WO2010007685A1 - 工作機械の調整方法、及び工作機械 - Google Patents

工作機械の調整方法、及び工作機械 Download PDF

Info

Publication number
WO2010007685A1
WO2010007685A1 PCT/JP2008/063003 JP2008063003W WO2010007685A1 WO 2010007685 A1 WO2010007685 A1 WO 2010007685A1 JP 2008063003 W JP2008063003 W JP 2008063003W WO 2010007685 A1 WO2010007685 A1 WO 2010007685A1
Authority
WO
WIPO (PCT)
Prior art keywords
workpiece
work
axis
spindle
holding mechanism
Prior art date
Application number
PCT/JP2008/063003
Other languages
English (en)
French (fr)
Inventor
啓太 藤井
弘志 北村
Original Assignee
株式会社 和井田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 和井田製作所 filed Critical 株式会社 和井田製作所
Priority to JP2008553565A priority Critical patent/JP4838326B2/ja
Priority to AU2008359518A priority patent/AU2008359518B2/en
Priority to CN200880129922.5A priority patent/CN102099151B/zh
Priority to PCT/JP2008/063003 priority patent/WO2010007685A1/ja
Priority to EP08791312A priority patent/EP2311600B1/en
Publication of WO2010007685A1 publication Critical patent/WO2010007685A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q17/00Arrangements for observing, indicating or measuring on machine tools
    • B23Q17/22Arrangements for observing, indicating or measuring on machine tools for indicating or measuring existing or desired position of tool or work
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B3/00Sharpening cutting edges, e.g. of tools; Accessories therefor, e.g. for holding the tools
    • B24B3/02Sharpening cutting edges, e.g. of tools; Accessories therefor, e.g. for holding the tools of milling cutters
    • B24B3/06Sharpening cutting edges, e.g. of tools; Accessories therefor, e.g. for holding the tools of milling cutters of face or end milling cutters or cutter heads, e.g. of shank type

