WO2010030006A1 - 変速機装置およびこれを搭載する車両 - Google Patents

変速機装置およびこれを搭載する車両 Download PDF

Info

Publication number
WO2010030006A1
WO2010030006A1 PCT/JP2009/065953 JP2009065953W WO2010030006A1 WO 2010030006 A1 WO2010030006 A1 WO 2010030006A1 JP 2009065953 W JP2009065953 W JP 2009065953W WO 2010030006 A1 WO2010030006 A1 WO 2010030006A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure
output
fluid pressure
port
input
Prior art date
Application number
PCT/JP2009/065953
Other languages
English (en)
French (fr)
Inventor
清水 哲也
石川 和典
深谷 直幸
土田 建一
芳充 兵藤
聡 西尾
一輝 小嶋
広則 杉浦
Original Assignee
アイシン・エィ・ダブリュ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アイシン・エィ・ダブリュ株式会社 filed Critical アイシン・エィ・ダブリュ株式会社
Priority to EP09813152.7A priority Critical patent/EP2246595B1/en
Priority to KR1020107020502A priority patent/KR101197367B1/ko
Priority to JP2010528767A priority patent/JP5223925B2/ja
Priority to CN2009801091005A priority patent/CN101970908B/zh
Publication of WO2010030006A1 publication Critical patent/WO2010030006A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/04Smoothing ratio shift
    • F16H61/06Smoothing ratio shift by controlling rate of change of fluid pressure
    • F16H61/061Smoothing ratio shift by controlling rate of change of fluid pressure using electric control means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/04Smoothing ratio shift
    • F16H2061/0481Smoothing ratio shift during range shift from drive (D) or reverse (R) to neutral (N)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/04Smoothing ratio shift
    • F16H2061/0485Smoothing ratio shift during range shift from neutral (N) to reverse (R)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/04Smoothing ratio shift
    • F16H2061/0488Smoothing ratio shift during range shift from neutral (N) to drive (D)

