、ランド電極10、電極パターン層12、グランド電極13は、フォトリソグラフィ技術により形成され、ビア電極11は、各絶縁層においてレーザ加工などによりビアホールを形成し、そのビアホールにAgやCuなどを含む導電ペーストを充填・焼結することにより形成される。
 例えば、各絶縁層のうち一部の層2aにおいては、図3に示すように、各回路間のノイズなどによる相互干渉を防止するための電極パターン層12が形成される。この場合、点線で囲まれた領域Aには配線基板2の積層方向に渡って増幅回路4a,4bの配線パターンが形成され、領域Bにおいては分波回路の配線パターン、領域Cにおいては信号経路(1)に設けられた整合回路5a、領域Dにおいては信号経路(2)に設けられた整合回路5b、領域Eにおいては信号経路(1)に設けられたフィルタ回路6aの配線パターン、領域Fにおいては信号経路(2)に設けられたフィルタ回路6bの配線パターンが、それぞれ配線基板2の積層方向に渡って形成される。なお、図3に示す絶縁層2aに形成された電極パターン層12とほぼ同じ形状を有する電極パターン層12が配線基板2を構成する複数の絶縁層に形成されている。また、図3に示すように、信号経路(1)に設けられた整合回路5a(領域C)と信号経路(2)に設けられた整合回路5b(領域D)とは離間配置され、各増幅回路4a,4b(PA-IC4)と分波回路7(スイッチIC7a)とは離間配置される。
 また、図3に示すように、絶縁層に形成された電極パターン層12に沿って、層間接続用のビア電極11が複数形成され、図3に示す絶縁層2aに形成された電極パターン層12とほぼ同じ形状を有する電極パターン層12が形成された別の絶縁層と絶縁層2aとがビア電極11を介して接続される。なお、電極パターン層12が形成された別の層においても同様に、電極パターン層に沿ってビア電極11が形成されており、これにより、各絶縁層に形成された電極パターン層12どうしがビア電極11を介して接続される。
 なお、ビア電極11によるシールド効果を得るために、電極パターン層12に沿って形成されるビア電極11どうしの間隔は、高周波モジュール1に使用される複数の周波数帯域のうち最も高い周波数帯域の信号の波長の1/4以下にすることが好ましい。
 また、図3に示した絶縁層とは別の層2bに、図4に示すような接地されたグランド電極13が形成される。また、絶縁層2bには、グランド電極13が形成される領域に複数のビア電極11が形成されており、その一部が上記した別の層(例えば、絶縁層2a)に形成された電極パターン層12と接続される。このように、各電極パターン層12とグランド電極13とがビア電極11を介して接続される。なお、グランド電極13を複数層に渡って形成してもよい。
 また、図2に示した整合回路5a,5bの一部を構成する電子部品9の電極は、例えば、整合回路5a(領域C)とフィルタ回路6a(領域E)との間に配置されたビア電極11(または電極パターン層12)や、整合回路5b(領域D)とフィルタ回路6b(領域F)との間に配置されたビア電極11(または電極パターン層12)に導通しており、これらのビア電極11と電極パターン層12が接地されたグランド電極13に接続されているため、電子部品9の電極が接地される。
 以上のように、各絶縁層において、電極パターン層12と電極パターン層12に沿って形成された複数のビア電極11の少なくとも一方が各回路の形成領域A,B,C,D,E,Fの間に配置されることにより、各領域A,B,C,D,E,Fが配線基板2の積層方向および積層方向と垂直な方向に渡って仕切られる。具体的には、各信号経路(1),(2)間、増幅回路4a,4b-整合回路5a間、増幅回路4a,4b-整合回路5b間、整合回路5a-フィルタ回路6a間、整合回路5a-フィルタ回路6b間、増幅回路4a,4b-分波回路7間がそれぞれ電極パターン層12およびビア電極11により仕切られる。
 また、図5に示すように、配線基板2の底面には、マザー基板と接続用の接続電極14か形成されており、この接続電極14とマザー基板側の実装電極とが半田などを介して接続されることにより、高周波モジュール1とマザー基板が接続される。
 したがって、上記した実施形態によれば、異なる周波数帯域の送信回路(信号経路(1),(2))の配置領域間に、接地されたグランド電極13に接続された電極パターン層12およびビア電極11が配線基板2の積層方向に渡って配置されることにより、配線基板2の積層方向に渡って配置された両信号経路(1),(2)の回路配置領域が、シールド機能を有する電極パターン層12とビア電極11により仕切られるため、両信号経路(1),(2)に設けられた整合回路5a,5bやフィルタ回路6a,6bから漏洩するノイズを両信号経路(1),(2)間で相互に遮断でき、高周波モジュール1の高周波特性が劣化することを防止できる。
 また、増幅回路4a,4bが配置されている領域Aと、両信号経路(1),(2)それぞれに設けられた整合回路5a,5bおよびフィルタ回路6a,6bが配置されている領域C,D,E,Fとの間に配線基板の積層方向に渡って電極パターン層12およびビア電極11が配置されるため、増幅回路4a,4bから漏洩するノイズを遮断でき、増幅回路4a,4bからのノイズが整合回路5a,5bまたはフィルタ回路6a,6bを経由して、アンテナ端子8から出力されるのを防止することができる。
 また、両信号経路(1),(2)それぞれにおいて、整合回路5a,5bが配置される領域とフィルタ回路6a,6bが配置される領域との間(領域C-領域E間、領域D-領域F間)に積層方向に渡って電極パターン層12およびビア電極11が配置されるため、両回路間の相互干渉を抑制でき、高周波モジュール1の高周波特性の劣化を抑制することができる。
 また、電力の大きい信号が流れやすい整合回路5a,5bどうしが離間配置されているため、両信号経路(1),(2)の相互干渉を効果的に抑制することができる。この実施形態では、信号経路(1)を流れる信号の周波数帯域(DCS1800,PCS1900)が信号経路(2)を流れる信号の周波数帯域(GSM850,GSM900)の高調波成分と重複するため、信号経路(1)を流れる信号は信号経路(2)からのノイズの影響を受けやすく、このような場合は特に効果的である。
 また、増幅回路4a,4bと分波回路7とが離間配置されているため、各増幅回路4a,4bと分波回路7それぞれから漏洩する信号による相互干渉を抑制できるため、高周波特性の劣化を抑制することができる。
 また、発熱性の高いPA-IC4の周りに、接地されたグランド電極13に接続された複数のビア電極11が配置されるため、これらのビア電極11により放熱効果が得られる。
 また、整合回路の一部を構成する電子部品9の電極は、整合回路5a(領域C)とフィルタ回路6aとの間に配置されたビア電極11(または電極パターン層12)や、整合回路5b(領域D)とフィルタ回路6b(領域F)との間に配置されたビア電極11(または電極パターン層12)に導通しており、これらのビア電極11と電極パターン12はグランド電極13に接続されているため、電子部品9用に、別途、グランド電極を設ける必要がなくなり、高周波モジュールの小型化を図ることができる。
 なお、本発明は上記した各実施形態に限定されるものではなく、その趣旨を逸脱しない限りにおいて、上記したもの以外に種々の変更を行なうことが可能である。
 例えば、上記した実施形態では、配線基板2に二つの信号経路(1),(2)を形成したが、これ以上の経路を配線基板2に形成してもよい。この場合、各信号経路毎に、配線基板2の積層方向に渡って区分して回路を構成し、それぞれの信号経路間に電極パターン層12やビア電極11を積層方向に渡って配置すればよい。
 また、高周波モジュール1に使用する信号の周波数帯域は、上記した実施形態に限らず、用いる通信方式に応じて、適宜、変更すればよい。
 また、上記した実施形態では、一つのPA-IC4が異なる周波数帯域の信号それぞれを増幅する複数の増幅回路を有する構成としたが、異なる周波数帯域毎にPA-ICを設け、それぞれ一つの周波数帯域の信号を増幅する構成であってもかまわない。
 本発明は、配線基板に増幅回路が設けられた構成であれば、どのような高周波モジュールに対しても通用することができる。
 1  高周波モジュール
 2  配線基板
 3  入力端子
 4a,4b  増幅回路
 5a,5b  整合回路
 6a,6b  フィルタ回路
 7  分波回路
 7a  スイッチIC
 8  アンテナ端子
 11  ビア電極
 12  電極パターン層
 13  グランド電極
 

