WO2009128374A1 - カーボンナノファイバー及びその製造方法、カーボンナノファイバーを用いた炭素繊維複合材料の製造方法及び炭素繊維複合材料 - Google Patents

カーボンナノファイバー及びその製造方法、カーボンナノファイバーを用いた炭素繊維複合材料の製造方法及び炭素繊維複合材料 Download PDF

Info

Publication number
WO2009128374A1
WO2009128374A1 PCT/JP2009/057198 JP2009057198W WO2009128374A1 WO 2009128374 A1 WO2009128374 A1 WO 2009128374A1 JP 2009057198 W JP2009057198 W JP 2009057198W WO 2009128374 A1 WO2009128374 A1 WO 2009128374A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon
composite material
carbon nanofibers
fiber composite
nanofiber
Prior art date
Application number
PCT/JP2009/057198
Other languages
English (en)
French (fr)
Inventor
徹 野口
宏之 植木
茂樹 犬飼
健司 竹内
悟史 飯生
Original Assignee
日信工業株式会社
Mefs株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日信工業株式会社, Mefs株式会社 filed Critical 日信工業株式会社
Priority to US12/937,415 priority Critical patent/US8263698B2/en
Priority to EP09733163.1A priority patent/EP2270266B1/en
Priority to CN200980113515XA priority patent/CN102007236B/zh
Publication of WO2009128374A1 publication Critical patent/WO2009128374A1/ja
Priority to US13/566,577 priority patent/US8415420B2/en

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/16Preparation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/168After-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • C08J3/203Solid polymers with solid and/or liquid additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/005Reinforced macromolecular compounds with nanosized materials, e.g. nanoparticles, nanofibres, nanotubes, nanowires, nanorods or nanolayered materials
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F11/00Chemical after-treatment of artificial filaments or the like during manufacture
    • D01F11/10Chemical after-treatment of artificial filaments or the like during manufacture of carbon
    • D01F11/12Chemical after-treatment of artificial filaments or the like during manufacture of carbon with inorganic substances ; Intercalation
    • D01F11/122Oxygen, oxygen-generating compounds
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2321/00Characterised by the use of unspecified rubbers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/298Physical dimension

Definitions

  • the present invention relates to a carbon nanofiber and a method for producing the same, a method for producing a carbon fiber composite material using the carbon nanofiber, and a carbon fiber composite material.
  • carbon nanofibers are fillers that are difficult to disperse in a matrix.
  • the carbon fiber composite material manufacturing method previously proposed by the present inventors, it is possible to improve the dispersibility of carbon nanofibers, which has been considered difficult so far, and to uniformly disperse the carbon nanofibers in the elastomer.
  • an elastomer and carbon nanofibers are kneaded, and dispersibility of carbon nanofibers having high cohesiveness is improved by shearing force.
  • the viscous elastomer penetrates into the carbon nanofiber, and a specific part of the elastomer has high activity of the carbon nanofiber due to chemical interaction.
  • a strong shearing force is applied to a mixture of an elastomer having high molecular mobility (elasticity) and carbon nanofibers
  • the carbon nanofibers are deformed as the elastomer is deformed.
  • the fibers also moved, and the aggregated carbon nanofibers were separated and dispersed in the elastomer by the restoring force of the elastomer due to elasticity after shearing.
  • expensive carbon nanofibers can be used efficiently as fillers for composite materials.
  • Carbon nanofibers which are produced by a vapor growth method in which a gas such as a hydrocarbon is vapor-phase pyrolyzed in the presence of a metal catalyst, are industrially mass-produced.
  • a gas such as a hydrocarbon
  • a metal catalyst vapor-phase pyrolyzed in the presence of a metal catalyst
  • carbon nanofibers that have been mass-produced for example, those that are manufactured by a vapor phase growth method in a heating furnace at about 1000 ° C., and further heat-treated at a high temperature to perform graphitization. (See, for example, JP-A-2006-198393).
  • the surface of the carbon nanofiber graphitized in this way has few physical defects and preferable physical properties, but tends to have poor wettability with a matrix material such as an elastomer.
  • An object of the present invention is to provide a carbon nanofiber and a method for producing the same, a method for producing a carbon fiber composite material using the carbon nanofiber, and a carbon fiber composite material.
  • the carbon nanofiber according to the present invention is The surface oxygen concentration obtained by oxidizing the first carbon nanofiber produced by the vapor phase growth method, measured by X-ray photoelectron spectroscopy (XPS), is 2.6 atm% to 4.6 atm%. .
  • XPS X-ray photoelectron spectroscopy
  • the surface is appropriately oxidized, so that the surface reactivity between the carbon nanofiber and the matrix material in another material, for example, a composite material is improved, and the carbon nanofiber and the matrix material are improved.
  • wettability can be improved.
  • the ratio of the peak intensity D of around 1300 cm -1 to the peak intensity G of around 1600 cm -1 measured by Raman scattering spectroscopy (D / G), that is 0.12 to 0.22.
  • the nitrogen adsorption specific surface area may be 34 m 2 / g to 58 m 2 / g.
  • the average diameter can be 4 nm to 230 nm.
  • the method for producing carbon nanofibers according to the present invention includes: A step of oxidizing the first carbon nanofibers produced by the vapor deposition method to obtain second carbon nanofibers;
  • the amount of increase in the oxygen concentration on the surface of the second carbon nanofiber relative to the oxygen concentration on the surface of the first carbon nanofiber measured by X-ray photoelectron spectroscopy (XPS) is 0.5 atm% to 2.6 atm. %.
  • the surface reactivity between the carbon nanofibers and other materials such as the matrix material in the composite material is improved by appropriately oxidizing the surface of the carbon nanofibers.
  • the wettability between the carbon nanofiber and the matrix material can be improved.
  • the method for producing carbon nanofibers according to the present invention includes: A step of oxidizing the first carbon nanofibers produced by the vapor deposition method to obtain second carbon nanofibers;
  • the increase rate of the oxygen concentration on the surface of the second carbon nanofibers with respect to the oxygen concentration on the surface of the first carbon nanofibers measured by X-ray photoelectron spectroscopy (XPS) is 20% to 120%.
  • the surface reactivity between the carbon nanofibers and other materials such as the matrix material in the composite material is improved by appropriately oxidizing the surface of the carbon nanofibers.
  • the wettability between the carbon nanofiber and the matrix material can be improved.
  • the first carbon nanofibers can be heat-treated at 600 ° C. to 800 ° C. in an atmosphere containing oxygen.
  • the second carbon nanofibers can be obtained by reducing the mass of the first carbon nanofibers by 2% to 20%.
  • the second carbon nanofiber obtained in the step may have a surface oxygen concentration of 2.6 atm% to 4.6 atm% as measured by X-ray photoelectron spectroscopy (XPS).
  • XPS X-ray photoelectron spectroscopy
  • the ratio of the peak intensity D of around 1300 cm -1 to the peak intensity G of around 1600 cm -1 measured by Raman scattering spectroscopy (D / G) is 0. It can be 12 to 0.22.
  • the second carbon nanofiber obtained in the step may have a nitrogen adsorption specific surface area of 34 m 2 / g to 58 m 2 / g.
  • the second carbon nanofiber obtained in the step may have an average diameter of 4 nm to 230 nm.
  • the method for producing a carbon fiber composite material according to the present invention includes: A first step of obtaining a second carbon nanofiber having a surface oxidized by oxidizing the first carbon nanofiber produced by a vapor deposition method; A second step of mixing the second carbon nanofibers with an elastomer and uniformly dispersing the second carbon nanofibers in the elastomer with a shearing force to obtain a carbon fiber composite material; Including The surface oxygen concentration of the second carbon nanofiber obtained in the first step measured by X-ray photoelectron spectroscopy (XPS) is 2.6 atm% to 4.6 atm%.
  • XPS X-ray photoelectron spectroscopy
  • the surface of the second carbon nanofiber is appropriately oxidized, thereby improving the surface reactivity with the matrix elastomer, The wettability with the elastomer is improved.
  • a carbon fiber composite material having improved rigidity and flexibility can be manufactured.
  • the carbon fiber composite material thus produced has improved rigidity at high temperatures.
  • the amount of increase in the oxygen concentration on the surface of the second carbon nanofiber relative to the oxygen concentration on the surface of the first carbon nanofiber measured by X-ray photoelectron spectroscopy (XPS) is 0.
  • Oxidation treatment can be performed so that the concentration becomes 5 atm% to 2.6 atm%.
  • the increase rate of the oxygen concentration on the surface of the second carbon nanofiber relative to the oxygen concentration on the surface of the first carbon nanofiber measured by X-ray photoelectron spectroscopy (XPS) is 20 Oxidation treatment can be performed so that the concentration becomes from 120% to 120%.
  • the first carbon nanofibers can be heat-treated at 600 ° C. to 800 ° C. in an atmosphere containing oxygen.
  • the second carbon nanofibers can be obtained by reducing the mass of the first carbon nanofibers by 2% to 20%.
  • 1300 cm ratio of the peak intensity D of around -1 is from 0.12 to 0.22 to the peak intensity G of around 1600 cm -1 measured by Raman scattering spectroscopy Can be.
  • the second carbon nanofiber may have a nitrogen adsorption specific surface area of 34 m 2 / g to 58 m 2 / g.
  • the first carbon nanofiber may have an average diameter of 4 nm to 250 nm.
  • the carbon fiber composite material according to the present invention is manufactured by the carbon fiber composite material manufacturing method.
  • the carbon fiber composite material according to the present invention is
  • the elastomer includes carbon nanofibers having a surface oxygen concentration of 2.6 atm% to 4.6 atm% as measured by X-ray photoelectron spectroscopy (XPS).
  • the surface of the carbon nanofiber is appropriately oxidized, thereby improving the surface reactivity with the matrix elastomer, and the wettability between the carbon nanofiber and the elastomer is improved. It has been improved.
  • the carbon fiber composite material including the carbon nanofiber improved in wettability with the elastomer has improved rigidity and flexibility.
  • the carbon fiber composite material according to the present invention has improved rigidity at high temperatures.
  • the carbon nanofibers may be the ratio of the peak intensity D of around 1300 cm -1 to the peak intensity G of around 1600 cm -1 measured by Raman scattering spectroscopy (D / G) is from 0.12 to 0.22 it can.
  • the second carbon nanofiber may have a nitrogen adsorption specific surface area of 34 m 2 / g to 58 m 2 / g.
  • FIG. 1A is a diagram schematically illustrating a method for producing a carbon fiber composite material by an open roll method.
  • FIG. 1B is a diagram schematically illustrating a method for producing a carbon fiber composite material by an open roll method.
  • FIG. 1C is a diagram schematically illustrating a method for producing a carbon fiber composite material by an open roll method. It is the graph which showed the mass change of the 2nd carbon nanofiber with respect to temperature by TG (thermal mass spectrometry) method.
  • 6 is an electron micrograph of first carbon nanofibers (CNT-N) used in Comparative Examples 2 to 5.
  • 4 is an electron micrograph of second carbon nanofibers (CNT-B) used in Examples 1 to 4.
  • 4 is an electron micrograph of second carbon nanofibers (CNT-C) used in Examples 5 to 8.
  • 4 is an electron micrograph of second carbon nanofibers (CNT-D) used in Examples 9-12.
  • 6 is a graph of filler filling amount of Examples 1 to 12 and Comparative Examples 1 to 9 ⁇ M100.
  • 4 is a graph of M100-breaking elongation of Examples 1 to 12 and Comparative Examples 1 to 9.
  • the first carbon nanofiber according to one embodiment of the present invention is obtained by oxidizing the carbon nanofiber produced by the vapor deposition method, and measuring the surface oxygen measured by X-ray photoelectron spectroscopy (XPS).
  • the concentration is 2.6 atm% to 4.6 atm%.
  • the manufacturing method of the carbon nanofiber concerning one Embodiment of this invention has the process of oxidizing the 1st carbon nanofiber manufactured by the vapor phase growth method, and obtaining a 2nd carbon nanofiber, X-ray
  • the amount of increase in the oxygen concentration on the surface of the second carbon nanofibers relative to the oxygen concentration on the surface of the first carbon nanofibers measured by photoelectron spectroscopy (XPS) is 0.5 atm% to 2.6 atm%. is there.
  • the manufacturing method of the carbon nanofiber concerning one Embodiment of this invention has the process of oxidizing the 1st carbon nanofiber manufactured by the vapor phase growth method, and obtaining a 2nd carbon nanofiber, X-ray
  • the increase rate of the oxygen concentration on the surface of the second carbon nanofiber with respect to the oxygen concentration on the surface of the first carbon nanofiber measured by photoelectron spectroscopy (XPS) is 20% to 120%.
  • the method for producing a carbon fiber composite material includes a first carbon nanofiber produced by a vapor deposition method, which is oxidized to obtain a second carbon nanofiber having an oxidized surface. And a second step of mixing the second carbon nanofibers with the elastomer and uniformly dispersing the second carbon nanofibers in the elastomer with a shearing force to obtain a carbon fiber composite material.
  • the second carbon nanofiber obtained in the step is characterized in that the surface oxygen concentration measured by X-ray photoelectron spectroscopy (XPS) is 2.6 atm% to 4.6 atm%.
  • a carbon fiber composite material according to an embodiment of the present invention is manufactured by the method for manufacturing a carbon fiber composite material.
  • the carbon fiber composite material according to one embodiment of the present invention includes carbon nanofibers having an oxygen concentration of 2.6 to 4.6 atm% on a surface as measured by X-ray photoelectron spectroscopy (XPS) in an elastomer. It is characterized by.
  • XPS X-ray photoelectron spectroscopy
  • the first carbon nanofiber manufacturing method is manufactured by a vapor phase growth method.
  • the vapor phase growth method is a method for producing first carbon nanofibers by gas phase pyrolysis of a gas such as hydrocarbon in the presence of a metal catalyst.
  • the vapor phase growth method will be described in more detail.
  • an organic compound such as benzene or toluene is used as a raw material
  • an organic transition metal compound such as ferrocene or nickelcene is used as a metal catalyst, and these are used together with a carrier gas at a high temperature such as 400 ° C.
  • the first carbon nanofibers having an average diameter of 70 nm or less can be obtained by bringing metal-containing particles previously supported on a refractory support such as alumina or carbon into contact with a carbon-containing compound at a high temperature.
  • the average diameter of the first carbon nanofibers produced by the vapor deposition method is preferably 4 nm to 250 nm.
  • the first carbon nanofiber is an untreated carbon nanofiber in the sense that the surface is not oxidized, and the dispersibility is preferably improved by oxidizing the surface.
  • the first carbon nanofibers manufactured by the vapor phase growth method can be heat-treated at 2000 ° C. to 3200 ° C. in an inert gas atmosphere before being oxidized.
  • the heat treatment temperature is more preferably 2500 ° C. to 3200 ° C., particularly preferably 2800 ° C. to 3200 ° C. It is preferable that the heat treatment temperature is 2000 ° C. or higher because impurities such as amorphous deposits and remaining catalytic metal deposited on the surface of the first carbon nanofiber during vapor phase growth are removed. Further, when the heat treatment temperature of the first carbon nanofiber is 2500 ° C.
  • the skeleton of the first carbon nanofiber is graphitized (crystallized), the defects of the first carbon nanofiber are reduced, and the strength is increased. It is preferable because it improves. In addition, it is preferable if the heat treatment temperature of the first carbon nanofiber is 3200 ° C. or less because the graphite skeleton is not easily broken by the sublimation of graphite.
  • the first carbon nanofiber graphitized in this way is an untreated carbon nanofiber because it has not been oxidized, and has excellent strength, thermal conductivity, electrical conductivity, and the like due to graphitization. .
  • Examples of the first carbon nanofibers include so-called carbon nanotubes.
  • the carbon nanotube has a structure in which one surface of graphite having a carbon hexagonal mesh surface is wound in one layer or multiple layers.
  • a carbon material partially having a carbon nanotube structure can also be used.
  • carbon nanotube it may be called “graphite fibril nanotube” or “vapor-grown carbon fiber”.
  • the second carbon nanofibers can be obtained by oxidizing the surface of the first carbon nanofibers manufactured by the vapor phase growth method. The oxidation treatment will be described later in the column of the method for producing the carbon fiber composite material.
  • the second carbon nanofiber has an oxygen concentration of 2.6 atm% to 4.6 atm%, preferably 3.0 atm% to 4.0 atm%, as measured by X-ray photoelectron spectroscopy (XPS) on the surface thereof. More preferably, it is 3.1 atm% to 3.7 atm%.
  • XPS X-ray photoelectron spectroscopy
  • the second carbon nanofiber may have a mass obtained by reducing the mass of the first carbon nanofiber by 2% to 20%.
  • the second carbon nanofibers, the ratio (D / G) preferably 0.12 to 0.22 peak intensity D of around 1300 cm -1 to the peak intensity G of around 1600 cm -1 measured by Raman scattering spectroscopy is there.
  • the second carbon nanofibers preferably have a nitrogen adsorption specific surface area of 34 m 2 / g to 58 m 2 / g.
  • the second carbon nanofibers preferably have an average diameter of 4 nm to 230 nm, preferably 20 nm to 200 nm, and particularly preferably 60 nm to 150 nm.
  • the second carbon nanofiber is preferably dispersible with respect to the matrix resin when the diameter is 4 nm or more, and conversely when the diameter is 230 nm or less, the flatness of the surface of the matrix resin is not easily impaired.
  • the average diameter of the second carbon nanofiber is 60 nm or more, the dispersibility and the flatness of the surface are excellent.
  • the average diameter is 150 nm or less, the number of carbon nanofibers increases even with a small addition amount.
  • the performance of the first carbon nanofiber can be saved.
  • the aspect ratio of the second carbon nanofiber is preferably 50 to 200.
  • the surface reactivity between the carbon nanofiber and another material, for example, the matrix material in the composite material is improved.
  • the wettability of can be improved.
  • the rigidity and flexibility of the composite material can be improved.
  • wettability between the second carbon nanofiber and the matrix material can be improved by appropriately oxidizing the surface with relatively low reactivity.
  • the dispersibility can be improved, and for example, the same physical properties can be obtained even by adding a smaller amount of the second carbon nanofiber than in the prior art.
  • the elastomer has a molecular weight of preferably 5,000 to 5,000,000, more preferably 20,000 to 3,000,000. When the molecular weight of the elastomer is within this range, the elastomer molecules are entangled with each other and are connected to each other. Therefore, the elastomer has good elasticity for dispersing the second carbon nanofibers. Since the elastomer has viscosity, it is preferable because the aggregated second carbon nanofibers can easily enter each other, and the second carbon nanofibers can be separated from each other by having elasticity.
  • the network component in uncrosslinked form has a spin - spin relaxation time (T2n / 30 °C) is preferably 100 ⁇ 3,000 Second, more preferably 200 to 1000 ⁇ sec.
  • T2n / 30 ° C. spin-spin relaxation time
  • the elastomer can be flexible and have sufficiently high molecular mobility, that is, suitable for dispersing the second carbon nanofibers. It will have elasticity.
  • the elastomer has viscosity, when the elastomer and the second carbon nanofiber are mixed, the elastomer can easily enter the gap between the second carbon nanofibers due to high molecular motion. it can.
  • the elastomer has a network component spin-spin relaxation time (T2n) of 100 to 2000 ⁇ sec, measured at 30 ° C. by the Hahn-echo method using pulsed NMR and at 1 H of the observation nucleus. Is preferred.
  • T2n spin-spin relaxation time
  • the spin-spin relaxation time obtained by the Hahn-echo method using pulsed NMR is a measure representing the molecular mobility of a substance. Specifically, when the spin-spin relaxation time of the elastomer is measured by the Hahn-echo method using pulsed NMR, a first component having a first spin-spin relaxation time (T2n) having a short relaxation time, and the relaxation A second component having a longer spin-spin relaxation time (T2nn) is detected.
  • the first component corresponds to a polymer network component (skeleton molecule), and the second component corresponds to a polymer non-network component (branch and leaf component such as a terminal chain).
  • a solid echo method As a measurement method in the pulse method NMR, a solid echo method, a CPMG method (Car Purcell, Mayboom, Gill method) or a 90 ° pulse method can be applied instead of the Hahn echo method.
  • the elastomer according to the present invention has a medium spin-spin relaxation time (T2), the Hahn-echo method is most suitable.
  • the solid echo method and the 90 ° pulse method are suitable for short T2 measurement
  • the Hahn echo method is suitable for medium T2 measurement
  • the CPMG method is suitable for long T2 measurement.
  • the elastomer has at least one of the main chain, the side chain, and the end chain an unsaturated bond or group having an affinity for the radical at the end of the second carbon nanofiber, or such radical or group. It has the property which is easy to produce
  • unsaturated bonds or groups include double bonds, triple bonds, carbonyl groups, carboxyl groups, hydroxyl groups, amino groups, nitrile groups, ketone groups, amide groups, epoxy groups, ester groups, vinyl groups, halogen groups, It can be at least one selected from functional groups such as urethane groups, burette groups, allophanate groups and urea groups.
  • At least one of the main chain, side chain and terminal chain of the elastomer has an unsaturated bond or group having high affinity (reactivity or polarity) with the radical of the second carbon nanofiber,
  • the elastomer and the second carbon nanofiber can be bonded.
  • the free radicals generated by breaking the molecular chain of the elastomer attack the defects of the second carbon nanofiber, and the second carbon nanofiber is attacked. It can be assumed that radicals are generated on the surface of the fiber.
  • Elastomers include natural rubber (NR), epoxidized natural rubber (ENR), styrene-butadiene rubber (SBR), nitrile rubber (NBR), chloroprene rubber (CR), ethylene propylene rubber (EPR, EPDM), and butyl rubber (IIR).
  • NR natural rubber
  • Elastomers include natural rubber (NR), epoxidized natural rubber (ENR), styrene-butadiene rubber (SBR), nitrile rubber (NBR), chloroprene rubber (CR), ethylene propylene rubber (EPR, EPDM), and butyl rubber (IIR).
  • Chlorobutyl rubber CIIR
  • acrylic rubber ACM
  • silicone rubber Q
  • fluorine rubber FKM
  • butadiene rubber BR
  • epoxidized butadiene rubber EBR
  • epichlorohydrin rubber CO, CEO
  • urethane rubber U
  • elastomers such as polysulfide rubber (T); olefin (TPO), polyvinyl chloride (TPVC), polyester (TPEE), polyurethane (TPU), polyamide (TPEA), styrene (SBS) ), Etc. Chromatography; and it can be a mixture thereof.
  • highly polar elastomers that easily generate free radicals during elastomer kneading, such as natural rubber (NR) and nitrile rubber (NBR).
  • NR natural rubber
  • NBR nitrile rubber
  • free radicals are generated by setting the kneading temperature to a relatively high temperature (for example, 50 ° C. to 150 ° C. in the case of EPDM).
  • a relatively high temperature for example, 50 ° C. to 150 ° C. in the case of EPDM.
  • the elastomer of the present embodiment may be a rubber elastomer or a thermoplastic elastomer.
  • the elastomer may be either a crosslinked body or an uncrosslinked body, but it is preferable to use an uncrosslinked body.
  • the first step in the method for producing a carbon fiber composite material will be described.
  • the first carbon nanofibers produced by the vapor phase growth method are oxidized to obtain second carbon nanofibers whose surfaces are oxidized.
  • the amount of increase in the oxygen concentration on the surface of the second carbon nanofiber relative to the oxygen concentration on the surface of the first carbon nanofiber measured by X-ray photoelectron spectroscopy (XPS) is 0.5 atm%. Oxidation treatment can be performed so as to be ⁇ 2.6 atm%.
  • the amount of increase in the surface oxygen concentration of the second carbon nanofiber relative to the surface oxygen concentration of the first carbon nanofiber is more preferably 0.9 atm% to 1.9 atm%, and further 1.0 atm%.
  • the rate of increase in the oxygen concentration on the surface of the second carbon nanofiber relative to the oxygen concentration on the surface of the first carbon nanofiber measured by X-ray photoelectron spectroscopy (XPS) is 20%.
  • the oxidation treatment can be performed so as to be ⁇ 120%.
  • the increase rate of the surface oxygen concentration of the second carbon nanofibers relative to the surface oxygen concentration of the first carbon nanofibers is more preferably 43% to 90%, and further preferably 48% to 76%. Is preferred.
  • the surface oxygen concentration of the second carbon nanofiber obtained in the first step measured by X-ray photoelectron spectroscopy (XPS) is 2.6 atm% to 4.6 atm%, preferably 3.0 atm%.
  • the second carbon nanofibers are desirably oxidized to such an extent that the oxygen concentration on the surface thereof is increased by 0.2 atm% or more from the oxygen concentration on the surface of the first carbon nanofibers.
  • the surface of the second carbon nanofiber is appropriately oxidized, thereby improving the surface reactivity between the second carbon nanofiber and the elastomer, and improving the dispersion of the carbon nanofiber in the elastomer. can do.
  • the first carbon nanofibers can be heat-treated at 600 ° C. to 800 ° C. in an atmosphere containing oxygen.
  • the first carbon nanofibers are placed in a furnace in an air atmosphere, set to a predetermined temperature in the temperature range of 600 ° C. to 800 ° C., and heat-treated, so that the surface of the second carbon nanofibers has a desired oxygen content.
  • the heat treatment time in the first step is a time for holding the first carbon nanofibers in a heat treatment furnace at a predetermined temperature, and can be, for example, 10 minutes to 180 minutes.
  • the atmosphere containing oxygen may be the air, an oxygen atmosphere, or an atmosphere in which an oxygen concentration is appropriately set. A sufficient oxygen concentration may be present in the atmosphere so that the surface of the second carbon nanofiber is oxidized to a desired oxygen concentration in the first step.
  • the temperature of the heat treatment can be appropriately set in order to obtain a desired oxidation treatment in the range of 600 ° C. to 800 ° C.
  • the heat treatment temperature and heat treatment time can be appropriately adjusted depending on the oxygen concentration in the furnace used in the first step, the inner volume of the furnace, the amount of the first carbon nanofibers to be treated, and the like.
  • the mass of the second carbon nanofibers oxidized in the first step is preferably reduced by 2% to 20%, for example, from the mass of the first carbon nanofibers. It can be estimated that the second carbon nanofibers are appropriately oxidized.
  • the mass of the second carbon nanofiber is less than 2% less than the mass of the first carbon nanofiber, the oxygen concentration on the surface of the second carbon nanofiber is low, and it is difficult to improve the wettability. There is.
  • the second carbon nanofibers whose weight is reduced by more than 20% from the mass of the first carbon nanofibers, although the wettability is almost the same as the second carbon nanofibers whose weight loss is 20% or less.
  • the loss due to the reduction of the carbon nanofibers due to the oxidation treatment is large, and it tends to be economically disadvantageous with respect to the energy consumption of the heat treatment.
  • the oxygen concentration on the surface of the second carbon nanofiber can be analyzed by XPS (X-ray photoelectron spectroscopy). The analysis of the oxygen concentration by XPS is performed by, for example, argon gas for 0.5 minute to 1.0 minute with respect to the second carbon nanofiber before measurement in order to remove impurities attached to the surface of the second carbon nanofiber.
  • the argon gas concentration in this argon gas etching is preferably 5 ⁇ 10 ⁇ 2 Pa to 20 ⁇ 10 ⁇ 2 Pa.
  • a carbon tape which is a conductive adhesive is applied on a metal base of an XPS apparatus, and a second carbon nanofiber is sprinkled on the carbon tape to adhere to the carbon tape. It is preferable to carry out in a state in which excess second carbon nanofibers that have not adhered to the carbon tape are shaken off.
  • the second carbon nanofibers obtained by the first step the ratio of the peak intensity D of around 1300 cm -1 to the peak intensity G of around 1600 cm -1 measured by Raman scattering spectroscopy (D / G) is preferably Is from 0.12 to 0.22.
  • the Raman peak ratio (D / G) of the second carbon nanofiber is larger than the Raman peak ratio (D / G) of the first carbon nanofiber because there are many defects in the crystal on the surface.
  • the second carbon nanofiber is desirably oxidized to such an extent that its Raman peak ratio (D / G) increases by 0.02 or more than the Raman peak ratio (D / G) of the first carbon nanofiber.
  • the second carbon nanofiber preferably has a nitrogen adsorption specific surface area of 34 m 2 / g to 58 m 2 / g.
  • the nitrogen adsorption specific surface area of the second carbon nanofiber is larger than the nitrogen adsorption specific surface area of the first carbon nanofiber because the surface thereof is rough. It is desirable that the second carbon nanofibers are oxidized to such an extent that the nitrogen adsorption specific surface area is increased by 9 m 2 / g or more than the nitrogen adsorption specific surface area of the first carbon nanofibers.
  • the average diameter of the first carbon nanofibers used in the first step is preferably 4 nm to 250 nm, and the average diameter of the second carbon nanofibers obtained in the first step is 4 nm to 230 nm. Can do. By using such second carbon nanofibers, surface reactivity with the elastomer is improved, and wettability with respect to the elastomer can be improved.
  • the blending amount of the second carbon nanofibers into the elastomer can be set according to the use, but the second carbon nanofibers have improved wettability with the elastomer, and therefore, for example, carbon fibers having the same rigidity.
  • a compounding quantity can be reduced rather than before.
  • a crosslinked elastomer or a non-crosslinked elastomer can be used as an elastomer material as it is, or can be used as a raw material for a composite material of metal or resin.
  • the carbon fiber composite material used as a raw material for such a metal or resin composite material can be used as a so-called master batch as a carbon nanofiber supply source when the carbon nanofiber is mixed with the metal or resin.
  • the second carbon nanofibers obtained in the first step are mixed with an elastomer and uniformly dispersed in the elastomer with a shearing force to obtain a carbon fiber composite material.
  • the second step will be described in detail with reference to FIGS. 1A to 1C.
  • FIGS. 1A to 1C are diagrams schematically showing a method for producing a carbon fiber composite material by an open roll method.
  • the elastomer used as a raw material has a first spin-spin relaxation time (T2n) of the network component in an uncrosslinked body, measured at 150 ° C. by the Hahn echo method using pulsed NMR, and the observation nucleus is 1 H. It is preferable that it is 3000 microseconds.
  • T2n spin-spin relaxation time
  • the first roll 10 and the second roll 20 in the two-roll open roll 2 are arranged at a predetermined interval d, for example, 0.5 mm to 1.5 mm, In FIGS.
  • the motor rotates in the direction indicated by the arrow at forward rotation speeds V1 and V2 by forward rotation or reverse rotation.
  • the elastomer 30 wound around the first roll 10 is masticated, and the elastomer molecular chain is appropriately cut to generate free radicals. Since the surface of the second carbon nanofiber is moderately activated by the oxidation treatment, it becomes easy to generate radicals and functional groups, and the free radical of the elastomer generated by mastication is combined with the second carbon nanofiber. It becomes easy to connect.
  • the second carbon nanofibers 40 are put into the bank 34 of the elastomer 30 wound around the first roll 10 and kneaded.
  • the step of mixing the elastomer 30 and the second carbon nanofiber 40 is not limited to the open roll method, and for example, a closed kneading method or a multi-screw extrusion kneading method can also be used.
  • the roll interval d between the first roll 10 and the second roll 20 is preferably set to 0.5 mm or less, more preferably 0 to 0.5 mm. Is inserted into the open roll 2 and thinning is performed once to several times. The number of thinning is preferably about 1 to 10 times. Assuming that the surface speed of the first roll 10 is V1 and the surface speed of the second roll 20 is V2, the ratio of the surface speeds (V1 / V2) in thinness is 1.05 to 3.00. It is preferably 1.05 to 1.2. By using such a surface velocity ratio, a desired shear force can be obtained.
  • the carbon fiber composite material 50 obtained through thinning is rolled with a roll and dispensed into a sheet shape.
  • the roll temperature is preferably set to a relatively low temperature of 0 to 50 ° C., more preferably 5 to 30 ° C. Is preferably adjusted to 0 to 50 ° C. Due to the shearing force thus obtained, a high shearing force acts on the elastomer 30, and the aggregated second carbon nanofibers 40 are separated from each other so as to be pulled out one by one to the elastomer molecule. Distributed in.
  • the elastomer 30 has elasticity, viscosity, and chemical interaction with the second carbon nanofibers 40, the second carbon nanofibers 40 can be easily dispersed. And the carbon fiber composite material 50 excellent in the dispersibility of the 2nd carbon nanofiber 40 and dispersion stability (it is hard to re-aggregate the 2nd carbon nanofiber) can be obtained.
  • the viscous elastomer penetrates into the second carbon nanofiber, and a specific portion of the elastomer is chemically interlinked. It binds to the highly active part of the second carbon nanofiber by action. Since the surface of the second carbon nanofiber is moderately high by oxidation treatment, it is easy to bind to the elastomer molecule.
  • the second carbon nanofibers also move with the movement of the elastomer molecules, and further, the aggregated second carbon nanofibers are recovered by the restoring force of the elastomer due to elasticity after shearing.
  • the fibers will be separated and dispersed in the elastomer.
  • the carbon fiber composite material when the carbon fiber composite material is extruded from between narrow rolls, the carbon fiber composite material is deformed thicker than the roll interval due to the restoring force due to the elasticity of the elastomer. It can be inferred that the deformation causes the carbon fiber composite material with a strong shear force to flow more complicatedly and disperse the second carbon nanofibers in the elastomer.
  • the second carbon nanofibers once dispersed are prevented from reaggregating due to chemical interaction with the elastomer, and can have good dispersion stability.
  • the step of dispersing the second carbon nanofibers in the elastomer by a shearing force is not limited to the open roll method, and a closed kneading method or a multiaxial extrusion kneading method can also be used. In short, in this step, it is sufficient that a shearing force capable of separating the aggregated second carbon nanofibers can be given to the elastomer.
  • the open roll method is preferable because it can measure and manage not only the roll temperature but also the actual temperature of the mixture.
  • the method for producing a carbon fiber composite material may be a cross-linked carbon fiber composite material obtained by mixing a cross-linking agent with the carbon fiber composite material dispensed after passing through and cross-linking. Further, the carbon fiber composite material may be molded without being crosslinked.
  • the carbon fiber composite material may be in the form of a sheet obtained by the open roll method, or a rubber molding process generally employed by the carbon fiber composite material obtained in the second step, for example, injection molding method, transfer molding.
  • a desired shape such as a sheet may be formed by a method, a press molding method, an extrusion molding method, a calendar processing method, or the like.
  • a compounding agent usually used for processing an elastomer can be added.
  • a well-known thing can be used as a compounding agent.
  • the compounding agent include a crosslinking agent, a vulcanizing agent, a vulcanization accelerator, a vulcanization retarder, a softening agent, a plasticizer, a curing agent, a reinforcing agent, a filler, an antiaging agent, and a coloring agent. It can.
  • These compounding agents can be added to the elastomer before the introduction of the second carbon nanofibers in an open roll, for example.
  • the second carbon nanofiber is directly mixed with the elastomer having the rubber elasticity, but the present invention is not limited to this, and the following method is adopted.
  • the raw material elastomer has a network component first spin-spin relaxation time (T2n) of 100 to 100 in an uncrosslinked body, measured at 30 ° C. by a Hahn echo method using pulsed NMR and at 1 H of the observation nucleus. It is a rubber-like elastic body of 3000 ⁇ sec. This raw material elastomer is masticated to lower the molecular weight of the elastomer, and a liquid elastomer having a first spin-spin relaxation time (T2n) exceeding 3000 ⁇ sec is obtained.
  • T2n network component first spin-spin relaxation time
  • the first spin-spin relaxation time (T2n) of the liquid elastomer after mastication is 5 to 30 times the first spin-spin relaxation time (T2n) of the raw material elastomer before mastication. Preferably there is.
  • This mastication is not suitable for kneading, unlike the general mastication performed while the elastomer remains in a solid state, by applying a strong shearing force by, for example, the open roll method to cut the molecular weight of the elastomer and significantly reduce the molecular weight. The process is performed until the fluid reaches a certain level, for example, until it reaches a liquid state.
  • this mastication is performed at a roll temperature of 20 ° C. (minimum mastication time 60 minutes) to 150 ° C. (minimum mastication time 10 minutes), and the roll interval d is, for example, 0.5 mm to 1
  • the second carbon nanofibers are put into a liquid elastomer that is masticated at 0.0 mm.
  • the elastomer is in a liquid state and its elasticity is remarkably reduced, the aggregated second carbon nanofibers are not very dispersed even when kneaded in a state where the elastomer free radicals and the second carbon nanofibers are combined.
  • the second carbon nanofibers are uniformly dispersed in the elastomer by performing the thinning of the open roll method described in the above.
  • the mixture having an increased molecular weight of the elastomer has a first spin-spin relaxation time (T2n) of 3000 ⁇ sec or less as measured by a Hahn-echo method using pulsed NMR at 30 ° C. and an observation nucleus of 1 H. It is a rubber-like elastic body.
  • the first spin-spin relaxation time (T2n) of the rubber-like elastic mixture in which the molecular weight of the elastomer is increased is equal to 0. of the first spin-spin relaxation time (T2n) of the raw material elastomer before mastication. It is preferably 5 to 10 times.
  • the elasticity of the rubber-like elastic mixture can be expressed by the molecular form of the elastomer (observable by molecular weight) and the molecular mobility (observable by T2n).
  • the step of increasing the molecular weight of the elastomer is preferably carried out for 10 hours to 100 hours by placing the mixture in a heating furnace set to a heat treatment, for example, 40 ° C. to 100 ° C.
  • the molecular chain is extended by the bonding of elastomer free radicals present in the mixture and the molecular weight is increased.
  • a small amount of a cross-linking agent for example, 1 ⁇ 2 or less of an appropriate amount of the cross-linking agent is mixed, and the mixture is subjected to a heat treatment (for example, an annealing treatment) to perform a cross-linking reaction.
  • the molecular weight can be increased in a short time.
  • the molecular weight of the elastomer is increased by a crosslinking reaction, it is preferable to set the blending amount of the crosslinking agent, the heating time, and the heating temperature to such an extent that kneading is not difficult in the subsequent steps.
  • the second carbon nanofibers are more uniformly dispersed in the elastomer by lowering the viscosity of the elastomer before the second carbon nanofibers are introduced. be able to. More specifically, the second carbon aggregated by using a liquid elastomer having a reduced molecular weight, rather than mixing the second carbon nanofiber with an elastomer having a large molecular weight as in the production method described above.
  • the second carbon nanofibers can easily be dispersed into the nanofiber voids, and the second carbon nanofibers can be more uniformly dispersed in the thin-through process.
  • the second carbon nanofiber is further bonded.
  • the fiber can be uniformly dispersed. Therefore, according to the manufacturing method described here, it is possible to obtain the same performance with a smaller amount of the second carbon nanofibers than in the previous manufacturing method, and it is economical by saving the expensive second carbon nanofibers. Also improves.
  • the carbon fiber composite material contains carbon nanofibers having an oxygen concentration of 2.6 to 4.6 atm% on the surface as measured by X-ray photoelectron spectroscopy (XPS) in the elastomer.
  • the second carbon nanofibers are uniformly dispersed in the elastomer. Since the second carbon nanofibers are oxidized, the wettability with the elastomer is improved, and the rigidity and flexibility of the carbon fiber composite material are improved. In particular, the carbon fiber composite material has improved rigidity at high temperatures.
  • Carbon fiber composites 0.99 ° C. by the Hahn-echo method using a pulsed NMR, observing nucleus was measured by 1 H, the uncrosslinked, first spin - spin relaxation time (T2n) at 100 ⁇ 3,000 sec
  • the component fraction (fnn) of the component having the second spin-spin relaxation time is preferably 0 to 0.2.
  • T2n and fnn measured at 150 ° C. of the carbon fiber composite material can indicate that the second carbon nanofibers are uniformly dispersed in the matrix elastomer. That is, it can be said that the second carbon nanofibers are uniformly dispersed in the elastomer is in a state where the elastomer is constrained by the second carbon nanofibers. In this state, the mobility of the elastomer molecules constrained by the second carbon nanofibers is smaller than that when not constrained by the second carbon nanofibers. Therefore, the first spin-spin relaxation time (T2n), the second spin-spin relaxation time (T2nn), and the spin-lattice relaxation time (T1) of the carbon fiber composite material do not include the second carbon nanofibers.
  • the first spin-spin relaxation time (T2n / 150) is higher in the carbon fiber composite material according to the present embodiment than in the carbon fiber composite material in which the first carbon nanofibers that have not been oxidized are directly mixed with the elastomer. ° C) tends to be shorter.
  • the non-network component decreases for the following reason. That is, when the molecular mobility of the elastomer is reduced overall by the second carbon nanofiber, the portion where the non-network component cannot easily move increases, and it becomes easier to behave in the same manner as the network component. Since the network component (terminal chain) is easy to move, the non-network component is considered to decrease due to the fact that it is easily adsorbed to the active point of the second carbon nanofiber.
  • Second carbon nanofiber (1-1) A spray nozzle is attached to the top of a vertical heating furnace (inner diameter 17.0 cm, length 150 cm). The furnace wall temperature (reaction temperature) is raised to and maintained at 1000 ° C., and 20 g / min of a benzene liquid raw material containing 4% by weight of ferrocene is supplied from the spray nozzle at a flow rate of hydrogen gas of 100 L / min. To be sprayed directly.
  • the shape of the spray at this time is a conical side surface (trumpet shape or umbrella shape), and the apex angle of the nozzle is 60 °.
  • the carbon nanofibers produced by the vapor phase growth method were graphitized by heat treatment at 2800 ° C. in an inert gas atmosphere.
  • the graphitized first (untreated) carbon nanofiber (shown as “CNT-N” in Table 1) has an average diameter of 87 nm, an average length of 10 ⁇ m, a Raman peak ratio (D / G) of 0.08, and nitrogen adsorption.
  • the specific surface area was 25 m 2 / g and the surface oxygen concentration was 2.1 atm%.
  • the second carbon nanofibers used in Examples 1 to 12 and Comparative Examples 10 and 11 were prepared by heating 100 g of the graphitized first carbon nanofibers into a heating furnace (desk electric furnace AMF-20N Asahi The product was put into a product of Rika Seisakusho Co., Ltd., and was subjected to an oxidation treatment by heat treatment by holding it in a heating furnace at the temperature shown in Table 1 (575 ° C. to 720 ° C.) and time (1 hour or 2 hours).
  • the temperature setting of the heating furnace was set based on the result of measuring the mass reduction of the first carbon nanofibers using the TG (Thermal Mass Spectrometry) method.
  • TG Thermal Mass Spectrometry
  • the mass decrease when the temperature of the first carbon nanofiber was raised in the atmosphere was measured, and the mass change of the second carbon nanofiber with respect to the temperature as shown in FIG. 2 was shown.
  • the rate of temperature increase was 10 ° C./min, and the atmosphere was air (compressed air 200 ml / min). From this measurement result, the heating furnace is set between 600 ° C. at which the mass of the first carbon nanofiber starts to decrease (oxidize) and 800 ° C.
  • the second carbon nanofibers are “CNT-A (575 ° C.)”, “CNT-B (615 ° C.)”, “CNT-C (650 ° C.) according to the set temperature of the heating furnace. ) ”,“ CNT-D (690 ° C.) ”, and“ CNT-E (720 ° C.) ”.
  • the actual temperature in the heating furnace was in the range of ⁇ 30 ° C. with respect to the set temperature.
  • HOLOLAB-5000 Type peak intensity at around 1300 cm -1 to the peak intensity G in the vicinity of 1600 cm -1 in the second carbon nanofibers by Raman scattering spectroscopy using a (532nmND YAG) The ratio of D (D / G) was measured.
  • the nitrogen adsorption specific surface area measured the nitrogen adsorption specific surface area (m ⁇ 2 > / g) of the 2nd carbon nanofiber using NOVA3000 type
  • the oxygen concentration on the surface of the second carbon nanofiber was measured using XPS (X-ray Photoelectron Spectroscopy).
  • the second carbon nanofiber is sprinkled on the carbon tape on the metal base to adhere to the carbon tape, and the excess second carbon nanofiber that did not adhere to the carbon tape is shaken off and removed.
  • a metal base was mounted in the XPS apparatus.
  • the XPS device “JPS-9200 (hereinafter referred to as XPS device) for micro analysis” manufactured by JEOL Ltd. was used.
  • the second carbon nanofiber as a powder sample was used.
  • Argon gas etching was performed at an argon gas concentration of 8 ⁇ 10 ⁇ 2 Pa for 0.5 minutes to bring out the clean surface of the second carbon nanofiber, and the X-ray source of the XPS apparatus was an analysis diameter of 1 mm and a counter cathode.
  • the oxygen concentration on the surface of the second carbon nanofiber was measured by setting an Al / Mg twin target, an acceleration voltage of 10 kV, and an emission current of 30 mA.
  • the elements on the surface of the second carbon nanofiber detected by XPS were oxygen and It was carbon.
  • FIGS. 4 to 6 are electron micrographs of the second carbon nanofiber “CNT-B”, “CNT-C”, and “CNT-D”, respectively. is there.
  • the surface of the second carbon nanofiber in FIGS. 4 to 6 is moderately roughened (oxidized) as compared with the surface of the first carbon nanofiber of “CNT-N” in FIG. Is expected to improve.
  • Examples 1 to 12 and Comparative Examples 1 to 11 were prepared as open rolls (roll setting temperature 20 ° C.) as shown in Table 1.
  • a predetermined amount of ethylene-propylene rubber shown in the figure was charged, carbon nanofibers were charged in the ethylene propylene rubber, and after kneading, the first kneading step was performed and the carbon nanofiber was taken out from the roll. Further, the mixture was again put into an open roll set at a roll temperature of 100 ° C., and taken out by performing a second kneading step.
  • this mixture was wound around an open roll (roll temperature: 10 to 20 ° C., roll interval: 0.3 mm), and thinning was repeated 5 times. At this time, the surface speed ratio of the two rolls was set to 1.1. Furthermore, the carbon fiber composite material obtained by setting the roll gap to 1.1 mm and passing through was put and dispensed.
  • the separated sheets were compression-molded at 90 ° C. for 5 minutes to obtain uncrosslinked carbon fiber composite material samples of Examples 1 to 12 and Comparative Examples 1 to 11 having a thickness of 1 mm.
  • 2 mass parts (phr) of peroxide was mixed with the non-crosslinked carbon fiber composite material obtained through thinning, and the mixture was put into an open roll having a roll gap set to 1.1 mm and dispensed.
  • the crosslinked carbon fiber composite material samples of Examples 1 to 11 were obtained.
  • HAF HAF grade carbon black having an average particle size of 27 nm and a nitrogen adsorption specific surface area of 82 m 2 / g
  • EPDM ethylene-propylene rubber
  • the product name was EP103AF.
  • the second carbon nanofibers obtained in the above (1) are “CNT-A” to “CNT-E”, and the first carbon nanofibers not subjected to oxidation treatment are “CNT- N ".
  • the separated sheets were compression molded to obtain uncrosslinked carbon fiber composite material samples of Examples 13 to 14 and Comparative Examples 11 to 14 having a thickness of 1 mm. Further, after rolling the non-crosslinked carbon fiber composite material obtained by thin rolling with a roll, press molding (curing) at 170 ° C. for 10 minutes, and then post-curing at 200 ° C. for 24 hours. 14 and the crosslinked carbon fiber composite material (sheet shape having a thickness of 1 mm) of Comparative Examples 11 to 14.
  • HAF HAF carbon black having an average particle size of 27 nm and a nitrogen adsorption specific surface area of 82 m 2 / g.
  • Boary FKM is a fluorine-containing elastomer manufactured by DuPont Dow Elastomer Japan. Viton A-500 (molecular weight 50,000).
  • CNT-C the second carbon nanofiber obtained at the heating furnace temperature of 650 ° C. in (1)
  • CNT-N the first carbon nanofiber not subjected to oxidation treatment
  • the first spin-spin relaxation time (T2n / 150 ° C.) and the component fraction (fnn) of the component having the second spin-spin relaxation time were determined for each sample.
  • the measurement results are shown in Tables 2-4.
  • the first spin-spin relaxation time (T2n / 30 ° C.) of the raw material rubber measured in the same manner was 520 ⁇ sec for “EPDM” and 55 ⁇ sec for “binary FKM”.
  • the measurement by the solid echo method was performed using pulse method NMR. This measurement was performed using “JMN-MU25” manufactured by JEOL.
  • the measurement is carried out under the conditions of an observation nucleus of 1 H, a resonance frequency of 25 MHz, and a 90 ° pulse width of 2 ⁇ sec.
  • the attenuation curve is measured with a pulse sequence of the solid echo method (90 ° x-Pi-90 ° y).
  • the spin-spin relaxation time (T2s) at 150 ° C. of the uncrosslinked carbon fiber composite material sample was detected.
  • A is “CNT-A (Comparative Example 10)”
  • B is “CNT-B”
  • C is “CNT-C”
  • D is “CNT-D”
  • H is “HAF”
  • N is “CNT-N”
  • EPDM is “EPDM alone (Comparative Example 1)”.
  • M100 rate of increase the rate of increase in the 100% modulus of the carbon fiber composite material relative to the 100% modulus of the elastomer alone per 1 part by weight of carbon nanofibers blended in 100 parts by weight of the elastomer.
  • A is “CNT-A (Comparative Example 10)”
  • B is “CNT-B”
  • C is “CNT-C”
  • D is “CNT-D”
  • H is “HAF”
  • N is “CNT-N”
  • EPDM is “EPDM alone (Comparative Example 1)”.
  • the rate (E'increase rate) was calculated.
  • the average linear expansion coefficient in the measurement temperature range was measured for the crosslinked carbon fiber composite material samples of Examples 1 to 14 and Comparative Examples 1 to 14. These results are shown in Tables 2-4.
  • the measuring device was TMASS manufactured by SII, the shape of the measurement sample was 1.5 mm ⁇ 1.0 mm ⁇ 10 mm, the side long load was 25 KPa, the measurement temperature was room temperature to 150 ° C., and the temperature increase rate was 2 ° C./min.
  • the spin-spin relaxation time (T2s / 150 ° C.) is the same as in Comparative Examples 2 to 5, 10, 11, 13 in which the same amount of carbon nanofibers were blended. , T2n is shorter and fnn is smaller than 14.
  • Comparative Example 10 since the oxidation treatment of the surface of the second carbon nanofiber was insufficient, the physical properties of the carbon fiber composite material using the first carbon nanofiber of Comparative Example 5 were almost the same. Moreover, since the surface of the 2nd carbon nanofiber had damaged too much by heat processing, the physical property in M100, tensile strength, and breaking elongation fell in the comparative example 11.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Textile Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Composite Materials (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Inorganic Fibers (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)

Abstract

 本発明の炭素繊維複合材料50の製造方法は、第1の工程と、第2の工程と、を含む。第1の工程は、気相成長法によって製造された第1のカーボンナノファイバーを酸化処理して表面が酸化された第2のカーボンナノファイバー40を得る。第2の工程は、第2のカーボンナノファイバー40を、エラストマー30に混合し、剪断力で該エラストマー30中に均一に分散して炭素繊維複合材料50を得る。第1の工程で得られた第2のカーボンナノファイバー40のX線光電子分光法(XPS)で測定した表面の酸素濃度が2.6atm%~4.6atm%である。

Description

カーボンナノファイバー及びその製造方法、カーボンナノファイバーを用いた炭素繊維複合材料の製造方法及び炭素繊維複合材料
 本発明は、カーボンナノファイバー及びその製造方法、カーボンナノファイバーを用いた炭素繊維複合材料の製造方法及び炭素繊維複合材料に関する。
 一般に、カーボンナノファイバーはマトリックスに分散させにくいフィラーであった。本発明者等が先に提案した炭素繊維複合材料の製造方法によれば、これまで困難とされていたカーボンナノファイバーの分散性を改善し、エラストマーにカーボンナノファイバーを均一に分散させることができた(例えば、特開2005-97525号公報参照)。このような炭素繊維複合材料の製造方法によれば、エラストマーとカーボンナノファイバーを混練し、剪断力によって凝集性の強いカーボンナノファイバーの分散性を向上させている。より具体的には、エラストマーとカーボンナノファイバーとを混合すると、粘性を有するエラストマーがカーボンナノファイバーの相互に侵入し、かつ、エラストマーの特定の部分が化学的相互作用によってカーボンナノファイバーの活性の高い部分と結合し、この状態で、分子長が適度に長く、分子運動性の高い(弾性を有する)エラストマーとカーボンナノファイバーとの混合物に強い剪断力が作用すると、エラストマーの変形に伴ってカーボンナノファイバーも移動し、さらに剪断後の弾性によるエラストマーの復元力によって、凝集していたカーボンナノファイバーが分離されて、エラストマー中に分散していた。このように、マトリックスへのカーボンナノファイバーの分散性を向上させることで、高価なカーボンナノファイバーを効率よく複合材料のフィラーとして用いることができるようになった。
 カーボンナノファイバーは、炭化水素などのガスを金属系触媒の存在下で気相熱分解させる気相成長法によって製造されるものが工業的に量産化されている。このような量産化されているカーボンナノファイバーの中には、例えば、1000℃程度の加熱炉内で気相成長法によって製造され、さらに高温で熱処理して、黒鉛化が行なわれているものもあった(例えば、特開2006-198393号公報参照)。しかしながら、このように黒鉛化されたカーボンナノファイバーの表面は、欠陥が少なく好ましい物性を有しているが、マトリックス材料例えばエラストマーとの濡れ性に劣る傾向があった。
 本発明の目的は、カーボンナノファイバー及びその製造方法、カーボンナノファイバーを用いた炭素繊維複合材料の製造方法及び炭素繊維複合材料を提供することにある。
 本発明にかかるカーボンナノファイバーは、
 気相成長法によって製造された第1のカーボンナノファイバーを酸化処理して得られた、X線光電子分光法(XPS)で測定した表面の酸素濃度が2.6atm%~4.6atm%である。
 本発明にかかるカーボンナノファイバーによれば、表面が適度に酸化されていることによって、カーボンナノファイバーと他の材料例えば複合材料におけるマトリックス材料との表面反応性が向上し、カーボンナノファイバーとマトリックス材料との濡れ性が改善することができる。このように濡れ性が改善されたカーボンナノファイバーを用いることによって、例えば複合材料の剛性や柔軟性を改善することができる。
 本発明にかかるカーボンナノファイバーにおいて、
 ラマン散乱分光法によって測定される1600cm-1付近のピーク強度Gに対する1300cm-1付近のピーク強度Dの比(D/G)が0.12~0.22であることができる。
 本発明にかかるカーボンナノファイバーにおいて、
 窒素吸着比表面積が34m/g~58m/gであることができる。
 本発明にかかるカーボンナノファイバーにおいて、
 平均直径が4nm~230nmであることができる。
 本発明にかかるカーボンナノファイバーの製造方法は、
 気相成長法によって製造された第1のカーボンナノファイバーを酸化処理して第2のカーボンナノファイバーを得る工程を有し、
 X線光電子分光法(XPS)で測定した、前記第1のカーボンナノファイバーの表面の酸素濃度に対する前記第2のカーボンナノファイバーの表面の酸素濃度の増加量は、0.5atm%~2.6atm%である。
 本発明にかかるカーボンナノファイバーの製造方法によれば、カーボンナノファイバーの表面が適度に酸化されていることによって、カーボンナノファイバーと他の材料例えば複合材料におけるマトリックス材料との表面反応性が向上し、カーボンナノファイバーとマトリックス材料との濡れ性を改善することができる。
 本発明にかかるカーボンナノファイバーの製造方法は、
 気相成長法によって製造された第1のカーボンナノファイバーを酸化処理して第2のカーボンナノファイバーを得る工程を有し、
 X線光電子分光法(XPS)で測定した、前記第1のカーボンナノファイバーの表面の酸素濃度に対する前記第2のカーボンナノファイバーの表面の酸素濃度の増加割合は、20%~120%である。
 本発明にかかるカーボンナノファイバーの製造方法によれば、カーボンナノファイバーの表面が適度に酸化されていることによって、カーボンナノファイバーと他の材料例えば複合材料におけるマトリックス材料との表面反応性が向上し、カーボンナノファイバーとマトリックス材料との濡れ性を改善することができる。
 本発明にかかるカーボンナノファイバーの製造方法において、
 前記工程は、前記第1のカーボンナノファイバーを酸素を含有する雰囲気中で600℃~800℃で熱処理することができる。
 本発明にかかるカーボンナノファイバーの製造方法において、
 前記工程は、前記第1のカーボンナノファイバーの質量を2%~20%減量して前記第2のカーボンナノファイバーを得ることができる。
 本発明にかかるカーボンナノファイバーの製造方法において、
 前記工程で得られた前記第2のカーボンナノファイバーは、X線光電子分光法(XPS)で測定した表面の酸素濃度が2.6atm%~4.6atm%であることができる。
 本発明にかかるカーボンナノファイバーの製造方法において、
 前記工程で得られた前記第2のカーボンナノファイバーは、ラマン散乱分光法によって測定される1600cm-1付近のピーク強度Gに対する1300cm-1付近のピーク強度Dの比(D/G)が0.12~0.22であることができる。
 本発明にかかるカーボンナノファイバーの製造方法において、
 前記工程で得られた前記第2のカーボンナノファイバーは、窒素吸着比表面積が34m/g~58m/gであることができる。
 本発明にかかるカーボンナノファイバーの製造方法において、
 前記工程で得られた前記第2のカーボンナノファイバーは、平均直径が4nm~230nmであることができる。
 本発明にかかる炭素繊維複合材料の製造方法は、
 気相成長法によって製造された第1のカーボンナノファイバーを酸化処理して表面が酸化された第2のカーボンナノファイバーを得る第1の工程と、
 前記第2のカーボンナノファイバーを、エラストマーに混合し、剪断力で該エラストマー中に均一に分散して炭素繊維複合材料を得る第2の工程と、
 を含み、
 前記第1の工程で得られた前記第2のカーボンナノファイバーのX線光電子分光法(XPS)で測定した表面の酸素濃度が2.6atm%~4.6atm%である。
 本発明にかかる炭素繊維複合材料の製造方法によれば、第2のカーボンナノファイバーの表面が適度に酸化されていることによって、マトリックスであるエラストマーとの表面反応性が向上し、カーボンナノファイバーとエラストマーとの濡れ性が改善される。このようにエラストマーとの濡れ性が改善された第2のカーボンナノファイバーを用いることによって、剛性や柔軟性が改善された炭素繊維複合材料を製造することができる。特に、このようにして製造された炭素繊維複合材料は、高温における剛性が改善される。
 本発明にかかる炭素繊維複合材料の製造方法において、
 前記第1の工程は、X線光電子分光法(XPS)で測定した、前記第1のカーボンナノファイバーの表面の酸素濃度に対する前記第2のカーボンナノファイバーの表面の酸素濃度の増加量が、0.5atm%~2.6atm%になるように酸化処理することができる。
 本発明にかかる炭素繊維複合材料の製造方法において、
 前記第1の工程は、X線光電子分光法(XPS)で測定した、前記第1のカーボンナノファイバーの表面の酸素濃度に対する前記第2のカーボンナノファイバーの表面の酸素濃度の増加割合が、20%~120%になるように酸化処理することができる。
 本発明にかかる炭素繊維複合材料の製造方法において、
 前記第1の工程は、前記第1のカーボンナノファイバーを酸素を含有する雰囲気中で600℃~800℃で熱処理することができる。
 本発明にかかる炭素繊維複合材料の製造方法において、
 前記第1の工程は、前記第1のカーボンナノファイバーの質量を2%~20%減量して前記第2のカーボンナノファイバーを得ることができる。
 本発明にかかる炭素繊維複合材料の製造方法において、
 前記第2のカーボンナノファイバーは、ラマン散乱分光法によって測定される1600cm-1付近のピーク強度Gに対する1300cm-1付近のピーク強度Dの比(D/G)が0.12~0.22であることができる。
 本発明にかかる炭素繊維複合材料の製造方法において、
 前記第2のカーボンナノファイバーは、窒素吸着比表面積が34m/g~58m/gであることができる。
 本発明にかかる炭素繊維複合材料の製造方法において、
 前記第1のカーボンナノファイバーは、平均直径が4nm~250nmであることができる。
 本発明にかかる炭素繊維複合材料は、前記炭素繊維複合材料の製造方法で製造される。
 本発明にかかる炭素繊維複合材料は、
 エラストマーに、X線光電子分光法(XPS)で測定した表面の酸素濃度が2.6atm%~4.6atm%であるカーボンナノファイバーを含む。
 本発明にかかる炭素繊維複合材料によれば、カーボンナノファイバーの表面が適度に酸化されていることによって、マトリックスであるエラストマーとの表面反応性が向上し、カーボンナノファイバーとエラストマーとの濡れ性が改善されている。このようにエラストマーとの濡れ性が改善されたカーボンナノファイバーを含む炭素繊維複合材料は、剛性や柔軟性が改善される。特に、本発明にかかる炭素繊維複合材料は、高温における剛性が改善される。
 本発明にかかる炭素繊維複合材料において、
 前記カーボンナノファイバーは、ラマン散乱分光法によって測定される1600cm-1付近のピーク強度Gに対する1300cm-1付近のピーク強度Dの比(D/G)が0.12~0.22であることができる。
 本発明にかかる炭素繊維複合材料において、
 前記第2のカーボンナノファイバーは、窒素吸着比表面積が34m/g~58m/gであることができる。
図1Aは、オープンロール法による炭素繊維複合材料の製造方法を模式的に示す図である。 図1Bは、オープンロール法による炭素繊維複合材料の製造方法を模式的に示す図である。 図1Cは、オープンロール法による炭素繊維複合材料の製造方法を模式的に示す図である。 TG(熱質量分析)法による温度に対する第2のカーボンナノファイバーの質量変化を示したグラフである。 比較例2~5に用いた第1のカーボンナノファイバー(CNT-N)の電子顕微鏡写真である。 実施例1~4に用いた第2のカーボンナノファイバー(CNT-B)の電子顕微鏡写真である。 実施例5~8に用いた第2のカーボンナノファイバー(CNT-C)の電子顕微鏡写真である。 実施例9~12に用いた第2のカーボンナノファイバー(CNT-D)の電子顕微鏡写真である。 実施例1~12及び比較例1~9のフィラーの充填量-M100のグラフである。 実施例1~12及び比較例1~9のM100-破断伸びのグラフである。
 以下、本発明の実施の形態について詳細に説明する。
 本発明の一実施形態にかかる第1のカーボンナノファイバーは、気相成長法によって製造されたカーボンナノファイバーを酸化処理して得られた、X線光電子分光法(XPS)で測定した表面の酸素濃度が2.6atm%~4.6atm%である。
 本発明の一実施形態にかかるカーボンナノファイバーの製造方法は、気相成長法によって製造された第1のカーボンナノファイバーを酸化処理して第2のカーボンナノファイバーを得る工程を有し、X線光電子分光法(XPS)で測定した、前記第1のカーボンナノファイバーの表面の酸素濃度に対する前記第2のカーボンナノファイバーの表面の酸素濃度の増加量は、0.5atm%~2.6atm%である。
 本発明の一実施形態にかかるカーボンナノファイバーの製造方法は、気相成長法によって製造された第1のカーボンナノファイバーを酸化処理して第2のカーボンナノファイバーを得る工程を有し、X線光電子分光法(XPS)で測定した、前記第1のカーボンナノファイバーの表面の酸素濃度に対する前記第2のカーボンナノファイバーの表面の酸素濃度の増加割合は、20%~120%である。
 本発明の一実施形態にかかる炭素繊維複合材料の製造方法は、気相成長法によって製造された第1のカーボンナノファイバーを酸化処理して表面が酸化された第2のカーボンナノファイバーを得る第1の工程と、前記第2のカーボンナノファイバーを、エラストマーに混合し、剪断力で該エラストマー中に均一に分散して炭素繊維複合材料を得る第2の工程と、を含み、前記第1の工程で得られた前記第2のカーボンナノファイバーのX線光電子分光法(XPS)で測定した表面の酸素濃度が2.6atm%~4.6atm%であることを特徴とする。
 本発明の一実施形態にかかる炭素繊維複合材料は、前記炭素繊維複合材料の製造方法で製造されることを特徴とする。
 本発明の一実施形態にかかる炭素繊維複合材料は、エラストマーに、X線光電子分光法(XPS)で測定した表面の酸素濃度が2.6atm%~4.6atm%であるカーボンナノファイバーを含むことを特徴とする。
 (I)第1のカーボンナノファイバー
まず、炭素繊維複合材料の製造方法に用いられる第1のカーボンナノファイバーについて説明する。
 第1のカーボンナノファイバーの製造方法は、気相成長法によって製造される。気相成長法は、炭化水素等のガスを金属系触媒の存在下で気相熱分解させて第1のカーボンナノファイバーを製造する方法である。より詳細に気相成長法を説明すると、例えば、ベンゼン、トルエン等の有機化合物を原料とし、フェロセン、ニッケルセン等の有機遷移金属化合物を金属系触媒として用い、これらをキャリアーガスとともに高温例えば400℃~1000℃の反応温度に設定された反応炉に導入し、第1のカーボンナノファイバーを基板上に生成させる方法、浮遊状態で第1のカーボンナノファイバーを生成させる方法、あるいは第1のカーボンナノファイバーを反応炉壁に成長させる方法等を用いることができる。また、あらかじめアルミナ、炭素等の耐火性支持体に担持された金属含有粒子を炭素含有化合物と高温で接触させて、平均直径が70nm以下の第1のカーボンナノファイバーを得ることもできる。気相成長法で製造された第1のカーボンナノファイバーの平均直径は、平均直径が4nm~250nmであることが好ましい。第1のカーボンナノファイバーは、表面が酸化処理されていないという意味で未処理のカーボンナノファイバーであり、表面を酸化処理して分散性を向上することが好ましい。
 このように気相成長法で製造された第1のカーボンナノファイバーを酸化処理する前に不活性ガス雰囲気中において2000℃~3200℃で熱処理することができる。この熱処理温度は、2500℃~3200℃がさらに好ましく、特に2800℃~3200℃が好ましい。熱処理温度が、2000℃以上であると、気相成長の際に第1のカーボンナノファイバーの表面に沈積したアモルファス状の堆積物や残留している触媒金属などの不純物が除去されるので好ましい。また、第1のカーボンナノファイバーの熱処理温度が、2500℃以上であると、第1のカーボンナノファイバーの骨格が黒鉛化(結晶化)し、第1のカーボンナノファイバーの欠陥が減少し強度が向上するため好ましい。なお、第1のカーボンナノファイバーの熱処理温度が、3200℃以下であれば、黒鉛が昇華することによる黒鉛骨格の破壊が発生しにくいため好ましい。このように黒鉛化した第1のカーボンナノファイバーは、酸化処理されていないので未処理のカーボンナノファイバーであって、黒鉛化によって優れた強度、熱伝導性、電気伝導性などを有している。
 第1のカーボンナノファイバーは、例えば、いわゆるカーボンナノチューブなどが例示できる。カーボンナノチューブは、炭素六角網面のグラファイトの1枚面を1層もしくは多層に巻いた構造を有する。また、部分的にカーボンナノチューブの構造を有する炭素材料も使用することができる。なお、カーボンナノチューブという名称の他にグラファイトフィブリルナノチューブ、気相成長炭素繊維といった名称で称されることもある。
 (II)第2のカーボンナノファイバー
炭素繊維複合材料の製造方法の第1の工程で得られた第2のカーボンナノファイバーについて説明する。
 第2のカーボンナノファイバーは、気相成長法によって製造された第1のカーボンナノファイバーを酸化処理して表面が酸化されることで得られる。酸化処理については、炭素繊維複合材料の製造方法の欄で後述する。第2のカーボンナノファイバーは、その表面のX線光電子分光法(XPS)で測定した酸素濃度が2.6atm%~4.6atm%であり、好ましくは3.0atm%~4.0atm%であり、さらに好ましくは3.1atm%~3.7atm%である。このように、第2のカーボンナノファイバーの表面が適度に酸化していることで、第2のカーボンナノファイバーとエラストマーとの表面反応性が向上し、エラストマー中における第2のカーボンナノファイバーをより均一に分散することができる。第2のカーボンナノファイバーは、第1のカーボンナノファイバーの質量を2%~20%減量した質量を有することができる。第2のカーボンナノファイバーは、ラマン散乱分光法によって測定される1600cm-1付近のピーク強度Gに対する1300cm-1付近のピーク強度Dの比(D/G)好ましくは0.12~0.22である。第2のカーボンナノファイバーは、窒素吸着比表面積が好ましくは34m/g~58m/gである。第2のカーボンナノファイバーは、平均直径が4nm~230nmであることが好ましく、20nm~200nmが好適で、特には60nm~150nmが好適である。第2のカーボンナノファイバーは、直径が4nm以上ではマトリックス樹脂に対する分散性が向上し、逆に230nm以下ではマトリックス樹脂の表面の平坦性が損なわれにくく好ましい。第2のカーボンナノファイバーの平均直径が60nm以上では分散性及び表面の平坦性に優れており、150nm以下では少量の添加量でもカーボンナノファイバーの本数が増加することになるため例えば炭素繊維複合材料の性能を向上させることができ、したがって高価な第1のカーボンナノファイバーを節約することができる。また、第2のカーボンナノファイバーのアスペクト比は50~200が好ましい。
 第2のカーボンナノファイバーによれば、表面が適度に酸化されていることによって、カーボンナノファイバーと他の材料例えば複合材料におけるマトリックス材料との表面反応性が向上し、カーボンナノファイバーとマトリックス材料との濡れ性が改善することができる。このように濡れ性が改善されたカーボンナノファイバーを用いることによって、例えば複合材料の剛性や柔軟性を改善することができる。特に、黒鉛化された第1のカーボンナノファイバーの場合、比較的反応性の低い表面を適度に酸化させることによって、第2のカーボンナノファイバーとマトリックス材料との濡れ性を改善することができるため、分散性を向上させることができ、例えば従来より少量の第2のカーボンナノファイバーの添加でも同等の物性を得ることができる。
 (III)エラストマー
 次に、炭素繊維複合材料の製造方法に用いられるエラストマーについて説明する。
 エラストマーは、分子量が好ましくは5000~500万、さらに好ましくは2万~300万である。エラストマーの分子量がこの範囲であると、エラストマー分子が互いに絡み合い、相互につながっているので、エラストマーは、第2のカーボンナノファイバーを分散させるために良好な弾性を有している。エラストマーは、粘性を有しているので凝集した第2のカーボンナノファイバーの相互に侵入しやすく、さらに弾性を有することによって第2のカーボンナノファイバー同士を分離することができるため好ましい。
 エラストマーは、パルス法NMRを用いてハーンエコー法によって、30℃、観測核がHで測定した、未架橋体におけるネットワーク成分のスピン-スピン緩和時間(T2n/30℃)が好ましくは100~3000μ秒、より好ましくは200~1000μ秒である。上記範囲のスピン-スピン緩和時間(T2n/30℃)を有することにより、エラストマーは、柔軟で充分に高い分子運動性を有することができ、すなわち第2のカーボンナノファイバーを分散させるために適度な弾性を有することになる。また、エラストマーは粘性を有しているので、エラストマーと第2のカーボンナノファイバーとを混合したときに、エラストマーは高い分子運動により第2のカーボンナノファイバーの相互の隙間に容易に侵入することができる。
 また、エラストマーは、パルス法NMRを用いてハーンエコー法によって30℃、観測核がHで測定した、架橋体における、ネットワーク成分のスピン-スピン緩和時間(T2n)が100~2000μ秒であることが好ましい。その理由は、上述した未架橋体と同様である。すなわち、上記の条件を有する未架橋体を架橋化すると、得られる架橋体のT2nはおおよそ上記範囲に含まれる。
 パルス法NMRを用いたハーンエコー法によって得られるスピン-スピン緩和時間は、物質の分子運動性を表す尺度である。具体的には、パルス法NMRを用いたハーンエコー法によりエラストマーのスピン-スピン緩和時間を測定すると、緩和時間の短い第1のスピン-スピン緩和時間(T2n)を有する第1の成分と、緩和時間のより長い第2のスピン-スピン緩和時間(T2nn)を有する第2の成分とが検出される。第1の成分は高分子のネットワーク成分(骨格分子)に相当し、第2の成分は高分子の非ネットワーク成分(末端鎖などの枝葉の成分)に相当する。そして、第1のスピン-スピン緩和時間が短いほど分子運動性が低く、エラストマーは固いといえる。また、第1のスピン-スピン緩和時間が長いほど分子運動性が高く、エラストマーは柔らかいといえる。
 パルス法NMRにおける測定法としては、ハーンエコー法でなくてもソリッドエコー法、CPMG法(カー・パーセル・メイブーム・ギル法)あるいは90゜パルス法でも適用できる。ただし、本発明にかかるエラストマーは中程度のスピン-スピン緩和時間(T2)を有するので、ハーンエコー法が最も適している。一般的に、ソリッドエコー法および90゜パルス法は、短いT2の測定に適し、ハーンエコー法は、中程度のT2の測定に適し、CPMG法は、長いT2の測定に適している。
 エラストマーは、主鎖、側鎖および末端鎖の少なくともひとつに、第2のカーボンナノファイバーの末端のラジカルに対して親和性を有する不飽和結合または基を有するか、もしくは、このようなラジカルまたは基を生成しやすい性質を有する。かかる不飽和結合または基としては、例えば、二重結合、三重結合、カルボニル基、カルボキシル基、水酸基、アミノ基、ニトリル基、ケトン基、アミド基、エポキシ基、エステル基、ビニル基、ハロゲン基、ウレタン基、ビューレット基、アロファネート基および尿素基などの官能基から選択される少なくともひとつであることができる。
 本実施の形態では、エラストマーの主鎖、側鎖および末端鎖の少なくともひとつに、第2のカーボンナノファイバーのラジカルと親和性(反応性または極性)が高い不飽和結合や基を有することにより、エラストマーと第2のカーボンナノファイバーとを結合することができる。このことにより、第2のカーボンナノファイバーの凝集力にうち勝ってその分散を容易にすることができる。そして、エラストマーと、第2のカーボンナノファイバーと、を混練する際に、エラストマーの分子鎖が切断されて生成したフリーラジカルは、第2のカーボンナノファイバーの欠陥を攻撃し、第2のカーボンナノファイバーの表面にラジカルを生成すると推測できる。
 エラストマーとしては、天然ゴム(NR)、エポキシ化天然ゴム(ENR)、スチレン-ブタジエンゴム(SBR)、ニトリルゴム(NBR)、クロロプレンゴム(CR)、エチレンプロピレンゴム(EPR,EPDM)、ブチルゴム(IIR)、クロロブチルゴム(CIIR)、アクリルゴム(ACM)、シリコーンゴム(Q)、フッ素ゴム(FKM)、ブタジエンゴム(BR)、エポキシ化ブタジエンゴム(EBR)、エピクロルヒドリンゴム(CO,CEO)、ウレタンゴム(U)、ポリスルフィドゴム(T)などのエラストマー類;オレフィン系(TPO)、ポリ塩化ビニル系(TPVC)、ポリエステル系(TPEE)、ポリウレタン系(TPU)、ポリアミド系(TPEA)、スチレン系(SBS)、などの熱可塑性エラストマー;およびこれらの混合物を用いることができる。特に、エラストマーの混練の際にフリーラジカルを生成しやすい極性の高いエラストマー、例えば、天然ゴム(NR)、ニトリルゴム(NBR)などが好ましい。また、極性の低いエラストマー、例えばエチレンプロピレンゴム(EPDM)であっても、混練の温度を比較的高温(例えばEPDMの場合、50℃~150℃)とすることで、フリーラジカルを生成するので本発明に用いることができる。
 本実施の形態のエラストマーは、ゴム系エラストマーあるいは熱可塑性エラストマーのいずれであってもよい。また、ゴム系エラストマーの場合、エラストマーは架橋体あるいは未架橋体のいずれであってもよいが、未架橋体を用いることが好ましい。
 (IV)炭素繊維複合材料の製造方法
 炭素繊維複合材料の製造方法は、第1の工程と、第2の工程と、を有する。
 第1の工程
まず、炭素繊維複合材料の製造方法における第1の工程について説明する。第1の工程は、気相成長法によって製造された第1のカーボンナノファイバーを酸化処理して表面が酸化された第2のカーボンナノファイバーを得る。第1の工程は、X線光電子分光法(XPS)で測定した、第1のカーボンナノファイバーの表面の酸素濃度に対する第2のカーボンナノファイバーの表面の酸素濃度の増加量が、0.5atm%~2.6atm%になるように酸化処理を行うことができる。このような第1のカーボンナノファイバーの表面酸素濃度に対する第2のカーボンナノファイバーの表面酸素濃度の増加量は、0.9atm%~1.9atm%であることがより好ましく、さらに1.0atm%~1.6atm%であることが好ましい。また、第1の工程は、X線光電子分光法(XPS)で測定した、第1のカーボンナノファイバーの表面の酸素濃度に対する第2のカーボンナノファイバーの表面の酸素濃度の増加割合が、20%~120%になるように酸化処理を行うことができる。このような第1のカーボンナノファイバーの表面酸素濃度に対する第2のカーボンナノファイバーの表面酸素濃度の増加割合は、43%~90%であることがより好ましく、さらに48%~76%であることが好ましい。第1の工程で得られた第2のカーボンナノファイバーのX線光電子分光法(XPS)で測定した表面の酸素濃度は、2.6atm%~4.6atm%であり、好ましくは3.0atm%~4.0atm%であり、さらに好ましくは3.1atm%~3.7atm%である。第2のカーボンナノファイバーは、その表面の酸素濃度が第1のカーボンナノファイバーの表面の酸素濃度より0.2atm%以上増加する程度に酸化することが望ましい。このように、第2のカーボンナノファイバーの表面が適度に酸化していることで、第2のカーボンナノファイバーとエラストマーとの表面反応性が向上し、エラストマー中におけるカーボンナノファイバーの分散不良を改善することができる。第1の工程は、第1のカーボンナノファイバーを酸素を含有する雰囲気中で600℃~800℃で熱処理することができる。例えば、大気雰囲気の炉内に第1のカーボンナノファイバーを配置し、600℃~800℃の温度範囲の所定温度に設定し、熱処理することによって、第2のカーボンナノファイバーの表面が所望の酸素濃度に酸化できる。この第1の工程で熱処理する時間は、所定温度の熱処理炉内で第1のカーボンナノファイバーを保持する時間であって、例えば10分~180分であることができる。酸素を含有する雰囲気は、大気中でもよいし、酸素雰囲気でもよいし、適宜酸素濃度を設定した雰囲気をもちいてもよい。第2のカーボンナノファイバーの表面が第1の工程で所望の酸素濃度に酸化されるのに十分な酸素濃度が雰囲気中に存在すればよい。熱処理の温度は、600℃~800℃の範囲で所望の酸化処理を得るために適宜設定することができる。通常、800℃付近で第1のカーボンナノファイバーは燃焼して繊維に大きなダメージを負うため、温度設定と熱処理の時間は実験を繰り返しながら慎重に設定することが望ましい。なお、熱処理の温度や熱処理の時間は、第1の工程に用いる炉内の酸素濃度や炉の内容積、処理する第1のカーボンナノファイバーの量などによって適宜調整することができる。このように第1の工程で酸化処理された第2のカーボンナノファイバーの質量は、第1のカーボンナノファイバーの質量より例えば2%~20%減量することが好ましく、この減量の範囲であれば第2のカーボンナノファイバーが適度に酸化していると推測できる。第2のカーボンナノファイバーの質量が第1のカーボンナノファイバーの質量より2%未満しか減量していないと、第2のカーボンナノファイバーの表面の酸素濃度が低いため濡れ性の向上が得にくい傾向がある。また、第1のカーボンナノファイバーの質量より20%を超えて減量した第2のカーボンナノファイバーは、減量が20%以下の第2のカーボンナノファイバーに比べて濡れ性がほとんど変わらないにもかかわらず、酸化処理によるカーボンナノファイバーの減量による損失が大きく、しかも熱処理のエネルギー消費量に対して経済的にも不利になる傾向がある。第1のカーボンナノファイバーの表面が酸化することによって、第1のカーボンナノファイバーの表面の炭素の一部が炭酸ガスとして気化して減量することになるからである。第2のカーボンナノファイバーの質量が第1のカーボンナノファイバーの質量より20%を超えなければ繊維長がほとんど短くならないと推測できるため好ましい。なお、第2のカーボンナノファイバーの表面の酸素濃度は、XPS(X線光電子分光法)によって分析することができる。XPSによる酸素濃度の分析は、第2のカーボンナノファイバーの表面に付着した不純物を除去するために、測定前の第2のカーボンナノファイバーに対し例えば0.5分~1.0分間のアルゴンガスエッチングを行い、第2のカーボンナノファイバーの清浄な表面を出してから分析を行うことが好ましい。このアルゴンガスエッチングのアルゴンガス濃度は5×10-2Pa~20×10-2Paが好ましい。また、XPSによる酸素濃度の分析は、XPS装置の金属台の上に導電性接着剤である例えばカーボンテープを貼り、そのカーボンテープ上に第2のカーボンナノファイバーをふりかけてカーボンテープに付着させ、カーボンテープに付着しなかった余分な第2のカーボンナノファイバーを振り落として取り除いた状態で行うことが好ましい。このように、XPSによる酸素濃度の分析においては、第2のカーボンナノファイバーをカーボンテープ上に押しつけてブロック状に固めることなく、なるべく粉体に近い状態で分析することが好ましい。
 第1の工程によって得られた第2のカーボンナノファイバーは、ラマン散乱分光法によって測定される1600cm-1付近のピーク強度Gに対する1300cm-1付近のピーク強度Dの比(D/G)が好ましくは0.12~0.22である。第2のカーボンナノファイバーのラマンピーク比(D/G)は、その表面の結晶に欠陥が多くなるため、第1のカーボンナノファイバーのラマンピーク比(D/G)よりも大きくなる。第2のカーボンナノファイバーは、そのラマンピーク比(D/G)が第1のカーボンナノファイバーのラマンピーク比(D/G)より0.02以上増加する程度に酸化することが望ましい。また、第2のカーボンナノファイバーは、窒素吸着比表面積が好ましくは34m/g~58m/gである。第2のカーボンナノファイバーの窒素吸着比表面積は、その表面が荒れるため、第1のカーボンナノファイバーの窒素吸着比表面積よりも大きくなる。第2のカーボンナノファイバーは、その窒素吸着比表面積が第1のカーボンナノファイバーの窒素吸着比表面積より9m/g以上増加する程度に酸化することが望ましい。第1の工程に用いられる第1のカーボンナノファイバーの平均直径は4nm~250nmであることが好ましく、第1の工程で得られた第2のカーボンナノファイバーの平均直径は4nm~230nmであることができる。このような第2のカーボンナノファイバーを用いることにより、エラストマーとの表面反応性が向上し、エラストマーに対する濡れ性を改善することができる。
 第2のカーボンナノファイバーのエラストマーへの配合量は、用途に応じて設定することができるが、第2のカーボンナノファイバーはエラストマーとの濡れ性が向上しているため、例えば同じ剛性の炭素繊維複合材料を製造する場合、従来よりも配合量を減らすことができる。炭素繊維複合材料は、架橋体エラストマーあるいは無架橋体エラストマーをそのままエラストマー系材料として用いることができ、あるいは金属や樹脂の複合材料の原料として用いることができる。かかる金属あるいは樹脂の複合材料の原料として用いる炭素繊維複合材料は、金属あるいは樹脂にカーボンナノファイバーを混合する際に、カーボンナノファイバーの供給源としてのいわゆるマスターバッチとして用いることができる。
 第2の工程
 第2の工程は、第1の工程で得られた第2のカーボンナノファイバーを、エラストマーに混合し、剪断力で該エラストマー中に均一に分散して炭素繊維複合材料を得る。第2の工程について図1A~1Cを用いて詳細に説明する。
 図1A~1Cは、オープンロール法による炭素繊維複合材料の製造方法を模式的に示す図である。原料となるエラストマーは、パルス法NMRを用いてハーンエコー法によって150℃、観測核がHで測定した、未架橋体における、ネットワーク成分の第1のスピン-スピン緩和時間(T2n)が100~3000μ秒であることが好ましい。図1A~1Cに示すように、2本ロールのオープンロール2における第1のロール10と第2のロール20とは、所定の間隔d、例えば0.5mm~1.5mmの間隔で配置され、図1A~1Cにおいて矢印で示す方向に回転速度V1,V2で正転あるいは逆転で回転する。まず、図1Aに示すように、第1のロール10に巻き付けられたエラストマー30の素練りを行ない、エラストマー分子鎖を適度に切断してフリーラジカルを生成する。第2のカーボンナノファイバーは、酸化処理によって適度に表面が活性化されているので、ラジカルや官能基を生成しやすくなり、素練りによって生成されたエラストマーのフリーラジカルが第2のカーボンナノファイバーと結びつきやすい状態となる。
 次に、図1Bにしめすように、第1のロール10に巻き付けられたエラストマー30のバンク34に、第2のカーボンナノファイバー40を投入し、混練する。エラストマー30と第2のカーボンナノファイバー40とを混合する工程は、オープンロール法に限定されず、例えば密閉式混練法あるいは多軸押出し混練法を用いることもできる。
 さらに、図1Cにしめすように、第1のロール10と第2のロール20とのロール間隔dを、好ましくは0.5mm以下、より好ましくは0~0.5mmの間隔に設定し、混合物36をオープンロール2に投入して薄通しを1回~複数回行なう。薄通しの回数は、例えば1回~10回程度行なうことが好ましい。第1のロール10の表面速度をV1、第2のロール20の表面速度をV2とすると、薄通しにおける両者の表面速度比(V1/V2)は、1.05~3.00であることが好ましく、さらに1.05~1.2であることが好ましい。このような表面速度比を用いることにより、所望の剪断力を得ることができる。薄通しして得られた炭素繊維複合材料50は、ロールで圧延されてシート状に分出しされる。この薄通しの工程では、できるだけ高い剪断力を得るために、ロール温度を好ましくは0~50℃、より好ましくは5~30℃の比較的低い温度に設定して行われ、エラストマー30の実測温度も0~50℃に調整されることが好ましい。このようにして得られた剪断力により、エラストマー30に高い剪断力が作用し、凝集していた第2のカーボンナノファイバー40がエラストマー分子に1本づつ引き抜かれるように相互に分離し、エラストマー30中に分散される。特に、エラストマー30は、弾性と、粘性と、第2のカーボンナノファイバー40との化学的相互作用と、を有するため、第2のカーボンナノファイバー40を容易に分散することができる。そして、第2のカーボンナノファイバー40の分散性および分散安定性(第2のカーボンナノファイバーが再凝集しにくいこと)に優れた炭素繊維複合材料50を得ることができる。
 より具体的には、オープンロールでエラストマーと第2のカーボンナノファイバーとを混合すると、粘性を有するエラストマーが第2のカーボンナノファイバーの相互に侵入し、かつ、エラストマーの特定の部分が化学的相互作用によって第2のカーボンナノファイバーの活性の高い部分と結合する。第2のカーボンナノファイバーの表面は酸化処理によって適度に活性が高いため、エラストマー分子と結合し易い。次に、エラストマーに強い剪断力が作用すると、エラストマー分子の移動に伴って第2のカーボンナノファイバーも移動し、さらに剪断後の弾性によるエラストマーの復元力によって、凝集していた第2のカーボンナノファイバーが分離されて、エラストマー中に分散されることになる。本実施の形態によれば、炭素繊維複合材料が狭いロール間から押し出された際に、エラストマーの弾性による復元力で炭素繊維複合材料はロール間隔より厚く変形する。その変形は、強い剪断力の作用した炭素繊維複合材料をさらに複雑に流動させ、第2のカーボンナノファイバーをエラストマー中に分散させると推測できる。そして、一旦分散した第2のカーボンナノファイバーは、エラストマーとの化学的相互作用によって再凝集することが防止され、良好な分散安定性を有することができる。
 エラストマーに第2のカーボンナノファイバーを剪断力によって分散させる工程は、前記オープンロール法に限定されず、密閉式混練法あるいは多軸押出し混練法を用いることもできる。要するに、この工程では、凝集した第2のカーボンナノファイバーを分離できる剪断力をエラストマーに与えることができればよい。特に、オープンロール法は、ロール温度の管理だけでなく、混合物の実際の温度を測定し管理することができるため、好ましい。
 炭素繊維複合材料の製造方法は、薄通し後の分出しされた炭素繊維複合材料に架橋剤を混合し、架橋して架橋体の炭素繊維複合材料としてもよい。また、炭素繊維複合材料は、架橋させずに成形してもよい。炭素繊維複合材料は、オープンロール法によって得られたシート状のままでもよいし、第2の工程で得られた炭素繊維複合材料を一般に採用されるゴムの成形加工例えば、射出成形法、トランスファー成形法、プレス成形法、押出成形法、カレンダー加工法などによって所望の形状例えばシート状に成形してもよい。
 本実施の形態にかかる炭素繊維複合材料の製造方法において、通常、エラストマーの加工で用いられる配合剤を加えることができる。配合剤としては公知のものを用いることができる。配合剤としては、例えば、架橋剤、加硫剤、加硫促進剤、加硫遅延剤、軟化剤、可塑剤、硬化剤、補強剤、充填剤、老化防止剤、着色剤などを挙げることができる。これらの配合剤は、例えばオープンロールにおける第2のカーボンナノファイバーの投入前にエラストマーに投入することができる。
 なお、本実施の形態にかかる炭素繊維複合材料の製造方法においては、ゴム弾性を有した状態のエラストマーに第2のカーボンナノファイバーを直接混合したが、これに限らず、以下の方法を採用することもできる。まず、第2のカーボンナノファイバーを混合する前に、エラストマーを素練りしてエラストマーの分子量を低下させる。エラストマーは、素練りによって分子量が低下すると、粘度が低下するため、凝集した第2のカーボンナノファイバーの空隙に浸透しやすくなる。原料となるエラストマーは、パルス法NMRを用いてハーンエコー法によって30℃、観測核がHで測定した、未架橋体における、ネットワーク成分の第1のスピン-スピン緩和時間(T2n)が100~3000μ秒のゴム状弾性体である。この原料のエラストマーを素練りしてエラストマーの分子量を低下させ、第1のスピン-スピン緩和時間(T2n)が3000μ秒を越える液体状のエラストマーを得る。なお、素練り後の液体状のエラストマーの第1のスピン-スピン緩和時間(T2n)は、素練りする前の原料のエラストマーの第1のスピン-スピン緩和時間(T2n)の5~30倍であることが好ましい。この素練りは、エラストマーが固体状態のままで行なう一般的な素練りとは異なり、強剪断力を例えばオープンロール法で与えることによってエラストマーの分子を切断し分子量を著しく低下させ、混練に適さない程の流動を示すまで、例えば液体状態になるまで行なわれる。この素練りは、例えばオープンロール法を用いた場合、ロール温度20℃(素練り時間最短60分)~150℃(素練り時間最短10分)で行なわれロール間隔dは例えば0.5mm~1.0mmで、素練りして液体状態のエラストマーに第2のカーボンナノファイバーを投入する。しかしながら、エラストマーは液体状で弾性が著しく低下しているため、エラストマーのフリーラジカルと第2のカーボンナノファイバーが結びついた状態で混練しても凝集した第2のカーボンナノファイバーはあまり分散されない。
 そこで、液体状のエラストマーと第2のカーボンナノファイバーとを混合して得られた混合物中におけるエラストマーの分子量を増大させ、エラストマーの弾性を回復させてゴム状弾性体の混合物を得た後、先に説明したオープンロール法の薄通しなどを実施して第2のカーボンナノファイバーをエラストマー中に均一に分散させる。エラストマーの分子量が増大した混合物は、パルス法NMRを用いてハーンエコー法によって30℃、観測核がHで測定した、ネットワーク成分の第1のスピン-スピン緩和時間(T2n)が3000μ秒以下のゴム状弾性体である。また、エラストマーの分子量が増大したゴム状弾性体の混合物の第1のスピン-スピン緩和時間(T2n)は、素練りする前の原料エラストマーの第1のスピン-スピン緩和時間(T2n)の0.5~10倍であることが好ましい。ゴム状弾性体の混合物の弾性は、エラストマーの分子形態(分子量で観測できる)や分子運動性(T2nで観測できる)によって表すことができる。エラストマーの分子量を増大させる工程は、混合物を加熱処理例えば40℃~100℃に設定された加熱炉内に混合物を配置し、10時間~100時間行なわれることが好ましい。このような加熱処理によって、混合物中に存在するエラストマーのフリーラジカル同士の結合などによって分子鎖が延長され、分子量が増大する。また、エラストマーの分子量の増大を短時間で実施する場合には、架橋剤を少量、例えば架橋剤の適量の1/2以下を混合させておき、混合物を加熱処理(例えばアニーリング処理)し架橋反応によって短時間で分子量を増大させることもできる。架橋反応によってエラストマーの分子量を増大させる場合には、この後の工程で混練が困難にならない程度に架橋剤の配合量、加熱時間及び加熱温度を設定することが好ましい。
 ここで説明した炭素繊維複合材料の製造方法によれば、第2のカーボンナノファイバーを投入する前にエラストマーの粘性を低下させることで、エラストマー中に第2のカーボンナノファイバーをより均一に分散させることができる。より詳細には、先に説明した製造方法のように分子量が大きいエラストマーに第2のカーボンナノファイバーを混合するよりも、分子量が低下した液体状のエラストマーを用いた方が凝集した第2のカーボンナノファイバーの空隙に侵入しやすく、薄通しの工程において第2のカーボンナノファイバーをより均一に分散させることができる。また、エラストマーが分子切断されることで大量に生成されたエラストマーのフリーラジカルが第2のカーボンナノファイバーの適度に酸化された表面とより強固に結合することができるため、さらに第2のカーボンナノファイバーを均一に分散させることができる。したがって、ここで説明した製造方法によれば、先の製造方法よりも少量の第2のカーボンナノファイバーでも同等の性能を得ることができ、高価な第2のカーボンナノファイバーを節約することで経済性も向上する。
 (V)炭素繊維複合材料
 次に、炭素繊維複合材料について説明する。
 炭素繊維複合材料は、エラストマーに、X線光電子分光法(XPS)で測定した表面の酸素濃度が2.6atm%~4.6atm%であるカーボンナノファイバーを含む。第2のカーボンナノファイバーはエラストマー中に均一に分散している。第2のカーボンナノファイバーは、酸化処理されているため、エラストマーとの濡れ性が改善され、炭素繊維複合材料の剛性や柔軟性が改善される。特に、炭素繊維複合材料は、高温における剛性が改善される。
 炭素繊維複合材料は、パルス法NMRを用いてハーンエコー法によって150℃、観測核がHで測定した、無架橋体における、第1のスピン-スピン緩和時間(T2n)は100~3000μ秒であり、第2のスピン-スピン緩和時間を有する成分の成分分率(fnn)は0~0.2であることが好ましい。
 炭素繊維複合材料の150℃で測定したT2n及びfnnは、マトリックスであるエラストマーに第2のカーボンナノファイバーが均一に分散されていることを表すことができる。つまり、エラストマーに第2のカーボンナノファイバーが均一に分散されているということは、エラストマーが第2のカーボンナノファイバーによって拘束されている状態であるともいえる。この状態では、第2のカーボンナノファイバーによって拘束を受けたエラストマー分子の運動性は、第2のカーボンナノファイバーの拘束を受けない場合に比べて小さくなる。そのため、炭素繊維複合材料の第1のスピン-スピン緩和時間(T2n)、第2のスピン-スピン緩和時間(T2nn)及びスピン-格子緩和時間(T1)は、第2のカーボンナノファイバーを含まないエラストマー単体の場合より短くなり、特に第2のカーボンナノファイバーが均一に分散することでより短くなる。特に、酸化処理されていない第1のカーボンナノファイバーをそのままエラストマーに混合した炭素繊維複合材料よりも本実施の形態にかかる炭素繊維複合材料の方が第1のスピン-スピン緩和時間(T2n/150℃)は短くなる傾向にある。
 また、エラストマー分子が第2のカーボンナノファイバーによって拘束された状態では、以下の理由によって、非ネットワーク成分(非網目鎖成分)は減少すると考えられる。すなわち、第2のカーボンナノファイバーによってエラストマーの分子運動性が全体的に低下すると、非ネットワーク成分は容易に運動できなくなる部分が増えて、ネットワーク成分と同等の挙動をしやすくなること、また、非ネットワーク成分(末端鎖)は動きやすいため、第2のカーボンナノファイバーの活性点に吸着されやすくなること、などの理由によって、非ネットワーク成分は減少すると考えられる。そのため、第2のスピン-スピン緩和時間(T2nn)を有する成分の成分分率(fnn)は、fn+fnn=1であるので、第2のカーボンナノファイバーを含まないエラストマー単体の場合より小さくなる。したがって、炭素繊維複合材料は、パルス法NMRを用いてハーンエコー法によって得られる測定値が上記の範囲にあることによって第2のカーボンナノファイバーが均一に分散されていることがわかる。
 以下、本発明の実施例について述べるが、本発明はこれらに限定されるものではない。
 (1)第2のカーボンナノファイバーの作成
 (1-1)縦型加熱炉(内径17.0cm、長さ150cm)の頂部に、スプレーノズルを取り付ける。加熱炉の炉内壁温度(反応温度)を1000℃に昇温・維持し、スプレーノズルから4重量%のフェロセンを含有するベンゼンの液体原料20g/分を100L/分の水素ガスの流量で炉壁に直接噴霧(スプレー)散布するように供給する。この時のスプレーの形状は円錐側面状(ラッパ状ないし傘状)であり、ノズルの頂角が60°である。このような条件の下で、フェロセンは熱分解して鉄微粒子を作り、これがシード(種)となってベンゼンの熱分解による炭素から、カーボンナノファイバーを生成成長させた。本方法で成長したカーボンナノファイバーを5分間隔で掻き落としながら1時間にわたって連続的に製造した。
 このように気相成長法によって製造されたカーボンナノファイバーを、不活性ガス雰囲気中において2800℃で熱処理して黒鉛化した。黒鉛化した第1の(未処理)カーボンナノファイバー(表1では「CNT-N」と示す)は、平均直径87nm、平均長さ10μm、ラマンピーク比(D/G)0.08、窒素吸着比表面積25m/g、表面の酸素濃度2.1atm%であった。
 (1-2)実施例1~12及び比較例10,11に用いる第2のカーボンナノファイバーは、黒鉛化した第1のカーボンナノファイバー100gを大気雰囲気の加熱炉(卓上電気炉AMF-20Nアサヒ理化製作所製)に入れ、表1に示す温度(575℃~720℃)と時間(1時間もしくは2時間)で加熱炉内で保持して熱処理することで酸化処理を行って得た。
 加熱炉の温度設定は、TG(熱質量分析)法を用いて第1のカーボンナノファイバーの質量減少を測定した結果をみて設定した。TG(熱質量分析)法では、第1のカーボンナノファイバーを大気中で昇温したときの質量減少を測定し、図2に示すような温度に対する第2のカーボンナノファイバーの質量変化を示した。このとき、昇温速度は10℃/min、雰囲気は大気(圧縮空気200ml/min)であった。この測定結果から、第1のカーボンナノファイバーの質量が減少(酸化)し始める600℃から第1のカーボンナノファイバーの質量減少が100%(燃え尽きる)になる800℃の間で加熱炉を表1に示すような5つの設定温度に設定し、5種類の第2のカーボンナノファイバーを得た。第2のカーボンナノファイバーは、表1に示すように、加熱炉の設定温度に応じて「CNT-A(575℃)」、「CNT-B(615℃)」、「CNT-C(650℃)」、「CNT-D(690℃)」、「CNT-E(720℃)」とした。なお、加熱炉内の実際の温度は、設定温度に対し±30℃の範囲であった。
 また、5種類の第2のカーボンナノファイバーについて、ラマンピーク比(D/G)、窒素吸着比表面積、表面の酸素濃度を測定し、その結果を表1に示した。また、第1及び第2のカーボンナノファイバーの表面の酸素濃度の測定結果に基づいて、酸化処理を行う前の第1のカーボンナノファイバー(「CNT-N」)の表面酸素濃度(a)に対する各第2のカーボンナノファイバーの表面酸素濃度(b)の増加量(c=b-a)及び表面酸素濃度の増加割合(d=100・c/a)を計算し、表1に示した。ラマンピーク比は、KAISER OPTICAL SYSTEM社製HOLOLAB-5000型(532nmND:YAG)を用いてラマン散乱分光法によって第2のカーボンナノファイバーにおける1600cm-1付近のピーク強度Gに対する1300cm-1付近のピーク強度Dの比(D/G)を測定した。窒素吸着比表面積は、ユアサアイオニクス社製NOVA3000型(窒素ガス)を用いて第2のカーボンナノファイバーの窒素吸着比表面積(m/g)を測定した。第2のカーボンナノファイバーの表面の酸素濃度は、XPS(X線光電子分光分析法(X-ray Photoelectron Spectroscopy))を用いて測定した。具体的には、まず、第2のカーボンナノファイバーを金属台上のカーボンテープ上にふりかけてカーボンテープに付着させ、カーボンテープに付着しなかった余分な第2のカーボンナノファイバーを振り落として取り除いて、金属台をXPS装置の中に装着した。XPS装置は、日本電子社製の「マイクロ分析用X線光電子分光装置JPS-9200(以下、XPS装置)を用いた。そして、次に、粉体状の試料である第2のカーボンナノファイバーをアルゴンガス濃度8×10-2Pa、0.5分間でアルゴンガスエッチングを行い、第2のカーボンナノファイバーの清浄な表面を出した。さらに、XPS装置のX線源を分析径1mm、対陰極Al/Mgツインターゲット、加速電圧10kV、エミッション電流30mAに設定して第2のカーボンナノファイバーの表面の酸素濃度を測定した。XPSによって検出された第2のカーボンナノファイバーの表面の元素は酸素と炭素であった。
Figure JPOXMLDOC01-appb-T000001
 また、カーボンナノファイバーを電子顕微鏡で写真撮影した。図3は第1のカーボンナノファイバー「CNT-N」、図4~図6はそれぞれ第2のカーボンナノファイバー「CNT-B」、「CNT-C」、「CNT-D」の電子顕微鏡写真である。図4~図6の第2のカーボンナノファイバーの表面は、図3の「CNT-N」の第1のカーボンナノファイバーの表面に比べて適度に荒れ(酸化され)ており、エラストマーに対する濡れ性の改善が推測される。
 (2)実施例1~12及び比較例1~11の炭素繊維複合材料サンプルの作製
 実施例1~12及び比較例1~11サンプルとして、オープンロール(ロール設定温度20℃)に、表1に示す所定量のエチレン-プロピレンゴムを投入し、カーボンナノファイバーをエチレンプロピレンゴムに投入し素練りの後、第1の混練工程を行いロールから取り出した。さらに、その混合物をロール温度100℃に設定されたオープンロールに再度投入し、第2の混練工程を行って取り出した。
 次に、この混合物をオープンロール(ロール温度10~20℃、ロール間隔0.3mm)に巻きつけ、薄通しを繰り返し5回行なった。このとき、2本のロールの表面速度比を1.1とした。さらに、ロール間隙を1.1mmにセットして、薄通しして得られた炭素繊維複合材料を投入し、分出しした。
 分出ししたシートを90℃、5分間圧縮成形して厚さ1mmの実施例1~12及び比較例1~11の無架橋体の炭素繊維複合材料サンプルを得た。
また、薄通しして得られた無架橋の炭素繊維複合材料にパーオキサイド2質量部(phr)を混合し、ロール間隙を1.1mmにセットしたオープンロールに投入し、分出しした。分出しして金型サイズに切り取ったパーオキサイドを含む炭素繊維複合材料を金型にセットし、175℃、100kgf/cm、20分間圧縮成形して厚さ1mmの実施例1~12及び比較例1~11の架橋体の炭素繊維複合材料サンプルを得た。
 表2及び表3において、「HAF」は平均粒径27nm、窒素吸着比表面積が82m/gのHAFグレードのカーボンブラックであり、「EPDM」はJSR社製のエチレン-プロピレンゴム(EPDM)の商品名EP103AFであった。また、表2及び表3において、前記(1)で得られた第2のカーボンナノファイバーは「CNT-A」~「CNT-E」とし、酸化処理しない第1のカーボンナノファイバーは「CNT-N」とした。
 (3)実施例13~14及び比較例11~14の炭素繊維複合材料サンプルの作製
 実施例13~14及び比較例11~14サンプルとして、オープンロール(ロール設定温度20℃)に、表4に示す所定量の含フッ素エラストマーを投入し、カーボンナノファイバーを含フッ素エラストマーに投入し素練りの後、混合物をロールから取り出した。
次に、この混合物をオープンロール(ロール温度10~20℃、ロール間隔0.3mm)に巻きつけ、薄通しを繰り返し10回行なった。このとき、2本のロールの表面速度比を1.1とした。さらに、ロール間隙を1.1mmにセットして、薄通しして得られた炭素繊維複合材料を投入し、分出しした。
 分出ししたシートを圧縮成形して厚さ1mmの実施例13~14及び比較例11~14の無架橋体の炭素繊維複合材料サンプルを得た。
また、薄通しして得られた無架橋の炭素繊維複合材料をロールで圧延後、170℃、10分間プレス成形(キュア)した後、さらに200℃、24時間ポストキュアして、実施例13,14及び比較例11~14の架橋体の炭素繊維複合材料(厚さ1mmのシート形状)を得た。
 表4において、「HAF」は平均粒径27nm、窒素吸着比表面積が82m/gのHAFカーボンブラックであり、「2元系FKM」はデュポン・ダウ・エラストマー・ジャパン社製の含フッ素エラストマーのバイトンA-500(分子量50,000)であった。また、表4において、前記(1)の加熱炉温度650℃で得られた第2のカーボンナノファイバーを「CNT-C」とし、酸化処理しない第1のカーボンナノファイバーは「CNT-N」とした。
 (4)パルス法NMRを用いた測定
 実施例1~14及び比較例1~14の各無架橋体の炭素繊維複合材料サンプルについて、パルス法NMRを用いてハーンエコー法による測定を行った。この測定は、日本電子(株)製「JMN-MU25」を用いて行った。測定は、観測核がH、共鳴周波数が25MHz、90゜パルス幅が2μsecの条件で行い、ハーンエコー法のパルスシーケンス(90゜x-Pi-180゜x)にて、Piをいろいろ変えて減衰曲線を測定した。また、サンプルは、磁場の適正範囲までサンプル管に挿入して測定した。測定温度は、150℃であった。この測定によって、各サンプルについて第1のスピン-スピン緩和時間(T2n/150℃)と第2のスピン-スピン緩和時間を有する成分の成分分率(fnn)とを求めた。測定結果を表2~4に示した。なお、同様に測定した原料ゴムの第1のスピンースピン緩和時間(T2n/30℃)は、「EPDM」が520μsec、「2元系FKM」が55μsecであった。また、パルス法NMRを用いてソリッドエコー法による測定を行った。この測定は、日本電子(株)製「JMN-MU25」を用いて行った。測定は、観測核がH、共鳴周波数が25MHz、90゜パルス幅が2μsecの条件で行い、ソリッドエコー法のパルスシーケンス(90゜x-Pi-90゜y)にて、減衰曲線を測定し、無架橋体の炭素繊維複合材料サンプルの150℃におけるスピン-スピン緩和時間(T2s)を検出した。
 (5)硬度の測定
 実施例1~14及び比較例1~14の架橋体の炭素繊維複合材料サンプルのゴム硬度(JIS-A)をJIS K 6253に基づいて測定した。測定結果を表2~4に示す。
 (6)100%モジュラス(M100)の測定
 実施例1~14及び比較例1~14の架橋体の炭素繊維複合材料サンプル(幅5mm×長さ50mm×厚さ1mm)を10mm/minで伸長し、100%変形時の応力(M100:100%モジュラス(MPa))を求めた。測定結果を表2~4に示す。実施例1~12及び比較例1、10の測定結果を図7にフィラーの配合量(phr)に対して100%モジュラス(MPa)の変化をグラフで示した。図7における符号は、それぞれAは「CNT-A(比較例10)」、Bは「CNT-B」,Cは「CNT-C」,Dは「CNT-D」,Hは「HAF」,Nは「CNT-N」、EPDMは「EPDM単体(比較例1)」である。また、この測定結果に基づいて、エラストマー100重量部に配合されたカーボンナノファイバー1重量部当たりにおける、エラストマー単体の100%モジュラスに対する炭素繊維複合材料の100%モジュラスの上昇率(M100上昇率)を計算した。100%モジュラスの上昇率(M100上昇率)は、例えば、実施例1であれば、実施例1と比較例1のM100の差(4.9-1.4=3.5)を比較例1のM100の値(1.4)で割り、さらに実施例1のCNT-Aの配合量(20)で割った百分率(12.5%)である。
 (7)引張強さ(MPa)及び破断伸び(%)の測定
 各架橋体の炭素繊維複合材料サンプルを1A形のダンベル形状に切り出した試験片について、東洋精機社製の引張試験機を用いて、23±2℃、引張速度500mm/minでJIS K6251に基づいて引張試験を行い引張強さ(MPa)及び破断伸び(%)を測定した。これらの結果を表2~4に示す。実施例1~12及び比較例1~9の測定結果を図8にM100(MPa)に対して破断伸び(%)の変化をグラフで示した。図8における符号は、それぞれAは「CNT-A(比較例10)」、Bは「CNT-B」,Cは「CNT-C」,Dは「CNT-D」,Hは「HAF」,Nは「CNT-N」,EPDMは「EPDM単体(比較例1)」である。
 (8)動的粘弾性試験
 実施例1~14及び比較例1~14の架橋体の炭素繊維複合材料サンプルを短冊形(40×1×5(巾)mm)に切り出した試験片について、SII社製の動的粘弾性試験機DMS6100を用いて、チャック間距離20mm、測定温度-100~300℃、動的ひずみ±0.05%、周波数10HzでJIS K6394に基づいて動的粘弾性試験を行い動的弾性率(E’、単位はMPa)を測定した。測定温度が25℃と200℃における動的弾性率(E’)の測定結果を表2~4に示す。また、この測定結果に基づいて、測定温度200℃、エラストマー100重量部に配合されたカーボンナノファイバー1重量部当たりにおける、エラストマー単体の動的弾性率に対する炭素繊維複合材料の動的弾性率の上昇率(E’上昇率)を計算した。動的弾性率の上昇率(E’上昇率)は、例えば、実施例1であれば、実施例1と比較例1のE’上昇率の差(18-4.7=13.3)を比較例1の動的弾性率の値(4.7)で割り、さらに実施例1のCNT-Aの配合量(20)で割った百分率(14.1%)である。
 (9)クリープ特性の測定
 実施例1~14及び比較例1~14の架橋体の炭素繊維複合材料サンプルについて、120℃で250KPaの負荷をかけ、耐熱クリープ試験を行ない、200分~900分の間における定常クリープ期の1時間当たりのクリープ変形速度(ppm/時間)を測定した。クリープ変形速度は、クリープ瞬間ひずみの後かつ加速クリープ期の前の定常クリープ期における1時間当たりのひずみ変化量(1ppm=0.0001%)であり、表2~4では「クリープ速度」と示す。これらの結果を表2~4に示す。
 (10)平均線膨張係数の測定
 実施例1~14及び比較例1~14の架橋体の炭素繊維複合材料サンプルについて、測定温度範囲における平均線膨張係数を測定した。これらの結果を表2~4に示す。測定装置はSII社製TMASS、測定試料形状は1.5mm×1.0mm×10mm、側長荷重は25KPa、測定温度は室温~150℃、昇温速度は2℃/分であった。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 表2~4から、本発明の実施例1~14によれば、以下のことが確認された。すなわち、本発明の実施例1~14の表面が適度に酸化処理されたカーボンナノファイバーを用いた架橋体の炭素繊維複合材料サンプルは、比較例1~14に比べてM100上昇率及びE’上昇率が高く、カーボンナノファイバーとエラストマーとの濡れ性が向上したことによって剛性、特に高温における剛性が向上したことがわかった。また、図7及び図8から、本発明の実施例1~12の架橋体の炭素繊維複合材料サンプルは、比較例1~9に比べてM100が大きくかつ破断伸びが大きいので、剛性と柔軟性とを兼ね備えることがわかった。実施例1~14の無架橋体の炭素繊維複合材料サンプルは、スピン-スピン緩和時間(T2s/150℃)は、同じ量のカーボンナノファイバーを配合した比較例2~5、10、11、13、14に比べT2nが短くなり、fnnが小さくなった。なお、比較例10は、第2のカーボンナノファイバーの表面の酸化処理が不十分であったため、比較例5の第1のカーボンナノファイバーを用いた炭素繊維複合材料の物性とほとんど変わらなかった。また、比較例11は、第2のカーボンナノファイバーの表面が熱処理によって傷みすぎてしまったため、M100、引張強さ及び破断伸びにおける物性が低下した。
10 第1のロール
20 第2のロール
30 エラストマー
36 混合物
40 第2のカーボンナノファイバー
50 炭素繊維複合材料
d  ロール間隔
V1 第1のロールの表面速度
V2 第2のロールの表面速度

Claims (24)

  1.  気相成長法によって製造された第1のカーボンナノファイバーを酸化処理して得られた、X線光電子分光法(XPS)で測定した表面の酸素濃度が2.6atm%~4.6atm%である、カーボンナノファイバー。
  2.  請求項1において、
     ラマン散乱分光法によって測定される1600cm-1付近のピーク強度Gに対する1300cm-1付近のピーク強度Dの比(D/G)が0.12~0.22である、カーボンナノファイバー。
  3.  請求項1または2において、
     窒素吸着比表面積が34m/g~58m/gである、カーボンナノファイバー。
  4.  請求項1~3のいずれかにおいて、
     平均直径が4nm~230nmである、カーボンナノファイバー。
  5.  気相成長法によって製造された第1のカーボンナノファイバーを酸化処理して第2のカーボンナノファイバーを得る工程を有し、
     X線光電子分光法(XPS)で測定した、前記第1のカーボンナノファイバーの表面の酸素濃度に対する前記第2のカーボンナノファイバーの表面の酸素濃度の増加量は、0.5atm%~2.6atm%である、カーボンナノファイバーの製造方法。
  6.  気相成長法によって製造された第1のカーボンナノファイバーを酸化処理して第2のカーボンナノファイバーを得る工程を有し、
     X線光電子分光法(XPS)で測定した、前記第1のカーボンナノファイバーの表面の酸素濃度に対する前記第2のカーボンナノファイバーの表面の酸素濃度の増加割合は、20%~120%である、カーボンナノファイバーの製造方法。
  7.  請求項5または6において、
     前記工程は、前記第1のカーボンナノファイバーを酸素を含有する雰囲気中で600℃~800℃で熱処理する、カーボンナノファイバーの製造方法。
  8.  請求項5~7のいずれかにおいて、
     前記工程は、前記第1のカーボンナノファイバーの質量を2%~20%減量して前記第2のカーボンナノファイバーを得る、カーボンナノファイバーの製造方法。
  9.  請求項5~8のいずれかにおいて、
     前記工程で得られた前記第2のカーボンナノファイバーは、X線光電子分光法(XPS)で測定した表面の酸素濃度が2.6atm%~4.6atm%である、カーボンナノファイバーの製造方法。
  10.  請求項5~9のいずれかにおいて、
     前記工程で得られた前記第2のカーボンナノファイバーは、ラマン散乱分光法によって測定される1600cm-1付近のピーク強度Gに対する1300cm-1付近のピーク強度Dの比(D/G)が0.12~0.22である、カーボンナノファイバーの製造方法。
  11.  請求項5~10のいずれかにおいて、
     前記工程で得られた前記第2のカーボンナノファイバーは、窒素吸着比表面積が34m/g~58m/gである、カーボンナノファイバーの製造方法。
  12.  請求項5~11のいずれかにおいて、
     前記工程で得られた前記第2のカーボンナノファイバーは、平均直径が4nm~230nmである、カーボンナノファイバーの製造方法。
  13.  気相成長法によって製造された第1のカーボンナノファイバーを酸化処理して表面が酸化された第2のカーボンナノファイバーを得る第1の工程と、
     前記第2のカーボンナノファイバーを、エラストマーに混合し、剪断力で該エラストマー中に均一に分散して炭素繊維複合材料を得る第2の工程と、
     を含み、
     前記第1の工程で得られた前記第2のカーボンナノファイバーのX線光電子分光法(XPS)で測定した表面の酸素濃度が2.6atm%~4.6atm%である、炭素繊維複合材料の製造方法。
  14.  請求項13において、
     前記第1の工程は、X線光電子分光法(XPS)で測定した、前記第1のカーボンナノファイバーの表面の酸素濃度に対する前記第2のカーボンナノファイバーの表面の酸素濃度の増加量が、0.5atm%~2.6atm%になるように酸化処理する、カーボンナノファイバーの製造方法。
  15.  請求項13において、
     前記第1の工程は、X線光電子分光法(XPS)で測定した、前記第1のカーボンナノファイバーの表面の酸素濃度に対する前記第2のカーボンナノファイバーの表面の酸素濃度の増加割合が、20%~120%になるように酸化処理する、カーボンナノファイバーの製造方法。
  16.  請求項13~15のいずれかにおいて、
     前記第1の工程は、前記第1のカーボンナノファイバーを酸素を含有する雰囲気中で600℃~800℃で熱処理する、炭素繊維複合材料の製造方法。
  17.  請求項13~16のいずれかにおいて、
     前記第1の工程は、前記第1のカーボンナノファイバーの質量を2%~20%減量して前記第2のカーボンナノファイバーを得る、炭素繊維複合材料の製造方法。
  18.  請求項13~17のいずれかにおいて、
     前記第2のカーボンナノファイバーは、ラマン散乱分光法によって測定される1600cm-1付近のピーク強度Gに対する1300cm-1付近のピーク強度Dの比(D/G)が0.12~0.22である、炭素繊維複合材料の製造方法。
  19.  請求項13~18のいずれかにおいて、
     前記第2のカーボンナノファイバーは、窒素吸着比表面積が34m/g~58m/gである、炭素繊維複合材料の製造方法。
  20.  請求項13~19のいずれかにおいて、
     前記第1のカーボンナノファイバーは、平均直径が4nm~250nmである、炭素繊維複合材料の製造方法。
  21.  請求項13~20のいずれかで製造された炭素繊維複合材料。
  22.  エラストマーに、X線光電子分光法(XPS)で測定した表面の酸素濃度が2.6atm%~4.6atm%であるカーボンナノファイバーを含む、炭素繊維複合材料。
  23.  請求項22において、
     前記カーボンナノファイバーは、ラマン散乱分光法によって測定される1600cm-1付近のピーク強度Gに対する1300cm-1付近のピーク強度Dの比(D/G)が0.12~0.22である、炭素繊維複合材料。
  24.  請求項22または23において、
     前記第2のカーボンナノファイバーは、窒素吸着比表面積が34m/g~58m/gである、炭素繊維複合材料。
PCT/JP2009/057198 2008-04-16 2009-04-08 カーボンナノファイバー及びその製造方法、カーボンナノファイバーを用いた炭素繊維複合材料の製造方法及び炭素繊維複合材料 WO2009128374A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US12/937,415 US8263698B2 (en) 2008-04-16 2009-04-08 Carbon nanofiber, method for production thereof, method for production of carbon fiber composite material using carbon nanofiber, and carbon fiber composite material
EP09733163.1A EP2270266B1 (en) 2008-04-16 2009-04-08 Carbon nanofiber, method for production thereof, method for production of carbon fiber composite material using carbon nanofiber, and carbon fiber composite material
CN200980113515XA CN102007236B (zh) 2008-04-16 2009-04-08 碳纳米纤维及其制备方法、使用了碳纳米纤维的碳纤维复合材料的制备方法以及碳纤维复合材料
US13/566,577 US8415420B2 (en) 2008-04-16 2012-08-03 Carbon nanofiber, method for production thereof, method for production of carbon fiber composite material using carbon nanofiber, and carbon fiber composite material

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2008106581 2008-04-16
JP2008-106581 2008-04-16
JP2008-181248 2008-07-11
JP2008181248A JP5179979B2 (ja) 2008-04-16 2008-07-11 カーボンナノファイバー及びその製造方法、カーボンナノファイバーを用いた炭素繊維複合材料の製造方法及び炭素繊維複合材料

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US12/937,415 A-371-Of-International US8263698B2 (en) 2008-04-16 2009-04-08 Carbon nanofiber, method for production thereof, method for production of carbon fiber composite material using carbon nanofiber, and carbon fiber composite material
US13/566,577 Division US8415420B2 (en) 2008-04-16 2012-08-03 Carbon nanofiber, method for production thereof, method for production of carbon fiber composite material using carbon nanofiber, and carbon fiber composite material

Publications (1)

Publication Number Publication Date
WO2009128374A1 true WO2009128374A1 (ja) 2009-10-22

Family

ID=41199071

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/057198 WO2009128374A1 (ja) 2008-04-16 2009-04-08 カーボンナノファイバー及びその製造方法、カーボンナノファイバーを用いた炭素繊維複合材料の製造方法及び炭素繊維複合材料

Country Status (6)

Country Link
US (2) US8263698B2 (ja)
EP (1) EP2270266B1 (ja)
JP (1) JP5179979B2 (ja)
KR (1) KR101259693B1 (ja)
CN (1) CN102007236B (ja)
WO (1) WO2009128374A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011077595A1 (ja) * 2009-12-25 2011-06-30 日信工業株式会社 動的シール部材
WO2011077596A1 (ja) * 2009-12-25 2011-06-30 日信工業株式会社 シール部材
WO2011077598A1 (ja) * 2009-12-25 2011-06-30 日信工業株式会社 炭素繊維複合材料及びその製造方法、絶縁性物品、電子部品、及び検層装置
WO2011077597A1 (ja) * 2009-12-25 2011-06-30 日信工業株式会社 シール部材
US8403332B2 (en) 2009-12-28 2013-03-26 Nissan Kogyo Co., Ltd Seal member
US8614273B2 (en) 2009-12-28 2013-12-24 Nissin Kogyo Co., Ltd. Seal member
US8901228B2 (en) 2009-12-28 2014-12-02 Nissin Kogyo Co., Ltd. Carbon fiber composite material, method of producing the same, insulating article, electronic part, and logging tool

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2311922B1 (en) * 2008-07-11 2019-09-04 Nissin Kogyo Co., Ltd. Sealing member for piping material having excellent chlorine resistance, method for producing sealing member for piping material having excellent chlorine resistance, sealing member for piping material having excellent oil resistance, and piping material
JP5112202B2 (ja) * 2008-07-11 2013-01-09 日信工業株式会社 耐塩素性に優れた炭素繊維複合材料及びその製造方法
CN102459727B (zh) 2009-04-17 2015-04-15 赛尔斯通股份有限公司 还原碳氧化合物生成固态碳的方法
ES2369811B1 (es) * 2010-05-04 2012-10-15 Consejo Superior De Investigaciones Científicas (Csic) Procedimiento de obtención de materiales nanocompuestos.
EP2585402A2 (en) * 2010-06-22 2013-05-01 Designed Nanotubes, LLC Modified carbon nanotubes, methods for production thereof and products obtained therefrom
CN103313935A (zh) * 2010-12-14 2013-09-18 思迪隆欧洲有限公司 改进的弹性体配制物
EP2838844A4 (en) 2012-04-16 2015-10-28 Seerstone Llc METHOD FOR TREATING A GAS CLEARANCE CONTAINING CARBON OXIDES
NO2749379T3 (ja) 2012-04-16 2018-07-28
WO2013158161A1 (en) 2012-04-16 2013-10-24 Seerstone Llc Methods and systems for capturing and sequestering carbon and for reducing the mass of carbon oxides in a waste gas stream
CN104271498B (zh) 2012-04-16 2017-10-24 赛尔斯通股份有限公司 用非铁催化剂来还原碳氧化物的方法和结构
JP2015514669A (ja) 2012-04-16 2015-05-21 シーアストーン リミテッド ライアビリティ カンパニー 二酸化炭素を還元することによって固体炭素を生成するための方法
US9896341B2 (en) 2012-04-23 2018-02-20 Seerstone Llc Methods of forming carbon nanotubes having a bimodal size distribution
US10815124B2 (en) 2012-07-12 2020-10-27 Seerstone Llc Solid carbon products comprising carbon nanotubes and methods of forming same
CN107651667A (zh) 2012-07-12 2018-02-02 赛尔斯通股份有限公司 包含碳纳米管的固体碳产物以及其形成方法
JP6025979B2 (ja) 2012-07-13 2016-11-16 シーアストーン リミテッド ライアビリティ カンパニー アンモニアおよび固体炭素生成物を形成するための方法およびシステム
US9779845B2 (en) 2012-07-18 2017-10-03 Seerstone Llc Primary voltaic sources including nanofiber Schottky barrier arrays and methods of forming same
JP2014101233A (ja) * 2012-11-16 2014-06-05 Asahi Kasei Chemicals Corp 表面処理カーボンナノチューブ
JP2014101234A (ja) * 2012-11-16 2014-06-05 Asahi Kasei Chemicals Corp 表面処理カーボンナノチューブ
WO2014085378A1 (en) 2012-11-29 2014-06-05 Seerstone Llc Reactors and methods for producing solid carbon materials
WO2014151119A2 (en) 2013-03-15 2014-09-25 Seerstone Llc Electrodes comprising nanostructured carbon
WO2014151144A1 (en) 2013-03-15 2014-09-25 Seerstone Llc Carbon oxide reduction with intermetallic and carbide catalysts
WO2014151138A1 (en) 2013-03-15 2014-09-25 Seerstone Llc Reactors, systems, and methods for forming solid products
EP3129133A4 (en) 2013-03-15 2018-01-10 Seerstone LLC Systems for producing solid carbon by reducing carbon oxides
EP3114077A4 (en) 2013-03-15 2017-12-27 Seerstone LLC Methods of producing hydrogen and solid carbon
WO2014183024A1 (en) 2013-05-09 2014-11-13 University Of Houston Solution based polymer nanofiller-composites synthesis
US9708461B2 (en) 2014-04-02 2017-07-18 Gates Corporation Method for rubber reinforced with carbon nanotubes
DE102015200836A1 (de) * 2015-01-20 2016-07-21 Bayerische Motoren Werke Aktiengesellschaft Verfahren zur Bestimmung einer Oberflächenstrukturveränderung zumindest einer Carbonfaser
KR102010459B1 (ko) * 2016-01-20 2019-08-13 주식회사 엘지화학 카본나노튜브 펠렛 및 이의 제조방법
WO2018022999A1 (en) 2016-07-28 2018-02-01 Seerstone Llc. Solid carbon products comprising compressed carbon nanotubes in a container and methods of forming same
CN108981994A (zh) * 2018-06-25 2018-12-11 江苏大学 一种确定茶树茎秆剪切力的方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61218661A (ja) * 1985-03-23 1986-09-29 Asahi Chem Ind Co Ltd 炭素質繊維複合樹脂組成物
JPS61225326A (ja) * 1985-03-23 1986-10-07 Asahi Chem Ind Co Ltd 酸性基を有する炭素質繊維
JPS61225325A (ja) * 1985-03-23 1986-10-07 Asahi Chem Ind Co Ltd 炭素質繊維
JPH02259120A (ja) * 1989-03-29 1990-10-19 Asahi Chem Ind Co Ltd 表面付着物が存在しない炭素繊維
JPH0812310A (ja) * 1994-07-05 1996-01-16 Nec Corp 液相におけるカーボン・ナノチューブの精製・開口方法および官能基の導入方法
EP1466940A1 (en) * 2003-04-09 2004-10-13 Nissin Kogyo Co., Ltd Carbon fiber composite material and process for producing the same
JP2006198393A (ja) 2004-12-21 2006-08-03 Shinshu Univ 医療機器
WO2007037260A1 (ja) * 2005-09-29 2007-04-05 Toray Industries, Inc. 繊維強化熱可塑性樹脂組成物、その製造方法、及び熱可塑性樹脂用炭素繊維
WO2007099975A1 (ja) * 2006-02-28 2007-09-07 Toyo Boseki Kabushiki Kaisha カーボンナノチューブ集合体、カーボンナノチューブ繊維及びカーボンナノチューブ繊維の製造方法
JP2007254271A (ja) * 2006-03-22 2007-10-04 Sony Corp 炭素材料の製造方法、炭素材料および電子素子の製造方法

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4816289A (en) * 1984-04-25 1989-03-28 Asahi Kasei Kogyo Kabushiki Kaisha Process for production of a carbon filament
ZA907803B (en) * 1989-09-28 1991-07-31 Hyperion Catalysis Int Electrochemical cells and preparing carbon fibrils
US5618875A (en) * 1990-10-23 1997-04-08 Catalytic Materials Limited High performance carbon filament structures
RU94046136A (ru) * 1992-05-22 1996-09-27 Хайперион Каталайзис Интернэшнл Способ изготовления фибриллообразующего катализатора, катализатор для получения углеродных фибрилл /варианты/. способ получения углеродных фибрилл /варианты/, углеродный фибриллярный материал, носитель для катализатора, углеродная фибрилла
US6649225B2 (en) * 1999-04-07 2003-11-18 Board Of Trustees Of Michigan State University Process for the treatment of a fiber
ATE514804T1 (de) * 1999-07-21 2011-07-15 Hyperion Catalysis Int Verfahren zur oxidation von mehrwandigen kohlenstoffnanoröhren
US6872681B2 (en) 2001-05-18 2005-03-29 Hyperion Catalysis International, Inc. Modification of nanotubes oxidation with peroxygen compounds
JP4294042B2 (ja) * 2003-04-09 2009-07-08 日信工業株式会社 炭素繊維複合材料の製造方法
JP4005058B2 (ja) * 2003-07-23 2007-11-07 日信工業株式会社 炭素繊維複合材料及びその製造方法、炭素繊維複合成形品及びその製造方法
JP4149413B2 (ja) * 2004-05-21 2008-09-10 日信工業株式会社 炭素繊維複合材料及びその製造方法
JP4245514B2 (ja) * 2004-05-24 2009-03-25 日信工業株式会社 炭素繊維複合材料及びその製造方法、炭素繊維複合金属材料の製造方法、炭素繊維複合非金属材料の製造方法
US8052918B2 (en) * 2004-07-21 2011-11-08 Nissin Kogyo Co., Ltd. Carbon-based material and method of producing the same, and composite material and method of producing the same
JP2006167710A (ja) * 2004-11-22 2006-06-29 Nissin Kogyo Co Ltd 薄膜の製造方法及び薄膜が形成された基材、電子放出材料及びその製造方法並びに電子放出装置
JP4696598B2 (ja) * 2005-03-04 2011-06-08 Jfeエンジニアリング株式会社 カーボンナノチューブ
JP2007039638A (ja) * 2005-03-23 2007-02-15 Nissin Kogyo Co Ltd 炭素繊維複合材料
JP2007039649A (ja) 2005-06-30 2007-02-15 Nissin Kogyo Co Ltd 複合材料
JP4224499B2 (ja) * 2005-06-30 2009-02-12 日信工業株式会社 繊維複合材料の製造方法
JP4810382B2 (ja) * 2005-11-11 2011-11-09 日信工業株式会社 熱可塑性樹脂組成物及びその製造方法
US20070293848A1 (en) * 2005-12-06 2007-12-20 Morinobu Endo Medical Instrument
JP4427034B2 (ja) * 2006-04-28 2010-03-03 日信工業株式会社 炭素繊維複合材料
JP4231916B2 (ja) * 2006-04-28 2009-03-04 日信工業株式会社 炭素繊維複合樹脂材料の製造方法
US7960467B2 (en) * 2006-11-30 2011-06-14 Nissin Kogyo Co., Ltd. Carbon fiber composite material and method of producing the same
US20090000880A1 (en) * 2006-11-30 2009-01-01 Nissin Kogyo Co., Ltd. Disc brake shim plate
MX2010010192A (es) * 2008-04-07 2010-10-04 Schlumberger Technology Bv Material de sellado resistente al calor, miembro de sellado sin extremos utilizando el material de sellado resistente al calor, y aparato para perforacion de pozos que incluye el miembro de sellado sin extremos.
EP2301992A4 (en) * 2008-07-10 2012-05-30 Nissin Kogyo Kk METHOD FOR PRODUCING CARBON NANOFIBER, CARBON NANOFIBER, METHOD FOR PRODUCING CARBON FIBER COMPOUND MATERIAL FROM CARBON NANOFIBER AND CARBON FIBER COMPOSITE MATERIAL
CN102089362A (zh) * 2008-07-10 2011-06-08 日信工业株式会社 碳纳米纤维及其制造方法以及碳纤维复合材料
EP2311922B1 (en) * 2008-07-11 2019-09-04 Nissin Kogyo Co., Ltd. Sealing member for piping material having excellent chlorine resistance, method for producing sealing member for piping material having excellent chlorine resistance, sealing member for piping material having excellent oil resistance, and piping material
US8901228B2 (en) 2009-12-28 2014-12-02 Nissin Kogyo Co., Ltd. Carbon fiber composite material, method of producing the same, insulating article, electronic part, and logging tool
US20110156357A1 (en) 2009-12-28 2011-06-30 Nissin Kogyo Co., Ltd. Dynamic seal member
US8614273B2 (en) 2009-12-28 2013-12-24 Nissin Kogyo Co., Ltd. Seal member
US8403332B2 (en) 2009-12-28 2013-03-26 Nissan Kogyo Co., Ltd Seal member

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61218661A (ja) * 1985-03-23 1986-09-29 Asahi Chem Ind Co Ltd 炭素質繊維複合樹脂組成物
JPS61225326A (ja) * 1985-03-23 1986-10-07 Asahi Chem Ind Co Ltd 酸性基を有する炭素質繊維
JPS61225325A (ja) * 1985-03-23 1986-10-07 Asahi Chem Ind Co Ltd 炭素質繊維
JPH02259120A (ja) * 1989-03-29 1990-10-19 Asahi Chem Ind Co Ltd 表面付着物が存在しない炭素繊維
JPH0812310A (ja) * 1994-07-05 1996-01-16 Nec Corp 液相におけるカーボン・ナノチューブの精製・開口方法および官能基の導入方法
EP1466940A1 (en) * 2003-04-09 2004-10-13 Nissin Kogyo Co., Ltd Carbon fiber composite material and process for producing the same
JP2005097525A (ja) 2003-04-09 2005-04-14 Nissin Kogyo Co Ltd 炭素繊維複合材料およびその製造方法
JP2006198393A (ja) 2004-12-21 2006-08-03 Shinshu Univ 医療機器
WO2007037260A1 (ja) * 2005-09-29 2007-04-05 Toray Industries, Inc. 繊維強化熱可塑性樹脂組成物、その製造方法、及び熱可塑性樹脂用炭素繊維
WO2007099975A1 (ja) * 2006-02-28 2007-09-07 Toyo Boseki Kabushiki Kaisha カーボンナノチューブ集合体、カーボンナノチューブ繊維及びカーボンナノチューブ繊維の製造方法
JP2007254271A (ja) * 2006-03-22 2007-10-04 Sony Corp 炭素材料の製造方法、炭素材料および電子素子の製造方法

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011077595A1 (ja) * 2009-12-25 2011-06-30 日信工業株式会社 動的シール部材
WO2011077596A1 (ja) * 2009-12-25 2011-06-30 日信工業株式会社 シール部材
WO2011077598A1 (ja) * 2009-12-25 2011-06-30 日信工業株式会社 炭素繊維複合材料及びその製造方法、絶縁性物品、電子部品、及び検層装置
WO2011077597A1 (ja) * 2009-12-25 2011-06-30 日信工業株式会社 シール部材
JPWO2011077597A1 (ja) * 2009-12-25 2013-05-02 日信工業株式会社 シール部材
JP5546556B2 (ja) * 2009-12-25 2014-07-09 日信工業株式会社 動的シール部材
JP5592401B2 (ja) * 2009-12-25 2014-09-17 日信工業株式会社 シール部材
JP5592400B2 (ja) * 2009-12-25 2014-09-17 日信工業株式会社 シール部材
JP5647152B2 (ja) * 2009-12-25 2014-12-24 日信工業株式会社 炭素繊維複合材料及びその製造方法、絶縁性物品、電子部品、及び検層装置
US8403332B2 (en) 2009-12-28 2013-03-26 Nissan Kogyo Co., Ltd Seal member
US8614273B2 (en) 2009-12-28 2013-12-24 Nissin Kogyo Co., Ltd. Seal member
US8901228B2 (en) 2009-12-28 2014-12-02 Nissin Kogyo Co., Ltd. Carbon fiber composite material, method of producing the same, insulating article, electronic part, and logging tool

Also Published As

Publication number Publication date
US20110060087A1 (en) 2011-03-10
KR20100134759A (ko) 2010-12-23
CN102007236A (zh) 2011-04-06
CN102007236B (zh) 2013-08-07
US8263698B2 (en) 2012-09-11
EP2270266A4 (en) 2012-07-04
EP2270266A1 (en) 2011-01-05
JP5179979B2 (ja) 2013-04-10
US20120309887A1 (en) 2012-12-06
JP2009275337A (ja) 2009-11-26
KR101259693B1 (ko) 2013-05-02
US8415420B2 (en) 2013-04-09
EP2270266B1 (en) 2017-10-04

Similar Documents

Publication Publication Date Title
JP5179979B2 (ja) カーボンナノファイバー及びその製造方法、カーボンナノファイバーを用いた炭素繊維複合材料の製造方法及び炭素繊維複合材料
WO2010004634A1 (ja) カーボンナノファイバー及びその製造方法並びに炭素繊維複合材料
US8513348B2 (en) Carbon nanofibers, method of producing carbon nanofibers, carbon fiber composite material using carbon nanofibers, and method of producing the carbon fiber composite material
US7927692B2 (en) Carbon fiber composite material and process for producing the same
JP4810382B2 (ja) 熱可塑性樹脂組成物及びその製造方法
JP4842888B2 (ja) カーボンナノファイバー及びその製造方法並びに炭素繊維複合材料
US7960467B2 (en) Carbon fiber composite material and method of producing the same
JP2007297496A (ja) 炭素繊維複合材料
KR20110134910A (ko) 탄소 나노튜브를 갖는 폴리우레탄 화합물
JP2007154150A (ja) 熱硬化性樹脂組成物及びその製造方法
JP2008143963A (ja) 炭素繊維複合材料
JP5171786B2 (ja) カーボンナノファイバー集合体、カーボンナノファイバーの製造方法及び炭素繊維複合材料の製造方法
JP5146804B2 (ja) カーボンナノファイバーを用いた炭素繊維複合材料の製造方法
JP4383474B2 (ja) 炭素繊維複合材料及びその製造方法
JP7010792B2 (ja) 炭素繊維複合材料及び炭素繊維複合材料の製造方法
JP2008027854A (ja) 電子放出材料及びその製造方法、電子放出材料が形成された基材、電子放出装置
JP5085341B2 (ja) 炭素繊維複合材料の製造方法及び炭素繊維複合金属材料の製造方法
JP5085291B2 (ja) 複合金属材料の製造方法及び複合金属材料
JP2009161844A (ja) 炭素繊維複合金属材料の製造方法及び炭素繊維複合金属材料
JP2013049752A (ja) 炭素繊維複合材料及びその製造方法並びに義肢補綴装置用ライナー

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980113515.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09733163

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2009733163

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2009733163

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20107025693

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 12937415

Country of ref document: US