Definitions

  • the present invention relates to a transmission device and a vehicle, and more specifically, when mounted on a vehicle and shifted to a reverse position, a first engagement element and a second engagement element among a plurality of engagement elements are provided.
  • the present invention relates to a transmission device including an automatic transmission capable of engaging with a first engagement element when engaged and shifted to a neutral position, and a vehicle equipped with the transmission device.
  • this type of transmission device selectively turns on and off three clutches C-0 to C-2 and five brakes B-0 to B-4 based on the operation of a select lever for switching the range. Then, there has been proposed one that switches between a parking (P) range, a reverse (R) range, a neutral (N) range, and a drive (D) range (see Patent Document 1).
  • P parking
  • R reverse
  • N neutral
  • D drive
  • this device when the select lever is in the R range, it is necessary to engage the clutch C-2, the brake B-0, and the brake B-4. Therefore, even if the select lever is in the non-traveling range of the N range, it does not participate in power transmission.
  • the transmission device of the type described above it can be considered to turn on and off a brake (clutch) that is engaged in the N range by using a dedicated linear solenoid. Since the pressure is regulated by outputting the remainder while draining the part, the flow rate consumed by the linear solenoid itself increases and the flow rate required and consumed by the entire hydraulic circuit increases, resulting in an increase in the capacity of the hydraulic pressure source. The energy consumption of the entire device increases. Further, the addition of a new linear solenoid increases the size of the entire apparatus.
  • the main purpose of the transmission device of the present invention and a vehicle equipped with the transmission device is to reduce energy consumption of the entire device and to reduce the size of the device.
  • the transmission apparatus of the present invention and a vehicle equipped with the transmission apparatus employ the following means in order to achieve at least a part of the above object.
  • the transmission apparatus of the present invention is When mounted on the vehicle and shifted to the reverse position, the first engaging element and the second engaging element among the plurality of engaging elements are engaged, and when shifted to the neutral position, the first A transmission device comprising an automatic transmission capable of engaging one engagement element, Pressure feeding means for regulating the fluid pressure of the fluid pressure source and outputting it as a line pressure;
  • Pressure feeding means for regulating the fluid pressure of the fluid pressure source and outputting it as a line pressure
  • Pressure input / output means First pressure adjusting means for inputting and adjusting the line pressure and outputting the pressure; When the shift position is shifted to the reverse position, the fluid pressure output from the reverse position output port is output to the first engagement element and the fluid pressure output from the first pressure adjusting means is the first pressure.
  • Selection output means for outputting to the first engagement element the fluid pressure output from the first pressure adjustment means when output to the second engagement element and when shifted to the neutral position; It is a summary to provide.
  • the shift operation when the shift operation is performed to the reverse position, the first engagement element and the second engagement element among the plurality of engagement elements are engaged, and the shift operation is performed to the neutral position.
  • the fluid pressure input / output means is shifted to the reverse position when the first engagement element can be engaged, the output is output from the reverse position output port among the plurality of output ports.
  • the shift operation is performed to the position, the plurality of output ports are shut off, the first pressure adjusting means inputs and outputs the line pressure, and when the selection output means is shifted to the reverse position, the reverse position is used.
  • the fluid pressure output from the output port is output to the first engagement element and the fluid pressure output from the first pressure regulating means is output to the second engagement element.
  • the present invention allows the fluid pressure to be applied to the first engagement element.
  • the discharge capacity of a fluid pressure source such as a pump can be suppressed.
  • the pressure regulating means for engaging the first engagement element when shifted to the neutral position is provided. There is no need to provide it separately. As a result, energy consumption of the entire device can be suppressed, and thus fuel efficiency can be improved, and the transmission device can be downsized.
  • the selection output means performs a shift operation to the forward position.
  • a means for selectively outputting the fluid pressure output from the first pressure adjusting means to the fourth engagement element or the first engagement element in the forward position can also be.
  • the fourth engagement element may be the second engagement element.
  • the fourth engagement element forms a shift stage that is not directly switched to or from the start shift stage when the shift operation is performed to the forward position. It can also be a possible element.
  • the gear shift is performed to supply the fluid pressure to the engaging element engaged using the first pressure adjusting means. Since this does not occur, a shift with a long shift time can be eliminated.
  • the first pressure adjusting means is lower than an engagement pressure when the first engagement element is completely engaged when the shift operation is performed to the neutral position. It can also be a means for adjusting the pressure to be engaged with a low engagement pressure. In this way, the fluid pressure can be quickly discharged from the first engagement element at the time of shifting, and the time required for shifting can be shortened. In particular, the effect becomes more prominent when shifting from the starting gear to another forward gear.
  • the selection output means includes a first input port for inputting a fluid pressure output from the first pressure adjusting means, and an output port for the reverse position of the fluid input / output means.
  • a state in which the fluid pressure input to the first input port is output from the first output port, and the fluid pressure input to the first input port is the second output port.
  • a switching valve for selectively switching the fluid pressure input to the second input port from the first output port, and a signal pressure for outputting a signal pressure for driving the switching valve Output means It may be assumed to be a means comprising a. In this way, the state can be switched with one switching valve, so that the fluid pressure circuit can be made compact. Further, when a shift operation is performed from the reverse position to the forward position, the output destination of the output pressure of the first pressure adjusting means is changed from the second engagement element to the first engagement by switching one switching valve. You can switch to an element. Accordingly, it is possible to reduce the time required for shifting when the shift operation is performed from the reverse position to the forward position.
  • the first engagement element and the third engagement element among the plurality of engagement elements are engaged to form a starting shift stage, and the plurality of engagements.
  • the fluid pressure input / output means is shifted to the forward position.
  • the line pressure is input and output from the forward position output port among the plurality of output ports.
  • the fluid pressure output from the forward position output port is input and adjusted.
  • a second pressure adjusting unit that outputs the fluid pressure output from the second pressure adjusting unit when the shift operation is performed to the forward position; It may be assumed to be a means for selectively outputting on whether the fourth engagement element or the first engagement element of the position. In this way, the discharge capacity of the fluid pressure source can be suppressed even when switching from the neutral position to the forward position, and fuel consumption can be improved. Furthermore, when changing from a gear other than the starting gear to the starting gear, the disengagement of the fourth engagement element and the engagement of the third engagement element can be performed smoothly.
  • the fourth engagement element forms a shift stage that is not directly switched to or from the start shift stage when the shift operation is performed to the forward position. It can also be a possible element.
  • the fourth engagement element is an engagement element that forms a shift stage (low speed stage) that is directly switched to and from the start speed stage
  • the fluid pressure output from the second pressure adjusting means from the fourth engagement element to the first engagement element, thereby impairing smooth shifting.
  • the starting gear stage goes from the high speed stage to the intermediate speed stage. Therefore, there is no need to switch the fluid pressure output from the second pressure adjusting means from the fourth engagement element to the first engagement element, and smooth movement during forward traveling is possible.
  • the selection output means outputs the fluid pressure output from the first pressure adjusting means to the second engagement element when the selection output means is shifted to the forward movement position.
  • the second engagement element is a speed stage other than the start speed stage, and is directly switched between the start speed stage and the second engagement element. It may be an element capable of forming a gear position. In this case, when the shift operation is performed to the forward movement position, the fluid pressure output from the second pressure adjusting unit is applied to the first engagement element, and the first pressure adjusting unit is applied to the second engagement element.
  • Each fluid pressure to be output is supplied. Therefore, when switching directly from the shift stage formed by engaging the second engagement element to the starting shift stage, the supply of fluid pressure to the first engagement element and the second engagement are performed.
  • the fluid pressure of the combined element can be discharged at the same time, and the time required for shifting can be shortened.
  • the first pressure adjusting means when the first pressure adjusting means is shifted to the neutral position, the first pressure adjusting means is lower than the engagement pressure when the first engagement element is completely engaged. It can also be a means for adjusting the pressure to be engaged by a low engagement pressure. In this way, the fluid pressure can be quickly discharged from the first engagement element at the time of shifting, and the time required for shifting can be shortened. In particular, the effect becomes more prominent when shifting from the starting gear to another forward gear.
  • the selection output means inputs the fluid pressure output from the first pressure regulating means and applies the fluid pressure to the first output port or the second engagement element.
  • a first switching valve that selectively outputs to a second output port to be supplied; a first input port that inputs a fluid pressure output from the first output port of the first switching valve; And a second input port for inputting the fluid pressure output from the reverse position output port of the fluid input / output means.
  • the fluid pressure input to the first and second input ports is the first engagement. It may be a means provided with a second switching valve that selectively outputs to the combination element and a signal pressure output means that outputs a signal pressure for driving the first and second switching valves.
  • the shift according to the present invention is provided with a second pressure adjusting means and forms a gear other than the start gear by engaging at least the fourth engagement element when the shift operation is performed to the forward position.
  • the selection output means inputs a fluid pressure output from the first pressure adjusting means, and supplies a fluid pressure to the first output port or the second engagement element.
  • a first switching valve for selectively outputting to the port; a first input port; and a second input port for inputting the fluid pressure output from the reverse position output port of the fluid input / output means.
  • a second switching valve that selectively inputs fluid pressure to the first or second input port and outputs the fluid pressure to the first engagement element; and the first output port of the first switching valve.
  • the vehicle of the present invention is the transmission device of the present invention according to any one of the above-described aspects, that is, basically mounted on the vehicle and shifted to the reverse position, among the plurality of engagement elements.
  • a transmission device comprising an automatic transmission capable of engaging one engagement element and a second engagement element and engaging the first engagement element when shifted to a neutral position.
  • Pressure feeding means for regulating the fluid pressure of the fluid pressure source and outputting it as a line pressure; When the shift operation is performed to the reverse position, the line pressure is input and output from the output port for the reverse position among the plurality of output ports, and when the shift operation is performed to the neutral position, the fluid that shuts off the plurality of output ports.
  • Pressure input / output means First pressure adjusting means for inputting and adjusting the line pressure and outputting the pressure; When the shift position is shifted to the reverse position, the fluid pressure output from the reverse position output port is output to the first engagement element and the fluid pressure output from the first pressure adjusting means is the first pressure.
  • Selection output means for outputting to the first engagement element the fluid pressure output from the first pressure regulating means when output to the second engagement element and being shifted to the neutral position; When the shift operation is performed to the reverse position, the first engagement element and the second engagement element among the plurality of engagement elements are engaged, and the shift operation is performed to the neutral position.
  • a transmission device comprising an automatic transmission capable of engaging the first engagement element, wherein the pressure feed means regulates the fluid pressure of a fluid pressure source and outputs it as a line pressure, and the reverse position Fluid pressure input / output means that inputs the line pressure when the shift operation is performed and outputs it from the output port for the reverse position among the plurality of output ports, and shuts off the plurality of output ports when the shift operation is performed to the neutral position;
  • a first pressure adjusting means for inputting and adjusting the line pressure, and the reverse position output port when shifted to the reverse position.
  • the fluid pressure output from the first engagement element and the fluid pressure output from the first pressure regulating means are output to the second engagement element, and are shifted to the neutral position.
  • the gist of the invention is to mount a transmission device including a selection output means for outputting the fluid pressure output from the first pressure adjusting means to the first engagement element.
  • the vehicle according to the present invention is equipped with the transmission device according to any one of the above-described aspects, the effect of the transmission device according to the present invention, for example, the energy consumption of the entire device is suppressed, and the size of the device is reduced.
  • the effect etc. which can aim at conversion can be show
  • FIG. 1 is a configuration diagram showing an outline of the configuration of an automobile 10 equipped with a transmission apparatus as one embodiment of the present invention.
  • 4 is an explanatory diagram showing an example of an operation table of the automatic transmission 20.
  • FIG. 2 is a configuration diagram showing an outline of a configuration of a hydraulic circuit 50 of an automatic transmission 20.
  • FIG. 7 is a flowchart showing an example of an RN switching process routine executed by an ATECU 29. It is a time chart when the shift lever 91 is changed between R position and N position.
  • 5 is a flowchart showing an example of a DR switching process routine executed by an ATECU 29. It is a time chart when the shift lever 91 is changed between D position and R position.
  • 4 is an operation table of the automatic transmission 20 when the hydraulic circuit 150 is used.
  • 7 is a flowchart showing an example of an RN switching process routine executed by an ATECU 29. It is a time chart when the shift lever 91 is changed between R position and N position.
  • 5 is a flowchart showing an example of a DR switching process routine executed by an ATECU 29. It is a time chart when the shift lever 91 is changed between D position and R position.
  • FIG. 1 is a block diagram showing an outline of the configuration of an automobile 10 equipped with a transmission apparatus as an embodiment of the present invention
  • FIG. 2 shows an operation table of the automatic transmission 20
  • FIG. 3 shows the hydraulic pressure of the automatic transmission 20
  • 2 is a configuration diagram showing an outline of a configuration of a circuit 50.
  • FIG. 1 an automobile 10 according to the embodiment is attached to an engine 12 as an internal combustion engine that outputs power by explosion combustion of hydrocarbon fuel such as gasoline or light oil, and a crankshaft 14 of the engine 12.
  • a torque converter 24 with a lock-up clutch, an input shaft 21 is connected to the output side of the torque converter 24, and an output shaft 22 is connected to the drive wheels 18a and 18b via a gear mechanism 26 and a differential gear 28.
  • 21 includes a stepped automatic transmission 20 that shifts the power input to 21 and transmits it to the output shaft 22 and a main electronic control unit (hereinafter referred to as a main ECU) 90 that controls the entire vehicle.
  • a main ECU main
  • the operation of the engine 12 is controlled by an engine electronic control unit (hereinafter referred to as engine ECU) 16.
  • the engine ECU 16 is configured as a microprocessor centered on a CPU. In addition to the CPU, a ROM that stores a processing program, a RAM that temporarily stores data, an input / output port, And a communication port.
  • the engine ECU 16 receives signals from various sensors necessary for controlling the operation of the engine 12, such as a rotational speed sensor attached to the crankshaft 14, via an input port.
  • a drive signal to the throttle motor that adjusts the opening, a control signal to the fuel injection valve, an ignition signal to the spark plug, and the like are output via the output port.
  • the engine ECU 16 communicates with the main ECU 90, controls the engine 12 by a control signal from the main ECU 90, and outputs data related to the operating state of the engine 12 to the main ECU 90 as necessary.
  • the automatic transmission 20 is configured as a stepped transmission with six speeds, and includes a single pinion planetary gear mechanism 30, a Ravigneaux planetary gear mechanism 40, three clutches C1, C2, C3, and two brakes B1, B2 and the one-way clutch F1 are provided.
  • the single pinion type planetary gear mechanism 30 includes a sun gear 31 as an external gear, a ring gear 32 as an internal gear arranged concentrically with the sun gear 31, and a plurality of gears meshed with the sun gear 31 and meshed with the ring gear 32.
  • the pinion gear 33 and a carrier 34 that holds the plurality of pinion gears 33 so as to rotate and revolve freely.
  • the sun gear 31 is fixed to the case, and the ring gear 32 is connected to the input shaft 21.
  • the Ravigneaux planetary gear mechanism 40 includes two sun gears 41a and 41b as external gears, a ring gear 42 as an internal gear, a plurality of short pinion gears 43a meshing with the sun gear 41a, a sun gear 41b and a plurality of short pinion gears 43a.
  • the sun gear 41a includes a plurality of long pinion gears 43b that mesh with the ring gear 42 and a carrier 44 that holds the plurality of short pinion gears 43a and the plurality of long pinion gears 43b so as to rotate and revolve.
  • Carrier 4 It is connected to the input shaft 21 via the clutch C2.
  • the carrier 44 is connected to the case via the brake B2 and to the case via the one-way clutch F1.
  • the clutches C1 to C3 are turned on / off (on is engaged and off is also called disengagement, the same applies hereinafter) and the brakes B1 and B2 are turned on / off. It is possible to switch between forward 1st gear to 6th gear, reverse and neutral.
  • the clutch C1 In the forward first speed state, the clutch C1 is turned on, the clutches C2, C3 and the brakes B1 and B2 are turned off, the clutch C1 and the brake B2 are turned on, and the clutches C2, C3 and the brake B1 are turned off.
  • the power input from the input shaft 21 to the ring gear 32 of the single pinion planetary gear mechanism 30 is decelerated by the reaction of the sun gear 31 with the sun gear 31 being fixed.
  • the power transmitted to the sun gear 41a of the Ravigneaux planetary gear mechanism 40 via the carrier 34 and the clutch C1 and the power input to the sun gear 41a are subjected to a reaction force on the carrier 44 side by fixing the carrier 44 by the one-way clutch F1.
  • the carrier 44 is fixed in place of the one-way clutch F1 by turning on the brake B2 during engine braking.
  • the second forward speed state can be formed by turning on the clutch C1 and the brake B1 and turning off the clutches C2, C3 and the brake B2. In this state, the input pin 21 is connected to the single pinion type.
  • the power input to the ring gear 32 of the planetary gear mechanism 30 is decelerated by receiving a reaction force on the sun gear 31 side by fixing the sun gear 31, and is transmitted to the sun gear 41a of the Ravigneaux planetary gear mechanism 40 via the carrier 34 and the clutch C1.
  • the power transmitted and input to the sun gear 41a is decelerated by receiving the reaction force on the sun gear 41b side by the fixing of the sun gear 41b by the brake B1, and is output to the output shaft 22 via the ring gear 42.
  • the power input to the motor is decelerated with a reduction ratio smaller than the first forward speed and the output shaft Is output to the 2.
  • the state of the third forward speed can be formed by turning on the clutches C1 and C3 and turning off the clutch C2 and the brakes B1 and B2.
  • a single pinion type planetary gear is connected to the input shaft 21.
  • the power input to the ring gear 32 of the mechanism 30 is decelerated by receiving a reaction force on the sun gear 31 side by fixing the sun gear 31, and is transmitted to the sun gear 41a of the Ravigneaux type planetary gear mechanism 40 via the carrier 34 and the clutch C1.
  • the power input to the sun gear 41a is output to the output shaft 22 through the ring gear 42 at a constant speed by the integral rotation of the Ravigneaux planetary gear mechanism 40 when the clutch C1 and the clutch C3 are turned on.
  • the input power is decelerated with a reduction ratio smaller than the second forward speed and output to the output shaft 22. It is.
  • the state of the fourth forward speed can be formed by turning on the clutches C1 and C2 and turning off the clutch C3 and the brakes B1 and B2. In this state, a single pinion type planetary gear is connected to the input shaft 21.
  • the power input to the ring gear 32 of the mechanism 30 is decelerated by receiving a reaction force on the sun gear 31 side by fixing the sun gear 31, and is transmitted to the sun gear 41a of the Ravigneaux type planetary gear mechanism 40 via the carrier 34 and the clutch C1.
  • the driving state of the ring gear 42 that is, the output shaft 22 is determined.
  • the power is decelerated with a reduction ratio smaller than the third forward speed and output to the output shaft 22.
  • the forward fifth speed state can be formed by turning on the clutches C2 and C3 and turning off the clutch C1 and the brakes B1 and B2. In this state, a single pinion type planetary gear is connected to the input shaft 21.
  • the power input to the ring gear 32 of the mechanism 30 is decelerated by receiving a reaction force on the sun gear 31 side by fixing the sun gear 31, and is transmitted to the sun gear 41b of the Ravigneaux planetary gear mechanism 40 via the carrier 34 and the clutch C3.
  • the driving state of the ring gear 42 that is, the output shaft 22 is determined.
  • the power is increased and output to the output shaft 22.
  • the sixth forward speed state can be formed by turning on the clutch C2 and the brake B1 and turning off the clutches C1, C3 and the brake B2. In this state, the input shaft 21 is connected via the clutch C2.
  • the power input to the carrier 44 of the Ravigneaux type planetary gear mechanism 40 is accelerated by receiving a reaction force on the sun gear 41b side by fixing the sun gear 41b by the brake B1, and is output to the output shaft 22 via the ring gear 42. Therefore, the power input to the input shaft 21 is increased with a reduction ratio smaller than the fifth forward speed and output to the output shaft 22.
  • the first reverse speed state can be formed by turning on the clutch C3 and the brake B2 and turning off the clutches C1 and C2 and the brake B1.
  • the single-pinion type is connected to the input shaft 21.
  • the power input to the ring gear 32 of the planetary gear mechanism 30 is decelerated by receiving a reaction force on the sun gear 31 side by fixing the sun gear 31, and is transmitted to the sun gear 41b of the Ravigneaux planetary gear mechanism 40 via the carrier 34 and the clutch C3.
  • the power transmitted and input to the sun gear 41b is reversely rotated by receiving a reaction force on the carrier 44 side by fixing the carrier 44 by the brake B2, and is output to the output shaft 22 through the ring gear 42.
  • the power input to 21 is decelerated with a relatively small reduction ratio to obtain reverse rotation power. Is output to the output shaft 22.
  • the neutral state can be formed by turning on the brake B2 and turning off the clutches C1 to C3 and the brake B1, or by turning off all the clutches C1 to C3 and the brakes B1 and B2. it can.
  • the former state forms a neutral state. The reason for this will be described later.
  • the clutches C1 to C3 and the brakes B1 and B2 of the automatic transmission 20 are driven by the hydraulic circuit 50 shown in FIG.
  • the hydraulic circuit 50 includes a mechanical oil pump 52 that draws hydraulic oil from the strainer 51 using the power from the engine 12 and pumps it, and the pressure of the hydraulic oil pumped by the mechanical oil pump 52.
  • a regulator valve 54 for adjusting (line pressure PL), a linear solenoid 56 for driving the regulator valve 54 using a modulator pressure PMOD inputted from the line pressure PL via a modulator valve (not shown), and a line pressure PL are inputted.
  • An input port 58a, a D-position output port 58b, and an R-position output port 58c are formed, and when the shift lever 91 is in the neutral (N) position in conjunction with the operation of the shift lever 91, the input port 58a and both output ports 58b , 58c to cut off communication with the shift lever 91
  • the input port 58a When in the drive (D) position, the input port 58a communicates with the D-position output port 58b, and the communication between the input port 58a and the R-position output port 58c is cut off, so that the shift lever 91 is in the reverse (R) position.