Definitions

  • the present invention relates to a method for adjusting a machine tool and a machine tool, and more particularly, to a centering adjustment of a work of a tool grinder for grinding an end mill having a very small diameter.
  • Patent Document 1 discloses that the workpiece is supported at both ends by placing the workpiece tip on a V block having a V-shaped groove from above, and as a result, chattering of the workpiece can be suppressed and high-precision grinding can be performed.
  • Non-Patent Document 1 discloses correction of a conventional collet chuck for precision machining. That is, it is disclosed that correction is performed such that the inner periphery of the collet is cut by a lathe to which a chuck is attached so that the axis of the workpiece in the holding state does not deviate from the main axis of the lathe.
  • the collet is made of a soft alloy such as an aluminum alloy.
  • Non-Patent Document 1 proposes a collet chuck having a chuck body and a strain absorbing sleeve separate from the chuck body.
  • the strain absorbing sleeve includes a taper portion and an adjustment mechanism for eccentricizing the collet.
  • the strain absorbing sleeve absorbs a deviation that occurs when the collet is eccentric.
  • Patent Document 2 discloses a floating chuck that absorbs a deviation between the axis of a workpiece and the axis of a main shaft that holds the workpiece. As described above, a method for increasing the machining accuracy is proposed. However, the following problems occur in ultra-precision machining of the order of sub- ⁇ m to several tens of ⁇ m in recent years.
  • the V block as shown in Patent Document 1 described above can theoretically exhibit high accuracy within the range of the roughness of the sliding surface of the workpiece.
  • a phenomenon occurs in which the axis of the workpiece supported by the V block deviates from the main axis. Due to such a shift, a minute shake of the workpiece occurs every time the workpiece rotates. It has been difficult to suppress such fluctuations.
  • Non-Patent Document 1 it is inevitable that the workpiece becomes unstable as long as the workpiece is cantilevered. Further, when the workpiece tip is supported by the V block, a deviation between the spindle axis and the workpiece axis also occurs. It is difficult to suppress minute shakes caused by this deviation.
  • the floating chuck chucks the workpiece and the V block supports the workpiece, it seems that the problem of cantilever support is eliminated. That is, it seems that the floating chuck can support the workpiece stably and accurately by absorbing the deviation of the workpiece axis with respect to the spindle axis.
  • Patent Document 2 the structure of the floating chuck itself is complicated, and therefore, the floating chuck is large and has a very large mass.
  • the floating chuck is designed so as to ensure a very large degree of freedom in the position of the workpiece axis and an operating margin so as to be able to cope with any deviation or inclination.
  • the purpose of the floating chuck is to eliminate the trouble of adjusting the position of the workpiece axis. Therefore, a conventional processing machine having a floating chuck does not have the idea of adjusting the workpiece axis position in advance, and of course does not include an adjustment mechanism for adjusting the workpiece axis position.
  • An object of the present invention is to provide an adjustment method capable of rotating a round bar-shaped workpiece in ultra-precision machining by a machine tool while suppressing the shake of the shaft center, and a machine tool used for the adjustment method.
  • the machine tool includes a work spindle that is rotationally driven and a work holding mechanism that holds a round bar-shaped work.
  • the workpiece has a workpiece axis that is an axis, and a protruding portion that protrudes from the workpiece holding mechanism in a state where the workpiece is held by the workpiece holding mechanism.
  • the protruding portion has a side surface surrounding the work axis.
  • the machine tool further includes a floating mechanism that transmits the rotation of the workpiece spindle to the workpiece holding mechanism.
  • the floating mechanism supports the work holding mechanism so as to allow displacement of the work holding mechanism with respect to the work spindle.
  • the machine tool further includes a workpiece axis fixing portion that fixes the position of the workpiece axis at an arbitrary position with respect to the workpiece spindle by temporarily restricting the floating mechanism.
  • the machine tool further includes a support member that rotatably supports the side surface of the workpiece when the workpiece holding mechanism holds the workpiece.
  • the machine tool further includes a support position adjusting unit that adjusts a position at which the support member supports the workpiece.
  • the machine tool further includes a support lock portion that maintains the state in which the support member defines the position of the workpiece axis by pressing the workpiece so as to press the workpiece against the support member.
  • the adjustment method is to measure the runout of the side of the workpiece while rotating the workpiece spindle while the workpiece holding mechanism holds the workpiece and the support member does not support the workpiece, and the workpiece axis is set so that the deflection is minimized.
  • An axial center position adjusting procedure for adjusting the fixed portion is provided.
  • the adjustment method further includes a support adjustment procedure for adjusting the support position adjustment unit so that the support member supports the workpiece while the position of the workpiece axis relative to the workpiece spindle is fixed by the workpiece axis fixing unit.
  • the adjustment method further includes a support lock procedure for pressing the workpiece by the support lock portion after the support adjustment procedure.
  • the adjustment method further includes a floating restriction release procedure for releasing the restriction of the floating mechanism by the workpiece axis fixing portion after the support lock procedure.
  • the axis of the workpiece and the axis of the workpiece spindle are matched as much as possible.
  • the position of the support member is adjusted so as to support the workpiece at the matched position. Then, the position of the work supported by the support member is maintained by the support lock procedure.
  • the floating regulation release procedure the floating regulation is released and the floating function is exhibited.
  • the support member is arranged at a position where the axis of the workpiece coincides with the axis of the workpiece spindle.
  • the floating mechanism absorbs a slight deviation. Since the subsequent movement required by the floating mechanism is minimal, inertia that causes the workpiece to shake is unlikely to occur.
  • the floating mechanism requires only a small amount of movement, it is possible to use a small and lightweight floating mechanism that is highly accurate and free of rattling. Therefore, the workpiece can be supported more stably.
  • the machine tool preferably includes a tool head stock and a dial gauge that is detachably attached to the tool head stock.
  • the axis position adjustment procedure uses the dial gauge to measure the position of the side surface of the workpiece, reads the maximum and minimum values of the dial gauge measurement value during one revolution of the workpiece spindle, and the maximum measurement value. It is preferable to include adjusting the radial position of the workpiece with respect to the workpiece spindle so as to be an average value of the value and the minimum value.
  • the displacement of the workpiece can be measured by using a machine tool by disposing the dial gauge on the tool spindle table capable of fine displacement without being affected by the displacement of the workpiece spindle.
  • the absolute position of the workpiece is measured, the direction in which the deviation is present is measured, and adjustment is performed so as to eliminate this deviation. Therefore, it can be adjusted so that the axis of the workpiece and the axis of the workpiece spindle coincide. By repeating this procedure, the axis of the workpiece and the axis of the workpiece spindle can be more accurately matched.
  • the adjustment method further includes a horizontal adjustment performed after the floating regulation release procedure.
  • the axis of the work spindle is referred to as the spindle axis.
  • the measurement value before reversal is obtained by measuring the position of the side surface of the work in the horizontal direction with respect to the spindle axis, and the work spindle is inverted so that the spindle axis is inverted 180 degrees. Then, measure the position of the side of the workpiece after reversal to obtain the measured value after reversal, and place the support member in the horizontal direction so that the measured value is the average of the measured value before reversal and the measured value after reversal. It is preferable to include.
  • the work spindle is rotated about an axis orthogonal to the spindle axis by reversing the work spindle by 180 degrees. Therefore, the influence of the deviation between the spindle axis and the turning axis can be reduced.
  • the maximum value and the minimum value are measured at the tip of the workpiece.
  • the accuracy of the tool to be formed can be increased by measuring at the tip of the workpiece that is most prone to shift and generally requires the highest accuracy.
  • test piece having target accuracy in advance instead of the workpiece.
  • adjustment with higher accuracy can be performed by using a test piece with higher accuracy instead of the workpiece to be actually processed.
  • the machine tool includes a work spindle that is rotationally driven and a work holding mechanism that holds a round bar-shaped work.
  • the workpiece has a workpiece axis that is an axis, and a protruding portion that protrudes from the workpiece holding mechanism in a state where the workpiece is held by the workpiece holding mechanism.
  • the protruding portion has a side surface surrounding the work axis.
  • the machine tool further includes a floating mechanism that transmits the rotation of the workpiece spindle to the workpiece holding mechanism.
  • the floating mechanism supports the work holding mechanism so as to allow displacement of the work holding mechanism with respect to the work spindle.
  • the machine tool further includes a workpiece axis fixing portion that fixes the position of the workpiece axis at an arbitrary position with respect to the workpiece spindle by temporarily restricting the floating mechanism.
  • the machine tool further includes a support member that rotatably supports the side surface of the workpiece when the workpiece holding mechanism holds the workpiece.
  • the machine tool further includes a support position adjusting unit that adjusts a position at which the support member supports the workpiece.
  • the machine tool further includes a support lock portion that maintains the state in which the support member defines the position of the workpiece axis by pressing the workpiece so as to press the workpiece against the support member.
  • fixed part is provided with the some screw
  • Each screw contacts the work holding mechanism by advancing from the work spindle toward the work axis.
  • the screw is rotated to adjust the amount of advance from the work spindle to the work axis, allowing the relative position of the work holding mechanism relative to the work spindle to change, and restricting the change in relative position It is preferable to be able to switch between and.
  • the work spindle has a spindle groove which is a linear groove extending in parallel to a straight line orthogonal to the spindle axis.
  • the workpiece holding mechanism has a holding groove which is a linear groove extending in parallel to a straight line orthogonal to the workpiece axis.
  • the floating mechanism includes a cross guide that is a plate-like member.
  • the cross guide has a first cross surface and a second cross surface on the opposite side.
  • the first cross surface has a first cross groove facing the main shaft groove.
  • the second cross surface has a second cross groove facing the holding groove.
  • the second cross groove is orthogonal to the first cross groove when viewed from the direction of the workpiece axis.
  • the floating mechanism further includes a plurality of first cross balls arranged in a row in the first cross groove and a plurality of second cross balls arranged in a row in the second cross groove. It is preferable that the displacement of the work axis in the direction orthogonal to the main axis is allowed by rolling the first cross ball and the second cross ball.
  • the rotational force of the workpiece spindle can be reliably transmitted to the workpiece holding mechanism while having a compact configuration.
  • the workpiece holding mechanism can be displaced without tilting in any direction orthogonal to the workpiece axis.
  • the plate-like member is a disk-like member, the weight balance is good.
  • the main shaft groove, the holding groove, the first cross groove, and the second cross groove are each preferably a V groove having a V-shaped cross section.
  • the position of the rolling cross ball is positioned without backlash. For this reason, while being able to transmit a rotational force without rattling, a smooth floating function can be exhibited.
  • the first cross surface preferably has a plurality of rows of first cross grooves
  • the second cross surface preferably has a plurality of rows of second cross grooves.
  • the floating mechanism includes a first spindle surface and a second spindle surface provided on the workpiece spindle.
  • Each of the first main spindle surface and the second main spindle surface is a flat surface.
  • the floating mechanism further includes a first holding surface and a second holding surface provided in the work holding mechanism. The first holding surface and the second holding surface are each orthogonal to the workpiece axis.
  • the floating mechanism further includes a plurality of first preloading balls disposed between the first holding surface and the first main shaft surface, and a plurality of second preloading balls disposed between the second holding surface and the second main shaft surface. Is provided.
  • the floating mechanism further includes an urging portion provided on the work spindle. The biasing unit biases the first preload ball and the second preload ball to support the work holding mechanism.
  • the workpiece holding mechanism only allows displacement in the direction perpendicular to the workpiece axis with respect to the workpiece spindle.
  • a preload is applied to a plurality of balls arranged on relatively parallel planes, such as a stainless steel ball having a high roundness. Therefore, it is difficult to cause the workpiece to be inclined, and the dimensional accuracy in the axial direction of the workpiece spindle can be increased.
  • each of the first main shaft surface, the second main shaft surface, the first holding surface, and the second holding surface is annular.
  • the first preload ball and the second preload ball are each arranged in an annular shape.
  • the work can be supported without tilting.
  • the workpiece can be displaced in any direction orthogonal to the spindle axis. Further, mutual rotation between the workpiece spindle and the axis of the workpiece holding mechanism is allowed.
  • the biasing portion is a screw, and the biasing force by which the screw biases the first preload ball and the second preload ball is adjustable.
  • the urging portion as a screw, the ball can be preloaded with a stable urging force with a compact configuration.
  • an appropriate preload can be applied to each ball, and smooth floating and high dimensional accuracy can be obtained.
  • the machine tool further includes an oil seal made of an annular elastic body disposed between the work spindle and the work holding mechanism.
  • the oil seal preferably imparts centripetality to the workpiece holding mechanism so that the axis of the workpiece holding mechanism approaches the spindle axis.
  • the centripetal force by the oil seal can make the workpiece axis substantially coincide with the workpiece spindle. Therefore, the adjustment can be quickly performed by reducing the adjustment range of the floating mechanism. Further, the margin of the floating mechanism can be reduced by reducing the adjustment range of the floating mechanism. In particular, the plane on which a plurality of balls are arranged in an annular shape can be reduced, and the floating mechanism can be reduced in size and weight.
  • a support member is comprised by V block which has a V-shaped groove.
  • the round bar-shaped workpiece can be stably supported at an accurate position.
  • the machine tool can be suitably applied to a tool grinder.
  • a highly accurate tool can be formed by adjusting the tool grinder by the adjusting method of the present invention effective for forming a tool.
  • the workpiece can be suitably applied to an end mill or a drill workpiece.
  • an end mill or drill workpiece it is possible to form an end mill or drill used for ultra-precision machining in recent years with high accuracy.
  • the tool diameter range at the end of the end mill or drill is preferably 0.001 mm to 6.00 mm.
  • the adjustment method of the present invention can exhibit high processing accuracy. Therefore, the present invention can be used very suitably for an end mill or drill having such a tool diameter to form a highly accurate end mill or drill used for ultra-precision machining.
  • the range of the shank diameter of the end mill or drill is preferably 0.5 mm to 6 mm.
  • the adjustment method of the present invention can exhibit high processing accuracy. Therefore, it is possible to form a highly accurate end mill or drill used for ultra-precision machining by using it very suitably for such a shank diameter end mill or drill.
  • FIG. 1 is an external perspective view of a tool grinder according to an embodiment of the present invention.
  • FIG. 4 is an enlarged sectional view of the work head of FIG. 3.
  • FIG. 6 is an exploded perspective view of the work holding mechanism shown in FIG. 5.
  • FIG. 6 is an exploded perspective view of the floating assembly shown in FIG. 5.
  • 8A is a front view of the cross guide shown in FIG. 7,
  • FIG. 8B is a side view, and
  • FIG. 8C is a rear view.
  • FIG. 6 is an exploded perspective view of the preload mechanism and the collet clamp mechanism shown in FIG. 5.
  • FIG. 5 is an exploded perspective view of the preload mechanism and the collet clamp mechanism shown in FIG. 5.
  • FIG. 6 is a perspective view of a C-axis adjusting screw and a case shown in FIG. 5.
  • FIG. 6 is an exploded perspective view of a part of the collet opening / closing portion shown in FIG. 5.
  • the disassembled perspective view of the principal part of the work head shown in FIG. The disassembled perspective view of the principal part of the support apparatus shown in FIG.
  • the expanded sectional view of the support apparatus shown in FIG. The front view which looked at the support apparatus of FIG. 14 from the C-axis direction.
  • the tool grinder 20 is a fully automatic CNC (Computer Numeric Control) ultra-small diameter end mill grinder.
  • the tool grinder 20 fully grinds all processes of an end mill with a very small diameter (tool diameter of 0.01 mm to 2.0 mm) by one chucking.
  • the tool grinder 20 is housed in a box-shaped device cover 12 provided on a frame 11 supported by a plurality of machine bases 10.
  • An openable / closable front door 13 having a window portion is provided at the center of the front surface of the device cover 12 to isolate the tool grinder 20 housed therein.
  • the front surface of the device cover 12 is provided with a liquid crystal screen display device 14, a keyboard 15, and an NC control device operation panel 16 from the top to the bottom in the right direction toward the front door 13.
  • the device cover 12 has an NC control device inside.
  • the manual pulser 17 is connected to the NC control device via a cable. When the operator operates the dial of the manual pulser 17, the NC control servo mechanism can be finely moved.
  • the front door 13 is opened, the tool grinder 20 is exposed as shown in FIG.
  • the tool grinder 20 includes a swivel table 22 that defines an axis (rotation axis) extending in the vertical direction of the swivel base 21 provided on the frame 11 as a B axis and can swivel around the B axis.
  • a work head 23 and a dressing device 24 are placed on the turning table 22.
  • the turning table 22, the work head 23, and the dressing device 24 can turn around the B axis.
  • the work head 23 holds the work W.
  • the workpiece W is arranged so as to extend at right angles to the B axis and in the horizontal direction.
  • the workpiece W is, for example, a very small diameter end mill.
  • the rotation center (axis line) of the work head 23 is referred to as a C axis.
  • the C axis may be described separately as a main axis C1 that is the rotation center (axis) of the work spindle 40 and a work axis C2 that is the rotation center (axis) of the work W. is there.
  • FIG. 9 shows the spindle axis C1
  • FIG. 6 shows the workpiece axis C2 and the workpiece W.
  • the workpiece W has a round bar shape and the tip is a cone.
  • the workpiece W has an outer diameter portion that is a long cylinder and a tip that is a cone.
  • FIG. 2 shows a coordinate system in the present embodiment.
  • the tool T is mounted on the tool spindle 25 and extends horizontally and in the front-rear direction.
  • the direction of the axis (rotation axis) of the tool T is taken as the Z axis.
  • the horizontal direction (left-right direction) orthogonal to the Z axis is taken as the X axis.
  • the vertical direction is the Y axis.
  • the X axis extends in the left-right feed direction of the tool spindle 25.
  • the left direction is the + direction
  • the position orthogonal to the B axis is the origin of the X axis.
  • the Y axis extends in the vertical feed direction of the tool spindle 25, the upward direction is the + direction, and the position farthest from the C axis in the movable range of the tool spindle 25 is the origin of the Y axis.
  • the Z-axis extends in the forward / backward feed direction of the tool spindle 25, the rear (the direction away from the B-axis) is the + direction, and the position farthest from the B-axis in the movable range of the tool spindle 25 is the origin of the Z-axis. .
  • the rotation direction of the B-axis is clockwise when viewed from above, and the origin of the B-axis rotation is a position where the C-axis is parallel to the Z-axis.
  • the clockwise direction when viewed from the + direction to the ⁇ direction (left to right in the figure) of the X axis is the + direction, and the initial position is the origin (0 °) of the C axis rotation.
  • the NC controller translates the tool spindle 25 in the X-axis, Y-axis, and Z-axis directions.
  • the work head 23 rotates around the B axis around the tip of the work W.
  • the work spindle 40 and the work W rotate around the C axis. That is, the NC control of this apparatus is a 5-axis control of the number of control axes, that is, the X axis, the Y axis, the Z axis, the B axis, and the C axis.
