JP2015059147A - 加熱硬化性溶液組成物、それを用いた硬化物、プリプレグ及び繊維強化複合材料 - Google Patents

加熱硬化性溶液組成物、それを用いた硬化物、プリプレグ及び繊維強化複合材料 Download PDF

Info

Publication number
JP2015059147A
JP2015059147A JP2013192656A JP2013192656A JP2015059147A JP 2015059147 A JP2015059147 A JP 2015059147A JP 2013192656 A JP2013192656 A JP 2013192656A JP 2013192656 A JP2013192656 A JP 2013192656A JP 2015059147 A JP2015059147 A JP 2015059147A
Authority
JP
Japan
Prior art keywords
solution composition
mol
aromatic diamine
molecule
oxygen atom
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013192656A
Other languages
English (en)
Inventor
三津志 田口
Mitsushi Taguchi
三津志 田口
小沢 秀生
Hideo Ozawa
秀生 小沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP2013192656A priority Critical patent/JP2015059147A/ja
Publication of JP2015059147A publication Critical patent/JP2015059147A/ja
Pending legal-status Critical Current

Links

Abstract

【課題】 耐酸化性に優れ、ガラス転移温度(Tg)の高いイミド基含有成型体を与える加熱硬化性溶液組成物を提供する。【解決手段】 (A)2,3,3’,4’−ビフェニルテトラカルボン酸化合物と、3,3’,4,4’−ビフェニルテトラカルボン酸化合物とを、それぞれ20モル%以上含む芳香族テトラカルボン酸成分、(B)アミノ基に由来する二つの炭素−窒素結合軸が同一直線上に位置し、分子内に酸素原子を有しない芳香族ジアミンと、アミノ基に由来する二つの炭素−窒素結合軸が同一直線上に位置せず、分子内に酸素原子を有しない芳香族ジアミンとを、それぞれ20モル%以上含む、分子内に酸素原子を有しない芳香族ジアミン成分、及び(C)フェニルエチニル基を有する末端封止剤を混合して得られたことを特徴とする加熱硬化性溶液組成物。【選択図】 なし

Description

本発明は、加熱により末端に付加反応性官能基を有するイミドオリゴマー及びその硬化物を与える加熱硬化性溶液組成物、それを用いた硬化物、プリプレグ及び繊維強化複合材料に関する。
ポリイミドの両末端を付加反応性の官能基で封止したオリゴマーは、その硬化物が優れた耐熱性を有することから、成形品や繊維強化複合材料のマトリックス樹脂として従来から知られている。なかでも、末端を4−(2−フェニルエチニル)無水フタル酸で封止したイミドオリゴマーは、成形性、耐熱性、力学特性のバランスに優れているとされ、例えば、特許文献1には、硬化物の耐熱性および機械的特性が良好で、実用性の高い末端変性イミドオリゴマーおよびその硬化物を提供することを目的とし、2,3,3’,4’−ビフェニルテトラカルボン酸二無水物と芳香族ジアミン化合物と4−(2−フェニルエチニル)無水フタル酸とを反応させて得られ、対数粘度が0.05−1である末端変性イミドオリゴマーおよびその硬化物が開示されている。
また、特許文献2には硬化物の形成工程における溶媒除去を容易にするため、N−メチル−2−ピロリドン、N,N−ジメチルアセトアミドなどの高沸点溶媒を用いない加熱硬化性溶液組成物およびそれを繊維状補強材に含浸させた未硬化樹脂複合体を提供することを目的とし、2,3,3’,4’−ビフェニルテトラカルボン酸及び/又は2,2’,3,3’−ビフェニルテトラカルボン酸を主成分とした芳香族テトラカルボン酸化合物の部分低級脂肪族アルキルエステルと芳香族ジアミン化合物と4−(2−フェニルエチニル)フタル酸の部分低級脂肪族アルキルエステルとを低級脂肪族アルコールを主成分とする有機溶媒に溶解してなる加熱硬化性溶液組成物およびそれを用いた未硬化樹脂複合体が開示されている。
特開2000−219741号公報 特開2007−308519号公報
特許文献1及び2に記載の硬化物は、優れた物理的特性および化学的特性を有している。しかしながら、耐酸化性においては更なる改善の余地がある。特に、芳香族ジアミン成分として、1,3−ビス(4−アミノフェノキシ)ベンゼンや4,4’−ジアミノジフェニルエーテルのようなエーテル結合があるジアミンを用いると良好な耐酸化性が得られないという問題がある。
本発明の目的は、耐酸化性に優れ、ガラス転移温度(Tg)の高い硬化物を与える加熱硬化性溶液組成物を提供することにある。
本発明の他の目的は、硬化時に反応不良が認められず、繊維強化複合材料の製造に用いるのに適した加熱硬化性溶液組成物を提供することにある。
本発明のさらに他の目的は、上記加熱硬化性溶液組成物を用いた硬化物、プリプレグ及び繊維強化複合材料を提供することにある。
以上の目的を達成するために、本発明者らは鋭意検討した結果、芳香族ジアミン成分として分子内に酸素原子を有しない特定の芳香族ジアミンを用いることで、耐酸化性に優れ、ガラス転移温度(Tg)の高い硬化物を与えることができ、また、硬化時に反応不良が認められず、繊維強化複合材料の製造に用いるのに適した加熱硬化性溶液組成物、それを用いた硬化物、プリプレグ及び繊維強化複合材料を得ることができることを見出し、本発明に至った。
本発明の第1の態様によると、(A)2,3,3’,4’−ビフェニルテトラカルボン酸化合物と、3,3’,4,4’−ビフェニルテトラカルボン酸化合物とを、それぞれ20モル%以上含む芳香族テトラカルボン酸成分、(B)アミノ基に由来する二つの炭素−窒素結合軸が同一直線上に位置し、分子内に酸素原子を有しない芳香族ジアミンと、アミノ基に由来する二つの炭素−窒素結合軸が同一直線上に位置せず、分子内に酸素原子を有しない芳香族ジアミンとを、それぞれ20モル%以上含む、分子内に酸素原子を有しない芳香族ジアミン成分、及び(C)フェニルエチニル基を有する末端封止剤を混合して得られたことを特徴とする加熱硬化性溶液組成物が提供される。
上記加熱硬化性溶液組成物において、前記(B)のアミノ基に由来する二つの炭素−窒素結合軸が同一直線上に位置し、分子内に酸素原子を有しない芳香族ジアミンを、1,4−ジアミノベンゼンとし、アミノ基に由来する二つの炭素−窒素結合軸が同一直線上に位置せず、分子内に酸素原子を有しない芳香族ジアミンを、1,3−ジアミノベンゼンとすることができる。
また、前記(C)のフェニルエチニル基を有する末端封止剤を、4−(2−フェニルエチニル)フタル酸化合物とすることができる。
また、芳香族ジアミン成分と芳香族テトラカルボン酸成分のモル比(芳香族ジアミン成分のモル数/芳香族テトラカルボン酸成分のモル数)を、1.067〜1.125とすることができる。
本発明の第2の態様によると、前記加熱硬化性溶液組成物を加熱硬化して得られたことを特徴とする硬化物が提供される。
本発明の第3の態様によると、前記加熱硬化性溶液組成物を繊維状補強材に含浸させたことを特徴とするプリプレグが提供される。
本発明の第4の態様によると、前記プリプレグを加熱硬化して得られたことを特徴とする繊維強化複合材料が提供される。
以上のように、本発明によれば、耐酸化性に優れ、ガラス転移温度(Tg)の高い硬化物を与えることができ、また、硬化時に反応不良が認められず、繊維強化複合材料の製造に用いるのに適した加熱硬化性溶液組成物、それを用いた硬化物、プリプレグ及び繊維強化複合材料を提供することができる。
以下、本発明の加熱硬化性溶液組成物について、好適な実施形態を詳細に説明する。
本実施形態の加熱硬化性溶液組成物は、加熱により末端に付加反応性官能基を有するイミドオリゴマーおよびその硬化物を与える溶液組成物である。そのイミドオリゴマーは、2,3,3’,4’−ビフェニルテトラカルボン酸化合物と、3,3’,4,4’−ビフェニルテトラカルボン酸化合物とを、それぞれ20モル%以上含む芳香族テトラカルボン酸成分、および、アミノ基に由来する二つの炭素−窒素結合軸が同一直線上に位置し、分子内に酸素原子を有しない芳香族ジアミンと、アミノ基に由来する二つの炭素−窒素結合軸が同一直線上に位置せず、分子内に酸素原子を有しない芳香族ジアミンとを、それぞれ20モル%以上含む、分子内に酸素原子を有しない芳香族ジアミン成分で構成され、末端に付加反応性官能基であるフェニルエチニル基を有するものである。芳香族テトラカルボン酸成分及び芳香族ジアミン成分の組成が上記範囲外であると、硬化時にイミド化及び/又は付加反応が十分に進行せず、硬化物の靱性が十分でない場合がある。そのような場合、良好な物性を有する繊維強化複合材料を得るのが難しい。
本実施形態に係る加熱硬化性溶液組成物の(A)成分である芳香族テトラカルボン酸成分は、2,3,3’,4’−ビフェニルテトラカルボン酸化合物と、3,3’,4,4’−ビフェニルテトラカルボン酸化合物とを含有するが、その含有率は(A)成分中にそれぞれ20モル%以上であることが好ましく、特にそれぞれ30モル%以上含有することが好ましい。これらのビフェニルテトラカルボン酸化合物の含有率が低いと、得られる硬化物のガラス転移温度(Tg)が低くなり、靱性も十分でないことがあるため好ましくない。また、芳香族テトラカルボン酸成分は、他のビフェニルテトラカルボン酸化合物を含んでいてもよく、他のビフェニルテトラカルボン酸化合物としては2,2’,3,3’−ビフェニルテトラカルボン酸化合物などを挙げることができる。
2,3,3’,4’−ビフェニルテトラカルボン酸化合物には、2,3,3’,4’−ビフェニルテトラカルボン酸、2,3,3’,4’−ビフェニルテトラカルボン酸二無水物(a−BPDA)、2,3,3’,4’−ビフェニルテトラカルボン酸のエステルまたは塩が含まれる。
同様に、3,3’,4,4’−ビフェニルテトラカルボン酸化合物には、3,3’,4,4’−ビフェニルテトラカルボン酸、3,3’,4,4’−ビフェニルテトラカルボン酸二無水物(s−BPDA)、3,3’,4,4’−ビフェニルテトラカルボン酸のエステルまたは塩が含まれ、2,2’,3,3’−ビフェニルテトラカルボン酸化合物には、2,2’,3,3’−ビフェニルテトラカルボン酸、2,2’,3,3’−ビフェニルテトラカルボン酸二無水物、2,2’,3,3’−ビフェニルテトラカルボン酸のエステルまたは塩が含まれる。
本実施形態に係る加熱硬化性溶液組成物の(B)成分である分子内に酸素原子を有しない芳香族ジアミン成分は、アミノ基に由来する二つの炭素−窒素結合軸が同一直線上に位置し、分子内に酸素原子を有しない芳香族ジアミンと、アミノ基に由来する二つの炭素−窒素結合軸が同一直線上に位置せず、分子内に酸素原子を有しない芳香族ジアミンとを含む。本実施形態においては、これらの芳香族ジアミンを(B)成分中にそれぞれ20モル%以上含むことが好ましく、特にそれぞれ30モル%以上含有することが好ましい。ここで、分子内に酸素原子を有しないとは、分子中にエーテル結合、カルボニル基等を有しないことを指す。
アミノ基に由来する二つの炭素−窒素結合軸が同一直線上に位置し、分子内に酸素原子を有しない芳香族ジアミンとして、1,4−ジアミノベンゼン(PPD)、2,5−ジアミノトルエン、2,2’−ビス(トリフルオロメチル)ベンジジン、2,2’−ジメチルベンジジン、3,3’−ジメチルベンジジン、3,3’,5,5’−テトラメチルベンジジン、4,4−ジアミノオクタフルオロビフェニルなどを挙げることができる。これらは、単独で用いても良いし、複数を混合して用いても良い。
また、アミノ基に由来する二つの炭素−窒素結合軸が同一直線上に位置せず、分子内に酸素原子を有しない芳香族ジアミンとして、1,3−ジアミノベンゼン(MPD)、2,4−ジアミノトルエン、2,6−ジアミノトルエン、3,3’−ジアミノジフェニルメタン、4,4’−ジアミノジフェニルメタン、2,2−ビス(3−アミノフェニル)プロパン、2,2−ビス(4−アミノフェニル)プロパン、9,9’−ビス(4−アミノフェニル)フルオレンなどを挙げることができる。これらは、単独で用いても良いし、複数を混合して用いても良い。
本実施形態においては、分子内に酸素原子を有しない芳香族ジアミン成分として、1,4−ジアミノベンゼン(パラフェニレンジアミン、PPD)と、1,3−ジアミノベンゼン(メタフェニレンジアミン、MPD)とを併用するのが好適である。
本実施形態に係る加熱硬化性溶液組成物の(C)成分である末端に付加反応性官能基を導入するために用いる末端封止剤としては、エチニル基を有するものが好ましく、特に、フェニルエチニル基を有するものが好適である。また、封止する末端は、アミン末端、カルボン酸末端のいずれでも構わないが、アミン末端と反応してイミド基を形成するものが好ましい。このような末端封止剤として、4−(2−フェニルエチニル)フタル酸化合物を挙げることができる。4−(2−フェニルエチニル)フタル酸化合物には、4−(2−フェニルエチニル)フタル酸無水物、4−(2−フェニルエチニル)フタル酸のエステルまたは塩が含まれる。
また、本実施形態の加熱硬化性溶液組成物には、イミド化反応を促進する作用を有する成分が含有されていてもよい。含有量は、全成分の量に対して0.01〜3質量%の範囲であることが好ましい。例えば、イミダゾール化合物は、溶液組成物を調製する際に溶解を促進する作用を有し溶解時間を短縮することができる。更に、未硬化成形体を加圧下に加熱して硬化物(硬化成形体)を製造する際に硬化を促進する作用も有しており、特性が優れた硬化成形体を容易に得ることが可能になる。イミダゾール化合物としては、例えば2−メチルイミダゾールや1,2−ジメチルイミダゾールなどのポリイミドのイミド化触媒として公知の化合物を挙げることができる。
アミン末端を封止したイミドオリゴマーを得るためには、芳香族ジアミン成分を、芳香族テトラカルボン酸成分に対して化学量論的に過剰モル量で用いることが好ましい。用いる芳香族ジアミン成分の量は、得られるイミドオリゴマーが所望の分子量となるように適宜調整するが、芳香族ジアミン成分を、芳香族テトラカルボン酸成分1モルに対して、1.067〜1.167モルの範囲内の量で用いることが好ましく、特に、1.083〜1.125モルの範囲内の量で用いることが好ましい。また、末端封止剤は、芳香族ジアミン成分のモル量と芳香族テトラカルボン酸成分のモル量との差に相当するモル量の1.8〜2.2倍、好ましくは、1.95〜2.0倍のモル量を用いることが好ましい。なお、本実施形態においては、個別に製造された分子量の異なるイミドオリゴマーを混合して用いることもできる。
本実施形態の加熱硬化性溶液組成物は、公知の方法で上記芳香族テトラカルボン酸成分、芳香族ジアミン成分および末端封止剤を混合することにより得られる。例えば、第1の方法として、芳香族テトラカルボン酸二無水物、芳香族ジアミンおよび4−(2−フェニルエチニル)フタル酸無水物を、酸無水基の全量とアミノ基の全量とがほぼ等量になるように使用して、各成分を溶媒中で約100℃以下、特に、80℃以下の温度で混合することにより調製することができる。
前記の方法で用いる溶媒としては、N−メチル−2−ピロリドン(NMP)、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド(DMAc)、N,N−ジエチルアセトアミド、N−メチルカプロラクタム、γ−ブチロラクトン(GBL)、シクロヘキサノンなどが挙げられる。これらの溶媒は単独で用いてもよく、2種以上を併用してもよい。これらの溶媒の選択に関してはポリイミド前駆体溶液組成物の公知技術を適用することができる。
得られた溶液は、そのままか、あるいは、適宜濃縮または希釈するかして使用することができる。また、必要であれば、この溶液を水中等に注ぎ込んで粉末状の生成物として単離し、その粉末生成物を適宜溶媒に溶解して本実施形態の加熱硬化性溶液組成物として使用することもできる。
また、本実施形態の加熱硬化性溶液組成物は、例えば、第2の方法として、芳香族テトラカルボン酸二無水物および4−(2−フェニルエチニル)フタル酸無水物を、低級脂肪族アルコールを含有する溶液に添加し、生成する懸濁液を加熱することにより部分低級脂肪族アルキルエステルに変換して溶解させ、次いで、この溶液に芳香族ジアミンを加えることにより、調製することもできる。得られた溶液は、そのままか、あるいは、適宜濃縮または希釈するかして使用することができる。
前記の方法で用いる溶液としては、低級脂肪族アルコール(炭素原子数が1〜6の一価脂肪族アルコール)を主成分として含む有機溶媒が挙げられる。特に、低級脂肪族アルコールがメタノールもしくはエタノールであることが好ましい。低級脂肪族アルコールは、混合物を使用することもできるが、その混合物は、メタノールもしくはエタノールを50容量%以上含むことが好ましく、特にメタノールもしくはエタノールを80容量%以上含むことが好ましい。ここで、低級脂肪族アルコール以外の低沸点溶媒(例、ケトン)を併用することができるが、その場合の低級脂肪族アルコール以外の低沸点溶媒の使用量は、30容量%以下であることが望ましい。
上記部分低級脂肪族アルキルエステルを得るために用いる低級脂肪族アルコールとしてはメタノールが特に好ましい。低級脂肪族アルキルエステルとしてメチルエステルを用いると、加熱硬化性溶液組成物を用いて硬化体を製造する際に優れた形状維持性を示す。
上記の加熱硬化性溶液組成物を用いた未硬化体から溶媒を蒸発除去する際、またそれに続く硬化体を得るために高温で加熱する際に発生するメタノールによる環境汚染を回避したい場合には、メタノールを用いて加熱硬化性溶液組成物を製造した後、その溶液組成物を一旦乾燥して、加熱硬化性粉末組成物を得て、この粉末組成物をエタノールなどの環境負荷が低い溶媒に溶解して改めて加熱硬化性溶液組成物とし、それを用いて未硬化体を調製して硬化体の製造を行なう方法を利用することもできる。
加熱硬化性粉末組成物を得るために溶媒を蒸発除去する温度は、60℃以下であることが好ましい。加熱硬化性粉末組成物において、少量の溶媒が残存してもよいが、残存溶媒や高温で加熱して硬化体を得る際に発生するアルコールなどからなる揮発成分が18〜25%の範囲のものが好ましく、20〜22%の範囲のものが更に好ましい。
上記のようにして得られた加熱硬化性溶液組成物は、単独、または、これを繊維状補強材に含浸させた複合材とし、硬化触媒の存在下または不存在下で加熱することにより硬化物とすることができる。例えば、加熱硬化性溶液組成物を支持体に塗布し、260〜500℃で5〜200分間加熱硬化することによりフィルムが得られる。また、上記の加熱硬化性粉末組成物を金型内に充填し、常圧又は減圧下10〜260℃で1〜240分程度加熱イミド化し、常圧又は0.1〜20MPaの圧力下で260〜500℃で10分〜40時間程度加熱することにより、成形体を製造することができる。本実施形態の加熱硬化性溶液組成物を用いることにより、Tgが340℃以上、または340℃以下ではTgが確認できない硬化物(イミド基含有成形体)を得ることができる。
また、本実施形態の加熱硬化性溶液組成物を用いて繊維強化複合材料を得るためには、まず、高強度繊維のシート状マトリックス材料に加熱硬化性溶液組成物を含浸させ、必要により、溶媒の一部を加熱などで蒸発除去させることによって未硬化繊維強化複合材料(プリプレグ)を調製する。プリプレグには、加圧下で加熱して繊維強化複合材料を製造する際の良好な取扱い性(ドレープ性、タック性)を確保するための適切な揮発分含有量と、得られる繊維強化複合材料が良好な樹脂含量を有するための樹脂を形成する成分の適切な付着量とが要求される。このためには、デップ法、キャスト法等の方法で、適切な量の樹脂を形成する成分を含む加熱硬化性溶液組成物を高強度繊維のシート状マトリックス材料に含浸させ、次いで熱風オーブン等で加熱乾燥して余分な揮発分を蒸発除去することが好適である。通常、所定量の加熱硬化性溶液組成物を高強度繊維のシート状マトリックス材料に含浸させ、加熱乾燥条件とし、温度範囲:40〜150℃、時間範囲:0.5〜30分とすることで、好ましい樹脂含有量(Rc):30〜50質量%、揮発分含有量(Vc):10〜30質量%のプリプレグを好適に調製できる。
プリプレグを製造するために用いる、高強度繊維からなるシート状マトリックス材料としては、繊維強化複合材料を製造するために用いられる公知の高強度繊維からなるものを好適に用いることができる。好ましい高強度繊維は、カーボン繊維、アラミド繊維、ガラス繊維、およびチラノ繊維(二酸化チタン繊維)などのセラミック繊維である。
得られたプリプレグは、その両面のそれぞれを、ポリエチレンテレフタレート(PET)などの樹脂シート、あるいは紙などの被覆シートにより被覆した状態で保存や輸送することが好ましく、このような被覆状態にあるプリプレグは、通常、ロール状態で保存と輸送がされる。
プリプレグから繊維強化複合材料(硬化体)を製造する方法は公知のものを適用すればよい。例えば、ロール状のプリプレグを所望のサイズに切断し、切断した未硬化繊維強化複合材料片を複数枚(数枚から100枚以上まで)積層した後、加熱プレス、または、オートクレーブを用いて、140〜310℃で常圧又は減圧下で5〜270分間加熱して乾燥およびイミド化した後、250〜500℃の温度で、常圧または0.1〜20MPaの圧力下で、1秒〜240分間程度加熱することにより、繊維強化複合材料が得られる。
本実施形態の加熱硬化性溶液組成物を繊維状補強材に含浸させた未硬化繊維強化複合材料(プリプレグ)を加熱硬化して得られる繊維強化複合材料は、機械的特性などにも優れ、航空機や宇宙産業用機器等の用途に好適である。
以下、具体例を示して本発明を説明する。まず、各測定値等は次の方法によるものである。
(1)熱酸化安定性(TOS)
樹脂フィルムについては、270℃で4時間乾燥後の重量を基準とし、イナートガスオーブンINH−21CD−S(光洋サーモシステム株式会社)を用いて350℃で100時間流動空気に露呈した後の重量減少を、基準の重量に対する重量パーセントで表した。測定は3つのサンプルについて同時に行い、これらの平均値をTOS値とした。
CFRP板については、274℃、1000時間または3000時間の条件とした以外は、上記と同様にしてTOS値を算出した。
(2)ガラス転移温度(Tg)
樹脂フィルムについては、ティー・エイ・インスツルメント・ジャパン社製の示差走査熱量測定装置Q100シリーズを用い、窒素雰囲気下(20ml/min)、20℃/minで昇温しながらDSC曲線を測定した。DSC曲線の変曲点における、接線の交点の温度をガラス転移温度とした。
CFRP板については、ティー・エイ・インスツルメント・ジャパン社製の固体粘弾性アナライザーRSAIIIを用い、窒素中、周波数10Hz、10℃/minで昇温しながら3点曲げモードで粘弾性を測定した。温度に対して貯蔵弾性係数をプロットしたグラフの変曲点について接線を引き、その交点の温度をガラス転移温度とした。また、tanδのピークトップの温度から求めたTgは、Tg(tanδ)とした。
(3)引張強度、引張弾性率、破断伸び
測定には、インストロン社製の万能試験機(型番5582)を用いた。試験片は、樹脂フィルムを規格IEC−540打抜き刃で作製した。引張り速度は、2mm/min。試験は、室温で行った。
(4)層間せん断強度(SBS)
CFRP板について、ASTM D2344に従い測定した。測定にはインストロン社製の万能試験機(型番5582)を用いた。
(5)炭素繊維含有率(Vf)及び空隙率(Vv)測定
CFRP板について、ASTM D3171に従い硫酸分解法により、炭素繊維含有率(Vf)及び空隙率(Vv)を測定した。
また、以下に記載する実施例において、各モノマー成分は下記の表示により示した。
a−BPDA:2,3,3’,4’−ビフェニルテトラカルボン酸二無水物
s−BPDA:3,3’,4,4’−ビフェニルテトラカルボン酸二無水物
PPD:1,4−ジアミノベンゼン(パラフェニレンジアミン)
MPD:1,3−ジアミノベンゼン(メタフェニレンジアミン)
PEPA:4−(フェニルエチニル)無水フタル酸
TPE−R:1,3−ビス(4−アミノフェノキシ)ベンゼン
2−Mz:2−メチルイミダゾール
[比較例1]
セパラブルフラスコに、酸成分であるa−BPDA47.08g(0.16モル)とPEPA9.93g(0.04モル)、そして溶媒であるメタノール63.50gを投入し、触媒である2−Mz0.1529gを加えて還流条件下で撹拌し均一に溶解させた。溶液を室温に冷却後、ジアミン成分であるPPD13.63g(0.126モル)とMPD5.84g(0.054モル)を入れて攪拌し、均一な加熱硬化性溶液組成物を得た。この溶液をポリイミドフィルムで作った容器に入れて、80℃に保ったオーブンに入れた。オーブンを2℃/分で260℃まで昇温して3時間保持し、得られた固形分を粉砕して加熱硬化性粉末組成物を得た。この加熱硬化性粉末組成物を260℃に加熱したプレス機でプレスし、その後370℃まで約20分で昇温し、370℃で60分加熱処理して、厚みが約0.15mmの樹脂フィルムを得た。フィルムの特性を表1に示す。
[比較例2]
酸成分としてa−BPDA47.08g(0.16モル)とPEPA9.93g(0.04モル)、そして溶媒であるメタノール63.50gを投入し、触媒である2−Mz0.1529gを加えて還流条件下で撹拌し均一に溶解させた。溶液を室温に冷却後、ジアミン成分であるPPD9.73g(0.09モル)とMPD9.73g(0.09モル)を用いた以外は実施例1と同様にして加熱硬化性溶液組成物および樹脂フィルムを得た。フィルムの特性を表2に示す。
[比較例3]
酸成分としてs−BPDA28.25g(0.096モル)とa−BPDA18.83g(0.064モル)とPEPA9.93g(0.04モル)を、溶媒としてメタノール73.44gを、触媒として2−Mz0.1728gを、ジアミン成分としてPPD13.63g(0.126モル)とTPE−R15.79g(0.054モル)を用いた以外は実施例1と同様にして加熱硬化性溶液組成物および樹脂フィルムを得た。
Figure 2015059147
[実施例1]PPD/MPD(50/50)
セパラブルフラスコに、酸成分であるs−BPDA14.12g(0.048モル)とa−BPDA32.95g(0.112モル)とPEPA9.93g(0.04モル)、溶媒であるメタノール63.50gを投入し、触媒である2−Mz0.1529gを加えて還流条件下で撹拌し均一に溶解させた。溶液を室温に冷却後、ジアミン成分であるPPD9.73g(0.09モル)とMPD9.73g(0.09モル)を入れて攪拌し、均一な加熱硬化性溶液組成物を得た。この溶液をポリイミドフィルムで作った容器に入れて、80℃に保ったオーブンに入れた。オーブンを2℃/分で260℃まで昇温して3時間保持し、得られた固形分を粉砕して加熱硬化性粉末組成物を得た。この加熱硬化性粉末組成物を260℃に加熱したプレス機でプレスし、その後370℃まで約20分で昇温し、370℃で60分加熱処理して、厚みが約0.15mmの樹脂フィルムを得た。フィルムの特性を表2に示す。
[実施例2]
酸成分としてs−BPDA18.83g(0.064モル)とa−BPDA28.25g(0.096モル)とPEPA9.93g(0.04モル)を用いた以外は実施例1と同様にして加熱硬化性溶液組成物および樹脂フィルムを得た。フィルムの特性を表2に示す。
[実施例3]
酸成分としてs−BPDA23.54g(0.08モル)とa−BPDA23.54g(0.08モル)とPEPA9.93g(0.04モル)を用いた以外は実施例1と同様にして加熱硬化性溶液組成物および樹脂フィルムを得た。フィルムの特性を表2に示す。
[実施例4]
酸成分としてs−BPDA28.25g(0.096モル)とa−BPDA18.83g(0.064モル)とPEPA9.93g(0.04モル)を用いた以外は実施例1と同様にして加熱硬化性溶液組成物および樹脂フィルムを得た。フィルムの特性を表2に示す。
[実施例5]
酸成分としてs−BPDA32.95g(0.112モル)とa−BPDA14.12g(0.048モル)とPEPA9.93g(0.04モル)を用いた以外は実施例1と同様にして加熱硬化性溶液組成物および樹脂フィルムを得た。フィルムの特性を表2に示す。
Figure 2015059147
[実施例6]s-BPDA/a-BPDA(60/40)
酸成分としてs−BPDA28.25g(0.096モル)とa−BPDA18.83g(0.064モル)とPEPA9.93g(0.04モル)を、ジアミン成分としてPPD3.89g(0.036モル)とMPD15.57g(0.144モル)を用いた以外は実施例1と同様にして加熱硬化性溶液組成物および樹脂フィルムを得た。フィルムの特性を表3に示す。
[実施例7]
ジアミン成分としてPPD11.68g(0.108モル)とMPD7.79g(0.072モル)を用いた以外は実施例6と同様にして加熱硬化性溶液組成物および樹脂フィルムを得た。フィルムの特性を表3に示す。
[実施例8]
ジアミン成分としてPPD13.63g(0.126モル)とMPD5.84g(0.054モル)を用いた以外は実施例6と同様にして加熱硬化性溶液組成物および樹脂フィルムを得た。フィルムの特性を表3に示す。
Figure 2015059147
[実施例9]s-BPDA/a-BPDA(50/50)
酸成分としてs−BPDA23.54g(0.08モル)とa−BPDA23.54g(0.08モル)とPEPA9.93g(0.04モル)を、ジアミン成分としてPPD11.68g(0.108モル)とMPD7.79g(0.072モル)を用いた以外は実施例1と同様にして加熱硬化性溶液組成物および樹脂フィルムを得た。フィルムの特性を表4に示す。
[実施例10]
ジアミン成分としてPPD13.63g(0.126モル)とMPD5.84g(0.054モル)を用いた以外は実施例9と同様にして加熱硬化性溶液組成物および樹脂フィルムを得た。フィルムの特性を表4に示す。
Figure 2015059147
[実施例11]s-BPDA/a-BPDA(60/40)、PPD/MPD(50/50)
酸成分としてs−BPDA28.42g(0.0966モル)とa−BPDA18.95g(0.0644モル)とPEPA11.42g(0.046モル)を、溶媒としてメタノール65.42gを、触媒として2−Mz0.1574gを、ジアミン成分としてPPD9.95g(0.092モル)とMPD9.95g(0.092モル)を用いた以外は実施例1と同様にして加熱硬化性溶液組成物および樹脂フィルムを得た。フィルムの特性を表5に示す。
[実施例12]
酸成分としてs−BPDA30.19g(0.1026モル)とa−BPDA20.12g(0.0684モル)とPEPA9.43g(0.038モル)を、溶媒としてメタノール66.60gを、触媒として2−Mz0.1606gを、ジアミン成分としてPPD10.27g(0.095モル)とMPD10.27g(0.095モル)を用いた以外は実施例1と同様にして加熱硬化性溶液組成物および樹脂フィルムを得た。フィルムの特性を表5に示す。
[実施例13]
酸成分としてs−BPDA35.31g(0.12モル)とa−BPDA23.54g(0.08モル)とPEPA9.93g(0.04モル)を、溶媒としてメタノール76.71gを、触媒として2−Mz0.1851gを、ジアミン成分としてPPD11.90g(0.11モル)とMPD11.90g(0.11モル)を用いた以外は実施例1と同様にして加熱硬化性溶液組成物および樹脂フィルムを得た。フィルムの特性を表5に示す。
Figure 2015059147
[実施例14]s-BPDA/a-BPDA(50/50)、PPD/MPD(50/50)
酸成分としてs−BPDA25.01g(0.085モル)とa−BPDA25.01g(0.085モル)とPEPA8.44g(0.034モル)を、溶媒としてメタノール65.20gを、触媒として2−Mz0.1574gを、ジアミン成分としてPPD10.11g(0.0935モル)とMPD10.11g(0.0935モル)を用いた以外は実施例1と同様にして加熱硬化性溶液組成物および樹脂フィルムを得た。フィルムの特性を表6に示す。
[実施例15]
酸成分としてs−BPDA26.48g(0.09モル)とa−BPDA26.48g(0.09モル)とPEPA7.45g(0.03モル)を、溶媒としてメタノール67.44gを、触媒として2−Mz0.1630gを、ジアミン成分としてPPD10.54g(0.0975モル)とMPD10.54g(0.0975モル)を用いた以外は実施例1と同様にして加熱硬化性溶液組成物および樹脂フィルムを得た。フィルムの特性を表6に示す。
Figure 2015059147
[実施例16]s-BPDA/a-BPDA(50/50)、PPD/MPD(60/40)
酸成分としてs−BPDA25.01g(0.085モル)とa−BPDA25.01g(0.085モル)とPEPA8.44g(0.034モル)を、溶媒としてメタノール65.20gを、触媒として2−Mz0.1574gを、ジアミン成分としてPPD12.13g(0.1122モル)とMPD8.09g(0.0748モル)を用いた以外は実施例1と同様にして加熱硬化性溶液組成物および樹脂フィルムを得た。フィルムの特性を表7に示す。
Figure 2015059147
[実施例17]
表7に示した組成で実施例1と同様な方法で固形分濃度40〜60重量%の加熱硬化性溶液組成物を調製した。この加熱硬化性溶液組成物を、東邦テナックス社製の炭素繊維織物(HTS40 3K 8繻子織、目付重量378g/m2)に含浸させ、80〜100℃のオーブンで10〜30分乾燥してプリプレグを得た。乾燥条件は乾燥後の揮発分が約15重量%となるように調整した。なお、揮発分は、250℃、1時間加熱後の重量減少から算出した。得られたプリプレグを100×140mmにカットして12枚重ね、オートクレーブ成形機に入れて1.38MPaの加圧下、370℃で1時間加熱処理して厚さ4.3mmの炭素繊維強化プラスチック(CFRP)板を得た。得られたCFRP板は、超音波探傷試験および実体顕微鏡による断面観察から、ほとんどボイドが見られない良品であることがわかった。得られたCFRP板の特性を表8に示す。
[実施例18]
表8に示した組成で加熱硬化性溶液組成物を調製したこと以外は実施例17と同様にしてCFRP板を得た。得られたCFRP板の特性を表8に示す。
[比較例4]
表8に示した組成で加熱硬化性溶液組成物を調製したこと以外は実施例19と同様にしてCFRP板を得た。得られたCFRP板の特性を表8に示す。
Figure 2015059147
[実施例19]
表8に示した組成で実施例1と同様な方法で固形分濃度40〜60重量%の加熱硬化性溶液組成物を調製した。この加熱硬化性溶液組成物を、Cytec社製の炭素繊維織物(T650/35 3K 8繻子織、目付重量375g/m2)に含浸させ、80〜100℃のオーブンで10〜30分乾燥してプリプレグを得た。乾燥条件は乾燥後の揮発分が約15重量%となるように調整した。なお、揮発分は、250℃、1時間加熱後の重量減少から算出した。得られたプリプレグを100×140mmにカットして6枚重ね、オートクレーブ成形機に入れて1.38MPaの加圧下、370℃で1時間加熱処理して厚さ2.4mmの炭素繊維強化プラスチック(CFRP)板を得た。得られたCFRP板は、超音波探傷試験および実体顕微鏡による断面観察から、ほとんどボイドが見られない良品であることがわかった。得られたCFRP板の特性を表9に示す。
[実施例20]
表9に示した組成で加熱硬化性溶液組成物を調製したこと以外は実施例21と同様にしてCFRP板を得た。得られたCFRP板の特性を表9に示す。
[実施例21]
表9に示した組成で加熱硬化性溶液組成物を調製したこと以外は実施例21と同様にしてCFRP板を得た。得られたCFRP板の特性を表9に示す。
[実施例22]
表9に示した組成で加熱硬化性溶液組成物を調製したこと以外は実施例21と同様にしてCFRP板を得た。得られたCFRP板の特性を表9に示す。
[比較例5]
表9に示した組成で加熱硬化性溶液組成物を調製したこと以外は実施例21と同様にしてCFRP板を得た。得られたCFRP板の特性を表9に示す。
Figure 2015059147

Claims (7)

  1. (A)2,3,3’,4’−ビフェニルテトラカルボン酸化合物と、3,3’,4,4’−ビフェニルテトラカルボン酸化合物とを、それぞれ20モル%以上含む芳香族テトラカルボン酸成分、(B)アミノ基に由来する二つの炭素−窒素結合軸が同一直線上に位置し、分子内に酸素原子を有しない芳香族ジアミンと、アミノ基に由来する二つの炭素−窒素結合軸が同一直線上に位置せず、分子内に酸素原子を有しない芳香族ジアミンとを、それぞれ20モル%以上含む、分子内に酸素原子を有しない芳香族ジアミン成分、及び(C)フェニルエチニル基を有する末端封止剤を混合して得られたことを特徴とする加熱硬化性溶液組成物。
  2. 前記(B)のアミノ基に由来する二つの炭素−窒素結合軸が同一直線上に位置し、分子内に酸素原子を有しない芳香族ジアミンが、1,4−ジアミノベンゼンであり、アミノ基に由来する二つの炭素−窒素結合軸が同一直線上に位置せず、分子内に酸素原子を有しない芳香族ジアミンが、1,3−ジアミノベンゼンであることを特徴とする請求項1記載の加熱硬化性溶液組成物。
  3. 前記(C)のフェニルエチニル基を有する末端封止剤が、4−(2−フェニルエチニル)フタル酸化合物であることを特徴とする請求項1または2に記載の加熱硬化性溶液組成物。
  4. 芳香族ジアミン成分と芳香族テトラカルボン酸成分のモル比(芳香族ジアミン成分のモル数/芳香族テトラカルボン酸成分のモル数)が、1.067〜1.167であることを特徴とする請求項1〜4いずれか記載の加熱硬化性溶液組成物
  5. 請求項1〜4いずれか記載の加熱硬化性溶液組成物を加熱硬化して得られたことを特徴とする硬化物。
  6. 請求項1〜4いずれか記載の加熱硬化性溶液組成物を繊維状補強材に含浸させたことを特徴とするプリプレグ。
  7. 請求項6記載のプリプレグを加熱硬化して得られたことを特徴とする繊維強化複合材料。
JP2013192656A 2013-09-18 2013-09-18 加熱硬化性溶液組成物、それを用いた硬化物、プリプレグ及び繊維強化複合材料 Pending JP2015059147A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013192656A JP2015059147A (ja) 2013-09-18 2013-09-18 加熱硬化性溶液組成物、それを用いた硬化物、プリプレグ及び繊維強化複合材料

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013192656A JP2015059147A (ja) 2013-09-18 2013-09-18 加熱硬化性溶液組成物、それを用いた硬化物、プリプレグ及び繊維強化複合材料

Publications (1)

Publication Number Publication Date
JP2015059147A true JP2015059147A (ja) 2015-03-30

Family

ID=52816941

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013192656A Pending JP2015059147A (ja) 2013-09-18 2013-09-18 加熱硬化性溶液組成物、それを用いた硬化物、プリプレグ及び繊維強化複合材料

Country Status (1)

Country Link
JP (1) JP2015059147A (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08253585A (ja) * 1994-06-23 1996-10-01 Trw Inc ポリイミド製品の製造に有用な濃厚プレポリマー組成物
JP2007308519A (ja) * 2005-05-31 2007-11-29 Ube Ind Ltd 加熱硬化性溶液組成物および未硬化樹脂複合体
WO2009123042A1 (ja) * 2008-03-31 2009-10-08 宇部興産株式会社 摩擦材及び摩擦材用樹脂組成物
JP2011184492A (ja) * 2010-03-05 2011-09-22 Ube Industries Ltd 可溶性末端変性イミドオリゴマーおよびワニス並びにその硬化物
JP5987898B2 (ja) * 2012-03-19 2016-09-07 宇部興産株式会社 加熱硬化性溶液組成物、それを用いた硬化物、プリプレグ及び繊維強化複合材料

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08253585A (ja) * 1994-06-23 1996-10-01 Trw Inc ポリイミド製品の製造に有用な濃厚プレポリマー組成物
JP2007308519A (ja) * 2005-05-31 2007-11-29 Ube Ind Ltd 加熱硬化性溶液組成物および未硬化樹脂複合体
WO2009123042A1 (ja) * 2008-03-31 2009-10-08 宇部興産株式会社 摩擦材及び摩擦材用樹脂組成物
JP2011184492A (ja) * 2010-03-05 2011-09-22 Ube Industries Ltd 可溶性末端変性イミドオリゴマーおよびワニス並びにその硬化物
JP5987898B2 (ja) * 2012-03-19 2016-09-07 宇部興産株式会社 加熱硬化性溶液組成物、それを用いた硬化物、プリプレグ及び繊維強化複合材料

Similar Documents

Publication Publication Date Title
JP5522479B2 (ja) 2−フェニル−4,4’−ジアミノジフェニルエーテル類を用いた可溶性末端変性イミドオリゴマー、およびワニス、およびその硬化物、およびそのイミドプリプレグ、および耐熱性に優れる繊維強化積層板
JP6604588B2 (ja) 2−フェニル−4,4’−ジアミノジフェニルエーテル類を用いたワニス、および成形性に優れるイミド樹脂組成物および優れた破断伸びを有する硬化樹脂成形体ならびにそれらを用いたプリプレグ、イミドプリプレグおよび耐熱性および機械強度に優れる繊維強化素材
JP7016082B2 (ja) セミプレグ、プリプレグ、樹脂複合材料およびそれらの製造方法
US10526450B2 (en) Terminally modified imide oligomer, varnish, cured products thereof, film, and imide prepreg and fiber-reinforced composite material using these
JP5987898B2 (ja) 加熱硬化性溶液組成物、それを用いた硬化物、プリプレグ及び繊維強化複合材料
JP6202554B2 (ja) 2−フェニル−4,4’−ジアミノジフェニルエーテル類を用いた末端変性イミドオリゴマーとオキシジフタル酸類を用いた芳香族熱可塑性ポリイミドにより作製されたポリイミド樹脂組成物、およびワニス、および耐熱性や機械的特性に優れたポリイミド樹脂組成物成形体、およびプリプレグ、およびその繊維強化複合材料
JP5041271B2 (ja) 加熱硬化性溶液組成物および未硬化樹脂複合体
US9051430B2 (en) Resin-transfer-moldable terminal-modified imide oligomer using 2-phenyl-4,4′diaminodiphenyl ether and having excellent moldability, mixture thereof, varnish containing same, and cured resin thereof and fiber-reinforced cured resin thereof made by resin transfer molding and having excellent heat resistance
JP4042861B2 (ja) イミドプリプレグおよび積層板
US20210221113A1 (en) Uncured laminate, reinforcing fiber composite material, method for producing uncured laminate, and method for producing reinforcing fiber composite material
JP2014201740A (ja) イミドオリゴマー及びこれを加熱硬化させてなるポリイミド樹脂
JP2015059147A (ja) 加熱硬化性溶液組成物、それを用いた硬化物、プリプレグ及び繊維強化複合材料
JP2022502535A (ja) ポリイミド複合材を成形するための新規アミド酸オリゴマーの製造方法
JP5610335B2 (ja) 機械的強度が向上した繊維強化ポリイミド材料の製造方法
JP7418737B2 (ja) イミドオリゴマー、ワニス、それらの硬化物、並びにそれらを用いたプリプレグ及び繊維強化複合材料
JPH0264157A (ja) 末端変性イミドオリゴマー組成物
JP2597186B2 (ja) イミド樹脂マトリックス複合材
JP2022109065A (ja) アミド酸オリゴマーを含むワニス、並びにイミドオリゴマー、硬化物、プリプレグおよびセミプレグ
JPH01247430A (ja) 繊維強化ポリイミド複合材料の製造法
JP2022021887A (ja) イミドオリゴマー、ワニス、それらの硬化物、並びにそれらを用いたプリプレグ及び繊維強化複合材料
JP2007138082A (ja) 末端変性アミック酸オリゴマー溶液を用いたプリプレグの製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160715

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170510

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A132

Effective date: 20170516

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20180410