  • the communication between the input port 58a and the D-position output port 58b is cut off, and the manual valve 58 that connects the input port 58a and the R-position output port 58c is input, and the line pressure PL is input and regulated to the clutch C1.
  • a normally closed linear solenoid SLC1 to be output a normally closed linear solenoid SLC2 to which the drive pressure PD from the D-position output port 58b of the manual valve 58 is input and regulated and output, and a line pressure PL are input.
  • the C3 relay valve 60 that inputs the SLC3 pressure, which is the output pressure from the linear solenoid SLC3, and selectively outputs to the clutch C3 or the other oil passage 69, and the output pressure from the C3 relay valve 60 to the other oil passage 69. Is input to the clutch C2 or the other oil passage 79, and the SLC2 pressure as the output pressure from the rear solenoid SLC2 is input to output the output pressure of the C3 relay valve 60 to the clutch C2.
  • the SLC2 pressure is output to the oil passage 79 and the output pressure of the C3 relay valve 60 is set to oil.
  • the line pressure is a hydraulic pressure required for the automatic transmission.
  • the hydraulic pressure required for the automatic transmission is calculated from the state of the automatic transmission 20 (whether or not shifting), torque output from the engine 12, vehicle speed, throttle opening, hydraulic oil temperature (oil temperature), and the like. .
  • the C3 relay valve 60 includes a signal pressure input port 62a for inputting a signal pressure from the on / off solenoid S2, an input port 62b for inputting an output pressure (SLC3 pressure) from the linear solenoid SLC3, and an output port 62c for outputting hydraulic pressure to the clutch C3. And a sleeve 62 formed with an output port 62d and a drain port 62e for outputting hydraulic pressure to the oil passage 69, a spool 64 that slides in the sleeve 62 in the axial direction, and a spring 66 that biases the spool 64 in the axial direction. It is comprised by.
  • the spool 64 moves to the position shown in the left half region in the drawing by the urging force of the spring 66, and the input port 62b Is connected to the output port 62c (clutch C3 side) and the communication between the input port 62b and the output port 62d (C2 relay valve 70 side) is cut off, and the signal pressure is input from the on / off solenoid S2 to the signal pressure input port 62a.
  • the signal pressure overcomes the urging force of the spring 66 and the spool 64 moves to the position shown in the right half region in the drawing to cut off the communication between the input port 62b and the output port 62c (clutch C3 side).
  • the input port 62b communicates with the output port 62d (C2 relay valve 70 side).
  • the output port 62c and the drain port 62e communicate with each other so that the hydraulic fluid on the clutch C3 side is drained. It has become.
  • the C2 relay valve 70 includes a signal pressure input port 72a for inputting a signal pressure from the on / off solenoid S1, an input port 72b for inputting an output pressure output from the C3 relay valve 60 to the oil passage 69, and an output pressure from the linear solenoid SLC2.
  • the spool 74 is configured to slide in the axial direction, and a spring 76 that biases the spool 74 in the axial direction.
  • C2 relay valve 70 when the signal pressure is not inputted from the on / off solenoid S1 to the signal pressure input port 72a, the spool 74 is moved to the position shown in the left half region in the drawing by the urging force of the spring 76, and the input port 72b.
  • C3 relay valve 60 side communicates with the output port 72e (B2 relay valve 80 side) and the input port 72c (linear solenoid SLC2 side) communicates with the output port 72d (clutch C2 side) from the on / off solenoid S1.
  • the B2 relay valve 80 signals the signal pressure input port 82a for inputting the signal pressure from the on / off solenoid S2 and the signal pressure from the on / off solenoid S1 to the signal pressure input port 72a of the C2 relay valve 70 via the B2 relay valve 80.
  • a sleeve 82 having an input port 82e for inputting output pressure and an output port 82f for outputting hydraulic pressure to the brake B2, a spool 84 that slides in the sleeve 82 in the axial direction, and biasing the spool 84 in the axial direction And a spring 86.
  • the spool 84 moves to the position shown in the left half region in the drawing by the urging force of the spring 86, and the signal pressure input.
  • the port 82b is shut off, the signal pressure to the signal pressure input port 72a of the C2 relay valve 70 is turned off, and the input port 82d (the R position output port 58 side of the manual valve 58) and the output port 82f (brake B2 side) are turned off.
  • the signal pressure is input from the on / off solenoid S2 to the signal pressure input port 82a, the signal pressure overcomes the urging force of the spring 86, and the spool 86 is connected to the input port 82e (C2 relay valve 70 side).
  • the S1 signal pressure input port 8 moves to the position shown in the right half of the figure.
  • the signal pressure from the on / off solenoid S1 can be output to the signal pressure input port 72a of the C2 relay valve 70 via the signal pressure input port 82b and the signal pressure output port 82c.
  • the input port 82d (the R position output port 58 side of the manual valve 58) is shut off, and the input port 82e (C2 relay valve 70 side) and the output port 82f (clutch C3 side) communicate with each other.
  • the automatic transmission 20 (hydraulic circuit 50) is driven and controlled by an automatic transmission electronic control unit (hereinafter referred to as ATECU) 29.
  • ATECU 29 is configured as a microprocessor centered on a CPU.
  • a ROM that stores a processing program
  • a RAM that temporarily stores data
  • an input / output port a communication And a port.
  • the ATECU 29 receives input shaft rotational speed Nin from a rotational speed sensor attached to the input shaft 21 and output shaft rotational speed Nout from a rotational speed sensor attached to the output shaft 22 via an input port.
  • the AT ECU 29 outputs a drive signal to the linear solenoid 56, SLC1 to SLC3, SLB1, a drive signal to the on / off solenoids S1, S2, and the like via an output port.
  • the ATECU 29 communicates with the main ECU 90, controls the automatic transmission 20 (hydraulic circuit 50) by a control signal from the main ECU 90, and outputs data related to the state of the automatic transmission 20 to the main ECU 90 as necessary.
  • the main ECU 90 is configured as a microprocessor centered on a CPU. In addition to the CPU, a ROM that stores a processing program, a RAM that temporarily stores data, an input / output port, And a communication port.
  • the main ECU 90 includes a shift position SP from the shift position sensor 92 that detects the operation position of the shift lever 91, an accelerator opening Acc from the accelerator pedal position sensor 94 that detects an amount of depression of the accelerator pedal 93, and a depression of the brake pedal 95.
  • the brake switch signal BSW from the brake switch 96 for detecting the vehicle speed, the vehicle speed V from the vehicle speed sensor 98, and the like are input via the input port.
  • the shift lever 91 can be selected from a parking (P) position, a reverse (R) position, a neutral (N) position, and a drive (D) position, depending on the selected position.
  • P parking
  • R reverse
  • N neutral
  • D drive
  • the clutches C1 to C3 and the brakes B1 and B2 are turned on / off.
  • the main ECU 90 is connected to the engine ECU 16 and the ATECU 29 via a communication port, and exchanges various control signals and data with the engine ECU 16 and the ATECU 29.
  • the automatic transmission 20 and the ATECU 29 correspond to the transmission device of the embodiment.
  • FIG. 4 is a flowchart showing an example of the RN switching process routine executed by the ATECU 29. This routine is executed when the shift lever 91 is switched from the R position to the N position or from the N position to the R position.
  • Step S100 When switching from the R position to the N position (time t11 in FIG. 5), the linear solenoid SLC3 is driven and controlled so that the SLC3 pressure, which is the output pressure from the linear solenoid SLC3, gradually decreases (Step S100). S110). As a result, the clutch pressure PC3 acting on the clutch C3 gradually decreases, and the engagement of the clutch C3 is released (see times t11 to t12 in FIG. 5).
  • step S120 when the SLC3 pressure becomes around the predetermined pressure P0 elapses (step S120), and on / off Both the solenoid S1 and the on / off solenoid S2 are turned on (step S130), the linear solenoid SLC3 is driven and controlled so that the SLC3 pressure is maintained at a constant pressure P0 (step S140), and this routine is finished.
  • the on / off solenoid S1 is configured as a normally open type solenoid
  • the on / off solenoid S2 is configured as a normally closed type solenoid.
  • the signal pressure is not output from the on / off solenoid S1 and the signal pressure is output from the on / off solenoid S2, so the SLC3 pressure from the linear solenoid SLC3 is the clutch C3 side.
  • the linear solenoid SLC3 is driven and controlled so that the SLC3 pressure is kept constant at the predetermined pressure P0. Therefore, the predetermined pressure P0 acts on the brake B2.
  • the brake B2 is engaged.
  • the predetermined pressure P0 is set as a hydraulic pressure at which the piston of the brake B2 comes into contact with the friction plate.
  • step S150 when the shift lever 91 is switched from the N position to the R position (time t13 in FIG. 5), the on / off solenoid S1 is turned on and the on / off solenoid S2 is turned off (step S150), and the SLC3 pressure of the linear solenoid SLC3 is increased.
  • the linear solenoid SLC3 is driven and controlled to have a value of 0 (step S160).
  • step S160 When the on / off solenoid S1 is turned on and the on / off solenoid S2 is turned off, no signal pressure is output from either of the on / off solenoids S1 and S2, so that the SLC3 pressure of the linear solenoid SLC3 is supplied to the clutch C3 side.
  • the reverse pressure PR from the R position output port 58c of the manual valve 58 is supplied to the brake B2 side.
  • the input port 58a of the manual valve 58 to which the line pressure PL is input communicates with the output port 58c for the R position, so that the line pressure PL is input to the manual valve 58.
  • the brake B2 is engaged with the brake B2 via the port 58a and the R-position output port 58c.
  • a fast fill is performed in which hydraulic oil is rapidly filled to reduce the pack clearance of the clutch C3 (step S170).
  • the SLC3 pressure gradually increases (step S180), and the clutch C3 is engaged.
  • the linear solenoid SLC3 is driven and controlled so that the SLC3 pressure becomes maximum (step S190), and this routine is finished.
  • the clutch C3 is engaged and the R position is formed.
  • the brake B2 is engaged by the hydraulic pressure PR from the R position output port 58 of the manual valve 58 and the clutch C3 is engaged by the SLC3 pressure from the linear solenoid SLC3.
  • the brake B2 is engaged by supplying the SLC3 pressure from the linear solenoid SLC3 to the brake B2 instead of the clutch C3. This eliminates the need to provide a dedicated linear solenoid for engaging the brake B2.
  • FIG. 6 is a flowchart showing an example of a DR switching process routine executed by the ATECU 29. This routine is executed when the shift lever 91 is switched from the D position to the R position or from the R position to the D position.
  • the clutch C1 and the brake B2 are switched from the ON state to the brake B2 only, and the shift lever 91 is switched from the R position to the D position.
  • the process is switched from the state of the first forward non-engine brake, that is, the state where only the brake B2 is turned on to the state where the clutch C1 and the brake B2 are turned on.
  • the routine of FIG. 6 will be described with reference to the time chart illustrated in FIG.
  • Step S200 the CPU of the ATECU 29 first determines whether the shift lever 91 is switched from the D position to the R position or from the R position to the D position.
  • Step S200 At the time of switching from the D position to the R position (time t21 in FIG. 7), the SLC1 pressure, which is the output pressure from the linear solenoid SLC1, becomes 0 in order to release the clutch C1.
  • the linear solenoid SLC1 is driven and controlled (step S210), the on / off solenoid S1 is turned on and the on / off solenoid S2 is turned off (step S220).
  • step S230 the SLC3 pressure of the linear solenoid SLC3 is gradually increased (step S240), and the SLC3 pressure is maximized as the clutch C3 is engaged.
  • step S240 the SLC3 pressure of the linear solenoid SLC3 is driven and controlled (step S250), and this routine is finished.
  • step S260 the linear solenoid SLC3 is driven and controlled so that the SLC3 pressure of the linear solenoid SLC3 gradually decreases.
  • the clutch pressure PC3 acting on the clutch C3 gradually decreases, and the engagement of the clutch C3 is released (see times 22 to t23 in FIG. 7).
  • the brake pressure PB2 acting on the brake B2 approaches the value 0 (see times t22 to t23 in FIG. 7).
  • fast fill is performed on the clutch C1 (step S270), and the linear solenoid SLC1 is driven and controlled so as to gradually increase the SLC1 pressure that is the output pressure of the linear solenoid SLC1 (step S280).
  • the on / off solenoid S1 is turned off and the on / off solenoid S2 is turned on (step S300).
  • the SLC2 pressure of the linear solenoid SLC2 is supplied to the brake B2 side, and the SLC3 pressure of the linear solenoid SLC3 is cut off.
  • the linear solenoid SLC2 is driven and controlled so that the SLC2 pressure of the linear solenoid SLC2 becomes the above-mentioned predetermined pressure P0 and is kept constant at the predetermined pressure P0 (step S310).
  • the linear solenoid SLC1 is driven.
  • the linear solenoid SLC1 is driven and controlled so that the SLC1 pressure becomes maximum (step S320), and this routine ends.
  • the clutch C1 is engaged and the brake B2 is engaged to form the first forward speed in the D position.
  • the brake B2 is engaged by the hydraulic pressure PR from the R position output port 58c of the manual valve 58, and the clutch C3 is engaged by the SLC3 pressure from the linear solenoid SLC3.
  • the brake B2 is engaged by supplying the SLC2 pressure from the linear solenoid SLC2 to the brake B2, and the clutch C1 is engaged by supplying the SLC1 pressure from the linear solenoid SLC1 to the clutch C1. It is. This eliminates the need to provide a dedicated linear solenoid for engaging the brake B2.
  • the brake B2 when the shift lever 91 is in the N position, the brake B2 is engaged using the SLC3 pressure of the linear solenoid SLC3, and when the shift lever 91 is in the D position, the brake B2 is applied using the SLC2 pressure of the linear solenoid SLC2. Is engaged.
  • the brake B2 can be engaged at the D position by using the SLC3 pressure of the linear solenoid SLC3 as in the N position, but in this case, the linear solenoid SLC3 increases the SLC3 pressure to the third forward speed.
  • the brake B2 when the shift lever 91 is in the R position, the brake B2 is engaged by the reverse pressure PR from the R position output port 58 of the manual valve 58 and the SLC3 from the linear solenoid SLC3 is engaged.
  • the clutch C3 is engaged by pressure to establish a first reverse speed state.
  • the brake B2 When the shift lever 91 is in the N position, the brake B2 is engaged by supplying the SLC3 pressure from the linear solenoid SLC3 to the brake B2 instead of the clutch C3. In combination, a neutral state is formed, and there is no need to provide a dedicated linear solenoid for engaging the brake B2.
  • the brake B2 is engaged by supplying the brake B2 with SLC2 pressure from the linear solenoid SLC2 different from the linear solenoid SLC3 that supplies hydraulic pressure to the clutch C3 used to form the third forward speed.
  • the clutch C1 is engaged by supplying the SLC1 pressure from the linear solenoid SLC1 to the clutch C1
  • the downshift can be smoothly performed from the third forward speed to the first forward speed.
  • the engagement pressure of the brake B2 is set to the minimum required pressure P0. The flow rate (energy consumption) can be further suppressed.
  • FIG. 8 is a configuration diagram showing an outline of the configuration of the hydraulic circuit 150 provided in the transmission apparatus of the second embodiment.
  • the hydraulic circuit 150 according to the second embodiment includes a C3 relay valve 60, a C2 relay valve 70, and a B2 relay valve 80 included in the hydraulic circuit 50 according to the embodiment, and a normally open type that drives these relay valves.
  • the SLC3 pressure which is the output pressure from the linear solenoid SLC3, is output to the clutch C3 and is the output pressure from the R-position output port 58c of the manual valve 58.
  • a C3 relay valve 160 that switches between a state in which the reverse pressure PR is output to the brake B2 and a state in which the SLC3 pressure is output to the brake B2 and the reverse pressure PR is shut off, and a normally closed type on / off solenoid that drives the C3 relay valve 160 With SFIG. 9 shows an operation table of the automatic transmission 20 when the hydraulic circuit 150 is used.
  • the C3 relay valve 160 has a signal pressure input port 162a for inputting the signal pressure from the on / off solenoid S and an input port 162b for inputting the reverse pressure PR from the R position output port 58c of the manual valve 58. And an input port 162c for inputting the output pressure from the linear solenoid SLC3 (SLC3 pressure), an output port 162d for outputting hydraulic pressure to the clutch C3, an output port 162e for outputting hydraulic pressure to the brake B2, and a drain port 162f. 162, a spool 164 that slides in the sleeve 162 in the axial direction, and a spring 166 that biases the spool 164 in the axial direction.
  • the C3 relay valve 160 moves the spool 164 to the position shown in the left half region in the drawing by the urging force of the spring 166, and the input port 162b (the R position output port 58c side of the manual valve 58) and the output port 162e (brake B2 side) communicate with each other, and the input port 162c (the output port side of the linear solenoid SLC3) and the output port 162d (the clutch C3 side) Communicate.
  • FIG. 10 is a flowchart showing an example of the RN switching process routine executed by the ATECU 29. This routine is executed when the shift lever 91 is switched from the R position to the N position or from the N position to the R position.
  • the routine of FIG. 10 will be described with reference to the time chart illustrated in FIG.
  • Step S400 When switching from the R position to the N position (time t31 in FIG. 11), the linear solenoid SLC3 is driven and controlled so that the SLC3 pressure, which is the output pressure from the linear solenoid SLC3, gradually decreases (step S400). S410). As a result, the clutch pressure PC3 acting on the clutch C3 gradually decreases, and the engagement of the clutch C3 is released (see times t31 to t32 in FIG. 11).
  • step S420 a predetermined time T (time t32 in FIG. 11) in which the SLC3 pressure becomes around the predetermined pressure P0 elapses (step S420), and on / off is performed.
  • the solenoid S is turned on (step S430), the linear solenoid SLC3 is driven and controlled so that the SLC3 pressure is held at a constant pressure P0 (step S440), and this routine is finished.
  • the on / off solenoid S is configured as a normally closed solenoid, and when the on / off solenoid S is turned on, a signal pressure is output from the on / off solenoid S. Therefore, the SLC3 pressure from the linear solenoid SLC3 is C3. It is supplied to the brake B2 via the relay valve 160.
  • the linear solenoid SLC3 is driven and controlled so that the SLC3 pressure is held at a constant pressure P0. Therefore, the predetermined pressure P0 acts on the brake B2 to engage the brake B2. Will match.
  • the predetermined pressure P0 is set as a hydraulic pressure that allows the piston of the brake B2 to abut against the friction plate (a hydraulic pressure equal to or lower than the stroke end pressure Pse).
  • step S450 when the shift lever 91 is switched from the N position to the R position (time t33 in FIG. 11), the on / off solenoid S is turned off (step S450), and the SLC3 pressure of the linear solenoid SLC3 is equal to or less than the stroke end pressure Pse.
  • the linear solenoid SLC3 is driven and controlled to be P0 (step S460).
  • the on / off solenoid S is turned off, no signal pressure is output from the on / off solenoid S. Therefore, the S3 pressure from the linear solenoid SLC3 is supplied to the clutch C3 by the C3 relay valve 160, and the line pressure is input to the input port 58a of the manual valve 58.
  • the reverse pressure PR is supplied to the brake B2 via the R position output port 58c. Then, a fast fill that rapidly fills with hydraulic oil is performed to reduce the pack clearance of the clutch C3 (step S470). After the fast fill is completed, the SLC3 pressure gradually increases (step S480), and the clutch C3 is engaged. Accordingly, the linear solenoid SLC3 is driven and controlled so that the SLC3 pressure becomes maximum (step S490), and this routine is finished. Thereby, the clutch C3 is engaged and the R position is formed.
  • the brake B2 when the shift lever 91 is in the R position, the brake B2 is engaged by the reverse pressure PR from the R position output port 58 of the manual valve 58 and the clutch C3 is engaged by the SLC3 pressure from the linear solenoid SLC3.
  • the brake B2 When the shift lever 91 is in the N position, the brake B2 is engaged by supplying the SLC3 pressure from the linear solenoid SLC3 to the brake B2 instead of the clutch C3. This eliminates the need to provide a dedicated linear solenoid for engaging the brake B2.
  • FIG. 12 is a flowchart showing an example of a DR switching process routine executed by the ATECU 29. This routine is executed when the shift lever 91 is switched from the D position to the R position or from the R position to the D position.
  • the routine of FIG. 12 will be described with reference to the time chart illustrated in FIG.
  • Step S500 the SLC1 pressure, which is the output pressure from the linear solenoid SLC1, becomes 0 in order to release the clutch C1.
  • the linear solenoid SLC1 is driven and controlled (step S510), and the on / off solenoid S is turned off (step S520).
  • step S570 the linear solenoid SLC3 is driven and controlled so that the SLC3 pressure of the linear solenoid SLC3 gradually decreases.
  • the clutch pressure PC3 acting on the clutch C3 gradually decreases, and the engagement of the clutch C3 is released (see times 42 to t43 in FIG. 13).
  • the brake pressure PB2 acting on the brake B2 approaches the value 0 (see times t42 to t43 in FIG. 13). Subsequently, after the shift lever 91 is switched from the R position to the D position, a predetermined time T2 (time t43 in FIG. 13) in which the brake pressure PB2 is near the predetermined pressure P0 has elapsed (step S580), and the on / off solenoid S is turned ON (step S590), and the linear solenoid SLC3 is driven and controlled so that the SLC3 pressure is maintained at the predetermined pressure P0 (step S600).
  • the SLC3 pressure of the linear solenoid SLC3 is supplied to the brake B2 side by the C3 relay valve 160, and the brake B2 is engaged by the predetermined pressure P0. become.
  • fast fill is performed on the clutch C1 by controlling the linear solenoid SLC1 (step S610), and the SLC1 pressure that is the output pressure of the linear solenoid SLC1 is gradually increased (step S620).
  • the linear solenoid SLC1 is driven and controlled so that the SLC1 pressure of the linear solenoid SLC1 becomes maximum (step S630), and this routine is finished.
  • the clutch C1 is engaged and the brake B2 is engaged to form the first forward speed in the D position.
  • the brake B2 is engaged by the reverse pressure PR from the R position output port 58c of the manual valve 58 and the clutch C3 is engaged by the SLC3 pressure from the linear solenoid SLC3.
  • the brake B2 is engaged by supplying the SLC3 pressure from the linear solenoid SLC3 to the brake B2, and the clutch C1 is engaged by supplying the SLC1 pressure from the linear solenoid SLC1 to the clutch C1. To do. This eliminates the need to provide a dedicated linear solenoid for engaging the brake B2.
  • the brake B2 when the shift lever 91 is in the N position, the brake B2 is engaged using the SLC3 pressure of the linear solenoid SLC3, and when the shift lever 91 is in the D position (the first forward speed is not The brake B2 is engaged using the SLC2 pressure of the linear solenoid SLC2 at the time of engine braking).
  • the present invention is not limited to this, and the linear solenoid at the D position is the same as at the N position.
  • the brake B2 may be engaged using the SLC3 pressure of the SLC3.
  • the brake B2 is engaged when the shift lever 91 is in the D position (during the first forward non-engine brake). In some cases, since the one-way clutch F1 is engaged instead of the brake B2, the brake B2 may not be engaged.
  • each linear solenoid SLC1 to SLC3 is configured as a linear solenoid for direct control that generates an optimal clutch pressure from the line pressure PL and directly controls the corresponding clutch or brake.
  • a linear solenoid may be used for pilot control, and a control valve may be separately driven to generate a clutch pressure with this control valve to control the corresponding clutch or brake.
  • the automatic transmission 20 is configured by a stepped transmission with a six-speed shift from the first forward speed to the sixth forward speed, but is not limited thereto. It may be configured by a stepped transmission of 2 to 5 speeds, or may be configured by a stepped transmission of 7 or more stages.
  • the brake B2 corresponds to the “first engagement element”
  • the clutch C3 corresponds to the “second engagement element”
  • the mechanical oil pump 52, the regulator valve 54, and the linear solenoid 56 are “pumped”.
  • the manual valve 58 corresponds to “fluid pressure input / output means”
  • the linear solenoid SLC3 corresponds to “first pressure regulating means”
  • the C3 relay valve 60, the C2 relay valve 70, and the B2 relay valve 80 correspond to “means”.
  • the on / off solenoids S1 and S2 correspond to “selection output means”.
  • the clutch C1 corresponds to a “third engagement element”
  • the clutch C2 or the clutch C3 corresponds to a “fourth engagement element”
  • the linear solenoid SLC2 corresponds to a “second pressure adjusting unit”.
  • the C3 relay valve 60, the C2 relay valve 70, and the B2 relay valve 80 correspond to “switching valves”
  • the on / off solenoids S1 and S2 correspond to “signal pressure output means”.
  • the C3 relay valve 160 also corresponds to a “switching valve”.
  • the C3 relay valve 60 corresponds to a “first switching valve”
  • the B3 relay valve 80 corresponds to a “second switching valve”
  • the C2 relay valve 70 corresponds to a “third switching valve”.
  • the output port 62d and the output port 162e correspond to “first output port”, the output port 62c and the output port 162d correspond to “second output port”, and the output port 72e corresponds to “third output port”.
  • the output port 72d corresponds to the “fourth output port”
  • the input port 82e and the input port 162c correspond to the “first input port”
  • the input port 82b and the input port 162b correspond to the “second output port”.
  • the input port 72b corresponds to the “third input port”
  • the input port 72c corresponds to the “fourth input port”.
  • the elements of the invention described in the column of the disclosure of the invention are not limited. That is, the interpretation of the invention described in the column of the disclosure of the invention should be made based on the description of that column, and the examples are only specific examples of the invention described in the column of the disclosure of the invention. It is.
  • the present invention can be used in the automobile industry and the like.