Claims (7)

  1.  入力端子から入力される信号を増幅してアンテナ端子へと出力する高周波モジュールにおいて、
     電極パターン層と、前記電極パターン層に接続された層間接続用のビア電極とが形成された配線基板と、
     前記配線基板に設けられ、前記入力端子から入力される異なる周波数帯域の信号をそれぞれ増幅する複数の増幅回路と、
     前記複数の増幅回路それぞれに対応して前記配線基板に設けられ、前記各増幅回路それぞれの出力側から順に接続された複数の整合回路および複数のフィルタ回路とを備え、
     前記各増幅回路の出力側から、それぞれ対応する前記整合回路および前記フィルタ回路を介して、アンテナ端子に至る複数の信号経路が形成され、
     前記電極パターン層および前記ビア電極は接地されて、前記配線基板の平面視において、前記電極パターン層および前記ビア電極の少なくとも一方が前記各信号経路それぞれの間に配置される
     ことを特徴とする高周波モジュール。
  2.  前記ビア電極は、前記各信号経路に沿って複数形成されていることを特徴とする請求項1に記載の高周波モジュール。
  3.  前記配線基板の平面視において、前記各増幅回路が配置されている領域と、前記各増幅回路それぞれに対応して設けられた前記各整合回路およびフィルタ回路が配置されている領域との間に、前記電極パターンおよび前記ビア電極の少なくとも一方が配置される
     ことを特徴とする請求項1または2に記載の高周波モジュール。
  4.  前記各信号経路それぞれにおいて、前記配線基板の平面視で、整合回路が配置される領域とフィルタ回路が配置される領域との間に、前記電極パターン層およびビア電極の少なくとも一方が配置され、
     前記電極パターン層またはビア電極に、前記整合回路の一部を構成する電子部品が導通することを特徴とする請求項1ないし3のいずれかに記載の高周波モジュール。
  5.  前記各増幅回路が増幅する周波数帯域の異なる信号には、第1の信号と、高調波成分が第1の信号の基本波成分と重複する第2の信号とが含まれており、
     前記第1の信号に対応する信号経路に設けられた前記整合回路と第2の信号に対応する信号経路に設けられた前記整合回路とが離間配置されていることを特徴とする請求項1ないし4のいずれかに記載の高周波モジュール。
  6.  前記配線基板に設けられ、前記各フィルタ回路からの信号が入力される分波回路をさらに備え、
     前記各増幅回路と前記分波回路とが離間配置されていることを特徴とする請求項1ないし5のいずれかに記載の高周波モジュール。
  7.  前記分波回路がスイッチICであることを特徴とする請求項6に記載の高周波モジュール。
     
PCT/JP2013/052440 2012-02-06 2013-02-04 高周波モジュール WO2013118664A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201380007060.XA CN104094527A (zh) 2012-02-06 2013-02-04 高频模块
US14/323,116 US20140312978A1 (en) 2012-02-06 2014-07-03 High-frequency module

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012023322 2012-02-06
JP2012-023322 2012-02-06

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/323,116 Continuation US20140312978A1 (en) 2012-02-06 2014-07-03 High-frequency module

Publications (1)

Publication Number Publication Date
WO2013118664A1 true WO2013118664A1 (ja) 2013-08-15

Family

ID=48947428

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/052440 WO2013118664A1 (ja) 2012-02-06 2013-02-04 高周波モジュール

Country Status (4)

Country Link
US (1) US20140312978A1 (ja)
JP (1) JPWO2013118664A1 (ja)
CN (1) CN104094527A (ja)
WO (1) WO2013118664A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018168603A1 (ja) * 2017-03-17 2018-09-20 株式会社村田製作所 高周波モジュール及び通信装置

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6443263B2 (ja) 2015-08-10 2018-12-26 株式会社村田製作所 高周波モジュール
CN113381780B (zh) * 2017-03-15 2022-08-26 株式会社村田制作所 高频模块以及通信装置
CN115039345B (zh) * 2020-02-07 2023-11-14 株式会社村田制作所 高频模块以及通信装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005244336A (ja) * 2004-02-24 2005-09-08 Kyocera Corp 電子回路モジュール
WO2008004557A1 (fr) * 2006-07-03 2008-01-10 Hitachi Metals, Ltd. Circuit en dérivation, circuit haute fréquence et module haute fréquence
JP2011120118A (ja) * 2009-12-07 2011-06-16 Murata Mfg Co Ltd 高周波モジュール

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005244336A (ja) * 2004-02-24 2005-09-08 Kyocera Corp 電子回路モジュール
WO2008004557A1 (fr) * 2006-07-03 2008-01-10 Hitachi Metals, Ltd. Circuit en dérivation, circuit haute fréquence et module haute fréquence
JP2011120118A (ja) * 2009-12-07 2011-06-16 Murata Mfg Co Ltd 高周波モジュール

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018168603A1 (ja) * 2017-03-17 2018-09-20 株式会社村田製作所 高周波モジュール及び通信装置
US11043924B2 (en) 2017-03-17 2021-06-22 Murata Manufacturing Co., Ltd. High frequency module and communication device

Also Published As

Publication number Publication date
JPWO2013118664A1 (ja) 2015-05-11
CN104094527A (zh) 2014-10-08
US20140312978A1 (en) 2014-10-23

Similar Documents

Publication Publication Date Title
US20210050876A1 (en) Radio frequency module
TWI493893B (zh) 高頻電路模組
US11476226B2 (en) Radio-frequency module and communication device
JP5677499B2 (ja) 高周波回路モジュール
JP6285228B2 (ja) 通信モジュール
JP5117632B1 (ja) 高周波回路モジュール
US9553614B2 (en) Composite module
US8367941B2 (en) Filter, branching filter, communication module, and communication equipment
JP5594318B2 (ja) スイッチモジュール
JPWO2006035518A1 (ja) Rf回路モジュール
JP5422078B1 (ja) 高周波回路モジュール
US11658641B2 (en) High-frequency module
WO2013118664A1 (ja) 高周波モジュール
JP4527570B2 (ja) 高周波モジュ−ル及びそれを搭載した無線通信装置
CN110710118B (zh) 高频模块以及通信装置
CN104602366B (zh) 通信模块
JP5900616B2 (ja) 複合モジュール
JP2006211144A (ja) 高周波モジュール及び無線通信機器
KR101338682B1 (ko) 통신회로 집적모듈
JP2014099839A (ja) 高周波回路モジュール
JP2005136887A (ja) 高周波モジュール及び無線通信機器
JP2014039268A (ja) 高周波回路モジュール
JP2015109320A (ja) インダクタ装置および高周波モジュール
JP2005217581A (ja) 高周波電力増幅モジュール、高周波モジュール及び無線通信装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13747322

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013557498

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13747322

Country of ref document: EP

Kind code of ref document: A1