WO2009123042A1 - 摩擦材及び摩擦材用樹脂組成物 - Google Patents

摩擦材及び摩擦材用樹脂組成物 Download PDF

Info

Publication number
WO2009123042A1
WO2009123042A1 PCT/JP2009/056255 JP2009056255W WO2009123042A1 WO 2009123042 A1 WO2009123042 A1 WO 2009123042A1 JP 2009056255 W JP2009056255 W JP 2009056255W WO 2009123042 A1 WO2009123042 A1 WO 2009123042A1
Authority
WO
WIPO (PCT)
Prior art keywords
friction material
group
imide oligomer
aromatic imide
reactive group
Prior art date
Application number
PCT/JP2009/056255
Other languages
English (en)
French (fr)
Inventor
小沢 秀生
三津志 田口
Original Assignee
宇部興産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宇部興産株式会社 filed Critical 宇部興産株式会社
Priority to US12/935,702 priority Critical patent/US8748509B2/en
Priority to EP09727559.8A priority patent/EP2270075A4/en
Publication of WO2009123042A1 publication Critical patent/WO2009123042A1/ja

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D69/00Friction linings; Attachment thereof; Selection of coacting friction substances or surfaces
    • F16D69/02Compositions of linings; Methods of manufacturing
    • F16D69/025Compositions based on an organic binder
    • F16D69/026Compositions based on an organic binder containing fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1003Preparatory processes
    • C08G73/1007Preparatory processes from tetracarboxylic acids or derivatives and diamines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1003Preparatory processes
    • C08G73/1007Preparatory processes from tetracarboxylic acids or derivatives and diamines
    • C08G73/101Preparatory processes from tetracarboxylic acids or derivatives and diamines containing chain terminating or branching agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1003Preparatory processes
    • C08G73/1007Preparatory processes from tetracarboxylic acids or derivatives and diamines
    • C08G73/101Preparatory processes from tetracarboxylic acids or derivatives and diamines containing chain terminating or branching agents
    • C08G73/1014Preparatory processes from tetracarboxylic acids or derivatives and diamines containing chain terminating or branching agents in the form of (mono)anhydrid
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1067Wholly aromatic polyimides, i.e. having both tetracarboxylic and diamino moieties aromatically bound
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/12Unsaturated polyimide precursors
    • C08G73/121Preparatory processes from unsaturated precursors and polyamines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/12Unsaturated polyimide precursors
    • C08G73/121Preparatory processes from unsaturated precursors and polyamines
    • C08G73/122Preparatory processes from unsaturated precursors and polyamines containing chain terminating or branching agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/12Unsaturated polyimide precursors
    • C08G73/126Unsaturated polyimide precursors the unsaturated precursors being wholly aromatic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08L79/085Unsaturated polyimide precursors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D69/00Friction linings; Attachment thereof; Selection of coacting friction substances or surfaces
    • F16D69/02Compositions of linings; Methods of manufacturing
    • F16D69/025Compositions based on an organic binder

Definitions

  • the present invention relates to a friction material and a resin composition for a friction material.
  • the present invention relates to a friction material and a resin composition for a friction material that are extremely excellent in heat resistance and mechanical strength and have good moldability.
  • Friction materials used for brake pads, brake linings, clutch facings, control wheels, etc. for automobiles, industrial vehicles, railway vehicles, aircraft, etc. adopt phenol resin as a binder, phenol resin, glass fiber, aramid fiber, A resin composition for a friction material obtained by mixing fibers such as metal fibers and inorganic fillers such as calcium carbonate and barium sulfate has been widely used.
  • Patent Document 1 describes a phenol resin composition that can be suitably used for a friction material or the like.
  • the cured molded body of this composition is such that the bending strength after a thermal history of 8 hours at 350 ° C. decreases to 43% of the normal bending strength (Example 1), and is excellent as a phenol resin composition. It had heat resistance.
  • Patent Documents 2 and 3 describe that it is not preferable to use a flame retardant such as an antimony compound or a reinforcing material such as asbestos fiber that has been adopted for the purpose of improving heat resistance and flame resistance in friction material applications. Yes. For these reasons, there has been a demand for a friction material and a resin composition for the friction material in which the heat resistance and mechanical properties of the binder itself are further improved.
  • Patent Document 4 filled articles using a mixture of a high molecular weight linear aromatic polyimide particle containing a ketonic carbonyl group and a low molecular weight linear aromatic polyimide particle having an amine end group are used for brakes and clutches. It describes that it may be used for lining and the like.
  • the compression operation is compression at about 400 to 420 ° C. at 35 MPa, or compression at room temperature at 690 MPa, and the heat treatment method is performed at about 425 to 435 ° C. after heating to 400 ° C. for about 3 hours. It was heated for 1 hour, and the moldability was severe and complicated, which was not suitable.
  • Patent Document 5 describes an aromatic imide oligomer having an addition reactive group at the terminal. Here, it is described that a composite material with fibers is obtained using the solution of the aromatic imide oligomer, but there is no description about the friction material.
  • a friction material comprising a friction material resin composition containing an aromatic imide oligomer having an addition reactive group at a terminal.
  • the friction material according to Item 1 wherein the addition reactive group is any reactive group selected from the group consisting of a phenylethynyl group, an acetylene group, a nadic acid group, and a maleimide group.
  • the tetracarboxylic acid component of the aromatic imide oligomer is 2,3,3 ′, 4′-biphenyltetracarboxylic dianhydride, 2,2 ′, 3,3′-biphenyltetracarboxylic dianhydride, 3,3 Consists of at least one tetracarboxylic dianhydride selected from the group consisting of ', 4,4'-biphenyltetracarboxylic dianhydride and 3,3', 4,4'-benzophenonetetracarboxylic dianhydride Item 3.
  • the friction material according to Item 1 or 2 wherein
  • the diamine component of the aromatic imide oligomer is 1,3-diaminobenzene, 1,3-bis (4-aminophenoxy) benzene, 3,4'-diaminodiphenyl ether, 4,4'-diaminodiphenyl ether, and 2,2 ' Item 4.
  • Item 5 The friction material according to any one of Items 1 to 4, wherein the number of repeating units (average value) of the aromatic imide oligomer is 0.5 to 20. 6).
  • Item 6 The friction material according to any one of Items 1 to 5, wherein the aromatic imide oligomer is represented by the following chemical formula (1).
  • R is an aromatic diamine residue
  • n is an integer of 0-20. 7
  • It contains an aromatic imide oligomer powder having an addition reactive group at the end, at least one fiber selected from the group consisting of carbon fiber, aramid fiber, glass fiber, ceramic fiber and metal fiber, and an inorganic filler.
  • a resin composition for a friction material is an aromatic diamine residue, and n is an integer of 0-20. 7).
  • the friction material of the present invention is characterized by using a friction material resin composition containing an aromatic imide oligomer having an addition reactive group at the terminal as a binder.
  • the aromatic imide oligomer having an addition reactive group at this end is composed of an aromatic tetracarboxylic dianhydride, an aromatic diamine, and a compound having an anhydride group or an amino group together with an addition reactive group in the molecule. It can be easily obtained by using the total equivalent amount and the total of each amino group so as to be approximately equivalent, and preferably reacting in a solvent.
  • the reaction is preferably carried out at a temperature of 100 ° C. or lower, particularly 80 ° C.
  • a method comprising two steps of heating at a high temperature of about 0 ° C. and thermal imidization is preferred.
  • a one-step process is preferred in which the polymerization / imidization reaction is carried out at a high temperature of 140 to 270 ° C. from the beginning, preferably for 0.1 to 50 hours.
  • the solvent used in these reactions is not limited, but N-methyl-2-pyrrolidone, N, N-dimethylformamide, N, N-dimethylacetamide, N, N-diethylacetamide, ⁇ -butyllactone, An organic polar solvent such as N-methylcaprolactam is preferred because of its excellent solubility.
  • the aromatic imide oligomer reaction solution having an addition reactive group at the terminal obtained by the above reaction is mixed with a non-solvent having low solubility such as water, alcohol, hexane, etc.
  • the aromatic imide oligomer it has can be suitably deposited as a powder. This powder can be easily separated from the solvent by means such as filtration. By drying the powder at a temperature lower than the temperature at which the terminal addition reactive group reacts, for example, 100 ° C. or lower, preferably 80 ° C. or lower, more preferably room temperature (around 25 ° C.), if necessary, under reduced pressure, An aromatic imide oligomer powder having an addition reactive group at the terminal can be suitably obtained.
  • the terminal addition reactive group of the aromatic imide oligomer is not particularly limited as long as it is a group that undergoes a curing reaction (addition polymerization reaction) by heating when producing the friction material from the resin composition for friction material.
  • a curing reaction can be suitably performed during production of the friction material and that the obtained cured product has good heat resistance, preferably a phenylethynyl group, an acetylene group, a nadic acid group, and It is any reactive group selected from the group consisting of maleimide groups, more preferably a phenylethynyl group or an acetylene group, and still more preferably a phenylethynyl group.
  • the phenylethynyl group does not generate a gas component due to the curing reaction, and has excellent mechanical strength such as excellent heat resistance and excellent elongation at break of the obtained cured product.
  • These addition-reactive groups are a reaction in which a compound having an anhydride group or amino group together with an addition reactive group in the molecule forms an imide ring, preferably with an amino group or acid anhydride group at the terminal of an aromatic imide oligomer. Is introduced at the end of the aromatic imide oligomer.
  • Compounds having an anhydride group or amino group in the molecule together with an anhydride group or an amino group include, for example, 4- (2-phenylethynyl) phthalic anhydride, 4- (2-phenylethynyl) aniline, 4-ethynyl-phthalic anhydride, 4 -Ethynylaniline, nadic acid anhydride, maleic acid anhydride and the like can be preferably exemplified.
  • the tetracarboxylic acid component that forms an aromatic imide oligomer having an addition reactive group at the end is preferably 2,3,3 ′, 4′-biphenyltetracarboxylic dianhydride, 2,2 ′, 3,3 ′.
  • tetracarboxylic acid components are suitable because the resulting aromatic imide oligomer having an addition reactive group at the terminal tends to have a low melting point and the melt viscosity tends to be low.
  • the cured product has excellent heat resistance and mechanical properties.
  • the diamine component that forms the aromatic imide oligomer having an addition reactive group at the terminal is not limited, but 1,4-diaminobenzene, 1,3-diaminobenzene, 1,2-diaminobenzene, 2,6 -Diethyl-1,3-diaminobenzene, 4,6-diethyl-2-methyl-1,3-diaminobenzene, 3,5-diethyltoluene-2,4-diamine, 3,5-diethyltoluene-2,6
  • a diamine having one benzene ring such as diamine, 4,4'-diaminodiphenyl ether, 3,4'-diaminodiphenyl ether, 3,3'-diaminodiphenyl ether, 3,3'-diaminobenzophenone, 4,4'-diamino Benzophenone, 4,4'-diaminodiphenylmethane, 3,3'
  • a mixed diamine composed of at least two aromatic diamines selected from the group consisting of methyl) benzidine, particularly 1,3-diaminobenzene and 1,3-bis (4-aminophenoxy) benzene.
  • Mixed diamine consisting of a combination of 2,4'-diaminodiphenyl ether and 4,4'-diaminodiphenyl ether, diamine, 3,4'-diaminodiphenyl ether and 1,3-bis (4-aminophenoxy) Mixed diamine consisting of a combination with benzene, 4,4 ' A mixed diamine comprising a combination of diaminodiphenyl ether and 1,3-bis (4-aminophenoxy) benzene, and 2,2′-bis (trifluoromethyl) benzidine and 1,3-bis (4-aminophenoxy) benzene It is preferable to use a mixed diamine comprising a combination of the above when considering both heat resistance and moldability.
  • the number of repeating units of the imide oligomer (corresponding to n in the chemical formula (1)) is 0-20, preferably 0-15.
  • the number average molecular weight in terms of styrene by GPC is preferably 10000 or less, more preferably 5000 or less, and still more preferably 3000 or less, preferably 0 to 10, particularly preferably about 1 to 5.
  • this repeating unit is not a single unit but a mixture of products having a distribution in a certain range.
  • the average number of repeating units of the aromatic imide oligomer having an addition reactive group at the terminal is preferably 0.5 to 20, more preferably 0.5 to 15, and still more preferably 0.8. It is 5 to 10, particularly preferably 0.5 to 5. Since the number of repeating units within the above range has a direct influence on the melting temperature and viscosity of the aromatic imide oligomer having an addition reactive group at the terminal, in the moldability of the resin composition for friction materials. Very important. That is, when the number of repeating units increases, the melting temperature of the aromatic imide oligomer having an addition reactive group at the terminal increases, or the melt viscosity increases even when the melting temperature is low.
  • the number of repeating units can be easily adjusted by changing the ratio of the aromatic tetracarboxylic dianhydride, the aromatic diamine, and the compound having an anhydride group or an amino group together with an addition reactive group in the molecule. That is, a compound having an anhydride group or amino group in the molecule together with an anhydride group or amino group constitutes the terminal group (end cap) of the resulting aromatic imide oligomer. Therefore, when the proportion of this compound is increased, the molecular weight is decreased and repeated. The number of repeating units is smaller. On the other hand, when the ratio of this compound is reduced, the number of repeating units increases with increasing molecular weight.
  • the aromatic imide oligomer having an addition reactive group at the terminal used in the present invention is not limited, but is particularly preferably represented by the following chemical formula (1).
  • R represents an aromatic diamine residue, preferably an aromatic diamine residue composed of a combination of 1,3-diaminobenzene and 1,3-bis (4-aminophenoxy) benzene, 2,2′- Aromatic diamine residue consisting of a combination of bis (trifluoromethyl) benzidine and 1,3-bis (4-aminophenoxy) benzene, 3,4'-diaminodiphenyl ether and 1,3-bis (4-aminophenoxy)
  • An aromatic diamine residue composed of a combination with benzene an aromatic diamine residue composed of a combination of 3,4'-diaminodiphenyl ether and 4,4'-diaminodiphenyl ether, or 4,4'-diaminodiphenyl ether and 1 , 3-bis (4-aminophenoxy) benzene and a combination of aromatic diamine residues .
  • N represents an integer of 0 to 20, and the lower limit value of n is preferably 1, and the upper limit value of n is preferably 15, more preferably 10, particularly preferably 5.
  • n exceeds 20 is not preferable because the moldability is deteriorated and the characteristics of the obtained friction material are deteriorated.
  • the resin composition for a friction material of the present invention is preferably an aramid fiber such as carbon fiber, aramid pulp (Kevlar manufactured by DuPont, etc.), together with an aromatic imide oligomer powder having an addition reactive group at the terminal serving as a binder. It contains at least one fiber selected from the group consisting of glass fibers, ceramic fibers such as potassium titanate and rock wool, metal fibers such as steel fibers, copper fibers and brass fibers, and an inorganic filler.
  • inorganic filler examples include, but are not limited to, calcium carbonate, barium sulfate, calcium hydroxide, aluminum powder, copper powder, graphite, molybdenum disulfide, cashew dust, rubber dust, mica, vermiculite, and the like. be able to.
  • the aromatic imide oligomer powder having an addition reactive group at the terminal is preferably used in an amount of 3 to 40% by mass, more preferably 5 to 30% by mass, based on the total amount of the resin composition for a friction material.
  • the fibers are preferably used in an amount of 3 to 50% by mass, more preferably 5 to 40% by mass, based on the total amount of the resin composition for a friction material.
  • the inorganic filler is preferably used in an amount of 5 to 90% by mass, more preferably 30 to 80% by mass, based on the total amount of the resin composition for a friction material.
  • the resin composition for a friction material of the present invention can further suitably use a flame retardant or other additives.
  • the resin composition for a friction material of the present invention is a composition comprising an aromatic imide oligomer powder having an addition reactive group, fibers, an inorganic filler, and the like. Then, the aromatic imide oligomer powder having an additional reactive group is melted by heating at the time of molding and impregnated in fibers, inorganic fillers, etc., but the melting temperature at the time of molding can be lowered. This is because the melting temperature of the aromatic imide oligomer itself having an addition reactive group is low. Moreover, the aromatic imide oligomer having an addition reactive group has a lower viscosity in the molten state than the polymer.
  • the melting temperature at the time of molding can be made sufficiently lower than the reaction temperature of the addition reactive group of the aromatic imide oligomer, the curing reaction can be suppressed at the melting temperature at the time of molding and the viscosity stability is good. For these reasons, it becomes easy to impregnate fibers and inorganic fillers with an aromatic imide oligomer having an addition reactive group easily and uniformly. As described above, after the aromatic imide oligomer having an addition reactive group is uniformly impregnated into the fiber or the inorganic filler, the friction material is easily obtained as a cured molded body by heating to a curing temperature higher than the melting temperature. be able to.
  • the molding conditions for obtaining a friction material using the resin composition for a friction material of the present invention as a cured molded body are preferably 250 while pressing in a pressure range of 1 to 30 MPa, preferably 5 to 20 MPa.
  • the friction material can be easily obtained as a cured molded body by melting and causing a curing (addition polymerization) reaction with an addition reaction group at the terminal.
  • the resin composition for a friction material of the present invention can be easily obtained as a cured molded body by the following steps.
  • (1) Fill the mold with the resin composition for the friction material, set the mold in a hot press machine heated to a temperature range of 250 to 300 ° C, and the mold will be in the temperature range of 250 to 300 ° C Heat without pressure for 5-30 minutes. (Heating is performed so that the mold and the resin composition for the friction material in the mold are uniform in the temperature range of 250 to 300 ° C.)
  • the mold is heated to the above temperature range, and then pressurized in the pressure range of 1 to 30 MPa for 10 minutes. In this step, the aromatic imide oligomer is uniformly impregnated into the fiber and the inorganic filler.
  • the temperature is raised to a temperature range of 300 to 400 ° C. (0.5 to 5 ° C./min) while maintaining a pressurized state in a pressure range of 1 to 30 MPa.
  • the temperature range is 300 to 400 ° C, pressurize and hold for 0.5 to 3 hours at the temperature range of 300 to 400 ° C while maintaining the pressurized state of 1 to 30 MPa. Heat. In this process, a curing reaction occurs.
  • the mold is cooled to a temperature range of 200 to 300 ° C. (0.5 to 5 ° C./min) while maintaining a pressurized state in a pressure range of 1 to 30 MPa.
  • a preferable molding condition of the cured molded body using the resin composition for a friction material of the present invention is an aromatic polyimide powder as described in Patent Document 4, such as a linear polyimide powder (trade name “Vespel SP manufactured by DuPont”. )), That is, extremely mild molding conditions compared to molding conditions that require heating at 400 ° C. or higher under a high pressure of about 100 MPa.
  • Such mild molding conditions of the present invention are preferably such that the number of repeating units of the aromatic imide oligomer having an addition reactive group at the terminal constituting the resin composition for a friction material is 20 or less, thereby reducing the fragrance.
  • the melting temperature (glass transition temperature or softening point) of the group imide oligomer itself is remarkably lowered. That is, if the melting temperature of the aromatic imide oligomer itself is lower by, for example, 50 ° C. than the temperature at which the terminal addition reactive group reacts, at an intermediate temperature between these temperatures, there is no increase in viscosity due to the reaction of the addition reactive group.
  • the aromatic imide oligomer can be easily and uniformly impregnated into the fiber or inorganic filler with low viscosity and stability.
  • the resin composition for a friction material is heated to a temperature higher than the temperature at which the terminal addition reactive group reacts, a friction material made of a cured molded article can be suitably obtained.
  • the melting temperature of the aromatic imide oligomer itself and the temperature at which the terminal addition reactive group reacts are each measured by using differential scanning calorimetry (DSC), for example, by increasing the temperature at a rate of temperature increase of 20 ° C./min. And an exothermic peak.
  • DSC differential scanning calorimetry
  • the temperature difference between the two is 50 ° C. or higher, preferably 100 ° C. or higher, more preferably 150 ° C. or higher. Is preferable.
  • a molding method of the friction material using the resin composition for friction materials of this invention what comprised the following processes is suitable.
  • a step of heating and pressurizing the resin composition for a friction material in a temperature range between the melting temperature of the aromatic imide oligomer itself and the temperature at which the addition reactive group reacts (2) the temperature at which the addition reactive group reacts Heating and pressurizing in the temperature range of ⁇ 30 to + 30 ° C.
  • the friction material of the present invention has good moldability as described above.
  • the bending strength is maintained at a strength of about 80% or more of the bending strength at 23 ° C. even at a high temperature of 250 ° C. Even at a high temperature, the strength of about 70% or more of the bending strength at 23 ° C. can be maintained, and the strength after giving a thermal history of 8 hours at 350 ° C. is substantially the same as that before the thermal history. It has excellent heat resistance and mechanical strength, such as no change.
  • the reaction solution was poured into water to precipitate an imide oligomer. After thoroughly washing the precipitate with water, the precipitate was sufficiently dried with a conical dryer to obtain an aromatic imide oligomer powder having an addition reactive group at the terminal.
  • the average value of the number of repeating units (n in the chemical formula (1)) of the aromatic imide oligomer powder having an addition reactive group at this end was 1.13.
  • the melting point of the aromatic imide oligomer itself observed by DSC was 180 ° C., and the temperature at which the addition reactive group reacted was 370 ° C. Further, the melt viscosity at 280 ° C.
  • the curing reaction did not require a catalyst or the like, was substantially completed in about 1 hour at a temperature of 350 ° C. to 400 ° C., and no gas was generated due to the reaction.
  • the fibers and fillers used in the following examples are as follows. Barium sulfate: average particle size 20 ⁇ m Calcium carbonate: average particle size 20 ⁇ m Aramid fiber: Dry pulp fiber length 2mm
  • the friction material was evaluated as follows. About the obtained friction material, bending strength was measured with the universal testing machine based on JISK7203. Measurement conditions were implemented in each temperature atmosphere of measurement temperature 23 degreeC, 250 degreeC, and 300 degreeC. Further, after the friction material was exposed in an oven at 350 ° C., it was taken out from the oven and subjected to a bending test at a measurement temperature of 23 ° C.
  • Example 1 15% by mass of aromatic imide oligomer powder having an addition reactive group at the terminal obtained in Reference Example 1, 40% by mass of calcium carbonate, 40% by mass of barium sulfate, and 5% by mass of aramid fiber were mixed with a V-type mixer for 10 minutes. The obtained mixture is filled in a mold formed of a spacer and a SUS plate, pressurized at 280 ° C. and 20 MPa for 10 minutes, pre-molded, heated while maintaining the pressure, and hot pressed at 370 ° C. and 20 MPa for 1 hour. Then, it was cooled while maintaining the pressure up to 250 ° C. to obtain a uniform friction material. The evaluation results for this friction material are shown in Table 1.
  • the decrease in the heating weight of the friction material was measured with a thermogravimetric measuring device.
  • the weight loss was 0.1 mass% or less after exposure for 4 hours at 350 ° C. in the atmosphere, and 0 for exposure for 8 hours at 350 ° C. in the atmosphere. It showed only a weight loss of 2% by mass or less.
  • Example 2 20% by weight of an aromatic imide oligomer powder having an addition reactive group at the terminal obtained in Reference Example 1, 37.5% by weight of calcium carbonate, 37.5% by weight of barium sulfate, and 5% by weight of aramid fiber for 10 minutes using a V-type mixer. Mixed. Fill the resulting mixture into a mold, pressurize at 280 ° C. and 5 MPa for 10 minutes, perform preforming, raise the temperature while maintaining the pressure, hot press at 370 ° C. and 5 MPa for 1 hour, and increase the pressure to 250 ° C. It was cooled while being held to obtain a uniform friction material. The evaluation results for this friction material are shown in Table 1.
  • Example 3 14% by mass of an aromatic imide oligomer powder having an addition reactive group at the terminal obtained in Reference Example 1, 38% by mass of calcium carbonate, 38% by mass of barium sulfate, and 10% by mass of aramid fiber were mixed with a V-type mixer for 10 minutes. Fill the resulting mixture into a mold, pressurize at 280 ° C., 20 MPa for 10 minutes, perform preforming, raise the temperature while maintaining the pressure, hot press at 370 ° C., 20 MPa for 1 hour, and increase the pressure to 250 ° C. It was cooled while being held to obtain a uniform friction material. The evaluation results for this friction material are shown in Table 1.
  • the friction materials obtained in Examples 1 to 3 maintained a strength of about 80% or more of the bending strength at 23 ° C. even at a high temperature of 250 ° C., and about 70% of the bending strength at 23 ° C. even at a high temperature of 300 ° C. The above strength was maintained. Further, after the friction material was exposed to 350 ° C. for 8 hours in the oven, the friction material was taken out of the oven and subjected to a bending test at a measurement temperature of 23 ° C., but no decrease in strength was observed.
  • a friction material using a phenol resin as a binder compared to a friction material using a phenol resin as a binder, it is possible to provide a friction material and a resin composition for a friction material, which have excellent heat resistance and mechanical properties of the binder itself and good moldability. .

Abstract

 本発明は、バインダーとして末端に付加反応基を有する芳香族イミドオリゴマーを含有してなる摩擦材用樹脂組成物を用いたことを特徴とする摩擦材、及び末端に付加反応基を有する芳香族イミドオリゴマー粉末と、炭素繊維、アラミド繊維、ガラス繊維、セラミック繊維、及び金属繊維からなる群から選ばれる少なくとも一つの繊維と、無機充填材とを含有することを特徴とする摩擦材用樹脂組成物である。本発明によれば、フェノール樹脂をバインダーに用いた摩擦材に較べて、バインダー自身の耐熱性や機械的特性が極めて優れるとともに成形性が良好な摩擦材及び摩擦材用樹脂組成物を提供することができる。

Description

摩擦材及び摩擦材用樹脂組成物
 本発明は摩擦材及び摩擦材用樹脂組成物に関する。特に耐熱性や機械的強度が極めて優れるとともに成形性が良好な摩擦材及び摩擦材用樹脂組成物に関する。
 自動車、産業用車両、鉄道車両、航空機等のブレーキパッド、ブレーキライニング、クラッチフェーシング、制輪子等に用いられる摩擦材では、バインダーとしてフェノール樹脂を採用して、フェノール樹脂と、ガラス繊維、アラミド繊維、金属繊維等の繊維と、炭酸カルシウム、硫酸バリウム等の無機充填材等とを混合した摩擦材用樹脂組成物が広く用いられてきた。
 特許文献1には、摩擦材等に好適に使用できるフェノール樹脂組成物の記載がある。この組成物の硬化成形体は、例えば350℃で8時間の熱履歴後の曲げ強度が常態の曲げ強度の43%まで低下するもの(実施例1)であり、フェノール樹脂組成物としては優れた耐熱性を有するものであった。しかし、近年、摩擦材はより過酷な条件下で使用できるようにより高い特性が要求されている。
 特許文献2及び3には、摩擦材用途において、耐熱性や耐燃性を改良する目的で採用されてきたアンチモン化合物等の難燃剤やアスベスト繊維等の補強材の使用が好ましくないことが記載されている。
 これらのために、バインダー自身の耐熱性や機械的特性がさらに改良された摩擦材及び摩擦材用樹脂組成物が求められていた。
 特許文献4には、ケトン性カルボニル基を含有する高分子量の線状芳香族ポリイミド粒子とアミン末端基を有する低分子量の線状芳香族ポリイミド粒子との混合物を用いた充填物品がブレーキ及びクラッチのライニング等に用いてもよいことが記載されている。しかし、圧縮操作は35MPaにおいて約400~420℃で圧縮したり、或いは690MPaにおいて室温で圧縮したりするものであり、加熱処理方法は400℃に約3時間加熱した後さらに約425~435℃に1時間加熱したりするものであり、成形性が過酷で且つ複雑であって好適なものではなかった。
 特許文献5には、末端に付加反応基を有する芳香族イミドオリゴマーについて記載がある。ここには、この芳香族イミドオリゴマーの溶液を用いて繊維との複合材料を得ることが記載されているが、摩擦材については何ら記載がない。
特開2003-292728号公報 特開2002-173667号公報 特開2001-240847号公報 特公昭61-36010号公報 特開2000-219741号公報
 本発明は、フェノール樹脂をバインダーに用いた摩擦材に較べて、バインダー自身の耐熱性や機械的特性が極めて優れるとともに成形性が良好な摩擦材及び摩擦材用樹脂組成物を提供することを目的とする。
 本発明は、以下の項に関する。
1. 末端に付加反応基を有する芳香族イミドオリゴマーを含有してなる摩擦材用樹脂組成物を用いたことを特徴とする摩擦材。
2. 付加反応基が、フェニルエチニル基、アセチレン基、ナジック酸基、及びマレイミド基からなる群から選ばれるいずれかの反応基であることを特徴とする項1に記載の摩擦材。
3. 芳香族イミドオリゴマーのテトラカルボン酸成分が、2,3,3’,4’-ビフェニルテトラカルボン酸二無水物、2,2’,3,3’-ビフェニルテトラカルボン酸二無水物、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物、及び3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物からなる群から選ばれる少なくとも一つのテトラカルボン酸二無水物によって構成されたものであることを特徴とする項1又は2に記載の摩擦材。
4. 芳香族イミドオリゴマーのジアミン成分が、1,3-ジアミノベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼン、3,4’-ジアミノジフェニルエーテル、4,4’-ジアミノジフェニルエーテル、及び2,2’-ビス(トリフルオロメチル)ベンジジンからなる群から選ばれる少なくとも二つの芳香族ジアミン(混合ジアミン)によって構成されたものであることを特徴とする項1~3のいずれかに記載の摩擦材。
5. 芳香族イミドオリゴマーの繰返し単位の繰返し数(平均値)が0.5~20であることを特徴とする項1~4のいずれかに記載の摩擦材。
6. 芳香族イミドオリゴマーが下記化学式(1)で表されることを特徴とする項1~5のいずれかに記載の摩擦材。
Figure JPOXMLDOC01-appb-C000002
 ここで、Rは、芳香族ジアミン残基であり、nは0~20の整数である。
7. 末端に付加反応基を有する芳香族イミドオリゴマー粉末と、炭素繊維、アラミド繊維、ガラス繊維、セラミック繊維及び金属繊維からなる群から選ばれる少なくとも一つの繊維と、無機充填材とを含有することを特徴とする摩擦材用樹脂組成物。
 本発明の摩擦材は、バインダーとして末端に付加反応基を有する芳香族イミドオリゴマーを含有してなる摩擦材用樹脂組成物を用いたことを特徴とする。
 この末端に付加反応基を有する芳香族イミドオリゴマーは、芳香族テトラカルボン酸二無水物、芳香族ジアミン、及び分子内に付加反応基と共に無水物基又はアミノ基を有する化合物を、各酸基の当量の合計と各アミノ基の合計とが概略等量となるように使用して、好適には溶媒中で反応させることによって容易に得ることができる。反応の方法は、100℃以下特に80℃以下の温度で好ましくは0.1~50時間重合してアミド酸結合を有するオリゴマーを生成し、次いでイミド化剤によって化学イミド化する方法或いは140~270℃程度の高温で加熱して熱イミド化する2工程からなる方法が好適である。また、はじめから140~270℃の高温で好ましくは0.1~50時間重合・イミド化反応を行わせる1工程からなる方法が好適である。
 これらの反応で用いる溶媒は、限定されるものではないが、N-メチル-2-ピロリドン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N,N-ジエチルアセトアミド、γ-ブチルラクトン、N-メチルカプロラクタム等の有機極性溶媒が、溶解性に優れるので好適である。
 また、前記反応によって得られた、末端に付加反応基を有する芳香族イミドオリゴマー反応溶液に、例えば水、アルコール、ヘキサン等の溶解性が低い非溶媒を混合することによって、末端に付加反応基を有する芳香族イミドオリゴマーを粉末として好適に析出させることができる。この粉末はろ過等の手段によって容易に溶媒と分離できる。この粉末を末端の付加反応基が反応する温度以下の温度、例えば100℃以下、好ましくは80℃以下、より好ましくは室温(25℃前後)で、必要に応じて減圧下に乾燥させることによって、末端に付加反応基を有する芳香族イミドオリゴマー粉末を好適に得ることができる。
 本発明において、芳香族イミドオリゴマーの末端の付加反応基は、摩擦材用樹脂組成物から摩擦材を製造する際に、加熱によって硬化反応(付加重合反応)を行う基であれば特に限定されないが、摩擦材を製造の際に好適に硬化反応を行うことができること、及び得られた硬化物の耐熱性が良好であることを考慮すると、好ましくはフェニルエチニル基、アセチレン基、ナジック酸基、及びマレイミド基からなる群から選ばれるいずれかの反応基であり、より好ましくはフェニルエチニル基、アセチレン基のいずれかであり、更に好ましくはフェニルエチニル基である。
 フェニルエチニル基は、硬化反応によるガス成分の発生がなく、しかも得られた硬化体の耐熱性が優れ且つ破断伸びが優れる等機械的な強度も良好である。
 これらの付加反応基は、分子内に付加反応基と共に無水物基又はアミノ基を有する化合物が、芳香族イミドオリゴマーの末端のアミノ基又は酸無水物基と、好適にはイミド環を形成する反応によって、芳香族イミドオリゴマーの末端に導入される。
 分子内に付加反応基と共に無水物基又はアミノ基を有する化合物は、例えば4-(2-フェニルエチニル)無水フタル酸、4-(2-フェニルエチニル)アニリン、4-エチニル-無水フタル酸、4-エチニルアニリン、ナジック酸無水物、マレイン酸無水物等を好適に例示することができる。
 末端に付加反応基を有する芳香族イミドオリゴマーを形成するテトラカルボン酸成分としては、好ましくは2,3,3’,4’-ビフェニルテトラカルボン酸二無水物、2,2’,3,3’-ビフェニルテトラカルボン酸二無水物、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物、及び3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物からなる群から選ばれる少なくとも一つのテトラカルボン酸二無水物、より好ましくは2,3,3’,4’-ビフェニルテトラカルボン酸二無水物を用いたものである。 これらのテトラカルボン酸成分は、得られる末端に付加反応基を有する芳香族イミドオリゴマーが、低融点になり易く、また溶融粘度が低粘度になり易いので好適である。しかも、硬化物の耐熱性や機械的特性も優れたものになる。
 末端に付加反応基を有する芳香族イミドオリゴマーを形成するジアミン成分としては、限定するものではないが、1,4-ジアミノベンゼン、1,3-ジアミノベンゼン、1,2-ジアミノベンゼン、2,6-ジエチル-1,3-ジアミノベンゼン、4,6-ジエチル-2-メチル-1,3-ジアミノベンゼン、3,5-ジエチルトルエン-2,4-ジアミン、3,5-ジエチルトルエン-2,6-ジアミン等のベンゼン環を1個有するジアミン、4,4’-ジアミノジフェニルエーテル、3,4’-ジアミノジフェニルエーテル、3,3’-ジアミノジフェニルエーテル、3,3’-ジアミノベンゾフェノン、4,4’-ジアミノベンゾフェノン、4,4’-ジアミノジフェニルメタン、3,3’-ジアミノジフェニルメタン、ビス(2,6-ジエチル-4-アミノフェノキシ)メタン、ビス(2-エチル-6-メチル-4-アミノフェニル)メタン、4,4’-メチレン-ビス(2,6-ジエチルアニリン)、4,4’-メチレン-ビス(2-エチル,6-メチルアニリン)、2,2―ビス(3-アミノフェニル)プロパン、2,2―ビス(4-アミノフェニル)プロパン、ベンジジン、2,2’-ビス(トリフルオロメチル)ベンジジン、3,3’-ジメチルベンジジン、2,2-ビス(4-アミノフェニル)プロパン、2,2-ビス(3-アミノフェニル)プロパン等のベンゼン環を2個有するジアミン、1,3-ビス(4-アミノフェノキシ)ベンゼン、1,3-ビス(3-アミノフェノキシ)ベンゼン,1,4-ビス(4-アミノフェノキシ)ベンゼン、 1,4-ビス(3-アミノフェノキシ)ベンゼン等のベンゼン環を3個有するジアミン2,2-ビス[4-[4-アミノフェノキシ]フェニル]プロパン、2,2-ビス[4-[4-アミノフェノキシ]フェニル]ヘキサフルオロプロパン等のベンゼン環を4個有するジアミン等を単独で乃至複数種混合して用いることが好適である。
 これらの中でも、1,3-ジアミノベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼン、3,4’-ジアミノジフェニルエーテル、4,4’-ジアミノジフェニルエーテル、及び2,2’-ビス(トリフルオロメチル)ベンジジンからなる群から選ばれる少なくとも二つの芳香族ジアミンによって構成された混合ジアミンを用いることが好適であり、特に、1,3-ジアミノベンゼンと1,3-ビス(4-アミノフェノキシ)ベンゼンとの組み合せからなる混合ジアミン、3,4’-ジアミノジフェニルエーテルと4,4’-ジアミノジフェニルエーテルとの組み合せからなる混合ジアミン、3,4’-ジアミノジフェニルエーテルと1,3-ビス(4-アミノフェノキシ)ベンゼンとの組み合せからなる混合ジアミン、4,4’-ジアミノジフェニルエーテルと1,3-ビス(4-アミノフェノキシ)ベンゼンとの組み合せからなる混合ジアミン、及び2,2’-ビス(トリフルオロメチル)ベンジジンと1,3-ビス(4-アミノフェノキシ)ベンゼンとの組み合せからなる混合ジアミンを用いることが、耐熱性と成形性との両方を考慮したときに好適である。
 本発明で用いる末端に付加反応基を有する芳香族イミドオリゴマーは、イミドオリゴマーの繰返し単位の繰返し数(前記化学式(1)のnに相当する)が、0~20、好ましくは0~15、より好ましくは0~10、特に好ましくは1~5程度であって、GPCによるスチレン換算の数平均分子量が好ましくは10000以下、より好ましくは5000以下、更に好ましくは3000以下のものである。この繰返し単位は、製造方法によって、単一ではなく、ある範囲で分布を持った物の混合物になる。本発明においては、末端に付加反応基を有する芳香族イミドオリゴマーの繰返し単位の繰返し数は、平均値として、好ましくは0.5~20、より好ましくは0.5~15、さらに好ましくは0.5~10、特に好ましくは0.5~5である。
 繰返し単位の繰返し数が前記範囲内であることは、末端に付加反応基を有する芳香族イミドオリゴマーの溶融温度や溶融粘度に直接的な影響を与えるので、摩擦材用樹脂組成物の成形性において極めて重要である。すなわち、繰返し単位の繰返し数が大きくなると、末端に付加反応基を有する芳香族イミドオリゴマーの溶融温度が高くなったり、溶融温度が低い場合でも溶融粘度が大きくなったりするので、樹脂粉末、繊維、無機充填材等からなる摩擦材用樹脂組成物において、樹脂粉末が繊維及び無機充填材と均一に分散して好適に反応することが難しくなる。この結果、低温では成形できなかったり、或いは得られた摩擦材の耐熱性や機械的強度等の特性が劣るものになったりするので好ましくない。
 なお、繰返し単位の繰返し数は、芳香族テトラカルボン酸二無水物、芳香族ジアミン、及び分子内に付加反応基と共に無水物基又はアミノ基を有する化合物の割合を変えることによって容易に調節できる。すなわち、分子内に付加反応基と共に無水物基又はアミノ基を有する化合物は得られる芳香族イミドオリゴマーの末端基(エンドキャップ)を構成するので、この化合物の割合を高くすると、低分子量化して繰返し単位の繰返し数は小さくなる。一方、この化合物の割合を小さくすると、高分子量化して繰返し単位の繰返し数は大きくなる。
 本発明で用いる末端に付加反応基を有する芳香族イミドオリゴマーは、限定されるものではないが、下記化学式(1)で表されることが特に好適である。
Figure JPOXMLDOC01-appb-C000003
 ここで、Rは芳香族ジアミン残基を表し、好ましくは1,3-ジアミノベンゼンと1,3-ビス(4-アミノフェノキシ)ベンゼンとの組み合せからなる芳香族ジアミン残基、2,2’-ビス(トリフルオロメチル)ベンジジンと1,3-ビス(4-アミノフェノキシ)ベンゼンとの組み合せからなる芳香族ジアミン残基、3,4’-ジアミノジフェニルエーテルと1,3-ビス(4-アミノフェノキシ)ベンゼンとの組み合せからなる芳香族ジアミン残基、3,4’-ジアミノジフェニルエーテルと4,4’-ジアミノジフェニルエーテルとの組み合組み合せからなる芳香族ジアミン残基、或いは4,4’-ジアミノジフェニルエーテルと1,3-ビス(4-アミノフェノキシ)ベンゼンとの組み合せからなる芳香族ジアミン残基のいずれかを表す。
 また、nは0~20の整数を表し、nの下限値は好ましくは1であり、nの上限値は好ましくは15、より好ましくは10、特に好ましくは5である。
 nが20を越えるものは、成形性が悪くなったり、得られた摩擦材の特性が劣るものになったりするので好ましくない。
 本発明の摩擦材用樹脂組成物は、バインダーの役割を果たす末端に付加反応基を有する芳香族イミドオリゴマー粉末と共に、好ましくは、炭素繊維、アラミドパルプ(デュポン社製ケブラー等)等のアラミド繊維、ガラス繊維、チタン酸カリウムやロックウール等のセラミック繊維、スチール繊維や銅繊維や真鍮繊維等の金属繊維からなる群から選ばれる少なくとも一つの繊維と無機充填材とを含有する。
 無機充填材としては、限定されるものではないが、例えば炭酸カルシウム、硫酸バリウム、水酸化カルシウム、アルミ粉、銅粉、黒鉛、二硫化モリブデン、カシューダスト、ゴムダスト、マイカ、バーミキュライト等を好適に挙げることができる。
 末端に付加反応基を有する芳香族イミドオリゴマー粉末は、摩擦材用樹脂組成物全量に対して好ましくは3~40質量%、より好ましくは5~30質量%用いられる。繊維は、摩擦材用樹脂組成物全量に対して好ましくは3~50質量%、より好ましくは5~40質量%用いられる。また、無機充填材は、摩擦材用樹脂組成物全量に対して好ましくは5~90質量%、より好ましくは30~80質量%用いられる。
 本発明の摩擦材用樹脂組成物は、さらに難燃剤或いは他の添加剤を好適に用いることができる。
 本発明の摩擦材用樹脂組成物は、付加反応基を有する芳香族イミドオリゴマー粉末、繊維、無機充填材等からなる組成物である。そして、成形時に加熱して付加反応基を有する芳香族イミドオリゴマー粉末を溶融して繊維や無機充填材等に含浸させるが、その成形時の溶融温度を低くすることができる。その理由は、付加反応基を有する芳香族イミドオリゴマー自身の溶融温度が低いからである。しかも付加反応基を有する芳香族イミドオリゴマーはポリマーと比較して溶融状態の粘度が低い。さらに、成形時の溶融温度を芳香族イミドオリゴマーの付加反応基の反応温度よりも十分に低くすることができるので、成形時の溶融温度で硬化反応を抑制することできて粘度安定性がよい。これらのため、付加反応基を有する芳香族イミドオリゴマーを繊維や無機充填材に容易に且つ均一に含浸することが容易になる。
 前記のようにして付加反応基を有する芳香族イミドオリゴマーが繊維や無機充填材に均一に含浸した後で、溶融温度よりも高い硬化温度まで加熱することによって容易に硬化成形体として摩擦材を得ることができる。
 すなわち、本発明の摩擦材用樹脂組成物を硬化成形体として摩擦材を得る際の成形条件は、好適には、1~30MPaの圧力範囲好ましくは5~20MPaの圧力範囲で加圧しながら、250~400℃の温度範囲好ましくは270~380℃の温度範囲で、0.1~6時間好ましくは0.5~3時間程度、加熱して、末端に付加反応基を有する芳香族イミドオリゴマー粉末を溶融させ、且つ末端の付加反応基による硬化(付加重合)反応をさせることによって、摩擦材を硬化成形体として容易に得ることができる。
 本発明の摩擦材用樹脂組成物は、具体的には、次のような工程によって摩擦材を硬化成形体として容易に得ることができる。
(1)摩擦材用樹脂組成物を金型に充填し、250~300℃の温度範囲に加温されたホットプレス機に金型をセットし、金型が250~300℃の温度範囲になるまで5~30分間加圧せずに加熱する。(金型及び金型内の摩擦材用樹脂組成物が250~300℃の温度範囲で均一になるように加熱する。)
(2)金型が前記温度範囲まで昇温後、1~30MPaの圧力範囲で10分間加圧する。この工程で、芳香族イミドオリゴマーが繊維や無機充填材に均一に含浸する。
(3)1~30MPaの圧力範囲の加圧状態を保持したまま300~400℃の温度範囲まで昇温(0.5~5℃/分)する。
(4)300~400℃の温度範囲となったら1~30MPaの圧力範囲の加圧状態を保持したまま、300~400℃の温度範囲の温度で0.5~3時間保持して加圧・加熱する。この工程で、硬化反応が起こる。
(5)1~30MPaの圧力範囲の加圧状態を保持したまま、金型を200~300℃の温度範囲まで降温(0.5~5℃/分)する。この工程で、加圧状態を保持しないと、硬化成形体に膨れや変形等の不具合が生じるので好ましくない。
(6)200~300℃の温度範囲まで降温したところで圧力を開放し、ホットプレス機より金型を取出し、室温まで放冷し、硬化成形体(摩擦材)を得る。
 本発明の摩擦材用樹脂組成物を用いた硬化成形体の好ましい成形条件は、特許文献4に記載されたような芳香族ポリイミド粉末、例えば直鎖状ポリイミド粉末(デュポン社製商品名「ベスペルSP」)を用いた成形条件、すなわち100MPa程度の高圧力下400℃以上の加熱が要求される成形条件と比較すれば、極めて温和な成形条件である。
 本発明のこのような温和な成形条件は、好ましくは、摩擦材用樹脂組成物を構成する末端に付加反応基を有する芳香族イミドオリゴマーの繰返し単位の繰返し数を20以下にすることによって、芳香族イミドオリゴマー自身の溶融温度(ガラス転移温度或いは軟化点)を著しく低下させたことに起因する。すなわち、この芳香族イミドオリゴマー自身の溶融温度を、例えば末端の付加反応基が反応する温度よりも50℃以上低くすれば、これらの温度の中間温度で、付加反応基の反応による増粘なしに低粘度で安定して、芳香族イミドオリゴマーを繊維や無機充填材に容易に且つ均一に含浸させることができる。次いで摩擦材用樹脂組成物を末端の付加反応基が反応する温度よりも高温に加熱すれば、好適に硬化成形体からなる摩擦材を得ることができる。
 なお、芳香族イミドオリゴマー自身の溶融温度や末端の付加反応基が反応する温度は、示差走査熱分析(DSC)を用い、例えば昇温速度20℃/分で昇温させることによって、それぞれ吸熱ピークと発熱ピークとして観察することができる。
 この測定によるピーク値を、芳香族イミドオリゴマー自身の溶融温度、付加反応基が反応する温度とすると、両者の温度差が50℃以上、好ましくは100℃以上、より好ましくは150℃以上になるようにすることが好適である。そして、本発明の摩擦材用樹脂組成物を用いた摩擦材の成形方法としては、以下の工程を含んで構成されたものが好適である。
(1)摩擦材用樹脂組成物を、芳香族イミドオリゴマー自身の溶融温度と付加反応基が反応する温度との間の温度範囲で、加熱及び加圧する工程
(2)付加反応基が反応する温度の-30~+30℃の温度範囲で加熱及び加圧する工程   
 本発明の摩擦材は、前記のとおり良好な成形性を有すると共に、例えば曲げ強度については、250℃の高温でも23℃における曲げ強度の80%程度以上の強さが保たれ、更に300℃の高温でも23℃における曲げ強度の70%程度以上の強さを保持することができるものであり、また350℃で8時間の熱履歴を与えた後の強さは、熱履歴前と実質的に変化しない等、耐熱性及び機械的強度が極めて優れたものである。
 以下、本発明について実施例によって更に詳しく説明する。なお、本発明は以下の実施例に限定されるものではない。
〔参考例1〕
末端に付加反応基を有する芳香族イミドオリゴマー粉末の製造
 撹拌装置、還流冷却器及び温度計のついた反応器に、1,3-ビス(4-アミノフェノキシ)ベンゼン374g(1.28モル)、メタフェニレンジアミン138g(1.28モル)、2,3,3’,4’-ビフェニルテトラカルボン酸二無水物399g(1.36モル)、4-(2-フェニルエチニル)無水フタル酸595g(2.4モル)とN-メチル-2-ピロリドン3207gを仕込み、180℃で12時間、水を除去しながら加熱撹拌反応する。反応終了後に反応液を水に入れイミドオリゴマーを析出させた。析出物をよく水洗した後、コニカルドライヤーで十分乾燥することで、末端に付加反応基を有する芳香族イミドオリゴマー粉末を得た。
 この末端に付加反応基を有する芳香族イミドオリゴマー粉末の繰返し単位の繰返し数(化学式(1)のn)の平均値は、1.13であった。
 この末端に付加反応基を有する芳香族イミドオリゴマー粉末は、DSCで観察した芳香族イミドオリゴマー自身の溶融温度は180℃であり、付加反応基が反応する温度は370℃であった。また、280℃の溶融粘度は1~15poise(動的粘弾性測定)であり極めて低粘度であり、280℃の溶融粘度は、3時間ほとんど変動しないで安定したものであった。また、硬化反応は触媒等を必要とせず、350℃~400℃の温度で約1時間で実質的に完了し反応に伴うガスの発生もなかった。
 以下の例で用いた繊維及び充填材は以下のとおりである。
硫酸バリウム:平均粒径20μm
炭酸カルシウム:平均粒径20μm
アラミド繊維:ドライパルプ繊維長2mm
 以下の例において、摩擦材の評価は以下のようにして行った。
 得られた摩擦材について、曲げ強度をJIS K7203に準拠して万能試験機により測定した。測定条件は、測定温度23℃、250℃、300℃の各温度雰囲気中で実施した。また、摩擦材をオーブン中、350℃で暴露後に、オーブンから取出して測定温度23℃で曲げ試験を実施した。
〔実施例1〕
 参考例1で得た末端に付加反応基を有する芳香族イミドオリゴマー粉末15質量%、炭酸カルシウム40質量%、硫酸バリウム40質量%、アラミド繊維5質量%をV型ミキサーで10分間混合した。
 得られた混合物を、スペーサーとSUS板で形成した金型に充填し、280℃、20MPaで10分間加圧し予備成型後、圧力を保持したまま昇温し、370℃、20MPaで1時間ホットプレスして、250℃まで圧力を保持したまま冷却し、均一な摩擦材を得た。 この摩擦材について評価結果を表1に示す。
 また、この摩擦材の加熱重量減少を熱重量測定装置で測定したが、大気中350℃において4時間の暴露で0.1質量%以下の重量減、大気中350℃において8時間の暴露で0.2質量%以下の重量減を示したに過ぎなかった。
〔実施例2〕
 参考例1で得た末端に付加反応基を有する芳香族イミドオリゴマー粉末20質量%、炭酸カルシウム37.5質量%、硫酸バリウム37.5質量%、アラミド繊維5質量%をV型ミキサーで10分間混合した。
 得られた混合物を金型に充填し、280℃、5MPaで10分間加圧し予備成型後、圧力を保持したまま昇温し、370℃、5MPaで1時間ホットプレスして、250℃まで圧力を保持したまま冷却し、均一な摩擦材を得た。
 この摩擦材について評価結果を表1に示す。
〔実施例3〕
 参考例1で得た末端に付加反応基を有する芳香族イミドオリゴマー粉末14質量%、炭酸カルシウム38質量%、硫酸バリウム38質量%、アラミド繊維10質量%をV型ミキサーで10分間混合した。
 得られた混合物を金型に充填し、280℃、20MPaで10分間加圧し予備成型後、圧力を保持したまま昇温し、370℃、20MPaで1時間ホットプレスして、250℃まで圧力を保持したまま冷却し、均一な摩擦材を得た。
 この摩擦材について評価結果を表1に示す。
Figure JPOXMLDOC01-appb-T000004
 実施例1~3で得られた摩擦材は、250℃の高温でも23℃における曲げ強度の80%程度以上の強さが保たれ、更に300℃の高温でも23℃における曲げ強度の70%程度以上の強さが保たれていた。また、摩擦材をオーブン中、350℃で8時間暴露後に、オーブンから取出して、測定温度23℃で曲げ試験を実施したが強度の低下はまったく見られなかった。
 本発明によって、フェノール樹脂をバインダーに用いた摩擦材に較べて、バインダー自身の耐熱性や機械的特性が極めて優れるとともに成形性が良好な摩擦材及び摩擦材用樹脂組成物を提供することができる。

Claims (7)

  1.  末端に付加反応基を有する芳香族イミドオリゴマーを含有してなる摩擦材用樹脂組成物を用いたことを特徴とする摩擦材。
  2.  付加反応基が、フェニルエチニル基、アセチレン基、ナジック酸基、及びマレイミド基からなる群から選ばれるいずれかの反応基であることを特徴とする請求の範囲第1項に記載の摩擦材。
  3.  芳香族イミドオリゴマーのテトラカルボン酸成分が、2,3,3’,4’-ビフェニルテトラカルボン酸二無水物、2,2’,3,3’-ビフェニルテトラカルボン酸二無水物、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物、及び3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物からなる群から選ばれる少なくとも一つのテトラカルボン酸二無水物によって構成されたものであることを特徴とする請求の範囲第1又は2項に記載の摩擦材。
  4.  芳香族イミドオリゴマーのジアミン成分が、1,3-ジアミノベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼン、3,4’-ジアミノジフェニルエーテル、4,4’-ジアミノジフェニルエーテル、及び2,2’-ビス(トリフルオロメチル)ベンジジンからなる群から選ばれる少なくとも二つの芳香族ジアミンによって構成されたものであることを特徴とする請求の範囲第1~3項のいずれかに記載の摩擦材。
  5.  芳香族イミドオリゴマーの繰返し単位の繰返し数(平均値)が0.5~20であることを特徴とする請求の範囲第1~4項のいずれかに記載の摩擦材。
  6.  芳香族イミドオリゴマーが下記化学式(1)で表されることを特徴とする請求の範囲第1~5項のいずれかに記載の摩擦材。
    Figure JPOXMLDOC01-appb-C000001
     ここで、Rは、芳香族ジアミン残基であり、nは0~20の整数である。
  7.  末端に付加反応基を有する芳香族イミドオリゴマー粉末と、炭素繊維、アラミド繊維、ガラス繊維、セラミック繊維及び金属繊維からなる群から選ばれる少なくとも一つの繊維と、無機充填材とを含有することを特徴とする摩擦材用樹脂組成物。
PCT/JP2009/056255 2008-03-31 2009-03-27 摩擦材及び摩擦材用樹脂組成物 WO2009123042A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US12/935,702 US8748509B2 (en) 2008-03-31 2009-03-27 Friction material and resin composition for friction material
EP09727559.8A EP2270075A4 (en) 2008-03-31 2009-03-27 ABRASIVE MATERIAL AND RESIN COMPOSITION FOR THE ABRASIVE MATERIAL

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008092252A JP2009242656A (ja) 2008-03-31 2008-03-31 摩擦材及び摩擦材用樹脂組成物
JP2008-092252 2008-03-31

Publications (1)

Publication Number Publication Date
WO2009123042A1 true WO2009123042A1 (ja) 2009-10-08

Family

ID=41135420

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/056255 WO2009123042A1 (ja) 2008-03-31 2009-03-27 摩擦材及び摩擦材用樹脂組成物

Country Status (4)

Country Link
US (1) US8748509B2 (ja)
EP (1) EP2270075A4 (ja)
JP (1) JP2009242656A (ja)
WO (1) WO2009123042A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013508536A (ja) * 2009-10-27 2013-03-07 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー 高温摩耗用途向けポリイミド樹脂
WO2013141132A1 (ja) * 2012-03-19 2013-09-26 宇部興産株式会社 加熱硬化性溶液組成物、それを用いた硬化物、プリプレグ及び繊維強化複合材料
JP2015059147A (ja) * 2013-09-18 2015-03-30 宇部興産株式会社 加熱硬化性溶液組成物、それを用いた硬化物、プリプレグ及び繊維強化複合材料
WO2018190370A1 (ja) * 2017-04-12 2018-10-18 東洋製罐グループホールディングス株式会社 フィラー高含有組成物及び成形体の製造方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2694572A1 (en) * 2011-04-01 2014-02-12 Nexam Chemical AB Improved oligo- and polyimides
CN102794912B (zh) * 2012-08-24 2015-03-11 湖南常德嘉达摩擦材料有限公司 一种汽车刹车片用摩擦材料的制备方法
EP3192827B1 (en) * 2014-09-12 2024-03-06 Toyo Seikan Group Holdings, Ltd. Fiber-reinforced polyimide resin molded article and method for producing same
CN105152203B (zh) * 2015-08-24 2017-01-04 句容亿格纳米材料厂 一种钛酸钾的制备方法及其在摩擦材料中的应用
DE102015225356A1 (de) * 2015-12-16 2017-06-22 Schaeffler Technologies AG & Co. KG Verfahren zum Herstellen eines Reibbelags
JP2019093685A (ja) 2017-11-28 2019-06-20 東洋製罐グループホールディングス株式会社 繊維強化積層体及びその製造方法
WO2020116658A1 (ja) * 2018-12-07 2020-06-11 東洋製罐グループホールディングス株式会社 繊維強化ポリイミド樹脂成形前駆体及びその製造方法

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61136027A (ja) * 1984-12-06 1986-06-23 Hitachi Chem Co Ltd 摩擦材用粒状組成物
JPS6136010B2 (ja) 1976-07-01 1986-08-15 Ii Ai Deyuhon De Nimoasu Ando Co
JPH05106707A (ja) * 1991-10-16 1993-04-27 Ntn Corp トラクシヨンドライブ用摩擦材
JPH05168259A (ja) * 1991-12-16 1993-07-02 Nisshinbo Ind Inc 超音波モータ用摩擦材及びその製造方法
JPH06240233A (ja) * 1993-02-18 1994-08-30 Toshiba Tungaloy Co Ltd 湿式摩擦材料
JPH08109937A (ja) * 1994-10-11 1996-04-30 Mitsubishi Materials Corp 耐熱ブレーキ材及びその製造方法
JPH0971651A (ja) * 1995-06-28 1997-03-18 Mitsui Toatsu Chem Inc 線状ポリアミド酸、線状ポリイミド及び熱硬化性ポリイミド
JPH1060414A (ja) * 1996-08-22 1998-03-03 Tokai Carbon Co Ltd 湿式摩擦材料およびその製造方法
JP2000129001A (ja) * 1998-10-21 2000-05-09 Ube Ind Ltd ポリイミド樹脂成形体
JP2000219741A (ja) 1998-11-25 2000-08-08 Ube Ind Ltd 末端変性イミドオリゴマ―およびその硬化物
JP2001240847A (ja) 1999-12-20 2001-09-04 Akebono Brake Ind Co Ltd 摩擦材
JP2002173667A (ja) 2000-12-06 2002-06-21 Akebono Brake Ind Co Ltd 摩擦材
JP2003292728A (ja) 2002-04-01 2003-10-15 Sumitomo Bakelite Co Ltd フェノール樹脂組成物

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2947025A1 (de) * 1979-11-22 1981-06-04 Glyco-Metall-Werke Daelen & Loos Gmbh, 6200 Wiesbaden Zwei- oder mehrschicht-verbundwerkstoff
EP0969128B1 (en) * 1988-01-28 2003-11-19 Hyperion Catalysis International, Inc. Carbon fibrils
JPH03174427A (ja) * 1989-09-26 1991-07-29 Ube Ind Ltd 末端変性イミドオリゴマー組成物
EP0751168B1 (en) 1995-06-28 1999-02-10 Mitsui Chemicals, Inc. Linear polyamic acid, linear polyimide and thermoset polyimide
US6103818A (en) * 1998-08-07 2000-08-15 Mitsui Chemicals, Inc. Resin composition and heat-resistant, returnable IC tray obtained by molding the same
JP2005082626A (ja) 2003-09-04 2005-03-31 Kyocera Chemical Corp 耐熱性樹脂組成物
JP4952585B2 (ja) 2006-01-23 2012-06-13 日立化成工業株式会社 接着剤組成物、フィルム状接着剤、接着シート、並びにそれを用いた半導体装置
JP5168259B2 (ja) 2009-10-21 2013-03-21 三菱瓦斯化学株式会社 アクリルシラップ
US9391950B2 (en) 2012-01-10 2016-07-12 Mitsubishi Electric Corporation IP address distribution system and IP address distribution method

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6136010B2 (ja) 1976-07-01 1986-08-15 Ii Ai Deyuhon De Nimoasu Ando Co
JPS61136027A (ja) * 1984-12-06 1986-06-23 Hitachi Chem Co Ltd 摩擦材用粒状組成物
JPH05106707A (ja) * 1991-10-16 1993-04-27 Ntn Corp トラクシヨンドライブ用摩擦材
JPH05168259A (ja) * 1991-12-16 1993-07-02 Nisshinbo Ind Inc 超音波モータ用摩擦材及びその製造方法
JPH06240233A (ja) * 1993-02-18 1994-08-30 Toshiba Tungaloy Co Ltd 湿式摩擦材料
JPH08109937A (ja) * 1994-10-11 1996-04-30 Mitsubishi Materials Corp 耐熱ブレーキ材及びその製造方法
JPH0971651A (ja) * 1995-06-28 1997-03-18 Mitsui Toatsu Chem Inc 線状ポリアミド酸、線状ポリイミド及び熱硬化性ポリイミド
JPH1060414A (ja) * 1996-08-22 1998-03-03 Tokai Carbon Co Ltd 湿式摩擦材料およびその製造方法
JP2000129001A (ja) * 1998-10-21 2000-05-09 Ube Ind Ltd ポリイミド樹脂成形体
JP2000219741A (ja) 1998-11-25 2000-08-08 Ube Ind Ltd 末端変性イミドオリゴマ―およびその硬化物
JP2001240847A (ja) 1999-12-20 2001-09-04 Akebono Brake Ind Co Ltd 摩擦材
JP2002173667A (ja) 2000-12-06 2002-06-21 Akebono Brake Ind Co Ltd 摩擦材
JP2003292728A (ja) 2002-04-01 2003-10-15 Sumitomo Bakelite Co Ltd フェノール樹脂組成物

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2270075A4 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013508536A (ja) * 2009-10-27 2013-03-07 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー 高温摩耗用途向けポリイミド樹脂
WO2013141132A1 (ja) * 2012-03-19 2013-09-26 宇部興産株式会社 加熱硬化性溶液組成物、それを用いた硬化物、プリプレグ及び繊維強化複合材料
JPWO2013141132A1 (ja) * 2012-03-19 2015-08-03 宇部興産株式会社 加熱硬化性溶液組成物、それを用いた硬化物、プリプレグ及び繊維強化複合材料
JP2015059147A (ja) * 2013-09-18 2015-03-30 宇部興産株式会社 加熱硬化性溶液組成物、それを用いた硬化物、プリプレグ及び繊維強化複合材料
WO2018190370A1 (ja) * 2017-04-12 2018-10-18 東洋製罐グループホールディングス株式会社 フィラー高含有組成物及び成形体の製造方法

Also Published As

Publication number Publication date
EP2270075A4 (en) 2013-11-13
JP2009242656A (ja) 2009-10-22
US8748509B2 (en) 2014-06-10
EP2270075A1 (en) 2011-01-05
US20110028595A1 (en) 2011-02-03

Similar Documents

Publication Publication Date Title
WO2009123042A1 (ja) 摩擦材及び摩擦材用樹脂組成物
JP3551846B2 (ja) 末端変性イミドオリゴマ−およびその硬化物
JP4133561B2 (ja) ポリアミック酸オリゴマー、ポリイミドオリゴマー、溶液組成物、および繊維強化複合材料
JP5292091B2 (ja) 製造特性が向上したビスマレイミド樹脂系
JP6786875B2 (ja) ポリイミド樹脂組成物及びその製造方法
AU609898B2 (en) Process for preparing polyimide and composite material thereof
CN106715545B (zh) 纤维增强聚酰亚胺树脂成型体及其制造方法
JP5050269B2 (ja) 末端変性イミドオリゴマーおよびワニス並びにその高弾性率硬化物
JP5765801B2 (ja) 2−フェニル−4,4’−ジアミノジフェニルエーテル類を用いた成形性に優れたレジントランスファー成形用末端変性イミドオリゴマー、その混
JP6794616B2 (ja) 繊維強化ポリイミド樹脂成形体及びその製造方法
JP6679860B2 (ja) 繊維強化ポリイミド樹脂成形体及びその製造方法
JP2018177946A (ja) フィラー高含有組成物及び成形体の製造方法
KR0171699B1 (ko) 액정성 폴리아미드-이미드공중합체
JP3544788B2 (ja) 線状ポリアミド酸、線状ポリイミド及び熱硬化性ポリイミド
KR0164621B1 (ko) 폴리이미드
JP7405097B2 (ja) 繊維強化ポリイミド樹脂成形前駆体及びその製造方法
KR101786509B1 (ko) 고온 내열용 프리프레그 제조를 위한 수지 조성물 및 그 제조 방법
JP5610335B2 (ja) 機械的強度が向上した繊維強化ポリイミド材料の製造方法
WO2021246532A1 (ja) ポリイミド樹脂成形体及びその製造方法
JP4353947B2 (ja) プリプレグ及びその製造並びに樹脂複合材料
JPH07316424A (ja) 摺動材用含油ポリイミド系樹脂組成物
JP3031822B2 (ja) ポリイミド系樹脂組成物
JP5739715B2 (ja) 熱硬化性樹脂組成物
JPH1149856A (ja) ポリイミド共重合体
JPH09328546A (ja) 樹脂組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09727559

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12935702

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2009727559

Country of ref document: EP