Abstract

 シフトレバーがリバース(R)ポジションのときにはマニュアルバルブ58のRポジション用出力ポート58cからのリバース圧PRによりブレーキB2を係合すると共にリニアソレノイドSLC3からのSLC3圧によりクラッチC3を係合して後進1速の状態を形成し、シフトレバーがニュートラル(N)ポジションのときにはリニアソレノイドSLC3からのSLC3圧をクラッチC3に代えてブレーキB2に供給することによりブレーキB2を係合してニュートラルの状態を形成する。これにより、ブレーキB2を係合するための専用のリニアソレノイドを設ける必要がない。この結果、リニアソレノイドを別途配置することによる油圧回路50の消費流量(消費エネルギ)増加を抑制して装置全体のエネルギ効率を向上させることができると共に装置全体の小型化を図ることができる。

Description

変速機装置およびこれを搭載する車両
 本発明は、変速機装置および車両に関し、詳しくは、車両に搭載され、後進用ポジションにシフト操作されたときには複数の係合要素のうち第1の係合要素と第2の係合要素とを係合し、中立ポジションにシフト操作されたときには前記第1の係合要素を係合することが可能な自動変速機を備える変速機装置およびこれを搭載する車両に関する。
従来、この種の変速機装置としては、レンジ切り換えのためのセレクトレバーの操作に基づいて三つのクラッチC-0~Cー2と五つのブレーキB-0~B-4とを選択的にオンオフしてパーキング(P)レンジ,リバース(R)レンジ,ニュートラル(N)レンジ,ドライブ(D)レンジを切り換えるものが提案されている(特許文献1参照)。この装置では、セレクトレバーがRレンジのときにはクラッチC-2とブレーキB-0とブレーキB-4の三つを係合する必要から、セレクトレバーがNレンジの非走行レンジでも動力伝達に関与しないブレーキB-4を予め係合状態とすることにより、セレクトレバーがRレンジに切り換えられたときにはクラッチC-2とブレーキB-0だけに新たに油圧を作用させるものとして、油圧発生源の容量増加を図ることなくクラッチやブレーキの作動遅れ、即ちシフト操作に対する応答遅れを抑制することができる、としている。
特開平05-157164号公報
 ところで、上述したタイプの変速機装置では、Nレンジのときに係合するブレーキ(クラッチ)を専用のリニアソレノイドを用いてオンオフすることを考えることができるが、リニアソレノイドは入力した作動油の一部をドレンしながら残余を出力することにより調圧することから、リニアソレノイド自身で消費される流量が多くなり油圧回路全体で必要で消費される流量が多くなる結果、油圧発生源の容量増加を招いたり装置全体の消費エネルギが増加してしまう。また、新たなリニアソレノイドの追加により装置全体が大型化してしまう。
 本発明の変速機装置およびこれを搭載する車両は、装置全体の消費エネルギを抑制すると共に装置の小型化を図ることを主目的とする。
 本発明の変速機装置およびこれを搭載する車両は、上述の目的の少なくとも一部を達成するために以下の手段を採った。
 本発明の変速機装置は、
 車両に搭載され、後進用ポジションにシフト操作されたときには複数の係合要素のうち第1の係合要素と第2の係合要素とを係合し、中立ポジションにシフト操作されたときには前記第1の係合要素を係合することが可能な自動変速機を備える変速機装置であって、
 流体圧源の流体圧を調圧してライン圧として出力する圧送手段と、
 前記後進用ポジションにシフト操作されたときには前記ライン圧を入力して複数の出力ポートのうち後進ポジション用出力ポートから出力し、前記中立ポジションにシフト操作されたときには前記複数の出力ポートを遮断する流体圧入出力手段と、
 前記ライン圧を入力すると共に調圧して出力する第1の調圧手段と、
 前記後進用ポジションにシフト操作されたときには前記後進ポジション用出力ポートから出力された流体圧を前記第1の係合要素に出力すると共に前記第1の調圧手段から出力された流体圧を前記第2の係合要素に出力し、前記中立ポジションにシフト操作されたときには前記第1の調圧手段から出力された流体圧を前記第1の係合要素に出力する選択出力手段と、
 を備えることを要旨とする。
 この本発明の変速機装置では、後進用ポジションにシフト操作されたときには複数の係合要素のうち第1の係合要素と第2の係合要素とを係合し、中立ポジションにシフト操作されたときには前記第1の係合要素を係合することが可能なものにおいて、流体圧入出力手段が後進用ポジションにシフト操作されたときには複数の出力ポートのうち後進ポジション用出力ポートから出力し、中立ポジションにシフト操作されたときには複数の出力ポートを遮断し、第1の調圧手段がライン圧を入力すると共に調圧して出力し、選択出力手段が後進用ポジションにシフト操作されたときには後進ポジション用出力ポートから出力された流体圧を第1の係合要素に出力すると共に第1の調圧手段から出力された流体圧を第2の係合要素に出力し、中立ポジションにシフト操作されたときには第1の調圧手段から出力された流体圧を第1の係合要素に出力する。これにより、後進用ポジションにシフト操作されたときに第1の係合要素と第2の係合要素とを同時に係合する場合に比して、本発明は第1の係合要素に流体圧を供給すればよく、ポンプなどの流体圧源の吐出容量を抑えることができる。さらに、一般的にバルブなどの調圧手段は絶えず少量の作動流体が漏れていることから、中立ポジションのときに第1の係合要素を係合するために専用の調節手段を配置した場合、調圧手段から漏れる作動流体の分だけ圧送手段の吐出容量を増やす必要があるが、本発明では中立ポジションにシフト操作されたときに第1の係合要素を係合するための調圧手段を別途設ける必要がない。この結果、装置全体の消費エネルギを抑制し、ひいては燃費を向上させることができると共に変速機装置の小型化を図ることができる。
 前進用ポジションにシフト操作されたときには前記複数の係合要素のうち前記第1の係合要素と第3の係合要素とを係合することにより発進用変速段を形成し前記複数の係合要素のうち少なくとも第4の係合要素を係合することにより前記発進用変速段以外の変速段を形成可能な本発明の変速機装置において、前記選択出力手段は、前記前進用ポジションにシフト操作されたときには、前記第1の調圧手段から出力される流体圧を前記前進用ポジションのうち前記第4の係合要素か前記第1の係合要素かに選択的に出力する手段であるものとすることもできる。こうすれば、中立ポジションから前進用ポジションへの切り換え時も流体圧源の吐出容量を抑えることができ、燃費を向上させることができる。ここで、前記第4の係合要素は、前記第2の係合要素であるものとすることもできる。この態様の本発明の変速機装置において、前記第4の係合要素は、前記前進用ポジションにシフト操作されたときには、前記発進用変速段との間で直接に切り換えを伴わない変速段を形成可能な要素であるものとすることもできる。この場合、第1の調圧手段を用いて解放する係合要素の流体圧を完全に排出した後、第1の調圧手段を用いて係合する係合要素に流体圧を供給する変速が起こらないため、変速時間の長い変速を無くすことができる。
 また、本発明の変速機装置において、前記第1の調圧手段は、前記中立ポジションにシフト操作されたときには、前記第1の係合要素が完全に係合するときの係合圧よりも低い低係合圧で係合されるよう調圧する手段であるものとすることもできる。こうすれば、変速時に素早く第1の係合要素から流体圧を排出することができ、変速に要する時間を短縮することができる。特に、発進変速段から他の前進変速段に変速するときにはその効果がより顕著なものとなる。
 さらに、本発明の変速機装置において、前記選択出力手段は、前記第1の調圧手段から出力された流体圧を入力する第1の入力ポートと前記流体入出力手段の前記後進ポジション用出力ポートから出力された流体圧を入力する第2の入力ポートと前記第1の係合要素に流体圧を出力する第1の出力ポートと前記第2の係合要素に流体圧を出力する第2の出力ポートとを有し、前記第1の入力ポートに入力された流体圧を前記第1の出力ポートから出力する状態と前記第1の入力ポートに入力された流体圧を前記第2の出力ポートから出力すると共に前記第2の入力ポートに入力された流体圧を該第1の出力ポートから出力する状態とを選択的に切り換える切り換えバルブと、前記切り換えバルブを駆動する信号圧を出力する信号圧出力手段とを備える手段であるものとすることもできる。こうすれば、1つの切り換えバルブで状態を切り換えることができるため、流体圧回路をコンパクトにすることができる。さらに、後進用ポジションから前進用ポジションにシフト操作された場合に、1つの切り換えバルブを切り換えることにより第1の調圧手段の出力圧の出力先を第2の係合要素から第1の係合要素に切り換えることができる。したがって、後進用ポジションから前進用ポジションにシフト操作された場合の変速に要する時間を短縮することができる。
 前進用ポジションにシフト操作されたときには前記複数の係合要素のうち前記第1の係合要素と第3の係合要素とを係合することにより発進用変速段を形成し前記複数の係合要素のうち少なくとも第4の係合要素を係合することにより前記発進用変速段以外の変速段を形成可能な本発明の変速機装置において、前記流体圧入出力手段は、前記前進用ポジションにシフト操作されたときに前記ライン圧を入力して前記複数の出力ポートのうち前進ポジション用出力ポートから出力する手段であり、前記前進ポジション用出力ポートから出力された流体圧を入力すると共に調圧して出力する第2の調圧手段を備え、前記選択出力手段は、前記前進用ポジションにシフト操作されたときには、前記第2の調圧手段から出力される流体圧を前記前進用ポジションのうち前記第4の係合要素か前記第1の係合要素かに選択的に出力する手段であるものとすることもできる。こうすれば、中立ポジションから前進用ポジションへの切り換え時も流体圧源の吐出容量を抑えることができ、燃費を向上させることができる。さらに、発進用変速段以外の変速段から発進用変速段に変更する際に第4の係合要素の係合解除と第3の係合要素の係合とをスムーズに行なうことができる。この態様の本発明の変速機装置において、前記第4の係合要素は、前記前進用ポジションにシフト操作されたときには、前記発進用変速段との間で直接に切り換えを伴わない変速段を形成可能な要素であるものとすることもできる。第4の係合要素が発進変速段との間で直接に切り換えが行なわれる変速段(低速段)を形成する係合要素である場合、低速段から発進用変速段にダウンシフトした場合に、第2の調圧手段から出力される流体圧を第4の係合要素から第1の係合要素へ切り換える必要が生じ、スムーズな変速を損なう。しかし、高速段から発進用変速段へ変速する場合は、変速ショックや自動変速機の入力軸に接続される内燃機関の回転数のオーバーレブを考慮すると高速段から中間変速段を経て発進用変速段へ変速することが一般的であるため、第2の調圧手段から出力される流体圧を第4の係合要素から第1の係合要素へ切り換える必要が生じず、前進走行時のスムーズな変速を損なうことなく、前進ポジションから後進ポジションへの切り換え時の流体圧源の吐出容量を抑えることができる。また、本発明の変速機装置において、前記選択出力手段は、前記前進用ポジションにシフト操作されたときには、前記第1の調圧手段から出力される流体圧を前記第2の係合要素に出力し、前記第2の係合要素は、前記前進用ポジションにシフト操作されたときには、前記発進用変速段以外の変速段であり、かつ、前記発進用変速段との間で直接に切り換えを伴う変速段を形成可能な要素であるものとすることもできる。この場合、前進用ポジションにシフト操作されたときには、第1の係合要素には第2の調圧手段から出力される流体圧が、第2の係合要素には第1の調圧手段から出力される流体圧がそれぞれ供給される。したがって、第2の係合要素を係合して形成される変速段から発進用変速段に直接に切り換えを行なう場合に、第1の係合要素への流体圧の供給と、第2の係合要素の流体圧の排出とを同時に行なうことができ、変速に要する時間を短縮することができる。さらに、本発明の変速機装置において、前記第1の調圧手段は、前記中立ポジションにシフト操作されたときには、前記第1の係合要素が完全に係合するときの係合圧よりも低い低係合圧により係合されるよう調圧する手段であるものとすることもできる。こうすれば、変速時に素早く第1の係合要素から流体圧を排出することができ、変速に要する時間を短縮することができる。特に、発進変速段から他の前進変速段に変速するときにはその効果がより顕著なものとなる。
 また、本発明の変速機装置において、前記選択出力手段は、前記第1の調圧手段から出力された流体圧を入力して第1の出力ポートか前記第2の係合要素に流体圧を供給する第2の出力ポートかに選択的に出力する第1の切り換えバルブと、前記第1の切り換えバルブの前記第1の出力ポートから出力された流体圧を入力する第1の入力ポートと前記流体入出力手段の前記後進ポジション用出力ポートから出力された流体圧を入力する第2の入力ポートとを有し該第1および第2の入力ポートに入力された流体圧を前記第1の係合要素に選択的に出力する第2の切り換えバルブと、前記第1および第2の切り換えバルブを駆動する信号圧を出力する信号圧出力手段とを備える手段であるものとすることもできる。
 また、第2の調圧手段を備え、前進用ポジションにシフト操作されたときに少なくとも第4の係合要素を係合して発進用変速段以外の変速段を形成する態様の本発明の変速機装置において、前記選択出力手段は、前記第1の調圧手段から出力された流体圧を入力して第1の出力ポートか前記第2の係合要素に流体圧を供給する第2の出力ポートかに選択的に出力する第1の切り換えバルブと、第1の入力ポートと前記流体入出力手段の前記後進ポジション用出力ポートから出力された流体圧を入力する第2の入力ポートとを有し該第1または第2の入力ポートに流体圧を選択的に入力して前記第1の係合要素に出力する第2の切り換えバルブと、前記第1の切り換えバルブの前記第1の出力ポートから出力された流体圧を入力する第3の入力ポートと前記第2の調圧手段から出力された流体圧を入力する第4の入力ポートと前記第2の切り換えバルブの前記第1の入力ポートに流体圧を出力する第3の出力ポートと前記第4の係合要素に流体圧を出力する第4の出力ポートとを有し前記第4の入力ポートに入力された流体圧を前記第3の出力ポートに出力するか前記第3の入力ポートに流体圧を入力して該第3の出力ポートに出力すると共に前記第4の入力ポートに流体圧を入力して前記第4の係合要素に出力する第3の切り換えバルブと、前記第1~第3の切り換えバルブを駆動する信号圧を出力する信号圧出力手段とを備える手段であるものとすることもできる。
 本発明の車両は、上述した各態様のいずれかの本発明の変速機装置、即ち、基本的には、車両に搭載され、後進用ポジションにシフト操作されたときには複数の係合要素のうち第1の係合要素と第2の係合要素とを係合し、中立ポジションにシフト操作されたときには前記第1の係合要素を係合することが可能な自動変速機を備える変速機装置であって、
 流体圧源の流体圧を調圧してライン圧として出力する圧送手段と、
 前記後進用ポジションにシフト操作されたときには前記ライン圧を入力して複数の出力ポートのうち後進ポジション用出力ポートから出力し、前記中立ポジションにシフト操作されたときには前記複数の出力ポートを遮断する流体圧入出力手段と、
 前記ライン圧を入力すると共に調圧して出力する第1の調圧手段と、
 前記後進用ポジションにシフト操作されたときには前記後進ポジション用出力ポートから出力された流体圧を前記第1の係合要素に出力すると共に前記第1の調圧手段から出力された流体圧を前記第2の係合要素に出力し、前記中立ポジションにシフト操作されたときには前記第1の調圧手段から出力された流体圧を前記第1の係合要素に出力する選択出力手段と、
 を備える車両に搭載され、後進用ポジションにシフト操作されたときには複数の係合要素のうち第1の係合要素と第2の係合要素とを係合し、中立ポジションにシフト操作されたときには前記第1の係合要素を係合することが可能な自動変速機を備える変速機装置であって、流体圧源の流体圧を調圧してライン圧として出力する圧送手段と、前記後進用ポジションにシフト操作されたときには前記ライン圧を入力して複数の出力ポートのうち後進ポジション用出力ポートから出力し、前記中立ポジションにシフト操作されたときには前記複数の出力ポートを遮断する流体圧入出力手段と、前記ライン圧を入力すると共に調圧して出力する第1の調圧手段と、前記後進用ポジションにシフト操作されたときには前記後進ポジション用出力ポートから出力された流体圧を前記第1の係合要素に出力すると共に前記第1の調圧手段から出力された流体圧を前記第2の係合要素に出力し、前記中立ポジションにシフト操作されたときには前記第1の調圧手段から出力された流体圧を前記第1の係合要素に出力する選択出力手段と、を備える変速機装置を搭載することを要旨とする。
 この本発明の車両では、上述した各態様のいずれかの本発明の変速機装置を搭載するから、本発明の変速機装置が奏する効果、例えば、装置全体の消費エネルギを抑制すると共に装置の小型化を図ることができる効果などを奏することができる。