  • FIG. 23 In the description of the work head 23 according to the present embodiment, the part on which the work W is mounted is referred to as the front end or the front part of the work head 23, and the opposite side is referred to as the base end or the rear part of the work head 23.
  • the work head 23 includes a work head main body 30 that accommodates each mechanism and the like of the work head 23.
  • the work head body 30 is fixed to the turning table 22 shown in FIG.
  • the work head main body 30 rotatably supports the work spindle 40 and forms the appearance of the work head 23.
  • the work head body 30 includes a base frame 31, a cover 32, and a labyrinth 33.
  • the base frame 31 is fixed to the turning table 22 and supports the entire work head 23.
  • the cover 32 is provided on the upper part of the base frame 31 and covers the entire work head main body 30.
  • the labyrinth 33 seals the rotating spindle 41 with respect to the cover 32 in a rotatable and airtight manner.
  • the cover 32 has a space for accommodating the work spindle 40.
  • a bearing 34 composed of a plurality of radial ball bearings is disposed in order to rotatably support the spindle 41.
  • an oil seal 35 is provided at the tip of the cover 32 so as to hold the lubricating oil of the rotating spindle 41 and prevent foreign matter from entering.
  • the labyrinth 33 is provided at the tip of the cover 32 and covers the tip of the spindle 41 accommodated in the cover 32.
  • the labyrinth structure of the labyrinth 33 is intended to retain lubricating oil and prevent foreign matter from entering the rotating spindle 41.
  • the labyrinth 33 includes an air inlet 36 to keep the inside of the labyrinth 33 at a positive pressure and enhance the effect of the labyrinth structure.
  • a work spindle 40 is disposed inside the work head body 30.
  • the work spindle 40 is a spindle 41 and a portion that rotates integrally with the spindle 41.
  • the work spindle 40 includes a spindle 41, a collet case 42 attached to the tip of the spindle 41, a guide 43, a chuck base 44, a preload adjusting screw 45, a holding spring 46, and a retainer. 47.
  • the rotation of the drive unit 37 including the drive motor controlled by the NC controller operation panel 16 (FIG. 1) is transmitted to the spindle 41 by the rotation transmission mechanism 38, and the work spindle 40 rotates.
  • the rotation speed of the spindle 41 is approximately 60 revolutions per minute.
  • the work holding mechanism 50 shown in FIG. 4 is a so-called collet chuck mechanism. As shown in FIG. 5, specifically, the work holding mechanism 50 includes a collet 51, a collet holder 52, and a base holder 53.
  • the collet 51 holds the workpiece W. That is, in a state where the workpiece holding mechanism 50 holds the workpiece W, the workpiece W has a protruding portion that protrudes from the workpiece holding mechanism 50.
  • the protruding portion of the workpiece W has a side surface (circumferential surface) surrounding the workpiece axis C2.
  • the base holder 53 is screwed into the base end of the collet 51.
  • the entire collet 51 is cylindrical.
  • the tip of the collet 51 has an insertion port 51a into which the workpiece W is inserted.
  • a collet taper portion 51c is formed such that the outer diameter increases toward the tip.
  • a slit portion 51b that is equally divided into three is formed.
  • a guide portion 51d having a slightly larger outer diameter than the others is formed near the base end.
  • a collet screwed portion 51e in which a male screw is engraved is formed.
  • the whole collet holder 52 is a cylindrical member having an inner diameter into which the collet 51 can be inserted.
  • a tapered holder taper portion 52a On the inner wall of the tip of the collet holder 52 (near the workpiece W), a tapered holder taper portion 52a whose inner diameter increases toward the tip is formed.
  • the holder taper portion 52a can be in close contact with the collet taper portion 51c.
  • the holder taper part 52a contracts the slit part 51b of the collet 51.
  • the collet taper part 51c is tightened and the slit part 51b becomes narrow, and the inner diameter of the collet 51 becomes small.
  • the workpiece W inserted into the insertion port 51a can be held and fixed.
  • a holder flange 52b is provided at substantially the center of the collet holder 52 in the axial direction.
  • the surface toward the tip of the holder flange 52b is an annular flat surface, which is a front preload ball receiving surface 52c as a first holding surface.
  • the surface near the base end of the holder flange 52b is a front cross ball receiving surface 52d. As shown in FIG. 5, the base end 52 e of the collet holder 52 is inserted into the cross guide 64 and the guide 43, but does not contact the inner surface of the cross guide 64 or the guide 43.
  • the base holder 53 is formed in a cylindrical shape as a whole.
  • a female screw is engraved on the inner surface of the tip of the base holder 53 (near the workpiece W) to form a holder screwing portion 53a.
  • the holder screwing portion 53a can be screwed with the collet screwing portion 51e.
  • a base flange 53 b is formed on the outer periphery of the base end of the base holder 53.
  • a surface facing the tip of the base flange 53b is an annular flat surface, and is a rear preload ball receiving surface 53c as a second holding surface. Further, the base end of the base flange 53b is formed in a three-stepped shape and is formed in the collar fitting portion 53d.
  • the collar fitting portion 53d has the smallest outer diameter at the base end of the base flange 53b.
  • the smallest diameter portion of the base end of the base holder 53 can be fitted by being in close contact with the inner surface of the collar 78 of the collet opening / closing portion 70.
  • the work holding mechanism 50 including the collet 51, the collet holder 52, and the base holder 53 is a float part that is floatingly supported with respect to the work spindle 40 by the floating assembly 60.
  • the collet clamp mechanism 49 is a collet fixing mechanism that maintains the state in which the collet 51 holds the workpiece W by the holding spring 46 and the retainer 47.
  • the holding spring 46 is composed of a compression coil spring, and the front end (end near the workpiece W) of the holding spring 46 is brought into contact with the holding spring receiving surface 44 b of the chuck base 44.
  • the retainer 47 is formed in an annular shape as a whole.
  • a holding spring receiving portion 47 a is formed on the front surface of the retainer 47 (the end portion facing the workpiece W).
  • the holding spring receiving portion 47 a has a recess that accommodates the rear end of the holding spring 46. The rear end of the holding spring 46 is brought into contact with the holding spring receiving portion 47 a of the retainer 47.
  • a rear preload ball receiving surface 47 b as a second main shaft surface is formed on the rear surface of the retainer 47.
  • the rear preload ball receiving surface 47b is an annular flat surface that receives the rear preload ball 66 as the second preload ball.
  • the base holder 53 passes through the central hole of the retainer 47.
  • the rear preload ball receiving surface 47b of the retainer 47 is disposed so as to face the rear preload ball receiving surface 53c of the base holder 53 shown in FIG.
  • a large number of rear preloading balls 66 arranged in an annular shape as shown in FIG. 7 are arranged and sandwiched between the rear preloading ball receiving surface 47b and the rear preloading ball receiving surface 53c. For this reason, the holding spring 46 in the compressed state urges the base flange 53b rearward. For this reason, the state of the workpiece W held by the collet 51 is maintained.
  • Both the rear preloading ball receiving surface 53c of the base holder 53 and the rear preloading ball receiving surface 47b of the retainer 47 are formed in a plane parallel to each other, and the rear preloading balls 66 arranged in an annular shape are disposed therebetween. For this reason, the base holder 53 and the retainer 47 can be mutually displaced in all directions orthogonal to the spindle axis C1 while maintaining a parallel relationship with each other.
  • a floating assembly 60 shown in FIG. 4 is a mechanism that transmits rotation while supporting the work holding mechanism 50 so as to be displaceable with respect to the work spindle 40. Specifically, as shown in FIG. It includes a front preload ball 62, a front crossball 63, a cross guide 64, a rear crossball 65, a rear preload ball 66, and a rear oil seal 67.
  • the front oil seal 61 and the rear oil seal 67 are annular members made of an elastic body having oil resistance such as fluorine rubber, silicone rubber, acrylic rubber, and nitrile rubber.
  • the front oil seal 61 is mounted around the side face of the collet holder 52 facing the tip, and is disposed between the collet case 42.
  • the rear oil seal 67 is mounted around the base flange 53 b of the base holder 53 and is disposed between the retainer 47.
  • the front oil seal 61 and the rear oil seal 67 have a function of holding lubricating oil in the rotating portion and preventing foreign matter from entering.
  • the elasticity of the front oil seal 61 and the rear oil seal 67 will cause the axis (work axis C2) of the work holding mechanism 50 passing therethrough to coincide with the main axis C1 (rotation axis of the work main axis 40).
  • the axis (work axis C2) of the work holding mechanism 50 passing therethrough will coincide with the main axis C1 (rotation axis of the work main axis 40).
  • centripetal power Therefore, even if the front preloading ball 62, the front crossball 63, the rear crossball 65, and the rear preloading ball 66 float the work holding mechanism 50 and there is no other support for the work holding mechanism 50, it resists gravity.
  • the workpiece axis C2 can be made substantially coincident with the main axis C1. As a result, the operating range of the floating mechanism can be reduced.
  • Each of the front preload ball 62, the front crossball 63, the rear crossball 65, and the rear preload ball 66 is composed of a plurality of hard balls made of stainless steel or steel, which are used for ball bearings and have high roundness and high dimensional accuracy. These many balls (62, 63, 65, 66) are elastically deformed by applying a preload, and the dimensional stability of the workpiece holding mechanism 50 can be improved.
  • the cross guide 64 shown in FIGS. 7 and 8 is an annular member.
  • the cross guide 64 has a front cross ball receiving surface 64 a as a first cross surface facing the workpiece W and a rear cross ball receiving surface 64 b as a second cross surface facing the opposite side of the workpiece W.
  • Each of the front cross ball receiving surface 64a and the rear cross ball receiving surface 64b is substantially flat.
  • the cross guide 64 further includes an inner peripheral surface 64c and an outer peripheral surface 64d as a side surface.
  • the front cross ball receiving surface 64a is formed with two front cross V-grooves 64e as first parallel cross-shaped first cross grooves.
  • Each front cross V-groove 64e is positioned symmetrically with respect to the floating axis C3 in a plane perpendicular to the floating axis C3 that is the axis of the cross guide.
  • each holding V-groove 52f is positioned symmetrically with respect to the workpiece axis C2 in a plane perpendicular to the workpiece axis C2.
  • Each holding V-groove 52f faces the front cross V-groove 64e.
  • a front cross ball 63 as a plurality of first cross balls arranged in a row is arranged.
  • the collet holder 52 and the cross guide 64 move relative to each other along the front cross V groove 64e and the holding V groove 52f. At this time, the front cross V groove 64e and the holding V groove 52f maintain a parallel relationship with each other. That is, even if the collet holder 52 and the cross guide 64 move relative to each other, the relative positions of the workpiece axis C2 and the floating axis C3 can be changed while maintaining a parallel relationship with each other.
  • the rear cross ball receiving surface 64b is also formed with two rear cross V-grooves 64f as second linear straight cross grooves.
  • the respective rear cross V-grooves 64f are located in a target in a plane orthogonal to the floating axis C3 so as to sandwich the floating axis C3 therebetween.
  • Each rear cross V-groove 64f is orthogonal to each front cross V-groove 64e when viewed from the floating axis C3. That is, each rear cross V-groove 64f is orthogonal to each holding V-groove 52f when viewed from the floating axis C3.
  • each spindle V groove 43b is The planes orthogonal to the main spindle axis C1 are located symmetrically with respect to the main spindle axis C1.
  • Each main shaft V-groove 43b faces the rear cross V-groove 64f.
  • a rear cross ball 65 as a plurality of second cross balls arranged in a row is arranged between the main shaft V groove 43b and the rear cross V groove 64f facing each other. As the rear cross ball 65 rolls, the cross guide 64 and the guide 43 move relative to each other along the main shaft V groove 43b and the rear cross V groove 64f.
  • the main shaft V-groove 43b and the rear cross V-groove 64f maintain a parallel relationship with each other. That is, even if the cross guide 64 and the guide 43 are moved relative to each other, the relative position between the main shaft axis C1 and the floating axis C3 can be changed while being parallel to each other.
  • the main shaft V-groove 43b, the holding V-groove 52f, the front cross V-groove 64e, and the rear cross V-groove 64f are all grooves having a V-shaped cross section perpendicular to the extending direction of the grooves. For this reason, when the opposing V grooves are energized so as to be close to each other, the front cross ball 63 and the rear cross ball 65 disposed between the V grooves fit into the V groove, basically two points on the groove wall. Contact with. If the distance between the pair of grooves is inaccurate or the distance changes due to a temperature change, the front cross ball 63 and the rear cross ball 65 come into contact with one groove at two points, and the other groove Touch at one point.
  • the positions of the front cross ball 63 and the rear cross ball 65 are uniquely determined with respect to the main shaft V groove 43b, the holding V groove 52f, the front cross V groove 64e, and the rear cross V groove 64f. No rattling occurs.
  • the floating mechanism maintains the main shaft axis C1, the workpiece axis C2, and the floating axis C3 in parallel relation to each other. That is, the guide 43, the collet holder 52, and the work holding mechanism 50 are all maintained in a parallel relationship.
  • the floating mechanism is in a state in which the rotational force of the work spindle 40 is securely held by the work holding mechanism 50 while allowing the deviation of the main spindle axis C1, the work axis C2, and the floating axis C3. Can be transmitted to the workpiece W.
  • the preload mechanism 48 shown in FIG. 4 is configured as a part of the work spindle 40.
  • the preload mechanism 48 includes a guide 43, a preload adjusting screw 45, and a chuck base 44.
  • the preload mechanism 48 preloads the front preload ball 62, the front crossball 63, the rear crossball 65, and the rear preload ball 66 that constitute the floating assembly 60 so as to be urged to a slight degree of elastic deformation. As a result, the backlash of the floating mechanism is eliminated.
  • the chuck base 44 is bolted to the tip of the spindle 41 and rotates integrally with the spindle 41.
  • the chuck base 44 has a flat cylindrical shape as a whole, and has a circular recess 44a at the center.
  • the recess 44 a accommodates the guide 43.
  • the four preload adjusting screws 45 extend parallel to the main shaft axis C1 and are disposed so as to surround the main shaft axis C1 at equal angular intervals. Each preload adjusting screw 45 is screwed to the chuck base 44 inside the recess 44a.
  • the tip of the preload adjusting screw 45 protrudes from the chuck base 44 toward the workpiece W and abuts on the preload adjusting screw receiving surface 43 c of the guide 43.
  • the relative position of the guide 43 in the direction of the main shaft axis C1 with respect to the chuck base 44 can be changed to adjust the preload.
  • collet case 42 As shown in FIG. 5, a collet case 42 is fixed to the tip of the chuck base 44. As shown in FIG. 10, the collet case 42 is a generally cylindrical member whose outer diameter decreases toward the tip. In the center of the collet case 42, a hole for inserting the collet holder 52 is opened. A case flange 42a projecting radially inward is formed on the inner peripheral surface of the hole. The rear surface of the case flange 42a is an annular flat surface and is a front preload ball receiving surface 42c as a first main shaft surface. As shown in FIG.
  • the front preload ball receiving surface 42c is in contact with the front preload ball receiving surface 52c of the holder flange 52b via a front preload ball 62 as a first preload ball.
  • the front preloading ball receiving surface 52c of the collet holder 52 and the front preloading ball receiving surface 42c of the collet case 42 are both arranged on a plane parallel to each other, and the front preloading as a first preloading ball arranged in an annular shape therebetween.
  • a ball 62 is disposed. For this reason, the collet holder 52 and the collet case 42 can be mutually displaced in all directions orthogonal to the spindle axis C1 while maintaining a parallel relationship.
  • the guide 43 and the collet case 42 sandwich the holder flange 52b of the floating assembly 60 via the front preload ball 62, the front cross ball 63, the cross guide 64, and the front cross ball receiving surface 64a.
  • the preload adjusting screw 45 adjusts a biasing force that biases the holder flange 52b, and applies a preload to the holder flange 52b to such an extent that the dimensional accuracy is stabilized. For this reason, the axial center position of the work holding mechanism 50 is accurately identified with respect to the work spindle 40.
  • C-axis adjustment screw 42b From the side surface of the collet case 42, a C-axis adjusting screw 42b is screwed into the main shaft axis C1. When the C-axis adjustment screw 42 b is tightened, the tip of the C-axis adjustment screw 42 b comes into contact with the collet holder 52.
  • Four C-axis adjusting screws 42b are arranged at equal angular intervals of 90 degrees. For this reason, by adjusting these C-axis adjusting screws 42b, the position of the collet holder 52 with respect to the collet case 42 can be adjusted and fastened and fixed.
  • each C-axis adjusting screw 42b abuts on the workpiece holding mechanism 50 by advancing from the workpiece spindle 40 toward the workpiece axis C2.
  • the advance amount from the work spindle 40 toward the work axis C2 is adjusted.
  • the C-axis adjusting screw 42b serves as a workpiece axis fixing portion that can fix the position of the workpiece axis C2 at an arbitrary position with respect to the workpiece spindle 40 by temporarily restricting (locking) the floating mechanism. Function.
  • the floating mechanism of the present embodiment is a mechanism that supports the work holding mechanism 50 so as to be displaceable with respect to the work spindle 40.
  • the floating mechanism includes a floating assembly 60, a preload mechanism 48, and a collet holder 52 and a base holder 53 of the work holding mechanism 50 shown in FIG.
  • the preload mechanism 48 applies preload to the floating assembly 60.
  • the guide 43 contacts the holder flange 52 b of the collet holder 52 through the rear cross ball 65, the cross guide 64, and the front cross ball 63.
  • the holder flange 52 b comes into contact with the collet case 42 via the front preload ball 62.
  • the guide 43 of the work spindle 40 and the collet case 42 sandwich the holder flange 52b of the work holding mechanism 50.
  • the workpiece holding mechanism 50 is allowed to be displaced in a direction orthogonal to the main spindle axis C1, but is not displaced in the direction in which the main spindle axis C1 extends.
  • the collet opening / closing unit 70 shown in FIGS. 3 and 4 is a mechanism for switching the collet 51 between an open state and a closed state.
  • the workpiece W can be removed from the open collet 51.
  • the collet 51 in a tightly closed state chucks the workpiece W.
  • the collet fixing valve 71 and the collet release valve 72 of the collet opening / closing part 70 control the hydraulic oil and displace the collet detaching piston 73.
  • the collet opening / closing member 74 which is a long cylindrical member along the main shaft axis C1, is displaced in the direction of the main shaft axis C1.
  • the collet opening / closing part 70 includes a cylindrical slider 75 shown in FIG.
  • the slider 75 has a flange 75a, and the front surface of the flange 75a is a return spring receiving surface 75b.
  • the return spring receiving surface 75 b compresses the return spring 76, and the slider 75 slides in the hole of the annular sleeve 77.
  • the tip of the slider 75 facing the workpiece W presses the ring-shaped collar 78.
  • the collar 78 is mounted on the collar fitting portion 53 d at the base end of the base holder 53.
  • the collar 78 presses the base flange 53 b of the base holder 53 toward the workpiece W.
  • the base flange 53 b pushes the retainer 47 forward via the rear preload ball 66 and pushes the collet 51 forward while compressing the holding spring 46.
  • the collet taper part 51c is extracted from the holder taper part 52a, the slit part 51b is opened, the insertion port 51a is opened, and the workpiece W is released.
  • the protrusion adjusting unit 80 is a mechanism that adjusts the position of the workpiece W in the direction of the workpiece axis C2.
  • the protrusion adjustment unit 80 includes a protrusion adjustment bar 81 and a protrusion adjustment screw 82 shown in FIG.
  • the protrusion adjustment bar 81 is disposed in a space provided in the vicinity of the main shaft axis C1.
  • the protrusion adjusting bar 81 is basically arranged so as not to interfere with the rotating work spindle 40.
  • the protrusion adjustment screw 82 moves the protrusion adjustment bar 81 in the direction of the spindle axis C1. In this way, the gripping length that can be different for each workpiece W and the protrusion amount of the workpiece W are adjusted.
  • FIG. 12 shows the overall structure of the work head 23.
  • Support device 90 rotatably supports the workpiece W mounted on the workpiece holding mechanism 50. That is, the support device 90 supports the side surface of the protruding portion of the workpiece W in a rotatable manner.
  • the support device 90 includes a support block 91 and a work presser 92.
  • the support block 91 is a support member that rotatably supports the workpiece W.
  • the support block 91 supports (guides) the side surface of the workpiece W from below when the workpiece holding mechanism 50 holds the workpiece W.
  • the work presser 92 presses the work W against the support block 91 while allowing the work W to rotate. As a result, the workpiece presser 92 maintains the state where the support block 91 defines the position of the workpiece axis C2.
  • the support block 91 is a so-called V block whose upper end has a V-shaped groove, and is provided with a notch that is a so-called “relief” at the center in the direction of the workpiece axis C2.
  • the notch prevents, for example, that only the central portion of the V block hits the workpiece W. That is, rattling of the workpiece W is prevented.
  • the V shape of the support block 91 uniquely identifies the positional relationship with the workpiece W.
  • the work retainer 92 keeps the work W from separating from the support block 91 by pressing the work W toward the support block 91 from vertically above.
  • the support block 91 is fastened and fixed to the support holder 93 by the support block fixing screw 94a.
  • the support block fine adjustment screw 94b can finely adjust the position of the support block 91 in a horizontal direction orthogonal to the C axis.
  • the work holder 92 and the support holder 93 can be displaced relative to each other.
  • the vertical adjustment screw 96 can adjust the support holder 93 up and down with respect to the support device main body 97. As a result, the vertical position of the support block 91 can be adjusted.
  • the support holder 93, the support block fine adjustment screw 94b, the support holder fixing screw 95, and the vertical adjustment screw 96 constitute a support position adjustment unit.
  • the support position adjustment unit adjusts the position of the support block 91 so that the position at which the support block 91 supports the workpiece W is adjusted.
  • the support device main body 97 includes a hydraulic circuit (not shown) for moving the workpiece presser 92 up and down and a workpiece presser displacement device 98.
  • the work presser displacement device 98 includes a piston. Therefore, the work presser 92 can be lowered to press and restrict the work W, or the work presser 92 can be lifted to release the work W.
  • the workpiece presser 92 and the workpiece presser displacement device 98 constitute a support lock portion.
  • the workpiece W is used for a shank diameter of 3 mm, 4 mm, or 6 mm that is frequently used for precision machining, but it is not limited to this. Ultra-precision is progressing more and more, and the thing of less than 3 mm, for example, 1 mm or 0.5 mm, can provide the invention of this application more suitably. That is, the range of the shank diameter to which this embodiment can be suitably applied is, for example, 0.5 mm to 6 m, and it goes without saying that the invention of the present application can be applied even if the range is less than that.
  • a tool with a larger diameter generally has a larger processing pressure such as cutting, so it is not possible to take full advantage of it, but it is not limited to tools, but when precision machining is performed on a round bar-shaped material with a larger diameter.
  • the present invention can be applied.
  • the workpiece W has a tip diameter of 0.01 mm formed by grinding the workpiece W.
  • the workpiece W is 0.005 mm thinner than this. Or it can apply suitably also to a 0.001 mm thing. That is, it can be said that the range of the tool diameter to which the present embodiment can be suitably applied is 0.01 mm to 6.00 mm, and may be outside this range.
  • the workpiece W is an end mill as an example, but it goes without saying that it can be applied to other tools such as a drill, a miller and a reamer. Further, the workpiece W is not limited to a tool.
  • the machine tool according to the present invention is not limited to the tool grinder 20, but may be a cylindrical grinder, or is not limited to a grinder and can be widely applied to general machine tools.
  • ⁇ Adjustment method >> (Assumptions for adjustment)
  • the turning table 22 and the work head 23 are separate bodies, and their positional relationship can be adjusted. Therefore, the positional relationship between the B-axis and the C-axis is adjusted so that it intersects strictly at right angles at the assembly stage by loosening the screws of the base frame 31 fixed to the turning table 22.
  • the flowchart of FIG. 18 shows the outline of the adjustment method of this embodiment.
  • the operator performs the adjustment method of the tool grinder 20 as follows. First, the operator determines whether or not the workpiece W is mounted as an initial setting (step S1). If the workpiece W is not mounted (NO in step S1), the operator mounts the workpiece W (step S2). It is confirmed whether all four C-axis adjusting screws 42b are tightened (step S3). If all four C-axis adjusting screws 42b are not tightened (NO in step S3), temporary tightening is performed (step S4). .
  • a measuring instrument such as the dial gauge 27 shown in FIG. 17 is set at a position where the deflection of the workpiece W can be measured.
  • the dial gauge 27 is detachably attached to the grinding wheel base 26 with a magnet or the like. Then, the operator can easily operate the dial gauge by using the NC control servo system.
  • the projecting portion of the workpiece W mounted on the workpiece holding mechanism 50 is rotated while the workpiece spindle 40 is rotated. Measure the side.
  • the C-axis adjusting screw 42b (work shaft center fixing portion) is adjusted so that the deflection of the work W is minimized, and the shaft center position adjusting procedure (step S5) for fixing the shaft center position of the work W is executed.
  • the measurement point at which the dial gauge 27 measures the position of the workpiece W may be the side surface of the protruding portion of the workpiece W, and it does not matter whether it is in the vertical direction or in the horizontal direction.
  • step S6 the position of the support block 91 is adjusted such that the support block 91 (support member) supports the workpiece W while the C-axis adjustment screw 42b is fixed at the position of the workpiece axis C2 adjusted in the axial center position adjustment procedure.
  • a support adjustment procedure (step S6) is executed.
  • the position of the support block 91 in the vertical direction (vertical direction) is adjusted.
  • a support lock procedure (step S7) for pressing the workpiece W with the workpiece presser 92 is performed. That is, the purpose of the support lock procedure is to maintain the definition of the position of the work axis C2 by the support block 91.
  • step S8 a floating regulation release procedure is performed to release the regulation of the floating mechanism by loosening the C-axis adjusting screw 42b.
  • step S9 the workpiece spindle 40 is rotated to measure the deflection of the workpiece W (step S9). If the deflection of the workpiece W is outside the target range (NO in step S9), the axis center position adjustment procedure ( The adjustment is performed again from step S5).
  • step S9 If the deflection of the workpiece W is within the target range (YES in step S9), the horizontal position of the support block 91 is then adjusted (step S10). After the horizontal adjustment, it is determined whether the measured value is within the target range (step S11). If the measured value is within the target range (YES in step S11), the operation is terminated (YES in step S11).
  • step S5 If the measured value is not within the target range, the axis center position adjustment procedure (step S5) is performed again. (Specific examples of adjustment) Details of the adjustment will be described below.
  • the centering adjustment of the workpiece W can be performed when the tool grinder 20 is shipped, when the size of the workpiece W to be ground is changed, or when the collet 51 and the support block 91 are replaced.
  • the dial gauge 27 is detachably attached to a grindstone base (tool spindle base) 26 with a magnet or the like.
  • the dial gauge 27 measures the position of the side surface of the rotating centering tool TP, and is set in a state where the maximum value and the minimum value of the measured values can be read.
  • the grindstone table 26 is finely moved by feeding the handle of the manual pulser 17 (FIG. 1), and the dial gauge 27 is brought close to the centering tool TP.
  • the distal end of the dial gauge 27 is applied directly above the base end of the protruding portion of the centering tool TP from the work holding mechanism 50.
  • the deflection of the pointer of the dial gauge 27 is read. Adjust the position of the workpiece axis C2 by loosening or tightening each of the four C-axis adjusting screws so that the dial gauge deflection is less than or equal to the target value (for example, 0.5 ⁇ m), and tighten it in place. Secure with. That is, the maximum value and the minimum value of the measured value of the dial gauge 27 during one rotation of the workpiece spindle 40 are read, and the workpiece W with respect to the workpiece spindle 40 is read so that the measured value becomes an average value of the maximum value and the minimum value. Adjust the radial position. At this time, all four of the C-axis adjusting screws 42b are lightly tightened. If even one C-axis adjusting screw 42b is loose, adjustment will be shifted.
  • the upper side surface of the protruding portion of the workpiece W (here, the centering tool TP) mounted on the workpiece holding mechanism 50 while rotating the workpiece spindle 40 without the support block 91 supporting the workpiece W.
  • the procedure for adjusting and fixing the position of the axis (C2) of the centering tool TP with the C-axis adjusting screw 42b, which is the workpiece axis fixing part, so that the deflection of the workpiece W is minimized is the axis center of the present application. This corresponds to the position adjustment procedure.
  • Similar measurement is also performed at the tip of the outer diameter portion of the centering tool TP. That is, the X-axis is moved in the negative direction by the handle feed, and the tip of the dial gauge 27 is moved to the tip of the outer diameter portion of the centering tool TP.
  • the tip of the dial gauge 27 is applied directly beside the tip of the outer diameter portion of the centering tool TP.
  • the maximum value of the deflection of the dial gauge 27 is read and written down while moving the Y axis by feeding the handle. That is, the pre-inversion measurement value is obtained by measuring the position of the side surface of the workpiece W in the horizontal direction with respect to the spindle axis C1.
  • the Y axis is moved in the + direction, and the tip of the dial gauge 27 is moved away from the centering tool.
  • the B axis is moved to the machine coordinate of ⁇ 90.0000 by the handle feed. That is, the work spindle 40 is reversed so that the spindle axis C1 is reversed 180 degrees.
  • the Y axis is moved in the ⁇ direction by handle feed, and the tip of the dial gauge 27 is applied to the side of the outer diameter portion of the centering tool TP. While moving the Y axis by the handle feed, read and write down the maximum value of the dial gauge 27 deflection. That is, the position of the side surface of the workpiece W after 180 degrees of reversal is measured, and the measured value after reversal is obtained.
  • the horizontal position of the support block 91 is adjusted by operating the support block fine adjustment screw 94b. For example, when the measured value before inversion is 1 ⁇ m and the measured value after inversion is ⁇ 8 ⁇ m, the following calculation is performed.
  • step S11 Tighten the support block fixing screw 94a. Thereafter, the Y axis is moved in the + direction again by the handle feed, and the tip of the dial gauge 27 is separated from the centering tool TP. The B axis is moved to the machine coordinate -90.0000 by the handle feed. The tip of the dial gauge 27 is applied directly to the tip of the outer diameter portion of the centering tool TP. Read the deflection of the dial gauge 27 while rotating the C-axis by handle feed. It is confirmed that the deflection of the dial gauge 27 is within the target range (step S11). If it is not within the target range (NO in step S11), the centering adjustment of the centering tool TP is performed again from the beginning.
  • the tip of the dial gauge 27 is applied to the side of the center of the centering tool TP. Read the deflection of the dial gauge 27 while rotating the C-axis by handle feed. Check that the dial gauge deflection is within the target range. If it is not within the target range, redo the tool centering adjustment from the beginning.
  • the measurement is performed at both the front end and the base end of the centering tool TP, and the centering tool TP is adjusted so that the deflection is small.
  • the horizontal direction of the support block 91 with the support block fine adjustment screw 94b is also measured by measuring the measured value after the turning table 22 is rotated 180 degrees. Also adjust the position. In other words, accuracy is further improved by performing measurement and adjustment at the B-axis positions facing each other before and after 180-degree reversal.
  • the machine tool and the adjustment method thereof according to the above embodiment obtain the following advantages.
  • the workpiece W When machining a round bar-shaped workpiece W with a machine tool, the workpiece W can be rotated while suppressing the deflection of the workpiece axis C2.
  • the work axis C2 is adjusted to the main axis C1 by adjusting the C-axis adjusting screw 42b. Match as much as possible.
  • the support block 91 is adjusted so as to come into contact with the workpiece W at the matched position. Then, the workpiece W is pressed by the workpiece presser 92 according to the support lock procedure, and the position of the workpiece W is maintained. Then, the floating function is exhibited by releasing the floating restriction by loosening the C-axis adjusting screw 42b by the floating restriction releasing procedure.
  • the support block 91 is disposed so as to support the workpiece W in a state where the workpiece axis C2 coincides with the main axis C1.
  • the floating mechanism can absorb a slight shift of the workpiece holding mechanism 50. That is, since the floating mechanism requires only a very small movement, inertia that causes the workpiece W to shake is less likely to occur.
  • the floating mechanism supports the workpiece W flexibly, even if the collet 51 or the spindle 41 is misaligned, the misalignment is absorbed by the floating mechanism, so that the support block 91 is not affected.
  • the floating mechanism supports the workpiece W in a state where the position has been sufficiently adjusted in advance. Therefore, very little movement is required for the floating mechanism. For this reason, the movable range of the floating mechanism can be reduced, and the floating mechanism can be extremely small.
  • the floating mechanism since a small and lightweight floating mechanism can be adopted, the mass of the floating mechanism itself can be extremely reduced. Therefore, the floating mechanism is light and the movement of the floating mechanism can be extremely small. Therefore, since the movement of the center of gravity of the workpiece W or the floating mechanism hardly occurs, the rotation balance of the workpiece W is not lost, or a large inertia is not generated. For this reason, in this embodiment, the floating chuck itself does not cause the workpiece W to shake.
  • the floating mechanism of this embodiment suppresses the work holding mechanism 50 from being inclined with respect to the work spindle 40. That is, since the floating mechanism only needs to allow the movement of the workpiece holding mechanism 50 only in the direction orthogonal to the spindle axis C1, the structure of the floating mechanism can be simplified.
  • the dial gauge 27 is disposed on the grindstone table 26 that can be finely displaced without being affected by the displacement of the work spindle 40. Therefore, the displacement of the workpiece W can be measured using the NC control system of the machine tool. In this way, the absolute position of the workpiece W is measured, the direction in which the deviation occurs is measured, and adjustment is performed so as to eliminate this deviation. As a result, the workpiece axis C2 can be adjusted to coincide with the main axis C1. By repeating this procedure, the workpiece axis C2 can be more accurately aligned with the main axis C1.
  • the workpiece W is measured at both the front end and the base end of the workpiece W. Therefore, the accuracy can be improved as a whole, and the accuracy of the tool to be formed can be increased. (7) It is possible to perform adjustment with higher accuracy by performing centering adjustment using a highly accurate test piece (centering tool TP) instead of the workpiece to be actually processed.
  • centering tool TP centering tool
  • the four C-axis adjusting screws 42 b are arranged on the work spindle 40 so as to be arranged on the circumference surrounding the work holding mechanism 50.
  • Each C-axis adjusting screw 42 b extends in the direction of the workpiece axis C ⁇ b> 2 and abuts on the workpiece holding mechanism 50. Therefore, the position of the workpiece holding mechanism 50 can be adjusted in all radial directions around the workpiece axis C2.
  • the C-axis adjusting screw 42b the mechanism of the workpiece axis fixing portion is simplified, and the mass can be reduced and the size can be reduced. Also, adjustment can be made easily.
  • a cross guide 64 is used for the floating mechanism. Therefore, the rotational force of the workpiece spindle 40 can be reliably transmitted to the workpiece holding mechanism 50 while having a compact configuration. Further, it is possible to allow the workpiece holding mechanism 50 to be displaced with respect to the workpiece spindle 40 without inclining in any direction orthogonal to the workpiece axis C2. In particular, since the cross guide 64 that is a plate-like member is a disk-like member, the weight balance is good.
  • the cross guide 64 has a front cross V groove 64e and a rear cross V groove 64f
  • the work spindle 40 has a spindle V groove 43b
  • the work holding mechanism 50 has a holding V groove 52f. That is, these grooves (43b, 52f, 64e, 64f) have a V-shaped cross section. Therefore, the balls (62, 63, 65, 66) rolling in these grooves are positioned without rattling. For this reason, the rotational force of the workpiece spindle 40 can be transmitted to the workpiece holding mechanism 50 without rattling, and a smooth floating function can be exhibited.
  • the front cross ball receiving surface 64a of the cross guide 64 has a plurality of front cross V grooves 64e.
  • the rear cross ball receiving surface 64b has a plurality of rear cross V grooves 64f. Therefore, it is possible to prevent the workpiece spindle 40, the cross guide 64, and the workpiece holding mechanism 50 from being inclined with respect to each other. Moreover, the rotational force applied to each groove (43b, 52f, 64e, 64f) can also be dispersed.
  • a plurality of front preload balls 62 and rear preload balls 66 are arranged between planes parallel to each other.
  • the front preload ball 62 and the rear preload ball 66 are supported by applying preload, for example, by a stainless steel ball having a high roundness. Therefore, the work holding mechanism 50 is less likely to be inclined with respect to the work spindle 40, and the dimensional accuracy in the direction of the spindle axis C1 can be increased.
  • the adjustment by the C-axis adjustment screw 42b is only the parallel movement of the workpiece axis C2. Therefore, the centering adjustment of the workpiece axis C2 can be performed only by providing the plurality of C-axis adjusting screws 42b collectively at one place in the C-axis direction.
  • Each of the plurality of front preload balls 62 and rear preload balls 66 is arranged in a circumferential shape surrounding the spindle axis C1. Therefore, the workpiece holding mechanism 50 can be supported without tilting. Furthermore, the workpiece axis C2 can be displaced in any direction orthogonal to the main axis C1. Furthermore, mutual rotation of the spindle axis C1 and the workpiece axis C2 is allowed.
  • the front preloading ball 62, the front crossball 63, the rear crossball 65, and the rear preloading ball 66 can be moved with a stable biasing force in a compact configuration. Can be preloaded. Further, the preload adjusting screw 45 itself is an adjusting portion that can adjust the preload, and can stably apply an appropriate preload to each ball (62, 63, 65, 66) with an extremely compact configuration, High dimensional accuracy can be obtained.
  • the centripetal force by each of the front oil seal 61 and the rear oil seal 67 can substantially match the workpiece axis C2 with the main axis C1, and the centering adjustment can be made quickly by reducing the adjustment range. Further, by reducing the adjustment range, the margin of the floating mechanism can be reduced, and in particular, the front preloading ball receiving surface 52c and the rear preloading ball receiving surface 53c that receive the front preloading ball 62 and the rear preloading ball 66 can be reduced so as to be arranged in an annular shape.
  • the floating mechanism can be made small and light.
  • the round bar-shaped workpiece W can be stably supported at an accurate position with a simple configuration.
  • the measuring instrument is not particularly limited as long as it can detect the displacement of the surface of the workpiece W, such as one that uses light interference instead of the dial gauge 27, or one that measures non-contact such as light reflection, capacitance, and magnetism.
  • the measurement value before 180 degree reversal of the work spindle 40 and the measurement value after reversal are not limited to the case where the horizontal position of the support block 91 is adjusted.
  • the vertical position of the support block 91 is measured. It may be adjusted.
  • the adjustment procedure is an example, and the horizontal adjustment can be omitted. It is also preferable to improve accuracy as a whole by repeating measurement and adjustment including adjustment of the apparatus.
  • the number of C-axis adjusting screws 42b as the work axis fixing part is not limited to four, but may be three or five or more.
  • the workpiece axis fixing portion is not limited to the C-axis adjusting screw 42b, but an allowable state in which the displacement of the workpiece axis C2 is allowed, such as a piezo element, mechanical wedge, hydraulic control, and the like. What is necessary is just to be able to switch to the fixed state which fixes the displacement of the shaft center C2.
  • the work holding mechanism is not limited to the collet chuck mechanism. That is, the workpiece W may be chucked by a configuration that can ensure the floating of the workpiece W, such as fastening due to hydraulic pressure or temperature difference, screwing, magnetic force, negative pressure, or the like.
  • the support block 91 that is the support member is not limited to the V block, and it is sufficient that the work W can be held without positional displacement. As long as the positional accuracy of the workpiece W can be ensured, the support member may be a member that supports the workpiece W not by sliding but by rolling.
  • the support lock portion is not limited to the work retainer 92, and the shape and mechanism may be changed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Gripping On Spindles (AREA)
  • Turning (AREA)
  • Constituent Portions Of Griding Lathes, Driving, Sensing And Control (AREA)
  • Machine Tool Units (AREA)

Abstract

工作機械による超精密加工において、丸棒状のワーク(W)を軸心の振れを抑制しながら回転可能にする調整方法を提供する。軸心位置調整手順(S5)では、ワーク主軸(40)を回転させながら、ワーク保持機構(50)による保持状態のワーク(W)の突出部分の側面を計測する。ワーク(W)の振れが最小になるようにC軸調整ネジ(42b)を調整し、ワーク軸心(C2)の位置を固定する。サポート調整手順(S6)では、ワーク軸心(C2)の位置を固定したまま、ワーク(W)を支持すべくサポートブロック(91)を調整する。サポートロック手順(S7)は、ワーク押え(92)でワーク(W)を押圧することによって、サポートブロック(91)によるワーク軸心(C2)の位置の規定を維持する。フローティング規制解除手順(S8)では、C軸調整ネジ(42b)によるフローティング規制を解除する。

Description

工作機械の調整方法、及び工作機械
 本発明は、工作機械の調整方法及び工作機械に係り、特に極小径のエンドミルなどを研削加工する工具研削盤のワークの芯出し調整に関する。
 近年、超精密加工のための工具、例えば工具径が0.01mm~1.00mm程度の極小径のエンドミルなどのニーズが高くなっており、更に超精密化が望まれている。このような極小径の工具を加工形成するため、超硬合金や高速度工具鋼などからなる丸棒状のワークを、いわゆる工具研削盤のワークヘッドに装着する。そしてワークを軸心回りに回転させながら研削することによって、所望形状の工具を形成する。
 このような場合、コレットチャックなどによってワークを片持支持すると、ワークの支持が不安定になり、研削時にワークのビビリが生じる。つまり高精度にワークを研削作業できない。そこで、特許文献1は、ワーク先端を、V字溝を有するVブロックに上方から載せることによってワークを両端支持し、その結果、ワークのビビリを抑えて高精度な研削作業ができると開示する。
 一方、非特許文献1は、従来の精密加工用コレットチャックの補正を開示する。すなわち、保持状態のワークの軸心が、旋盤の主軸軸心からズレないようにするため、チャックを取付けた旋盤によってコレットの内周を削るという補正を行うことが開示される。このような補正が容易なように、コレットはアルミニウム合金などの軟らかい合金製である。
 しかし、切粉がコレット内に入ることによってコレット内周に傷が付き、ワークの取付精度が低下しやすかった。そこで更に非特許文献1は、チャック本体と、チャック本体とは別体の歪み吸収スリーブとを有するコレットチャックを提案する。歪み吸収スリーブはテーパ部と、コレットを偏心させる調整機構とを備える。歪み吸収スリーブは、コレット偏心時に生じるズレを吸収する。
 更に特許文献2は、ワークの軸心と、ワークを保持する主軸の軸心との間のズレを吸収するフローティングチャックを開示する。
 以上のように、加工精度を上げる方法が提案される。しかし、近年のサブμm~数十μmオーダーの超精密加工では、以下のような問題が生じる。
 上述の特許文献1に示すようなVブロックは、理論上では、ワークの摺動面の粗さの範囲内において、高い精度を示すことができるといえる。しかし、実際には、Vブロックによって支持されたワークの軸心が、主軸軸心からズレる現象が発生する。このようなズレによって、ワークが回転する毎にワークの微小な振れが発生する。このような振れを抑制するのは困難であった。
 一方、非特許文献1に示す方法の場合、やはりワークを片持支持する限り、ワークが不安定になるのは避けられない。またVブロックによってワーク先端を支持すると、やはり主軸軸心とワーク軸心の間のズレが生じる。このズレによって生じる微小な振れを抑制することは困難である。
 また、フローティングチャックがワークをチャックし、且つVブロックがワークを支持すれば、片持支持のような問題は無くなると、一見、思われる。つまり、フローティングチャックが、主軸軸心に対するワーク軸心のズレを吸収することによって、ワークを安定且つ正確に支持できるように、一見思われる。
 しかし、実際には、特許文献2に示すように、フローティングチャック自体の構造は複雑であり、それ故、フローティングチャックは大型であり、質量が極めて大きい。その理由として、フローティングチャックは、あらゆるズレや傾きに対応できるように、ワーク軸心の位置の自由度や動作マージンを極めて大きく確保するように設計されるという事情のためである。そもそもフローティングチャックは、ワーク軸心を位置調整する手間を無くすことを目的とするものである。よって、フローティングチャックを備える従来の加工機械には、予めワーク軸心位置を調整するという思想は無いし、もちろんワーク軸心位置を調整しようとしても調整機構を備えていない。このような従来のフローティングチャックを、Vブロックと組合わせて有する加工機械がワークを加工することを仮定すると、フローティング機構の動きが大きくなり、その結果、ワークの回転バランスが崩れたり、また大きなイナーシャを生じたりする。このようなことから、従来技術ではフローティングチャック自身がワークの振れの原因である。よって、従来技術では、超精密加工におけるワークの微小な振れを抑制するという本発明の目的には到底達成できないという問題があった。
特開平8-118234号公報 特開2003-145326号公報 メカアイデア事典(5分冊のPartII、94~95ページ、1993年12月16日発行、日経メカニカル編、日経BP社発行)
 本発明の目的は、工作機械による超精密加工における丸棒状のワークを軸心の振れを抑制しながら回転させることができる調整方法及びその調整方法に用いる工作機械を提供することにある。
 上記目的を達成するため、本発明によれば、工作機械の調整方法が提供される。工作機械は、回転駆動されるワーク主軸と、丸棒状のワークを保持するワーク保持機構とを備える。ワークは、軸心であるワーク軸心と、ワークがワーク保持機構によって保持された状態でワーク保持機構から突出する突出部分とを有する。突出部分は、ワーク軸心の周りを囲む側面を有する。工作機械は更に、ワーク主軸の回転をワーク保持機構に伝達するフローティング機構を備える。フローティング機構は、ワーク主軸に対するワーク保持機構の変位を許容するように、ワーク保持機構を支持する。工作機械は更に、フローティング機構を一時的に規制することによって、ワーク軸心の位置をワーク主軸に対して任意の位置において固定するワーク軸心固定部を備える。工作機械は更に、ワーク保持機構がワークを保持する状態において、ワークの側面を回転可能に支持するサポート部材を備える。工作機械は更に、サポート部材がワークを支持する位置を調整するサポート位置調整部を備える。工作機械は更に、ワークをサポート部材に押し付けるようにワークを押圧することによって、サポート部材がワーク軸心の位置を規定する状態を維持するサポートロック部を備える。
 調整方法は、ワーク保持機構がワークを保持し且つサポート部材はワークを支持していない状態で、ワーク主軸を回転させながらワークの側面の振れを計測し、振れが最小になるようにワーク軸心固定部を調整する軸心位置調整手順を備える。調整方法は更に、ワーク軸心固定部によってワーク主軸に対するワーク軸心の位置を固定した状態のまま、サポート部材がワークを支持するようにサポート位置調整部を調整するサポート調整手順を備える。調整方法は更に、サポート調整手順の後、サポートロック部によってワークを押圧するサポートロック手順を備える。調整方法は更に、サポートロック手順の後、ワーク軸心固定部によるフローティング機構の規制を解除するフローティング規制解除手順を備える。
 この場合、まず、軸心位置調整手順によってフローティング機構の機能を規制しつつ、ワークの軸心とワーク主軸の軸心を極力一致させる。更に、サポート調整手順では、サポート部材をこの一致した位置のワークを支持するように位置調整する。そしてサポート部材が支持するワークの位置を、サポートロック手順によって維持する。その上で、フローティング規制解除手順では、フローティング規制を解除してフローティングの機能を発揮させる。
 このため、サポート部材は、ワークの軸心とワーク主軸の軸心が一致した位置に配置される。そしてフローティング機構は、僅かなズレを吸収する。フローティング機構が以降に要求される動きは極小であるため、ワークに振れを生じさせるイナーシャなどが発生しにくい。
 フローティング機構は、僅かな動きしか要求されないため、精度が高くガタツキがなく且つ小型軽量なフローティング機構を採用できる。よって、更にワークを安定して支持できる。
 また、工作機械は工具主軸台と、工具主軸台に取外可能に取付けられるダイヤルゲージとを備えることが好ましい。軸位置調整手順は、ダイヤルゲージを用いてワークの側面の位置を計測することによって、ワーク主軸が一回転する間におけるダイヤルゲージの計測値の最大値と最小値を読取ることと、計測値が最大値と最小値の平均値になるように、ワーク主軸に対するワークの径方向位置を調整することとを含むことが好ましい。
 この場合、ワーク主軸の変位には影響を受けないで、微細な変位が可能な工具主軸台にダイヤルゲージを配置することによって、工作機械を利用してワークの変位を測定できる。このようにして、ワークの絶対位置を測定して、ズレのある方向を測定して、このズレを消去するように調整する。よって、ワークの軸心とワーク主軸の軸心を一致するように調整できる。この手順を繰返すことによって、ワークの軸心とワーク主軸の軸心を更に正確に一致させることができる。
 また、調整方法は更に、フローティング規制解除手順の後に行う水平調整を含むことが好ましい。ワーク主軸の軸心を主軸軸心と称する。水平調整は、主軸軸心に対して水平方向の、ワークの側面の位置を計測することによって、反転前計測値を得ることと、主軸軸心が180度反転するようにワーク主軸を反転させることと、反転後のワークの側面の位置を計測することによって、反転後計測値を得ることと、計測値が反転前計測値と反転後計測値の平均値になるように、サポート部材を水平方向に移動させることとを含むことが好ましい。
 この場合、ワーク主軸を180度反転させることによって、主軸軸芯と直交する軸回りにワーク主軸を回転させる。よって、主軸軸心と旋回軸線の間のズレの影響を小さくできる。
 また、最大値と最小値は、ワークの先端において計測されることが好ましい。
 この場合、一番ズレが生じやすく且つ一般的に一番精度が要求されるワーク先端において測定することによって、形成する工具の精度を高めることができる。
 また、ワークに替えて、予め目標精度を備えるテストピースが用いられることが好ましい。
 この場合、実際の加工対象となるワークに替えて、精度の高いテストピースを用いることによって、更に精度の高い調整を行なうことができる。
 また、本発明によれば、上記調整方法によって調整可能な工作機械が提供される。工作機械は、回転駆動されるワーク主軸と、丸棒状のワークを保持するワーク保持機構とを備える。ワークは、軸心であるワーク軸心と、ワークがワーク保持機構によって保持された状態でワーク保持機構から突出する突出部分とを有する。突出部分は、ワーク軸心の周りを囲む側面を有する。工作機械は更に、ワーク主軸の回転をワーク保持機構に伝達するフローティング機構を備える。フローティング機構は、ワーク主軸に対するワーク保持機構の変位を許容するように、ワーク保持機構を支持する。工作機械は更に、フローティング機構を一時的に規制することによって、ワーク軸心の位置をワーク主軸に対して任意の位置において固定するワーク軸心固定部を備える。工作機械は更に、ワーク保持機構がワークを保持する状態において、ワークの側面を回転可能に支持するサポート部材を備える。工作機械は更に、サポート部材がワークを支持する位置を調整するサポート位置調整部を備える。工作機械は更に、ワークをサポート部材に押し付けるようにワークを押圧することによって、サポート部材がワーク軸心の位置を規定する状態を維持するサポートロック部を備える。
 この場合、上記調整方法を好適に実施するのが可能である。
 また、ワーク軸心固定部は、ワーク保持機構を囲む円周上に位置するようにワーク主軸に配置される複数のネジを備えることが好ましい。各々のネジは、ワーク主軸からワーク軸心に向かって進出することによってワーク保持機構に当接する。ネジは、回動させられてワーク主軸からワーク軸心への進出量が調整されることによって、ワーク主軸に対するワーク保持機構の相対位置の変化を許容する状態と、相対位置の変化を規制する状態とに切換可能であることが好ましい。
 この場合、ワーク軸心を中心とするすべての半径方向への調整ができる。また、ネジを採用することによって、機構が簡素となり、質量を小さく、且つ小型のものとすることができる。また、調節も容易にできる。
 また、ワーク主軸は、主軸軸心と直交する直線に対して平行に延びる直線状の溝である主軸溝を有することが好ましい。ワーク保持機構は、ワーク軸心と直交する直線に対して平行に延びる直線状の溝である保持溝を有する。フローティング機構は、板状部材であるクロスガイドを備える。クロスガイドは、第1クロス面とその反対側の第2クロス面とを有する。第1クロス面は主軸溝に対向する第1クロス溝を有する。第2クロス面は、保持溝に対向する第2クロス溝を有する。ワーク軸心の方向から見て第2クロス溝は第1クロス溝と直交する。フローティング機構は更に、第1クロス溝に列状に配置される複数の第1クロスボールと、第2クロス溝に列状に配置される複数の第2クロスボールとを有する。第1クロスボールと第2クロスボールがそれぞれ転動することによって、主軸軸心と直交する方向へのワーク軸心の変位が許容されることが好ましい。
 この場合、コンパクトな構成でありながら、ワーク主軸の回転力を確実にワーク保持機構に伝達できる。更に、ワークの軸心と直交するあらゆる方向に、傾き無しでワーク保持機構を変位させることができる。特に、板状部材を円盤状部材とすれば、重量バランスが良好なものとなる。
 また、主軸溝、保持溝、第1クロス溝、および第2クロス溝はそれぞれ断面V字状のV溝であることが好ましい。
 この場合、転動するクロスボールの位置が、ガタツキなく位置決めされる。このため、ガタツキ無く回転力を伝達できるとともに、円滑なフローティング機能を発揮できる。
 また、第1クロス面は第1クロス溝を複数列だけ有し、第2クロス面は第2クロス溝を複数列だけ有することが好ましい。
 この場合、複数のV溝を備えることによって、ワーク主軸、クロスガイド、ワーク保持機構の間で傾きを生じにくくできる。また、それぞれの溝にかかる回転力も分散できる。
 また、フローティング機構は、ワーク主軸に設けられる第1主軸面と第2主軸面を備えることが好ましい。第1主軸面と第2主軸面はそれぞれ平面である。フローティング機構は更に、ワーク保持機構に設けられる第1保持面と第2保持面を備える。第1保持面と第2保持面はそれぞれワーク軸心と直交する。フローティング機構は更に、第1保持面と第1主軸面の間に配置される複数の第1予圧ボールと、第2保持面と第2主軸面の間に配置される複数の第2予圧ボールとを備える。フローティング機構は更に、ワーク主軸に設けられる付勢部を備える。付勢部はワーク保持機構を支持すべく第1予圧ボールと第2予圧ボールを付勢する。ワーク保持機構はワーク主軸に対してワーク軸心と直交する方向への変位のみが許容される。
 この場合、相対的に平行な平面に配置された複数のボール、例えば真円度の高いステンレス球などに予圧をかける。よって、ワークの傾きを生じにくく、且つワーク主軸の軸心方向の寸法精度も高くできる。
 また、第1主軸面、第2主軸面、第1保持面、および第2保持面はそれぞれ環状であることが好ましい。第1予圧ボールと第2予圧ボールはそれぞれ環状に配置される。
 この場合、ボールを円周状に配置したため、ワークを傾きなく支持できる。更に、ワークを、主軸軸心と直交するあらゆる方向に変位可能にする。更に、ワーク主軸とワーク保持機構の軸心同士の相互回転を許容する。
 また、付勢部はネジであり、ネジが第1予圧ボールと第2予圧ボールを付勢する付勢力は調整可能であることが好ましい。
 この場合、付勢部をネジにすることによって、コンパクトな構成で、安定した付勢力でボールを予圧できる。更に、調整部を設けることによって、各ボールに適切な予圧を付与でき、円滑なフローティングと高い寸法精度を得ることができる。
 また、工作機械は更に、ワーク主軸とワーク保持機構の間に配置される環状の弾性体からなるオイルシールを備えることが好ましい。オイルシールは、ワーク保持機構の軸心が主軸軸心に近づくようにワーク保持機構に求心性を付与することが好ましい。
 この場合、オイルシールによる求心力は、ほぼワークの軸心をワーク主軸の軸心に一致させることができる。よって、フローティング機構の調整範囲を小さくすることによって、調整が速やかにできる。また、フローティング機構の調整範囲を小さくすることによって、フローティング機構のマージンも小さくできる。特に、環状に複数のボールが配置される平面を小さくでき、フローティング機構を小型軽量とすることができる。
 また、サポート部材は、V字溝を有するVブロックによって構成されることが好ましい。
 この場合、丸棒状のワークを安定して正確な位置で支持できる。
 また、工作機械は工具研削盤に好適に適用できる。
 この場合、工具の形成に効果的な本発明の調整方法によって工具研削盤を調整することによって、精度の高い工具を形成できる。
 また、ワークは、エンドミルまたはドリルのワークに好適に適用できる。
 この場合、近年、特に超精密加工に用いられるエンドミルまたはドリルを高い精度で形成できる。
 また、エンドミルまたはドリルの先端の工具径の範囲は、0.001mm~6.00mmであることが好ましい。
 本発明の調整方法は、高い加工精度を発揮できる。よって、本発明をこのような工具径のエンドミルまたはドリルなどに極めて好適に用いて、超精密加工に用いる高い精度のエンドミルまたはドリルを形成できる。
 また、エンドミルまたはドリルのシャンク径の範囲は、0.5mm~6mmであると好ましい。
 本発明の調整方法は、高い加工精度を発揮できる。よって、このようなシャンク径のエンドミルまたはドリルなどに極めて好適に用いて、超精密加工に用いる高い精度のエンドミルまたはドリルを形成できる。
本発明を具体化した一実施形態に係る工具研削盤の外観斜視図。 図1の工具研削盤の要部斜視図。 図2に示すワークヘッドの断面図。 図3のワークヘッドの拡大断面図。 図4のワークヘッドの部材を詳細に示す断面図。 図5に示すワーク保持機構の分解斜視図。 図5に示すフローティングアセンブリの分解斜視図。 図8(a)は図7に示すクロスガイドの正面図、図8(b)は側面図、図8(c)は背面図。 図5に示す予圧機構とコレットクランプ機構の分解斜視図。 図5に示すC軸調整ネジとケースの斜視図。 図5に示すコレット開閉部の一部の分解斜視図。 図5に示すワークヘッドの主要部の分解斜視図。 図3に示すサポート装置の要部の分解斜視図。 図3に示すサポート装置の拡大断面図。 図14のサポート装置を、C軸方向から見た正面図。 図14のサポート装置が、ワーク支持を解除した状態の拡大図。 図14のサポート装置が支持するテストピースを、ダイヤルゲージが測定する状態の拡大図。 図2の工具研削盤を用いた、ワークの芯出し調整方法のフローチャート。
 図1~図18は、本発明を具体化した一実施形態に係る工具研削盤20を説明する。
 本願に係る工具研削盤20は、全自動CNC(Computer Numeric Control)極小径エンドミル研削盤である。工具研削盤20は、極小径(工具径0.01mm~2.0mm)のエンドミルの全工程を、ワンチャッキングで全自動研削する。
 << 全体構成 >>
 図1に示すように、工具研削盤20は、複数の機台10で支えられたフレーム11上に設けられた、外面が箱状の装置カバー12内に収容される。装置カバー12の前面の中央部には窓部を持った開閉可能な前面扉13が設けられ、内部に収容された工具研削盤20を隔離している。装置カバー12の前面は、前面扉13に向かって右方において、上から下に液晶画面の表示装置14、キーボード15、NC制御装置操作盤16を備える。装置カバー12は、内部にNC制御装置を有する。手動パルサー17は、ケーブルを介してNC制御装置に接続される。操作者が手動パルサー17のダイヤルを操作すると、NC制御サーボ機構を微動させることができる。前面扉13を開放すると、図2に示すように工具研削盤20が露出する。
 工具研削盤20は、フレーム11上に設けられた旋回台21の鉛直方向に延びる軸心(回転軸線)をB軸と規定し、B軸回りに旋回可能な旋回テーブル22を備える。旋回テーブル22上には、ワークヘッド23とドレス装置24が載置される。旋回テーブル22、ワークヘッド23、およびドレス装置24はB軸回りに旋回可能とされる。
 ワークヘッド23は、ワークWを保持する。ワークWは、B軸と直角且つ水平方向に延びるように配置される。ワークWは、たとえば極小径エンドミルとなる。ワークヘッド23の回転中心(軸線)をC軸と称する。本実施形態においては、特にC軸を、ワーク主軸40の回転中心(軸線)である主軸軸心C1と、ワークWの回転中心(軸線)であるワーク軸心C2とに区別して記載する場合がある。たとえば図9は主軸軸心C1を示し、図6はワーク軸心C2とワークWを示す。本実施形態では、ワークWは丸棒状であり、先端が円錐である。つまりワークWは、長尺状の円柱である外径部と、円錐である先端とを有する。
 ワークヘッド23の上方には、ツールスピンドル25が配設される。
 << 座標系 >>
 図2は、本実施形態における座標系を示す。
 ツールTは、ツールスピンドル25に装着された状態で、水平に且つ前後方向に延びる。ツールTの軸心(回転軸線)の方向をZ軸とする。Z軸と直交する水平な方向(左右方向)をX軸とする。鉛直方向をY軸とする。
 X軸は、ツールスピンドル25の左右送り方向に延びる。図2において左方向を+方向とし、B軸と直交する位置をX軸の原点とする。
 Y軸は、ツールスピンドル25の上下送り方向に延び、上方向を+方向とし、ツールスピンドル25の可動範囲でC軸から最も上方に離れた位置をY軸の原点とする。
 Z軸は、ツールスピンドル25の前後送り方向に延び、後方(B軸から離れる方向)を+方向とし、ツールスピンドル25の可動範囲においてB軸から最も後方に離れた位置をZ軸の原点とする。
 B軸の回転方向は、上方から見て時計回りを+方向とし、B軸回転の原点はC軸がZ軸と平行になる位置である。
 C軸の回転方向は、X軸の+方向から-方向(図において左から右方向)を見て時計回りの方向を+方向とし、初期位置をC軸回転の原点(0°)とする。
 NC制御装置はツールスピンドル25を、X軸,Y軸,Z軸方向に平行移動する。ワークヘッド23は、ワークWの先端を中心に、B軸回りに回動する。ワーク主軸40とワークWは、C軸回りに回転する。すなわち、本装置のNC制御は、制御軸数は、X軸,Y軸,Z軸,B軸,C軸の5軸制御である。
 << ワークヘッド23 >>
 図3~図12は、ワークヘッド23を説明する。本実施形態のワークヘッド23の説明では、ワークWを装着する部分を、ワークヘッド23の先端もしくは前部と称し、反対側をワークヘッド23の基端もしくは後部と称する。
 (ワークヘッド本体30)
 図3に示すように、ワークヘッド23は、ワークヘッド23の各機構等を収容するワークヘッド本体30を備える。ワークヘッド本体30は、図2に示す旋回テーブル22に固定される。ワークヘッド本体30は、ワーク主軸40を回転可能に支持し、ワークヘッド23の外観を形成する。ワークヘッド本体30は、具体的にはベースフレーム31、カバー32、およびラビリンス33を備える。ベースフレーム31は旋回テーブル22に固定され、ワークヘッド23の全体を支える。カバー32はベースフレーム31の上部に設けられ、ワークヘッド本体30の全体を覆う。ラビリンス33は、回転するスピンドル41を、カバー32に対して回転可能且つ気密にシールする。
 カバー32は、ワーク主軸40を収容する空間を備える。この空間には、スピンドル41を回転自在に支持するため、複数のラジアルボールベアリングからなるベアリング34が配設される。また、カバー32の先端には、オイルシール35が配設され、回転するスピンドル41の潤滑油の保持、異物の侵入防止を図る。
 また、図5に示すように、ラビリンス33は、カバー32の先端に設けられ、カバー32に収容されたスピンドル41の先端をカバーする。ラビリンス33のラビリンス構造は、回転するスピンドル41に対して、潤滑油の保持と、異物の侵入防止とを図る。特に、ラビリンス33はエアインレット36を備え、ラビリンス33内部を陽圧に保ち、ラビリンス構造の効果を高める。
 (ワーク主軸40)
 図3と図4に示すように、ワークヘッド本体30の内部には、ワーク主軸(Work Spindle)40が配置される。ワーク主軸40は、スピンドル41及びこれと一体に回転する部分をいう。図5に示すように、具体的にはワーク主軸40は、スピンドル41のほか、スピンドル41の先端に取付けられるコレットケース42、ガイド43、チャックベース44、予圧調整ネジ45、保持スプリング46、およびリテーナ47を含む。
 図3に示すように、NC制御装置操作盤16(図1)によって制御される駆動モータを備える駆動ユニット37の回転は、回転伝達機構38によってスピンドル41に伝達され、ワーク主軸40が回転する。本実施形態では、スピンドル41の回転速度は、およそ毎分60回転である。
 (ワーク保持機構50)
 図4に示すワーク保持機構50は、いわゆるコレットチャック機構からなる。図5に示すように、具体的にはワーク保持機構50は、コレット51、コレットホルダ52、およびベースホルダ53を備える。コレット51はワークWを把持する。つまりワーク保持機構50がワークWを保持する状態において、ワークWは、ワーク保持機構50から突出する突出部分を有する。ワークWの突出部分は、ワーク軸心C2の周りを囲む側面(周面)を有する。ベースホルダ53は、コレット51の基端に螺合する。
 図6に示すように、コレット51は全体が円筒状である。コレット51の先端は、ワークWが挿入される挿入口51aを有する。コレット51の先端には、先端に行くほど外径が太くなるようなコレットテーパ部51cが形成される。コレット51の先端からワーク軸心C2方向(長手方向)の中央部ほどまでには、等角に3分割されたスリ割部51bが形成される。コレット51の中央において基端寄りには、他よりもやや外径が大きいガイド部51dが形成される。コレット51の基端には、雄ネジが刻設されたコレット螺合部51eが形成される。
 コレットホルダ52の全体は、コレット51を挿入可能な内径の筒状の部材である。コレットホルダ52の先端(ワークW寄り)の内壁には、先端に向かって内径が大きくなるテーパ形状のホルダテーパ部52aが形成される。ホルダテーパ部52aは、コレットテーパ部51cに密着可能である。ホルダテーパ部52aは、コレット51のスリ割部51bを緊縮させる。つまり、コレット51をコレットホルダ52に挿入して、コレット51のみを基端向きに付勢すると、コレットテーパ部51cが緊縮されてスリ割部51bが狭くなって、コレット51の内径が小さくなり、挿入口51aに挿入されたワークWを把持固定できる。
 コレットホルダ52の軸心方向の略中央には、ホルダフランジ52bが設けられる。ホルダフランジ52bの先端に向かう面は、環状平面であり、第1保持面としての前方予圧ボール受け面52cである。また、ホルダフランジ52bの基端寄りの面は、前方クロスボール受け面52dである。コレットホルダ52の基端52eは、図5に示すように、クロスガイド64及びガイド43に挿入されるが、クロスガイド64やガイド43の内面には接触しない。
 ベースホルダ53は、全体が円筒形に形成される。ベースホルダ53の先端(ワークW寄り)の内面には、雌ネジが刻設されてホルダ螺合部53aが形成される。ホルダ螺合部53aは、コレット螺合部51eと螺合可能になっている。また、ベースホルダ53の基端の外周には、ベースフランジ53bが形成される。ベースフランジ53bの先端向きの面は、環状平面であり、第2保持面としての後方予圧ボール受け面53cである。また、ベースフランジ53bの基端には、3段の段付形状に形成され、カラー嵌合部53dに形成される。カラー嵌合部53dは、ベースフランジ53bの基端が最も小さな外径である。ベースホルダ53の基端の一番小さな径の部分は、コレット開閉部70のカラー78の内面に密着することによって嵌合可能である。
 図4に示すように、コレット51、コレットホルダ52、ベースホルダ53からなるワーク保持機構50は、フローティングアセンブリ60によって、ワーク主軸40に対してフローティング支持されるフロート部である。
 (コレットクランプ機構49)
 コレットクランプ機構49は、保持スプリング46とリテーナ47によって、コレット51がワークWを保持した状態を維持するコレット固定機構である。図9に示すように保持スプリング46は圧縮コイルスプリングから構成され、保持スプリング46の前端(ワークW寄りの端部)は、チャックベース44の保持スプリング受け面44bに当接される。
 リテーナ47は、全体が環状に形成される。リテーナ47の前面(ワークWに向かう端部)には、保持スプリング受け部47aが形成される。保持スプリング受け部47aは、保持スプリング46の後端を収容する凹部を有する。保持スプリング46の後端は、リテーナ47の保持スプリング受け部47aに当接される。
 リテーナ47の後面には、第2主軸面としての後方予圧ボール受け面47bが形成される。後方予圧ボール受け面47bは、第2予圧ボールとしての後方予圧ボール66を受ける環状の平面である。図5に示すように、リテーナ47の中央の孔には、ベースホルダ53が貫通される。リテーナ47の後方予圧ボール受け面47bは、図6に示すベースホルダ53の後方予圧ボール受け面53cに対向するように配置される。後方予圧ボール受け面47bと後方予圧ボール受け面53cの間に、図7に示す環状に配列された多数の後方予圧ボール66が配置され且つ挟持される。このため、圧縮状態の保持スプリング46は、ベースフランジ53bを後方に付勢する。このため、コレット51によって保持されたワークWは、状態が維持される。
 ベースホルダ53の後方予圧ボール受け面53cとリテーナ47の後方予圧ボール受け面47bとは、いずれも相互に平行な平面に形成され、その間に環状に配列された後方予圧ボール66が配置される。このため、ベースホルダ53とリテーナ47は、互いに平行な関係を保ったまま、主軸軸心C1と直交するすべての方向に相互変位可能である。
 (フローティングアセンブリ60)
 図4に示すフローティングアセンブリ60は、ワーク主軸40に対してワーク保持機構50を変位可能に支持しながら回転を伝達する機構であり、具体的には、図5に示すように前方オイルシール61、前方予圧ボール62、前方クロスボール63、クロスガイド64、後方クロスボール65、後方予圧ボール66、後方オイルシール67を含む。
 (オイルシール61,67)
 前方オイルシール61と後方オイルシール67は、それぞれたとえばフッ素ゴム、シリコーンゴム、アクリルゴム、ニトリルゴムなどの耐油性のある弾性体からなる環状部材である。前方オイルシール61は、コレットホルダ52の先端向きの側面の周囲に環装され、コレットケース42との間に配置される。また、後方オイルシール67は、ベースホルダ53のベースフランジ53bの周囲に環装され、リテーナ47との間に配置される。前方オイルシール61と後方オイルシール67は、回転部分の潤滑油を保持したり、異物の進入を阻止する機能を有する。とりわけ、前方オイルシール61と後方オイルシール67の弾力は、これらを貫通するワーク保持機構50の軸心(ワーク軸心C2)を、主軸軸心C1(ワーク主軸40の回転軸線)に一致させようとする求心力を付与する機能がある。そのため、前方予圧ボール62、前方クロスボール63、後方クロスボール65、後方予圧ボール66がワーク保持機構50をフローティングするだけで他にワーク保持機構50をサポートするものが無い状態でも、重力に抗してワーク軸心C2を主軸軸心C1に概ね一致させることができる。その結果、フローティング機構の動作範囲を小さくすることができる。
 (ボール62,63,65,66)
 前方予圧ボール62、前方クロスボール63、後方クロスボール65、および後方予圧ボール66は、いずれもボールベアリングに用いるステンレスや鋼製の真円度の高い寸法精度の高い複数の硬球からなる。これら多数のボール(62,63,65,66)は、予圧をかけられることによって弾性変形し、ワーク保持機構50の寸法安定度を向上させることができる。
 (クロスガイド64)
 図7と図8に示すクロスガイド64は、円環状部材である。クロスガイド64は、ワークWに向かう第1クロス面としての前方クロスボール受け面64aと、ワークWとは反対側に向かう第2クロス面としての後方クロスボール受け面64bとを有する。前方クロスボール受け面64aと後方クロスボール受け面64bは、それぞれ概ね平面である。クロスガイド64は更に、内周面64cと、側面としての外周面64dとを有する。
 前方クロスボール受け面64aには、2本の平行な直線状の第1クロス溝としての前方クロスV溝64eが形成される。各々の前方クロスV溝64eは、クロスガイドの軸心であるフローティング軸心C3と直交する面において、フローティング軸心C3を間に挟むように互いに対称に位置する。
 一方、図6に示すコレットホルダ52の前方クロスボール受け面52dには、平行な2本の直線状の保持溝としての保持V溝52fが形成される。各々の保持V溝52fは、ワーク軸心C2と直交する面において、ワーク軸心C2を間に挟むようにして互いに対称に位置する。各々の保持V溝52fは、それぞれ前方クロスV溝64eに対向する。互いに対向する前方クロスV溝64eと保持V溝52fの間には、列状に並ぶ複数の第1クロスボールとしての前方クロスボール63が配置される。前方クロスボール63が転動することによって、コレットホルダ52とクロスガイド64が、前方クロスV溝64eと保持V溝52fに沿って相互に移動する。このとき前方クロスV溝64eと保持V溝52fは、互いに平行な関係を保つ。つまり、コレットホルダ52とクロスガイド64は互いに相対移動しても、ワーク軸心C2とフローティング軸心C3は互いに平行な関係を保ったまま、互いの相対位置が変動可能である。
 また後方クロスボール受け面64bにも、2本の平行な直線状の第2クロス溝としての後方クロスV溝64fが形成される。各々の後方クロスV溝64fは、フローティング軸心C3と直交する面において、フローティング軸心C3を間に挟むように互いに対象に位置する。各々の後方クロスV溝64fは、フローティング軸心C3から見て、各々の前方クロスV溝64eに直交する。つまり各々の後方クロスV溝64fは、フローティング軸心C3から見て、各々の保持V溝52fに直交する。
 一方、図9に示すガイド43の後方クロスボール受け面43aには、2本の平行な直線状の主軸溝としての主軸V溝43bが形成される。各々の主軸V溝43bは、
主軸軸心C1と直交する面において、主軸軸心C1を間に挟むように互いに対称に位置する。各々の主軸V溝43bは、それぞれ後方クロスV溝64fに対向する。互いに対向する主軸V溝43bと後方クロスV溝64fの間には、列状に配置された複数の第2クロスボールとしての後方クロスボール65が配置される。後方クロスボール65がそれぞれ転動することによって、クロスガイド64とガイド43は、主軸V溝43bと後方クロスV溝64fに沿って相互に移動する。主軸V溝43bと後方クロスV溝64fは互いに平行な関係を保つ。つまり、クロスガイド64とガイド43は相対移動しても、主軸軸心C1とフローティング軸心C3は互いに平行なまま、両者間の相対位置が変動可能である。
 主軸V溝43b、保持V溝52f、前方クロスV溝64e、および後方クロスV溝64fは、いずれも溝の延設方向と直交する断面がV字状の溝である。このため、対向するV溝同士を近接するように付勢すると、それらV溝の間に配置された前方クロスボール63と後方クロスボール65はV溝に嵌り、基本的に溝の壁に2点で接触する。仮に、一対の溝の間隔が不正確であったり、温度変化によって間隔が変化したりすると、前方クロスボール63と後方クロスボール65は、一方の溝には2点で接触し、他方の溝には1点で接触する。この場合であっても、前方クロスボール63と後方クロスボール65の位置は、主軸V溝43b、保持V溝52f、前方クロスV溝64e、および後方クロスV溝64fに対して一義的に決まり、ガタツキが生じない。
 従って、ガイド43が回転すると、ガイド43の回転力はガタツキなくクロスガイド64に伝達される。クロスガイド64の回転はガタツキなくコレットホルダ52に伝達される。
 フローティング機構は、主軸軸心C1、ワーク軸心C2、およびフローティング軸心C3を、いずれも相互に平行な関係に保つ。つまりガイド43、コレットホルダ52、およびワーク保持機構50は、いずれも相互に平行な関係に保たれる。このようにフローティング機構は、主軸軸心C1、ワーク軸心C2、フローティング軸心C3の互いのズレを許容しながら、確実にワーク主軸40の回転力を、ワーク保持機構50に保持された状態のワークWに伝達できる。
 (予圧機構48)
 図4に示す予圧機構48は、ワーク主軸40の一部として構成される。予圧機構48は、具体的にはガイド43、予圧調整ネジ45、チャックベース44を含む。予圧機構48は、フローティングアセンブリ60を構成する前方予圧ボール62、前方クロスボール63、後方クロスボール65、および後方予圧ボール66をそれぞれ僅かに弾性変形する程度に付勢するように予圧を掛ける。その結果、フローティング機構のガタツキをなくす。
 図9に示すようにチャックベース44は、スピンドル41の先端にボルト固定され、スピンドル41と一体回転する。チャックベース44は、全体が扁平な円筒状であり、中央部に円形の凹部44aを有する。凹部44aはガイド43を収容する。4本の予圧調整ネジ45は、主軸軸心C1に平行に延び、互いに等角度間隔で主軸軸心C1を囲むように配置される。各々の予圧調整ネジ45は、凹部44aの内部において、チャックベース44に螺合される。予圧調整ネジ45の先端は、チャックベース44からワークWに向かって突出し、ガイド43の予圧調整ネジ受け面43cに当接する。チャックベース44からの予圧調整ネジ45の突出量を調整することによって、チャックベース44に対するガイド43の主軸軸心C1方向の相対位置を変化させ、予圧を調整できる。図5に示すボルト44cが、チャックベース44に対してガイド43を固定すると、予圧調整ネジ45による予圧は固定される。
 (コレットケース42)
 図5に示すように、チャックベース44の先端には、コレットケース42が固定される。図10に示すように、コレットケース42は、先端に向かうほど外径が小さくなる概ね全体が円筒状の部材である。コレットケース42の中心には、コレットホルダ52を挿入する孔が開口している。孔の内周面には、径方向内方に突出するケースフランジ42aが形成される。ケースフランジ42aの後面は、環状平面であり、且つ第1主軸面としての前方予圧ボール受け面42cである。前方予圧ボール受け面42cは、図5に示すように、ホルダフランジ52bの前方予圧ボール受け面52cに、第1予圧ボールとしての前方予圧ボール62を介して当接している。コレットホルダ52の前方予圧ボール受け面52cとコレットケース42の前方予圧ボール受け面42cとは、いずれも相互に平行な平面に配置され、その間に環状に配列された第1予圧ボールとしての前方予圧ボール62が配置される。このため、コレットホルダ52とコレットケース42とは、平行な関係を保ったまま、主軸軸心C1と直交するすべての方向に相互に変位可能である。
 以上のとおり、ガイド43とコレットケース42は、フローティングアセンブリ60のホルダフランジ52bを、前方予圧ボール62、前方クロスボール63、クロスガイド64、前方クロスボール受け面64aを介して挟持する。予圧調整ネジ45は、ホルダフランジ52bを付勢する付勢力を調整し、寸法精度が安定する程度に予圧をホルダフランジ52bに付与する。このため、ワーク主軸40に対して、ワーク保持機構50の軸心方向位置が正確に特定される。
 (C軸調整ネジ42b)
 コレットケース42の側面から、主軸軸心C1に向かってC軸調整ネジ42bが螺入される。C軸調整ネジ42bを締込むと、C軸調整ネジ42bの先端がコレットホルダ52に当接するようになっている。4本のC軸調整ネジ42bが、90度ごとの等角度間隔で配置されている。このため、これらC軸調整ネジ42bを調整することによって、コレットケース42に対するコレットホルダ52の位置を調節し、そして締付け固定できる。つまり各々のC軸調整ネジ42bは、ワーク主軸40からワーク軸心C2に向かって進出することによって、ワーク保持機構50に当接する。C軸調整ネジ42bは回動させられることによって、ワーク主軸40からワーク軸心C2に向かう進出量が調整される。その結果、ワーク主軸40に対するワーク保持機構50の相対位置の変化を許容する状態と、相対位置の変化を規制する状態とに切換可能である。
 C軸調整ネジ42bの調整をおこなっても、ワーク主軸40に対するワーク保持機構50の傾きは変化せず、基本的にワーク軸心C2と主軸軸心C1は互いに平行な関係を維持する。C軸調整ネジ42bは、フローティング機構を一時的に規制(ロック)することによって、ワーク軸心C2の位置を、ワーク主軸40に対して任意の位置において固定することができるワーク軸心固定部として機能する。
 (フローティング機構(60))
 本実施形態のフローティング機構は、ワーク保持機構50をワーク主軸40に対して変位可能に支持する機構である。フローティング機構は、図5に示すフローティングアセンブリ60、予圧機構48、およびワーク保持機構50のコレットホルダ52とベースホルダ53を含む。予圧機構48は、フローティングアセンブリ60に予圧を付与する。
 図5に示すように、ガイド43は後方クロスボール65、クロスガイド64、前方クロスボール63を介して、コレットホルダ52のホルダフランジ52bに当接する。ホルダフランジ52bは、前方予圧ボール62を介してコレットケース42に当接する。
 つまり、ワーク主軸40のガイド43とコレットケース42が、ワーク保持機構50のホルダフランジ52bを挟持する。その結果、ワーク保持機構50は、主軸軸心C1と直交する方向への変位は許容されるが、主軸軸心C1が延びる方向には変位しない。
 (コレット開閉部70)
 図3と図4に示すコレット開閉部70は、コレット51を開状態と閉状態とに切換えるための機構である。開状態のコレット51からは、ワークWを取外可能である。緊縮して閉じた状態のコレット51は、ワークWをチャックする。具体的には、図3に示すように、コレット開閉部70のコレット固定バルブ71とコレット解放バルブ72は、作動油を制御し、コレット脱着ピストン73を変位させる。すると、主軸軸心C1に沿った長尺状の筒部材であるコレット開閉部材74が、主軸軸心C1方向に変位する。
 コレット開閉部70は、図11に示す筒状のスライダ75を含む。スライダ75はフランジ75aを有し、フランジ75aの前面はリターンスプリング受け面75bである。コレット開閉部材74がワークWに向かって変位すると、スライダ75をワークWに向かって押圧する。すると、リターンスプリング受け面75bはリターンスプリング76を圧縮し、スライダ75は円環状のスリーブ77の孔内を摺動する。ワークWに向かうスライダ75の先端は、リング状のカラー78を押圧する。
 図5に示すように、カラー78は、ベースホルダ53の基端のカラー嵌合部53dに環装される。カラー78は、ベースホルダ53のベースフランジ53bをワークWに向かって押圧する。すると、ベースフランジ53bは、後方予圧ボール66を介してリテーナ47を前方に押し、保持スプリング46を圧縮しながらコレット51を前方に押す。その結果、コレットテーパ部51cはホルダテーパ部52aから抜出し、スリ割部51bが開き、挿入口51aが開口してワークWが解放される。
 逆に、コレット脱着ピストン73が後方に変位すると、上記とは逆の動きが生じる。よって、保持スプリング46の弾性力によって、コレット51はワークWを把持する。
 (突き出し調整部80)
 突き出し調整部80は、ワークWのワーク軸心C2方向の位置を調整する機構である。具体的には、突き出し調整部80は、図3に示す突き出し調整バー81と突き出し調整ネジ82を含む。突き出し調整バー81は、主軸軸心C1近傍に設けられた空間に配置される。突き出し調整バー81は基本的には、回転するワーク主軸40とは干渉しないように配置される。突き出し調整ネジ82は、突き出し調整バー81を、主軸軸心C1方向に移動させる。このようにして、ワークW毎に異なり得る把持長さや、ワークWの突出量を調整する。
 (ワークヘッド23の組立図)
 図12は、ワークヘッド23全体の構成を示す。
<< サポート装置90 >>
 図13~図15は、サポート装置90を説明する。サポート装置90は、ワーク保持機構50に装着された状態のワークWを、回転可能に支持する。つまりサポート装置90は、ワークWの突出部分の側面を回転可能に支持する。図13に示すようにサポート装置90は、サポートブロック91とワーク押え92を備える。サポートブロック91は、ワークWを回転可能に支持するサポート部材である。詳しくはサポートブロック91は、ワーク保持機構50がワークWを保持する状態において、ワークWの側面を下方から支持(ガイド)する。ワーク押え92は、ワークWの回転を許容しつつ、ワークWをサポートブロック91に押し付けるように押圧する。その結果、ワーク押え92は、サポートブロック91がワーク軸心C2の位置を規定する状態を維持させる。
 サポートブロック91は、上端がV字溝を有するいわゆるVブロックであり、ワーク軸心C2方向の中央部にはいわゆる「逃げ」となる切欠を備える。切欠は、たとえばVブロックの中央部のみがワークWに当たるようなことを防止する。つまりワークWのガタツキを防止する。サポートブロック91のV形状は、ワークWとの位置関係を一義的に特定する。ワーク押え92は、ワークWを鉛直上方からサポートブロック91に向かって押え付けることによって、ワークWがサポートブロック91から離間しないようにする。
 図14と図15に示すように、サポートブロック91は、サポートブロック固定ネジ94aによって、サポートホルダ93に締付け固定される。サポートブロック微調ネジ94bは、C軸と直交し且つ水平な方向において、サポートブロック91の位置を微調整できる。ワーク押え92とサポートホルダ93は、互いに相対変位可能である。
 サポートホルダ固定ネジ95を緩めた状態では、上下調整ネジ96は、サポートホルダ93をサポート装置本体97に対して上下に調整できる。その結果、サポートブロック91の上下方向位置を調整できる。サポートホルダ93、サポートブロック微調ネジ94b、サポートホルダ固定ネジ95、および上下調整ネジ96は、サポート位置調整部を構成する。サポート位置調整部は、サポートブロック91がワークWを支持する位置を調整するように、サポートブロック91の位置を調整する。
 サポート装置本体97は、ワーク押え92を上下させるための油圧回路(図示略)と、ワーク押え変位装置98とを備える。ワーク押え変位装置98はピストンを備える。よって、ワーク押え92を下降させることによってワークWを押圧して規制したり、あるいはワーク押え92を上昇させてワークWを解放したりできる。ワーク押え92とワーク押え変位装置98は、サポートロック部を構成する。
 (ワークW)
 本実施形態で、ワークWは、精密加工に多用されるシャンク径が3mm,4mm,または6mm用のもの用いるが、もちろんこれに限定されない。超精密化はますます進行しており、3mm未満のもの、例えば1mm、あるいは0.5mmでは、本願の発明は更に好適に提供できる。つまり本実施形態が好適に適用可能なシャンク径の範囲は、たとえば0.5mm~6mであると言えるし、またそれ未満のものでも、本願の発明が適用できるのはいうまでもない。一方、これ以上太い径の工具では、一般に切削などの加工圧が大きいため、十分なメリットを生かすことができないが、工具に限らず、太い径の丸棒状の材料に精密な加工を施す場合には、本発明を適用できる。
 同様に、本実施形態でワークWは、ワークWを研削することによって形成される工具の先端の径が0.01mmのものを想定しているが、もちろん、これよりも細い0.005mmのものや、0.001mmものにも好適に適用できる。つまり、本実施形態が好適に適用可能な工具径の範囲は、0.01mm~6.00mmであると言えるし、またこの範囲外でもよい。
 そして、ワークWは、エンドミルを例にしているが、ドリル、フライス、リーマを始め他の工具にも適用できることは言うまでもない。また、ワークWは工具に限定されるものでもない。
 本発明に係る工作機械は、工具研削盤20に限らず、円筒研削盤でもよく、あるいは研削盤に限らず広く一般の工作機械に適用できる。
<< 調整方法 >>
 (調整の前提)
 まず、本願発明の工作機械の調整方法の前提として、各部分の調整の精度は高ければ高いほどよいことはいうまでもない。少なくとも主軸軸心C1の傾きが小さく、いわゆるスリコギ運動が、目標とする振れよりも十分小さいことが前提となる。更に、コレット51自体の精度も同様に目標とされる振れよりも十分に小さいことが前提である。そして、主軸軸心C1と、ワーク軸心C2とが、十分に高い精度で平行に調整されることが要求される。
 また、旋回テーブル22とワークヘッド23は別体であり、それぞれの位置関係が調整可能である。よって、B軸とC軸の位置関係は、旋回テーブル22に固定されるベースフレーム31のネジを緩めることによって、組付段階で厳密に直角に交差するように位置調整しておく。
 また、旋回テーブル22をB軸回りに反転したとき、高い精度で主軸軸心C1が同一直線上になるように調整される必要もある。
 調整前に、C軸調整ネジ42bは既に4本とも緩められているはずであるが、もし締め付けられていれば緩めておく。
 (調整の概略)
 図18のフローチャートは、本実施形態の調整方法の概略を示す。
 操作者は、以下のように工具研削盤20の調整方法をおこなう。まず操作者は、初期設定としてワークWが装着されるか判断し(ステップS1)、装着されていない場合(ステップS1においてNO)はワークWを装着する(ステップS2)。C軸調整ネジ42bが4本とも締められているか確認し(ステップS3)、C軸調整ネジ42bが4本とも締められていない場合(ステップS3においてNO)は、仮締めをする(ステップS4)。
 そして、ワーク押え92が外されていることと、サポートブロック91がワークWから離れていることを確認する。つまり、操作者は、サポート装置90によるワークWの支持が解除されていることを確認する。
 つぎに、図17に示すダイヤルゲージ27などの測定器具を、ワークWの振れを測定できる位置にセットする。ダイヤルゲージ27は、砥石台26にマグネットなどによって取外可能に取付けられる。すると、操作者は、NC制御のサーボシステムを使用することによって、ダイヤルゲージの操作が容易になる。
 そして、ワーク保持機構50がワークWを保持し、且つサポート装置90はワークWを支持していない状態で、ワーク主軸40を回転させながら、ワーク保持機構50に装着されたワークWの突出部分の側面を計測する。ワークWの振れが最小になるように、C軸調整ネジ42b(ワーク軸心固定部)を調整し、そしてワークWの軸心位置を固定する軸心位置調整手順(ステップS5)を実行する。ダイヤルゲージ27がワークWの位置を計測する計測ポイントは、ワークWの突出部分の側面であればよく、鉛直方向であるか、水平方向であるかなどは問わない。
 続いて、軸心位置調整手順で調整したワーク軸心C2の位置をC軸調整ネジ42bが固定したまま、サポートブロック91(サポート部材)がワークWを支持するようにサポートブロック91を位置調整するサポート調整手順(ステップS6)を実行する。ここでは、サポートブロック91の鉛直方向(上下方向)の位置調整をおこなう。
 サポート調整手順の後、ワーク押え92によってワークWを押圧するサポートロック手順(ステップS7)を行う。つまりサポートロック手順は、サポートブロック91によるワーク軸心C2の位置の規定を維持することを目的とする。
 最後に、サポートロック手順の後、C軸調整ネジ42bを緩めることによって、フローティング機構の規制を解除するフローティング規制解除手順(ステップS8)を行う。
 フローティング規制解除手順の後、ワーク主軸40を回転させてワークWの振れを測定する(ステップS9)、ワークWの振れが目標範囲外(ステップS9においてNO)であったら、軸心位置調整手順(ステップS5)からもう一度、調整をやり直す。
 ワークWの振れが目標範囲内(ステップS9においてYES)であれば、次に、サポートブロック91の水平方向位置の調整を行なう(ステップS10)。水平調整後、測定値が目標範囲内か判断し(ステップS11)、測定値が目標範囲内(ステップS11においてYES)であったら、作業を終了する(ステップS11においてYES)。
 測定値が目標範囲内でなければ、もう一度、軸心位置調整手順(ステップS5)からやり直す。
 (調整の具体例)
 以下、調整の詳細について説明する。ワークWの芯出し調整は、工具研削盤20の出荷時や、研削するワークWのサイズを変更する時、またはコレット51やサポートブロック91を交換した時にも行なうことができる。
 (ワークWの芯出し調整)
 まず、操作者は手動パルサー17(図1)をハンドル送りすることによって、B軸を機械座標+90.0000(度)まで移動させる。つまり、図2に示すように、工具研削盤20を正面から見て、ワークヘッド23の先端が右向きになる方向とする。調整時は、実際に加工するワークWを用いても良いが、ここでは、目標の精度を予め確認したテストピースである芯出し用ツールTPを、ワークWに替えてコレット51に差し込み、奥の突き出し調整バー81に突き当てる。NC制御装置操作盤16(図1)のチャックボタンを押すと、コレット開閉部材74が後退し、芯出し用ツールTPがコレット51にチャックされる。このときサポート装置90全体は、下降させないでそのままの位置を保つようにする。
 次に、図15に示すサポートホルダ固定ネジ95を2本とも緩める。次に、上下調整ネジ96を時計回りに回して緩める。すると、図17に示す状態から図16に示す状態のように、サポートブロック91は自重で下降する。
 (軸心位置調整手順S5)
 図17に示すように、ダイヤルゲージ27を、マグネットなどによって砥石台(工具主軸台)26に取外可能に取付ける。ダイヤルゲージ27は、回転状態の芯出し用ツールTPの側面の位置を計測し、計測値の最大値と最小値を読取ることができるような状態にセットする。手動パルサー17(図1)をハンドル送りすることによって砥石台26を微動させ、ダイヤルゲージ27を芯出し用ツールTPに近付ける。ダイヤルゲージ27の先端を、ワーク保持機構50からの芯出し用ツールTPの突出部分の基端の真上に当てる。手動パルサー17(図1)のジョグ送りによってスピンドル41(C軸)を回転させながら、ダイヤルゲージ27の指針の振れを読む。ダイヤルゲージの指針の振れが、目標値(例えば0.5μm)以下となるよう、C軸調整ネジ4本をそれぞれ緩めたり締めたりしてワーク軸心C2の位置を調整し、所定位置で締め込んで固定する。つまり、ワーク主軸40が一回転する間におけるダイヤルゲージ27の計測値の最大値と最小値を読取り、そして計測値が最大値と最小値の平均値になるように、ワーク主軸40に対するワークWの径方向位置を調整する。このとき、C軸調整ネジ42bは、4本すべてを軽く締めておく。1本でもC軸調整ネジ42bが緩んでいると、調整にズレが生じる。
 このように、サポートブロック91によるワークWの支持無しの状態で、ワーク主軸40を回転させながら、ワーク保持機構50に装着されたワークW(ここでは芯出し用ツールTP)の突出部分の上側側面を計測する。そしてワークWの振れが最小となるようにワーク軸心固定部であるC軸調整ネジ42bによって芯出し用ツールTPの軸心(C2)の位置を調整して固定する手順が、本願の軸心位置調整手順に相当する。同様な計測を、芯出し用ツールTPの外径部先端においても行う。つまり、ハンドル送りによってX軸を―方向に移動させ、ダイヤルゲージ27の先端を芯出し用ツールTPの外径部先端まで移動させる。
 (サポート調整手順S6)
 ハンドル送りによってワーク主軸40をC軸回りに回転させながら、ダイヤルゲージ27の指針の振れの最大値を読み記録する。ダイヤルゲージの指針の振れが最大となる位置でC軸を停止させ、サポートホルダ固定ネジ95を2本とも仮締めする。ダイヤルゲージ27の指針がごく僅かに振れるまで、上下調整ネジ96を手で反時計回りに回して締める。上下調整ネジ96を反時計回りに回すと、サポートブロック91が上昇して芯出し用ツールTPを押し上げる。サポートホルダ固定ネジ95を2本とも本締めする。
 (サポートロック手順S7)
 NC制御装置操作盤16のサポートボタンを操作して、ワーク押え92を下降させると、図16に示す位置から、図17に示す位置にワーク押え92が下降して、芯出し用ツールTPをサポートブロック91に押え付ける。すわなち、サポート調整手順の後、ワーク押え92によって芯出し用ツールTPを押圧することによって、サポートブロック91による芯出し用ツールTPの軸心(C2)の位置の規定を維持する。この手順が、本願のサポートロック手順に相当する。
 ワーク押え92を下降させたときのダイヤルゲージ27の指針の振れを読む。ダイヤルゲージ27の指針の振れが、前述の書き留めた値の2分の1であることを確認する。2分の1になっていない場合は、再びサポートホルダ固定ネジ95を緩めて調整をやり直す。
 (フローティング規制解除手順S8)
 以上のように、C軸調整ネジ42bを締め、且つワーク押え92がサポートブロック91をロックした状態で、ワークWの振れが目標値よりも下回ったら、フローティング状態を再開する。この場合、サポートブロック91がワークWをサポートしているため、芯出し用ツールTPの軸心(C2)は安定する。よって、C軸調整ネジ42bの4本すべてを緩めることによって、フローティング機構の機能を発揮させる。本実施形態では、フローティング機構によるワークWの調整範囲(作動範囲)は極めて狭く、フローティング機構は極小な動きであるため、サポートブロック91に負荷されるストレスはほとんどゼロになる。C軸調整ネジ42bを緩める手順は、サポートロック手順の後、C軸調整ネジ42bによるフローティングの規制を解除するフローティング規制解除手順に相当する。
 (水平方向位置の調整S10)
 以上で本願の芯出し調整は完了し、次に水平方向位置の調整を行う。水平方向位置の調整は、サポートブロック微調ネジ94bを調節することによって、サポートブロック91を水平方向に移動させることによって行う。本実施形態の芯出し調整(S1~S9)が完璧になされる場合でも、たとえばB軸とC軸が同一平面上に位置する状態において互いに完全に直角に交わっていない場合、旋回テーブル22を180度反転したときに誤差が生じる。本実施形態はフローティング機構を備えるため、完全に芯出しした後でも、他の誤差に起因するズレの調整が可能である。水平方向位置の調整は、B軸に対するワーク軸心C2のズレを修正しつつ、フローティング量を極力小さくすることによって、ワークW(芯出し用ツールTP)の振れを小さくすることを目的としている。
 まず、ダイヤルゲージ27の先端を、芯出し用ツールTPの外径部先端の真横に当てる。ハンドル送りすることによってY軸を移動させながら、ダイヤルゲージ27の指針の振れの最大値を読み、書き留める。つまり、主軸軸心C1に対して水平方向の、ワークWの側面の位置を計測することによって、反転前計測値を得る。ハンドル送りによってY軸を+方向に移動させ、ダイヤルゲージ27の先端を芯出し用ツールから離す。
 そしてハンドル送りによって、B軸を機械座標-90.0000まで移動させる。つまり、主軸軸心C1が180度反転するように、ワーク主軸40を反転させる。
 次に、ハンドル送りによってY軸を-方向に移動させ、ダイヤルゲージ27の先端を、芯出し用ツールTPの外径部先端の真横に当てる。ハンドル送りによってY軸を移動させながら、ダイヤルゲージ27の指針の振れの最大値を読み、書き留める。つまり、180度反転後のワークWの側面の位置を計測し、反転後計測値を得る。
 反転前計測値と反転後計測値の差が、目標値以内であることを確認する。目標値以内ではない場合、下記の手順(i)~(iii)の調整をおこなう。
 (i) サポートブロック固定ネジ94aを緩める。
 (ii) サポートブロック微調ネジ94bを操作することによって、サポートブロック91の水平方向位置を調整する。例えば反転前計測値が1μmであり、反転後計測値が-8μmの場合、次の計算をする。
 1-(-8)=9、
 9÷2=4.5、
 -8+4.5=-3.5。
 ダイヤルゲージの指針が-3.5μmを示すように、サポートブロック91の位置を調整する。つまり、ダイヤルゲージ27の計測値が、反転前計測値と反転後計測値の平均値(-3.5μm)になるように、サポートブロック91を水平方向に移動させる。
 (iii) サポートブロック固定ネジ94aを締める。
 その後に再び、ハンドル送りによってY軸を+方向に移動させ、ダイヤルゲージ27の先端を芯出し用ツールTPから離す。ハンドル送りによってB軸を機械座標-90.0000まで移動させる。ダイヤルゲージ27の先端を芯出し用ツールTPの外径部先端の真横に当てる。ハンドル送りによってC軸を回転させながら、ダイヤルゲージ27の指針の振れを読む。ダイヤルゲージ27の指針の振れが目標範囲内であることを確認する(ステップS11)。目標範囲内ではない場合(ステップS11においてNO)、芯出し用ツールTPの芯出し調整を初めからやり直す。
 芯出し用ツールTPの外径部先端において目標範囲内であった場合、ダイヤルゲージ27の先端を、芯出し用ツールTPの根元の真横に当てる。ハンドル送りによってC軸を回転させながら、ダイヤルゲージ27の指針の振れを読む。ダイヤルゲージの指針の振れが目標範囲内であることを確認する。目標範囲内でない場合は、ツールの芯出し調整を初めからやり直す。
 (繰返測定)
 このように、芯出し用ツールTPの先端と基端の両方において測定をおこない、芯出し用ツールTPの振れが小さくなるように調整する。また、上下調整ネジ96によってサポートブロック91の鉛直方向位置を調整するだけでなく、旋回テーブル22を180度回転後の計測値も計測することによって、サポートブロック微調ネジ94bによるサポートブロック91の水平方向位置の調整もおこなう。つまり、180度反転前と反転後という互いに対向したB軸のポジションにおいて、測定と調整をおこなうことによって、更に精度が向上する。
 これらの調整を繰返し行うことによって、更に高い精度に追い込んでいくことができる。
 上記実施形態の工作機械及びその調整方法は、以下の利点を得る。
 (1)工作機械によって丸棒状のワークWを超精密加工する際、ワーク軸心C2の振れを抑制しながら、ワークWを回転させることができる。
 (2)まず、軸心位置調整手順によってC軸調整ネジ42bを締めこんでフローティング機構の機能を規制した状態で、C軸調整ネジ42bを調整することによってワーク軸心C2を主軸軸心C1に極力一致させる。更に、サポート調整手順で、サポートブロック91をこの一致させた位置のワークWに当接するように調整する。そしてサポートロック手順によってワーク押え92でワークWを押え、ワークWの位置を維持する。その上で、フローティング規制解除手順によって、C軸調整ネジ42bを緩めてフローティング規制を解除することによって、フローティングの機能を発揮させる。
 このため、サポートブロック91は、ワーク軸心C2が主軸軸心C1に一致する状態のワークWを支持するように配置される。フローティング機構は、ワーク保持機構50の僅かなズレを吸収できる。つまりフローティング機構は、極小な動きしか必要としないため、ワークWに振れを生じさせるイナーシャなどが発生しにくい。
 特に、フローティング機構はワークWを柔軟に支持するため、コレット51やスピンドル41に万一ズレがあっても、これらのズレはフローティング機構が吸収するため、サポートブロック91には影響が及ばない。
 (3)フローティング機構は、予め十分に位置調整された状態のワークWをフローティング支持する。よってフローティング機構には、極めて僅かな動きしか要求されない。
 このため、フローティング機構の可動範囲を小さくでき、フローティング機構を極めて小型にすることができる。
 また、小型軽量のフローティング機構を採用できるため、フローティング機構自体の質量を極めて小さくできる。
 したがって、フローティング機構は軽く、フローティング機構の動きも極めて小さくすることができる。ゆえにワークWやフローティング機構の重心の移動もほとんど生じないため、ワークWの回転バランスを崩したり、大きなイナーシャを生じさせたりすることがない。このようなことから、本実施形態では、フローティングチャック自身は、ワークWの振れの原因にはならない。
 また、本実施形態のフローティング機構は、ワーク保持機構50がワーク主軸40に対して傾くことを抑制している。つまりフローティング機構は、主軸軸心C1と直交する方向だけのワーク保持機構50の動きを許容すればよいため、フローティング機構の構造をシンプルにできる。
 また、ステンレス等の硬球を用いているため、微量の傾きであれば、ボールが変形することによって傾きを吸収でき、この点からもフローティング機構の構成を簡単にできる。
 (4)ワーク主軸40の変位には影響を受けずに微細に変位させることが可能な砥石台26に、ダイヤルゲージ27を配置する。よって、工作機械のNC制御システムを利用して、ワークWの変位を測定できる。このようにして、ワークWの絶対位置を測定し、ズレが生じる方向を測定し、このズレを消去するように調整する。このことによって、ワーク軸心C2を主軸軸心C1に一致するように調整できる。この手順を繰返すことによって、ワーク軸心C2を主軸軸心C1に更に正確に一致させることができる。
 (5)サポートブロック91の水平方向位置調整では、旋回テーブル22に設けられたワーク主軸40を、B軸回りに180度反転させて計測をおこなう。よって、B軸とC軸とのズレを小さくして、全体として精度を高め、形成する工具の精度を高めることができる。
 (6)ワークWの測定を、ワークWの先端と基端の両方においてそれぞれ行う。よって、全体として精度を高め、形成する工具の精度を高めることができる。
 (7)実際の加工対象となるワークに替えて、精度の高いテストピース(芯出し用ツールTP)を用いて芯出し調整することによって、更に精度の高い調整を行なうことができる。
 (8)4本のC軸調整ネジ42bは、ワーク保持機構50を囲む円周上に並ぶようにして、ワーク主軸40に配置される。各々のC軸調整ネジ42bは、ワーク軸心C2方向に向かって延び、ワーク保持機構50に当接する。よって、ワーク軸心C2を中心としてすべての径方向へ、ワーク保持機構50を位置調整できる。また、C軸調整ネジ42bを採用することによって、ワーク軸心固定部の機構が簡素となり、質量を小さく、且つ小型にできる。また、調節も容易にできる。
 (9)フローティング機構は、クロスガイド64を用いる。よって、コンパクトな構成でありながら、ワーク主軸40の回転力を、確実にワーク保持機構50に伝達できる。更に、ワーク軸心C2と直交するあらゆる方向に傾くこと無しに、ワーク保持機構50をワーク主軸40に対して変位することを許容できる。特に、板状部材であるクロスガイド64が円盤状部材であるため、重量バランスが良好なものとなる。
 (10)クロスガイド64は前方クロスV溝64eと後方クロスV溝64fを有し、ワーク主軸40は主軸V溝43bを有し、ワーク保持機構50は保持V溝52fを有する。つまり、これらの溝(43b,52f,64e,64f)は断面V字型である。よって、これらの溝において転動するボール(62,63,65,66)は、ガタツキなく位置決めされる。このため、ガタツキ無くワーク主軸40の回転力をワーク保持機構50に伝達できるとともに、円滑なフローティング機能を発揮できる。
 (11)また、クロスガイド64の前方クロスボール受け面64aは、複数の前方クロスV溝64eを有する。後方クロスボール受け面64bは、複数の後方クロスV溝64fを有する。よって、ワーク主軸40、クロスガイド64、およびワーク保持機構50の相互の傾きを生じにくくできる。また、それぞれの溝(43b,52f,64e,64f)に掛かる回転力も分散できる。
 (12)前方予圧ボール62と後方予圧ボール66は、それぞれ互いに平行な平面間に、複数配置される。前方予圧ボール62と後方予圧ボール66は、それぞれ例えば真円度の高いステンレス球などによって予圧をかけて支持される。よって、ワーク主軸40に対してワーク保持機構50は傾きを生じにくく、且つ主軸軸心C1方向における寸法精度も高くできる。
 ワーク主軸40に対するワーク保持機構50の傾きを抑制したため、C軸調整ネジ42bによる調整は、ワーク軸心C2の平行移動だけである。そのため、複数のC軸調整ネジ42bは、C軸方向において1ヶ所にまとめて設けるだけで、ワーク軸心C2の芯出し調整できる。
 (13)それぞれ複数の前方予圧ボール62と後方予圧ボール66は、それぞれ主軸軸心C1を囲む円周状に配置される。よって、ワーク保持機構50を傾きなく支持できる。更に、主軸軸心C1と直交するあらゆる方向へのワーク軸心C2の変位を可能にしている。更に、主軸軸心C1とワーク軸心C2の相互回転を許容する。
 (14)付勢部を4本の予圧調整ネジ45にすることによって、コンパクトな構成で、安定した付勢力で前方予圧ボール62、前方クロスボール63、後方クロスボール65、および後方予圧ボール66を予圧できる。更に、予圧調整ネジ45自体が、予圧を調整可能な調整部であり、極めてコンパクトな構成で各ボール(62,63,65,66)に適切な予圧を安定して付与でき、円滑なフローティングと高い寸法精度を得ることができる。
 (15)前方オイルシール61と後方オイルシール67のそれぞれによる求心力は、ほぼワーク軸心C2を主軸軸心C1に一致させることができ、調整範囲を小さくすることによって芯出し調整が速やかにできる。また、調整範囲を小さくすることによって、フローティング機構のマージンも小さくでき、特に環状に並ぶよう前方予圧ボール62と後方予圧ボール66を受ける前方予圧ボール受け面52cや後方予圧ボール受け面53cを小さくでき、フローティング機構を小型軽量とすることができる。
 (16)サポートブロック91をVブロックとすることによって、簡単な構成で丸棒状のワークWを安定して正確な位置で支持できる。
 なお、上記実施形態は以下のように変更してもよい。
 測定器具は、ダイヤルゲージ27に替えて、光の干渉を用いるもの、光の反射、静電容量、磁気などの非接触で測定するものなど、ワークWの表面の変位が検出できれば特に限定されない。
 ワーク主軸40の180度反転前の測定値と、反転後の測定値とを計測するのは、サポートブロック91の水平方向位置を調整する場合だけに限らず、たとえばサポートブロック91の鉛直方向位置を調整する場合でもよい。
 調整手順は一例であり、また水平調整は省略することもできる。また、装置の調整も含め、測定と調整を繰返すことによって、全体として精度を向上させることも好ましい。
 ワーク軸心固定部としてのC軸調整ネジ42bは、4本であることに限らず、3本あるいは5本以上でもよい。また、ワーク軸心固定部はC軸調整ネジ42bであることに限らず、ピエゾ素子、機械的なクサビ、油圧によるコントロールなどのように、ワーク軸心C2の変位を許容する許容状態と、ワーク軸心C2の変位を固定する固定状態とに切換可能なものであればよい。
 ワーク保持機構は、コレットチャック機構であることに限定されない。つまりワークWのチャック方法は、油圧や温度差による緊着、ネジ止め、磁力、負圧等のように、ワークWのフローティングを確保できる構成で行えばよい。
 サポート部材であるサポートブロック91は、Vブロックであることに限らず、ワークWを位置ズレ無しに保持できればよい。ワークWの位置精度さえ確保できれば、サポート部材は、ワークWを摺動支持するのでなく転動で支持するような部材でもよい。
 サポートロック部は、ワーク押え92であることに限らず、形状や機構を変更してもよい。

Claims (20)

  1.  工作機械(20)の調整方法であって、前記工作機械(20)は、
     回転駆動されるワーク主軸(40)と、
     丸棒状のワーク(W)を保持するワーク保持機構(50)であって、前記ワーク(W)は軸心であるワーク軸心(C2)と、前記ワーク(W)が前記ワーク保持機構(50)によって保持された状態で前記ワーク保持機構(50)から突出する突出部分とを有し、前記突出部分は前記ワーク軸心(C2)の周りを囲む側面を有することと、
     前記ワーク主軸(40)の回転を前記ワーク保持機構(50)に伝達するフローティング機構(48,52,53,60)であって、前記フローティング機構(48,52,53,60)は、前記ワーク主軸(40)に対する前記ワーク保持機構(50)の変位を許容するように前記ワーク保持機構(50)を支持することと、
     前記フローティング機構(48,52,53,60)を一時的に規制することによって、前記ワーク軸心(C2)の位置を前記ワーク主軸(40)に対して任意の位置において固定するワーク軸心固定部(42b)と、
     前記ワーク保持機構(50)が前記ワーク(W)を保持する状態において、前記ワーク(W)の前記側面を回転可能に支持するサポート部材(91)と、
     前記サポート部材(91)が前記ワーク(W)を支持する位置を調整するサポート位置調整部(90)と
     前記ワーク(W)を前記サポート部材(91)に押し付けるように前記ワーク(W)を押圧することによって、前記サポート部材(91)が前記ワーク軸心(C2)の位置を規定する状態を維持するサポートロック部(92)と
    を備え、
     前記調整方法は、
     前記ワーク保持機構(50)が前記ワーク(W)を保持し且つ前記サポート部材(91)は前記ワーク(W)を支持していない状態で、前記ワーク主軸(40)を回転させながら前記ワーク(W)の前記側面の振れを計測し、前記振れが最小になるように前記ワーク軸心固定部(42b)を調整する軸心位置調整手順(S5)と、
     前記ワーク軸心固定部(42b)によって前記ワーク主軸(40)に対する前記ワーク軸心(C2)の位置を固定した状態のまま、前記サポート部材(91)が前記ワーク(W)を支持するように前記サポート位置調整部(42b)を調整するサポート調整手順(S6)と、
     前記サポート調整手順の後、前記サポートロック部(92)によって前記ワーク(W)を押圧するサポートロック手順(S7)と、
     前記サポートロック手順の後、前記ワーク軸心固定部(42b)による前記フローティング機構(48,52,53,60)の規制を解除するフローティング規制解除手順(S8)と
    を含むことを特徴とする、工作機械(20)の調整方法。
  2.  前記工作機械(20)は工具主軸台(26)と、前記工具主軸台(26)に取外可能に取付けられるダイヤルゲージ(27)とを備え、
     前記軸位置調整手順は、
     前記ダイヤルゲージ(27)を用いて前記ワーク(W)の前記側面の位置を計測することによって、前記ワーク主軸(40)が一回転する間における前記ダイヤルゲージ(27)の計測値の最大値と最小値を読取ることと、
     前記計測値が前記最大値と前記最小値の平均値になるように、前記ワーク主軸(40)に対する前記ワーク(W)の径方向位置を調整することと
    を含む、請求項1に記載の調整方法。
  3.  前記調整方法は更に、前記フローティング規制解除手順(S8)の後に行う水平調整(S10)を含み、前記ワーク主軸(40)の軸心を主軸軸心(C1)と称し、
     前記水平調整(S10)は、
     前記主軸軸心(C1)に対して水平方向の、前記ワーク(W)の前記側面の位置を計測することによって、反転前計測値を得ることと、
     前記主軸軸心(C1)が180度反転するように前記ワーク主軸(40)を反転させることと、
     反転後の前記ワーク(W)の前記側面の位置を計測することによって、反転後計測値を得ることと、
     前記計測値が前記反転前計測値と前記反転後計測値の平均値になるように、前記サポート部材(91)を水平方向に移動させることと
    を含む、請求項2に記載の調整方法。
  4.  前記最大値と前記最小値は、前記ワーク(W)の先端において計測される、請求項2又は3に記載の調整方法。
  5.  前記ワーク(W)に替えて、予め目標精度を備えるテストピース(TP)が用いられる、請求項1乃至4のいずれか1項に記載の調整方法。
  6.  請求項1乃至5のいずれか1項に記載の調整方法によって調整可能な工作機械(20)であって、前記工作機械(20)は、
     回転駆動されるワーク主軸(40)と、
     丸棒状のワーク(W)を保持するワーク保持機構(50)であって、前記ワーク(W)は軸心であるワーク軸心(C2)と、前記ワーク(W)が前記ワーク保持機構(50)によって保持された状態で前記ワーク保持機構(50)から突出する突出部分とを有し、前記突出部分は前記ワーク軸心(C2)の周りを囲む側面を有することと、
     前記ワーク主軸(40)の回転を前記ワーク保持機構(50)に伝達するフローティング機構(48,52,53,60)であって、前記フローティング機構(48,52,53,60)は、前記ワーク主軸(40)に対する前記ワーク保持機構(50)の変位を許容するように前記ワーク保持機構(50)を支持することと、
     前記フローティング機構(48,52,53,60)を一時的に規制することによって、前記ワーク軸心(C2)の位置を前記ワーク主軸(40)に対して任意の位置において固定するワーク軸心固定部(42b)と、
     前記ワーク(W)の前記側面を回転可能に支持するサポート部材(91)と、
     前記サポート部材(91)が前記ワーク(W)を支持する位置を調整するサポート位置調整部(90)と
     前記ワーク(W)を前記サポート部材(91)に押し付けるように前記ワーク(W)を押圧することによって、前記サポート部材(91)が前記ワーク軸心(C2)の位置を規定する状態を維持するサポートロック部(92)と
    を備える、工作機械(20)。
  7.  前記ワーク軸心固定部(42b)は、前記ワーク保持機構(50)を囲む円周上に位置するように前記ワーク主軸(40)に配置される複数のネジ(42b)を備え、
     各々の前記ネジ(42b)は前記ワーク主軸(40)から前記ワーク軸心(C2)に向かって進出することによって前記ワーク保持機構(50)に当接し、前記ネジ(42b)は回動させられて前記ワーク主軸(40)から前記ワーク軸心(C2)への進出量が調整されることによって、前記ワーク主軸(40)に対する前記ワーク保持機構(50)の相対位置の変化を許容する状態と、相対位置の変化を規制する状態とに切換可能である、請求項6に記載の工作機械(20)。
  8.  前記ワーク主軸(40)は、前記主軸軸心(C1)と直交する直線に対して平行に延びる直線状の溝である主軸溝(43b)を有し、
     前記ワーク保持機構(50)は、前記ワーク軸心(C2)と直交する直線に対して平行に延びる直線状の溝である保持溝(52f)を有し、
     前記フローティング機構(48,52,53,60)は、板状部材であるクロスガイド(64)を備え、
     前記クロスガイド(64)は第1クロス面(64a)とその反対側の第2クロス面(64b)とを有し、
     前記第1クロス面(64a)は前記主軸溝(43b)に対向する第1クロス溝(64e)を有し、
     前記第2クロス面(64b)は、前記保持溝(52f)に対向する第2クロス溝(64f)を有し、前記ワーク軸心(C2)の方向から見て前記第2クロス溝(64f)は前記第1クロス溝(64e)と直交し、
     前記フローティング機構(48,52,53,60)は更に、前記第1クロス溝(64e)に列状に配置される複数の第1クロスボール(63)と、前記第2クロス溝(64f)に列状に配置される複数の第2クロスボール(65)とを有し、
     前記第1クロスボール(63)と前記第2クロスボール(65)がそれぞれ転動することによって、前記主軸軸心(C1)と直交する方向への前記ワーク軸心(C2)の変位が許容される、請求項6又は7に記載の工作機械。
  9.  前記主軸溝(43b)、前記保持溝(52f)、前記第1クロス溝(64e)、および前記第2クロス溝(64f)はそれぞれ断面V字状のV溝である、請求項8に記載の工作機械。
  10.  前記第1クロス面(64a)は前記第1クロス溝(64e)を複数列だけ有し、
     前記第2クロス面(64b)は前記第2クロス溝(64f)を複数列だけ有する、請求項8又は9に記載の工作機械。
  11.  前記フローティング機構(48,52,53,60)は、
     前記ワーク主軸(40)に設けられる第1主軸面(42c)と第2主軸面(47b)であって、前記第1主軸面(42c)と前記第2主軸面(47b)はそれぞれ平面であることと、
     前記ワーク保持機構(50)に設けられる第1保持面(52c)と第2保持面(53c)であって、前記第1保持面(52c)と前記第2保持面(53c)はそれぞれ前記ワーク軸心(C2)と直交することと、
     前記第1保持面(52c)と前記第1主軸面(42c)の間に配置される複数の第1予圧ボール(62)と、
     前記第2保持面(53c)と前記第2主軸面(47b)の間に配置される複数の第2予圧ボール(66)と、
     前記ワーク主軸(40)に設けられる付勢部(45)であって、前記付勢部(45)は前記ワーク保持機構(50)を支持すべく前記第1予圧ボール(62)と前記第2予圧ボール(66)を付勢し、前記ワーク保持機構(50)は前記ワーク主軸(40)に対して前記ワーク軸心(C2)と直交する方向への変位のみが許容される、請求項6乃至10のいずれか1項に記載の工作機械。
  12.  前記第1主軸面(42c)、前記第2主軸面(47b)、前記第1保持面(52c)、および前記第2保持面(53c)はそれぞれ環状であり、
     前記第1予圧ボール(62)と前記第2予圧ボール(66)はそれぞれ環状に配置される、請求項11に記載の工作機械。
  13.  前記付勢部(45)はネジであり、前記ネジ(45)が前記第1予圧ボール(62)と前記第2予圧ボール(66)を付勢する付勢力は調整可能である、請求項11又は12に記載の工作機械。
  14.  前記工作機械は更に、前記ワーク主軸(40)と前記ワーク保持機構(50)の間に配置される環状の弾性体からなるオイルシール(61,67)を備え、
     前記オイルシール(61,67)は、前記ワーク保持機構(50)の軸心(C2)が前記主軸軸心(C1)に近づくように前記ワーク保持機構(50)に求心性を付与する、請求項6乃至請求項13のいずれか1項に記載の工作機械。
  15.  前記サポート部材(91)は、V字溝を有するVブロックによって構成される、請求項6乃至請求項14のいずれか1項に記載の工作機械。
  16.  前記工作機械は工具研削盤(20)である、請求項6乃至15のいずれか1項に記載の工作機械。
  17.  前記ワーク(W)はエンドミルまたはドリルのワークである、請求項6乃至16のいずれか1項に記載の工作機械。
  18.  前記エンドミルまたは前記ドリルの先端の工具径の範囲は0.001mm~6.00mmである、請求項17に記載の工作機械。
  19.  前記エンドミルまたは前記ドリル(W)のシャンク径の範囲は0.5mm~6mmである、請求項17又は18に記載の工作機械。
  20.  回転駆動されるワーク主軸(40)と、
     丸棒状のワーク(W)を保持するワーク保持機構(50)であって、前記ワーク(W)は軸心であるワーク軸心(C2)と、前記ワーク(W)が前記ワーク保持機構(50)によって保持された状態で前記ワーク保持機構(50)から突出する突出部分とを有し、前記突出部分は前記ワーク軸心(C2)の周りを囲む側面を有することと、
     前記ワーク主軸(40)の回転を前記ワーク保持機構(50)に伝達するフローティング機構(48,52,53,60)であって、前記フローティング機構(48,52,53,60)は、前記ワーク主軸(40)に対する前記ワーク保持機構(50)の変位を許容するように前記ワーク保持機構(50)を支持することと、
     前記フローティング機構(48,52,53,60)を一時的に規制することによって、前記ワーク軸心(C2)の位置を前記ワーク主軸(40)に対して任意の位置において固定するワーク軸心固定部(42b)と、
     前記ワーク(W)の前記側面を回転可能に支持するサポート部材(91)と、
     前記サポート部材(91)が前記ワーク(W)を支持する位置を調整するサポート位置調整部(90)と
     前記ワーク(W)を前記サポート部材(91)に押し付けるように前記ワーク(W)を押圧することによって、前記サポート部材(91)が前記ワーク軸心(C2)の位置を規定する状態を維持するサポートロック部(92)と
    を備える、工作機械(20)。
PCT/JP2008/063003 2008-07-18 2008-07-18 工作機械の調整方法、及び工作機械 WO2010007685A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2008553565A JP4838326B2 (ja) 2008-07-18 2008-07-18 工作機械の調整方法、及び工作機械
AU2008359518A AU2008359518B2 (en) 2008-07-18 2008-07-18 Method of adjusting machine tool and machine tool
CN200880129922.5A CN102099151B (zh) 2008-07-18 2008-07-18 机床调节方法以及机床
PCT/JP2008/063003 WO2010007685A1 (ja) 2008-07-18 2008-07-18 工作機械の調整方法、及び工作機械
EP08791312A EP2311600B1 (en) 2008-07-18 2008-07-18 Machine tool and method of adjusting said machine tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2008/063003 WO2010007685A1 (ja) 2008-07-18 2008-07-18 工作機械の調整方法、及び工作機械

Publications (1)

Publication Number Publication Date
WO2010007685A1 true WO2010007685A1 (ja) 2010-01-21

Family

ID=41550103

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/063003 WO2010007685A1 (ja) 2008-07-18 2008-07-18 工作機械の調整方法、及び工作機械

Country Status (5)

Country Link
EP (1) EP2311600B1 (ja)
JP (1) JP4838326B2 (ja)
CN (1) CN102099151B (ja)
AU (1) AU2008359518B2 (ja)
WO (1) WO2010007685A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017087310A (ja) * 2015-11-04 2017-05-25 ファナック株式会社 調整機構を備えた回転軸支持装置
CN111774440A (zh) * 2020-08-06 2020-10-16 中国电子科技集团公司第四十六研究所 一种超声波打孔机专用刀具调直机构及实现方法
CN114178936A (zh) * 2021-11-01 2022-03-15 伯莱塔智能装备(江苏)有限公司 一种具有多向调节工作台面的打磨设备
WO2023063166A1 (ja) * 2021-10-15 2023-04-20 株式会社岡本工作機械製作所 研削装置
CN116766030A (zh) * 2023-08-21 2023-09-19 陕西前进齿科新技术开发有限公司 一种3d打印钛合金义齿抛光装置

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201332706A (zh) * 2012-02-03 2013-08-16 Kitamura Machinery Co Ltd 切削機及機械操作用開關門
CN103128610A (zh) * 2013-03-04 2013-06-05 昆山允可精密工业技术有限公司 刀具连续自动加工装置
CN106001707B (zh) * 2016-08-03 2017-11-07 广西玉柴机器股份有限公司 一种利用直角钻加工气缸体内腔侧壁水孔的工装及方法
EP4070915A1 (en) 2021-04-06 2022-10-12 Agathon AG, Maschinenfabrik Workpiece holder and method for manufacturing a rotational-symmetrical tool
CN113695934B (zh) * 2021-09-02 2022-09-09 北京航星机器制造有限公司 一种机台内装刀用刀具长度精调装置及刀具长度调整方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03256632A (ja) * 1989-08-10 1991-11-15 Sierra Mach Inc 筒状体ホルダー用心出しスタンド
JPH0760622A (ja) * 1993-08-30 1995-03-07 Atsushi Hirota ツイストエンドミル用研削装置
JPH08118234A (ja) 1994-10-25 1996-05-14 Tadashi Takano ワーク支持装置およびこれを用いた平面研削盤
JPH1094949A (ja) * 1996-09-25 1998-04-14 Riken Seiko Kk ドリル研削装置
JP2001353645A (ja) * 2000-06-09 2001-12-25 Takemasa:Kk 加工工具の刃先部形成方法および研削加工装置
JP2002292534A (ja) * 2001-03-29 2002-10-08 Toshiba Mach Co Ltd 主軸ユニット及びその芯出し方法
JP2003145326A (ja) 2001-11-08 2003-05-20 Fuji Heavy Ind Ltd フローティングチャック構造

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03256632A (ja) * 1989-08-10 1991-11-15 Sierra Mach Inc 筒状体ホルダー用心出しスタンド
JPH0760622A (ja) * 1993-08-30 1995-03-07 Atsushi Hirota ツイストエンドミル用研削装置
JPH08118234A (ja) 1994-10-25 1996-05-14 Tadashi Takano ワーク支持装置およびこれを用いた平面研削盤
JPH1094949A (ja) * 1996-09-25 1998-04-14 Riken Seiko Kk ドリル研削装置
JP2001353645A (ja) * 2000-06-09 2001-12-25 Takemasa:Kk 加工工具の刃先部形成方法および研削加工装置
JP2002292534A (ja) * 2001-03-29 2002-10-08 Toshiba Mach Co Ltd 主軸ユニット及びその芯出し方法
JP2003145326A (ja) 2001-11-08 2003-05-20 Fuji Heavy Ind Ltd フローティングチャック構造

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Mecha-Idea Dictionary", 16 December 1993, NIKKEI BUSINESS PUBLICATIONS, INC., pages: 94 - 95
See also references of EP2311600A4 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017087310A (ja) * 2015-11-04 2017-05-25 ファナック株式会社 調整機構を備えた回転軸支持装置
US10717161B2 (en) 2015-11-04 2020-07-21 Fanuc Corporation Rotating axis supporting device
CN111774440A (zh) * 2020-08-06 2020-10-16 中国电子科技集团公司第四十六研究所 一种超声波打孔机专用刀具调直机构及实现方法
WO2023063166A1 (ja) * 2021-10-15 2023-04-20 株式会社岡本工作機械製作所 研削装置
JP7499979B2 (ja) 2021-10-15 2024-06-14 株式会社岡本工作機械製作所 研削装置
CN114178936A (zh) * 2021-11-01 2022-03-15 伯莱塔智能装备(江苏)有限公司 一种具有多向调节工作台面的打磨设备
CN116766030A (zh) * 2023-08-21 2023-09-19 陕西前进齿科新技术开发有限公司 一种3d打印钛合金义齿抛光装置
CN116766030B (zh) * 2023-08-21 2023-11-07 陕西前进齿科新技术开发有限公司 一种3d打印钛合金义齿抛光装置

Also Published As

Publication number Publication date
CN102099151B (zh) 2012-07-04
EP2311600B1 (en) 2012-10-10
JP4838326B2 (ja) 2011-12-14
AU2008359518B2 (en) 2014-10-23
CN102099151A (zh) 2011-06-15
AU2008359518A1 (en) 2010-01-21
JPWO2010007685A1 (ja) 2012-01-05
EP2311600A4 (en) 2011-12-21
EP2311600A1 (en) 2011-04-20

Similar Documents

Publication Publication Date Title
JP4838326B2 (ja) 工作機械の調整方法、及び工作機械
JP5113422B2 (ja) 押圧力検出装置付ローラバニシング装置
KR102518998B1 (ko) 주축 장치 및 공작 기계
JP6205054B2 (ja) 工具研削盤のスピンドル
US20070107547A1 (en) Machine tool
JP6188609B2 (ja) 工作機械の保持装置
JP2005342875A (ja) 曲面加工装置並びにこれを用いて形成された光学素子及び光学素子金型、パラレルリンク機構のキャリブレーション方法
JP2005279902A (ja) 研磨加工装置及び研磨加工方法
JPH10296631A (ja) 研削ホイール用超精密ツルーイング装置
CN218253399U (zh) 激光加工设备
WO2019123699A1 (ja) 工具保持装置及び工作機械
US6824142B2 (en) Method of alignably supporting a work piece for rotary movements
US6869083B2 (en) Eccentric work piece holder and method of making same
JP2007007811A (ja) センタ
JP2015174181A (ja) 工作機械の固定部材
US9586269B2 (en) Collet adapter
JPH10193202A (ja) 心押し台
CN211681373U (zh) 一种加工磨床
CN109262367B (zh) 一种对齿机构
KR20100047693A (ko) 가압력 검출장치가 구비되는 롤러 버니싱 장치
JP4815955B2 (ja) 微動位置調整装置およびそれを用いた超精密加工装置
JP2007203426A (ja) ドリルのシンニング装置及びシンニング形成方法
JPS58202769A (ja) 光ファイバの端面研摩装置における微動送り装置
JPS63123661A (ja) 非球面加工測定装置
WO2008020688A1 (en) An optical magnifier integrated with an arbor

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880129922.5

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2008553565

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08791312

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008359518

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2008791312

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2008359518

Country of ref document: AU

Date of ref document: 20080718

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE