WO2009136558A1 - シリコンエッチング液およびエッチング方法 - Google Patents

シリコンエッチング液およびエッチング方法 Download PDF

Info

Publication number
WO2009136558A1
WO2009136558A1 PCT/JP2009/058164 JP2009058164W WO2009136558A1 WO 2009136558 A1 WO2009136558 A1 WO 2009136558A1 JP 2009058164 W JP2009058164 W JP 2009058164W WO 2009136558 A1 WO2009136558 A1 WO 2009136558A1
Authority
WO
WIPO (PCT)
Prior art keywords
etching
etching solution
silicon
carbonate
mol
Prior art date
Application number
PCT/JP2009/058164
Other languages
English (en)
French (fr)
Inventor
和義 矢口
隆二 外赤
Original Assignee
三菱瓦斯化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱瓦斯化学株式会社 filed Critical 三菱瓦斯化学株式会社
Priority to GB1020297.6A priority Critical patent/GB2472365B/en
Priority to CN2009801166815A priority patent/CN102027579B/zh
Priority to JP2010511045A priority patent/JP5472102B2/ja
Priority to US12/991,510 priority patent/US8562855B2/en
Publication of WO2009136558A1 publication Critical patent/WO2009136558A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/30604Chemical etching
    • H01L21/30608Anisotropic liquid etching

Definitions

  • the present invention relates to a silicon etching process, and more particularly, to a silicon etching solution and a silicon etching method used for manufacturing parts and semiconductor devices used in MEMS (Micro-Electro-Mechanical System), so-called micromachines.
  • MEMS Micro-Electro-Mechanical System
  • a method of etching with an acid-based etchant which is a mixed aqueous solution in which components such as hydrofluoric acid and nitric acid are added, or potassium hydroxide (KOH), hydroxide
  • KOH potassium hydroxide
  • a method of etching with an alkaline etching solution that is an aqueous solution of tetramethylammonium (TMAH) or the like is performed (see Non-Patent Documents 1 and 2).
  • etching proceeds isotropically regardless of whether the silicon to be etched is single crystal, polycrystalline, or amorphous. For this reason, when performing pattern etching using a pattern mask or the like, the deeper the etching, the lateral etching equivalent to the depth, that is, the undercut (erosion) under the pattern mask proceeds, It may cause inconvenience.
  • etching when an alkaline etching solution is used, silicon is dissolved as silicate ions by the hydroxy anion in the solution, and at this time, water is reduced to generate hydrogen.
  • etching when etching is performed with an alkaline etching solution, unlike an acid etching solution, etching with single crystal silicon proceeds while having anisotropy. This is based on the fact that there is a difference in the dissolution rate of silicon for each crystal plane orientation of silicon, which is also called crystal anisotropic etching. Microscopically, etching progresses while maintaining anisotropy when viewed microscopically, but crystal orientation is randomly distributed, so that isotropic etching progresses macroscopically. Looks like. In amorphous, etching proceeds isotropically both microscopically and macroscopically.
  • an aqueous solution of sodium hydroxide (NaOH), ammonia, hydrazine, or the like is used in addition to an aqueous solution of KOH and TMAH.
  • NaOH sodium hydroxide
  • TMAH TMAH
  • a long processing time of several hours to several tens of hours is often required depending on a target processing shape and a temperature condition for processing.
  • Patent Document 1 discloses a technique of using an aqueous solution obtained by adding hydroxylamines to TMAH as an etching solution.
  • Patent Document 2 discloses a technique in which an aqueous solution obtained by adding a specific compound such as iron, iron chloride (III), iron hydroxide (II) or the like to TMAH is used as an etching solution, and the effect of increasing the etching rate is disclosed. It is disclosed that a combination of iron and hydroxylamine is particularly suitable at a height of 5 mm.
  • Patent Document 3 discloses a technique using an aqueous solution obtained by adding hydroxylamines to KOH as an etching solution.
  • the hydroxylamine added to accelerate the etching rate in the techniques described in Patent Documents 1, 2 and 3 is a self-degradable compound, the concentration is reduced due to alteration during storage at room temperature. In the case where the etching solution itself is maintained in a heated state, the decrease in the concentration becomes more remarkable. Since this decrease in the concentration of hydroxylamine causes a decrease in the etching rate, the etching rate decreases with the passage of time when the temperature is maintained. Therefore, when performing an etching process that forms a deep hole using an etching solution containing hydroxylamine, it is difficult to check the depth of the etching process during the process. It was necessary.
  • the purpose of the present invention is to suppress the degradation of the hydroxylamine over time by suppressing the decomposition of hydroxylamine without impairing the feature that the etching rate of the alkaline aqueous solution containing hydroxylamine is high.
  • An object of the present invention is to provide a silicon etching solution for dissolving single crystal silicon anisotropically and a silicon etching method.
  • the present inventors have conducted etching with an alkaline aqueous solution containing alkali metal hydroxide, hydroxylamine and an inorganic carbonate compound and having a pH of 12 or higher, thereby etching the silicon with an etching rate.
  • the present inventors have found that the decrease in the etching rate due to the decomposition of hydroxylamine can be suppressed without impairing the feature of being high, and the present invention has been completed.
  • the present invention relates to a silicon etching solution and an etching method, and is as follows.
  • a silicon etching solution that dissolves single crystal silicon anisotropically, and is an alkaline aqueous solution having a pH of 12 or more containing (A) an alkali metal hydroxide, (B) hydroxylamine, and (C) an inorganic carbonate compound.
  • a silicon etchant characterized by that.
  • (C) The silicon etching liquid according to the above item 1, wherein the inorganic carbonic acid compound is a compound that dissociates in an alkaline aqueous solution to generate carbonate ions (CO 3 2 ⁇ ). 4).
  • C) Inorganic carbonate compound is from carbon dioxide (CO 2 ), potassium carbonate (K 2 CO 3 ), potassium hydrogen carbonate (KHCO 3 ), sodium carbonate (Na 2 CO 3 ), and sodium hydrogen carbonate (NaHCO 3 ).
  • the silicon etching solution according to claim 4, wherein the alkali metal ions are potassium ions (K + ) and / or sodium ions (Na + ).
  • the alkali metal hydroxide is potassium hydroxide or sodium hydroxide
  • the inorganic carbonate compound is carbon dioxide (CO 2 ), potassium carbonate (K 2 CO 3 ), potassium hydrogen carbonate (KHCO 3 ), 9.
  • etching rate which is a feature of an alkaline aqueous solution containing hydroxylamine
  • a silicon etching solution and a silicon etching method can be provided. Therefore, it is possible to greatly simplify troublesome operations such as extending the life of the silicon etchant containing hydroxylamine and frequently checking the processed shape when performing the etching process.
  • the silicon etching solution of the present invention is an alkaline aqueous solution having a pH of 12 or more containing (A) alkali metal hydroxide, (B) hydroxylamine, and (C) inorganic carbonate compound, and makes single crystal silicon anisotropic. It is a silicon etchant that dissolves. First, each composition of the silicon etching solution of the present invention will be described.
  • Alkali metal hydroxide used in the present invention is preferably potassium hydroxide and / or sodium hydroxide, and particularly preferably potassium hydroxide.
  • the alkali compounds of the present invention may be used alone or in combination.
  • the alkali metal hydroxide used in the present invention is dissociated into alkali metal ions and hydroxide ions in water.
  • the alkali metal ions generated by dissociation are potassium ions (K + ) or sodium ions (Na + ).
  • the inorganic carbonate compound used in the present invention is a compound that dissociates in water to generate carbonate ions (CO 3 2 ⁇ ). Carbon dioxide (CO 2 ), potassium carbonate (K 2 CO 3 ), potassium hydrogen carbonate (KHCO 3) ), Sodium carbonate (Na 2 CO 3 ), and sodium bicarbonate (NaHCO 3 ).
  • the inorganic carbonic acid compounds of the present invention may be used alone or in combination.
  • potassium carbonate (K 2 CO 3 ) and potassium hydrogen carbonate (KHCO 3 ) dissociate in water to generate carbonate ions (CO 3 2 ⁇ ) and at the same time potassium ions (K + ) Is generated.
  • Sodium carbonate (Na 2 CO 3 ) and sodium hydrogen carbonate (NaHCO 3 ) dissociate in water to generate carbonate ions (CO 3 2 ⁇ ) and simultaneously generate sodium ions (Na + ).
  • the etching solution of the present invention needs to have a pH of 12 or more. This is because, when the pH is less than 12, a part of the carbonate ions in the etching solution is rapidly changed to bicarbonate ions, so that the etching rate in the presence of the bicarbonate ions is extremely reduced. For this reason, in the etching liquid of this invention, it is necessary to adjust to pH12 or more so that a bicarbonate ion may not be produced
  • the pH of the etching solution of the present invention is 12 or more, the carbonate ions in the etching solution hardly change to bicarbonate ions, and the carbonate ions are stably present in the etching solution. Therefore, it is possible to suppress a decrease in the etching rate.
  • the silicon etching solution of the present invention is preferably used in a range where the total alkali metal ion concentration in the solution is 3.0 to 4.5 mol / kg. Further, it is preferably used in a range where the carbonate ion concentration is 0.28 to 0.42 in terms of a molar ratio to the total alkali metal ion concentration.
  • the metal ion concentration in the present invention refers to the concentration of metal ions with respect to the silicon etching solution.
  • potassium hydrogen carbonate (KHCO 3 ) or sodium hydrogen carbonate (NaHCO 3 ) is used as a compound that generates carbonate ions, alkali metal water exceeding the number of moles of these inorganic carbonate compounds in order to make the pH 12 or higher.
  • the carbonate ion concentration is 0.28 to 0.42 in terms of molar ratio to alkali metal ions. It is preferable to make it into a range.
  • the total alkali metal ion concentration is 3.0 mol / kg or more, the effect of improving the etching rate by hydroxylamine can be sufficiently obtained. If it is 4.5 mol / kg or less, the concentration of the inorganic carbonate compound necessary for inhibiting the decomposition of hydroxylamine is lowered, and the total concentration of dissolved components in the etching solution is lowered. It is easy to handle without precipitation of silicate.
  • the carbonate ion concentration is 0.28 or more in terms of the molar ratio to the alkali metal ion concentration, the hydroxylamine decomposition suppressing effect can be sufficiently obtained, so that it becomes easy to suppress a decrease in the etching rate.
  • a molar ratio of 0.42 or less is preferable because a decrease in etching rate due to a decrease in pH is less likely to occur. For the same reason, the molar ratio is more preferably in the range of 0.35 to 0.42.
  • the alkali metal ion concentration and carbonate ion concentration in the present invention are determined based on the assumption that the alkali metal hydroxide and inorganic carbonate compound added to the aqueous solution are completely dissociated in the aqueous solution. It is the calculated value calculated
  • This premise is that, as described above, if the silicon etching solution is an alkaline aqueous solution having a pH of 12 or more, the alkali metal hydroxide and the inorganic carbonate compound are completely dissociated in the etching solution, and alkali metal ions and carbonate ions are separated. It is because it has become. That is, when the pH of the silicon etching solution is 12 or more, the actual alkali metal ion concentration and carbonate ion concentration in the etching solution can be regarded as the same as the calculated values.
  • the concentration of hydroxylamine used in the present invention can be appropriately determined according to the desired silicon etching rate, and is preferably in the range of 1 to 11% by weight with respect to the silicon etching solution. If the concentration is lower than 1% by weight, the effect of improving the silicon etching rate by adding hydroxylamine may not be clearly obtained. If it is 1% by weight or more, the effect of improving the etching rate by the addition of hydroxylamine can be clearly obtained. When the hydroxylamine concentration is increased, the etching rate tends to increase monotonously with this. However, even if the concentration exceeds 11% by weight and the concentration of hydroxylamine is increased, the effect of further improving the etching rate is not seen so much.
  • the hydroxylamine concentration may be determined as appropriate in consideration of the desired etching rate.
  • the silicon etching method of the present invention includes a step of bringing the silicon etching solution of the present invention into contact with an object to be etched.
  • the method of bringing the silicon etching solution into contact with the etching target There is no particular limitation on the method of bringing the silicon etching solution into contact with the etching target.
  • the method of bringing the silicon etching solution into contact with the target by dropping (single wafer spin processing) or spraying, or the target with the silicon etching solution. It is possible to employ a method of immersing the film in the substrate.
  • a method in which a silicon etching solution is dropped onto a target (single-wafer spin processing) and contacted, and a method in which the target is immersed in a silicon etching solution and contacted are preferably employed.
  • a contact step of immersing an object in a heated etching solution or bringing the etching solution into contact with the object, taking it out after a predetermined time A method having a washing step of washing away the adhering etching solution with water and then a drying step of drying the adhering water is preferably employed.
  • the working temperature of the etching solution is preferably 40 ° C. or higher and lower than the boiling point, more preferably 50 ° C. to 90 ° C., particularly preferably 70 ° C. to 90 ° C. If the temperature of the etching solution is 40 ° C. or higher, the etching rate does not become too low, and the production efficiency is not significantly reduced.
  • the etching rate is increased by increasing the temperature of the etching solution, an optimum processing temperature may be appropriately determined in consideration of suppressing a change in the composition of the etching solution.
  • An object to be etched in the present invention is a substrate or polyhedral block containing single crystal silicon, and single crystal silicon is present in the entire region or a partial region of the substrate or block.
  • single crystal silicon may be a single layer or a stacked state of multiple layers.
  • Those that are ion-doped in the entire region or a partial region of these substrates and blocks are also objects to be etched.
  • the present invention also applies to a case where a material such as a silicon oxide film, a silicon nitride film, or a silicon organic film or a metal film such as an aluminum film, a chromium film, or a gold film is present on the surface of the etching object or inside the object. It is included in the object of the etching process.
  • the etching object used for the evaluation is a single crystal silicon (100) (sometimes simply referred to as silicon (100)) wafer.
  • One side of this silicon (100) wafer is covered with a protective film made of a silicon thermal oxide film, and a part of the silicon thermal oxide film is removed by dry etching on the other side.
  • This silicon (100) wafer was immersed in a 1% hydrofluoric acid aqueous solution at 23 ° C. for 7 minutes immediately before etching, and then rinsed with ultrapure water and dried. By this hydrofluoric acid aqueous solution treatment, the silicon natural oxide film formed on the surface of the exposed portion of the pattern-shaped silicon surface was removed, and then etching treatment was performed.
  • etching solutions shown in the following examples and comparative examples are placed in a PTFE (polytetrafluoroethylene) container, and the container is placed in a hot water bath.
  • the temperature of the etching solution was heated to 80 ° C. by immersion. After the temperature of the etching solution reached 80 ° C., the single crystal silicon (100) wafer was immersed in the etching solution for 10 minutes for etching treatment, and then the wafer was taken out and rinsed and dried with ultrapure water. .
  • the pattern portion is recessed from the surroundings as the silicon is etched, and the difference in height between the etched portion and the unetched portion is measured to measure the silicon in 10 minutes.
  • the etching depth of the (100) plane was determined. A value obtained by dividing the etching depth by 10 was calculated as an etching rate (unit: ⁇ m / min) of the silicon (100) surface.
  • the heat aging test method and the etching rate reduction rate overheat aging test were performed according to the following methods. That is, after measuring the etching rate (V 1 ) of the silicon (100) surface at an etching temperature of 80 ° C., the temperature of this etching solution is increased to 85 ° C., and the 85 ° C. heating state is continued for 24 hours. Was returned to 80 ° C., and the etching rate (V 2 ) of the silicon (100) surface at 80 ° C. was measured again.
  • Etching rate reduction rate (%) [(V 1 ⁇ V 2 ) / (V 1 )] ⁇ 100 (1)
  • the heat aging treatment performed in Examples 1 to 15 and Comparative Examples 1 to 6 is merely an example of a treatment performed for evaluating the stability of the etching solution.
  • the higher the heating temperature and the longer the heating time the more the hydroxylamine decomposition proceeds and the lowering of the etching rate becomes remarkable.
  • the lower the heating temperature and the shorter the heating time the lower the etching rate. Needless to say, it alleviates.
  • the purpose of this test is to relatively compare the degree of decrease in the etching rate of the silicon (100) surface between the liquid compositions, and the etching rate reduction rate itself indicates the absolute stability of the etching solution. is not.
  • pH measurement The pH was measured at 23 ° C. using a pH meter (model: F-12) manufactured by Horiba. Examples 1 to 15, Comparative Examples 1 to 4 and Comparative Example 6 showed a pH value of 14 or more.
  • Example 1 149.3 g of 48% potassium hydroxide (KOH) aqueous solution (which contains KOH corresponding to 1.28 mol), 132.5 g of potassium carbonate (K 2 CO 3 ) powder (this is 0.96 mol of (Corresponding to K 2 CO 3 ), 500.0 g of a 20 wt% aqueous hydroxylamine (HA) solution and 218.2 g of water were mixed to prepare 1000 g of an etching solution.
  • the potassium ion concentration in this etching solution is calculated to be 3.2 mol / kg
  • the carbonate ion concentration is calculated to be 0.96 mol / kg
  • the molar ratio of the carbonate ion concentration to the potassium ion concentration is 0.30.
  • the HA concentration in this etching solution is 10% by weight, and the pH of this etching solution is 14 or more.
  • V 1 was 4.0 ⁇ m / min
  • V 2 was 3.4 ⁇ m / min
  • the etching rate reduction rate was 15.0%.
  • Example 2 168.0 g of 48% KOH aqueous solution (in which KOH corresponding to 1.44 mol is contained), 149.0 g of K 2 CO 3 powder (this corresponds to 1.08 mol of K 2 CO 3 ), 500.0 g of a 20 wt% aqueous HA solution and 183.0 g of water were mixed to prepare 1000 g of an etching solution.
  • the potassium ion concentration in this etching solution is calculated to be 3.6 mol / kg, and the carbonate ion concentration is calculated to be 1.08 mol / kg.
  • the molar ratio of the carbonate ion concentration to the potassium ion concentration is 0.30.
  • the HA concentration in this etching solution is 10% by weight, and the pH of this etching solution is 14 or more.
  • V 1 was 4.1 ⁇ m / min
  • V 2 was 3.5 ⁇ m / min
  • the etching rate reduction rate was 14.6%.
  • Example 3 182.0 g of 48% KOH aqueous solution (which contains KOH corresponding to 1.56 mol), 161.5 g of K 2 CO 3 powder (which corresponds to 1.17 mol of K 2 CO 3 ), 500.0 g of 20 wt% HA aqueous solution and 156.5 g of water were mixed to prepare 1000 g of etching solution.
  • the potassium ion concentration in this etching solution is calculated to be 3.9 mol / kg, and the carbonate ion concentration is calculated to be 1.17 mol / kg.
  • the molar ratio of the carbonate ion concentration to the potassium ion concentration is 0.30.
  • the HA concentration in this etching solution is 10% by weight, and the pH of this etching solution is 14 or more.
  • V 1 was 4.5 ⁇ m / min
  • V 2 was 3.7 ⁇ m / min
  • the etching rate reduction rate was 17.8%.
  • Example 4 200.7 g of 48% KOH aqueous solution (which contains KOH corresponding to 1.72 mol), 178.0 g of K 2 CO 3 powder (which corresponds to 1.29 mol of K 2 CO 3 ), 500.0 g of 20 wt% HA aqueous solution and 121.3 g of water were mixed to prepare 1000 g of etching solution.
  • the potassium ion concentration in this etching solution is calculated to be 4.3 mol / kg
  • the carbonate ion concentration is calculated to be 1.29 mol / kg
  • the molar ratio of the carbonate ion concentration to the potassium ion concentration is 0.30.
  • the HA concentration in this etching solution is 10% by weight, and the pH of this etching solution is 14 or more.
  • V 1 was 4.8 ⁇ m / min
  • V 2 was 3.9 ⁇ m / min
  • the etching rate reduction rate was 18.8%.
  • Comparative Example 1 373.3 g of 48% KOH aqueous solution (containing KOH corresponding to 3.2 mol), 500.0 g of 20 wt% HA aqueous solution and 126.7 g of water were mixed to prepare 1000 g of etching solution. .
  • the potassium ion concentration in this etching solution is calculated to be 3.2 mol / kg and does not include carbonate ions. Therefore, the molar ratio of carbonate ion concentration to potassium ion concentration is 0.0.
  • the HA concentration in this etching solution is 10% by weight, and the pH of this etching solution is 14 or more.
  • V 1 was 3.6 ⁇ m / min
  • V 2 was 2.8 ⁇ m / min
  • the etching rate reduction rate was 22.2%.
  • Comparative Example 2 420.0 g of 48% KOH aqueous solution (containing KOH corresponding to 3.6 mol), 500.0 g of 20 wt% HA aqueous solution and 80.0 g of water were mixed to prepare 1000 g of etching solution. .
  • the potassium ion concentration in this etching solution is calculated to be 3.6 mol / kg and does not include carbonate ions. Therefore, the molar ratio of carbonate ion concentration to potassium ion concentration is 0.0.
  • the HA concentration in this etching solution is 10% by weight, and the pH of this etching solution is 14 or more.
  • V 1 was 3.9 ⁇ m / min
  • V 2 was 3.0 ⁇ m / min
  • the etching rate reduction rate was 23.1%.
  • Comparative Example 4 501.7 g of 48% KOH aqueous solution (containing KOH corresponding to 4.3 mol), 400.0 g of 25 wt% HA aqueous solution and 98.3 g of water were mixed to prepare 1000 g of etching solution. .
  • the potassium ion concentration in this etching solution is calculated to be 4.3 mol / kg and does not include carbonate ions. Therefore, the molar ratio of carbonate ion concentration to potassium ion concentration is 0.0.
  • the HA concentration in this etching solution is 10% by weight, and the pH of this etching solution is 14 or more.
  • V 1 was 4.4 ⁇ m / min
  • V 2 was 3.2 ⁇ m / min
  • the etching rate reduction rate was 27.3%.
  • Example 5 74.7 g of 48% KOH aqueous solution (which contains KOH corresponding to 0.64 mol), 176.6 g of K 2 CO 3 powder (which corresponds to 1.28 mol of K 2 CO 3 ), 500.0 g of 20 wt% aqueous HA solution and 248.7 g of water were mixed to prepare 1000 g of an etching solution.
  • the potassium ion concentration in this etching solution is calculated to be 3.2 mol / kg and the carbonate ion concentration is 1.28 mol / kg, and the molar ratio of the carbonate ion concentration to the potassium ion concentration is 0.40.
  • the HA concentration in this etching solution is 10% by weight, and the pH of this etching solution is 14 or more.
  • V 1 was 3.3 ⁇ m / min
  • V 2 was 3.2 ⁇ m / min
  • the etching rate reduction rate was 3.0%.
  • Example 6 84.0 g of 48% KOH aqueous solution (which contains KOH corresponding to 0.72 mol), 198.7 g of K 2 CO 3 powder (which corresponds to 1.44 mol of K 2 CO 3 ), 500.0 g of 20 wt% aqueous HA solution and 217.3 g of water were mixed to prepare 1000 g of an etching solution.
  • the potassium ion concentration in this etching solution is calculated to be 3.6 mol / kg, and the carbonate ion concentration is calculated to be 1.44 mol / kg.
  • the molar ratio of the carbonate ion concentration to the potassium ion concentration is 0.40.
  • the HA concentration in this etching solution is 10% by weight, and the pH of this etching solution is 14 or more.
  • V 1 was 3.5 ⁇ m / min
  • V 2 was 3.4 ⁇ m / min
  • the etching rate reduction rate was 2.9%.
  • Example 7 91.0 g of 48% KOH aqueous solution (which contains KOH corresponding to 0.78 mol), 215.3 g of K 2 CO 3 powder (which corresponds to 1.56 mol of K 2 CO 3 ), 500.0 g of 20 wt% HA aqueous solution and 193.7 g of water were mixed to prepare 1000 g of etching solution.
  • the potassium ion concentration in this etching solution is calculated to be 3.9 mol / kg, and the carbonate ion concentration is calculated to be 1.56 mol / kg.
  • the molar ratio of the carbonate ion concentration to the potassium ion concentration is 0.40.
  • the HA concentration in this etching solution is 10% by weight, and the pH of this etching solution is 14 or more.
  • V 1 was 3.7 ⁇ m / min
  • V 2 was 3.5 ⁇ m / min
  • the etching rate reduction rate was 5.4%.
  • Example 8 100.3 g of 48% KOH aqueous solution (which contains KOH corresponding to 0.86 mol), 237.4 g of K 2 CO 3 powder (this corresponds to 1.72 mol of K 2 CO 3 ), 500.0 g of 20 wt% HA aqueous solution and 162.3 g of water were mixed to prepare 1000 g of etching solution.
  • the potassium ion concentration in this etching solution is calculated to be 4.3 mol / kg
  • the carbonate ion concentration is calculated to be 1.72 mol / kg
  • the molar ratio of the carbonate ion concentration to the potassium ion concentration is 0.40.
  • the HA concentration in this etching solution is 10% by weight, and the pH of this etching solution is 14 or more.
  • V 1 was 3.9 ⁇ m / min
  • V 2 was 3.7 ⁇ m / min
  • the etching rate reduction rate was 5.1%.
  • Example 9 294.0 g of 48% KOH aqueous solution (which contains KOH corresponding to 2.52 mol), 108.0 g of potassium hydrogen carbonate (KHCO 3 ) powder (this corresponds to 1.08 mol of KHCO 3 ) Then, 500.0 g of a 20 wt% HA aqueous solution and 98.0 g of water were mixed to prepare 1000 g of an etching solution.
  • the potassium ion concentration in this etching solution is calculated to be 3.6 mol / kg, and the carbonate ion concentration is calculated to be 1.08 mol / kg.
  • the molar ratio of the carbonate ion concentration to the potassium ion concentration is 0.30.
  • the HA concentration in this etching solution is 10% by weight, and the pH of this etching solution is 14 or more.
  • V 1 was 4.1 ⁇ m / min
  • V 2 was 3.5 ⁇ m / min
  • the etching rate reduction rate was 14.6%.
  • Example 10 252.0 g of 48% KOH aqueous solution (which contains KOH corresponding to 2.16 mol), 144.0 g of KHCO 3 powder (which corresponds to 1.44 mol of KHCO 3 ), 20 wt% HA
  • An aqueous solution (500.0 g) and water (104.0 g) were mixed to prepare 1000 g of an etching solution.
  • the potassium ion concentration in this etching solution is calculated to be 3.6 mol / kg
  • the carbonate ion concentration is calculated to be 1.44 mol / kg.
  • the molar ratio of the carbonate ion concentration to the potassium ion concentration is 0.40.
  • the HA concentration in this etching solution is 10% by weight, and the pH of this etching solution is 14 or more.
  • V 1 was 3.5 ⁇ m / min
  • V 2 was 3.4 ⁇ m / min
  • the etching rate reduction rate was 2.9%.
  • Example 11 420.0 g of a 48% KOH aqueous solution (containing KOH corresponding to 3.6 mol) and 500.0 g of a 20 wt% HA aqueous solution were mixed.
  • 26.2 L (23 ° C., 1 atm) of CO 2 gas (which corresponds to 1.08 mol of CO 2 ) was absorbed in a closed system.
  • 1000 g of an etching solution was prepared by adding 32.5 g of water.
  • the potassium ion concentration in this etching solution is calculated to be 3.6 mol / kg, and the carbonate ion concentration is calculated to be 1.08 mol / kg.
  • the molar ratio of the carbonate ion concentration to the potassium ion concentration is 0.30.
  • the HA concentration in this etching solution is 10% by weight, and the pH of this etching solution is 14 or more.
  • V 1 was 4.1 ⁇ m / min
  • V 2 was 3.5 ⁇ m / min
  • the etching rate reduction rate was 14.6%.
  • Example 12 420.0 g of a 48% KOH aqueous solution (containing KOH corresponding to 3.6 mol) and 500.0 g of a 20 wt% HA aqueous solution were mixed.
  • 35.0 L (23 ° C., 1 atm) of CO 2 gas (which corresponds to 1.44 mol of CO 2 ) was absorbed in a closed system.
  • 16.6 g of water was added to prepare 1000 g of an etching solution.
  • the potassium ion concentration in this etching solution is calculated to be 3.6 mol / kg, and the carbonate ion concentration is calculated to be 1.44 mol / kg.
  • the molar ratio of the carbonate ion concentration to the potassium ion concentration is 0.40.
  • the HA concentration in this etching solution is 10% by weight, and the pH of this etching solution is 14 or more.
  • V 1 was 3.5 ⁇ m / min
  • V 2 was 3.4 ⁇ m / min
  • the etching rate reduction rate was 2.9%.
  • Comparative Example 5 420.0 g of a 48% KOH aqueous solution (containing KOH corresponding to 3.6 mol) and 500.0 g of a 20 wt% HA aqueous solution were mixed. In this aqueous solution, 43.7 L (23 ° C., 1 atm) of CO 2 gas (which corresponds to 1.80 mol of CO 2 ) was absorbed in a closed system. Further, 1000 g of an etching solution was prepared by adding 0.8 g of water. The potassium ion concentration in this etching solution is calculated to be 3.6 mol / kg, and the carbonate ion concentration is calculated to be 1.8 mol / kg.
  • the molar ratio of the carbonate ion concentration to the potassium ion concentration is 0.50.
  • the HA concentration in this etching solution is 10% by weight, and the pH of this etching solution is 11.9. Etching of silicon was performed using this etching solution, but silicon was not dissolved and could not be etched.
  • Example 13 288.0 g of 20% sodium hydroxide (NaOH) aqueous solution (which contains NaOH corresponding to 1.44 mol), 114.5 g of sodium carbonate (Na 2 CO 3 ) powder (this is 1.08 mol of (Corresponding to Na 2 CO 3 ), 500.0 g of 20 wt% HA aqueous solution and 97.5 g of water were mixed to prepare 1000 g of etching solution.
  • the sodium ion concentration in this etching solution is calculated to be 3.6 mol / kg
  • the carbonate ion concentration is calculated to be 1.08 mol / kg
  • the molar ratio of the carbonate ion concentration to the sodium ion concentration is 0.30.
  • the HA concentration in this etching solution is 10% by weight, and the pH of this etching solution is 14 or more.
  • V 1 was 3.7 ⁇ m / min
  • V 2 was 3.2 ⁇ m / min
  • the etching rate reduction rate was 13.5%.
  • Example 14 504.0 g of 20% NaOH aqueous solution (which contains NaOH corresponding to 2.52 mol), 90.7 g of sodium hydrogen carbonate (NaHCO 3 ) powder (this corresponds to 1.08 mol of NaHCO 3 ) Then, 250.0 g of 40 wt% HA aqueous solution and 155.3 g of water were mixed to prepare 1000 g of an etching solution.
  • the sodium ion concentration in this etching solution is calculated to be 3.6 mol / kg
  • the carbonate ion concentration is calculated to be 1.08 mol / kg
  • the molar ratio of the carbonate ion concentration to the sodium ion concentration is 0.30.
  • the HA concentration in this etching solution is 10% by weight, and the pH of this etching solution is 14 or more.
  • V 1 was 3.7 ⁇ m / min
  • V 2 was 3.2 ⁇ m / min
  • the etching rate reduction rate was 13.5%.
  • Example 15 720.0 g of 20% NaOH aqueous solution (containing NaOH corresponding to 3.60 mol) and 200.0 g of 50 wt% HA aqueous solution were mixed.
  • 26.2 L (23 ° C., 1 atm) of CO 2 gas (which corresponds to 1.08 mol of CO 2 ) was absorbed in a closed system.
  • 1000 g of an etching solution was prepared by adding 32.5 g of water.
  • the sodium ion concentration in this etching solution is calculated to be 3.6 mol / kg
  • the carbonate ion concentration is calculated to be 1.08 mol / kg
  • the molar ratio of the carbonate ion concentration to the sodium ion concentration is 0.30.
  • the HA concentration in this etching solution is 10% by weight, and the pH of this etching solution is 14 or more.
  • V 1 was 3.7 ⁇ m / min
  • V 2 was 3.2 ⁇ m / min
  • the etching rate reduction rate was 13.5%.
  • An etching solution of 1000 g was prepared by mixing 720.0 g of 20% NaOH aqueous solution (containing NaOH corresponding to 3.60 mol), 200.0 g of 50 wt% HA aqueous solution and 80.0 g of water. .
  • the sodium ion concentration in this etching solution is calculated to be 3.6 mol / kg, the HA concentration is 10% by weight, and the pH of this etching solution is 14 or more.
  • V 1 was 3.5 ⁇ m / min
  • V 2 was 2.7 ⁇ m / min
  • the etching rate reduction rate was 22.9%.
  • a silicon etching solution is obtained by adding an inorganic carbonic acid compound to an aqueous solution containing an alkali metal hydroxide and hydroxylamine. It turns out that the fall of the silicon etching rate by a heat aging test is suppressed by containing an oxide, a hydroxylamine, and an inorganic carbonate compound, and pH being 12 or more. Further, the silicon etching solution according to the present invention has a very excellent etching rate of 3.3 ( ⁇ m / min) or more in any of the examples by containing hydroxylamine. In this case, it can be appropriately selected depending on the application whether the etching rate is important or the small rate of decrease in the etching rate is important even if the reduction in the etching rate is sacrificed to some extent.
  • the silicon etching solution and the silicon etching method of the present invention can greatly simplify complicated operations such as extending the life of a silicon etching solution containing hydroxylamine and frequently checking a processed shape when performing an etching process. Taking advantage of this effect, the silicon etching solution and the silicon etching method of the present invention can be suitably used for the manufacture of components and semiconductor devices used in micromachines.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Weting (AREA)

Abstract

 シリコンのエッチング加工、特にMEMS部品の製造工程におけるシリコンの異方性エッチング加工において、ヒドロキシルアミンを含有するエッチング液に特有な加温時のエッチング速度の低下を抑制することによって、エッチング液寿命の長いエッチング液およびエッチング方法を提供する。  アルカリ金属水酸化物とヒドロキシルアミンと無機炭酸化合物を含有したpH12以上のアルカリ性水溶液であって、単結晶シリコンを異方性に溶解することを特徴としたシリコンエッチング液、かつ該エッチング液を用いるシリコンのエッチング方法である。

Description

シリコンエッチング液およびエッチング方法
 本発明はシリコンのエッチング加工に関し、特にMEMS(Micro-Electro-Mechanical System)、いわゆるマイクロマシンに用いられる部品や半導体デバイスの製造に用いるシリコンエッチング液並びにシリコンエッチング方法に関する。
 一般にシリコン単結晶基板を化学薬液にてエッチングする場合には、フッ酸と硝酸などの成分を加えた混合水溶液である酸系エッチング液にてエッチングする方法、または水酸化カリウム(KOH)、水酸化テトラメチルアンモニウム(TMAH)などの水溶液であるアルカリ系エッチング液にてエッチングする方法が行われている(非特許文献1、2参照)。
 酸系エッチング液を用いた場合、硝酸などの酸化作用をもった成分によってシリコン表面が酸化されて酸化ケイ素が生成し、この酸化ケイ素はフッ酸などによってフッ化シリコンとして溶解されることによってエッチングが進行する。酸系エッチング液でエッチングを行った際の特徴は、エッチング対象のシリコンが単結晶、多結晶、非晶質のいずれであっても、エッチングが等方的に進行することにある。このため、パターンマスクなどを用いてパターンエッチングを行う際、エッチングを深くすればするほど、その深さと同程度の横方向へのエッチング、即ち、パターンマスク下のアンダーカット(侵食)が進行し、不都合を起こす場合がある。
 一方、アルカリ系エッチング液を用いた場合、液中のヒドロキシアニオンによってシリコンはケイ酸イオンとして溶解し、この際、水が還元されて水素を発生する。アルカリ系エッチング液でエッチングを行うと、酸系エッチング液とは異なり、単結晶シリコンでのエッチングは異方性を有しながら進行する。これはシリコンの結晶面方位ごとにシリコンの溶解速度に差があることに基づいており、結晶異方性エッチングとも呼ばれる。多結晶でも微視的に見れば異方性を保持しつつエッチングが進行するが、結晶粒の面方位はランダムに分布していることから、巨視的には等方性のエッチングが進行するように見える。非晶質では微視的にも巨視的にも等方性にエッチングが進行する。
 アルカリ系エッチング液としては、KOH、TMAHの水溶液以外にも水酸化ナトリウム(NaOH)、アンモニア、ヒドラジンなどの水溶液が使用される。これらの水溶液を用いた単結晶シリコン基板のエッチング加工においては、目的とする加工形状や処理を行う温度条件などにもよるが、数時間から数十時間という長い加工時間を要する場合が多い。
 この加工時間を少しでも短縮することを目的に、高いエッチング速度を示す薬液が開発されている。例えば、特許文献1にはTMAHにヒドロキシルアミン類を添加した水溶液をエッチング液として使用する技術が開示されている。また特許文献2にはTMAHに鉄、塩化鉄(III)、水酸化鉄(II)などの特定の化合物を添加した水溶液をエッチング液として使用する技術が開示されており、エッチング速度を速くする効果の高さでは、鉄とヒドロキシルアミンを併用する組み合わせが特に好適であることが開示されている。また特許文献3にはKOHにヒドロキシルアミン類を添加した水溶液をエッチング液として使用する技術が開示されている。
特開2006-054363 特開2006-186329 特開2006-351813 佐藤、「シリコンエッチング技術」、表面技術、社団法人表面技術協会、平成12年8月1日、Vol.51、No.8、2000、p754~759 江刺、「2003マイクロマシン/MEMS技術大全」、株式会社電子ジャーナル、2003年7月25日、p.109~114、
 しかしながら、上記特許文献1、2および3に記載の技術においてエッチング速度を促進させるために添加されているヒドロキシルアミンは自己分解性のある化合物であることから、室温での保存中に変質による濃度低下が発生しやすく、エッチング液自体を加温状態に維持する場合に、その濃度低下はいっそう顕著になる。このヒドロキシルアミンの濃度低下はエッチング速度の低下を引き起こすため、加温状態に維持している際には、時間の経過とともにエッチング速度は低下してしまう。そのため、ヒドロキシルアミンを含んだエッチング液を用いて深い孔を形成するようなエッチング加工を行う場合、エッチング加工がどの程度の深さまで進行しているか加工中に何度も確認するという煩雑な操作が必要であった。
 そこで、本発明の目的は、ヒドロキシルアミンを含んだアルカリ性水溶液の持つエッチング速度が高いという特長を損なうことなく、ヒドロキシルアミンの分解を抑制することで時間の経過にともなうエッチング速度の低下を抑制した、単結晶シリコンを異方性に溶解するシリコンエッチング液並びにシリコンエッチング方法を提供することにある。
 本発明者らは上記の課題を解決すべく鋭意研究を行った結果、アルカリ金属水酸化物とヒドロキシルアミンおよび無機炭酸化合物を含有したpH12以上のアルカリ水溶液でエッチングを行うことによって、シリコンに対するエッチング速度が高いという特長を損なうことなく、ヒドロキシルアミンの分解によるエッチング速度の低下を抑制できることを見出し、本発明を完成するに到った。
 すなわち本発明は、シリコンエッチング液およびエッチング方法に関するものであり、以下のとおりである。
 1.単結晶シリコンを異方性に溶解するシリコンエッチング液であって、(A)アルカリ金属水酸化物、(B)ヒドロキシルアミン、および(C)無機炭酸化合物、を含有したpH12以上のアルカリ性水溶液であることを特徴とするシリコンエッチング液。
 2.(A)アルカリ金属水酸化物が、水酸化カリウムおよび/または水酸化ナトリウムである上記第1項記載のシリコンエッチング液。
 3.(C)無機炭酸化合物がアルカリ性水溶液中で解離して炭酸イオン(CO3 2-)を生じる化合物である上記第1項記載のシリコンエッチング液。
 4.(A)アルカリ金属水酸化物および(C)無機炭酸化合物の解離で水溶液中に生成するアルカリ金属イオンの濃度が、3.0mol/kgから4.5mol/kgであり、(C)無機炭酸化合物の解離で水溶液中に生じる炭酸イオン(CO3 2-)の濃度が、アルカリ金属イオンの濃度に対するモル比として0.28から0.42である上記第1項記載のシリコンエッチング液。
 5.(C)無機炭酸化合物が、二酸化炭素(CO2)、炭酸カリウム(K2CO3)、炭酸水素カリウム(KHCO3)、炭酸ナトリウム(Na2CO3)、および炭酸水素ナトリウム(NaHCO3)から選ばれる1種以上である上記第1項記載のシリコンエッチング液。
 6.アルカリ金属イオンが、カリウムイオン(K+)および/またはナトリウムイオン(Na+)である上記第4項記載のシリコンエッチング液。
 7.pH13以上である上記第1~6項のいずれかに記載のシリコンエッチング液。
 8.エッチング対象物をシリコンエッチング液に接触させる工程を有し、該シリコンエッチング液が、単結晶シリコンを異方性に溶解するものであり、(A)アルカリ金属水酸化物、(B)ヒドロキシルアミン、および(C)無機炭酸化合物、を含有したpH12以上のアルカリ性水溶液であるシリコンエッチング方法。
 9.(A)アルカリ金属水酸化物が水酸化カリウムまたは水酸化ナトリウムであり、(C)無機炭酸化合物が二酸化炭素(CO2)、炭酸カリウム(K2CO3)、炭酸水素カリウム(KHCO3)、炭酸ナトリウム(Na2CO3)、および炭酸水素ナトリウム(NaHCO3)から選ばれる1種以上である上記第8項記載のシリコンエッチング方法。
 本願発明により、ヒドロキシルアミンを含んだアルカリ性水溶液の特長である高いエッチング速度を維持した上で、ヒドロキシルアミンの分解を抑制し、エッチング速度の低下を抑制できる、単結晶シリコンを異方性に溶解するシリコンエッチング液並びにシリコンエッチング方法を提供することができる。よって、ヒドロキシルアミンを含んだシリコンエッチング液の長寿命化およびエッチング処理を行う際の頻繁な加工形状確認などの煩雑な操作を大幅に簡略化できる。
[シリコンエッチング液]
 本発明のシリコンエッチング液は、(A)アルカリ金属水酸化物、(B)ヒドロキシルアミン、および(C)無機炭酸化合物、を含有したpH12以上のアルカリ性水溶液であり、単結晶シリコンを異方性に溶解するシリコンエッチング液である。まず、本発明のシリコンエッチング液の各組成について説明する。
《(A)アルカリ金属水酸化物》
 本発明に用いるアルカリ金属水酸化物は、水酸化カリウムおよび/または水酸化ナトリウムが好ましく、特に水酸化カリウムが好ましい。本発明のアルカリ化合物は、単独で用いても、組み合わせて用いてもよい。
 本発明に用いるアルカリ金属水酸化物は、水中ではアルカリ金属イオンと水酸化物イオンに解離する。解離して生成するアルカリ金属イオンは、具体的にはカリウムイオン(K+)またはナトリウムイオン(Na+)である。
《(C)無機炭酸化合物》
 本発明に用いる無機炭酸化合物は、水中で解離して炭酸イオン(CO3 2-)を生じる化合物であり、二酸化炭素(CO2)、炭酸カリウム(K2CO3)、炭酸水素カリウム(KHCO3)、炭酸ナトリウム(Na2CO3)、および炭酸水素ナトリウム(NaHCO3)が好ましい。本発明の無機炭酸化合物は、単独で用いても、組み合わせて用いてもよい。
 本発明で用いる無機炭酸化合物のうち、炭酸カリウム(K2CO3)、炭酸水素カリウム(KHCO3)については、水中で解離して炭酸イオン(CO3 2-)を生成すると同時にカリウムイオン(K+)を生成する。炭酸ナトリウム(Na2CO3)、炭酸水素ナトリウム(NaHCO3)については、水中で解離して炭酸イオン(CO3 2-)を生成すると同時にナトリウムイオン(Na+)を生成する。
《エッチング液のpH》
 本発明のエッチング液はpH12以上であることを要する。pHが12未満になると、エッチング液中の炭酸イオンの一部が重炭酸イオンへと急激に変化するため、該重炭酸イオンが存在する状態でのエッチング速度は極端に低下するからである。このため、本発明のエッチング液では重炭酸イオンが生成しないようにpH12以上に調整することを要し、pH13以上とすることが好ましい。本発明のエッチング液のpHが12以上であれば、該エッチング液中の炭酸イオンの重炭酸イオンへの変化がほとんど生じることがなく、炭酸イオンはエッチング液中に安定して存在することになるので、エッチング速度の低下を抑制することが可能となる。
《アルカリ金属イオン濃度および炭酸イオン濃度》
 本発明のシリコンエッチング液は、液中のアルカリ金属イオン濃度の合計が3.0~4.5mol/kgとなる範囲で好ましく用いられる。さらに、炭酸イオン濃度がこのアルカリ金属イオン濃度の合計に対するモル比で0.28~0.42となる範囲で好ましく用いられる。ここで、本発明における金属イオン濃度とは、シリコンエッチング液に対する金属イオンの濃度のことをいう。
 特に炭酸イオンを生成させる化合物として炭酸水素カリウム(KHCO3)や炭酸水素ナトリウム(NaHCO3)を用いる場合には、pHを12以上にするためにこれらの無機炭酸化合物のモル数を越えるアルカリ金属水酸化物を添加して、エッチング液の調製途中で生成した重炭酸イオンは全て炭酸イオンへと変化させた上で、炭酸イオンの濃度をアルカリ金属イオンに対するモル比として0.28から0.42の範囲にすることが好ましい。
 アルカリ金属イオン濃度の合計が3.0mol/kg以上であれば、ヒドロキシルアミンによるエッチング速度の向上効果が十分に得られる。また4.5mol/kg以下であれば、ヒドロキシルアミンの分解抑制に必要な無機炭酸化合物の濃度が低くなり、エッチング液中の溶解成分の総濃度が低くなるため、比較的少量のシリコンの溶解でケイ酸塩が析出することなく、取り扱いが容易である。
 また、炭酸イオン濃度がアルカリ金属イオン濃度に対するモル比で0.28以上であれば、ヒドロキシルアミンの分解抑制効果が十分に得られるので、エッチング速度の低下を抑制することが容易になる。またモル比で0.42以下であれば、pHの低下に伴うエッチング速度の低下が発生しにくくなるので好ましい。また、同様の理由により、当該モル比は0.35から0.42の範囲内であることがより好ましい。
 本発明におけるアルカリ金属イオン濃度および炭酸イオン濃度は、水溶液中に添加したアルカリ金属水酸化物および無機炭酸化合物が水溶液中では完全に解離して存在しているという前提のもと、これらアルカリ金属水酸化物および無機炭酸化合物の液中への添加量から計算によって求めた計算値である。この前提は、上記したように、シリコンエッチング液がpH12以上のアルカリ性水溶液であれば、アルカリ金属水酸化物および無機炭酸化合物は該エッチング液中で完全に解離して、アルカリ金属イオンおよび炭酸イオンとなっていることによるものである。すなわち、シリコンエッチング液のpHが12以上であれば、該エッチング液中の実際のアルカリ金属イオン濃度および炭酸イオン濃度と上記計算値とは同じとみなすことができる。
《(B)ヒドロキシルアミン》
 本発明に用いるヒドロキシルアミンの濃度は、所望のシリコンエッチング速度に応じて適宜決定することが可能であり、好ましくはシリコンエッチング液に対して1~11重量%の範囲で用いられる。1重量%より低い濃度では、ヒドロキシルアミンの添加によるシリコンエッチング速度の向上効果が明確に得られない場合がある。1重量%以上であれば、ヒドロキシルアミンの添加によるエッチング速度の向上効果が明確に得られるようになる。ヒドロキシルアミン濃度を増加させた際には、これに伴いエッチング速度も単調に増加する傾向が見られる。ただし、濃度が11重量%を超えてヒドロキシルアミンの濃度を増加させても、エッチング速度の更なる向上効果があまり見られない。所望のエッチング速度を考慮した上で、ヒドロキシルアミン濃度を適宜決定すればよい。
[シリコンエッチング方法]
 本発明のシリコンエッチング方法は、エッチング対象物に本発明のシリコンエッチング液を接触させる工程を有するものである。エッチング対象物にシリコンエッチング液を接触させる方法には特に制限はなく、例えばシリコンエッチング液を滴下(枚葉スピン処理)やスプレーなどの形式により対象物に接触させる方法や、対象物をシリコンエッチング液に浸漬させる方法などを採用することができる。本発明においては、シリコンエッチング液を対象物に滴下(枚葉スピン処理)して接触させる方法、対象物をシリコンエッチング液に浸漬して接触させる方法が好ましく採用される。
 本発明のシリコンエッチング方法としては、より具体的には、加温されたエッチング液中に対象物を浸漬、あるいは該エッチング液を対象物に接触させる接触工程、所定時間経過後に取り出し、対象物に付着しているエッチング液を水などで洗い流す洗浄工程、その後、付着している水を乾燥する乾燥工程を有する方法が好ましく採られている。
 エッチング液の使用温度としては、40℃以上沸点未満の温度が好ましく、さらに好ましくは50℃から90℃、特に70℃から90℃が好ましい。エッチング液の温度が40℃以上であれば、エッチング速度が低くなりすぎないので、生産効率が著しく低下することがない。一方、沸点未満の温度であれば、液組成変化を抑制し、エッチング条件を一定に保つことができる。エッチング液の温度を高くすることで、エッチング速度は上昇するが、エッチング液の組成変化を小さく抑えることなども考慮した上で、適宜最適な処理温度を決定すればよい。
 本発明におけるエッチング処理の対象物は、単結晶シリコンを含んだ基板または多面体ブロックであり、基板やブロックの全域または一部領域に単結晶シリコンが存在しているものである。なお、単結晶シリコンは単層でも多層に積層された状態でも構わない。これらの基板やブロックの全域または一部領域にイオンドープしたものもエッチング処理の対象物となる。またシリコン酸化膜、シリコン窒化膜、シリコン有機膜など材料やアルミニウム膜、クロム膜、金膜などの金属膜が上記のエッチング対象物の表面や対象物内部に存在しているものについても、本発明におけるエッチング処理の対象物に含まれる。
 以下、本発明を実施例および比較例によりさらに詳しく説明するが、本発明はこれらの実施例によって何ら限定されるものではない。評価に用いたエッチング対象物は単結晶シリコン(100)(単にシリコン(100)という場合がある)ウェハである。このシリコン(100)ウェハの片側の面は、その全面がシリコン熱酸化膜からなる保護膜によって覆われた状態となっており、もう片側の面ではシリコン熱酸化膜の一部をドライエッチングにより除去し、シリコン面が露出したパターン形状を有している。このシリコン(100)ウェハはエッチング処理をする直前に23℃の1%フッ化水素酸水溶液に7分間浸漬し、その後、超純水によるリンスを施し、乾燥を行った。このフッ化水素酸水溶液処理によって、パターン形状のシリコン面が露出した部分の表面に生成しているシリコン自然酸化膜を除去した後エッチング処理を行った。
単結晶シリコン(100)ウェハのエッチング処理方法およびエッチング速度の算出方法
 以下の実施例および比較例に示したエッチング液をPTFE(ポリテトラフルオロエチレン)製の容器に入れ、この容器を湯浴中に浸してエッチング液の温度を80℃に加温した。エッチング液の温度が80℃に達した後、単結晶シリコン(100)ウェハをエッチング液の中に10分間浸してエッチング処理を行い、その後、ウェハを取り出して超純水によるリンスおよび乾燥を行った。エッチング処理を行ったウェハは、シリコンのエッチングに伴いパターン部分が周囲よりも窪んだ状態になり、エッチングされた部分とエッチングされていない部分との高低差を測定することによって、10分間でのシリコン(100)面のエッチング深さを求めた。このエッチング深さを10で割った値をシリコン(100)面のエッチング速度(単位はμm/分)として算出した。
加熱老化試験方法およびエッチング速度低下率
 過熱老化試験は、以下の方法に従って実施した。すなわち、エッチング温度80℃でシリコン(100)面のエッチング速度(V1)を測定した後、このエッチング液の温度を85℃に上げ、85℃加温状態を24時間継続し、その後、液温を80℃に戻し、再度80℃におけるシリコン(100)面のエッチング速度(V2)を測定した。この加熱老化処理前後でのエッチング速度の比較を行い、加熱老化処理前後のエッチング速度の差(V1-V2)を加熱老化処理前のエッチング速度(V1)で割って、100をかけた値をエッチング速度低下率として算出した(式1)。
  エッチング速度低下率(%)=[(V1-V2)/(V1)]×100 ・・・(1)
 実施例1~15および比較例1~6で行っている加熱老化処理は、エッチング液の安定性を評価するために行った処理の一例に過ぎない。加熱する温度を高くするほど、また加熱する時間を長くするほどヒドロキシルアミンの分解が進行してエッチング速度の低下が顕著となり、加熱温度を低くするほど、また加熱時間を短くするほどエッチング速度の低下が軽減することも言うまでもない。この試験は、各液組成間でのシリコン(100)面のエッチング速度の低下度合いを相対的に比較することが目的であり、エッチング速度低下率そのものがエッチング液の絶対的な安定性を示すものではない。
pH測定
 pH測定は、堀場製作所製pHメータ(型式:F-12)を用い23℃で測定した。実施例1~15、比較例1~4および比較例6はpH値14以上を示した。
実施例1
 48%水酸化カリウム(KOH)水溶液149.3g(この中には1.28molに相当するKOHが含まれている)、炭酸カリウム(K2CO3)粉末132.5g(これは0.96molのK2CO3に相当する)、20重量%ヒドロキシルアミン(HA)水溶液500.0gおよび水218.2gを混合し、1000gのエッチング液を調製した。このエッチング液中のカリウムイオン濃度は3.2mol/kg、炭酸イオン濃度は0.96mol/kgと計算され、カリウムイオン濃度に対する炭酸イオン濃度のモル比は0.30である。このエッチング液中のHA濃度は10重量%であり、このエッチング液のpHは14以上である。
 このエッチング液を用いて加熱老化試験を行った結果、V1は4.0μm/分、V2は3.4μm/分、エッチング速度低下率は15.0%であった。
実施例2
 48%KOH水溶液168.0g(この中には1.44molに相当するKOHが含まれている)、K2CO3粉末149.0g(これは1.08molのK2CO3に相当する)、20重量%HA水溶液500.0gおよび水183.0gを混合し、1000gのエッチング液を調製した。このエッチング液中のカリウムイオン濃度は3.6mol/kg、炭酸イオン濃度は1.08mol/kgと計算され、カリウムイオン濃度に対する炭酸イオン濃度のモル比は0.30である。このエッチング液中のHA濃度は10重量%であり、このエッチング液のpHは14以上である。
 このエッチング液を用いて加熱老化試験を行った結果、V1は4.1μm/分、V2は3.5μm/分、エッチング速度低下率は14.6%であった。
実施例3
 48%KOH水溶液182.0g(この中には1.56molに相当するKOHが含まれている)、K2CO3粉末161.5g(これは1.17molのK2CO3に相当する)、20重量%HA水溶液500.0gおよび水156.5gを混合し、1000gのエッチング液を調製した。このエッチング液中のカリウムイオン濃度は3.9mol/kg、炭酸イオン濃度は1.17mol/kgと計算され、カリウムイオン濃度に対する炭酸イオン濃度のモル比は0.30である。このエッチング液中のHA濃度は10重量%であり、このエッチング液のpHは14以上である。
 このエッチング液を用いて加熱老化試験を行った結果、V1は4.5μm/分、V2は3.7μm/分、エッチング速度低下率は17.8%であった。
実施例4
 48%KOH水溶液200.7g(この中には1.72molに相当するKOHが含まれている)、K2CO3粉末178.0g(これは1.29molのK2CO3に相当する)、20重量%HA水溶液500.0gおよび水121.3gを混合し、1000gのエッチング液を調製した。このエッチング液中のカリウムイオン濃度は4.3mol/kg、炭酸イオン濃度は1.29mol/kgと計算され、カリウムイオン濃度に対する炭酸イオン濃度のモル比は0.30である。このエッチング液中のHA濃度は10重量%であり、このエッチング液のpHは14以上である。
 このエッチング液を用いて加熱老化試験を行った結果、V1は4.8μm/分、V2は3.9μm/分、エッチング速度低下率は18.8%であった。
比較例1
 48%KOH水溶液373.3g(この中には3.2molに相当するKOHが含まれている)、20重量%HA水溶液500.0gおよび水126.7gを混合し、1000gのエッチング液を調製した。このエッチング液中のカリウムイオン濃度は3.2mol/kgと計算され、炭酸イオンは含まず、よってカリウムイオン濃度に対する炭酸イオン濃度のモル比は0.0である。このエッチング液中のHA濃度は10重量%であり、このエッチング液のpHは14以上である。
 このエッチング液を用いて加熱老化試験を行った結果、V1は3.6μm/分、V2は2.8μm/分、エッチング速度低下率は22.2%であった。
比較例2
 48%KOH水溶液420.0g(この中には3.6molに相当するKOHが含まれている)、20重量%HA水溶液500.0gおよび水80.0gを混合し、1000gのエッチング液を調製した。このエッチング液中のカリウムイオン濃度は3.6mol/kgと計算され、炭酸イオンは含まず、よってカリウムイオン濃度に対する炭酸イオン濃度のモル比は0.0である。このエッチング液中のHA濃度は10重量%であり、このエッチング液のpHは14以上である。
 このエッチング液を用いて加熱老化試験を行った結果、V1は3.9μm/分、V2は3.0μm/分、エッチング速度低下率は23.1%であった。
比較例3
 48%KOH水溶液455.0g(この中には3.9molに相当するKOHが含まれている)、20重量%HA水溶液500.0gおよび水45.0gを混合し、1000gのエッチング液を調製した。このエッチング液中のカリウムイオン濃度は3.9mol/kgと計算され、炭酸イオンは含まず、よってカリウムイオン濃度に対する炭酸イオン濃度のモル比は0.0である。このエッチング液中のHA濃度は10重量%であり、このエッチング液のpHは14以上である。
 このエッチング液を用いて加熱老化試験を行った結果、V1は4.3μm/分、V2は3.1μm/分、エッチング速度低下率は27.9%であった。
比較例4
 48%KOH水溶液501.7g(この中には4.3molに相当するKOHが含まれている)、25重量%HA水溶液400.0gおよび水98.3gを混合し、1000gのエッチング液を調製した。このエッチング液中のカリウムイオン濃度は4.3mol/kgと計算され、炭酸イオンは含まず、よってカリウムイオン濃度に対する炭酸イオン濃度のモル比は0.0である。このエッチング液中のHA濃度は10重量%であり、このエッチング液のpHは14以上である。
 このエッチング液を用いて加熱老化試験を行った結果、V1は4.4μm/分、V2は3.2μm/分、エッチング速度低下率は27.3%であった。
実施例5
 48%KOH水溶液74.7g(この中には0.64molに相当するKOHが含まれている)、K2CO3粉末176.6g(これは1.28molのK2CO3に相当する)、20重量%HA水溶液500.0gおよび水248.7gを混合し、1000gのエッチング液を調製した。このエッチング液中のカリウムイオン濃度は3.2mol/kg、炭酸イオン濃度は1.28mol/kgと計算され、カリウムイオン濃度に対する炭酸イオン濃度のモル比は0.40である。このエッチング液中のHA濃度は10重量%であり、このエッチング液のpHは14以上である。
 このエッチング液を用いて加熱老化試験を行った結果、V1は3.3μm/分、V2は3.2μm/分、エッチング速度低下率は3.0%であった。
実施例6
 48%KOH水溶液84.0g(この中には0.72molに相当するKOHが含まれている)、K2CO3粉末198.7g(これは1.44molのK2CO3に相当する)、20重量%HA水溶液500.0gおよび水217.3gを混合し、1000gのエッチング液を調製した。このエッチング液中のカリウムイオン濃度は3.6mol/kg、炭酸イオン濃度は1.44mol/kgと計算され、カリウムイオン濃度に対する炭酸イオン濃度のモル比は0.40である。このエッチング液中のHA濃度は10重量%であり、このエッチング液のpHは14以上である。
 このエッチング液を用いて加熱老化試験を行った結果、V1は3.5μm/分、V2は3.4μm/分、エッチング速度低下率は2.9%であった。
実施例7
 48%KOH水溶液91.0g(この中には0.78molに相当するKOHが含まれている)、K2CO3粉末215.3g(これは1.56molのK2CO3に相当する)、20重量%HA水溶液500.0gおよび水193.7gを混合し、1000gのエッチング液を調製した。このエッチング液中のカリウムイオン濃度は3.9mol/kg、炭酸イオン濃度は1.56mol/kgと計算され、カリウムイオン濃度に対する炭酸イオン濃度のモル比は0.40である。このエッチング液中のHA濃度は10重量%であり、このエッチング液のpHは14以上である。
 このエッチング液を用いて加熱老化試験を行った結果、V1は3.7μm/分、V2は3.5μm/分、エッチング速度低下率は5.4%であった。
実施例8
 48%KOH水溶液100.3g(この中には0.86molに相当するKOHが含まれている)、K2CO3粉末237.4g(これは1.72molのK2CO3に相当する)、20重量%HA水溶液500.0gおよび水162.3gを混合し、1000gのエッチング液を調製した。このエッチング液中のカリウムイオン濃度は4.3mol/kg、炭酸イオン濃度は1.72mol/kgと計算され、カリウムイオン濃度に対する炭酸イオン濃度のモル比は0.40である。このエッチング液中のHA濃度は10重量%であり、このエッチング液のpHは14以上である。
 このエッチング液を用いて加熱老化試験を行った結果、V1は3.9μm/分、V2は3.7μm/分、エッチング速度低下率は5.1%であった。
実施例9
 48%KOH水溶液294.0g(この中には2.52molに相当するKOHが含まれている)、炭酸水素カリウム(KHCO3)粉末108.0g(これは1.08molのKHCO3に相当する)、20重量%HA水溶液500.0gおよび水98.0gを混合し、1000gのエッチング液を調製した。このエッチング液中のカリウムイオン濃度は3.6mol/kg、炭酸イオン濃度は1.08mol/kgと計算され、カリウムイオン濃度に対する炭酸イオン濃度のモル比は0.30である。このエッチング液中のHA濃度は10重量%であり、このエッチング液のpHは14以上である。
 このエッチング液を用いて加熱老化試験を行った結果、V1は4.1μm/分、V2は3.5μm/分、エッチング速度低下率は14.6%であった。
実施例10
 48%KOH水溶液252.0g(この中には2.16molに相当するKOHが含まれている)、KHCO3粉末144.0g(これは1.44molのKHCO3に相当する)、20重量%HA水溶液500.0gおよび水104.0gを混合し、1000gのエッチング液を調製した。このエッチング液中のカリウムイオン濃度は3.6mol/kg、炭酸イオン濃度は1.44mol/kgと計算され、カリウムイオン濃度に対する炭酸イオン濃度のモル比は0.40である。このエッチング液中のHA濃度は10重量%であり、このエッチング液のpHは14以上である。
 このエッチング液を用いて加熱老化試験を行った結果、V1は3.5μm/分、V2は3.4μm/分、エッチング速度低下率は2.9%であった。
実施例11
 48%KOH水溶液420.0g(この中には3.6molに相当するKOHが含まれている)および20重量%HA水溶液500.0gを混合した。この水溶液に密閉系で26.2L(23℃、1気圧)のCO2ガス(これは1.08molのCO2に相当する)を吸収させた。さらに水32.5gを加えることによって1000gのエッチング液を調製した。このエッチング液中のカリウムイオン濃度は3.6mol/kg、炭酸イオン濃度は1.08mol/kgと計算され、カリウムイオン濃度に対する炭酸イオン濃度のモル比は0.30である。このエッチング液中のHA濃度は10重量%であり、このエッチング液のpHは14以上である。
 このエッチング液を用いて加熱老化試験を行った結果、V1は4.1μm/分、V2は3.5μm/分、エッチング速度低下率は14.6%であった。
実施例12
 48%KOH水溶液420.0g(この中には3.6molに相当するKOHが含まれている)および20重量%HA水溶液500.0gを混合した。この水溶液に密閉系で35.0L(23℃、1気圧)のCO2ガス(これは1.44molのCO2に相当する)を吸収させた。さらに水16.6gを加えることによって1000gのエッチング液を調製した。このエッチング液中のカリウムイオン濃度は3.6mol/kg、炭酸イオン濃度は1.44mol/kgと計算され、カリウムイオン濃度に対する炭酸イオン濃度のモル比は0.40である。このエッチング液中のHA濃度は10重量%であり、このエッチング液のpHは14以上である。
 このエッチング液を用いて加熱老化試験を行った結果、V1は3.5μm/分、V2は3.4μm/分、エッチング速度低下率は2.9%であった。
比較例5
 48%KOH水溶液420.0g(この中には3.6molに相当するKOHが含まれている)および20重量%HA水溶液500.0gを混合した。この水溶液に密閉系で43.7L(23℃、1気圧)のCO2ガス(これは1.80molのCO2に相当する)を吸収させた。さらに水0.8gを加えることによって1000gのエッチング液を調製した。このエッチング液中のカリウムイオン濃度は3.6mol/kg、炭酸イオン濃度は1.8mol/kgと計算され、カリウムイオン濃度に対する炭酸イオン濃度のモル比は0.50である。このエッチング液中のHA濃度は10重量%であり、このエッチング液のpHは11.9である。
 このエッチング液を用いてシリコンのエッチング処理を行ったが、シリコンは溶解せず、エッチングできなかった。
実施例13
 20%水酸化ナトリウム(NaOH)水溶液288.0g(この中には1.44molに相当するNaOHが含まれている)、炭酸ナトリウム(Na2CO3)粉末114.5g(これは1.08molのNa2CO3に相当する)、20重量%HA水溶液500.0gおよび水97.5gを混合し、1000gのエッチング液を調製した。このエッチング液中のナトリウムイオン濃度は3.6mol/kg、炭酸イオン濃度は1.08mol/kgと計算され、ナトリウムイオン濃度に対する炭酸イオン濃度のモル比は0.30である。このエッチング液中のHA濃度は10重量%であり、このエッチング液のpHは14以上である。
 このエッチング液を用いて加熱老化試験を行った結果、V1は3.7μm/分、V2は3.2μm/分、エッチング速度低下率は13.5%であった。
実施例14
 20%NaOH水溶液504.0g(この中には2.52molに相当するNaOHが含まれている)、炭酸水素ナトリウム(NaHCO3)粉末90.7g(これは1.08molのNaHCO3に相当する)、40重量%HA水溶液250.0gおよび水155.3gを混合し、1000gのエッチング液を調製した。このエッチング液中のナトリウムイオン濃度は3.6mol/kg、炭酸イオン濃度は1.08mol/kgと計算され、ナトリウムイオン濃度に対する炭酸イオン濃度のモル比は0.30である。このエッチング液中のHA濃度は10重量%であり、このエッチング液のpHは14以上である。
 このエッチング液を用いて加熱老化試験を行った結果、V1は3.7μm/分、V2は3.2μm/分、エッチング速度低下率は13.5%であった。
実施例15
 20%NaOH水溶液720.0g(この中には3.60molに相当するNaOHが含まれている)および50重量%HA水溶液200.0gを混合した。この水溶液に密閉系で26.2L(23℃、1気圧)のCO2ガス(これは1.08molのCO2に相当する)を吸収させた。さらに水32.5gを加えることによって1000gのエッチング液を調製した。このエッチング液中のナトリウムイオン濃度は3.6mol/kg、炭酸イオン濃度は1.08mol/kgと計算され、ナトリウムイオン濃度に対する炭酸イオン濃度のモル比は0.30である。このエッチング液中のHA濃度は10重量%であり、このエッチング液のpHは14以上である。
 このエッチング液を用いて加熱老化試験を行った結果、V1は3.7μm/分、V2は3.2μm/分、エッチング速度低下率は13.5%であった。
比較例6
 20%NaOH水溶液720.0g(この中には3.60molに相当するNaOHが含まれている)、50重量%HA水溶液200.0gおよび水80.0gを混合して1000gのエッチング液を調製した。このエッチング液中のナトリウムイオン濃度は3.6mol/kgと計算され、HA濃度は10重量%であり、このエッチング液のpHは14以上である。
 このエッチング液を用いて加熱老化試験を行った結果、V1は3.5μm/分、V2は2.7μm/分、エッチング速度低下率は22.9%であった。
 実施例1~15および比較例1~6より、シリコンエッチング液が、アルカリ金属水酸化物とヒドロキシルアミンを含んだ水溶液中に無機炭酸化合物を添加して得られる、該エッチング液が、アルカリ金属水酸化物、ヒドロキシルアミンおよび無機炭酸化合物を含有し、かつpHが12以上であることで、加熱老化試験によるシリコンエッチング速度の低下が抑制されることがわかる。
 また、本発明にかかるシリコンエッチング液は、ヒドロキシルアミンを含有することによりいずれの実施例においても、3.3(μm/分)以上という非常に優れたエッチング速度が得られているが、本発明においては、エッチング速度の低下を多少の犠牲にしてもエッチング速度を重視するか、エッチング速度の低下率の小ささを重視するかは、用途に応じて適宜選択することができる。
 実施例および比較例の結果を表1に示した。
Figure JPOXMLDOC01-appb-T000001
浸漬温度;80℃、浸漬時間;10分
KOH:水酸化カリウム、K2CO3:炭酸カリウム、KHCO3:炭酸水素カリウム
CO2:二酸化炭素、NaOH:水酸化ナトリウム、Na2CO3:炭酸ナトリウム
NaHCO3:炭酸水素ナトリウム
※1,加熱老化処理前のエッチング速度(V1)が検出限界(0.1μm/分)以下のため、エッチング速度低下率を算出することが不能
 本発明のシリコンエッチング液およびシリコンエッチング方法は、ヒドロキシルアミンを含んだシリコンエッチング液の長寿命化およびエッチング処理を行う際の頻繁な加工形状確認などの煩雑な操作を大幅に簡略化できる。この効果をいかし、本発明のシリコンエッチング液およびシリコンエッチング方法は、マイクロマシンに用いられる部品や半導体デバイスの製造に好適に用いることができる。

Claims (9)

  1.  単結晶シリコンを異方性に溶解するシリコンエッチング液であって、(A)アルカリ金属水酸化物、(B)ヒドロキシルアミン、および(C)無機炭酸化合物、を含有したpH12以上のアルカリ性水溶液であることを特徴とするシリコンエッチング液。
  2.  (A)アルカリ金属水酸化物が、水酸化カリウムおよび/または水酸化ナトリウムである請求項1に記載のシリコンエッチング液。
  3.  (C)無機炭酸化合物がアルカリ性水溶液中で解離して炭酸イオン(CO3 2-)を生じる化合物である請求項1に記載のシリコンエッチング液。
  4.  (A)アルカリ金属水酸化物および(C)無機炭酸化合物の解離で水溶液中に生成するアルカリ金属イオンの濃度が、3.0mol/kgから4.5mol/kgであり、(C)無機炭酸化合物の解離で水溶液中に生じる炭酸イオン(CO3 2-)の濃度が、アルカリ金属イオンの濃度に対するモル比として0.28から0.42である請求項1に記載のシリコンエッチング液。
  5.  (C)無機炭酸化合物が、二酸化炭素(CO2)、炭酸カリウム(K2CO3)、炭酸水素カリウム(KHCO3)、炭酸ナトリウム(Na2CO3)、および炭酸水素ナトリウム(NaHCO3)から選ばれる1種以上である請求項1に記載のシリコンエッチング液。
  6.  アルカリ金属イオンが、カリウムイオン(K+)および/またはナトリウムイオン(Na+)である請求項4に記載のシリコンエッチング液。
  7.  pH13以上である請求項1~6のいずれかに記載のシリコンエッチング液。
  8.  エッチング対象物をシリコンエッチング液に接触させる工程を有し、該シリコンエッチング液が、単結晶シリコンを異方性に溶解するものであり、(A)アルカリ金属水酸化物、(B)ヒドロキシルアミン、および(C)無機炭酸化合物を含有したpH12以上のアルカリ性水溶液であるシリコンエッチング方法。
  9.  (A)アルカリ金属水酸化物が水酸化カリウムまたは水酸化ナトリウムであり、(C)無機炭酸化合物が二酸化炭素(CO2)、炭酸カリウム(K2CO3)、炭酸水素カリウム(KHCO3)、炭酸ナトリウム(Na2CO3)、および炭酸水素ナトリウム(NaHCO3)から選ばれる1種以上である請求項8に記載のシリコンエッチング方法。
PCT/JP2009/058164 2008-05-09 2009-04-24 シリコンエッチング液およびエッチング方法 WO2009136558A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
GB1020297.6A GB2472365B (en) 2008-05-09 2009-04-24 Silicon etching liquid and etching method
CN2009801166815A CN102027579B (zh) 2008-05-09 2009-04-24 硅蚀刻液和蚀刻方法
JP2010511045A JP5472102B2 (ja) 2008-05-09 2009-04-24 シリコンエッチング液およびエッチング方法
US12/991,510 US8562855B2 (en) 2008-05-09 2009-04-24 Silicon etching liquid and etching method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008122942 2008-05-09
JP2008-122942 2008-05-09

Publications (1)

Publication Number Publication Date
WO2009136558A1 true WO2009136558A1 (ja) 2009-11-12

Family

ID=41264613

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/058164 WO2009136558A1 (ja) 2008-05-09 2009-04-24 シリコンエッチング液およびエッチング方法

Country Status (7)

Country Link
US (1) US8562855B2 (ja)
JP (1) JP5472102B2 (ja)
KR (1) KR101558634B1 (ja)
CN (1) CN102027579B (ja)
GB (1) GB2472365B (ja)
TW (1) TWI442463B (ja)
WO (1) WO2009136558A1 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010034178A (ja) * 2008-07-28 2010-02-12 Mitsubishi Gas Chemical Co Inc シリコンエッチング液およびエッチング方法
US20110020966A1 (en) * 2009-07-23 2011-01-27 Canon Kabushiki Kaisha Method for processing silicon substrate and method for producing substrate for liquid ejecting head
JPWO2011055825A1 (ja) * 2009-11-09 2013-03-28 三菱瓦斯化学株式会社 シリコン貫通ビアプロセスにおけるシリコン基板裏面エッチング用エッチング液及びこれを用いたシリコン貫通ビアを有する半導体チップの製造方法
TW201144221A (en) * 2010-06-04 2011-12-16 Hong Jing Environment Company A method for the silicon carbide recycling
JP6820736B2 (ja) * 2016-12-27 2021-01-27 東京エレクトロン株式会社 基板処理方法および基板処理装置
US11037792B2 (en) * 2018-10-25 2021-06-15 Taiwan Semiconductor Manufacturing Company Ltd. Semiconductor structure etching solution and method for fabricating a semiconductor structure using the same etching solution
CN111440613B (zh) * 2019-12-09 2022-03-25 杭州格林达电子材料股份有限公司 一种tmah系各向异性硅蚀刻液及其制备方法
KR20220033141A (ko) * 2020-09-09 2022-03-16 동우 화인켐 주식회사 실리콘 식각액 조성물, 이를 이용한 패턴 형성 방법 및 어레이 기판의 제조 방법, 및 이에 따라 제조된 어레이 기판

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006351813A (ja) * 2005-06-15 2006-12-28 Mitsubishi Gas Chem Co Inc シリコン微細加工に用いる異方性エッチング剤組成物及びエッチング方法
JP2007214456A (ja) * 2006-02-10 2007-08-23 Mitsubishi Gas Chem Co Inc シリコン微細加工に用いるシリコン異方性エッチング剤組成物、シリコンエッチング方法及びそのエッチングを施されたシリコン基板を有する電子機器

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7591806B2 (en) * 2004-05-18 2009-09-22 Bai Xu High-aspect-ratio microdevices and methods for transdermal delivery and sampling of active substances
JP2006040925A (ja) * 2004-07-22 2006-02-09 Tokuyama Corp エッチング方法
JP2007208018A (ja) * 2006-02-02 2007-08-16 Seiko Epson Corp 単結晶シリコン用エッチング液及びシリコン蒸着マスクの製造方法
JP2008071799A (ja) * 2006-09-12 2008-03-27 Mitsubishi Gas Chem Co Inc 半導体基板の洗浄方法および洗浄装置
WO2009044647A1 (ja) * 2007-10-04 2009-04-09 Mitsubishi Gas Chemical Company, Inc. シリコンエッチング液およびエッチング方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006351813A (ja) * 2005-06-15 2006-12-28 Mitsubishi Gas Chem Co Inc シリコン微細加工に用いる異方性エッチング剤組成物及びエッチング方法
JP2007214456A (ja) * 2006-02-10 2007-08-23 Mitsubishi Gas Chem Co Inc シリコン微細加工に用いるシリコン異方性エッチング剤組成物、シリコンエッチング方法及びそのエッチングを施されたシリコン基板を有する電子機器

Also Published As

Publication number Publication date
GB2472365A (en) 2011-02-02
JPWO2009136558A1 (ja) 2011-09-08
US8562855B2 (en) 2013-10-22
TW201003766A (en) 2010-01-16
GB2472365B (en) 2012-04-04
JP5472102B2 (ja) 2014-04-16
US20110059619A1 (en) 2011-03-10
KR20110015545A (ko) 2011-02-16
CN102027579B (zh) 2012-09-26
CN102027579A (zh) 2011-04-20
KR101558634B1 (ko) 2015-10-07
GB201020297D0 (en) 2011-01-12
TWI442463B (zh) 2014-06-21

Similar Documents

Publication Publication Date Title
JP5472102B2 (ja) シリコンエッチング液およびエッチング方法
WO2010013562A1 (ja) シリコンエッチング液およびエッチング方法
JP5720573B2 (ja) シリコンエッチング液およびエッチング方法
JP3994992B2 (ja) シリコン微細加工に用いる異方性エッチング剤組成物及びエッチング方法
JP5109261B2 (ja) シリコン微細加工に用いるシリコン異方性エッチング剤組成物
JPWO2009044647A1 (ja) シリコンエッチング液およびエッチング方法
JP2006351813A (ja) シリコン微細加工に用いる異方性エッチング剤組成物及びエッチング方法
JP2012099550A (ja) 窒化ケイ素用エッチング液
TWI444488B (zh) 用於具有鈦及鋁層之金屬層積膜的蝕刻液組成物
JP6142880B2 (ja) シリコンエッチング液およびエッチング方法並びに微小電気機械素子
JP2009123798A (ja) シリコンエッチング液およびエッチング方法
JP2009117504A (ja) シリコンエッチング液およびエッチング方法
JP7305679B2 (ja) シリコンエッチング液
JP2017098502A (ja) エッチング方法
JP2009105306A (ja) シリコンエッチング液およびエッチング方法
JP2006351811A (ja) シリコン微細加工に用いる異方性エッチング剤組成物及びエッチング方法。
Hui Secret of formulating a selective etching or cleaning solution for boron nitride (BN) thin film

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980116681.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09742682

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010511045

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20107025183

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 12991510

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 1020297

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20090424

WWE Wipo information: entry into national phase

Ref document number: 1020297.6

Country of ref document: GB

122 Ep: pct application non-entry in european phase

Ref document number: 09742682

Country of ref document: EP

Kind code of ref document: A1