本発明の一実施例としての変速機装置を搭載する自動車10の構成の概略を示す構成図である。 オートマチックトランスミッション20の作動表の一例を示す説明図である。 オートマチックトランスミッション20の油圧回路50の構成の概略を示す構成図である。 ATECU29により実行されるR-N切換処理ルーチンの一例を示すフローチャートである。 シフトレバー91がRポジジョンとNポジションとの間で変更されたときのタイムチャートである。 ATECU29により実行されるD-R切換処理ルーチンの一例を示すフローチャートである。 シフトレバー91がDポジジョンとRポジションとの間で変更されたときのタイムチャートである。 第2実施例の変速機装置が備える油圧回路150の構成の概略を示す構成図である。 油圧回路150を用いたときのオートマチックトランスミッション20の作動表である。 ATECU29により実行されるR-N切換処理ルーチンの一例を示すフローチャートである。 シフトレバー91がRポジジョンとNポジションとの間で変更されたときのタイムチャートである。 ATECU29により実行されるD-R切換処理ルーチンの一例を示すフローチャートである。 シフトレバー91がDポジジョンとRポジションとの間で変更されたときのタイムチャートである。
 次に、本発明を実施するための最良の形態を実施例を用いて説明する。
 図1は本発明の一実施例としての変速機装置を搭載する自動車10の構成の概略を示す構成図であり、図2はオートマチックトランスミッション20の作動表を示し、図3はオートマチックトランスミッション20の油圧回路50の構成の概略を示す構成図である。実施例の自動車10は、図1に示すように、ガソリンや軽油などの炭化水素系の燃料の爆発燃焼により動力を出力する内燃機関としてのエンジン12と、エンジン12のクランクシャフト14に取り付けられたロックアップクラッチ付きのトルクコンバータ24と、このトルクコンバータ24の出力側に入力軸21が接続されると共にギヤ機構26およびデファレンシャルギヤ28を介して駆動輪18a,18bに出力軸22が接続され入力軸21に入力された動力を変速して出力軸22に伝達する有段のオートマチックトランスミッション20と、車両全体をコントロールするメイン電子制御ユニット(以下、メインECUという)90とを備える。
 エンジン12は、エンジン用電子制御ユニット(以下、エンジンECUという)16により運転制御されている。エンジンECU16は、詳細に図示しないが、CPUを中心としたマイクロプロセッサとして構成されており、CPUの他に処理プログラムを記憶するROMと、データを一時的に記憶するRAMと、入出力ポートと、通信ポートとを備える。このエンジンECU16には、クランクシャフト14に取り付けられた回転数センサなどのエンジン12を運転制御するのに必要な各種センサからの信号が入力ポートを介して入力されており、エンジンECU16からは、スロットル開度を調節するスロットルモータへの駆動信号や燃料噴射弁への制御信号,点火プラグへの点火信号などが出力ポートを介して出力されている。エンジンECU16は、メインECU90と通信しており、メインECU90からの制御信号によってエンジン12を制御したり、必要に応じてエンジン12の運転状態に関するデータをメインECU90に出力する。
 オートマチックトランスミッション20は、6段変速の有段変速機として構成されており、シングルピニオン式の遊星歯車機構30とラビニヨ式の遊星歯車機構40と三つのクラッチC1,C2,C3と二つのブレーキB1,B2とワンウェイクラッチF1とを備える。シングルピニオン式の遊星歯車機構30は、外歯歯車としてのサンギヤ31と、このサンギヤ31と同心円上に配置された内歯歯車としてのリングギヤ32と、サンギヤ31に噛合すると共にリングギヤ32に噛合する複数のピニオンギヤ33と、複数のピニオンギヤ33を自転かつ公転自在に保持するキャリア34とを備え、サンギヤ31はケースに固定されており、リングギヤ32は入力軸21に接続されている。ラビニヨ式の遊星歯車機構40は、外歯歯車の二つのサンギヤ41a,41bと、内歯歯車のリングギヤ42と、サンギヤ41aに噛合する複数のショートピニオンギヤ43aと、サンギヤ41bおよび複数のショートピニオンギヤ43aに噛合すると共にリングギヤ42に噛合する複数のロングピニオンギヤ43bと、複数のショートピニオンギヤ43aおよび複数のロングピニオンギヤ43bとを連結して自転かつ公転自在に保持するキャリア44とを備え、サンギヤ41aはクラッチC1を介してシングルピニオン式の遊星歯車機構30のキャリア34に接続され、サンギヤ41bはクラッチC3を介してキャリア34に接続されると共にブレーキB1を介してケースに接続され、リングギヤ42は出力軸22に接続され、キャリア44はクラッチC2を介して入力軸21に接続されている。また、キャリア44はブレーキB2を介してケースに接続されると共にワンウェイクラッチF1を介してケースに接続されている。
 こうして構成されたオートマチックトランスミッション20では、図2の作動表に示すように、クラッチC1~C3のオンオフ(オンが係合でオフが係合解除とも呼ぶ、以下同じ)とブレーキB1,B2のオンオフとの組み合わせにより前進1速~6速と後進とニュートラルとを切り換えることができるようになっている。
 前進1速の状態は、クラッチC1をオンとすると共にクラッチC2,C3とブレーキB1,B2とをオフとしたりクラッチC1とブレーキB2とをオンとすると共にクラッチC2,C3とブレーキB1とをオフとすることにより形成することができ、この状態では、入力軸21からシングルピニオン式の遊星歯車機構30のリングギヤ32に入力される動力はサンギヤ31の固定によりサンギヤ31側で反力を受け持つことにより減速されてキャリア34およびクラッチC1を介してラビニヨ式の遊星歯車機構40のサンギヤ41aに伝達されると共にサンギヤ41aに入力される動力はワンウェイクラッチF1によるキャリア44の固定によりキャリア44側で反力を受け持つことにより減速されてリングギヤ42を介して出力軸22に出力されるから、入力軸21に入力される動力は比較的大きな減速比をもって減速して出力軸22に出力される。前進1速の状態では、エンジンブレーキ時には、ブレーキB2をオンとすることにより、ワンウェイクラッチF1に代えてキャリア44が固定される。前進2速の状態は、クラッチC1とブレーキB1とをオンとすると共にクラッチC2,C3とブレーキB2とをオフとすることにより形成することができ、この状態では、入力軸21からシングルピニオン式の遊星歯車機構30のリングギヤ32に入力される動力はサンギヤ31の固定によりサンギヤ31側で反力を受け持つことにより減速されてキャリア34およびクラッチC1を介してラビニヨ式の遊星歯車機構40のサンギヤ41aに伝達されると共にサンギヤ41aに入力される動力はブレーキB1によるサンギヤ41bの固定によりサンギヤ41b側で反力を受け持つことにより減速されてリングギヤ42を介して出力軸22に出力されるから、入力軸21に入力される動力は前進1速よりも小さな減速比をもって減速して出力軸22に出力される。前進3速の状態は、クラッチC1,C3をオンとすると共にクラッチC2とブレーキB1,B2とをオフとすることにより形成することができ、この状態では、入力軸21からシングルピニオン式の遊星歯車機構30のリングギヤ32に入力される動力はサンギヤ31の固定によりサンギヤ31側で反力を受け持つことにより減速されてキャリア34およびクラッチC1を介してラビニヨ式の遊星歯車機構40のサンギヤ41aに伝達されると共にサンギヤ41aに入力される動力はクラッチC1およびクラッチC3のオンによるラビニヨ式の遊星歯車機構40の一体回転により等速をもってリングギヤ42を介して出力軸22に出力されるから、入力軸21に入力される動力は前進2速よりも小さな減速比をもって減速して出力軸22に出力される。前進4速の状態は、クラッチC1,C2をオンとすると共にクラッチC3とブレーキB1,B2とをオフとすることにより形成することができ、この状態では、入力軸21からシングルピニオン式の遊星歯車機構30のリングギヤ32に入力される動力はサンギヤ31の固定によりサンギヤ31側で反力を受け持つことにより減速されてキャリア34およびクラッチC1を介してラビニヨ式の遊星歯車機構40のサンギヤ41aに伝達される一方で入力軸21からクラッチC2を介して直接にラビニヨ式の遊星歯車機構40のキャリア44に伝達されてリングギヤ42すなわち出力軸22の駆動状態が決定されるから、入力軸21に入力される動力は前進3速よりも小さな減速比をもって減速して出力軸22に出力される。前進5速の状態は、クラッチC2,C3をオンとすると共にクラッチC1とブレーキB1,B2とをオフとすることにより形成することができ、この状態では、入力軸21からシングルピニオン式の遊星歯車機構30のリングギヤ32に入力される動力はサンギヤ31の固定によりサンギヤ31側で反力を受け持つことにより減速されてキャリア34およびクラッチC3を介してラビニヨ式の遊星歯車機構40のサンギヤ41bに伝達される一方で入力軸21からクラッチC2を介して直接にラビニヨ式の遊星歯車機構40のキャリア44に伝達されてリングギヤ42すなわち出力軸22の駆動状態が決定されるから、入力軸21に入力される動力は増速して出力軸22に出力される。前進6速の状態は、クラッチC2とブレーキB1とをオンとすると共にクラッチC1,C3とブレーキB2とをオフとすることにより形成することができ、この状態では、入力軸21からクラッチC2を介してラビニヨ式の遊星歯車機構40のキャリア44に入力される動力はブレーキB1によるサンギヤ41bの固定によりサンギヤ41b側で反力を受け持つことにより増速されてリングギヤ42を介して出力軸22に出力されるから、入力軸21に入力される動力は前進5速よりも小さな減速比をもって増速して出力軸22に出力される。
 後進1速の状態は、クラッチC3とブレーキB2とをオンとすると共にクラッチC1,C2とブレーキB1とをオフとすることにより形成することができ、この状態では、入力軸21からシングルピニオン式の遊星歯車機構30のリングギヤ32に入力される動力はサンギヤ31の固定によりサンギヤ31側で反力を受け持つことにより減速されてキャリア34およびクラッチC3を介してラビニヨ式の遊星歯車機構40のサンギヤ41bに伝達されると共にサンギヤ41bに入力される動力はブレーキB2によるキャリア44の固定によりキャリア44側で反力を受け持つことにより逆回転してリングギヤ42を介して出力軸22に出力されるから、入力軸21に入力される動力は比較的小さな減速比をもって減速して逆回転の動力として出力軸22に出力される。
 ニュートラルの状態は、ブレーキB2をオンとすると共にクラッチC1~C3とブレーキB1とをオフとすることにより形成したり、クラッチC1~C3とブレーキB1,B2をすべてオフとすることにより形成することができる。実施例では、前者によりニュートラルの状態を形成するものとした。こうする理由については後述する。
 オートマチックトランスミッション20のクラッチC1~C3やブレーキB1,B2は、図3の油圧回路50により駆動される。この油圧回路50は、図示するように、エンジン12からの動力を用いてストレーナ51から作動油を吸引して圧送する機械式オイルポンプ52と、機械式オイルポンプ52により圧送された作動油の圧力(ライン圧PL)を調節するレギュレータバルブ54と、ライン圧PLから図示しないモジュレータバルブを介して入力されたモジュレータ圧PMODを用いてレギュレータバルブ54を駆動するリニアソレノイド56と、ライン圧PLを入力する入力ポート58aとDポジション用出力ポート58bとRポジション用出力ポート58cとが形成されシフトレバー91の操作に連動してシフトレバー91がニュートラル(N)ポジションにあるときには入力ポート58aと両出力ポート58b、58cとの連通を遮断しシフトレバー91がドライブ(D)ポジションにあるときには入力ポート58aとDポジション用出力ポート58bとを連通すると共に入力ポート58aとRポジション用出力ポート58cとの連通を遮断しシフトレバー91がリバース(R)ポジションにあるときには入力ポート58aとDポジション用出力ポート58bとの連通を遮断すると共に入力ポート58aとRポジション用出力ポート58cとを連通するマニュアルバルブ58と、ライン圧PLを入力すると共に調圧してクラッチC1に出力するノーマルクローズ型のリニアソレノイドSLC1と、マニュアルバルブ58のDポジション用出力ポート58bからのドライブ圧PDを入力すると共に調圧して出力するノーマルクローズ型のリニアソレノイドSLC2と、ライン圧PLを入力すると共に調圧して出力するノーマルオープン型のリニアソレノイドSLC3と、マニュアルバルブ58のDポジション用出力ポート58bからのドライブ圧PDを入力すると共に調圧してブレーキB1に出力するノーマルクローズ型のリニアソレノイドSLB1と、リニアソレノイドSLC3からの出力圧であるSLC3圧を入力すると共にクラッチC3か他方の油路69かに選択的に出力するC3リレーバルブ60と、C3リレーバルブ60からの出力圧を他方の油路69を介して入力しクラッチC2か他方の油路79かに選択的に出力すると共にリアソレノイドSLC2からの出力圧であるSLC2圧を入力してC3リレーバルブ60の出力圧をクラッチC2に出力するときにはSLC2圧を油路79に出力しC3リレーバルブ60の出力圧を油路79に出力するときにはSLC2圧を遮断するC2リレーバルブ70と、油路79に出力されたC2リレーバルブ70からの出力圧とマニュアルバルブ58のRポジション用出力ポート58cから出力されたリバース圧PRとを選択的に入力してブレーキB2に出力するB2リレーバルブ80と、ライン圧PLからモジュレータバルブを介して入力されたモジュレータ圧PMODを用いてC2リレーバルブ70に駆動用の信号圧を出力するためのノーマルオープン型のオンオフソレノイドS1と、ライン圧PLからモジュレータバルブを介して入力されたモジュレータ圧PMODを用いてC3リレーバルブ60とB2リレーバルブ80とに駆動用の信号圧を出力するためのノーマルクローズ型のオンオフソレノイドS2などにより構成されている。なお、マニュアルバルブ58のRポジション用出力ポート58cとB2リレーバルブ80の入力ポート82dとの間の油路には、B2リレーバルブ80側の方向に逆止弁59aが設けられると共に逆止弁59aに並列してオリフィス59bが設けられている。ここで、ライン圧は、自動変速機に必要な油圧である。この自動変速機に必要な油圧は、オートマチックトランスミッション20の状態(変速中か否か)やエンジン12から出力されるトルク,車速,スロットル開度,作動油の温度(油温)などから算出される。
 C3リレーバルブ60は、オンオフソレノイドS2からの信号圧を入力する信号圧用入力ポート62aとリニアソレノイドSLC3からの出力圧(SLC3圧)を入力する入力ポート62bとクラッチC3に油圧を出力する出力ポート62cと油路69に油圧を出力する出力ポート62dとドレンポート62eとが形成されたスリーブ62と、スリーブ62内を軸方向に摺動するスプール64と、スプール64を軸方向に付勢するスプリング66とにより構成されている。このC3リレーバルブ60は、オンオフソレノイドS2から信号圧用入力ポート62aに信号圧が入力されていないときにはスプリング66の付勢力によりスプール64が図中左半分の領域に示す位置に移動して入力ポート62bと出力ポート62c(クラッチC3側)とを連通すると共に入力ポート62bと出力ポート62d(C2リレーバルブ70側)との連通を遮断し、オンオフソレノイドS2から信号圧用入力ポート62aに信号圧が入力されているときにはこの信号圧がスプリング66の付勢力に打ち勝ってスプール64が図中右半分の領域に示す位置に移動して入力ポート62bと出力ポート62c(クラッチC3側)との連通を遮断すると共に入力ポート62bと出力ポート62d(C2リレーバルブ70側)とを連通する。なお、入力ポート62bと出力ポート62c(クラッチC3側)との連通が遮断されると、これに伴って出力ポート62cとドレンポート62eとが連通してクラッチC3側の作動油がドレンされるようになっている。
 C2リレーバルブ70は、オンオフソレノイドS1からの信号圧を入力する信号圧用入力ポート72aとC3リレーバルブ60から油路69に出力された出力圧を入力する入力ポート72bとリニアソレノイドSLC2からの出力圧(SLC2圧)を入力する入力ポート72cと油圧をクラッチC2に出力する出力ポート72dと油圧を油路79に出力する出力ポート72eとドレンポート72fとが形成されたスリーブ72と、スリーブ72内を軸方向に摺動するスプール74と、スプール74を軸方向に付勢するスプリング76とにより構成されている。このC2リレーバルブ70は、オンオフソレノイドS1から信号圧用入力ポート72aに信号圧が入力されていないときにはスプリング76の付勢力によりスプール74が図中左半分の領域に示す位置に移動して入力ポート72b(C3リレーバルブ60側)と出力ポート72e(B2リレーバルブ80側)とを連通すると共に入力ポート72c(リニアソレノイドSLC2側)と出力ポート72d(クラッチC2側)とを連通し、オンオフソレノイドS1から信号圧用入力ポート72aに信号圧が入力されているときにはこの信号圧がスプリング76の付勢力に打ち勝ってスプール76が図中右半分の領域に示す位置に移動して入力ポート72b(C2リレーバルブ60側)を遮断し入力ポート72c(リニアソレノイドSLC2側)と出力ポート72e(B2リレーバルブ80側)とを連通すると共に入力ポート72cと出力ポート72d(クラッチC2側)との連通を遮断する。なお、入力ポート72cと出力ポート72d(クラッチC2側)との連通が遮断されると、これに伴って出力ポート72dとドレンポート72fとが連通してクラッチC2側の作動油がドレンされるようになっている。
 B2リレーバルブ80は、オンオフソレノイドS2からの信号圧を入力する信号圧用入力ポート82aとオンオフソレノイドS1からの信号圧をこのB2リレーバルブ80を介してC2リレーバルブ70の信号圧用入力ポート72aに信号圧を出力するための信号圧用入力ポート82bおよび信号圧用出力ポート82cとマニュアルバルブ58のRポジション用出力ポート58cからのリバース圧PRを入力する入力ポート82dとC2リレーバルブ70の出力ポート72eからの出力圧を入力する入力ポート82eと油圧をブレーキB2に出力する出力ポート82fとが形成されたスリーブ82と、スリーブ82内を軸方向に摺動するスプール84と、スプール84を軸方向に付勢するスプリング86とにより構成されている。このB2リレーバルブ80は、オンオフソレノイドS1から信号圧用入力ポート82aに信号圧が入力されていないときにはスプリング86の付勢力によりスプール84が図中左半分の領域に示す位置に移動して信号圧用入力ポート82bを遮断してC2リレーバルブ70の信号圧用入力ポート72aへの信号圧をオフし入力ポート82d(マニュアルバルブ58のRポジション用出力ポート58側)と出力ポート82f(ブレーキB2側)とを連通すると共に入力ポート82e(C2リレーバルブ70側)を遮断し、オンオフソレノイドS2から信号圧用入力ポート82aに信号圧が入力されているときにはこの信号圧がスプリング86の付勢力に打ち勝ってスプール86が図中右半分の領域に示す位置に移動しS1信号圧用入力ポート82bとS1信号圧用出力ポート82cとを連通してオンオフソレノイドS1からの信号圧を信号圧用入力ポート82bおよび信号圧用出力ポート82cを介してC2リレーバルブ70の信号圧用入力ポート72aに出力可能な状態とし入力ポート82d(マニュアルバルブ58のRポジション用出力ポート58側)を遮断すると共に入力ポート82e(C2リレーバルブ70側)と出力ポート82f(クラッチC3側)とを連通する。
 オートマチックトランスミッション20(油圧回路50)は、オートマチックトランスミッション用電子制御ユニット(以下、ATECUという)29により駆動制御されている。ATECU29は、詳細に図示しないが、CPUを中心としたマイクロプロセッサとして構成されており、CPUの他に処理プログラムを記憶するROMと、データを一時的に記憶するRAMと、入出力ポートと、通信ポートとを備える。ATECU29には、入力軸21に取り付けられた回転数センサからの入力軸回転数Ninや出力軸22に取り付けられた回転数センサからの出力軸回転数Noutなどが入力ポートを介して入力されており、ATECU29からは、リニアソレノイド56,SLC1~SLC3,SLB1への駆動信号,オンオフソレノイドS1,S2への駆動信号などが出力ポートを介して出力されている。ATECU29は、メインECU90と通信しており、メインECU90からの制御信号によってオートマチックトランスミッション20(油圧回路50)を制御したり、必要に応じてオートマチックトランスミッション20の状態に関するデータをメインECU90に出力する。
 メインECU90は、詳細には図示しないが、CPUを中心とするマイクロプロセッサとして構成されており、CPUの他に処理プログラムを記憶するROMと、データを一時的に記憶するRAMと、入出力ポートと、通信ポートとを備える。メインECU90には、シフトレバー91の操作位置を検出するシフトポジションセンサ92からのシフトポジションSP,アクセルペダル93の踏み込み量を検出するアクセルペダルポジションセンサ94からのアクセル開度Acc,ブレーキペダル95の踏み込みを検出するブレーキスイッチ96からのブレーキスイッチ信号BSW,車速センサ98からの車速Vなどが入力ポートを介して入力されている。ここで、シフトレバー91は、実施例では、パーキング(P)ポジション,リバース(R)ポジション,ニュートラル(N)ポジション,ドライブ(D)ポジションから選択できるようになっており、選択されたポジションに応じてクラッチC1~C3やブレーキB1,B2がオンオフされる。なお、メインECU90は、前述したように、エンジンECU16やATECU29と通信ポートを介して接続されており、エンジンECU16やATECU29と各種制御信号やデータのやりとりを行なっている。
 こうして構成された自動車10では、シフトレバー91がDポジションにシフト操作されたときには、アクセル開度Accや車速Vに基づいて変速マップを用いて前進1速~前進6速のいずれかを設定し、クラッチC1~C3とブレーキB1,B2のうち設定した変速段に応じて必要なクラッチやブレーキがオンされるようリニアソレノイド56,SLC1~SLC3,SLB1やオンオフソレノイドS1,S2が駆動制御される。
 ここで、実施例の変速機装置としては、オートマチックトランスミッション20と、ATECU29が該当する。
 次に、こうして構成された自動車10が備える実施例の変速機装置の動作、特に、シフトレバー91がNポジションとRポジションとの間で変更されたときの動作やDポジションとRポジションとの間で変更されたときの動作について説明する。まず、シフトレバー91がNポジションとRポジションとの間で変更されたときの動作について説明する。図4は、ATECU29により実行されるR-N切換処理ルーチンの一例を示すフローチャートである。このルーチンは、シフトレバー91がRポジションからNポジションに切り換えられたときやNポジションからRポジションに切り換えられたときに実行される。なお、シフトレバー91がRポジションからNポジションに切り換えられたときには、クラッチC3とブレーキB2とがオンの状態からブレーキB2のみがオンの状態に切り換える処理となり、シフトレバー91がNポジションからRポジションに切り換えられたときには、ブレーキB2のみがオンの状態からクラッチC3とブレーキB2とがオンの状態に切り換える処理となる。以下、図4のルーチンを図5に例示するタイムチャートを参照しながら説明する。
 R-N切換処理ルーチンが実行されると、ATECU29のCPUは、まず、シフトレバー91の切り換えがRポジションからNポジションへの切り換えかNポジションからRポジションへの切り換えのいずれであるかを判定し(ステップS100)、RポジションからNポジションへの切り換えのときには(図5中の時刻t11)、リニアソレノイドSLC3からの出力圧であるSLC3圧が徐々に減少するようリニアソレノイドSLC3を駆動制御する(ステップS110)。これにより、クラッチC3に作用していたクラッチ圧PC3は徐々に小さくなり、クラッチC3の係合が解除される(図5中の時刻t11~t12参照)。また、シフトレバー91がRポジションからNポジションへ切り換えられると、マニュアルバルブ58のライン圧PLを入力する入力ポート58aとRポジション用出力ポート58cとの連通が遮断されると共にブレーキB2側の作動油はオリフィス59bを介してドレンされるから、リバース圧PRによりブレーキB2に作用していたブレーキ圧PB2は値0に徐々に近づいていく(図5中時刻t11~t12参照)。続いて、シフトレバー91がRポジションからNポジションに切り換えられてからSLC3圧が所定圧P0付近となる所定時間T(図5中の時刻t12)が経過するのを待って(ステップS120)、オンオフソレノイドS1とオンオフソレノイドS2とを共にONとし(ステップS130)、SLC3圧が所定圧P0で定圧保持されるようリニアソレノイドSLC3を駆動制御して(ステップS140)、本ルーチンを終了する。前述したように、オンオフソレノイドS1はノーマルオープン型のソレノイドとして構成されオンオフソレノイドS2はノーマルクローズ型のソレノイドとして構成されている。したがって、オンオフソレノイドS1,S2を共にONとすると、オンオフソレノイドS1からは信号圧は出力されなくなると共にオンオフソレノイドS2からは信号圧が出力されるから、リニアソレノイドSLC3からのSLC3圧は、クラッチC3側に供給される状態からC3リレーバルブ60,C2リレーバルブ70,B2リレーバルブ80を順に介してブレーキB2側に供給される状態に切り換えられることになる。実施例では、オンオフソレノイドS1とオンオフソレノイドS2とを共にONとした後、SLC3圧が所定圧P0で定圧保持されるようリニアソレノイドSLC3を駆動制御しているから、所定圧P0がブレーキB2に作用してブレーキB2を係合することになる。ここで、所定圧P0は、実施例では、ブレーキB2のピストンが摩擦板に当接する程度の油圧として設定するものとした。シフトレバー91がNポジションにあるときには、ブレーキB2を完全に係合する必要はないから、必要最小限の所定圧P0でブレーキB2を係合させることにより、エネルギの消費を抑制することができる。
 一方、シフトレバー91の切り換えがNポジションからRポジションのときには(図5中の時刻t13)、オンオフソレノイドS1をONとすると共にオンオフソレノイドS2をOFFとして(ステップS150)、リニアソレノイドSLC3のSLC3圧が値0となるようリニアソレノイドSLC3を駆動制御する(ステップS160)。オンオフソレノイドS1をONとすると共にオンオフソレノイドS2をOFFとすると、オンオフソレノイドS1,S2のいずれからも信号圧は出力されなくなるから、リニアソレノイドSLC3のSLC3圧はクラッチC3側に供給される状態となると共にマニュアルバルブ58のRポジション用出力ポート58cからのリバース圧PRがブレーキB2側に供給される状態となる。また、シフトレバー91がRポジションに操作されると、ライン圧PLが入力されるマニュアルバルブ58の入力ポート58aとRポジション用出力ポート58cとが連通するから、ライン圧PLはマニュアルバルブ58の入力ポート58a,Rポジション用出力ポート58cを介してブレーキB2に作用してブレーキB2を係合することになる。そして、クラッチC3のパッククリアランスを詰めるために作動油を急速充填するファストフィルを実行し(ステップS170)、ファストフィルが完了した後にSLC3圧が徐々に増加し(ステップS180)、クラッチC3の係合に伴ってSLC3圧が最大となるようリニアソレノイドSLC3を駆動制御して(ステップS190)、本ルーチンを終了する。これにより、クラッチC3が係合されてRポジションが形成される。このように、シフトレバー91がRポジションのときにはマニュアルバルブ58のRポジション用出力ポート58からの油圧PRによりブレーキB2を係合すると共にリニアソレノイドSLC3からのSLC3圧によりクラッチC3を係合し、シフトレバー91がNポジションのときにはリニアソレノイドSLC3からのSLC3圧をクラッチC3に代えてブレーキB2に供給することによりブレーキB2を係合するのである。これにより、ブレーキB2を係合するための専用のリニアソレノイドを設ける必要をなくすことができる。
 次に、シフトレバー91がDポジションとRポジションとの間で変更されたときの動作について説明する。図6は、ATECU29により実行されるD-R切換処理ルーチンの一例を示すフローチャートである。このルーチンは、シフトレバー91がDポジションからRポジションに切り換えられたときやRポジションからDポジションに切り換えられたときに実行される。なお、シフトレバー91がDポジションからRポジションに切り換えられたときには、クラッチC1とブレーキB2とがオンの状態からブレーキB2のみがオンの状態に切り換える処理となり、シフトレバー91がRポジションからDポジションに切り換えられたときには、前進1速の非エンジンブレーキの状態すなわちブレーキB2のみがオンの状態からクラッチC1とブレーキB2とがオンの状態に切り換える処理となる。以下、図6のルーチンを図7に例示するタイムチャートを参照しながら説明する。
 D-R切換処理ルーチンが実行されると、ATECU29のCPUは、まず、シフトレバー91の切り換えがDポジションからRポジションへの切り換えかRポジションからDポジションへの切り換えのいずれであるかを判定し(ステップS200)、DポジションからRポジションへの切り換えのときには(図7中の時刻t21)、クラッチC1の係合を解除するためにリニアソレノイドSLC1からの出力圧であるSLC1圧が値0となるようリニアソレノイドSLC1を駆動制御し(ステップS210)、オンオフソレノイドS1をONとすると共にオンオフソレノイドS2をOFFとする(ステップS220)。これにより、オンオフソレノイドS1,S2のいずれからも信号圧は出力されなくなるから、リニアソレノイドSLC3のSLC3圧はクラッチC3側に供給される状態となると共にマニュアルバルブ58のRポジション用出力ポート58cからの油圧PRがブレーキB2側に供給される状態となり、ライン圧PLはマニュアルバルブ58の入力ポート58a,Rポジション用出力ポート58cを介してリバース圧PRとしてブレーキB2に作用してブレーキB2を係合することになる。そして、クラッチC3に対して前述したファストフィルを実行し(ステップS230)、リニアソレノイドSLC3のSLC3圧を徐々に増加し(ステップS240)、クラッチC3の係合に伴ってSLC3圧が最大となるようリニアソレノイドSLC3を駆動制御して(ステップS250)、本ルーチンを終了する。
 一方、シフトレバー91の切り換えがRポジションからDポジションのときには(図7中の時刻t22)、リニアソレノイドSLC3のSLC3圧が徐々に減少するようリニアソレノイドSLC3を駆動制御する(ステップS260)。これにより、クラッチC3に作用していたクラッチ圧PC3は徐々に小さくなり、クラッチC3の係合が解除される(図7中の時刻22~t23参照)。また、シフトレバー91がRポジションからDポジションへ切り換えられると、マニュアルバルブ58のライン圧PLを入力する入力ポート58aとRポジション用出力ポート58cとの連通が遮断されるから、Rポジション用出力ポート58cからブレーキB2に作用するブレーキ圧PB2は値0に近づいていく(図7中の時刻t22~t23参照)。続いて、クラッチC1に対してファストフィルを実行し(ステップS270)、リニアソレノイドSLC1の出力圧であるSLC1圧を徐々に増加するようリニアソレノイドSLC1を駆動制御する(ステップS280)。続いて、シフトレバー91がRポジションからDポジションに切り換えられてから所定時間Tが経過するのを待って(ステップS290)、オンオフソレノイドS1をOFFとすると共にオンオフソレノイドS2をONとする(ステップS300)。これにより、オンオフソレノイドS1,S2のいずれからも信号圧が出力されるから、リニアソレノイドSLC2のSLC2圧はブレーキB2側に供給される状態となると共にリニアソレノイドSLC3のSLC3圧は遮断される状態となる。そして、リニアソレノイドSLC2のSLC2圧が前述した所定圧P0となると共にこの所定圧P0で定圧保持されるようリニアソレノイドSLC2を駆動制御し(ステップS310)、クラッチC1の係合に伴ってリニアソレノイドSLC1のSLC1圧が最大となるようリニアソレノイドSLC1を駆動制御して(ステップS320)、本ルーチンを終了する。これにより、クラッチC1が係合されると共にブレーキB2が係合されてDポジションの前進1速が形成される。このように、シフトレバー91がRポジションのときにはマニュアルバルブ58のRポジション用出力ポート58cからの油圧PRによりブレーキB2を係合すると共にリニアソレノイドSLC3からのSLC3圧によりクラッチC3を係合し、シフトレバー91がDポジションのときにはリニアソレノイドSLC2からのSLC2圧をブレーキB2に供給することによりブレーキB2を係合すると共にリニアソレノイドSLC1からのSLC1圧をクラッチC1に供給することによりクラッチC1を係合するのである。これにより、ブレーキB2を係合するための専用のリニアソレノイドを設ける必要をなくすことができる。
 実施例では、シフトレバー91がNポジションのときには、リニアソレノイドSLC3のSLC3圧を用いてブレーキB2を係合し、シフトレバー91がDポジションのときには、リニアソレノイドSLC2のSLC2圧を用いてブレーキB2を係合している。これは、DポジションのときにもNポジションのときと同様にリニアソレノイドSLC3のSLC3圧を用いてブレーキB2を係合することもできるが、この場合、リニアソレノイドSLC3はSLC3圧を前進3速を形成するためのクラッチC3に供給するよう構成されているため、前進3速から前進1速(エンジンブレーキ時)にダウンシフト変速するときに一つのリニアソレノイドSLC3でクラッチC3からブレーキB2につかみ替える必要が生じ、スムーズなダウンシフト変速を妨げることに基づく。
 以上説明した実施例の変速機装置によれば、シフトレバー91がRポジションのときにはマニュアルバルブ58のRポジション用出力ポート58からのリバース圧PRによりブレーキB2を係合すると共にリニアソレノイドSLC3からのSLC3圧によりクラッチC3を係合して後進1速の状態を形成し、シフトレバー91がNポジションのときにはリニアソレノイドSLC3からのSLC3圧をクラッチC3に代えてブレーキB2に供給することによりブレーキB2を係合してニュートラルの状態を形成するから、ブレーキB2を係合するための専用のリニアソレノイドを設ける必要がない。この結果、リニアソレノイドを別途配置することによる油圧回路50の消費流量(消費エネルギ)を増加を抑制して装置全体のエネルギ効率を向上させることができると共に装置全体の小型化を図ることができる。もとより、Rポジション時に係合されるクラッチC3とブレーキB2のうちブレーキB2をNポジション時に係合しておくことにより、NポジションからRポジションに切り換えるときにはクラッチC3のみを係合すればよいから、シフト操作に対する応答性(レスポンス)をより向上させることができる。しかも、シフトレバー91がDポジションのときには前進3速の形成に用いるクラッチC3に油圧を供給するリニアソレノイドSLC3とは異なるリニアソレノイドSLC2からのSLC2圧をブレーキB2に供給することによりブレーキB2を係合すると共にリニアソレノイドSLC1からのSLC1圧をクラッチC1に供給することによりクラッチC1を係合するから、前進3速から前進1速にダウンシフト変速をスムーズに行なうことができる。さらに、シフトレバー91がDポジション(前進1速の非エンジンブレーキ時)のときやNポジションのときには、ブレーキB2の係合圧を必要最小限の所定圧P0に設定するから、油圧回路50の消費流量(エネルギ消費)をさらに抑制することができる。
 次に、第2実施例の変速機装置について説明する。図8は、第2実施例の変速機装置が備える油圧回路150の構成の概略を示す構成図である。なお、第2実施例の変速機装置では、実施例の変速機装置と同一の構成については同一の符号を付し、その説明は重複するから省略する。第2実施例の油圧回路150は、図示するように、実施例の油圧回路50が備えるC3リレーバルブ60とC2リレーバルブ70とB2リレーバルブ80の3つのリレーバルブとこれらを駆動するノーマルオープン型のオンオフソレノイドS1およびノーマルクローズ型のオンオフソレノイドS2に代えて、リニアソレノイドSLC3からの出力圧であるSLC3圧をクラッチC3に出力すると共にマニュアルバルブ58のRポジション用出力ポート58cからの出力圧であるリバース圧PRをブレーキB2に出力する状態とSLC3圧をブレーキB2に出力すると共にリバース圧PRを遮断する状態とを切り替えるC3リレーバルブ160と、このC3リレーバルブ160を駆動するノーマルクローズ型のオンオフソレノイドSとを備える。この油圧回路150を用いたときのオートマチックトランスミッション20の作動表を図9に示す。
 C3リレーバルブ160は、図8に示すように、オンオフソレノイドSからの信号圧を入力する信号圧用入力ポート162aとマニュアルバルブ58のRポジション用出力ポート58cからのリバース圧PRを入力する入力ポート162bとリニアソレノイドSLC3からの出力圧(SLC3圧)を入力する入力ポート162cとクラッチC3に油圧を出力する出力ポート162dとブレーキB2に油圧を出力する出力ポート162eとドレンポート162fとが形成されたスリーブ162と、スリーブ162内を軸方向に摺動するスプール164と、スプール164を軸方向に付勢するスプリング166とにより構成されている。このC3リレーバルブ160は、オンオフソレノイドSから信号圧用入力ポート162aに信号圧が入力されていないときには、スプリング166の付勢力によりスプール164が図中左半分の領域に示す位置に移動し、入力ポート162b(マニュアルバルブ58のRポジション用出力ポート58c側)と出力ポート162e(ブレーキB2側)とを連通すると共に入力ポート162c(リニアソレノイドSLC3の出力ポート側)と出力ポート162d(クラッチC3側)とを連通する。一方、オンオフソレノイドSから信号圧用入力ポート162aに信号圧が入力されているときには、この信号圧がスプリング166の付勢力に打ち勝ってスプール164が図中右半分の領域に示す位置に移動し、入力ポート162b(マニュアルバルブ58のRポジション用出力ポート58c側)を閉塞し入力ポート162c(リニアソレノイドSLC3の出力ポート側)と出力ポート162d(クラッチC3側)との連通を遮断すると共に入力ポート162cと出力ポート162e(ブレーキB2側)とを連通する。なお、入力ポート162c(リニアソレノイドSLC3の出力ポート側)と出力ポート162d(クラッチC3側)との連通が遮断されると、これに伴って出力ポート162dとドレンポート162fとが連通してクラッチC3に供給されている作動油がドレンされるようになっている。
 次に、こうして構成された第2実施例の変速機装置の動作について説明する。図10は、ATECU29により実行されるR-N切換処理ルーチンの一例を示すフローチャートである。このルーチンは、シフトレバー91がRポジションからNポジションに切り換えられたときやNポジションからRポジションに切り換えられたときに実行される。以下、図10のルーチンを図11に例示するタイムチャートを参照しながら説明する。
 R-N切換処理ルーチンが実行されると、ATECU29のCPUは、まず、シフトレバー91の切り換えがRポジションからNポジションへの切り換えかNポジションからRポジションへの切り換えのいずれであるかを判定し(ステップS400)、RポジションからNポジションへの切り換えのときには(図11中の時刻t31)、リニアソレノイドSLC3からの出力圧であるSLC3圧が徐々に減少するようリニアソレノイドSLC3を駆動制御する(ステップS410)。これにより、クラッチC3に作用していたクラッチ圧PC3は徐々に小さくなり、クラッチC3の係合が解除される(図11中の時刻t31~t32参照)。また、シフトレバー91がRポジションからNポジションへ切り換えられると、ブレーキB2に作用していたブレーキ圧PB2は値0に徐々に近づいていく(図11中の時刻t31~t32参照)。続いて、シフトレバー91がRポジションからNポジションに切り換えられてからSLC3圧が所定圧P0付近となる所定時間T(図11中の時刻t32)が経過するのを待って(ステップS420)、オンオフソレノイドSをONとし(ステップS430)、SLC3圧が所定圧P0で定圧保持されるようリニアソレノイドSLC3を駆動制御して(ステップS440)、本ルーチンを終了する。前述したように、オンオフソレノイドSはノーマルクローズ型のソレノイドとして構成されており、オンオフソレノイドSをONとすると、オンオフソレノイドSから信号圧が出力されるから、リニアソレノイドSLC3からのSLC3圧は、C3リレーバルブ160を介してブレーキB2に供給されることになる。実施例では、オンオフソレノイドSをONとした後、SLC3圧が所定圧P0で定圧保持されるようリニアソレノイドSLC3を駆動制御しているから、所定圧P0がブレーキB2に作用してブレーキB2を係合することになる。ここで、所定圧P0は、実施例では、ブレーキB2のピストンが摩擦板に当接する程度の油圧(ストロークエンド圧Pse以下の油圧)として設定するものとした。シフトレバー91がNポジションにあるときには、ブレーキB2を完全に係合する必要はないから、必要最小限の所定圧P0でブレーキB2を係合させることにより、エネルギの消費を抑制することができる。
 一方、シフトレバー91の切り換えがNポジションからRポジションのときには(図11中の時刻t33)、オンオフソレノイドSをOFFとして(ステップS450)、リニアソレノイドSLC3のSLC3圧がストロークエンド圧Pse以下の所定圧P0となるようリニアソレノイドSLC3を駆動制御する(ステップS460)。オンオフソレノイドSをOFFとすると、オンオフソレノイドSから信号圧は出力されなくなるから、C3リレーバルブ160により、リニアソレノイドSLC3からのSLC3圧がクラッチC3に供給され、ライン圧がマニュアルバルブ58の入力ポート58a,Rポジション用出力ポート58cを介してリバース圧PRとしてブレーキB2に供給される状態となる。そして、クラッチC3のパッククリアランスを詰めるために作動油を急速充填するファストフィルを実行し(ステップS470)、ファストフィルが完了した後にSLC3圧が徐々に増加し(ステップS480)、クラッチC3の係合に伴ってSLC3圧が最大となるようリニアソレノイドSLC3を駆動制御して(ステップS490)、本ルーチンを終了する。これにより、クラッチC3が係合されてRポジションが形成される。このように、シフトレバー91がRポジションのときにはマニュアルバルブ58のRポジション用出力ポート58からのリバース圧PRによりブレーキB2を係合すると共にリニアソレノイドSLC3からのSLC3圧によりクラッチC3を係合し、シフトレバー91がNポジションのときにはリニアソレノイドSLC3からのSLC3圧をクラッチC3に代えてブレーキB2に供給することによりブレーキB2を係合するのである。これにより、ブレーキB2を係合するための専用のリニアソレノイドを設ける必要をなくすことができる。
 次に、シフトレバー91がDポジションとRポジションとの間で変更されたときの動作について説明する。図12は、ATECU29により実行されるD-R切換処理ルーチンの一例を示すフローチャートである。このルーチンは、シフトレバー91がDポジションからRポジションに切り換えられたときやRポジションからDポジションに切り換えられたときに実行される。以下、図12のルーチンを図13に例示するタイムチャートを参照しながら説明する。
 D-R切換処理ルーチンが実行されると、ATECU29のCPUは、まず、シフトレバー91の切り換えがDポジションからRポジションへの切り換えかRポジションからDポジションへの切り換えのいずれであるかを判定し(ステップS500)、DポジションからRポジションへの切り換えのときには(図13中の時刻t41)、クラッチC1の係合を解除するためにリニアソレノイドSLC1からの出力圧であるSLC1圧が値0となるようリニアソレノイドSLC1を駆動制御し(ステップS510)、オンオフソレノイドSをOFFとする(ステップS520)。これにより、オンオフソレノイドSから信号圧は出力されなくなるから、C3リレーバルブ160により、リニアソレノイドSLC3のSLC3圧はクラッチC3側に供給されると共にライン圧がマニュアルバルブ58の入力ポート58a,Rポジション用出力ポート58cを介してリバース圧PRとしてブレーキB2側に供給される状態となる。そして、リニアソレノイドSLC3のSLC3圧がストロークエンド圧Pse以下の所定圧P0となるようリニアソレノイドSLC3を駆動制御し(ステップS530)、クラッチC3に対して前述したファストフィルを実行し(ステップS540)、リニアソレノイドSLC3のSLC3圧を徐々に増加し(ステップS550)、クラッチC3の係合に伴ってSLC3圧が最大となるようリニアソレノイドSLC3を駆動制御して(ステップS560)、本ルーチンを終了する。
 一方、シフトレバー91の切り換えがRポジションからDポジションのときには(図13中の時刻t42)、リニアソレノイドSLC3のSLC3圧が徐々に減少するようリニアソレノイドSLC3を駆動制御する(ステップS570)。これにより、クラッチC3に作用していたクラッチ圧PC3は徐々に小さくなり、クラッチC3の係合が解除される(図13中の時刻42~t43参照)。また、シフトレバー91がRポジションからDポジションへ切り換えられると、マニュアルバルブ58のライン圧PLを入力する入力ポート58aとRポジション用出力ポート58cとの連通が遮断されるから、Rポジション用出力ポート58cからブレーキB2に作用するブレーキ圧PB2は値0に近づいていく(図13中の時刻t42~t43参照)。続いて、シフトレバー91がRポジションからDポジションに切り換えられてからブレーキ圧PB2が所定圧P0付近となる所定時間T2(図13中の時刻t43)が経過を待って(ステップS580)、オンオフソレノイドSをONとして(ステップS590)、SLC3圧が所定圧P0で保持されるようリニアソレノイドSLC3を駆動制御する(ステップS600)。これにより、オンオフソレノイドSから信号圧が出力されるから、C3リレーバルブ160により、リニアソレノイドSLC3のSLC3圧はブレーキB2側に供給される状態となり、所定圧P0によりブレーキB2が係合されることになる。そして、リニアソレノイドSLC1を駆動制御することによりクラッチC1に対してファストフィルを実行し(ステップS610)、リニアソレノイドSLC1の出力圧であるSLC1圧を徐々に増加し(ステップS620)クラッチC1の係合に伴ってリニアソレノイドSLC1のSLC1圧が最大となるようリニアソレノイドSLC1を駆動制御して(ステップS630)、本ルーチンを終了する。これにより、クラッチC1が係合されると共にブレーキB2が係合されてDポジションの前進1速が形成される。このように、シフトレバー91がRポジションのときにはマニュアルバルブ58のRポジション用出力ポート58cからのリバース圧PRによりブレーキB2を係合すると共にリニアソレノイドSLC3からのSLC3圧によりクラッチC3を係合し、シフトレバー91がDポジションのときにはリニアソレノイドSLC3からのSLC3圧をブレーキB2に供給することによりブレーキB2を係合すると共にリニアソレノイドSLC1からのSLC1圧をクラッチC1に供給することによりクラッチC1を係合するのである。これにより、ブレーキB2を係合するための専用のリニアソレノイドを設ける必要をなくすことができる。
 実施例や第2実施例の変速機装置では、シフトレバー91がNポジションのときにはリニアソレノイドSLC3のSLC3圧を用いてブレーキB2を係合しシフトレバー91がDポジションのとき(前進1速の非エンジンブレーキ時)にはリニアソレノイドSLC2のSLC2圧を用いてブレーキB2を係合するものとしたが、これに限定されるものではなく、DポジションのときにもNポジションのときと同様にリニアソレノイドSLC3のSLC3圧を用いてブレーキB2を係合するものとしても差し支えない。
 実施例や第2実施例の変速機装置では、シフトレバー91がDポジションのとき(前進1速の非エンジンブレーキ時)にブレーキB2を係合するものとしたが、前進1速の非エンジンブレーキ時ではブレーキB2に代えてワンウェイクラッチF1が係合されるから、ブレーキB2を係合しないものとしても差し支えない。
 実施例や第2実施例の変速機装置では、各リニアソレノイドSLC1~SLC3としてライン圧PLから最適なクラッチ圧を生成して対応するクラッチやブレーキをダイレクトに制御するダイレクト制御用のリニアソレノイドとして構成するものとしたが、リニアソレノイドをパイロット制御用のものとして用いて別途コントロールバルブを駆動することによりこのコントロールバルブによりクラッチ圧を生成して対応するクラッチやブレーキを制御するものとしてもよい。
 実施例や第2実施例の変速機装置では、オートマチックトランスミッション20を前進1速~前進6速の6段変速の有段変速機により構成するものとしたが、これに限定されるものではなく、2~5段変速の有段変速機により構成するものとしてもよいし、7段以上の有段変速機により構成するものとしてもよい。
 ここで、実施例の主要な要素と発明の開示の欄に記載した発明の主要な要素との対応関係について説明する。実施例では、ブレーキB2が「第1の係合要素」に相当し、クラッチC3が「第2の係合要素」に相当し、機械式オイルポンプ52やレギュレータバルブ54,リニアソレノイド56が「圧送手段」に相当し、マニュアルバルブ58が「流体圧入出力手段」に相当し、リニアソレノイドSLC3が「第1の調圧手段」に相当し、C3リレーバルブ60やC2リレーバルブ70,B2リレーバルブ80,オンオフソレノイドS1,S2が「選択出力手段」に相当する。また、クラッチC1が「第3の係合要素」に相当し、クラッチC2或いはクラッチC3が「第4の係合要素」に相当し、リニアソレノイドSLC2が「第2の調圧手段」に相当する。さらに、C3リレーバルブ60やC2リレーバルブ70,B2リレーバルブ80が「切り換えバルブ」に相当し、オンオフソレノイドS1,S2が「信号圧出力手段」に相当する。また、C3リレーバルブ160も「切り換えバルブ」に相当する。また、C3リレーバルブ60が「第1の切り換えバルブ」に相当し、B3リレーバルブ80が「第2の切り換えバルブ」に相当し、C2リレーバルブ70が「第3の切り換えバルブ」に相当する。また、出力ポート62dや出力ポート162eが「第1の出力ポート」に相当し、出力ポート62cや出力ポート162dが「第2の出力ポート」に相当し、出力ポート72eが「第3の出力ポート」に相当し、出力ポート72dが「第4の出力ポート」に相当し、入力ポート82eや入力ポート162cが「第1の入力ポート」に相当し、入力ポート82bや入力ポート162bが「第2の入力ポート」に相当し、入力ポート72bが「第3の入力ポート」に相当し、入力ポート72cが「第4の入力ポート」に相当する。なお、実施例の主要な要素と発明の開示の欄に記載した発明の主要な要素との対応関係は、実施例が発明の開示の欄に記載した発明を実施するための最良の形態を具体的に説明するための一例であることから、発明の開示の欄に記載した発明の要素を限定するものではない。即ち、発明の開示の欄に記載した発明についての解釈はその欄の記載に基づいて行なわれるべきものであり、実施例は発明の開示の欄に記載した発明の具体的な一例に過ぎないものである。
 以上、本発明を実施するための最良の形態について実施例を用いて説明したが、本発明はこうした実施例に何等限定されるものではなく、本発明の要旨を逸脱しない範囲内において、種々なる形態で実施し得ることは勿論である。
 本出願は、2008年9月12日に出願された日本国特許出願第2008-235747号を優先権主張の基礎としており、その内容の全てが引用により本明細書に含まれる。
 本発明は、自動車産業などに利用可能である。

