WO2009141961A1 - 両頭研削装置及びウェーハの製造方法 - Google Patents

両頭研削装置及びウェーハの製造方法 Download PDF

Info

Publication number
WO2009141961A1
WO2009141961A1 PCT/JP2009/001793 JP2009001793W WO2009141961A1 WO 2009141961 A1 WO2009141961 A1 WO 2009141961A1 JP 2009001793 W JP2009001793 W JP 2009001793W WO 2009141961 A1 WO2009141961 A1 WO 2009141961A1
Authority
WO
WIPO (PCT)
Prior art keywords
wafer
notch
holder
crystal orientation
double
Prior art date
Application number
PCT/JP2009/001793
Other languages
English (en)
French (fr)
Inventor
小林健司
加藤忠弘
Original Assignee
信越半導体株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 信越半導体株式会社 filed Critical 信越半導体株式会社
Priority to CN2009801169457A priority Critical patent/CN102026774B/zh
Priority to US12/990,236 priority patent/US8562390B2/en
Priority to DE112009001195.0T priority patent/DE112009001195B4/de
Publication of WO2009141961A1 publication Critical patent/WO2009141961A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/04Lapping machines or devices; Accessories designed for working plane surfaces
    • B24B37/07Lapping machines or devices; Accessories designed for working plane surfaces characterised by the movement of the work or lapping tool
    • B24B37/08Lapping machines or devices; Accessories designed for working plane surfaces characterised by the movement of the work or lapping tool for double side lapping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/27Work carriers
    • B24B37/28Work carriers for double side lapping of plane surfaces

Definitions

  • the present invention relates to a double-head grinding apparatus for simultaneously grinding both surfaces of a thin wafer such as a silicon wafer and a method for manufacturing the wafer.
  • Nanotopography is a kind of surface shape of a wafer, and has a wavelength component of 0.2 to 20 mm having a wavelength shorter than that of warp or warp and a wavelength longer than the surface roughness, and a PV value is 0.1. It is a very shallow swell component of ⁇ 0.2 ⁇ m. This nanotopography is said to affect the yield of the STI (Shallow Trench Isolation) process in the device process, and a strict level is required for the silicon wafer as the device substrate along with the miniaturization of design rules.
  • STI Shallow Trench Isolation
  • Nanotopography is built in the silicon wafer processing process. In particular, it is easily deteriorated by a processing method having no reference surface, for example, wire saw cutting or double-headed grinding, and it is important to improve and manage relative wire meandering in wire saw cutting and wafer damage in double-headed grinding.
  • FIG. 4 is a schematic view showing an example of a conventional double-head grinding apparatus.
  • the double-head grinding apparatus 101 is positioned on both sides of the holder 102 and the holder 102 that is capable of rotating the thin plate-like wafer 103 from the outer peripheral side along the radial direction.
  • a pair of static pressure support members 112 that are supported in a non-contact manner by the static pressure of the fluid and a pair of grindstones 104 that simultaneously grind both surfaces of the wafer 103 supported by the holder 102 are provided.
  • the grindstone 104 is attached to a motor 111 so that it can rotate at high speed.
  • this holder 102 is provided with a protrusion 105 so as to be engaged with a notch 106 such as a notch indicating the crystal orientation of the wafer formed on the wafer 103, for example. It has become.
  • a double-head grinding apparatus 101 that performs grinding by engaging the projection 105 of the holder 102 and the notch 106 of the wafer 103 is disclosed in, for example, Japanese Patent Laid-Open No. 10-328988.
  • the protrusion 105 of the holder 102 is engaged with the notch 106 of the wafer 103, and the outer periphery of the wafer 103 is supported by the holder 102.
  • the wafer 103 can be rotated by rotating the holder 102.
  • the fluid is supplied from the respective static pressure support members 112 on both sides between the holder 102 and the static pressure support member 112, and the holder 102 is supported by the static pressure of the fluid along the axial direction of rotation. Then, both surfaces of the wafer 103 supported and supported by the holder 102 and the static pressure support member 112 in this way are ground using the grindstone 104 that rotates at high speed by the motor 111.
  • Japanese Patent Application Laid-Open No. 11-183447 discloses a technique for predicting wafer breakage.
  • this method can predict and suppress the cracking of the wafer, it is not a fundamental measure for improving nanotopography.
  • the rigidity of the protrusion is insufficient, or the protrusion is deformed in the thickness direction of the wafer and comes into contact with the grindstone and wears out.
  • the frequency of breakage of the protrusions increases.
  • the wafer processed at this time cannot be a product because even if cracks do not occur, the protrusions are damaged and the rotation drive is lost, and the entire wafer surface cannot be ground uniformly. There has been a problem of lowering.
  • the present invention has been made in view of the above-described problems, and in double-head grinding, the concentration of rotational driving stress on one notch and protrusion formed on the wafer is suppressed, and the periphery of the notch of the wafer to be manufactured is controlled.
  • At least a thin plate-like wafer having a notch indicating a crystal orientation is provided from the outer peripheral side along the radial direction, having a protrusion that engages with the notch.
  • a double-head grinding apparatus comprising: a ring-shaped holder capable of rotating; and a pair of grindstones for simultaneously grinding both surfaces of a wafer supported by the holder, wherein the holder is engaged with the notch for crystal orientation.
  • At least one protrusion is provided, and the protrusions are engaged with a notch for supporting the wafer formed on the wafer so as to support and rotate the wafer, and the pair of grindstones
  • a double-head grinding apparatus characterized in that both surfaces of the wafer are ground simultaneously.
  • the holder is provided with at least one or more protrusions separately from the protrusions engaged with the crystal orientation notches, and the protrusions are formed on the wafer support notches. If the wafer is supported and rotated with the pair of grindstones, and both surfaces of the wafer are ground at the same time, the rotational driving stress generated during grinding is applied to the notch for crystal orientation and one or more wafers. It can be dispersed in the notch for support, can improve the nanotopography by suppressing the deformation around the notch of the wafer to be manufactured, and also improve the product yield by reducing the breakage rate of the wafer and holder The apparatus cost can be reduced.
  • the position of one or more protrusions provided for supporting the wafer includes at least a position that is circularly symmetric with respect to the center axis of the holder with respect to the position of the protrusion engaging with the notch for crystal orientation. Is preferred.
  • the position of one or more protrusions provided for supporting the wafer includes a position that is at least circularly symmetric with respect to the center axis of the holder with respect to the position of the protrusion engaging with the notch for crystal orientation.
  • the rotational driving stress generated during grinding can be efficiently distributed by the crystal orientation notch and one or more notches for supporting the wafer, and the deformation around the notch of the wafer to be manufactured is more reliably suppressed.
  • the nanotopography can be improved, and the breakage rate of the wafer and the holder can be more reliably reduced to improve the product yield and reduce the apparatus cost.
  • a post-process The wafer can be supported by engaging with a notch for supporting the wafer having a depth that can be easily removed by chamfering.
  • the present invention rotates a thin wafer having a notch indicating a crystal orientation while being supported from the outer peripheral side along the radial direction by a ring-shaped holder having a protrusion engaged with the notch.
  • a ring-shaped holder having a protrusion engaged with the notch.
  • the protrusion of the holder corresponding to the notch of the holder is engaged to support and rotate the wafer from the outer peripheral side, and the wafer is It provides a wafer manufacturing method, characterized by containing from both sides at the same time as the step of grinding and removing by chamfering a notch of the wafer supporting.
  • At least the protrusion is provided on the holder in addition to the protrusion that engages with the notch for crystal orientation, and a notch for supporting the wafer for supporting the wafer by engaging with the protrusion is provided.
  • Forming at least one or more on the wafer separately from the notches for crystal orientation, and engaging notches for supporting and crystal orientation formed on the wafer and protrusions of the holder corresponding to these notches A wafer manufacturing method including a step of rotating the wafer while supporting and rotating the wafer from the outer peripheral side, and simultaneously grinding both surfaces of the wafer with the pair of grindstones and removing the notches for supporting the wafer by chamfering.
  • the rotational driving stress generated during grinding can be distributed to the notch for crystal orientation and one or more notches for supporting the wafer. Being a deformation suppressing improve the nanotopography, it is possible to produce a wafer having only notch needed. Further, it is possible to improve the product yield and reduce the apparatus cost by reducing the breakage rate of the wafer and holder to be manufactured.
  • the position of the one or more wafer support notches to be formed includes a position that is at least circularly symmetric with respect to the center axis of the wafer with respect to the position of the notch for crystal orientation.
  • the position of the notch for supporting one or more wafers to be formed includes at least a position symmetrical with respect to the center axis of the wafer with respect to the position of the notch for crystal orientation
  • rotational driving stress generated during grinding can be efficiently dispersed by a crystal orientation notch and one or more wafer support notches, which can more reliably suppress deformation around the notch of the wafer and more reliably produce a wafer nanotopography.
  • the depth of the one or more wafer support notches to be formed is 0.5 mm or less.
  • the wafer support notches can be easily removed by chamfering in a later step.
  • a protrusion is provided on the holder, and at least one notch for wafer support for supporting the wafer by engaging with the protrusion is formed on the wafer separately from the notch for crystal orientation. Then, the support and crystal orientation notches formed on the wafer are engaged with the protrusions of the holder corresponding to these notches to support and rotate the wafer from the outer peripheral side, and a pair of grinding stones In the subsequent chamfering process of the edge portion of the wafer, the notch for supporting the wafer is removed by chamfering, so that the rotational driving stress generated during grinding is notched for crystal orientation and one or more wafers.
  • the present invention is not limited to this.
  • the protrusion of the holder and the notch of the wafer are engaged at one place to support the outer periphery of the wafer with the holder, and grinding is performed in that state. Since stress due to rotational driving concentrates on this one notch and projection, the periphery of the notch of the wafer is easily deformed, and the wafer swells, that is, nanotopography occurs, and the wafer and the projection are damaged. was there.
  • the present inventor has intensively studied to solve such problems.
  • the stress caused by the rotational drive applied to the notch of the wafer during grinding can be dispersed by engaging the protrusions of the holder and the notch of the wafer at multiple locations.
  • the inventors have conceived that the undulation near the notch of the wafer can be suppressed and completed the present invention.
  • FIG. 1 is a schematic view showing an example of the double-head grinding apparatus of the present invention.
  • the double-head grinding apparatus 1 mainly includes a holder 2 that supports the wafer 3 and a pair of grindstones 4 that grind both surfaces of the wafer 3 simultaneously.
  • FIG. 1B shows a schematic diagram of an example of the holder 2 that can be used in the double-head grinding apparatus of the present invention.
  • the holder 2 mainly rotates the ring-shaped ring portion 8, the support portion 9 that contacts the wafer 3 and supports from the outer peripheral side along the radial direction of the wafer 3, and the holder 2. It has the internal gear part 7 used in order to make it.
  • FIG. 1 shows an example in which one protrusion 5b that engages with the notch 6b for supporting the wafer is formed, but two or more protrusions 5b may be formed.
  • the notch 6 of the wafer 3 and the protrusions 5 of the holder 2 are engaged at a plurality of positions to support the wafer 3, and the rotational drive of the holder 2 is transmitted to the wafer 3. Be able to.
  • the material of the holder 2 is not particularly limited, but the ring portion 8 can be made of, for example, alumina ceramics. If the material is made of alumina ceramic as described above, the workability is good and it is difficult to thermally expand even during processing, so that it can be processed with high accuracy. Further, for example, the material of the support portion 9 can be resin, and the material of the internal gear portion 7 and the drive gear 10 can be SUS, but is not limited thereto.
  • the grindstone 4 is not particularly limited, and for example, the one having a count # 3000 having an average abrasive grain diameter of 4 ⁇ m can be used as in the conventional case. Furthermore, it is possible to use a high count of count # 6000 to 8000. As this example, there may be mentioned one made of diamond abrasive grains having an average grain size of 1 ⁇ m or less and a vitrified bond material.
  • the grindstone 4 is connected to a grindstone motor 11 so that it can rotate at high speed.
  • the protrusions 5 a and 5 b of the holder 2 are engaged with the notch 6 a for crystal orientation and the notch 6 b for supporting the wafer 3 to support the wafer 3, and the drive gear 10 is By rotating by the motor 13, by transmitting to the holder 2 through the internal gear portion 7 and rotating the wafer 3 while simultaneously grinding both surfaces of the wafer 3 with the pair of grindstones 4, the stress due to the rotational drive generated during grinding is applied. It can be distributed between the crystal orientation notch 6a and one or more wafer support notches 6b and between the protrusions 5a, 5b engaging with the notches.
  • the protrusion 5 is not damaged, the deformation of the notch periphery of the wafer 3 to be manufactured can be suppressed and the nanotopography can be improved, and the damage rate of the wafer 3 and the protrusion 5 can be reduced. Product yield can be improved and equipment cost can be reduced.
  • the position where one or more protrusions 5b engaging with the notch 6b for supporting the wafer are provided is circularly symmetric with respect to the central axis of the holder 2 with respect to the position of the protrusion 5a engaging with the notch 6a for crystal orientation. It is preferable that the position is included.
  • the circularly symmetric position with respect to the center axis of the holder 2 with respect to the position of the protrusion 5a engaged with the notch 6a for crystal orientation is a central angle between the position of the protrusion 5a and the position of the protrusion 5b is 180. It means that it is °.
  • the position of one or more protrusions 5b provided for supporting the wafer includes a position that is at least circularly symmetric with respect to the central axis of the holder 2 with respect to the position of the protrusion 5a that engages with the notch 6a for crystal orientation.
  • the rotational driving stress applied to the notch 6 and the protrusion 5 of the wafer 3 during grinding can be more efficiently distributed, and the deformation of the periphery of the notch of the wafer 3 to be manufactured is more reliably suppressed, thereby improving the nanotopography.
  • one or more protrusions 5b provided for supporting the wafer engage with a notch 6b for supporting the wafer having a depth of 0.5 mm or less formed on the wafer 3.
  • the wafer 3 after double-headed grinding needs to be removed except for notches required in the subsequent process, that is, it is necessary to remove all notches 6b for supporting the wafer while leaving the notches 6a for crystal orientation. . Therefore, by setting the depth of the notch 6b for supporting the wafer to 0.5 mm or less, the notch 6b for supporting the wafer can be removed at the same time when the edge portion of the wafer is chamfered in a subsequent process.
  • the protrusion 5b of the holder 2 of the double-head grinding apparatus 1 of the present invention engages with a notch 6b for supporting a wafer having a depth of 0.5 mm or less formed on the wafer 3.
  • the depth of the notch 6a for crystal orientation is deeper than the depth of the notch 6b for supporting the wafer, and can be set to a depth that is not removed even by chamfering.
  • a pair of static pressure support members 12 that support the holder 2 in a non-contact manner by the static pressure of the fluid can be provided.
  • the static pressure support member 12 includes a holder static pressure portion that supports the holder 2 in a non-contact manner on the outer peripheral side, and a wafer static pressure portion that supports the wafer in a non-contact manner on the inner peripheral side. Further, the static pressure support member 12 is formed with a hole for inserting the drive gear 10 used for rotating the holder 2 and a hole for inserting the grindstone 4.
  • Such a static pressure support member 12 is arranged on both sides of the holder 2, and the wafer 2 is supported in a non-contact manner while supplying fluid between the static pressure support member 12 and the holder 2 during double-head grinding.
  • the position of the holder 2 to support can be stabilized and it can suppress that nanotopography deteriorates.
  • the notch 6b for supporting the wafer can be formed, for example, in an ingot cylindrical grinding process in which the straight body portion of the ingot 14 before slicing the wafer 3 is ground into a columnar shape as shown in FIG.
  • the notch 6a indicating the crystal orientation of the wafer 3 can be similarly formed in this step.
  • the wafer support notch 6b may be formed in a chamfering process in which the edge of the wafer 3 is roughly chamfered after slicing the ingot 14 into the wafer 3.
  • the protrusions 5a and 5b that are engaged with the notch 6b for supporting the wafer and the notch 6a for crystal orientation formed as described above are provided in the holder 2 in advance.
  • the protrusions 5 a and 5 b of the holder 2 are engaged with the notches 6 a and 6 b of the wafer 3, and supported from the outer peripheral side along the radial direction of the wafer 3.
  • the double-head grinding apparatus 1 includes the static pressure support member 12 as shown in FIG. 1, the holder 2 that supports the wafer 3 is placed between the pair of static pressure support members 12.
  • the pressure support member 12 and the holder 2 are arranged so as to have a gap, and a fluid such as water is supplied from the static pressure support member 12 to support the holder 2 in a non-contact manner.
  • the wafer manufacturing method of the present invention is not limited to the presence or absence of this step.
  • the wafer 2 is rotated by rotating the holder 2 while the wafer 3 is supported by engaging the plurality of protrusions 5 of the holder 2 and the plurality of notches 6 of the wafer 3, and the grindstone 4 is rotated. Both surfaces of the wafer 3 are brought into contact with each other, and both surfaces of the wafer 3 are ground simultaneously.
  • the rotational driving stress generated during grinding is caused between the crystal orientation notch 6a and one or more wafer support notches 6b, and the protrusions 5a engaged with these notches, 5b can be dispersed, and the projections of the holder 2 are not damaged, and the nanotopography of the wafer 3 manufactured by suppressing the deformation around the notch of the wafer 3 can be improved. Further, it is possible to reduce the breakage rate of the wafer 3 and the protrusion 5 to be manufactured, thereby improving the product yield and reducing the apparatus cost.
  • the position of one or more wafer support notches 6b include a position that is at least circularly symmetric with respect to the center axis of the wafer 3 with respect to the position of the crystal orientation notch 6a.
  • the notch of the wafer 3 is ground during grinding.
  • the depth of one or more wafer support notches 6b to be formed is 0.5 mm or less.
  • the depth of the notch 6b for supporting the wafer to be formed is set to 0.5 mm or less, the machining allowance is set to 0.5 mm or more by the chamfering process in the subsequent process.
  • the notch 6b can be easily removed.
  • the depth of the notch 6a for crystal orientation is deeper than the depth of the notch 6b for supporting the wafer, and can be set to a depth that is not removed even by chamfering.
  • a protrusion is provided on the holder, and the wafer support notch for engaging the protrusion to support the wafer is separated from the crystal orientation notch. At least one or more are formed on the wafer, and the support and crystal orientation notches formed on the wafer are engaged with the protrusions of the holder corresponding to these notches to support and rotate the wafer from the outer peripheral side. Grinding both sides of the wafer at the same time with a whetstone and removing the wafer support notch by chamfering in the chamfering process of the edge portion of the wafer, so that the rotational driving stress generated during grinding is notched for crystal orientation.
  • a straight body of an ingot having a diameter of about 300 mm is cylindrically ground, a 1.0 mm deep notch indicating the crystal orientation of the ingot in the cylindrical grinding process, and a circular symmetry with respect to the center of the ingot with respect to the position of the notch for the crystal orientation
  • One notch for supporting the wafer having a depth of 0.5 mm is formed at the position of, and then the ingot is sliced into a wafer, and the wafer of the present invention is manufactured using a double-head grinding apparatus as shown in FIG.
  • both sides of these 15 wafers were ground on both sides, and then the outer periphery of the wafer was chamfered with an allowance of about 0.5 mm to remove the notch for supporting the wafer. And the nanotopography of 15 obtained wafers was measured.
  • FIG. 5 As shown in FIG. 5, it was found that the nanotopography was improved as compared with the results of the comparative examples described later. In all the wafers, no breakage occurred at the notch portion. Thus, by using the double-head grinding apparatus and the wafer manufacturing method of the present invention, it is possible to improve the nanotopography of the wafer to be manufactured, and to reduce the breakage rate and improve the product yield and the apparatus cost. It was confirmed that the reduction can be made.
  • the present invention is not limited to the above embodiment.
  • the above-described embodiment is an exemplification, and the present invention has any configuration that has substantially the same configuration as the technical idea described in the claims of the present invention and that exhibits the same effects. Are included in the technical scope.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)
  • Grinding Of Cylindrical And Plane Surfaces (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Polishing Bodies And Polishing Tools (AREA)

Abstract

 本発明は、少なくとも、結晶方位を示すノッチを有する薄板状のウェーハを、前記ノッチに係合する突起部を有し、径方向に沿って外周側から支持する自転可能なリング状のホルダーと、前記ホルダにより支持されたウェーハの両面を同時に研削する一対の砥石とを具備する両頭研削装置であって、前記ホルダーに、前記結晶方位用のノッチに係合する突起部とは別に、少なくとも1つ以上の突起部を設け、該突起部を、前記ウェーハに形成されたウェーハ支持用のノッチと係合させてウェーハを支持して回転させ、前記一対の砥石で前記ウェーハの両面を同時に研削する両頭研削装置である。これにより、両頭研削において、ウェーハのノッチ周辺の変形を抑制してナノトポグラフィーを改善し、また、ウェーハ及びホルダーの破損率を低減して製品歩留まりの向上と装置コストの削減をすることができる両頭研削装置及びウェーハの製造方法が提供される。  

Description

両頭研削装置及びウェーハの製造方法
 本発明は、シリコンウェーハ等の薄板状のウェーハの両面を同時に研削するための両頭研削装置およびウェーハの製造方法に関する。
 
 例えば直径300mmに代表される大口径シリコンウェーハを採用する先端デバイスでは、近年ナノトポグラフィーと呼ばれる表面うねり成分の大小が問題となっている。ナノトポグラフィーは、ウェーハの表面形状の一種で、ソリやwarpより波長が短く、表面粗さより波長の長い、0.2~20mmの波長成分の凹凸を示すものであり、PV値は0.1~0.2μmの極めて浅いうねり成分である。このナノトポグラフィーはデバイス工程におけるSTI(Shallow Trench Isolation)工程の歩留まりに影響すると言われ、デバイス基板となるシリコンウェーハに対し、デザインルールの微細化とともに厳しいレベルが要求されている。
 ナノトポグラフィーは、シリコンウェーハの加工工程で作り込まれるものである。特に基準面を持たない加工方法、例えばワイヤーソー切断や両頭研削で悪化しやすく、ワイヤーソー切断における相対的なワイヤーの蛇行や、両頭研削におけるウェーハのユガミの改善や管理が重要である。
 ここで、従来の両頭研削装置を用いた両頭研削方法について説明する。
 図4は従来の両頭研削装置の一例を示す概略図である。
 図4(A)に示すように、両頭研削装置101は、薄板状のウェーハ103を径方向に沿って外周側から支持する自転可能なホルダー102と、ホルダー102の両側に位置し、ホルダー102を自転の軸方向に沿って両側から、流体の静圧により非接触支持する一対の静圧支持部材112と、ホルダー102により支持されたウェーハ103の両面を同時に研削する一対の砥石104を備えている。砥石104はモータ111に取り付けられており、高速回転できるようになっている。
 このホルダー102は、図4(B)に示すように、突起部105が設けられており、例えば、ウェーハ103に形成されたウェーハの結晶方位を示すノッチ等の切欠き部106に係合するようになっている。このような、ホルダー102の突起部105とウェーハ103の切欠き部106とを係合させて研削を行う両頭研削装置101は、例えば特開平10-328988号公報に開示されている。
 この両頭研削装置101を用い、ウェーハ103の両面を研削するときは、まず、ウェーハ103のノッチ106にホルダー102の突起部105を係合させてウェーハ103の外周部をホルダー102により支持する。なお、ホルダー102を自転させることにより、ウェーハ103を回転させることができる。
 また、両側の各々の静圧支持部材112から流体をホルダー102と静圧支持部材112の間に供給し、ホルダー102を自転の軸方向に沿って流体の静圧によって支持する。そして、このようにしてホルダー102および静圧支持部材112で支持され、回転するウェーハ103の両面を、モータ111により高速回転する砥石104を用いて研削する。
 
 しかし、ウェーハ103に形成されるノッチ106とそのノッチ106に係合してウェーハ103を支持するホルダー102の突起部105はそれぞれ1つであるため、上記のようにしてウェーハ103の両頭研削を行った場合、この1つのノッチ106及び突起部105に回転駆動による応力が集中することとなる。そのため、ウェーハ103のノッチ106周辺の変形を生じさせやすく、この状態で両頭研削加工を行うとウェーハ103のうねり、すなわちナノトポグラフィーの発生、ひいてはウェーハ103の破損が発生する場合があった。
 ウェーハの破損に関しては、特開平11-183447号公報において、ウェーハの割れを予知する手法が開示されている。しかし、この手法では、ウェーハの割れを予知して抑止することはできても、ナノトポグラフィーを改善する根本的な対策にはなっていない。
 また、ウェーハが変形しないようにホルダーの突起部を軟質化した場合、突起部の剛性が不足したり、または、突起部がウェーハの厚み方向に変形して砥石と接触して磨耗することで剛性が劣化したりすることにより、突起部の破損頻度が増大する。この時加工されているウェーハは、割れの発生が起きなくとも、突起部が破損して回転駆動を失ったことでウェーハ全面の均一な研削ができていないために製品とはならないことから、歩留まりが低下するという問題が生じていた。
 本発明は前述のような問題に鑑みてなされたもので、両頭研削において、ウェーハに形成された1つのノッチ及び突起部へ回転駆動応力が集中するのを抑制し、製造するウェーハのノッチ周辺の変形を抑制してナノトポグラフィーを改善し、また、ウェーハ及びホルダーの破損率を低減して製品歩留まりの向上と装置コストの低減をすることができる両頭研削装置及びウェーハの製造方法を提供することを目的とする。
 上記目的を達成するために、本発明によれば、少なくとも、結晶方位を示すノッチを有する薄板状のウェーハを、前記ノッチに係合する突起部を有し、径方向に沿って外周側から支持する自転可能なリング状のホルダーと、前記ホルダにより支持されたウェーハの両面を同時に研削する一対の砥石とを具備する両頭研削装置であって、前記ホルダーに、前記結晶方位用のノッチに係合する突起部とは別に、少なくとも1つ以上の突起部を設け、該突起部を、前記ウェーハに形成されたウェーハ支持用のノッチと係合させてウェーハを支持して回転させ、前記一対の砥石で前記ウェーハの両面を同時に研削するものであることを特徴とする両頭研削装置を提供する。
 このように、前記ホルダーに、前記結晶方位用のノッチに係合する突起部とは別に、少なくとも1つ以上の突起部を設け、該突起部を、前記ウェーハに形成されたウェーハ支持用のノッチと係合させてウェーハを支持して回転させ、前記一対の砥石で前記ウェーハの両面を同時に研削するものであれば、研削時に発生する回転駆動応力を結晶方位用のノッチと1つ以上のウェーハ支持用のノッチに分散することができ、製造するウェーハのノッチ周辺の変形を抑制してナノトポグラフィーを改善することができ、また、ウェーハ及びホルダーの破損率を低減して製品歩留まりの向上と装置コストの低減をすることができる。
 このとき、前記ウェーハ支持用に1つ以上設ける突起部の位置は、少なくとも前記結晶方位用のノッチに係合する前記突起部の位置に対し前記ホルダーの中心軸に関して円対称の位置を含むものであることが好ましい。
 このように、前記ウェーハ支持用に1つ以上設ける突起部の位置が、少なくとも前記結晶方位用のノッチに係合する前記突起部の位置に対し前記ホルダーの中心軸に関して円対称の位置を含むものであれば、研削時に発生する回転駆動応力を結晶方位用のノッチと1つ以上のウェーハ支持用のノッチにより効率的に分散することができ、製造するウェーハのノッチ周辺の変形をより確実に抑制してナノトポグラフィーを改善し、また、ウェーハ及びホルダーの破損率をより確実に低減して製品歩留まりの向上と装置コストの低減をすることができる。
 またこのとき、前記ウェーハ支持用に1つ以上設ける突起部は、前記ウェーハに形成された深さが0.5mm以下である前記ウェーハ支持用のノッチに係合するものであることが好ましい。
 このように、前記ウェーハ支持用に1つ以上設ける突起部が、前記ウェーハに形成された深さが0.5mm以下である前記ウェーハ支持用のノッチに係合するものであれば、後工程での面取り加工により容易に除去できる深さのウェーハ支持用のノッチと係合してウェーハを支持することができる。
 また、本発明は、結晶方位を示すノッチを有する薄板状のウェーハを、前記ノッチに係合する突起部を有するリング状のホルダーにより径方向に沿って外周側から支持して回転させるとともに、一対の砥石によって、前記ウェーハの両面を同時に研削するウェーハの製造方法において、少なくとも、前記ホルダーに、前記結晶方位用のノッチに係合する突起部とは別に突起部を設け、該突起部に係合してウェーハを支持させるためのウェーハ支持用のノッチを前記結晶方位用ノッチとは別に前記ウェーハに少なくとも1つ以上形成する工程と、前記ウェーハに形成された支持用及び結晶方位用のノッチとこれらのノッチに対応する前記ホルダーの突起部とを係合させてウェーハを外周側から支持して回転させ、前記一対の砥石で前記ウェーハの両面を同時に研削する工程と前記ウェーハ支持用のノッチを面取り加工により除去する工程とを含むことを特徴とするウェーハの製造方法を提供する。
 このように、少なくとも、前記ホルダーに、前記結晶方位用のノッチに係合する突起部とは別に突起部を設け、該突起部に係合してウェーハを支持させるためのウェーハ支持用のノッチを前記結晶方位用ノッチとは別に前記ウェーハに少なくとも1つ以上形成する工程と、前記ウェーハに形成された支持用及び結晶方位用のノッチとこれらのノッチに対応する前記ホルダーの突起部とを係合させてウェーハを外周側から支持して回転させ、前記一対の砥石で前記ウェーハの両面を同時に研削する工程と前記ウェーハ支持用のノッチを面取り加工により除去する工程とを含むウェーハの製造方法とすれば、研削時に発生する回転駆動応力を結晶方位用のノッチと1つ以上のウェーハ支持用のノッチに分散することができ、ウェーハのノッチ周辺の変形を抑制してナノトポグラフィーが改善されつつ、必要なノッチだけを有するウェーハを製造することができる。また、製造するウェーハ及びホルダーの破損率を低減して製品歩留まりの向上と装置コストの低減をすることができる。
 このとき、前記1つ以上形成するウェーハ支持用のノッチの位置を、少なくとも前記結晶方位用のノッチの位置に対し前記ウェーハ中心軸に関して円対称の位置を含めることが好ましい。
 このように、前記1つ以上形成するウェーハ支持用のノッチの位置を、少なくとも前記結晶方位用のノッチの位置に対し前記ウェーハ中心軸に関して円対称の位置を含めれば、研削時に発生する回転駆動応力を結晶方位用のノッチと1つ以上のウェーハ支持用のノッチにより効率的に分散することができ、ウェーハのノッチ周辺の変形をより確実に抑制して製造するウェーハのナノトポグラフィーをより確実に改善することができる。また、製造するウェーハ及びホルダーの破損率をより確実に低減して製品歩留まりの向上と装置コストの低減をすることができる。
 またこのとき、前記1つ以上形成するウェーハ支持用のノッチの深さを0.5mm以下とすることが好ましい。
 このように、前記1つ以上形成するウェーハ支持用のノッチの深さを0.5mm以下とすれば、後工程での面取り加工によりウェーハ支持用のノッチを容易に除去することができる。
 本発明では、両頭研削装置において、ホルダーに突起部を設け、該突起部に係合してウェーハを支持させるためのウェーハ支持用のノッチを結晶方位用ノッチとは別にウェーハに少なくとも1つ以上形成し、ウェーハに形成された支持用及び結晶方位用のノッチとこれらのノッチに対応するホルダーの突起部とを係合させてウェーハを外周側から支持して回転させ、一対の砥石でウェーハの両面を同時に研削し、その後のウェーハのエッジ部の面取り工程において、ウェーハ支持用のノッチを面取り加工することによって除去するので、研削時に発生する回転駆動応力を結晶方位用のノッチと1つ以上のウェーハ支持用のノッチ間及びそれらのノッチに係合する突起部間で分散することができ、突起部が破損することもなく、ウェーハのノッチ周辺の変形を抑制してナノトポグラフィーが改善されつつ、必要なノッチだけを有するウェーハを製造することができる。また、ウェーハ及びホルダーの破損率を低減して製品歩留まりの向上と装置コストの低減をすることができる。
 
本発明に係る両頭研削装置の一例を示す概略図である。(A)両頭研削装置の概略図。(B)ホルダーの概略図。 本発明の両頭研削装置のホルダーが自転する様子を示す説明図である。 結晶方位を示すノッチとウェーハ支持用のノッチを有するインゴットを示す概略図である。 従来の両頭研削装置の一例を示す概略図である。(A)両頭研削装置の概略図。(B)ホルダーの概略図。 実施例と比較例の結果を示す図である。
 以下、本発明について実施の形態を説明するが、本発明はこれに限定されるものではない。
 従来、両頭研削装置を用いたウェーハの両面の両頭研削において、ホルダーの突起部とウェーハのノッチとを1箇所で係合させホルダーでウェーハの外周部を支持し、その状態で研削を行った場合、この1つのノッチ及び突起部に回転駆動による応力が集中するため、ウェーハのノッチ周辺が変形し易くなり、ウェーハのうねり、すなわちナノトポグラフィーが発生し、ひいてはウェーハや突起部が破損するという問題があった。
 そこで、本発明者はこのような問題を解決すべく鋭意検討を重ねた。その結果、ホルダーによりウェーハの外周を支持する際、複数個所でホルダーの突起部とウェーハのノッチとを係合させることにより、研削中にウェーハのノッチに掛かる回転駆動による応力を分散させることができ、ウェーハのノッチ付近のうねりを抑制できることに想到し、本発明を完成させた。
 図1は本発明の両頭研削装置の一例を示す概略図である。
 図1(A)に示すように、両頭研削装置1は、主に、ウェーハ3を支持するホルダー2と、ウェーハ3の両面を同時に研削する一対の砥石4を備えている。
 ここで、まず、ホルダー2について述べる。
 図1(B)に本発明の両頭研削装置で使用することができるホルダー2の一例の概要図を示す。図1(B)に示すように、ホルダー2は、主として、リング状のリング部8、ウェーハ3と接触してウェーハ3の径方向に沿って外周側から支持する支持部9、ホルダー2を自転させるために用いられる内歯車部7を有している。
 また、図2に示すように、ホルダー2を自転させるために、ホルダー用のモータ13に接続された駆動歯車10が配設されており、これは内歯車部7と噛合っており、駆動歯車10をモータ13により回転させることによって、内歯車部7を通じてホルダー2を自転させることが可能である。
 そして、図1(B)に示すように、支持部9の縁部から内側に向かって突出した突起部5が2つ形成されている。これらの突起部5は、1つはウェーハの結晶方位を示すノッチ6aと係合する突起部5aであり、他は、ウェーハ支持用に形成されたノッチ6bに係合する突起部5bである。図1(B)はウェーハ支持用のノッチ6bに係合する突起部5bを1つ形成しているものの例であるが、突起部5bを2つ以上形成しても良い。
 このように、複数の箇所で突起部5とノッチ6とを係合し、両頭研削時にノッチ6に発生する回転駆動応力を分散することで、1箇所のノッチに応力が集中するのを防ぎ、それぞれのノッチ周辺の変形を抑制することができる。
 このように、本発明の両頭研削装置1は、ウェーハ3のノッチ6とホルダー2の突起部5が複数個所で係合してウェーハ3を支持し、ホルダー2の回転駆動をウェーハ3に伝達することができるようになっている。
 ここで、ホルダー2の材質は、特に限定されることはないが、リング部8は、例えば、アルミナセラミクスとすることができる。このように材質がアルミナセラミクスのものであれば、加工性が良く、加工時にも熱膨張し難いため、高精度に加工されたものとすることができる。
 また、例えば、支持部9の材質は樹脂、内歯車部7および駆動歯車10の材質はSUSとすることができるが、これらに限定されるものではない。
 また、砥石4は特に限定されず、例えば従来と同様に、平均砥粒径が4μmの番手#3000のものを用いることができる。さらには、番手#6000~8000の高番手のものとすることも可能である。この例としては、平均粒径1μm以下のダイヤモンド砥粒とビトリファイドボンド材からなるものが挙げられる。なお、砥石4は砥石用のモータ11に接続されており、高速回転できるようになっている。
 このような両頭研削装置1により、ホルダー2の突起部5a、5bをウェーハ3の結晶方位用のノッチ6a及びウェーハ支持用のノッチ6bとに係合させてウェーハ3を支持し、駆動歯車10をモータ13により回転させることによって、内歯車部7を通じてホルダー2に伝達してウェーハ3を回転させながら一対の砥石4でウェーハ3の両面を同時に研削することで、研削時に発生する回転駆動による応力を結晶方位用のノッチ6aと1つ以上のウェーハ支持用のノッチ6b間及びそれらのノッチと係合する突起部5a、5b間で分散することができる。そのため、突起部5が破損することもなく、製造するウェーハ3のノッチ周辺の変形を抑制してナノトポグラフィーを改善することができ、また、ウェーハ3及び突起部5の破損率を低減して製品歩留まりの向上と装置コストの低減をすることができる。
 このとき、ウェーハ支持用のノッチ6bに係合する突起部5bを1つ以上設ける位置は、少なくとも結晶方位用のノッチ6aに係合する突起部5aの位置に対しホルダー2の中心軸に関して円対称の位置を含むことが好ましい。ここで、結晶方位用のノッチ6aに係合する突起部5aの位置に対しホルダー2の中心軸に関して円対称の位置とは、突起部5aの位置と突起部5bの位置との中心角が180°であるということを意味する。
 このように、ウェーハ支持用に1つ以上設ける突起部5bの位置が、少なくとも結晶方位用のノッチ6aに係合する突起部5aの位置に対しホルダー2の中心軸に関して円対称の位置を含めば、研削時にウェーハ3のノッチ6及び突起部5に掛かる回転駆動応力をより効率的に分散することができ、製造するウェーハ3のノッチ周辺の変形をより確実に抑制してナノトポグラフィーを改善し、また、ウェーハ及び突起部の破損率をより確実に低減して製品歩留まりの向上と装置コストの低減をすることができる。
 またこのとき、ウェーハ支持用に1つ以上設ける突起部5bは、ウェーハ3に形成された深さが0.5mm以下であるウェーハ支持用のノッチ6bに係合するものであることが好ましい。
 両頭研削後のウェーハ3は、後工程で必要となるノッチ以外は全て除去される必要があり、すなわち、結晶方位用のノッチ6aを残しつつ、ウェーハ支持用のノッチ6bを全て除去する必要がある。そこで、ウェーハ支持用のノッチ6bの深さを0.5mm以下とすることにより、後工程でウェーハのエッジ部の面取り加工を行う際にウェーハ支持用のノッチ6bも同時に除去することができる。この場合、本発明の両頭研削装置1のホルダー2の突起部5bはウェーハ3に形成された深さが0.5mm以下であるウェーハ支持用のノッチ6bに係合するものとする。
 また、結晶方位用のノッチ6aの深さは、ウェーハ支持用のノッチ6bの深さよりも深く、面取り加工を行っても除去されない深さとすることができる。
 また、図1(A)に示すように、ホルダー2を流体の静圧により非接触支持する一対の静圧支持部材12を設けることができる。
 静圧支持部材12は、外周側にホルダー2を非接触支持するホルダ静圧部と、内周側にウェーハを非接触支持するウェーハ静圧部から構成されている。また、静圧支持部材12には、ホルダー2を自転させるのに用いられる駆動歯車10を挿入するための穴や、砥石4を挿入するための穴が形成されている。
 このような静圧支持部材12をホルダー2の両側に配設し、両頭研削時に、流体を静圧支持部材12とホルダー2間に供給しながらホルダー2を非接触支持することにより、ウェーハ3を支持するホルダー2の位置を安定化させることができ、ナノトポグラフィーが悪化するのを抑制することができる。
 次に本発明のウェーハの製造方法について説明する。
 ここでは、図1に示すような本発明の両頭研削装置1を用いた場合について説明する。
 まず、結晶方位用のノッチ6aとは別に、ホルダー2の突起部5と係合してウェーハ3を支持させるための少なくとも1つ以上のウェーハ支持用のノッチ6bをウェーハ3に形成する。
 ウェーハ支持用のノッチ6bの形成は、例えば、図3に示すように、ウェーハ3をスライスする前のインゴット14の直胴部を円柱状に研削するインゴットの円筒研削工程で行うことができる。一方、ウェーハ3の結晶方位を示すノッチ6aも同様にこの工程で形成することができる。
 あるいは、インゴット14をスライスしてウェーハ3とした後に、ウェーハ3のエッジ部の粗面取りを行う面取り加工工程でウェーハ支持用ノッチ6bを形成しても良い。
 また、前記したようにして形成したウェーハ支持用のノッチ6bと結晶方位用のノッチ6aに係合する突起部5a、5bを予めホルダー2に設けておく。
 次に、ホルダー2を用いて、ホルダー2の突起部5a、5bとウェーハ3のノッチ6a、6bとを係合し、ウェーハ3の径方向に沿って外周側から支持する。
 ここで、両頭研削装置1が、図1に示すような静圧支持部材12を具備している場合には、ウェーハ3を支持するホルダー2を、一対の静圧支持部材12の間に、静圧支持部材12とホルダー2が隙間を有するようにして配置し、静圧支持部材12から、例えば水のような流体を供給し、ホルダー2を非接触支持する。
 このように、流体を静圧支持部材12とホルダー2間に供給しながらホルダー2を非接触支持することにより、両頭研削時にウェーハ3を支持するホルダー2の位置を安定化させることができ、ナノトポグラフィーが悪化するのを抑制することができるが、本発明のウェーハの製造方法においてはこの工程の有無に限定されることはない。
 そして、ホルダー2の複数の突起部5とウェーハ3の複数のノッチ6とを係合させてウェーハ3を支持した状態でホルダー2を自転させることでウェーハ3を回転させ、砥石4を回転させてウェーハ3の両面にそれぞれ当接させ、ウェーハ3の両面を同時に研削する。
 このように、ウェーハ3を研削することにより、研削時に発生する回転駆動応力を結晶方位用のノッチ6aと1つ以上のウェーハ支持用のノッチ6b間及びそれらのノッチと係合する突起部5a、5b間で分散することができ、ホルダー2の突起部が破損することもなく、ウェーハ3のノッチ周辺の変形を抑制して製造するウェーハ3のナノトポグラフィーを改善することができる。また、製造するウェーハ3及び突起部5の破損率を低減して製品歩留まりの向上と装置コストの低減をすることができる。
 このとき、1つ以上形成するウェーハ支持用のノッチ6bの位置を、少なくとも結晶方位用のノッチ6aの位置に対しウェーハ3の中心軸に関して円対称の位置を含めることが好ましい。
 このように、1つ以上形成するウェーハ支持用のノッチ6bの位置を、少なくとも結晶方位用のノッチ6aの位置に対しウェーハ3の中心軸に関して円対称の位置を含めれば、研削時にウェーハ3のノッチ6及び突起部5に掛かる回転駆動応力をより効率的に分散することができ、ウェーハ3のノッチ周辺の変形をより確実に抑制して製造するウェーハのナノトポグラフィーをより確実に改善することができる。また、製造するウェーハ3及び突起部5の破損率をより確実に低減して製品歩留まりの向上と装置コストの低減をすることができる
 そして、両面の研削を行った後のウェーハのエッジ部に面取り加工を行う。この際、ウェーハのエッジ部の面取り加工を行うと同時に、ウェーハ支持用に形成したノッチ6bも除去する。
 そのため、1つ以上形成するウェーハ支持用のノッチ6bの深さを0.5mm以下とすることが好ましい。
 このように、1つ以上形成するウェーハ支持用のノッチ6bの深さを0.5mm以下とすれば、後工程での面取り加工によりその取り代を0.5mm以上とすることによって、ウェーハ支持用のノッチ6bを容易に除去することができる。
 また、結晶方位用のノッチ6aの深さは、ウェーハ支持用のノッチ6bの深さよりも深く、面取り加工を行っても除去されない深さとすることができる。
 以上説明したように、本発明では、両頭研削装置において、ホルダーに突起部を設け、該突起部に係合してウェーハを支持させるためのウェーハ支持用のノッチを結晶方位用ノッチとは別にウェーハに少なくとも1つ以上形成し、ウェーハに形成された支持用及び結晶方位用のノッチとこれらのノッチに対応するホルダーの突起部とを係合させてウェーハを外周側から支持して回転させ、一対の砥石でウェーハの両面を同時に研削し、その後のウェーハのエッジ部の面取り工程において、ウェーハ支持用のノッチを面取り加工することによって除去するので、研削時に発生する回転駆動応力を結晶方位用のノッチと1つ以上のウェーハ支持用のノッチ間及びそれらのノッチに係合するそれぞれの突起部間で分散することができ、突起部が破損することもなく、ウェーハのノッチ周辺の変形を抑制してナノトポグラフィーが改善されつつ、必要なノッチだけを有するウェーハを製造することができる。また、ウェーハ及びホルダーの破損率を低減して製品歩留まりの向上と装置コストの低減をすることができる。
 
 以下、本発明の実施例及び比較例を示して本発明をより具体的に説明するが、本発明はこれらに限定されるものではない。
(実施例)
 直径約300mmのインゴットの直胴部を円筒研削し、その円筒研削工程でインゴットの結晶方位を示す深さ1.0mmのノッチと、その結晶方位用のノッチの位置に対しインゴット中心軸に関して円対称の位置に深さ0.5mmのウェーハ支持用のノッチを1つ形成し、その後、インゴットをスライス加工してウェーハとし、図1に示すような両頭研削装置を用いて、本発明のウェーハの製造方法に従って、それら15枚のウェーハの両面を両頭研削し、その後、ウェーハの外周を約0.5mmの取り代で面取り加工してウェーハ支持用のノッチを除去した。そして、得られた15枚のウェーハのナノトポグラフィーを測定した。
 その結果を図5に示す。図5に示すように、後述する比較例の結果と比べナノトポグラフィーが改善していることが分かった。また、全てのウェーハにおいて、ノッチ部分で破損が発生することはなかった。
 このことにより、本発明の両頭研削装置及びウェーハの製造方法を用いることにより、製造するウェーハのナノトポグラフィーを改善することができ、また、破損率を低減して製品歩留まりの向上と装置コストの低減をすることができることが確認できた。
 
(比較例)
 図4に示すような従来の両頭研削装置を用い、結晶方位を示すノッチのみホルダーの突起部と係合させた以外、実施例と同様な条件でウェーハの両頭研削を行い、実施例と同様にウェーハのナノトポグラフィーを測定した。
 結果を図5に示す。
 図5に示すように、実施例と比較してナノトポグラフィーが悪い結果であることが分かった。
 
 なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。

Claims (6)

  1.  少なくとも、結晶方位を示すノッチを有する薄板状のウェーハを、前記ノッチに係合する突起部を有し、径方向に沿って外周側から支持する自転可能なリング状のホルダーと、前記ホルダにより支持されたウェーハの両面を同時に研削する一対の砥石とを具備する両頭研削装置であって、
     前記ホルダーに、前記結晶方位用のノッチに係合する突起部とは別に、少なくとも1つ以上の突起部を設け、該突起部を、前記ウェーハに形成されたウェーハ支持用のノッチと係合させてウェーハを支持して回転させ、前記一対の砥石で前記ウェーハの両面を同時に研削するものであることを特徴とする両頭研削装置。
     
  2.  前記ウェーハ支持用に1つ以上設ける突起部の位置は、少なくとも前記結晶方位用のノッチに係合する前記突起部の位置に対し前記ホルダーの中心軸に関して円対称の位置を含むものであることを特徴とする請求項1に記載の両頭研削装置。
     
  3.  前記ウェーハ支持用に1つ以上設ける突起部は、前記ウェーハに形成された深さが0.5mm以下である前記ウェーハ支持用のノッチに係合するものであることを特徴とする請求項1または請求項2に記載の両頭研削装置。
     
  4.  結晶方位を示すノッチを有する薄板状のウェーハを、前記ノッチに係合する突起部を有するリング状のホルダーにより径方向に沿って外周側から支持して回転させるとともに、一対の砥石によって、前記ウェーハの両面を同時に研削するウェーハの製造方法において、少なくとも、
     前記ホルダーに、前記結晶方位用のノッチに係合する突起部とは別に突起部を設け、該突起部に係合してウェーハを支持させるためのウェーハ支持用のノッチを前記結晶方位用ノッチとは別に前記ウェーハに少なくとも1つ以上形成する工程と、
     前記ウェーハに形成された支持用及び結晶方位用のノッチとこれらのノッチに対応する前記ホルダーの突起部とを係合させてウェーハを外周側から支持して回転させ、前記一対の砥石で前記ウェーハの両面を同時に研削する工程と
     前記ウェーハ支持用のノッチを面取り加工により除去する工程とを含むことを特徴とするウェーハの製造方法。
     
  5.  前記1つ以上形成するウェーハ支持用のノッチの位置を、少なくとも前記結晶方位用のノッチの位置に対し前記ウェーハ中心軸に関して円対称の位置を含めることを特徴とする請求項4に記載のウェーハの製造方法。
     
  6.  前記1つ以上形成するウェーハ支持用のノッチの深さを0.5mm以下とすることを特徴とする請求項4または請求項5に記載のウェーハの製造方法。
     
     
     
     
PCT/JP2009/001793 2008-05-22 2009-04-20 両頭研削装置及びウェーハの製造方法 WO2009141961A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN2009801169457A CN102026774B (zh) 2008-05-22 2009-04-20 两头磨削装置及芯片的制造方法
US12/990,236 US8562390B2 (en) 2008-05-22 2009-04-20 Double-disc grinding apparatus and method for producing wafer
DE112009001195.0T DE112009001195B4 (de) 2008-05-22 2009-04-20 Doppelseiten-Schleifvorrichtung und Verfahren zur Herstellung von Wafern

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008133954A JP4780142B2 (ja) 2008-05-22 2008-05-22 ウェーハの製造方法
JP2008-133954 2008-05-22

Publications (1)

Publication Number Publication Date
WO2009141961A1 true WO2009141961A1 (ja) 2009-11-26

Family

ID=41339904

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/001793 WO2009141961A1 (ja) 2008-05-22 2009-04-20 両頭研削装置及びウェーハの製造方法

Country Status (7)

Country Link
US (1) US8562390B2 (ja)
JP (1) JP4780142B2 (ja)
KR (1) KR101605384B1 (ja)
CN (1) CN102026774B (ja)
DE (1) DE112009001195B4 (ja)
TW (1) TWI445125B (ja)
WO (1) WO2009141961A1 (ja)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5411739B2 (ja) * 2010-02-15 2014-02-12 信越半導体株式会社 キャリア取り付け方法
JP5627114B2 (ja) * 2011-07-08 2014-11-19 光洋機械工業株式会社 薄板状ワークの研削方法及び両頭平面研削盤
JP5979081B2 (ja) * 2013-05-28 2016-08-24 信越半導体株式会社 単結晶ウェーハの製造方法
JP6285375B2 (ja) * 2015-02-17 2018-02-28 光洋機械工業株式会社 両頭平面研削装置
JP6707831B2 (ja) 2015-10-09 2020-06-10 株式会社Sumco 研削装置および研削方法
KR102468793B1 (ko) 2016-01-08 2022-11-18 삼성전자주식회사 반도체 웨이퍼, 반도체 구조체 및 이를 제조하는 방법
JP6493253B2 (ja) * 2016-03-04 2019-04-03 株式会社Sumco シリコンウェーハの製造方法およびシリコンウェーハ
KR101809956B1 (ko) * 2017-05-29 2017-12-18 (주)대코 평행되고 대향되게 장착되는 2개의 지석들을 용이하게 교환할 수 있는 연속 압축 선스프링 연마장치
WO2019066086A1 (ja) * 2017-09-29 2019-04-04 Hoya株式会社 ガラススペーサ及びハードディスクドライブ装置
CN112606233B (zh) * 2020-12-15 2022-11-04 西安奕斯伟材料科技有限公司 一种晶棒的加工方法及晶片

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60259372A (ja) * 1984-06-04 1985-12-21 Yokogawa Hokushin Electric Corp 両面ポリツシング方法
JP2000288921A (ja) * 1999-03-31 2000-10-17 Hoya Corp 研磨用キャリア及び研磨方法並びに情報記録媒体用基板の製造方法
JP2006332281A (ja) * 2005-05-25 2006-12-07 Komatsu Electronic Metals Co Ltd 半導体ウェーハの製造方法および両面研削方法並びに半導体ウェーハの両面研削装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02178947A (ja) * 1988-12-29 1990-07-11 Fujitsu Ltd 半導体ウェーハのノッチ合わせ機構
US5508139A (en) 1993-03-25 1996-04-16 Canon Kabushiki Kaisha Magnetic toner for developing electrostatic image
JP3923107B2 (ja) * 1995-07-03 2007-05-30 株式会社Sumco シリコンウェーハの製造方法およびその装置
JP3207787B2 (ja) 1997-04-04 2001-09-10 株式会社日平トヤマ ウエハの加工方法及び平面研削盤及びワーク支持部材
JPH11183447A (ja) 1997-12-19 1999-07-09 Nippei Toyama Corp 被加工材の割れ発生予知方法及びこれを利用したウエハの加工方法並びに研削盤
JP3856975B2 (ja) * 1999-02-18 2006-12-13 光洋機械工業株式会社 複合両頭平面研削方法および装置
JP2001155331A (ja) * 1999-11-30 2001-06-08 Mitsubishi Alum Co Ltd 磁気ディスク用基板およびその研磨方法
JP2003071704A (ja) * 2001-08-29 2003-03-12 Nippei Toyama Corp ウェーハ回転用駆動プレート
JP2003124167A (ja) * 2001-10-10 2003-04-25 Sumitomo Heavy Ind Ltd ウエハ支持部材及びこれを用いる両頭研削装置
KR101193406B1 (ko) 2005-02-25 2012-10-24 신에쯔 한도타이 가부시키가이샤 양면 연마 장치용 캐리어 및 이를 이용한 양면 연마 장치,양면 연마 방법
US7355192B2 (en) * 2006-03-30 2008-04-08 Intel Corporation Adjustable suspension assembly for a collimating lattice
JP4935230B2 (ja) * 2006-08-03 2012-05-23 セイコーエプソン株式会社 透光性基板の製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60259372A (ja) * 1984-06-04 1985-12-21 Yokogawa Hokushin Electric Corp 両面ポリツシング方法
JP2000288921A (ja) * 1999-03-31 2000-10-17 Hoya Corp 研磨用キャリア及び研磨方法並びに情報記録媒体用基板の製造方法
JP2006332281A (ja) * 2005-05-25 2006-12-07 Komatsu Electronic Metals Co Ltd 半導体ウェーハの製造方法および両面研削方法並びに半導体ウェーハの両面研削装置

Also Published As

Publication number Publication date
KR20110022563A (ko) 2011-03-07
TWI445125B (zh) 2014-07-11
JP4780142B2 (ja) 2011-09-28
DE112009001195T5 (de) 2011-06-22
CN102026774B (zh) 2013-04-17
CN102026774A (zh) 2011-04-20
DE112009001195B4 (de) 2024-01-18
TW201009995A (en) 2010-03-01
US20110039476A1 (en) 2011-02-17
US8562390B2 (en) 2013-10-22
JP2009279704A (ja) 2009-12-03
KR101605384B1 (ko) 2016-03-23

Similar Documents

Publication Publication Date Title
WO2009141961A1 (ja) 両頭研削装置及びウェーハの製造方法
KR101549055B1 (ko) 워크의 양두 연삭 장치 및 워크의 양두 연삭 방법
JP5233888B2 (ja) 両面研磨装置用キャリアの製造方法、両面研磨装置用キャリア及びウェーハの両面研磨方法
CN110181355B (zh) 一种研磨装置、研磨方法及晶圆
JP5494552B2 (ja) 両頭研削方法及び両頭研削装置
JP2013078826A (ja) ウェーハの加工方法
JP6528527B2 (ja) ツルーアーの製造方法および半導体ウェーハの製造方法、ならびに半導体ウェーハの面取り加工装置
WO2014038129A1 (ja) 両面研磨方法
WO2005070619A1 (ja) ウエーハの研削方法及びウエーハ
JP5979081B2 (ja) 単結晶ウェーハの製造方法
CN108349058B (zh) 承载环、磨削装置及磨削方法
KR102454449B1 (ko) 웨이퍼의 제조방법
JP2002217149A (ja) ウエーハの研磨装置及び研磨方法
JP6825733B1 (ja) 半導体ウェーハの製造方法
KR102098260B1 (ko) 워크의 양두연삭방법
JPH11348031A (ja) 半導体基板の製造方法、外面加工装置及び単結晶インゴット
JP2009302478A (ja) 半導体ウェーハの製造方法
KR102150157B1 (ko) 웨이퍼 랩핑 장치용 캐리어
JP2010017779A (ja) ウェーハ加工方法
KR20050064242A (ko) 웨이퍼 양면연마기의 연마패드 보정장치와 보정방법
JP6072166B1 (ja) 表面変質層深さ測定方法、半導体ウエハ研削方法、及び、半導体ウエハ製造方法
JP2015230734A (ja) 磁気記録媒体用のガラス基板の加工方法、磁気記録媒体用のガラス基板の製造方法、および磁気記録媒体用のガラス基板の加工装置
JP2006043787A (ja) 平面研削用セグメント砥石
WO2014076955A1 (ja) 半導体ウェハの両面研磨装置および半導体ウェハの製造方法
KR20110073846A (ko) 래핑장치용 싱글 캐리어 및 이를 이용한 래핑 장치

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980116945.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09750323

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12990236

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20107025905

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 09750323

Country of ref document: EP

Kind code of ref document: A1