Claims (12)

  1.  車両に搭載され、後進用ポジションにシフト操作されたときには複数の係合要素のうち第1の係合要素と第2の係合要素とを係合し、中立ポジションにシフト操作されたときには前記第1の係合要素を係合することが可能な自動変速機を備える変速機装置であって、
     流体圧源の流体圧を調圧してライン圧として出力する圧送手段と、
     前記後進用ポジションにシフト操作されたときには前記ライン圧を入力して複数の出力ポートのうち後進ポジション用出力ポートから出力し、前記中立ポジションにシフト操作されたときには前記複数の出力ポートを遮断する流体圧入出力手段と、
     前記ライン圧を入力すると共に調圧して出力する第1の調圧手段と、
     前記後進用ポジションにシフト操作されたときには前記後進ポジション用出力ポートから出力された流体圧を前記第1の係合要素に出力すると共に前記第1の調圧手段から出力された流体圧を前記第2の係合要素に出力し、前記中立ポジションにシフト操作されたときには前記第1の調圧手段から出力された流体圧を前記第1の係合要素に出力する選択出力手段と、
     を備える変速機装置。
  2.  前進用ポジションにシフト操作されたときには、前記複数の係合要素のうち前記第1の係合要素と第3の係合要素とを係合することにより発進用変速段を形成し、前記複数の係合要素のうち少なくとも第4の係合要素を係合することにより前記発進用変速段以外の変速段を形成可能な請求項1記載の変速機装置であって、
     前記選択出力手段は、前記前進用ポジションにシフト操作されたときには、前記第1の調圧手段から出力される流体圧を前記前進用ポジションのうち前記第4の係合要素か前記第1の係合要素かに選択的に出力する手段である
     変速機装置。
  3.  前記第4の係合要素は、前記前進用ポジションにシフト操作されたときには、前記発進用変速段との間で直接に切り換えを伴わない変速段を形成可能な要素である請求項2記載の変速機装置。
  4.  前記第1の調圧手段は、前記中立ポジションにシフト操作されたときには、前記第1の係合要素が完全に係合するときの係合圧よりも低い低係合圧で係合されるよう調圧する手段である請求項1ないし3いずれか1項に記載の変速機装置。
  5.  前記選択出力手段は、前記第1の調圧手段から出力された流体圧を入力する第1の入力ポートと前記流体入出力手段の前記後進ポジション用出力ポートから出力された流体圧を入力する第2の入力ポートと前記第1の係合要素に流体圧を出力する第1の出力ポートと前記第2の係合要素に流体圧を出力する第2の出力ポートとを有し、前記第1の入力ポートに入力された流体圧を前記第1の出力ポートから出力する状態と前記第1の入力ポートに入力された流体圧を前記第2の出力ポートから出力すると共に前記第2の入力ポートに入力された流体圧を該第1の出力ポートから出力する状態とを選択的に切り換える切り換えバルブと、前記切り換えバルブを駆動する信号圧を出力する信号圧出力手段とを備える手段である請求項1ないし4いずれか1項に記載の変速機装置。
  6.  前進用ポジションにシフト操作されたときには、前記複数の係合要素のうち前記第1の係合要素と第3の係合要素とを係合することにより発進用変速段を形成し、前記複数の係合要素のうち少なくとも第4の係合要素を係合することにより前記発進用変速段以外の変速段を形成可能な請求項1記載の変速機装置であって、
     前記流体圧入出力手段は、前記前進用ポジションにシフト操作されたときに前記ライン圧を入力して前記複数の出力ポートのうち前進ポジション用出力ポートから出力する手段であり、
     前記前進ポジション用出力ポートから出力された流体圧を入力すると共に調圧して出力する第2の調圧手段を備え、
     前記選択出力手段は、前記前進用ポジションにシフト操作されたときには、前記第2の調圧手段から出力される流体圧を前記前進用ポジションのうち前記第4の係合要素か前記第1の係合要素かに選択的に出力する手段である
     変速機装置。
  7.  前記第4の係合要素は、前記前進用ポジションにシフト操作されたときには、前記発進用変速段との間で直接に切り換えを伴わない変速段を形成可能な要素である請求項6記載の変速機装置。
  8.  請求項6記載の変速機装置であって、
     前記選択出力手段は、前記前進用ポジションにシフト操作されたときには、前記第1の調圧手段から出力される流体圧を前記第2の係合要素に出力し、
     前記第2の係合要素は、前記前進用ポジションにシフト操作されたときには、前記発進用変速段以外の変速段であり、かつ、前記発進用変速段との間で直接に切り換えを伴う変速段を形成可能な要素である
     変速機装置。
  9.  前記第1の調圧手段は、前記中立ポジションにシフト操作されたときには、前記第1の係合要素が完全に係合するときの係合圧よりも低い低係合圧で係合されるよう調圧する手段である請求項6または7記載の変速機装置。
  10.  前記選択出力手段は、前記第1の調圧手段から出力された流体圧を入力して第1の出力ポートか前記第2の係合要素に流体圧を供給する第2の出力ポートかに選択的に出力する第1の切り換えバルブと、前記第1の切り換えバルブの前記第1の出力ポートから出力された流体圧を入力する第1の入力ポートと前記流体入出力手段の前記後進ポジション用出力ポートから出力された流体圧を入力する第2の入力ポートとを有し該第1および第2の入力ポートに入力された流体圧を前記第1の係合要素に選択的に出力する第2の切り換えバルブと、前記第1および第2の切り換えバルブを駆動する信号圧を出力する信号圧出力手段とを備える手段である請求項1記載の変速機装置。
  11.  前記選択出力手段は、前記第1の調圧手段から出力された流体圧を入力して第1の出力ポートか前記第2の係合要素に流体圧を供給する第2の出力ポートかに選択的に出力する第1の切り換えバルブと、第1の入力ポートと前記流体入出力手段の前記後進ポジション用出力ポートから出力された流体圧を入力する第2の入力ポートとを有し該第1または第2の入力ポートに流体圧を選択的に入力して前記第1の係合要素に出力する第2の切り換えバルブと、前記第1の切り換えバルブの前記第1の出力ポートから出力された流体圧を入力する第3の入力ポートと前記第2の調圧手段から出力された流体圧を入力する第4の入力ポートと前記第2の切り換えバルブの前記第1の入力ポートに流体圧を出力する第3の出力ポートと前記第4の係合要素に流体圧を出力する第4の出力ポートとを有し前記第4の入力ポートに入力された流体圧を前記第3の出力ポートに出力するか前記第3の入力ポートに流体圧を入力して該第3の出力ポートに出力すると共に前記第4の入力ポートに流体圧を入力して前記第4の係合要素に出力する第3の切り換えバルブと、前記第1~第3の切り換えバルブを駆動する信号圧を出力する信号圧出力手段とを備える手段である請求項6記載の変速機装置。
  12.  請求項1ないし11いずれか1項に記載の変速機装置を搭載する車両。
PCT/JP2009/065953 2008-09-12 2009-09-11 変速機装置およびこれを搭載する車両 WO2010030006A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP09813152.7A EP2246595B1 (en) 2008-09-12 2009-09-11 Transmission device and vehicle equipped with the same
KR1020107020502A KR101197367B1 (ko) 2008-09-12 2009-09-11 변속기 장치 및 이를 탑재하는 차량
JP2010528767A JP5223925B2 (ja) 2008-09-12 2009-09-11 変速機装置およびこれを搭載する車両
CN2009801091005A CN101970908B (zh) 2008-09-12 2009-09-11 变速器装置及装载有该变速器装置的车辆

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-235747 2008-09-12
JP2008235747 2008-09-12

Publications (1)

Publication Number Publication Date
WO2010030006A1 true WO2010030006A1 (ja) 2010-03-18

Family

ID=42005256

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/065953 WO2010030006A1 (ja) 2008-09-12 2009-09-11 変速機装置およびこれを搭載する車両

Country Status (6)

Country Link
US (1) US8262527B2 (ja)
EP (1) EP2246595B1 (ja)
JP (1) JP5223925B2 (ja)
KR (1) KR101197367B1 (ja)
CN (1) CN101970908B (ja)
WO (1) WO2010030006A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102844592A (zh) * 2010-03-30 2012-12-26 爱信艾达株式会社 自动变速器的控制装置
JP2016194313A (ja) * 2015-03-31 2016-11-17 アイシン・エィ・ダブリュ株式会社 自動変速機の油圧制御装置

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5310530B2 (ja) * 2009-03-19 2013-10-09 アイシン・エィ・ダブリュ株式会社 自動変速機の油圧制御装置
JP5123977B2 (ja) * 2010-04-15 2013-01-23 ジヤトコ株式会社 自動変速機及びその油圧制御方法
JP5494277B2 (ja) * 2010-06-22 2014-05-14 アイシン・エィ・ダブリュ株式会社 油圧回路装置
JP5423710B2 (ja) * 2011-03-30 2014-02-19 アイシン・エィ・ダブリュ株式会社 油圧制御装置
JP6106946B2 (ja) * 2012-04-23 2017-04-05 マツダ株式会社 自動変速機の制御方法及び制御装置
JP6197469B2 (ja) * 2013-08-12 2017-09-20 アイシン・エィ・ダブリュ株式会社 車両用駆動装置
JP6115433B2 (ja) * 2013-09-30 2017-04-19 アイシン・エィ・ダブリュ株式会社 油圧装置
JP6532595B2 (ja) * 2016-03-25 2019-06-19 アイシン・エィ・ダブリュ株式会社 油圧制御装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05157164A (ja) 1991-12-03 1993-06-22 Aisin Aw Co Ltd 車両用自動変速機のサーボ油圧制御装置
JPH08145161A (ja) * 1994-11-25 1996-06-04 Toyota Motor Corp 自動変速機の油圧制御装置
JPH08277916A (ja) * 1995-03-31 1996-10-22 Nippon Soken Inc 車両用自動変速装置
JPH08326888A (ja) * 1995-01-31 1996-12-10 Mazda Motor Corp 自動変速機の油圧制御装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3187867B2 (ja) * 1991-06-29 2001-07-16 マツダ株式会社 自動変速機の油圧回路
JP3653839B2 (ja) 1995-01-31 2005-06-02 マツダ株式会社 自動変速機の油圧制御装置
KR0154049B1 (ko) * 1995-08-22 1998-10-15 전성원 차량용 자동변속기의 유압제어시스템
US6027427A (en) * 1997-10-15 2000-02-22 Hyundai Motor Co. Hydraulic control systems for an automatic transmission
KR100331625B1 (ko) * 2000-06-08 2002-04-09 이계안 차량용 자동 변속기의 유압 제어 시스템
JP5157028B2 (ja) * 2001-03-23 2013-03-06 アイシン精機株式会社 自動変速機
KR100387509B1 (ko) * 2001-08-21 2003-06-18 현대자동차주식회사 차량용 자동 변속기의 유압 제어시스템
JP2003247634A (ja) * 2002-02-21 2003-09-05 Aisin Seiki Co Ltd 自動変速機の制御方法
KR100460888B1 (ko) * 2002-08-12 2004-12-09 현대자동차주식회사 차량용 자동 변속기의 유압 제어 시스템
JP4211723B2 (ja) * 2004-10-14 2009-01-21 トヨタ自動車株式会社 自動変速機の油圧制御装置
JP2006234052A (ja) * 2005-02-24 2006-09-07 Aisin Seiki Co Ltd 自動変速機の油圧制御装置
JP4506655B2 (ja) * 2005-11-24 2010-07-21 トヨタ自動車株式会社 車両用自動変速機の油圧制御装置
JP4748601B2 (ja) * 2006-12-26 2011-08-17 トヨタ自動車株式会社 自動変速機の油圧制御装置、及びそれを備えたハイブリッド駆動装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05157164A (ja) 1991-12-03 1993-06-22 Aisin Aw Co Ltd 車両用自動変速機のサーボ油圧制御装置
JPH08145161A (ja) * 1994-11-25 1996-06-04 Toyota Motor Corp 自動変速機の油圧制御装置
JPH08326888A (ja) * 1995-01-31 1996-12-10 Mazda Motor Corp 自動変速機の油圧制御装置
JPH08277916A (ja) * 1995-03-31 1996-10-22 Nippon Soken Inc 車両用自動変速装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102844592A (zh) * 2010-03-30 2012-12-26 爱信艾达株式会社 自动变速器的控制装置
JP2016194313A (ja) * 2015-03-31 2016-11-17 アイシン・エィ・ダブリュ株式会社 自動変速機の油圧制御装置

Also Published As

Publication number Publication date
EP2246595A1 (en) 2010-11-03
JP5223925B2 (ja) 2013-06-26
US20100144488A1 (en) 2010-06-10
CN101970908B (zh) 2013-10-09
JPWO2010030006A1 (ja) 2012-02-02
CN101970908A (zh) 2011-02-09
KR101197367B1 (ko) 2012-11-05
US8262527B2 (en) 2012-09-11
EP2246595A4 (en) 2013-08-28
KR20100121668A (ko) 2010-11-18
EP2246595B1 (en) 2019-05-08

Similar Documents

Publication Publication Date Title
JP5223925B2 (ja) 変速機装置およびこれを搭載する車両
JP4506655B2 (ja) 車両用自動変速機の油圧制御装置
JP5348048B2 (ja) 動力伝達機構の制御装置および動力伝達装置
US7393299B2 (en) Hydraulic control apparatus and hydraulic control method for automatic transmission
US8725343B2 (en) Control device for automatic transmission
WO2011122107A1 (ja) 自動変速機の制御装置
WO2010058660A1 (ja) 動力伝達装置およびこれを搭載する車両
JP4211646B2 (ja) 自動変速機の油圧制御装置
JP2008157425A (ja) 自動変速機の油圧制御装置、及びそれを備えたハイブリッド駆動装置
WO2010087091A1 (ja) 動力伝達装置およびこれを搭載する車両
JP2007032602A (ja) 車両用自動変速機の油圧制御装置
JP2002021992A (ja) 車両用自動変速機の油圧制御システム
JP2010096281A (ja) レンジ切換え装置
JP5304690B2 (ja) 自動変速機の油圧制御装置
WO2012127931A1 (ja) 自動変速機の流体圧制御装置
JP2011208698A (ja) 動力伝達機構の制御装置および動力伝達装置
US8522946B2 (en) Hydraulic control device
JP2014114910A (ja) 油圧制御装置
JP5077073B2 (ja) 動力伝達装置用の駆動装置および車両
JP4446821B2 (ja) 車両用自動変速機の油圧制御装置
JP5662110B2 (ja) 自動車の無段変速機用油圧制御システム
JP5211857B2 (ja) 動力伝達装置用の駆動装置および車両並びに駆動装置の制御方法
JP2007064464A (ja) 車両用自動変速機の変速制御装置
JP4983218B2 (ja) 車両の油圧制御装置
KR100471277B1 (ko) 차량용 자동 변속기의 유압 제어 시스템

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980109100.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09813152

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2009813152

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20107020502

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2010528767

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE