WO2008123326A1 - Thermosetting resin composite composition, resin molded body, and method for producing the composition - Google Patents

Thermosetting resin composite composition, resin molded body, and method for producing the composition Download PDF

Info

Publication number
WO2008123326A1
WO2008123326A1 PCT/JP2008/055799 JP2008055799W WO2008123326A1 WO 2008123326 A1 WO2008123326 A1 WO 2008123326A1 JP 2008055799 W JP2008055799 W JP 2008055799W WO 2008123326 A1 WO2008123326 A1 WO 2008123326A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
boron nitride
thermosetting
weight
resin composition
Prior art date
Application number
PCT/JP2008/055799
Other languages
French (fr)
Japanese (ja)
Inventor
Hiroaki Kuwahara
Yoshio Bando
Chunyi Zhi
Chengchun Tang
Dmitri Golberg
Original Assignee
Teijin Limited
National Institute For Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Limited, National Institute For Materials Science filed Critical Teijin Limited
Priority to JP2009509153A priority Critical patent/JP5201367B2/en
Publication of WO2008123326A1 publication Critical patent/WO2008123326A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/005Reinforced macromolecular compounds with nanosized materials, e.g. nanoparticles, nanofibres, nanotubes, nanowires, nanorods or nanolayered materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/38Boron-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/22Expanded, porous or hollow particles
    • C08K7/24Expanded, porous or hollow particles inorganic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L61/00Compositions of condensation polymers of aldehydes or ketones; Compositions of derivatives of such polymers
    • C08L61/04Condensation polymers of aldehydes or ketones with phenols only
    • C08L61/06Condensation polymers of aldehydes or ketones with phenols only of aldehydes with phenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L61/00Compositions of condensation polymers of aldehydes or ketones; Compositions of derivatives of such polymers
    • C08L61/20Condensation polymers of aldehydes or ketones with only compounds containing hydrogen attached to nitrogen
    • C08L61/22Condensation polymers of aldehydes or ketones with only compounds containing hydrogen attached to nitrogen of aldehydes with acyclic or carbocyclic compounds
    • C08L61/24Condensation polymers of aldehydes or ketones with only compounds containing hydrogen attached to nitrogen of aldehydes with acyclic or carbocyclic compounds with urea or thiourea
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L61/00Compositions of condensation polymers of aldehydes or ketones; Compositions of derivatives of such polymers
    • C08L61/20Condensation polymers of aldehydes or ketones with only compounds containing hydrogen attached to nitrogen
    • C08L61/26Condensation polymers of aldehydes or ketones with only compounds containing hydrogen attached to nitrogen of aldehydes with heterocyclic compounds
    • C08L61/28Condensation polymers of aldehydes or ketones with only compounds containing hydrogen attached to nitrogen of aldehydes with heterocyclic compounds with melamine
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors

Definitions

  • the present invention relates to a resin composition in which a thermosetting resin and boron nitride nanotubes are uniformly dispersed, a method for producing the same, and a resin molded body.
  • a small amount of filler is added by nano-dispersing boron nitride nanotubes as a filler in thermosetting resin.
  • the present invention relates to a resin composition, a production method thereof, and a resin molded body.
  • Multi-layer printed circuit boards for electronic devices are composed of multiple layers of insulating substrates.
  • interlayer insulating substrates for example, thermosetting resin pre-preders in which glass cloth is impregnated with thermosetting resin, thermosetting resins, etc. Films made of resin or photo-curable resin have been used.
  • interlayer insulating substrate examples include those made of rubber (elastomer), an acrylic-modified thermosetting resin, a thermoplastic resin material containing a large amount of an inorganic filler, and the like.
  • an inorganic filler having a predetermined particle size is blended in a varnish mainly composed of a high molecular weight epoxy polymer and a polyfunctional epoxy resin.
  • Support A method for manufacturing a multilayer insulating substrate that is applied to an insulating layer is disclosed.
  • the multilayer insulating substrate produced by the above method it is necessary to add a large amount of inorganic filler in order to secure the interface area between the inorganic filler and the resin and sufficiently improve the mechanical properties such as mechanical strength. Thinning between the layers was difficult. Furthermore, since a large amount of organic filler is blended, the substrate tends to devitrify, and there is a problem that it is difficult to align the laser position with the back side of the substrate. In addition, thin glass cloth is used to improve the heat resistance and dimensional stability of the interlayer insulating substrate, but the effect is insufficient due to insufficient thickness, and it is brittle and easily broken, which may cause problems in the manufacturing process.
  • the multilayer printed circuit board manufacturing method includes a build-up method by circuit formation and lamination, and a batch lamination method in which circuit formation layers are laminated together.
  • the materials are required to have solvent resistance, water resistance, heat resistance, dimensional stability at high temperatures, and the like.
  • build-up boards and printed multilayer boards used in IC packages are required to maintain high reliability even in high-temperature usage environments due to heat generation.
  • peeling occurs from metal wiring such as copper forming the circuit, causing short circuit or disconnection.
  • Japanese Patent Application Laid-Open No. 2 00 0-1 8 3 5 3 9 discloses a technique for improving high-temperature physical properties by using an epoxy resin having excellent heat resistance and an inorganic compound in combination. Above the temperature, there is almost no improvement in physical properties, and even at temperatures below the glass transition temperature, the improvement is small. Also, hygroscopicity cannot be expected to improve the solvent resistance.
  • Japanese Patent Application Laid-Open No. 2 0 7-7 5 1 2 6 7 discloses a force for improving heat resistance by using aluminum hydroxide having a predetermined particle size as an inorganic filler. Since water is formed at a high temperature, it is not preferable in terms of material properties for use at a high temperature. Also material If a large amount of inorganic filler is used, drilling may require a large amount of energy, in addition to the difficulty of alignment during laser drilling. Furthermore, in order to cope with high temperature processing such as solder reflow and high temperature environment when using lead-free solder that is environmentally friendly, simply relying on the heat resistance of the resin may cause problems during processing. In order to easily perform laser processing, there is a need for a substrate material that can satisfy various physical properties required for a resin substrate while maintaining necessary transparency.
  • ordinary inorganic compounds have a size of several micron or more, and it is necessary to add a large amount in order to achieve the desired effect, but in that case, the above-mentioned difficulties in laser processing are unavoidable.
  • micron-sized particles form defects as foreign matter, reducing the appearance and mechanical properties of the product.
  • nano-sized inorganic particles and nano-filaments such as single-bonn nanotubes may be used.
  • carbon nanotubes are limited in use due to insulation problems, and inorganic particles tend to aggregate. Usually, it is difficult to achieve dispersion at the nano level.
  • carbon nanotubes have unprecedented mechanical properties, electrical properties, thermal properties, etc., they have attracted attention as potential materials for nanotechnology, and their potential for application in a wide range of fields has been studied. Has been started.
  • Japanese Patent Application Laid-Open No. 2 0 3-1 2 9 3 9 discloses that the electrical conductivity of a polymer composite composed of epoxy resin, unsaturated polyester resin, phenol resin, vinyl ester resin or cyanate ester resin and multi-walled carbon nanotubes is disclosed. And improvements in mechanical properties are disclosed.
  • Japanese Patent Application Laid-Open No. 2000-026 2 1 discloses that the carbon nanotubes are coated with a conjugated polymer, so that the dispersibility of the carbon nanotubes is extremely increased, and the matrix resin can be obtained with a small amount of bonbon nanotubes. It is disclosed that high conductivity is imparted.
  • Japanese Patent Laid-Open No. 2000-244-90 describes a polymer having a side chain structure such as polymethyl methacrylate and polystyrene and a single polymer coated with a conjugated polymer. It has been disclosed that a polymer composite composed of single-walled carbon nanotubes dramatically improves the elastic modulus even when the amount of single-walled carbon nanotubes added is small.
  • Japanese Patent Application Laid-Open No. 2 0 4-2 4 4 4 90 describes that boron nitride nanotubes may be used instead of force-bonbon nanotubes.
  • the polymer used is limited to a polymer having a side chain structure, and there is no specific report on other main chain type aromatic polymers or thermosetting resins.
  • a layered silicate such as montmorillonite is heated.
  • the mechanical strength of the layered silicate itself is much lower than that of high-strength materials such as bonbon nanotubes, so the high-temperature strength is still inadequate.
  • the layered nanofiller having a suitable spread has a great influence on the surface shape of the composite resin, and if the dispersion is not sufficient, it causes the surface smoothness to be impaired and becomes a factor that restricts the use of the material.
  • Solves problems such as resin properties being reduced due to non-uniform dispersion if the effect of conventional fillers is insufficient, has high mechanical strength and heat resistance, and has excellent strength, dimensional stability of resin, and excellent thermosetting
  • a nano filler that is highly effective even with a small amount due to its large specific surface area and can be dispersed at a truly nano level. Disclosure of the invention
  • the object of the present invention is not to affect the moldability and appearance of the composition in the molding process, but to maintain the mechanical strength, thermal characteristics, dimensional stability, molding processability, etc. even when used at high temperatures. To provide an improved thermosetting resin composition and a molded product thereof is there.
  • Another object of the present invention is to provide a thermosetting resin composition comprising an inorganic nanotube capable of exhibiting the above-described excellent characteristics with addition of a small amount or a large amount, and a molded product thereof.
  • thermosetting resin contains 100 parts by weight and boron nitride nanotubes 0.01 to: L 100 parts by weight. This is achieved by the resin composition.
  • the boron nitride nanotubes preferably have an average diameter of 0.4 nm to 1 xm and an average aspect ratio of 5 or more, and are preferably coated with a conjugated polymer.
  • thermosetting resin is at least one selected from the group consisting of, for example, phenol resin, epoxy resin, thermosetting modified polyethylene ether resin, thermosetting polyimide resin, key resin, urea resin, and melamine resin.
  • the above-mentioned objects and advantages of the present invention are secondly achieved by a resin molded body, for example, a sheet, characterized by comprising the above-mentioned resin composition of the present invention.
  • the above objects and advantages of the present invention are thirdly achieved by a substrate material characterized by comprising a cured product of the above resin composition of the present invention.
  • the method for producing the resin composition of the present invention is characterized in that boron nitride nanotubes coated with a conjugated polymer are mixed and dispersed in a thermosetting resin. Is achieved.
  • the boron nitride nanotube is a tube-shaped material made of boron nitride.
  • the ideal structure is a single tube or multiple tubes, with hexagonal mesh faces forming a tube parallel to the tube axis.
  • the average diameter of boron nitride nanotubes is favorable It is preferably 0.4 nm to: L m, more preferably 0.6 to 500 nm, and even more preferably 0.8 to 200 nm.
  • the average diameter here means the average outer diameter in the case of a single pipe, and the average outer diameter of the outermost pipe in the case of multiple pipes.
  • the average length is preferably 10 m or less, more preferably 5 zm or less.
  • the average aspect ratio which is the ratio of average length to average diameter, is preferably 5 or more, more preferably 10 or more.
  • the upper limit of the average aspect ratio is not limited as long as the average length is 10 m or less, and the upper limit can be substantially 2500.
  • the boron nitride nanotubes preferably have an average diameter of 0.4 nm to l / im and an average aspect ratio of 5 or more.
  • the average diameter and average aspect ratio of boron nitride nanotubes can be determined from observation with an electron microscope. For example, T E M (transmission electron microscope) measurement can be performed, and the diameter and length of the boron nitride nanotube can be measured directly from the image.
  • T E M transmission electron microscope
  • the form of the boron nitride nanotubule in the composition or its cured product can be grasped, for example, by TEM (transmission electron microscope) measurement of a fiber cross section cut in parallel to the fiber axis.
  • Boron nitride nanotubes can be synthesized using, for example, an arc discharge method, a laser heating method, or a chemical vapor phase growth method.
  • a synthesis method a method is also known in which nickel boride is used as a catalyst and porazine is used as a raw material.
  • a method of synthesizing boron oxide and nitrogen by using carbon nanotubes as a saddle type has been proposed.
  • the boron nitride nanotubes used in the present invention are produced by these methods, but are not limited to the production methods.
  • boron nitride nanotubes boron nitride nanotubes obtained by subjecting the obtained boron nitride nanotubes to strong acid treatment or chemical modification can also be used.
  • the boron nitride nanotubes are preferably those coated with a conjugated polymer.
  • the conjugated polymer for coating the boron nitride nanotubes those having strong interaction with the boron nitride nanotubes and the thermosetting resin as the matrix resin are preferable.
  • these conjugated polymers include polyphenylene vinylene polymers, polythiophene polymers, polyphenylene polymers, and polypyrrole. Polymer, polyaniline polymer, polyacetylene polymer and the like. Of these, polyphenylene vinylene polymers and polythiophene polymers are preferred.
  • the boron nitride nanotubes used in the present invention are compatible with the matrix resin or have other reactivity or reactivity to improve the adhesiveness and reactivity with the matrix resin as necessary. It may be coated with a resin.
  • boron nitride nanotubes are used for the purpose of strengthening thermosetting resins, it is further possible to attach nopolac-type phenol resin or resole-type phenol resin to boron nitride nanotubes to which fibrous materials are attached. Strength improvement can be expected.
  • the boron nitride nanotubes used in the present invention may be surface-coated with a coupling agent.
  • the coupling agent used here include silane coupling agents, titanate coupling agents, and aluminate coupling agents.
  • silane coupling agents include vinyl triethoxysilane, vinyl tris (2-methoxyethoxy) silane, N— (2-aminoethyl) 3-aminopropylmethyldimethoxysilane, N— (2 —Aminoethyl) 3-aminopropyl trimethoxysilane, 3-aminopropyl polymethylsilane, 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 3-chloropropylmethyldimethoxysilane 3, 3-propylpropyltrimethoxysilane, 3-methacryloxypropyltrimethoxysilane, 3-mercapropropyltrimethoxysi
  • titanic pulling agents include isopropyltriisostearoyl titanate, isopropylpropyl (dioctylpyrophosphate), isopropyltri (N-aminoethyl-aminoethyl) titanate, tetraoctylbis (ditridecylphosphite) titanate Tetra (2,2-diallyloxymethyl-1-butyl) bis (ditridecyl) phosphatene bis (dioctyl borophosphate) oxyacetate titanate, bis (dioctyl bailophos) Fate) Ethylene titanate, Isopropyltrioctanoyl titanate, Sopropyldimethacrylisostearoyl titanate, Isopropyltridodecylbenzenesulfonyl titanate, Isopropylisostearoyl dibutylate, Isopropyltri
  • aluminate coupling agents include acetate alkoxy aluminum dipropylate. These compounds are used as a solution of an organic solvent such as alcohol, ketone, dallicol or hydrocarbon, or as a mixed solvent solution of water and these organic solvents. If necessary, the pH may be adjusted by adding an acid such as acetic acid or hydrochloric acid, or an alkali to the above solution.
  • Boron nitride nanotubes are known not only to have excellent mechanical and thermal conductivity comparable to carbon nanotubes, but also to be chemically stable and have better oxidation resistance than carbon nanotubes.
  • it has a local polar structure due to the dipole interaction between boron and nitrogen atoms, and is expected to have better affinity and dispersibility than carbon nanotubes for media having a polar structure.
  • it has a wide band gap in terms of electronic structure, so it is insulative and can be expected as an insulating heat-dissipating material, and it can be applied to applications that dislike coloring because it is white unlike carbon nanotubes.
  • Composite creation is possible.
  • boron nitride nanotubes are contained in the range of 0.01 to 100 parts by weight with respect to 100 parts by weight of the thermosetting resin.
  • the lower limit of the content of the above-mentioned boron nitride nanotube is preferably 0.05 part by weight, more preferably 0.1 part by weight.
  • the upper limit of the content of boron nitride nanotubes is preferably 80 parts by weight, and more preferably 50 parts by weight.
  • the resin composition of the present invention may contain nitrogen nitride flakes derived from boron nitride nanotubes, catalytic metals, and the like. is there.
  • thermosetting resin used in the present invention has a polar element such as an oxygen-nitrogen atom in a polymer molecular chain, and as a result, a polar boron nitride nanotube whose structure is defined at the nano level and It is possible to interact electrostatically at the molecular level.
  • thermosetting resin composition obtained as a result of the specific interaction between the polymer and the nanotube, even with the addition of a small amount of filler, it is more efficient than the conventional thermosetting resin and its composition. It is possible to improve heat resistance and mechanical properties, and it is expected that high performance exceeding the range of Norc inorganic filler added thermosetting resin will be realized.
  • thermosetting resin used in the present invention examples include phenol resin, epoxy resin, thermosetting modified polyphenylene ether resin, thermosetting polyimide resin, silicone resin, benzoxazine resin, melamine resin, urea resin, Examples include furan resin and aniline resin. These thermosetting resins may be used alone or in combination of two or more. Among the thermosetting resins described above, phenol resin, epoxy resin, thermosetting modified polyethylene resin, thermosetting polyimide resin, key resin, urea resin, and melamine resin are preferable. One or more selected from these is preferably 50 parts by weight or more of 100 parts by weight of the thermosetting resin.
  • the phenol resin used in the present invention is obtained by reacting phenols and aldehydes in the presence of an acid catalyst or a basic catalyst.
  • a nopolac type phenolic resin can be obtained under an acid catalyst
  • a resole type phenolic resin can be obtained under a basic catalyst.
  • the phenols are not particularly limited. For example, phenol, o-cresol, m-cresol, p-cresol, xylenol, bisphenol A, p-even butylphenol, p-octyl.
  • Examples include phenol, p-nonylphenol, p-cumylphenol, other alkylphenols, catechol, resorcinol, phloroglucinol, and bisphenol. Of these, phenol, cresol, resorcinol, and phloroglucinol are preferred because of their high mechanical strength. Y / or bisphenol A can be preferably used.
  • the aldehydes are not particularly limited, and examples thereof include formaldehyde, paraformaldehyde, benzaldehyde, substances that generate these aldehydes, and solutions of these aldehydes. These may be used alone or in admixture of two or more.
  • formaldehyde and paraformaldehyde can be preferably used because of the high reactivity during the synthesis.
  • the acidic catalyst is not particularly limited.
  • acids such as oxalic acid, hydrochloric acid, sulfuric acid, dimethyl sulfuric acid, and paratoluenesulfonic acid, and metal salts such as dumbbell acetate can be used alone or in combination.
  • the basic catalyst is not particularly limited, but examples thereof include alkali metal hydroxides such as sodium hydroxide, lithium hydroxide and potassium hydroxide, tertiary water amines such as ammonia water and lithium ethylamine, Alkali earth metal oxides and hydroxides such as magnesium and barium, alkaline substances such as sodium carbonate and hexamethylenetetramine can be used alone or in combination of two or more.
  • the phenol resin obtained by reacting phenols with aldehydes can usually be obtained by the following method.
  • the phenols and aldehydes are heated and reacted in the presence of the acid catalyst or basic catalyst.
  • an acidic catalyst water can be distilled off to obtain a solid nopolac-type phenolic resin.
  • a liquid resin resin can be obtained by adding water or an organic solvent.
  • the phenolic resin obtained by these methods can be combined with boron nitride nanotubes and other additives, and further heated after molding to allow the curing reaction to proceed to produce a final molded product.
  • the epoxy resin refers to an organic compound having at least one epoxy group.
  • the number of epoxy groups in the epoxy resin is preferably 1 or more per molecule, and more preferably 2 or more per molecule.
  • epoxy resin a conventionally known epoxy resin can be used, and examples thereof include epoxy resin (1) to epoxy resin (1 0) described below. These epoxy resins may be used alone or in combination of two or more.
  • Examples of the epoxy resin (1) include bisphenol type epoxy resins such as bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol AD type epoxy resin, and bisphenol S type epoxy resin; Noplac type epoxy resins such as lacquer type epoxy resins and cresolol nopolac type epoxy resins; aromatic epoxy resins such as trisphenol methane triglycidyl ether, and their hydrogenated products and brominated products.
  • bisphenol type epoxy resins such as bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol AD type epoxy resin, and bisphenol S type epoxy resin
  • Noplac type epoxy resins such as lacquer type epoxy resins and cresolol nopolac type epoxy resins
  • aromatic epoxy resins such as trisphenol methane triglycidyl ether, and their hydrogenated products and brominated products.
  • Examples of the epoxy resin (2) include 3, 4-epoxy ring hexyl methyl 3, 4 1 epoxy ring hexane carboxylate, 3, 4 1 epoxy 1 2 1 methyl ring hexyl methyl-3, 4 1 epoxy 1 2 —Methylcyclohexane, bis (3,4 epoxy-hexyl) adipate, bis (3,4-epoxycyclohexylmethyl) adipate, bis (3,4-epoxy 6_methylcyclohexylmethyl) adipate , 2- (3,4-epoxy cyclohexylene 5,5-spiro-1,3,4-epoxy) cyclohexanone monometa dioxane, bis (2,3-epoxycyclopentyl) ether and other alicyclic epoxy resins, etc. Power S is mentioned.
  • Examples of commercially available epoxy resins (2) include trade name “E HPE-3 15 50” (softening temperature 71 ° C.) manufactured by Daicel
  • Examples of the epoxy resin (3) include 1,4-monobutanediol diglycidyl ether, 1,6-hexanediol diglycidyl ether, glycerin triglycidyl ether, trimethylolpropane triglycidyl ether, polyethylene glycol— Diglycidyl ether of polypropylene, diglycidyl ether of polypropylene glycol, long chain such as polyoxyalkylene dallicol and polytetramethylene ether dallicol containing an alkylene group having 2 to 9, preferably 2 to 4 carbon atoms Examples thereof include aliphatic epoxy resins such as polydaricidyl ether of polyol.
  • Epoxy resins (4) include, for example, diglycidyl phthalate, teto Dihydrodicyl ester of lahydrophthalic acid, diglycidyl ester of hexahydrofuric acid diglycidyl ester, diglycidyl p-oxybenzoic acid, daricidyl ether of salicylic acid-daricidyl ester, dimeric acid daricidyl ester, etc. And the like.
  • Examples of the epoxy resin (5) include triglycidyl isocyanurate, N, N, -diglycidyl derivative of cyclic alkylene urea, N, N, O-triglycidyl derivative of p-aminophenol, m-aminophenol of Examples thereof include dalicidylamine type epoxy resins such as N, N, 0-tridaricidyl derivatives and hydrogenated products thereof.
  • Examples of the epoxy resin (6) include a copolymer of glycidyl (meth) acrylate and a radical polymerizable monomer such as ethylene, vinyl acetate, (meth) acrylic acid ester, and the like.
  • Examples of the epoxy resin (7) include those obtained by epoxidizing an unsaturated carbon double bond in a polymer mainly composed of a conjugated diene compound or a partially hydrogenated polymer thereof, such as epoxidized polybutadiene.
  • the epoxy resin (8) a block having a polymer block mainly composed of a vinyl aromatic compound and a polymer block mainly composed of a conjugation compound or a partially hydrogenated polymer block in the same molecule.
  • an epoxidized unsaturated carbon double bond of a conjugation compound for example, epoxidized SBS can be mentioned.
  • Examples of the epoxy resin (9) include a polyester resin having one or more, preferably two or more epoxy groups per molecule.
  • Examples of the epoxy resin (10) include urethane-modified epoxy resins and poly-force prolactone-modified epoxies in which urethane bonds and poly-force prolactone bonds are introduced into the structures of the above-described epoxy resins (1) to (9). Examples thereof include resins.
  • the curing agent used for the curing reaction of the epoxy resin is not particularly limited, and conventionally known curing agents for epoxy resins can be used.
  • amine compounds, compounds synthesized from amine compounds, tertiary amines Compound, imidazole compound, hydride examples thereof include a razide compound, a melamine compound, an acid anhydride, a phenol compound, a heat latent cationic polymerization catalyst, a photolatent cationic polymerization initiator, dicyanamide, and derivatives thereof.
  • These curing agents may be used alone or in combination of two or more.
  • Examples of the amine compound include chain aliphatic amines such as ethylene diamine, diethylene triamine, triethylene tetramine, tetraethylene penamine, polyoxypropylene diamine, polyoxypropylene triamine, and derivatives thereof; Forondiamine, Bis (4 monoamino-3-methylcyclohexyl) Methane, Diaminodicyclohexylmethane, Bis (aminomethyl) cyclohexane, N-aminoethylpiperazine, 3, 9-bis (3-aminopropyl) ) 2, 4, 8, 10-Tetraoxaspiro (5, 5) Cyclic aliphatic amines such as undecane and their derivatives; Diaminodiphenyls And aromatic amines such as Ruphon, ⁇ , Hibis (4-aminophenyl) ⁇ -disopropylbenzene, and derivatives thereof.
  • chain aliphatic amines such as ethylene diamine, diethylene tri
  • Examples of the compound synthesized from the above amine compound include the above amine compound, succinic acid, adipic acid, azelaic acid, sebacic acid, dodecadioic acid, isophthalic acid, terephthalic acid, dihydroisofuric acid, tetrahydroisophthalic acid.
  • tertiary amine compound examples include N, N-dimethylbiperazine, pyridine, picoline, benzyldimethylamine, 2- (dimethylaminomethyl) phenol, 2,4,6-tris (dimethylaminomethyl). ) Phenols, 1,8-di And azabiscyclo [5.4.0] undecene-1 and derivatives thereof.
  • the imidazole compound examples include 2-methylimidazole, 2-ethyl-4-monomethylimidazole, 2-undecylimidazole, 2-heptadecylimidazole, and 2-phenylimidazole and the like. Derivatives and the like.
  • hydrazide compound examples include 1,3-bis (hydrazinocarboxyl) -15-isopropylhydantoin, 7,11-octadecadiene-1,18-dicarpohydrazide, eicosannic acid dihydrazide, adipic acid dihydrazide And derivatives thereof.
  • Examples of the melamine compound include 2,4-diamino-6-vinyl-1,3,5-triazine and derivatives thereof.
  • acid anhydride examples include fuuric acid anhydride, trimellitic acid anhydride, pyromellitic acid anhydride, benzophenone tetracarboxylic acid anhydride, ethylene glycol bisanhydro trimellitate, glycerol trisuan.
  • Hydrotrimellitic acid Methyltetrahydrophthalic anhydride, Tetrahydrophthalic anhydride, Nadic anhydride, Methyl nadic anhydride, Trialkyltetrahydrofuranic anhydride, Hexahydrofuranic anhydride, Methylhexahydrofuranic anhydride 1-methyl-2-cyclohexene-1,2-dicarboxylic anhydride, trialkyltetrahydrophthalic anhydride-maleic anhydride adduct , Dodecenyl succinic anhydride, poly azelaic anhydride, polydodecanedioic acid anhydrous, Rend anhydride and derivatives thereof.
  • phenol compound examples include phenol novolak, o-cresol nopolac, p-cresol novolak, t-butyl phenol nopolac, dicyclopentene gencresol and derivatives thereof.
  • thermal latent cationic polymerization catalyst examples include benzylsulfonium salt, benzylammonium salt, benzylpyrimonium salt using antimony hexafluoride, phosphorus hexafluoride, boron tetrafluoride and the like as anions.
  • thermal latent cationic polymerization catalysts such as dinium salt and benzylphosphonium salt
  • nonionic thermal latent thione polymerization catalysts such as N-benzyl phthalimide and aromatic sulfonate.
  • thermosetting modified polyphenylene ether resin examples include a resin obtained by modifying the polyphenylene ether resin with a functional group having thermosetting properties such as a glycidyl group, an isocyanate group, and an amino group. These thermosetting modified polyphenylene ether resins may be used alone or in combination of two or more.
  • thermosetting polyimide resin is a resin having an imido bond in a molecular main chain.
  • a condensation polymer of an aromatic diamine and an aromatic tetracarboxylic acid, an aromatic diamine and a bismaleimide And bismaleimide resin which is an addition polymer of aminobenzoic acid hydrazide and bismaleimide, and bismaleimide triazine resin composed of a dicyanate compound and a bismaleimide resin.
  • bismaleimide triazine resin is preferably used.
  • thermosetting polyimide resins may be used alone or in combination of two or more.
  • the above-mentioned key resin contains a silicon-gay bond, a carbon-carbon bond, a siloxane bond, or a silicon-nitrogen bond in the molecular chain.
  • a silicon-gay bond a carbon-carbon bond
  • a siloxane bond a silicon-nitrogen bond in the molecular chain.
  • polysiloxane polycarbon bond, and the like. Examples thereof include silane and polysilazane.
  • the urea resin is a thermosetting resin obtained by addition condensation reaction of urea and formaldehyde.
  • the curing agent used for the curing reaction of the urea resin is not particularly limited.
  • a visible curing agent composed of an inorganic acid, an organic acid, an acidic salt such as acidic sodium sulfate; a carboxylic acid ester, an acid anhydride, Potential hardeners such as salts such as ammonium chloride and ammonium phosphate.
  • latent curing agents are preferred from the standpoint of shelf life.
  • the melamine resin is a thermosetting resin obtained by addition condensation reaction of melamine and its derivatives with formaldehyde.
  • the melamine derivative is not particularly limited, and examples thereof include methylated melamine, butylated melamine, and isobutylated melamine. Of these, methylated melamine having water solubility is most preferable.
  • the curing agent used for the curing reaction of the melamine resin is not particularly limited. For example, an apparent curing agent composed of an inorganic acid, an organic acid, an acidic salt such as acidic sodium sulfate; a carboxylic acid Latent curing agents such as esters, acid anhydrides, ammonium chloride, ammonium phosphate salts and the like. Among these, the potential curing agent power is preferable from the shelf life.
  • a thermoplastic resin or a resin component of rubber can be appropriately added as necessary as long as the effects of the present invention are not impaired.
  • thermoplastic resins examples include polypropylene resins such as polypropylene resins and polyethylene resins, styrene resins such as polystyrene and polystyrene-butadiene copolymers, acrylonitrile-styrene copolymers, acrylonitrile-butadiene-styrene copolymers, and the like.
  • Nitrile group-containing resins polyethylene terephthalate, polybutylene terephthalate, and other aromatic polyester resins, polyethylene succinate, ester group-containing resins such as polylactic acid and other aliphatic polyesters, polyamide 6, polyamide 1 1, Polyamide 1 2, Polyamide 6 6, Polyamide 6 10, Polyamide 6 1 2, Polyamide 4 6, Polyamide 6—6 6, Polyamide 6—6 10, Polyamide 6—6 T (T; terephthalic acid Component), acid amide bonds such as semi-aromatic polyamide (One CO NH—) as a repeating unit, a polyamide resin, a polyvinyl acetal resin, a polyether ketone resin, a polyethylene sulfide resin, a polyether sulfone resin, a fluorine resin, a thermoplastic silicone resin, a polyurethane resin, a polycarbonate resin, A polyimide resin etc. can be mentioned.
  • Examples of rubbers include styrene-based elastomers, olefin-based elastomers, urethane-based elastomers, and polyester-based elastomers. These thermoplastic elastomers may be functionally modified in order to enhance compatibility with the resin. These thermoplastic elastomers may be used alone or in combination of two or more. Examples of the rubber include, but are not limited to, isoprene rubber, butadiene rubber, 1,2-polybutadiene, styrene / butadiene rubber, nitrile rubber, butyl rubber, ethylene / propylene rubber, silicone rubber, and urethane rubber.
  • these rubbers are functional group-modified. These rubbers may be used alone or in combination of two or more.
  • These thermoplastic resins and rubbers The amount of such other resin components is preferably 0 to 100 parts by weight with respect to 100 parts by weight of the thermosetting resin in order to take advantage of the characteristics of the thermosetting resin. More preferably, it is 0 to 80 parts by weight. When the blending amount of other resin components exceeds 100 parts by weight, the flame retardancy of the cured resin product may be impaired.
  • the amount is preferably 0 to 40 parts by weight with respect to 100 parts by weight of the thermosetting resin. More preferably, it is 0 to 30 parts by weight.
  • thermosetting resin used in the present invention can be combined with boron nitride-based nanotubes and other additives, and further heated after molding to advance the curing reaction, thereby producing a final molded product.
  • thermosetting resin composition of the present invention a method in which boron nitride nanotubes are mixed and dispersed in a thermosetting resin under high shear stress can be preferably employed.
  • Examples of the mixing method include a single-screw or twin-screw extruder, a twin ter, a lab plast mill, a Banbury mixer, a Henschel mixer, a tumbler, a super mixer, a continuous mixer with a mouthpiece, and a mixing roll.
  • a process of supplying and kneading the above mixed components to a melt mixer known per se can be preferably carried out.
  • thermosetting resin When using a boron nitride nanotube whose surface is coated with a conjugated polymer or a coupling agent, the coated boron nitride nanotube is mixed and dispersed in the thermosetting resin as described above.
  • a resin composition can be produced.
  • Examples of methods for coating boron nitride nanotubes with conjugated polymers and coupling agents include, for example, mixing boron nitride nanotubes with ultrasonic mixers, Henschel mixers, super mixers, etc., high-speed stirring or attritors such as homogenizers, While stirring using a pole mill or the like, this can be performed by adding dropwise or spraying a solution in which a conjugated polymer or a coupling agent is dissolved in a solvent-free solvent such as toluene, xylene, or various alcohols. .
  • the coating treatment when the coating treatment is performed in the absence of a solvent, a method in which boron nitride nanotubes are added to and mixed with the heated and melted conjugated polymer or liquid coupling reagent is preferable, and a solvent is used.
  • a method of mixing and dispersing these with boron nitride nanotubes in a solvent in which a conjugated polymer or a force pulling agent is dissolved can be mentioned.
  • the coating treatment by ultrasonic stirring and mixing can be preferably performed.
  • thermosetting resin composition of the present invention may be used in combination with any carbon-based filler such as carbon nanotubes, car pump racks, and carbon fibers according to various purposes.
  • release agents such as polyolefin compounds, silicone compounds, long chain aliphatic ester compounds, long chain aliphatic amide compounds, hindered phenol compounds, hindered amine compounds.
  • Antioxidants such as compounds, low molecular weight polyethylene, low molecular weight polypropylene, paraffin, higher fatty acid amides, lubricants such as calcium stearate, aluminum stearate, lithium stearate, colorants such as bengara, pigments, pigments and In addition to dyes, fillers, heat stabilizers, UV absorbers, infrared absorbers, fluorescent agents, surfactants, antifungal agents, bactericides, metal deactivators, light stabilizers, surface treatment agents, difficulty Flame retardant, nucleating agent, antioxidant, foaming agent, plasticizer, processing aid, dispersant, copper damage inhibitor, medium Agents, anti-foam agents, anti-fogging agents, antimicrobial agents, even with the addition of additives such as boric acid and an antistatic agent no problem. These may be used singly or in combination of two or more.
  • thermosetting resin composition of the present invention means a so-called pre-shaped polymer composition in which a thermosetting resin and boron nitride nanotubes are combined, such as a liquid, an aggregate or a pellet before arbitrary molding.
  • a resin composition can be further processed into a molded body having an arbitrary structure such as a film, a sheet, a tube, a cup, or a bottle through heat kneading and molding.
  • kneading method kneading can be carried out singly or in combination using a kneader such as a roll, a kneader, or a twin screw extruder.
  • an extrusion molding method in which a ⁇ die or a circular die is used to form a film
  • a casting molding method in which a film is formed by dissolving or dispersing in a solvent such as an organic solvent and then forming the film.
  • the extrusion molding method and the casting molding method are suitable for reducing the thickness of the multilayer substrate.
  • the orientation of the thermosetting resin and boron nitride nanotubes can be increased and the mechanical properties can be improved by performing flow orientation, shear orientation, or stretch orientation.
  • the resin and boron nitride nanotubes are further subjected to stretching processes generally performed, for example, uniaxial stretching, zone stretching, flat sequential stretching, flat simultaneous biaxial stretching, and tubular simultaneous stretching. It is also possible to improve the mechanical properties by increasing the orientation of the film.
  • thermosetting resin is bisphenol A type epoxy resin (Dainippon Ink Chemical Co., Ltd., Ebicron 850, epoxy equivalent: 190) as the epoxy resin, and Nissan Chemical Industries, Ltd. as the melamine resin. ) Suntop ⁇ ⁇ ⁇ ⁇ 700 (resin solid content 55%) was used. As the phenol resin, a resol type resin was manufactured and used.
  • Tensile strength and elastic modulus were measured by Orientec UCT-1 T using a sample of .5 Ommx 1 Omm at a tensile speed of 5 mm / min.
  • the thermal expansion coefficient was measured from the value of the second scan using TA2940 manufactured by TA Instruments Co., Ltd., measured in air at a temperature increase rate of 10 ° C / min in the range of 30 to 80 ° C.
  • the polymer weight loss temperature was measured in air using a TG 8120 manufactured by Rigaku at a temperature increase rate of 10 ° C / min in the range of 30 to 800 ° C. From the peak value at 5% weight loss Asked. (4) Thermal conductivity
  • Thermal conductivity was measured using a rapid thermal conductivity meter (KEMTHERM QTM-D3, Kyoto Electronics Co., Ltd.) with a probe method (unsteady hot wire method) using a sample of 5 Omm x 80 mm. . Specifically, when a sample is placed on a reference sample with a known thermal conductivity, the apparent thermal conductivity is plotted against the thermal conductivity (logarithm) of the reference sample using the following equation, and the deviation is 0 The thermal conductivity of the sample was derived by interpolation, and the thermal conductivity of the sample was derived.
  • Deviation ⁇ (Apparent thermal conductivity with unknown sample) 1 (Thermal conductivity of the reference sample) ⁇ / (Thermal conductivity of the reference sample)
  • Boron nitride was put in a boron nitride crucible at a molar ratio of 1: 1, and the crucible was heated to 1,300 ° C in a high frequency induction heating furnace. Boron and magnesium oxide reacted to form gaseous boron oxide (B 2 0 2 ) and magnesium vapor. This product was transferred to the reaction chamber with argon gas, and ammonia gas was introduced while maintaining the temperature at 1,100 ° C. Boron oxide and ammonia reacted to form boron nitride. 1. When 55 g of the mixture was fully heated and the by-products were evaporated, 31 Omg of white solid was obtained from the reaction chamber wall.
  • BNNT boron nitride nanotubes
  • the resulting mixture was stirred for 1 hour with a stirrer and then degassed to obtain a resin composition solution.
  • a resin composition solution was coated on a sheet of polyethylene terephthalate
  • it was heated at 110 ° C. for 3 hours to have a thickness of 1 mm and 100 m comprising the resin composition.
  • a plate-like molded body was produced.
  • the tensile strength of the compact was 97.6 M Pa and the coefficient of thermal expansion was 33.1 pp mZ ° C.
  • the thermal conductivity was 2.9 W / mK.
  • the obtained mixture was stirred with a stirrer for 1 hour and then defoamed to obtain a resin composition solution.
  • a resin composition solution was applied on a sheet of polyethylene terephthalate, it was heated at 110 ° C. for 3 hours to obtain a resin composition having a thickness of 1 mm and 100 mm.
  • a plate-like molded body of xm was produced.
  • the tensile strength of the molded product was 101.7 MPa, and the thermal expansion coefficient was 32.
  • the thermal conductivity was 2.95WZmK.
  • An epoxy resin molded body was prepared in the same manner as in Example 1 except that it did not contain boron nitride nanotubes.
  • the tensile strength of the molded body was 55.8 MPa, and the thermal expansion coefficient was 45.5 ppmZ ° C.
  • the thermal conductivity was 0.18 WZmK. Comparative Example 2
  • a molded body of melamine resin was produced in the same manner as in Example 3 except that it did not contain boron nitride nanotubes.
  • the tensile strength of the compact was 57.3 MPa and the coefficient of thermal expansion was 39.2 ppm / °.
  • the thermal conductivity was 0.17 WZmK.
  • Example 2 10 parts by weight of the boron nitride nanotube coated with the conjugated polymer prepared in (1) of Example 2 was suspended in 10 parts by weight of ethanol, and this was 990 weights of the resin resin prepared in Reference Example 2.
  • a 2 mm thick molding material was prepared by kneading together with a hot mouth. Using a compression molding machine with a clamping force of 80 tons, the mold temperature was 175 ° C, the curing time was 3 minutes, and the molding pressure was 20 MPa. 4x10x80 mm test moldings were prepared. The tensile strength of the molded body was 5 7. IMPa, the Young's modulus was 3.30 GPa, and the thermal expansion coefficient was 39. O ppm Z ° C. The 5% polymer weight reduction temperature was 270.3 ° C. Comparative Example 3
  • a molded article of phenol resin was prepared in the same manner as in Example 4 except that it did not contain boron nitride nanotubes.
  • the tensile strength of the molded body was 53.5 MPa
  • the Young's modulus was 2.71 GPa
  • the thermal expansion coefficient was 44.0 p pmZ ° C.
  • the 5% polymer weight loss temperature was 238.8 ° C.
  • thermosetting resin composition containing boron nitride nanotubes of the present invention has superior mechanical properties, thermal dimensional stability and thermal conductivity compared to thermosetting resins not containing boron nitride nanotubes. I understand that.
  • the present invention provides a resin composition in which boron nitride nanotubes are uniformly nano-dispersed in a thermosetting resin.
  • the thermosetting resin composition of the present invention can impart superior mechanical properties, heat resistance, low water absorption, moldability and / or dimensional stability to conventional thermosetting resins.
  • the thermosetting resin composition of the present invention is expected to impart thermal conductivity.
  • thermosetting resin composition of the present invention can be used to form materials for electronic parts used in electronic devices that particularly require thermal conductivity and insulation, such as core layers and buildup layers of multilayer boards. It is suitably used for materials for substrates, sheets, laminates, copper foils with resin, copper-clad laminates, TAB films, printed circuit boards, varnishes, optical waveguide materials, and the like. Furthermore, as other applications, it can be suitably used as a composite material useful in a wide range of fields such as automobile, aircraft and railway structural members that require weather resistance, flame resistance and high mechanical strength, and resin sheet materials for construction. it can. In addition, fixing materials, structural members, reinforcing agents, molding materials, insulation materials, etc. in various fields ranging from civil engineering / architecture, electricity / electronics, automobiles, railways, ships, aircraft, sports equipment, arts / crafts, and industrial / consumer use It can also be preferably used in applications.

Abstract

Disclosed is a thermosetting resin composition composed of 100 parts by weight of a thermosetting resin and 0.01-100 parts by weight of a boron nitride nanotube. This thermosetting resin composition is efficiently improved in mechanical characteristics, heat resistance and thermal dimensional stability even when a small amount or large amount of a boron nitride nanotube is added thereto.

Description

熱硬化性樹脂複合組成物、 樹脂成形体およびその製造方法 技術分野  TECHNICAL FIELD Field of Thermosetting Resin Composite Composition, Resin Molded Body, and Manufacturing Method Thereof
熱硬化性樹脂と窒化ホウ素ナノチューブとを均一に分散させた樹脂組成物、 そ の製造法および樹脂成形体に関する。 更に詳しくは、 窒化ホウ素ナノチューブを フィラ一として熱硬化性樹脂にナノ分散させることにより、 少量のフィラー添加 明  The present invention relates to a resin composition in which a thermosetting resin and boron nitride nanotubes are uniformly dispersed, a method for producing the same, and a resin molded body. In more detail, a small amount of filler is added by nano-dispersing boron nitride nanotubes as a filler in thermosetting resin.
においても、 従来の熱硬化性樹脂及びその組成物に比べて効率よく力学的物性、 細 1 In addition, the mechanical properties and finer efficiency are more efficient than conventional thermosetting resins and compositions.
寸法安定性、 耐熱性、 透明性、 低吸水性、 難燃性、 レーザー加工性を向上させた 書 Documents with improved dimensional stability, heat resistance, transparency, low water absorption, flame retardancy, and laser processability
樹脂組成物、 その製造法および樹脂成形体に関する。 背景技術 The present invention relates to a resin composition, a production method thereof, and a resin molded body. Background art
近年、 電子機器の高性能化、 高機能化、 小型化の急速な進展に伴い、 電子機器 に用いられる電子部品の小型化、 軽量化の要請により、 電子部品の素材にも、 耐 熱性、 機械的強度、 電気特性等の諸物性の更なる改善が求められている。 例えば、 半導体素子のパッケージ方法や半導体素子を実装する配線板についても、 より高 密度、 高機能、 かつ高性能化が要求されている。  In recent years, with the rapid progress of high performance, high functionality, and miniaturization of electronic equipment, the demand for miniaturization and weight reduction of electronic parts used in electronic equipment has led to the heat resistance, machinery, Further improvements in physical properties such as mechanical strength and electrical properties are required. For example, semiconductor device packaging methods and wiring boards for mounting semiconductor devices are also required to have higher density, higher functionality, and higher performance.
電子機器用の多層プリント基板は、 複数層の絶縁基板により構成されているが、 従来から層間絶縁基板として、 例えば熱硬化性樹脂をガラスクロスに含浸させた 熱硬化性樹脂プリプレダや、 熱硬化性樹脂又は光硬化性樹脂からなるフィルムが 用いられてきた。 上記多層プリント基板においても i¾密度化、 薄型化のために層 間を極薄化することが望まれ、 薄型ガラスクロスを用いた層間絶縁基板やガラス クロスを用いない層間絶縁基板が必要とされている。  Multi-layer printed circuit boards for electronic devices are composed of multiple layers of insulating substrates. Conventionally, as interlayer insulating substrates, for example, thermosetting resin pre-preders in which glass cloth is impregnated with thermosetting resin, thermosetting resins, etc. Films made of resin or photo-curable resin have been used. In the multilayer printed circuit board, it is desired to make the layers extremely thin in order to achieve i¾ density and thinning, and there is a need for an interlayer insulating substrate using a thin glass cloth and an interlayer insulating substrate not using a glass cloth. Yes.
この層間絶縁基板として、 例えばゴム (エラストマ一)、 アクリル変性熱硬化 性樹脂、 無機充填剤を多量配合した熱可塑性樹脂材料等からなるものがある。 特 開 2 0 0 0— 1 8 3 5 3 9号公報には、 高分子量エポキシ重合体及び多官能ェポ キシ樹脂等を主成分とするワニスに所定の粒子径の無機充填剤を配合し、 支持体 に塗布し絶縁層とする多層絶縁基板の製造方法が開示されている。 Examples of the interlayer insulating substrate include those made of rubber (elastomer), an acrylic-modified thermosetting resin, a thermoplastic resin material containing a large amount of an inorganic filler, and the like. In Japanese Patent No. 2 0 0 0— 1 8 3 5 3 9, an inorganic filler having a predetermined particle size is blended in a varnish mainly composed of a high molecular weight epoxy polymer and a polyfunctional epoxy resin. Support A method for manufacturing a multilayer insulating substrate that is applied to an insulating layer is disclosed.
しかしながら、 上記方法により作製された多層絶縁基板では無機充填剤と樹脂 の界面面積を確保して機械的強度等の力学的物性を充分に向上させるために多量 の無機充填材を配合する必要があり、 層間の薄化が困難であった。 更に多量の無 機充填材が配合されているため、 基板が失透する傾向にあり、 レーザ一位置を基 板裏側に合わせ難い問題もあった。 また、 層間絶縁基板の耐熱性や寸法安定性の 改善のために薄型ガラスクロスを用いるが、 厚み不足により効果が不充分であり、 また脆く割れ易く製造工程で不具合が生じる恐れがある。  However, in the multilayer insulating substrate produced by the above method, it is necessary to add a large amount of inorganic filler in order to secure the interface area between the inorganic filler and the resin and sufficiently improve the mechanical properties such as mechanical strength. Thinning between the layers was difficult. Furthermore, since a large amount of organic filler is blended, the substrate tends to devitrify, and there is a problem that it is difficult to align the laser position with the back side of the substrate. In addition, thin glass cloth is used to improve the heat resistance and dimensional stability of the interlayer insulating substrate, but the effect is insufficient due to insufficient thickness, and it is brittle and easily broken, which may cause problems in the manufacturing process.
上記多層プリント基板の製造方法には、 回路形成と積層によるビルドァップ法 や、 回路形成層を一括して積層する一括積層法等があるが、 何れにおいても工程 数が多く、 材料の品質が歩留りに大きく影響する。 従って材料には、 耐溶剤性、 耐水性、 耐熱性及び高温での寸法安定性等が要求される。 更に製造工程のみなら ず、 I Cパッケージに用いられるビルドアップ基板やプリント多層基板において は発熱による高温での使用環境下でも高い信頼性を維持できることが求められる が、 高温時の樹脂寸法変化が大きいと回路を形成する銅等の金属配線と剥離が発 生し、 ショートや断線を起こすという問題もある。  The multilayer printed circuit board manufacturing method includes a build-up method by circuit formation and lamination, and a batch lamination method in which circuit formation layers are laminated together. However, there are many processes, and the quality of the material is high. A big influence. Therefore, the materials are required to have solvent resistance, water resistance, heat resistance, dimensional stability at high temperatures, and the like. In addition to manufacturing processes, build-up boards and printed multilayer boards used in IC packages are required to maintain high reliability even in high-temperature usage environments due to heat generation. There is also a problem that peeling occurs from metal wiring such as copper forming the circuit, causing short circuit or disconnection.
また薄厚基板として注目されているフレキシカレ多層基板でも、 単層基板同士 を接着する接着層と基板を形成するポリイミドフィルム及び回路を形成する銅等 の金属配線との熱寸法変化の差が大きいと、 同様な問題が発生する。  Also, even in a flexure multilayer substrate that is attracting attention as a thin substrate, if the difference in thermal dimensional change between the adhesive layer that adheres single-layer substrates and the metal wiring such as copper that forms the polyimide film that forms the substrate and the circuit is large, A similar problem occurs.
一方、 ガラス転移温度以下の温度での線膨張率を低下させる方法としては、 無 機充填材を用いる方法が知られていた。 特開 2 0 0 0— 1 8 3 5 3 9号公報には、 優れた耐熱性を有するエポキシ樹脂と、 無機化合物とを併用することで高温物性 を改善する技術が開示されている力 ガラス転移温度以上の温度では、 物性の改 善効果はほとんど見られず、 ガラス転移温度以下の温度でも改善効果は小さい。 また、 吸湿性ゃ耐溶剤性の改善効果についても期待できない。  On the other hand, as a method for reducing the linear expansion coefficient at a temperature lower than the glass transition temperature, a method using an inorganic filler has been known. Japanese Patent Application Laid-Open No. 2 00 0-1 8 3 5 3 9 discloses a technique for improving high-temperature physical properties by using an epoxy resin having excellent heat resistance and an inorganic compound in combination. Above the temperature, there is almost no improvement in physical properties, and even at temperatures below the glass transition temperature, the improvement is small. Also, hygroscopicity cannot be expected to improve the solvent resistance.
特開 2 0 0 7— 5 1 2 6 7号公報には無機充填材として所定の粒径の水酸化ァ ルミ二ゥムを用いることによる耐熱性の改善が開示されている力 該無機粒子は 高温下で水を形成するため高温下の使用には素材特性上好ましくない。 また材料 中に無機充填材が大量に用いられる場合、 レーザ一穿孔加工時に位置合わせが困 難となるということ以外に、 穿孔に大きなエネルギーを必要とすることもある。 更にハンダリフロー等の高温処理や環境に配慮した鉛フリーハンダ使用時の高温 環境に対応するためには単に樹脂の耐熱性に頼るのみでは処理時に不具合が生じ る恐れがある。 レーザ一加工を容易に行うべく、 必要な透明性を維持しながら樹 脂基板に求められる諸物性も両立できる基板用材料が求められている。 Japanese Patent Application Laid-Open No. 2 0 7-7 5 1 2 6 7 discloses a force for improving heat resistance by using aluminum hydroxide having a predetermined particle size as an inorganic filler. Since water is formed at a high temperature, it is not preferable in terms of material properties for use at a high temperature. Also material If a large amount of inorganic filler is used, drilling may require a large amount of energy, in addition to the difficulty of alignment during laser drilling. Furthermore, in order to cope with high temperature processing such as solder reflow and high temperature environment when using lead-free solder that is environmentally friendly, simply relying on the heat resistance of the resin may cause problems during processing. In order to easily perform laser processing, there is a need for a substrate material that can satisfy various physical properties required for a resin substrate while maintaining necessary transparency.
通常の無機化合物は数ミク口ン以上のサイズであり、 所望の効果を発現するに は多量に添加する必要があるが、 その場合、 先述のレーザー加工上の難点は避け られない。 またミクロンオーダーのサイズの粒子は異物として欠陥点を形成し、 製品の外観および機械物性を低減する。 この解決にはナノサイズの無機粒子や力 一ボンナノチューブのようなナノフィラ一を使用することが考えられるが、 カー ボンナノチューブは絶縁上の問題から使用に制限があり、 また無機粒子は凝集し 易く、 通常ナノレベルでの分散を実現するのが困難である。  Ordinary inorganic compounds have a size of several micron or more, and it is necessary to add a large amount in order to achieve the desired effect, but in that case, the above-mentioned difficulties in laser processing are unavoidable. In addition, micron-sized particles form defects as foreign matter, reducing the appearance and mechanical properties of the product. To solve this problem, nano-sized inorganic particles and nano-filaments such as single-bonn nanotubes may be used. However, carbon nanotubes are limited in use due to insulation problems, and inorganic particles tend to aggregate. Usually, it is difficult to achieve dispersion at the nano level.
カーボンナノチューブは、 従来にない機械的物性、 電気的特性、 熱的特性等を 有するためナノテクノロジーの有力な素材として注目を浴び、 広範な分野で応用 の可能性が検討され、 一部実用化が開始されている。  Since carbon nanotubes have unprecedented mechanical properties, electrical properties, thermal properties, etc., they have attracted attention as potential materials for nanotechnology, and their potential for application in a wide range of fields has been studied. Has been started.
ポリマーコンポジットとしては、 フィラーに力一ボンナノチューブを用いてポ リマーに添加することで、 ポリマーの機械的物性、 導電性、 耐熱性等を改質する 試みも行われている。  As polymer composites, attempts have been made to modify the mechanical properties, electrical conductivity, heat resistance, etc. of polymers by adding them to the polymer using a single bon nanotube as a filler.
特開 2 0 0 3— 1 2 9 3 9号公報には、 エポキシ樹脂、 不飽和ポリエステル樹 脂、 フエノール樹脂、 ビニルエステル樹脂またはシァネートエステル樹脂と多層 カーボンナノチューブとからなるポリマ一コンポジットによる導電性や機械特性 の改良が開示されている。 また、 特開 2 0 0 4— 2 6 2 1号公報には、 カーボン ナノチューブを共役系高分子で被覆することで、 カーボンナノチューブの分散性 を極めて高め、 少ない力一ボンナノチューブの量でマトリクス樹脂に高い導電性 を付与することが開示されている。  Japanese Patent Application Laid-Open No. 2 0 3-1 2 9 3 9 discloses that the electrical conductivity of a polymer composite composed of epoxy resin, unsaturated polyester resin, phenol resin, vinyl ester resin or cyanate ester resin and multi-walled carbon nanotubes is disclosed. And improvements in mechanical properties are disclosed. Japanese Patent Application Laid-Open No. 2000-026 2 1 discloses that the carbon nanotubes are coated with a conjugated polymer, so that the dispersibility of the carbon nanotubes is extremely increased, and the matrix resin can be obtained with a small amount of bonbon nanotubes. It is disclosed that high conductivity is imparted.
また、 特開 2 0 0 4— 2 4 4 4 9 0号公報には、 ポリメチルメタクリレートや ポリスチレンのような側鎖構造を有するポリマーと、 共役系高分子で被覆した単 層カーボンナノチューブからなるポリマ一コンポジッ卜により、 単層カーボンナ ノチューブの添加量が僅かであっても弾性率が飛躍的に向上することが開示され ている。 In addition, Japanese Patent Laid-Open No. 2000-244-90 describes a polymer having a side chain structure such as polymethyl methacrylate and polystyrene and a single polymer coated with a conjugated polymer. It has been disclosed that a polymer composite composed of single-walled carbon nanotubes dramatically improves the elastic modulus even when the amount of single-walled carbon nanotubes added is small.
一方、 特開 2 0 0 0— 1 0 9 3 0 6号公報には、 カーボンナノチューブと構造 的な類似性を有する窒化ホウ素ナノチューブが、 従来にない特性を有する材料と して開示されている。  On the other hand, in Japanese Patent Application Laid-Open No. 2000-010-306, boron nitride nanotubes having structural similarity to carbon nanotubes are disclosed as materials having unprecedented characteristics.
特開 2 0 0 4— 2 4 4 4 9 0号公報には力一ボンナノチューブの代わりに窒化 ホウ素ナノチューブを使用してもよいことが記載されているが、 飛躍的な効果を 得るためには使用されるポリマーが側鎖構造を有するポリマ一に限定されており それ以外の主鎖型芳香族ポリマ一または熱硬化性樹脂での具体的な報告はされて いない。  Japanese Patent Application Laid-Open No. 2 0 4-2 4 4 4 90 describes that boron nitride nanotubes may be used instead of force-bonbon nanotubes. However, in order to obtain a dramatic effect, The polymer used is limited to a polymer having a side chain structure, and there is no specific report on other main chain type aromatic polymers or thermosetting resins.
通常の無機粒子に変えて、 特開 2 0 0 4— 2 6 9 8 5 3号公報、 特開 2 0 0 4 - 1 7 6 0 3 1号公報ではモンモリ口ナイトの如き層状珪酸塩を熱硬化性樹脂中 に分散させた複合材料に関する開示がある。 しかしながら層状珪酸塩自体の機械 的強度が力一ボンナノチューブのような高強度素材に比べ遥かに小さいため、 特 に高温強度がなお不十分であるほか、 線状構造のチューブとは異なり、 二次元的 な広がりを有する層状ナノフィラーは複合樹脂の表面形状への影響が大きく、 分 散が十分でないと表面平滑性を損なう要因となり素材の使用が制限される一因と なる。  In place of ordinary inorganic particles, in Japanese Patent Laid-Open Nos. 2 0 4-2 6 9 8 5 3 and 2 0 0 4-1 7 6 0 3 1, a layered silicate such as montmorillonite is heated. There is disclosure relating to composite materials dispersed in curable resins. However, the mechanical strength of the layered silicate itself is much lower than that of high-strength materials such as bonbon nanotubes, so the high-temperature strength is still inadequate. The layered nanofiller having a suitable spread has a great influence on the surface shape of the composite resin, and if the dispersion is not sufficient, it causes the surface smoothness to be impaired and becomes a factor that restricts the use of the material.
従来のフィラーの効果不足ゃ不均一分散による樹脂の物性低減などの課題を解 決し、 高い機械的強度、 耐熱性を有し、 力、つ樹脂の寸法安定性, 均質性に優れた 熱硬化性樹脂複合材料を得るべく、 大きな比表面積により少量でも効果の高く、 真にナノレベルで分散可能なナノフィラーの探索が望まれている。 発明の開示  Solves problems such as resin properties being reduced due to non-uniform dispersion if the effect of conventional fillers is insufficient, has high mechanical strength and heat resistance, and has excellent strength, dimensional stability of resin, and excellent thermosetting In order to obtain a resin composite material, it is desired to search for a nano filler that is highly effective even with a small amount due to its large specific surface area and can be dispersed at a truly nano level. Disclosure of the invention
本発明の目的は、 成形加工プロセスにおいて組成物の成形性や外観に影響を与 えず、 し力 、 高温下での使用においても機械特性、 熱特性、 寸法安定性及び成 形加工性等を向上させた熱硬化性樹脂組成物およびその成形物を提供することに ある。 The object of the present invention is not to affect the moldability and appearance of the composition in the molding process, but to maintain the mechanical strength, thermal characteristics, dimensional stability, molding processability, etc. even when used at high temperatures. To provide an improved thermosetting resin composition and a molded product thereof is there.
本発明の他の目的は、 少量乃至多量の添加で上記の如き優れた諸特性を発揮し 得る無機ナノチューブをフイラ一とする熱硬化性樹脂組成物およびその成形物を 提供することにある。  Another object of the present invention is to provide a thermosetting resin composition comprising an inorganic nanotube capable of exhibiting the above-described excellent characteristics with addition of a small amount or a large amount, and a molded product thereof.
本発明のさらに他の目的および利点は以下の説明から明らかとなろう。  Still other objects and advantages of the present invention will become apparent from the following description.
本発明によれば、 本発明の上記目的および利点は、 第 1に、 熱硬化性樹脂 1 0 0重量部と窒化ホウ素ナノチューブ 0 . 0 1〜: L 0 0重量部とを含有することを 特徴とする樹脂組成物によって達成される。  According to the present invention, the above-mentioned objects and advantages of the present invention are characterized in that, firstly, the thermosetting resin contains 100 parts by weight and boron nitride nanotubes 0.01 to: L 100 parts by weight. This is achieved by the resin composition.
上記窒化ホウ素ナノチューブは平均直径が 0 . 4 nm〜 1 xm、 平均ァスぺク ト比が 5以上であることが好ましく、 また共役系高分子で被覆されていることも 好ましい。  The boron nitride nanotubes preferably have an average diameter of 0.4 nm to 1 xm and an average aspect ratio of 5 or more, and are preferably coated with a conjugated polymer.
上記熱硬化性樹脂は、 例えばフエノール樹脂、 エポキシ樹脂、 熱硬化型変性ポ リフエ二レンエーテル樹脂、 熱硬化性ポリイミド樹脂、 ケィ素樹脂、 尿素樹脂お よびメラミン樹脂からなる群より選択される少なくとも 1種であることができる。 本発明によれば、 本発明の上記目的および利点は、 第 2に、 本発明の上記樹脂 組成物からなることを特徴とする樹脂成形体例えばシートによって達成される。 本発明によれば、 本発明の上記目的および利点は、 第 3に、 本発明の上記樹脂 組成物の硬化物からなることを特徴とする基板用材料により達成される。  The thermosetting resin is at least one selected from the group consisting of, for example, phenol resin, epoxy resin, thermosetting modified polyethylene ether resin, thermosetting polyimide resin, key resin, urea resin, and melamine resin. Can be a seed. According to the present invention, the above-mentioned objects and advantages of the present invention are secondly achieved by a resin molded body, for example, a sheet, characterized by comprising the above-mentioned resin composition of the present invention. According to the present invention, the above objects and advantages of the present invention are thirdly achieved by a substrate material characterized by comprising a cured product of the above resin composition of the present invention.
本発明のさらに他の目的および利点は、 第 4に、 共役系高分子で被覆した窒化 ホウ素ナノチューブを熱硬化性樹脂に混合分散させることを特徴とする、 本発明 の上記樹脂組成物の製造方法により達成される。 発明を実施するための最良の形態  According to still another object and advantage of the present invention, fourthly, the method for producing the resin composition of the present invention is characterized in that boron nitride nanotubes coated with a conjugated polymer are mixed and dispersed in a thermosetting resin. Is achieved. BEST MODE FOR CARRYING OUT THE INVENTION
以下本発明を詳細に説明する。  The present invention will be described in detail below.
(窒化ホウ素ナノチューブ)  (Boron nitride nanotube)
本発明において、 窒化ホウ素ナノチューブとは、 窒化ホウ素からなるチューブ 状材料である。 理想的な構造は 6角網目の面がチューブ軸に平行に管を形成し、 一重管もしくは多重管になっている。 窒化ホウ素ナノチューブの平均直径は、 好 ましくは 0 . 4 nm〜: L m、 より好ましくは 0 . 6〜5 0 0 nm、 さらにより 好ましくは 0 . 8〜2 0 0 n mである。 ここでいう平均直径とは、 一重管の場合、 その平均外径を、 多重管の場合はその最外側の管の平均外径を意味する。 In the present invention, the boron nitride nanotube is a tube-shaped material made of boron nitride. The ideal structure is a single tube or multiple tubes, with hexagonal mesh faces forming a tube parallel to the tube axis. The average diameter of boron nitride nanotubes is favorable It is preferably 0.4 nm to: L m, more preferably 0.6 to 500 nm, and even more preferably 0.8 to 200 nm. The average diameter here means the average outer diameter in the case of a single pipe, and the average outer diameter of the outermost pipe in the case of multiple pipes.
平均長さは、 好ましくは 1 0 m以下、 より好ましくは 5 zm以下である。 平 均長さ対平均直径の比である平均アスペクト比は、 好ましくは 5以上、 さらに好 ましくは 1 0以上である。 平均ァスぺク卜比の上限は、 平均長さが 1 0 m以下 であれば限定されるものではなく、 上限は実質 2 5 0 0 0であることができる。 窒化ホウ素ナノチューブは、 平均直径が 0 . 4 nm〜l /imそして平均ァスぺク ト比が 5以上であるものが好ましい。  The average length is preferably 10 m or less, more preferably 5 zm or less. The average aspect ratio, which is the ratio of average length to average diameter, is preferably 5 or more, more preferably 10 or more. The upper limit of the average aspect ratio is not limited as long as the average length is 10 m or less, and the upper limit can be substantially 2500. The boron nitride nanotubes preferably have an average diameter of 0.4 nm to l / im and an average aspect ratio of 5 or more.
窒化ホウ素ナノチューブの平均直径および平均ァスぺクト比は、 電子顕微鏡に よる観察から求めることができる。 例えば T E M (透過型電子顕微鏡) 測定を行 レ、 その画像から直接窒化ホウ素ナノチューブの直径および長手方向の長さを測 定することが可能である。 また組成物またはその硬化体中の窒化ホウ素ナノチュ —ブの形態は例えば繊維軸と平行に切断した繊維断面の T E M (透過型電子顕微 鏡) 測定により把握することができる。  The average diameter and average aspect ratio of boron nitride nanotubes can be determined from observation with an electron microscope. For example, T E M (transmission electron microscope) measurement can be performed, and the diameter and length of the boron nitride nanotube can be measured directly from the image. The form of the boron nitride nanotubule in the composition or its cured product can be grasped, for example, by TEM (transmission electron microscope) measurement of a fiber cross section cut in parallel to the fiber axis.
窒化ホウ素ナノチューブは、 例えばアーク放電法、 レーザー加熱法、 化学的気 相成長法を用いて合成できる。 合成法としては、 ホウ化ニッケルを触媒として使 用し、 ポラジンを原料として合成する方法も知られている。 また、 カーボンナノ チューブを铸型として利用して、 酸化ホウ素と窒素を反応させて合成する方法も 提案されている。 本発明に用いられる窒化ホウ素ナノチューブは、 これらの方法 により製造されるが、 その製造方法に限定されない。 窒化ホウ素ナノチューブと しては、 得られた窒化ホウ素ナノチューブを強酸処理や化学修飾した窒化ホウ素 ナノチューブも使用することができる。  Boron nitride nanotubes can be synthesized using, for example, an arc discharge method, a laser heating method, or a chemical vapor phase growth method. As a synthesis method, a method is also known in which nickel boride is used as a catalyst and porazine is used as a raw material. In addition, a method of synthesizing boron oxide and nitrogen by using carbon nanotubes as a saddle type has been proposed. The boron nitride nanotubes used in the present invention are produced by these methods, but are not limited to the production methods. As the boron nitride nanotubes, boron nitride nanotubes obtained by subjecting the obtained boron nitride nanotubes to strong acid treatment or chemical modification can also be used.
また、 窒化ホウ素ナノチューブとしては共役系高分子で被覆されているものが 好ましい。 窒化ホウ素ナノチューブを被覆する共役系高分子としては、 窒化ホウ 素ナノチューブおよびマトリクス樹脂である熱硬化性樹脂との相互作用が強いも のが好ましい。 これらの共役系高分子としては、 例えば、 ポリフエ二レンビニレ ン系高分子、 ポリチォフェン系高分子、 ポリフエ二レン系高分子、 ポリピロール 系高分子、 ポリア二リン系高分子、 ポリアセチレン系高分子等が挙げられる。 中 でも、 ポリフエ二レンビニレン系高分子、 ポリチォフェン系高分子が好ましい。 本発明で使用される窒化ホウ素ナノチューブは、 共役系高分子以外にも、 必要 に応じてマトリックス樹脂との接着性、 反応性等を改良するためにマトリックス 樹脂と相溶性または反応性を有する他の樹脂でコーティングされていてもよい。 例えば、 窒化ホウ素ナノチューブを熱硬化性樹脂を強化する目的で使用する場合、 繊維状物質を付着させた窒化ホウ素ナノチューブに対し更にノポラック型フエノ —ル樹脂やレゾ一ル型フェノール樹脂を付着処理するとさらなる強度向上が期待 できる。 Further, the boron nitride nanotubes are preferably those coated with a conjugated polymer. As the conjugated polymer for coating the boron nitride nanotubes, those having strong interaction with the boron nitride nanotubes and the thermosetting resin as the matrix resin are preferable. Examples of these conjugated polymers include polyphenylene vinylene polymers, polythiophene polymers, polyphenylene polymers, and polypyrrole. Polymer, polyaniline polymer, polyacetylene polymer and the like. Of these, polyphenylene vinylene polymers and polythiophene polymers are preferred. In addition to the conjugated polymer, the boron nitride nanotubes used in the present invention are compatible with the matrix resin or have other reactivity or reactivity to improve the adhesiveness and reactivity with the matrix resin as necessary. It may be coated with a resin. For example, when boron nitride nanotubes are used for the purpose of strengthening thermosetting resins, it is further possible to attach nopolac-type phenol resin or resole-type phenol resin to boron nitride nanotubes to which fibrous materials are attached. Strength improvement can be expected.
更に、 本発明で使用される窒化ホウ素ナノチューブはカップリング剤で表面被 覆処理されていてもよい。 ここで使用されるカップリング剤としては、 例えばシ ランカップリング剤、 チタネートカツプリング剤及びアルミネ一トカツプリング 剤等が挙げられる。 具体的にはシラン力ップリング剤の例としては、 ビニル卜リ エトキシシラン、 ビニルトリス ( 2—メトキシェ卜キシ) シラン、 N— (2—ァ ミノェチル) 3—ァミノプロピルメチルジメトキシシラン、 N— ( 2—アミノエ チル) 3ーァミノプロビルトリメトキシシラン、 3ーァミノプロピル卜リエトキ 口ピルメチルジメトキシシラン、 2— (3, 4—エポキシシクロへキシル) ェチ ルトリメトキシシラン、 3—クロ口プロピルメチルジメトキシシラン、 3 _クロ 口プロピルトリメトキシシラン、 3—メ夕クリロキシプロピルトリメトキシシラ ン、 3—メルカプロプロピルトリメトキシシラン等が挙げられる。 チタネー卜力 ップリング剤の例としては、 イソプロピルトリイソステアロイルチタネート、 ィ ソプロピルオリス (ジォクチルパイロフォスフェート)、 イソプロピルトリ (N 一アミノエチルーアミノエチル) チタネート、 テトラオクチルビス (ジトリデシ ルホスファイト) チタネート、 テトラ (2 , 2—ジァリルォキシメチルー 1—ブ チル) ビス (ジトリデシル) ホスフアイ卜チ夕ネ一卜、 ビス (ジォクチルバイロ フォスフェート) ォキシアセテートチタネー卜、 ビス (ジォクチルバイロフォス フェート) エチレンチタネート、 イソプロピルトリオクタノィルチタネート、 ィ ソプロピルジメタクリルイソステアロイルチタネート、 イソプロピルトリドデシ ルベンゼンスルホ二ルチ夕ネート、 ィソプロピルイソステアロイルジァクリルチ 夕ネート、 イソプロピルトリ (ジォクチルフォスフェート) チタネート、 イソプ 口ピルトリクミルフエ二ルチタネート、 テトライソプロピルビス (ジォクチルホ スフアイト) チタネート等が挙げられる。 また、 アルミネートカップリング剤の 例としては、 ァセトアルコキシアルミニゥムジィソプロピレ一ト等が挙げられる。 これらの化合物は、 アルコール、 ケトン、 ダリコールあるいは炭化水素などの有 機溶媒の溶液として、 あるいは水とこれら有機溶媒との混合溶媒の溶液として使 用される。 必要に応じて上記溶液に、 酢酸、 塩酸等の酸、 またはアルカリを添加 することにより p H調整を行ってもよい。 Furthermore, the boron nitride nanotubes used in the present invention may be surface-coated with a coupling agent. Examples of the coupling agent used here include silane coupling agents, titanate coupling agents, and aluminate coupling agents. Specifically, examples of silane coupling agents include vinyl triethoxysilane, vinyl tris (2-methoxyethoxy) silane, N— (2-aminoethyl) 3-aminopropylmethyldimethoxysilane, N— (2 —Aminoethyl) 3-aminopropyl trimethoxysilane, 3-aminopropyl polymethylsilane, 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 3-chloropropylmethyldimethoxysilane 3, 3-propylpropyltrimethoxysilane, 3-methacryloxypropyltrimethoxysilane, 3-mercapropropyltrimethoxysilane, and the like. Examples of titanic pulling agents include isopropyltriisostearoyl titanate, isopropylpropyl (dioctylpyrophosphate), isopropyltri (N-aminoethyl-aminoethyl) titanate, tetraoctylbis (ditridecylphosphite) titanate Tetra (2,2-diallyloxymethyl-1-butyl) bis (ditridecyl) phosphatene bis (dioctyl borophosphate) oxyacetate titanate, bis (dioctyl bailophos) Fate) Ethylene titanate, Isopropyltrioctanoyl titanate, Sopropyldimethacrylisostearoyl titanate, Isopropyltridodecylbenzenesulfonyl titanate, Isopropylisostearoyl dibutylate, Isopropyltri (dioctyl phosphate) titanate, Isotopir Pirtriccumyl Fe Examples include rutitanate and tetraisopropyl bis (dioctyl phosphate) titanate. Examples of aluminate coupling agents include acetate alkoxy aluminum dipropylate. These compounds are used as a solution of an organic solvent such as alcohol, ketone, dallicol or hydrocarbon, or as a mixed solvent solution of water and these organic solvents. If necessary, the pH may be adjusted by adding an acid such as acetic acid or hydrochloric acid, or an alkali to the above solution.
窒化ホウ素ナノチューブは、 カーボンナノチューブに匹敵する優れた機械的物 性、 熱伝導性を有するだけでなく、 化学的に安定でカーボンナノチューブよりも 優れた耐酸化性を有することが知られている。 また、 ホウ素原子と窒素原子の間 のダイポール相互作用により局所的な極性構造を有しており、 極性構造を有する 媒体への親和性、 分散性がカーボンナノチューブより優れること力期待される。 更に電子構造的に広いバンドギヤップを有するため絶縁性であり、 絶縁放熱材料 としても期待できる他、 カーボンナノチューブと異なり白色であることから着色 を嫌う用途にも応用できるなど、 ポリマ一の特徴を活かしたコンポジット創製が 可能となる。  Boron nitride nanotubes are known not only to have excellent mechanical and thermal conductivity comparable to carbon nanotubes, but also to be chemically stable and have better oxidation resistance than carbon nanotubes. In addition, it has a local polar structure due to the dipole interaction between boron and nitrogen atoms, and is expected to have better affinity and dispersibility than carbon nanotubes for media having a polar structure. In addition, it has a wide band gap in terms of electronic structure, so it is insulative and can be expected as an insulating heat-dissipating material, and it can be applied to applications that dislike coloring because it is white unlike carbon nanotubes. Composite creation is possible.
本発明の樹脂組成物において、 熱硬化性樹脂 1 0 0重量部に対して、 窒化ホウ 素ナノチューブは、 0 . 0 1〜1 0 0重量部の範囲内で含有される。 上記窒化ホ ゥ素ナノチューブの含有量の下限は、 0 . 0 5重量部が好ましく、 より好ましく は 0 . 1重量部である。 一方、 窒化ホウ素ナノチューブの含有量の上限は、 8 0 重量部であることが好ましく、 5 0重量部であることがより好ましい。 上記範囲 内とすることにより、 窒化ホウ素ナノチューブを熱硬化性樹脂に均一に分散させ ることが可能となる。 また、 窒化ホウ素ナノチューブが過度に多い場合は、 均一 な樹脂組成物を得ることが困難となり好ましくない。 本発明の樹脂組成物は、 窒 化ホウ素ナノチューブに由来する窒ィ匕ホウ素フレーク、 触媒金属等を含む場合が ある。 In the resin composition of the present invention, boron nitride nanotubes are contained in the range of 0.01 to 100 parts by weight with respect to 100 parts by weight of the thermosetting resin. The lower limit of the content of the above-mentioned boron nitride nanotube is preferably 0.05 part by weight, more preferably 0.1 part by weight. On the other hand, the upper limit of the content of boron nitride nanotubes is preferably 80 parts by weight, and more preferably 50 parts by weight. By setting it within the above range, the boron nitride nanotubes can be uniformly dispersed in the thermosetting resin. Further, when the amount of boron nitride nanotubes is excessively large, it is difficult to obtain a uniform resin composition, which is not preferable. The resin composition of the present invention may contain nitrogen nitride flakes derived from boron nitride nanotubes, catalytic metals, and the like. is there.
特に本発明において使用される熱硬化性樹脂は、 ポリマ一分子鎖内に酸素ゃ窒 素原子のような極性元素を有しており、 その結果ナノレベルで構造の規定された 極性窒化ホウ素ナノチューブと分子レベルで静電的に相互作用することが可能で ある。 ポリマーとナノチューブ間の特異的な相互作用の結果として得られた熱硬 化性樹脂組成物においては、 少量のフイラ一添加においても、 従来の熱硬化性樹 脂及びその組成物に比べて効率の良い耐熱性、 機械特性の改良が可能であり、 ノ ルクの無機フィラー添加熱硬化性樹脂の範囲を超える高性能を発現することも期 待される。  In particular, the thermosetting resin used in the present invention has a polar element such as an oxygen-nitrogen atom in a polymer molecular chain, and as a result, a polar boron nitride nanotube whose structure is defined at the nano level and It is possible to interact electrostatically at the molecular level. In the thermosetting resin composition obtained as a result of the specific interaction between the polymer and the nanotube, even with the addition of a small amount of filler, it is more efficient than the conventional thermosetting resin and its composition. It is possible to improve heat resistance and mechanical properties, and it is expected that high performance exceeding the range of Norc inorganic filler added thermosetting resin will be realized.
本発明で使用する熱硬化性樹脂としては、 例えば、 フエノール樹脂、 エポキシ 樹脂、 熱硬化型変性ポリフエ二レンエーテル樹脂、 熱硬化型ポリイミド樹脂、 ケ ィ素樹脂、 ベンゾォキサジン樹脂、 メラミン樹脂、 尿素樹脂、 フラン樹脂、 ァニ リン樹脂等力挙げられる。 これらの熱硬化性樹脂は、 単独で用いられてもよく、 2種以上が併用されてもよい。 上記の熱硬化性樹脂のなかでも、 フエノール樹脂、 エポキシ樹脂、 熱硬化型変性ポリフエ二レンェ一テル樹脂、 熱硬化型ポリイミド 樹脂、 ケィ素樹脂、 尿素樹脂、 及び、 メラミン樹脂等が好適であり、 これらから 選ばれる 1つ以上のものが、 熱硬化性樹脂 1 0 0重量部のうちの 5 0重量部以上 であることが好ましい。  Examples of the thermosetting resin used in the present invention include phenol resin, epoxy resin, thermosetting modified polyphenylene ether resin, thermosetting polyimide resin, silicone resin, benzoxazine resin, melamine resin, urea resin, Examples include furan resin and aniline resin. These thermosetting resins may be used alone or in combination of two or more. Among the thermosetting resins described above, phenol resin, epoxy resin, thermosetting modified polyethylene resin, thermosetting polyimide resin, key resin, urea resin, and melamine resin are preferable. One or more selected from these is preferably 50 parts by weight or more of 100 parts by weight of the thermosetting resin.
本発明で使用するフエノール樹脂としては、 フエノール類と、 アルデヒド類と を酸触媒もしくは塩基性触媒存在下で反応させて得られるものである。 これによ り、 酸触媒下であればノポラック型フエノール樹脂、 塩基性触媒下であればレゾ —ル型フエノール樹脂を得ることができる。 前記フエノール類としては、 特に限 定されないが、 例えばフエノール、 o—クレゾ一ル、 m—クレゾール、 p—クレ ゾ一ル、 キシレノール、 ビスフエノール A、 p—夕ーシャリーブチルフエノール、 p—ォクチルフエノール、 p—ノニルフエノール、 p—クミルフエノール、 その 他のアルキルフエノール、 カテコール、 レゾルシノール、 フロログルシノールお よびビスフエノールなど力挙げられる。 この中でも高い機械的強度が得られやす いことから、 フエノール、 クレゾール、 レゾルシノール、 フロログルシノールお よ /またはビスフエノ一ル Aを好ましく用いることができる。 The phenol resin used in the present invention is obtained by reacting phenols and aldehydes in the presence of an acid catalyst or a basic catalyst. As a result, a nopolac type phenolic resin can be obtained under an acid catalyst, and a resole type phenolic resin can be obtained under a basic catalyst. The phenols are not particularly limited. For example, phenol, o-cresol, m-cresol, p-cresol, xylenol, bisphenol A, p-even butylphenol, p-octyl. Examples include phenol, p-nonylphenol, p-cumylphenol, other alkylphenols, catechol, resorcinol, phloroglucinol, and bisphenol. Of these, phenol, cresol, resorcinol, and phloroglucinol are preferred because of their high mechanical strength. Y / or bisphenol A can be preferably used.
また、 アルデヒド類としても特に限定されないが、 例えば、 ホルムアルデヒド、 パラホルムアルデヒド、 ベンズアルデヒドなど、 又はこれらのアルデヒドの発生 源となる物質、 あるいはこれらのアルデヒド類の溶液などが挙げられる。 また、 これらを単独あるいは 2種以上を混合して使用してもよい。  The aldehydes are not particularly limited, and examples thereof include formaldehyde, paraformaldehyde, benzaldehyde, substances that generate these aldehydes, and solutions of these aldehydes. These may be used alone or in admixture of two or more.
本発明のフエノール樹脂の合成には、 合成時の反応性が高いことから、 ホルム アルデヒド、 パラホルムアルデヒドが好ましく用いることができる。  For the synthesis of the phenolic resin of the present invention, formaldehyde and paraformaldehyde can be preferably used because of the high reactivity during the synthesis.
ここで酸性触媒としては特に限定されないが、 例えば、 蓚酸、 塩酸、 硫酸、 ジ ェチル硫酸、 パラトルエンスルホン酸等の酸類、 酢酸亜鈴等の金属塩類を単独ま たは 2種類以上併用することができる。 また塩基性触媒としては特に限定されな いが、 例えば、 水酸化ナトリウム、 水酸化リチウム、 水酸化カリウムなどのアル カリ金属の水酸化物、 アンモニア水、 卜リエチルァミンなどの第 3級ァミン、 力 ルシゥム、 マグネシウム、 バリウムなどアルカリ土類金属の酸化物及び水酸化物、 炭酸ナトリゥム、 へキサメチレンテトラミンなどのアル力リ性物質等を単独また は 2種類以上併用することができる。  Here, the acidic catalyst is not particularly limited. For example, acids such as oxalic acid, hydrochloric acid, sulfuric acid, dimethyl sulfuric acid, and paratoluenesulfonic acid, and metal salts such as dumbbell acetate can be used alone or in combination. . The basic catalyst is not particularly limited, but examples thereof include alkali metal hydroxides such as sodium hydroxide, lithium hydroxide and potassium hydroxide, tertiary water amines such as ammonia water and lithium ethylamine, Alkali earth metal oxides and hydroxides such as magnesium and barium, alkaline substances such as sodium carbonate and hexamethylenetetramine can be used alone or in combination of two or more.
フエノール類とアルデヒド類とを反応させて得られるフエノール樹脂は、 通常、 以下の方法によって得ることができる。 フエノール類とアルデヒド類とを前記酸 性触媒あるいは塩基性触媒の存耷下で加熱し反応させる。 酸性触媒下であれば、 水分を蒸留除去して固形のノポラック型フエノール樹脂を得ることができる。 塩 基性触媒下であれば、 水あるいは有機溶剤を添加して液状の.レゾ一ル型フエノ一 ル樹脂を得ることができる。 これらの方法により得られるフエノール樹脂は、 窒 化ホウ素ナノチューブ及び他の添加剤と複合、 成型後に更に加熱し硬化反応を進 行せしめることにより最終的な成型物を製造することができる。  The phenol resin obtained by reacting phenols with aldehydes can usually be obtained by the following method. The phenols and aldehydes are heated and reacted in the presence of the acid catalyst or basic catalyst. Under an acidic catalyst, water can be distilled off to obtain a solid nopolac-type phenolic resin. If it is under a basic catalyst, a liquid resin resin can be obtained by adding water or an organic solvent. The phenolic resin obtained by these methods can be combined with boron nitride nanotubes and other additives, and further heated after molding to allow the curing reaction to proceed to produce a final molded product.
上記エポキシ樹脂とは、 少なくとも 1個のエポキシ基を有する有機化合物をい う。 上記エポキシ樹脂中のエポキシ基の数は、 1分子当たり 1個以上であること が好ましく、 1分子当たり 2個以上であることがより好ましい。  The epoxy resin refers to an organic compound having at least one epoxy group. The number of epoxy groups in the epoxy resin is preferably 1 or more per molecule, and more preferably 2 or more per molecule.
上記エポキシ樹脂としては、 従来公知のエポキシ樹脂を用いることができ、 例 えば、 以下に述べるエポキシ樹脂 (1 ) 〜エポキシ樹脂 (1 0 ) 等が挙げられる。 これらのエポキシ樹脂は、 単独で用いられてもよく、 2種以上が併用されてもよ い。 As the epoxy resin, a conventionally known epoxy resin can be used, and examples thereof include epoxy resin (1) to epoxy resin (1 0) described below. These epoxy resins may be used alone or in combination of two or more.
エポキシ樹脂 (1 ) としては、 例えば、 ビスフエノール A型エポキシ樹脂、 ビ スフエノ一ル F型エポキシ樹脂、 ビスフエノール AD型エポキシ樹脂、 ビスフエ ノール S型エポキシ樹脂等のビスフエノール型エポキシ樹脂;フエノールノポラ ック型エポキシ樹脂、 クレゾ一ルノポラック型エポキシ樹脂等のノポラック型ェ ポキシ樹脂; トリスフエノ—ルメタントリグリシジルエーテル等の芳香族ェポキ シ樹脂、 及び、 これらの水添化物や臭素化物等力挙げられる。  Examples of the epoxy resin (1) include bisphenol type epoxy resins such as bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol AD type epoxy resin, and bisphenol S type epoxy resin; Noplac type epoxy resins such as lacquer type epoxy resins and cresolol nopolac type epoxy resins; aromatic epoxy resins such as trisphenol methane triglycidyl ether, and their hydrogenated products and brominated products.
エポキシ樹脂 (2 ) としては、 例えば、 3, 4—エポキシシク口へキシルメチ ルー 3 , 4一エポキシシク口へキサンカルボキシレート、 3, 4一エポキシ一 2 一メチルシク口へキシルメチル— 3, 4一エポキシ一 2—メチルシクロへキサン 力ルポキシレ一卜、 ビス (3, 4 一エポキシシク口へキシル) アジペート、 ビ ス (3 , 4—エポキシシクロへキシルメチル) アジペート、 ビス (3, 4ーェポ キシー 6 _メチルシクロへキシルメチル) アジペート、 2— (3 , 4—エポキシ シクロへキシルー 5 , 5ースピロ一 3, 4—エポキシ) シクロへキサノン一メタ 一ジォキサン、 ビス (2 , 3—エポキシシクロペンチル) エーテル等の脂環族ェ ポキシ樹脂等力 S挙げられる。 かかるエポキシ樹脂 (2 ) のうち市販されているも のとしては、 例えば、 ダイセル化学工業社製の商品名 「E H P E— 3 1 5 0」 (軟化温度 7 1 °C) 等が挙げられる。  Examples of the epoxy resin (2) include 3, 4-epoxy ring hexyl methyl 3, 4 1 epoxy ring hexane carboxylate, 3, 4 1 epoxy 1 2 1 methyl ring hexyl methyl-3, 4 1 epoxy 1 2 —Methylcyclohexane, bis (3,4 epoxy-hexyl) adipate, bis (3,4-epoxycyclohexylmethyl) adipate, bis (3,4-epoxy 6_methylcyclohexylmethyl) adipate , 2- (3,4-epoxy cyclohexylene 5,5-spiro-1,3,4-epoxy) cyclohexanone monometa dioxane, bis (2,3-epoxycyclopentyl) ether and other alicyclic epoxy resins, etc. Power S is mentioned. Examples of commercially available epoxy resins (2) include trade name “E HPE-3 15 50” (softening temperature 71 ° C.) manufactured by Daicel Chemical Industries, Ltd.
エポキシ樹脂 (3 ) としては、 例えば、 1, 4一ブタンジオールのジグリシジ ルエーテル、 1 , 6—へキサンジオールのジグリシジルエーテル、 グリセリンの トリダリシジルエーテル、 トリメチロールプロパンのトリグリシジルエーテル、 ポリエチレングリコ—ルのジグリシジルエーテル、 ポリプロピレングリコ一ルの ジグリシジルエーテル、 炭素数が 2〜 9、 好ましくは 2〜4のアルキレン基を含 むポリォキシアルキレンダリコールやポリテトラメチレンエーテルダリコールの 如き長鎖ポリオールのポリダリシジルエーテル等の脂肪族エポキシ樹脂等が挙げ られる。  Examples of the epoxy resin (3) include 1,4-monobutanediol diglycidyl ether, 1,6-hexanediol diglycidyl ether, glycerin triglycidyl ether, trimethylolpropane triglycidyl ether, polyethylene glycol— Diglycidyl ether of polypropylene, diglycidyl ether of polypropylene glycol, long chain such as polyoxyalkylene dallicol and polytetramethylene ether dallicol containing an alkylene group having 2 to 9, preferably 2 to 4 carbon atoms Examples thereof include aliphatic epoxy resins such as polydaricidyl ether of polyol.
エポキシ樹脂 (4 ) としては、 例えば、 フタル酸ジグリシジルエステル、 テト ラヒドロフタル酸ジダリシジルエステル、 へキサヒドロフ夕ル酸ジグリシジルェ ステル、 ジグリシジルー P—ォキシ安息香酸、 サリチル酸のダリシジルエーテル —ダリシジルエステル、 ダイマー酸ダリシジルエステル等のダリシジルエステル 型エポキシ樹脂及びこれらの水添化物等が挙げられる。 Epoxy resins (4) include, for example, diglycidyl phthalate, teto Dihydrodicyl ester of lahydrophthalic acid, diglycidyl ester of hexahydrofuric acid diglycidyl ester, diglycidyl p-oxybenzoic acid, daricidyl ether of salicylic acid-daricidyl ester, dimeric acid daricidyl ester, etc. And the like.
エポキシ樹脂 (5 ) としては、 例えば、 トリグリシジルイソシァヌレート、 環 状アルキレン尿素の N, N, ージグリシジル誘導体、 p—ァミノフエノールの N, N, 〇一トリグリシジル誘導体、 m—ァミノフエノールの N, N, 0—トリダリ シジル誘導体等のダリシジルァミン型ェポキシ樹脂及びこれらの水添化物等が挙 げられる。  Examples of the epoxy resin (5) include triglycidyl isocyanurate, N, N, -diglycidyl derivative of cyclic alkylene urea, N, N, O-triglycidyl derivative of p-aminophenol, m-aminophenol of Examples thereof include dalicidylamine type epoxy resins such as N, N, 0-tridaricidyl derivatives and hydrogenated products thereof.
エポキシ樹脂 (6 ) としては、 例えば、 グリシジル (メタ) ァクリレートと、 エチレン、 酢酸ビニル、 (メタ) アクリル酸エステル等のラジカル重合性モノマ 一との共重合体等が挙げられる。  Examples of the epoxy resin (6) include a copolymer of glycidyl (meth) acrylate and a radical polymerizable monomer such as ethylene, vinyl acetate, (meth) acrylic acid ester, and the like.
エポキシ樹脂 (7 ) としては、 共役ジェン化合物を主体とする重合体又はその 部分水添物の重合体における不飽和炭素の二重結合をエポキシ化したもの例えば、 ェポキシ化ポリブタジェンが挙げられる。  Examples of the epoxy resin (7) include those obtained by epoxidizing an unsaturated carbon double bond in a polymer mainly composed of a conjugated diene compound or a partially hydrogenated polymer thereof, such as epoxidized polybutadiene.
エポキシ樹脂 (8 ) としては、 ビニル芳香族化合物を主体とする重合体プロッ クと、 共役ジェン化合物を主体とする重合体プロック又はその部分水添物の重合 体ブロックとを同一分子内にもつブロック共重合体における、 共役ジェン化合物 の不飽和炭素の二重結合をエポキシ化したもの例えば、 エポキシ化 S B Sが挙げ られる。  As the epoxy resin (8), a block having a polymer block mainly composed of a vinyl aromatic compound and a polymer block mainly composed of a conjugation compound or a partially hydrogenated polymer block in the same molecule. In the copolymer, an epoxidized unsaturated carbon double bond of a conjugation compound, for example, epoxidized SBS can be mentioned.
エポキシ樹脂 (9 ) としては、 例えば、 1分子当たり 1個以上、 .好ましくは 2 個以上のエポキシ基を有するポリエステル樹脂等が挙げられる。  Examples of the epoxy resin (9) include a polyester resin having one or more, preferably two or more epoxy groups per molecule.
エポキシ樹脂 (1 0 ) としては、 例えば、 上記エポキシ樹脂 (1 ) 〜 (9 ) の 構造中にウレタン結合やポリ力プロラクトン結合を導入した、 ウレタン変成ェポ キシ樹脂やポリ力プロラクトン変成エポキシ樹脂等が挙げられる。  Examples of the epoxy resin (10) include urethane-modified epoxy resins and poly-force prolactone-modified epoxies in which urethane bonds and poly-force prolactone bonds are introduced into the structures of the above-described epoxy resins (1) to (9). Examples thereof include resins.
上記エポキシ樹脂の硬化反応に用いる硬化剤としては特に限定されず、 従来公 知のエポキシ樹脂用の硬化剤を用いることができ、 例えば、 ァミン化合物、 アミ ン化合物から合成される化合物、 3級ァミン化合物、 イミダゾール化合物、 ヒド ラジド化合物、 メラミン化合物、 酸無水物、 フエノール化合物、 熱潜在性カチォ ン重合触媒、 光潜在性カチオン重合開始剤、 ジシアンアミド及びその誘導体等が 挙げられる。 これらの硬化剤は、 単独で用いられてもよく、 2種以上が併用され てもよい。 The curing agent used for the curing reaction of the epoxy resin is not particularly limited, and conventionally known curing agents for epoxy resins can be used. For example, amine compounds, compounds synthesized from amine compounds, tertiary amines Compound, imidazole compound, hydride Examples thereof include a razide compound, a melamine compound, an acid anhydride, a phenol compound, a heat latent cationic polymerization catalyst, a photolatent cationic polymerization initiator, dicyanamide, and derivatives thereof. These curing agents may be used alone or in combination of two or more.
上記アミン化合物としては、 例えば、 エチレンジァミン、 ジエチレントリアミ ン、 トリエチレンテトラミン、 テトラエチレンペン夕ミン、 ポリオキシプロピレ ンジァミン、 ポリォキシプロピレントリアミン等の鎖状脂肪族アミン及びその誘 導体;メンセンジァミン、 イソフォロンジァミン、 ビス (4一アミノー 3—メチ ルシクロへキシル) メタン、 ジアミノジシクロへキシルメタン、 ビス (アミノメ チル) シクロへキサン、 N—アミノエチルピペラジン、 3 , 9—ビス (3—アミ ノプロピル) 2 , 4, 8, 1 0—テトラオキサスピロ (5 , 5 ) ゥンデカン等の 環状脂肪族ァミン及びその誘導体; m—キシレンジァミン、 一 (mZpァミノ フエニル) ェチルァミン、 m—フエ二レンジァミン、 ジアミノジフエ二ルメタン、 ジアミノジフエニルスルフォン、 《, ひ一ビス (4—ァミノフエニル) 一 ρ—ジ ィソプロピルベンゼン等の芳香族アミン及びその誘導体等が挙げられる。  Examples of the amine compound include chain aliphatic amines such as ethylene diamine, diethylene triamine, triethylene tetramine, tetraethylene penamine, polyoxypropylene diamine, polyoxypropylene triamine, and derivatives thereof; Forondiamine, Bis (4 monoamino-3-methylcyclohexyl) Methane, Diaminodicyclohexylmethane, Bis (aminomethyl) cyclohexane, N-aminoethylpiperazine, 3, 9-bis (3-aminopropyl) ) 2, 4, 8, 10-Tetraoxaspiro (5, 5) Cyclic aliphatic amines such as undecane and their derivatives; Diaminodiphenyls And aromatic amines such as Ruphon, <<, Hibis (4-aminophenyl) ρ-disopropylbenzene, and derivatives thereof.
上記アミン化合物から合成される化合物としては、 例えば、 上記アミン化合物 と、 コハク酸、 アジピン酸、 ァゼライン酸、 セバシン酸、 ドデカ二酸、 イソフタ ル酸、 テレフタル酸、 ジヒドロイソフ夕ル酸、 テトラヒドロイソフ夕ル酸、 へキ サヒドロイソフ夕ル酸等のカルボン酸化合物とから合成されるポリアミノアミド 化合物及びその誘導体;上記アミン化合物と、 ジアミノジフエニルメ夕'ンビスマ レイミド等のマレイミド化合物とから合成されるポリアミノイミド化合物及びそ の誘導体;上記アミン化合物とケトン化合物とから合成されるケチミン化合物及 びその誘導体;上記アミン化合物と、 エポキシ化合物、 尿素、 チォ尿素、 アルデ ヒド化合物、 フエノール化合物、 アクリル化合物等の化合物とから合成されるポ リアミノ化合物及びその誘導体等が挙げられる。  Examples of the compound synthesized from the above amine compound include the above amine compound, succinic acid, adipic acid, azelaic acid, sebacic acid, dodecadioic acid, isophthalic acid, terephthalic acid, dihydroisofuric acid, tetrahydroisophthalic acid. Polyaminoamide compounds synthesized from carboxylic acid compounds such as acids and hexahydroisophthalic acid and derivatives thereof; polyaminoimide compounds synthesized from the above amine compounds and maleimide compounds such as diaminodiphenyl bis-maleimide Ketimine compounds synthesized from the above amine compounds and ketone compounds and derivatives thereof; synthesized from the above amine compounds and compounds such as epoxy compounds, urea, thiourea, aldehyde compounds, phenol compounds, acrylic compounds, and the like. Po Amino compounds and derivatives thereof.
上記 3級ァミン化合物としては、 例えば、 N, N—ジメチルビペラジン、 ピリ ジン、 ピコリン、 ベンジルジメチルァミン、 2 - (ジメチルアミノメチル) フエ ノール、 2, 4 , 6—トリス (ジメチルアミノメチル) フエノール、 1, 8—ジ ァザビスシクロ [ 5 . 4. 0 ] ゥンデセン— 1及びその誘導体等が挙げられる。 上記イミダゾール化合物としては、 例えば、 2—メチルイミダゾール、 2—ェ チル— 4一メチルイミダゾ一ル、 2—ゥンデシルイミダゾ一ル、 2—ヘプ夕デシ ルイミダゾール、 2一フエ二ルイミダゾール及びその誘導体等が挙げられる。 上記ヒドラジド化合物としては、 例えば、 1 , 3—ビス (ヒドラジノカルボェ チル) 一 5—イソプロピルヒダントイン、 7, 1 1—ォクタデカジエン一 1 , 1 8—ジカルポヒドラジド、 エイコサンニ酸ジヒドラジド、 アジピン酸ジヒドラジ ド及びその誘導体等が挙げられる。 Examples of the tertiary amine compound include N, N-dimethylbiperazine, pyridine, picoline, benzyldimethylamine, 2- (dimethylaminomethyl) phenol, 2,4,6-tris (dimethylaminomethyl). ) Phenols, 1,8-di And azabiscyclo [5.4.0] undecene-1 and derivatives thereof. Examples of the imidazole compound include 2-methylimidazole, 2-ethyl-4-monomethylimidazole, 2-undecylimidazole, 2-heptadecylimidazole, and 2-phenylimidazole and the like. Derivatives and the like. Examples of the hydrazide compound include 1,3-bis (hydrazinocarboxyl) -15-isopropylhydantoin, 7,11-octadecadiene-1,18-dicarpohydrazide, eicosannic acid dihydrazide, adipic acid dihydrazide And derivatives thereof.
上記メラミン化合物としては、 例えば、 2, 4—ジアミノー 6—ビニル— 1, 3 , 5—トリアジン及びその誘導体等が挙げられる。  Examples of the melamine compound include 2,4-diamino-6-vinyl-1,3,5-triazine and derivatives thereof.
上記酸無水物としては、 例えば、 フ夕ル酸無水物、 トリメリット酸無水物、 ピ ロメリット酸無水物、 ベンゾフエノンテトラカルボン酸無水物、 エチレングリコ ールビスアンヒドロトリメリテート、 グリセロールトリスアンヒドロトリメリテ ート、 メチルテトラヒドロ無水フタル酸、 テトラヒドロ無水フタル酸、 ナジック 酸無水物、 メチルナジック酸無水物、 トリアルキルテトラヒドロ無水フ夕ル酸、 へキサヒドロ無水フ夕ル酸、 メチルへキサヒドロ無水フ夕ル酸、 5— ( 2 , 5— ジォキソテトラヒドロフリル) 一 3—メチルー 3—シクロへキセン— 1 , 2—ジ カルボン酸無水物、 トリアルキルテトラヒドロ無水フタル酸—無水マレイン酸付 加物、 ドデセニル無水コハク酸、 ポリアゼライン酸無水物、 ポリドデカン二酸無 水物、 クロレンド酸無水物及びその誘導体等が挙げられる。  Examples of the acid anhydride include fuuric acid anhydride, trimellitic acid anhydride, pyromellitic acid anhydride, benzophenone tetracarboxylic acid anhydride, ethylene glycol bisanhydro trimellitate, glycerol trisuan. Hydrotrimellitic acid, Methyltetrahydrophthalic anhydride, Tetrahydrophthalic anhydride, Nadic anhydride, Methyl nadic anhydride, Trialkyltetrahydrofuranic anhydride, Hexahydrofuranic anhydride, Methylhexahydrofuranic anhydride 1-methyl-2-cyclohexene-1,2-dicarboxylic anhydride, trialkyltetrahydrophthalic anhydride-maleic anhydride adduct , Dodecenyl succinic anhydride, poly azelaic anhydride, polydodecanedioic acid anhydrous, Rend anhydride and derivatives thereof.
上記フエノール化合物としては、 例えば、 フエノールノボラック、 o—クレゾ ールノポラック、 p—クレゾ一ルノボラック、 t—ブチルフエノールノポラック、 ジシクロペン夕ジェンクレゾ一ル及びその誘導体等が挙げられる。  Examples of the phenol compound include phenol novolak, o-cresol nopolac, p-cresol novolak, t-butyl phenol nopolac, dicyclopentene gencresol and derivatives thereof.
上記熱潜在性カチオン重合触媒としては、 例えば、 6フッ化アンチモン、 6フ ッ化リン、 4フッ化ホウ素等を対ァニオンとした、 ベンジルスルホニゥム塩、 ベ ンジルアンモニゥム塩、 ベンジルピリジニゥム塩、 ベンジルホスホニゥム塩等の イオン性熱潜在性カチオン重合触媒; N—べンジルフタルイミド、 芳香族スルホ ン酸エステル等の非ィォン性熱潜在性力チオン重合触媒が挙げられる。 上記熱硬化型変性ポリフエ二レンエーテル樹脂としては、 例えば、 上記ポリフ ェニレンエーテル樹脂をグリシジル基、 イソシァネート基、 アミノ基等の熱硬化 性を有する官能基で変性した樹脂等が挙げられる。 これらの熱硬化型変性ポリフ ェニレンエーテル樹脂は、 単独で用いられてもよく、 2種以上が併用されてもよ い。 Examples of the thermal latent cationic polymerization catalyst include benzylsulfonium salt, benzylammonium salt, benzylpyrimonium salt using antimony hexafluoride, phosphorus hexafluoride, boron tetrafluoride and the like as anions. Examples include ionic thermal latent cationic polymerization catalysts such as dinium salt and benzylphosphonium salt; nonionic thermal latent thione polymerization catalysts such as N-benzyl phthalimide and aromatic sulfonate. Examples of the thermosetting modified polyphenylene ether resin include a resin obtained by modifying the polyphenylene ether resin with a functional group having thermosetting properties such as a glycidyl group, an isocyanate group, and an amino group. These thermosetting modified polyphenylene ether resins may be used alone or in combination of two or more.
上記熱硬化性ポリイミド樹脂は、 分子主鎖中にィミド結合を有する樹脂であり、 具体的には、 例えば、 芳香族ジァミンと芳香族テトラカルボン酸との縮合重合体、 芳香族ジァミンとビスマレイミドとの付加重合体であるビスマレイミド樹脂、 ァ ミノ安息香酸ヒドラジドとビスマレイミドとの付加重合体であるポリアミノビス マレイミド樹脂、 ジシァネート化合物とビスマレイミド樹脂とからなるビスマレ イミドトリアジン樹脂等が挙げられる。 なかでもビスマレイミドトリアジン樹脂 が好適に用いられる。 これらの熱硬化性ポリイミド樹脂は、 単独で用いられても よく、 2種以上が併用されてもよい。  The thermosetting polyimide resin is a resin having an imido bond in a molecular main chain. Specifically, for example, a condensation polymer of an aromatic diamine and an aromatic tetracarboxylic acid, an aromatic diamine and a bismaleimide And bismaleimide resin, which is an addition polymer of aminobenzoic acid hydrazide and bismaleimide, and bismaleimide triazine resin composed of a dicyanate compound and a bismaleimide resin. Of these, bismaleimide triazine resin is preferably used. These thermosetting polyimide resins may be used alone or in combination of two or more.
上記ケィ素樹脂は、 分子鎖中にケィ素一ゲイ素結合、 ケィ素一炭素結合、 シロ キサン結合又はケィ素一窒素結合を含むものであり、 具体的には、 例えば、 ポリ シロキサン、 ポリカルポシラン、 ポリシラザン等が挙げられる。  The above-mentioned key resin contains a silicon-gay bond, a carbon-carbon bond, a siloxane bond, or a silicon-nitrogen bond in the molecular chain. Specifically, for example, polysiloxane, polycarbon bond, and the like. Examples thereof include silane and polysilazane.
上記尿素樹脂は、 尿素とホルムアルデヒドとの付加縮合反応で得られる熱硬化 性樹脂である。 上記尿素樹脂の硬化反応に用いられる硬化剤としては特に限定さ れず、 例えば、 無機酸、 有機酸、 酸性硫酸ナトリウムのような酸性塩からなる顕 在性硬化剤;カルボン酸エステル、 酸無水物、 塩化アンモニゥム、 リン酸アンモ ニゥム等の塩類のような潜在性硬化剤力挙げられる。 なかでも、 貯蔵寿命等から 潜在性硬化剤が好ましい。  The urea resin is a thermosetting resin obtained by addition condensation reaction of urea and formaldehyde. The curing agent used for the curing reaction of the urea resin is not particularly limited. For example, a visible curing agent composed of an inorganic acid, an organic acid, an acidic salt such as acidic sodium sulfate; a carboxylic acid ester, an acid anhydride, Potential hardeners such as salts such as ammonium chloride and ammonium phosphate. Of these, latent curing agents are preferred from the standpoint of shelf life.
上記メラミン樹脂はメラミンおよびその誘導体とホルムアルデヒドとの付加縮 合反応で得られる熱硬化性樹脂である。 上記メラミン誘導体としては特に制限は なく、 メチル化メラミン、 ブチル化メラミン、 イソブチル化メラミンなどが挙げ られる。 中でも水溶性を有するメチル化メラミンが最も好ましい。 上記メラミン 樹脂の硬化反応に用いられる硬化剤としては特に限定されず、 例えば、 無機酸、 有機酸、 酸性硫酸ナトリウムのような酸性塩からなる顕在性硬化剤;カルボン酸 エステル、 酸無水物、 塩化アンモニゥム、 リン酸アンモニゥム等の塩類のような 潜在性硬化剤が挙げられる。 なかでも、 蔵寿命等から潜在性硬化剤力好ましい。 本発明の樹脂組成物には、 本発明の効果を阻害しない範囲で必要に応じて適宜、 熱可塑性樹脂やゴム類の樹脂成分を添加することができる。 The melamine resin is a thermosetting resin obtained by addition condensation reaction of melamine and its derivatives with formaldehyde. The melamine derivative is not particularly limited, and examples thereof include methylated melamine, butylated melamine, and isobutylated melamine. Of these, methylated melamine having water solubility is most preferable. The curing agent used for the curing reaction of the melamine resin is not particularly limited. For example, an apparent curing agent composed of an inorganic acid, an organic acid, an acidic salt such as acidic sodium sulfate; a carboxylic acid Latent curing agents such as esters, acid anhydrides, ammonium chloride, ammonium phosphate salts and the like. Among these, the potential curing agent power is preferable from the shelf life. To the resin composition of the present invention, a thermoplastic resin or a resin component of rubber can be appropriately added as necessary as long as the effects of the present invention are not impaired.
熱可塑性樹脂としては、 例えばポリプロピレン系樹脂、 ポリエチレン系樹脂等 のポリオレフイン系樹脂、 ポリスチレン、 ポリスチレン一ブタジエン共重合体等 のスチレン系樹脂、 アクリロニトリル一スチレン共重合体、 アクリロニトリル一 ブタジエン—スチレン共重合体等の二トリル基含有樹脂、 ポリエチレンテレフ夕 レート、 ポリブチレンテレフ夕レート等の芳香族系ポリエステル樹脂、 ポリェチ レンサクシネート、 ポリ乳酸等の脂肪族系ポリエステルなどのエステル基含有樹 脂、 ポリアミド 6、 ポリアミド 1 1、 ポリアミド 1 2、 ポリアミド 6 6、 ポリア ミド 6 1 0、 ポリアミド 6 1 2、 ポリアミド 4 6、 ポリアミド 6— 6 6、 ポリア ミド 6— 6 1 0、 ポリアミド 6— 6 T (T;テレフタル酸成分)、 半芳香族ポリ アミド等の酸アミド結合 (一 C O NH—) を繰り返し単位に持つポリアミド樹脂、 ポリビニルァセタール樹脂、 ポリエーテルケトン樹脂、 ポリフエ二レンスルフィ ド樹脂、 ポリエーテルスルホン樹脂、 フッ素樹脂、 熱可塑性シリコーン樹脂、 ポ リウレタン樹脂、 ポリカーボネート樹脂、 ポリイミド樹脂等を挙げることができ る。  Examples of thermoplastic resins include polypropylene resins such as polypropylene resins and polyethylene resins, styrene resins such as polystyrene and polystyrene-butadiene copolymers, acrylonitrile-styrene copolymers, acrylonitrile-butadiene-styrene copolymers, and the like. Nitrile group-containing resins, polyethylene terephthalate, polybutylene terephthalate, and other aromatic polyester resins, polyethylene succinate, ester group-containing resins such as polylactic acid and other aliphatic polyesters, polyamide 6, polyamide 1 1, Polyamide 1 2, Polyamide 6 6, Polyamide 6 10, Polyamide 6 1 2, Polyamide 4 6, Polyamide 6—6 6, Polyamide 6—6 10, Polyamide 6—6 T (T; terephthalic acid Component), acid amide bonds such as semi-aromatic polyamide (One CO NH—) as a repeating unit, a polyamide resin, a polyvinyl acetal resin, a polyether ketone resin, a polyethylene sulfide resin, a polyether sulfone resin, a fluorine resin, a thermoplastic silicone resin, a polyurethane resin, a polycarbonate resin, A polyimide resin etc. can be mentioned.
ゴム類としては、 例えば、 スチレン系エラストマ一、 ォレフィン系エラストマ ―、 ウレタン系エラストマ一、 ポリエステル系エラストマ一等が挙げられる。 樹 脂との相容性を高めるために、 これらの熱可塑性エラストマ一を官能基変性した ものであってもよい。 これらの熱可塑性エラストマ一類は、 単独で用いられても よく、 2種以上が併用されてもよい。 上記ゴムとしては特に限定されず、 例えば、 イソプレンゴム、 ブタジエンゴム、 1 , 2—ポリブタジエン、 スチレン一ブ夕ジ ェンゴム、 二トリルゴム、 ブチルゴム、 エチレン一プロピレンゴム、 シリコーン ゴム、 ウレタンゴム等が挙げられる。 樹脂との相溶性を高めるために、 これらの ゴムを官能基変性したものであることが好ましい。 これらのゴム類は単独で用レ られてもよく、 2種以上が併用されてもよい。 これら熱可塑性樹脂やゴム類のよ うな他の樹脂成分の配合量としては、 熱硬化性樹脂の特徴を活かすため、 熱硬化 性樹脂 1 0 0重量部に対して 0〜1 0 0重量部が好ましい。 より好ましくは 0〜 8 0重量部である。 他の樹脂成分の配合量が 1 0 0重量部を超えると樹脂硬化物 の難燃性が損なわれることがある。 また熱可塑性樹脂を含む場合には熱硬化性樹 脂 1 0 0重量部に対して 0〜4 0重量部が好ましい。 より好ましくは 0〜3 0重 量部である。 Examples of rubbers include styrene-based elastomers, olefin-based elastomers, urethane-based elastomers, and polyester-based elastomers. These thermoplastic elastomers may be functionally modified in order to enhance compatibility with the resin. These thermoplastic elastomers may be used alone or in combination of two or more. Examples of the rubber include, but are not limited to, isoprene rubber, butadiene rubber, 1,2-polybutadiene, styrene / butadiene rubber, nitrile rubber, butyl rubber, ethylene / propylene rubber, silicone rubber, and urethane rubber. In order to enhance the compatibility with the resin, it is preferable that these rubbers are functional group-modified. These rubbers may be used alone or in combination of two or more. These thermoplastic resins and rubbers The amount of such other resin components is preferably 0 to 100 parts by weight with respect to 100 parts by weight of the thermosetting resin in order to take advantage of the characteristics of the thermosetting resin. More preferably, it is 0 to 80 parts by weight. When the blending amount of other resin components exceeds 100 parts by weight, the flame retardancy of the cured resin product may be impaired. When a thermoplastic resin is included, the amount is preferably 0 to 40 parts by weight with respect to 100 parts by weight of the thermosetting resin. More preferably, it is 0 to 30 parts by weight.
本発明で用いられる熱硬化性樹脂は、 窒化ホウ素系ナノチューブ及び他の添加 剤と複合、 成形後に更に加熱し硬化反応を進行せしめることにより最終的な成形 物を製造することができる。  The thermosetting resin used in the present invention can be combined with boron nitride-based nanotubes and other additives, and further heated after molding to advance the curing reaction, thereby producing a final molded product.
(樹脂組成物の製造方法について)  (About manufacturing method of resin composition)
本発明の熱硬化性樹脂組成物の製造方法としては、 熱硬化性樹脂中に窒化ホウ 素ナノチューブを高せん断応力下に混合、 分散する方法を好ましく採用すること ができる。  As a method for producing the thermosetting resin composition of the present invention, a method in which boron nitride nanotubes are mixed and dispersed in a thermosetting resin under high shear stress can be preferably employed.
上記混合方法としては、 例えば一軸あるいは二軸押し出し機、 二一ター、 ラボ プラストミル、 バンバリ一ミキサー、 ヘンシェルミキサー、 タンブラ一、 スーパ 一ミキサー、 口一ター付きコンティニユアスミキサー、 ミキシングロール等のそ れ自体公知の溶融混合機に、 上記混合成分を供給して混練するプロセスを好まし く実施することができる。  Examples of the mixing method include a single-screw or twin-screw extruder, a twin ter, a lab plast mill, a Banbury mixer, a Henschel mixer, a tumbler, a super mixer, a continuous mixer with a mouthpiece, and a mixing roll. A process of supplying and kneading the above mixed components to a melt mixer known per se can be preferably carried out.
また、 共役系高分子やカツプリング剤で表面を被覆処理された窒化ホウ素ナノ チューブを使用する場合は、 被覆された窒化ホウ素ナノチューブを上記のように 熱硬化性樹脂に混合分散させることにより本発明の樹脂組成物を製造することが できる。  When using a boron nitride nanotube whose surface is coated with a conjugated polymer or a coupling agent, the coated boron nitride nanotube is mixed and dispersed in the thermosetting resin as described above. A resin composition can be produced.
窒化ホウ素ナノチューブを共役系高分子やカップリング剤で被覆する方法とし ては、 例えば窒化ホウ素ナノチューブを超音波撹拌装置やヘンシェルミキサー、 スーパーミキサー等の混合機、 ホモジナイザーのような高速攪拌またはアトライ ター、 ポールミル等を用いて攪拌しつつ、 これに共役高分子やカップリング剤を 無溶媒下、 あるいはトルエン、 キシレン、 各種アルコール等の溶媒に溶解させた 溶液を滴下又は噴霧添加することにより行うことができる。 ここで無溶媒下にて被覆処理を行う場合、 加熱溶融している共役系高分子や液 状カップリング試剤に対して窒化ホウ素ナノチューブを添加して混合する方法が 好ましく、 また溶媒を使用する場合は共役系高分子または力ップリング剤が溶解 する溶媒中でこれらを窒化ホウ素ナノチューブと混合し分散する方法等が挙げら れる。 特にこの場合は超音波攪拌混合による被覆処理を好ましく実施することが できる。 Examples of methods for coating boron nitride nanotubes with conjugated polymers and coupling agents include, for example, mixing boron nitride nanotubes with ultrasonic mixers, Henschel mixers, super mixers, etc., high-speed stirring or attritors such as homogenizers, While stirring using a pole mill or the like, this can be performed by adding dropwise or spraying a solution in which a conjugated polymer or a coupling agent is dissolved in a solvent-free solvent such as toluene, xylene, or various alcohols. . Here, when the coating treatment is performed in the absence of a solvent, a method in which boron nitride nanotubes are added to and mixed with the heated and melted conjugated polymer or liquid coupling reagent is preferable, and a solvent is used. For example, a method of mixing and dispersing these with boron nitride nanotubes in a solvent in which a conjugated polymer or a force pulling agent is dissolved can be mentioned. Particularly in this case, the coating treatment by ultrasonic stirring and mixing can be preferably performed.
更に、 本発明の熱硬化性樹脂組成物には、 種々の目的に応じてカーボンナノチ ユーブ、 カーポンプラック、 炭素繊維等の任意の炭素系フイラ一を併用して混合 してもよい。 更には本発明の効果を損なわない範囲において、 ポリオレフィン系 化合物、 シリコーン系化合物、 長鎖脂肪族エステル系化合物、 長鎖脂肪族アミド 系化合物などの離型剤、 ヒンダードフエノール系化合物、 ヒンダードアミン系化 合物などの酸化防止剤、 低分子量ポリエチレン、 低分子量ポリプロピレン、 パラ フィン、 高級脂肪酸アミド、 ステアリン酸カルシウム、 ステアリン酸アルミニゥ ム、 ステアリン酸リチウムなどの滑剤、 ベンガラ、 顔料などの着色剤、 顔料およ び染料を併用できる他、 充填剤、 熱安定剤、 紫外線吸収剤、 赤外線吸収剤、 蛍光 剤、 界面活性剤、 防黴剤、 殺菌剤、 金属不活性化剤、 光安定剤、 表面処理剤、 難 燃剤、 造核剤、 抗酸化剤、 発泡剤、 可塑剤、 加工助剤、 分散剤、 銅害防止剤、 中 和剤、 気泡防止剤、 防曇剤、 抗菌剤、 ホウ酸及び帯電防止剤等の添加剤を添加し ても差し支えない。 これらはそれぞれ単独で用いられてもよく、 2種以上が併用 されてもよい。  Furthermore, the thermosetting resin composition of the present invention may be used in combination with any carbon-based filler such as carbon nanotubes, car pump racks, and carbon fibers according to various purposes. Furthermore, within the range that does not impair the effects of the present invention, release agents such as polyolefin compounds, silicone compounds, long chain aliphatic ester compounds, long chain aliphatic amide compounds, hindered phenol compounds, hindered amine compounds. Antioxidants such as compounds, low molecular weight polyethylene, low molecular weight polypropylene, paraffin, higher fatty acid amides, lubricants such as calcium stearate, aluminum stearate, lithium stearate, colorants such as bengara, pigments, pigments and In addition to dyes, fillers, heat stabilizers, UV absorbers, infrared absorbers, fluorescent agents, surfactants, antifungal agents, bactericides, metal deactivators, light stabilizers, surface treatment agents, difficulty Flame retardant, nucleating agent, antioxidant, foaming agent, plasticizer, processing aid, dispersant, copper damage inhibitor, medium Agents, anti-foam agents, anti-fogging agents, antimicrobial agents, even with the addition of additives such as boric acid and an antistatic agent no problem. These may be used singly or in combination of two or more.
(樹脂組成物成形体)  (Resin composition molded body)
本発明の熱硬化性樹脂組成物は、 熱硬化性樹脂と窒化ホウ素ナノチューブとを 複合した、 任意の成形を行う前の液状、 塊状やペレット状などのいわゆる賦形前 ポリマー組成物を意味する。 このような樹脂組成物は、 更に加熱混練 ·成形等を 経てフィルム、 シート状、 チューブ状、 カップ、 ボトルといった任意の構造の成 形体に加工することができる。 混練方法としては、 ロール、 ニーダ一、 2軸押出 し機等の混練機を用いて単独又は併用して混練することができる。 成形方法とし ては、 τダイやサーキユラ一ダイ等を用いてフィルム状に成形する押出成形法や、 有機溶剤等の溶媒に溶解又は分散させた後、 キャスティングしてフィルム状に成 形するキャスティング成形法などが挙げられる。 なかでも、 多層基板の薄型化を 図るためには、 押出成形法やキャスティング成形法が好適である。 The thermosetting resin composition of the present invention means a so-called pre-shaped polymer composition in which a thermosetting resin and boron nitride nanotubes are combined, such as a liquid, an aggregate or a pellet before arbitrary molding. Such a resin composition can be further processed into a molded body having an arbitrary structure such as a film, a sheet, a tube, a cup, or a bottle through heat kneading and molding. As a kneading method, kneading can be carried out singly or in combination using a kneader such as a roll, a kneader, or a twin screw extruder. As the molding method, an extrusion molding method in which a τ die or a circular die is used to form a film, For example, a casting molding method in which a film is formed by dissolving or dispersing in a solvent such as an organic solvent and then forming the film. Of these, the extrusion molding method and the casting molding method are suitable for reducing the thickness of the multilayer substrate.
なお、 これらの成形工程において、 流動配向、 せん断配向、 又は延伸配向させ ることにより熱硬化性樹脂および窒化ホウ素ナノチューブの配向を高め機械特性 を向上させることができる。 更にフィルムまたはシートの場合は、 一般的に行わ れる延伸加工、 例えば、 一軸延伸、 ゾーン延伸、 フラット逐次延伸、 フラット同 時二軸延伸、 チューブラー同時延伸を施すことで更に樹脂および窒化ホウ素ナノ チューブの配向を高め機械特性を改良することも好ましく実施できる。 実施例  In these molding steps, the orientation of the thermosetting resin and boron nitride nanotubes can be increased and the mechanical properties can be improved by performing flow orientation, shear orientation, or stretch orientation. Furthermore, in the case of a film or sheet, the resin and boron nitride nanotubes are further subjected to stretching processes generally performed, for example, uniaxial stretching, zone stretching, flat sequential stretching, flat simultaneous biaxial stretching, and tubular simultaneous stretching. It is also possible to improve the mechanical properties by increasing the orientation of the film. Example
以下に実施例を示し、 本発明を更に具体的に説明する力 本発明はこれら実施 例の記載に何ら限定されるものではない。 なお、 熱硬化性樹脂はエポキシ樹脂と してビスフエノール A型エポキシ樹脂 (大日本インキ化学工業 (株) 製、 ェビク ロン 850、 エポキシ等量: 190) を、 またメラミン樹脂として日産化学工業 (株) 製、 サントップ ·Μ700 (樹脂固型分 55%) を用いた。 また、 フエノ ール樹脂としてはレゾール型樹脂を製造して用いた。  The following examples are provided to further illustrate the present invention. The present invention is not limited to the description of these examples. The thermosetting resin is bisphenol A type epoxy resin (Dainippon Ink Chemical Co., Ltd., Ebicron 850, epoxy equivalent: 190) as the epoxy resin, and Nissan Chemical Industries, Ltd. as the melamine resin. ) Suntop · ト ッ プ 700 (resin solid content 55%) was used. As the phenol resin, a resol type resin was manufactured and used.
(1) 引張強度測定および弾性率  (1) Tensile strength measurement and elastic modulus
引張強度および弾性率は、 .5 Ommx 1 Ommのサンプルを用い、 引張り速度 5 mm/分で行いオリエンテック UCT— 1 Tによって測定した。  Tensile strength and elastic modulus were measured by Orientec UCT-1 T using a sample of .5 Ommx 1 Omm at a tensile speed of 5 mm / min.
(2) 熱膨張係数  (2) Thermal expansion coefficient
熱膨張係数は、 T Aインストルメント社製 TA2940を用いて空気中、 30 〜80°Cの範囲で昇温速度 10°C/分にて測定し、 セカンドスキャンの値より求 めた。  The thermal expansion coefficient was measured from the value of the second scan using TA2940 manufactured by TA Instruments Co., Ltd., measured in air at a temperature increase rate of 10 ° C / min in the range of 30 to 80 ° C.
(3) ポリマー重量減少温度  (3) Polymer weight reduction temperature
ポリマ一重量減少温度は、 R i gaku製 TG 8120を用いて空気中、 3 0〜800°Cの範囲で昇温速度 10°C/分にて測定し、 5%重量減少時のピーク 値より求めた。 (4) 熱伝導度 The polymer weight loss temperature was measured in air using a TG 8120 manufactured by Rigaku at a temperature increase rate of 10 ° C / min in the range of 30 to 800 ° C. From the peak value at 5% weight loss Asked. (4) Thermal conductivity
熱伝導度は、 5 OmmX 80mmのサンプルを用い、 プローブ法 (非定常熱線 法) により、 迅速熱伝導率測定計 (KEMTHERM QTM— D3型、 京都電 子工業 (株)製) を用いて測定した。 具体的には熱伝導率既知の基準試料の上に試 料を乗せて、 みかけの熱伝導率を次式により基準試料の熱伝導率 (対数) に対し てプロットし、 偏差が 0となるときの熱伝導率を内挿により求めて、 試料の熱伝 導率を導出した。  Thermal conductivity was measured using a rapid thermal conductivity meter (KEMTHERM QTM-D3, Kyoto Electronics Co., Ltd.) with a probe method (unsteady hot wire method) using a sample of 5 Omm x 80 mm. . Specifically, when a sample is placed on a reference sample with a known thermal conductivity, the apparent thermal conductivity is plotted against the thermal conductivity (logarithm) of the reference sample using the following equation, and the deviation is 0 The thermal conductivity of the sample was derived by interpolation, and the thermal conductivity of the sample was derived.
偏差 = {(未知試料込のみかけの熱伝導率) 一 (基準試料の熱伝導率) } / (基準 試料の熱伝導率) Deviation = {(Apparent thermal conductivity with unknown sample) 1 (Thermal conductivity of the reference sample)} / (Thermal conductivity of the reference sample)
参考例 1 窒化ホウ素ナノチューブの製造 Reference Example 1 Production of boron nitride nanotubes
窒化ホウ素製のるつぼに、 1 : 1のモル比でホウ素と酸化マグネシウムを入れ、 るつぼを高周波誘導加熱炉で 1, 300°Cに加熱した。 ホウ素と酸化マグネシゥ ムは反応し、 気体状の酸化ホウ素 (B22) とマグネシウムの蒸気が生成した。 この生成物をアルゴンガスにより反応室へ移送し、 温度を 1, 100°Cに維持し てアンモニアガスを導入した。 酸化ホウ素とアンモニアが反応し、 窒化ホウ素が 生成した。 1. 55 gの混合物を十分に加熱し、 副生成物を蒸発させると、 反応 室の壁から 31 Omgの白色の固体が得られた。 続いて得られた白色固体を濃塩 酸で洗浄、 イオン交換水で中性になるまで洗浄後、 60°Cで減圧乾燥を行い窒化 ホウ素ナノチューブ (以下、 BNNTと略すことがある) を得た。 得られた BN NTは、 平均直径が 27. 6 nm、 平均長さが 2, 460 nmのチューブ状であ つた。 Boron nitride was put in a boron nitride crucible at a molar ratio of 1: 1, and the crucible was heated to 1,300 ° C in a high frequency induction heating furnace. Boron and magnesium oxide reacted to form gaseous boron oxide (B 2 0 2 ) and magnesium vapor. This product was transferred to the reaction chamber with argon gas, and ammonia gas was introduced while maintaining the temperature at 1,100 ° C. Boron oxide and ammonia reacted to form boron nitride. 1. When 55 g of the mixture was fully heated and the by-products were evaporated, 31 Omg of white solid was obtained from the reaction chamber wall. Subsequently, the obtained white solid was washed with concentrated hydrochloric acid, washed with ion-exchanged water until neutral, and then dried at 60 ° C under reduced pressure to obtain boron nitride nanotubes (hereinafter abbreviated as BNNT). . The obtained BN NT was a tube with an average diameter of 27.6 nm and an average length of 2,460 nm.
参考例 2 レゾ一ル型フエノール樹脂の製造 Reference Example 2 Production of resole type phenolic resin
攪拌装置、 窒素導入'排出菅及び還流冷却菅を備えた 50 Oml三口フラスコ に、 フエノール 10 Og、 37%ホルムアルデヒド水溶液 157 g、 触媒として 10%水酸化ナトリウム水溶液 5. 0 gを加えた。 混合物を攪拌しながら、 70 一 80°Cの油浴中で 2時間加熱した後、 冷却することなくエバポレー夕一にて 6 0-70 °Cで減圧蒸留することで水分を留去した。 約 100 m 1の水分が蒸留さ れたところで 85%?し酸 5. 5 g、 グリセリン 15 gを加え、 pHを 5〜6に調 整した。 その後更にエバポレー夕一にて減圧濃縮し、 フラスコ内温度が 30— 5 OmmHgで 80°Cになった時点で濃縮を止め、 脱水を終了した。 得られたレゾ —ル樹脂溶液をそのまま以降の検討に用いた。 To a 50 Oml three-necked flask equipped with a stirrer, a nitrogen inlet / outlet and a reflux condenser, 10 Og of phenol, 157 g of a 37% formaldehyde aqueous solution, and 5.0 g of a 10% sodium hydroxide aqueous solution as a catalyst were added. The mixture was heated in an oil bath at 70 ° C to 80 ° C for 2 hours with stirring, and then distilled under reduced pressure at 60-70 ° C in an evaporator without cooling. When about 100 m1 of water has been distilled, add 85 g of acid and 15 g of glycerin to adjust the pH to 5-6. Arranged. Thereafter, the mixture was further concentrated under reduced pressure in an evaporator, and when the temperature in the flask reached 80 ° C at 30-5 OmmHg, the concentration was stopped and dehydration was completed. The obtained resole resin solution was used as it was in the subsequent study.
実施例 1 Example 1
参考例 1で得られた 10重量部の窒化ホウ素ナノチューブをジメチルホルムァ ミド (和光純薬 (株) 製、 特級) 432重量部に懸濁した。 これに、 ビスフエノ —ル A型エポキシ樹脂 (大日本インキ化学工業 (株) 製、 ェビクロン 850、 ェ ポキシ当量: 190) 57. 96重量部、 フエノール化合物 (大日本インキ化学 工業 (株) 製、 フエノラィト TD— 2090、 水酸基当量: 105) 32. 04 重量部からなるエポキシ樹脂組成物 90重量部および硬化促進剤として、 2—ェ チルー 4ーメチルイミダゾール (四国化成工業 (株) 製) を 1重量部添加した。 得られた混合物を撹沖機にて 1時間撹拌した後、 脱泡し、 樹脂組成物溶液を得 た。 次いで、 得られた樹脂組成物溶液をポリエチレンテレフ夕レートのシート上 に塗布した状態で溶媒を除去した後、 110°Cで 3時間加熱し、 樹脂組成物から なる厚さ 1 mm及び 100 mの板状成形体を作製した。 P E Tフィルムより剥 離後、 更に 170°Cで 30分間加熱して硬化させ、 これを 50X 1 Ommおよび 5 OmmX 8 Ommに切り出すことにより試験用成形体を作成した。 成形体の引 つ張り強度は 97. 6 M P a、 熱膨張係数は 33. 1 p p mZ°Cであつた。 また、 熱伝導率は 2. 9W/mKであった。  10 parts by weight of boron nitride nanotubes obtained in Reference Example 1 were suspended in 432 parts by weight of dimethylformamide (manufactured by Wako Pure Chemical Industries, Ltd., special grade). Bisphenol A-type epoxy resin (Dainippon Ink Chemical Co., Ltd., Ebicron 850, Epoxy equivalent: 190) 57.96 parts by weight, Phenolic compound (Dainippon Ink Chemical Co., Ltd., Phenolite TD-2090, hydroxyl equivalent: 105) 90 parts by weight of epoxy resin composition comprising 32.04 parts by weight and 1 part by weight of 2-ethyl-4-methylimidazole (manufactured by Shikoku Kasei Kogyo Co., Ltd.) as a curing accelerator Added. The resulting mixture was stirred for 1 hour with a stirrer and then degassed to obtain a resin composition solution. Next, after removing the solvent in a state where the obtained resin composition solution was coated on a sheet of polyethylene terephthalate, it was heated at 110 ° C. for 3 hours to have a thickness of 1 mm and 100 m comprising the resin composition. A plate-like molded body was produced. After peeling from the PET film, it was further cured by heating at 170 ° C. for 30 minutes, and this was cut into 50 × 1 Omm and 5 Omm × 8 Omm to prepare test compacts. The tensile strength of the compact was 97.6 M Pa and the coefficient of thermal expansion was 33.1 pp mZ ° C. The thermal conductivity was 2.9 W / mK.
実施例 2 Example 2
(1) 共役系高分子で被覆した窒化ホウ素ナノチューブの作製:  (1) Preparation of boron nitride nanotubes coated with conjugated polymer:
参考例 1で得られた 10重量部の窒化ホウ素ナノチューブを 1, 000重量部の ジクロロメタンに添加して超音波バスにて 2時間処理を行い、 窒化ホウ素ナノチ ュ一ブ分散液を調製した。 続いて 10重量部のアルドリッチ社製ポリ (m—フエ 二レンビニレン一 c o_ 2, 5—ジォクトキシー p—フエ二レンビニレン) を添 加して超音波処理を 1時間実施した。 得られた分散液をミリポア製ォムニポアメ ンブレンフィルタ一 0. 1 xmでろ過し、 大量のジクロロメタンで洗浄後、 6 0 °C減圧乾燥を 2時間行うことで黄色の共役系高分子で被覆された窒化ホウ素ナ ノチューブを得た。 窒化ホウ素ナノチューブ上に被覆された共役系高分子の量は 窒化ホウ素ナノチューブに対して 4. 1重量%であつた。 Ten parts by weight of the boron nitride nanotubes obtained in Reference Example 1 were added to 1,000 parts by weight of dichloromethane and treated with an ultrasonic bath for 2 hours to prepare a boron nitride nanotube dispersion. Subsequently, 10 parts by weight of Aldrich poly (m-phenylene vinylene co-2, 5-dioctoxy p-phenylene vinylene) was added and sonicated for 1 hour. The resulting dispersion was filtered through a Millipore Omnipore membrane filter 0.1 xm, washed with a large amount of dichloromethane, and dried at 60 ° C under reduced pressure for 2 hours, so that it was nitrided with a yellow conjugated polymer. Boron na Tube was obtained. The amount of conjugated polymer coated on the boron nitride nanotubes was 4.1% by weight based on the boron nitride nanotubes.
(2) 窒化ホウ素ナノチューブ含有エポキシ樹脂の作製:  (2) Preparation of boron nitride nanotube-containing epoxy resin:
上記で作製した共役系高分子で被覆された窒化ホゥ素ナノチューブ 10重量部 をジメチルホルムアミド (和光純薬 (株) 製、 特級) 432重量部に懸濁した。 これに、 ビスフエノール A型エポキシ樹脂 (大日本インキ化学工業 (株) 製、 ェ ビクロン 850、 エポキシ当量: 190) 57. 96重量部、 フエノール化合物 (大日本インキ化学工業 (株) 製、 フエノライト TD— 2090、 水酸基当量: 105) 32. 04重量部からなるエポキシ樹脂組成物 90重量部および硬化促 進剤として、 2—ェチルー 4一メチルイミダゾ一ル (四国化成工業 (株) 製) を 1重量部添加した。 得られた混合物を撹拌機にて 1時間撹拌した後、 脱泡して樹 脂組成物溶液を得た。 次いで、 得られた樹脂組成物溶液をポリエチレンテレフ夕 レートのシ一ト上に塗布した状態で溶媒を除去した後、 110°Cで 3時間加熱し、 樹脂組成物からなる厚さ 1 mm及び 100 xmの板状成形体を作製した。 PET フィルムより剥離後、 更に 170°Cで 30分間加熱して硬化させこれを 50X 1 0mmおよび 5 OmmX 8 Ommに切り出すことにより試験用成形体を作成した。 成形体の引っ張り強度は 101. 7MP a、 熱膨張係数は 32. OppmZ°Cで あった。 また、 熱伝導率は 2. 95WZmKであった。  10 parts by weight of the fluorine nitride nanotubes coated with the conjugated polymer prepared above were suspended in 432 parts by weight of dimethylformamide (manufactured by Wako Pure Chemical Industries, Ltd., special grade). Bisphenol A type epoxy resin (Dainippon Ink Chemical Co., Ltd., Ebicron 850, Epoxy equivalent: 190) 57.96 parts by weight Phenolic compound (Dainippon Ink Chemical Co., Ltd., Phenolite TD — 2090, hydroxyl equivalent: 105) 90 parts by weight of epoxy resin composition consisting of 32.04 parts by weight and 1 part of 2-ethyl 4-methylimidazole (manufactured by Shikoku Kasei Kogyo Co., Ltd.) as a curing accelerator Part was added. The obtained mixture was stirred with a stirrer for 1 hour and then defoamed to obtain a resin composition solution. Next, after removing the solvent in a state where the obtained resin composition solution was applied on a sheet of polyethylene terephthalate, it was heated at 110 ° C. for 3 hours to obtain a resin composition having a thickness of 1 mm and 100 mm. A plate-like molded body of xm was produced. After peeling from the PET film, it was further cured by heating at 170 ° C. for 30 minutes, and this was cut into 50 × 10 mm and 5 Omm × 8 Omm to prepare test moldings. The tensile strength of the molded product was 101.7 MPa, and the thermal expansion coefficient was 32. OppmZ ° C. The thermal conductivity was 2.95WZmK.
実施例 3 Example 3
参考例 1で得られた 10重量部の窒化ホウ素ナノチューブをジメチルホルムァ ミド (和光純薬 (株) 製、 特級) 432重量部に懸濁した。 これに、 メラミン樹 脂として日産化学工業 (株) 製、 サントップ · Μ700 (樹脂固形分 55重 量%) 105. 38重量部、 パラトルエンスルホン酸 30%水溶液を、 樹脂液に 対し 3. 2重量部添加した。 得られた混合物を撹拌機にて 1時間撹拌した後、 脱 泡し、 樹脂組成物溶液を得た。 次いで、 得られた樹脂組成物溶液をポリエチレン テレフ夕レートのシート上に塗布した状態で溶媒を除去した後、 105°Cで 3時 間加熱し、 樹脂組成物からなる厚さ 1mm及び 100 τιの板状成形体を作製し た。 PETフィルムより剥離後、 更に 160°Cで 30分間加熱して硬化させ、 これ を 50 X 10mmおよび 5 OmmX 80 mmに切り出すことにより試験用成形体 を作成した。 成形体の引っ張り強度は 95. 3MP a、 熱膨張係数は 28. 1 p pm/°Cであった。 また、 熱伝導率は 2. 8WZmKであった。 10 parts by weight of boron nitride nanotubes obtained in Reference Example 1 were suspended in 432 parts by weight of dimethylformamide (manufactured by Wako Pure Chemical Industries, Ltd., special grade). In addition, as a melamine resin, a product manufactured by Nissan Chemical Industries, Ltd., Suntop Μ 700 (resin solid content 55% by weight) 105. 38 parts by weight, paratoluenesulfonic acid 30% aqueous solution to the resin liquid 3.2 Part by weight was added. The resulting mixture was stirred with a stirrer for 1 hour and then degassed to obtain a resin composition solution. Next, after removing the solvent in a state where the obtained resin composition solution was coated on a polyethylene terephthalate sheet, it was heated at 105 ° C for 3 hours, and the resin composition solution having a thickness of 1 mm and 100 τι consisting of the resin composition A plate-like molded body was produced. After peeling from the PET film, it was further cured by heating at 160 ° C. for 30 minutes, and this was cut into 50 × 10 mm and 5 Omm × 80 mm to prepare test molded bodies. The tensile strength of the molded body was 95.3 MPa, and the thermal expansion coefficient was 28.1 ppm / ° C. The thermal conductivity was 2.8 WZmK.
比較例 1 Comparative Example 1
窒化ホウ素ナノチューブを含有しないこと以外は、 実施例 1と同様にエポキシ 樹脂の成形体を作製した。 成形体の引っ張り強度は 55. 8MP a、 熱膨張係数 は 45. 5 ppmZ°Cであった。 また、 熱伝導率は 0. 18WZmKであった。 比較例 2  An epoxy resin molded body was prepared in the same manner as in Example 1 except that it did not contain boron nitride nanotubes. The tensile strength of the molded body was 55.8 MPa, and the thermal expansion coefficient was 45.5 ppmZ ° C. The thermal conductivity was 0.18 WZmK. Comparative Example 2
窒化ホウ素ナノチューブを含有しないこと以外は、 実施例 3と同様にメラミン 樹脂の成形体を作製した。 成形体の引っ張り強度は 57. 3MP a、 熱膨張係数 は 39. 2 p p m/° であった。 また、 熱伝導率は 0. 17 WZmKであった。 実施例 4  A molded body of melamine resin was produced in the same manner as in Example 3 except that it did not contain boron nitride nanotubes. The tensile strength of the compact was 57.3 MPa and the coefficient of thermal expansion was 39.2 ppm / °. The thermal conductivity was 0.17 WZmK. Example 4
参考例 1で得られた 10重量部の窒化ホウ素ナノチューブをエタノール 10重 量部に懸濁し、 これを参考例 2で調製したレゾール樹脂溶液 990重量部と共に 熱ロールにより混練することにより 2 mm厚の成型材料を作成した。 これを型締 め力 80トンの圧縮成型機により、 金型温度 175°C下、 硬化時間 3分、 成型圧 力 2 OMP aの条件下で成型後、 切り出すことにより 4X 10 X 8 Ommの試験 用成型体を作成した。 成型体の引っ張り強度は 56. 7MP a、 ヤング率は 3. 22 GP aおよび熱膨張係数は 39. 5 p pm/°Cであった。 また、 5%ポリマ —重量減少温度は 266. 4°Cであった。  10 parts by weight of the boron nitride nanotubes obtained in Reference Example 1 were suspended in 10 parts by weight of ethanol, and this was kneaded with a hot roll with 990 parts by weight of the resole resin solution prepared in Reference Example 2 to obtain a 2 mm thick. A molding material was created. Tested with a compression molding machine with a clamping force of 80 tons, molding under a mold temperature of 175 ° C, curing time of 3 minutes, molding pressure of 2 OMP a, and cutting out to 4X 10 X 8 Omm A molded body was prepared. The tensile strength of the molded body was 56.7 MPa, the Young's modulus was 3.22 GPa, and the thermal expansion coefficient was 39.5 ppm / ° C. The 5% polymer weight loss temperature was 266.4 ° C.
実施例 5 Example 5
(窒化ホウ素ナノチューブ含有フエノール樹脂の作製)  (Preparation of boron nitride nanotube-containing phenol resin)
実施例 2の (1) で作製した共役系高分子で被覆された窒化ホウ素ナノチュー ブ 10重量部を、 エタノール 10重量部に懸濁し、 これを参考例 2で調製したレ ゾ一ル樹脂 990重量部と共に熱口一ルにより混練することにより 2 mm厚の成 型材料を作成した。 これを型締め力 80トンの圧縮成型機により、 金型温度 17 5°C下、 硬化時間 3分、 成型圧力 20 MP aの条件下で成型後、 切り出すことに より 4X 10X 80 mmの試験用成型体を作成した。 成型体の引っ張り強度は 5 7. IMPa、 ヤング率は 3. 30 GP aおよび熱膨張係数は 39. O ppm Z°Cであった。 また、 5%ポリマー重量減少温度は 270. 3°Cであった。 比較例 3 10 parts by weight of the boron nitride nanotube coated with the conjugated polymer prepared in (1) of Example 2 was suspended in 10 parts by weight of ethanol, and this was 990 weights of the resin resin prepared in Reference Example 2. A 2 mm thick molding material was prepared by kneading together with a hot mouth. Using a compression molding machine with a clamping force of 80 tons, the mold temperature was 175 ° C, the curing time was 3 minutes, and the molding pressure was 20 MPa. 4x10x80 mm test moldings were prepared. The tensile strength of the molded body was 5 7. IMPa, the Young's modulus was 3.30 GPa, and the thermal expansion coefficient was 39. O ppm Z ° C. The 5% polymer weight reduction temperature was 270.3 ° C. Comparative Example 3
窒化ホウ素ナノチューブを含有しないこと以外は、 実施例 4と同様にフエノー ル樹脂の成型体を作製した。 成型体の引っ張り強度は 53. 5MPa, ヤング率 は 2. 71 GP aおよび熱膨張係数は 44. 0 p pmZ°Cであった。 また、 5% ポリマ一重量減少温度は 238. 8°Cであった。  A molded article of phenol resin was prepared in the same manner as in Example 4 except that it did not contain boron nitride nanotubes. The tensile strength of the molded body was 53.5 MPa, the Young's modulus was 2.71 GPa, and the thermal expansion coefficient was 44.0 p pmZ ° C. The 5% polymer weight loss temperature was 238.8 ° C.
以上の結果より本発明の窒化ホウ素ナノチューブを含有する熱硬化性樹脂組成 物は、 窒化ホウ素ナノチューブを含有しない熱硬化性樹脂に比べて優れた機械特 性、 熱寸法安定性および熱伝導率を有することがわかる。  From the above results, the thermosetting resin composition containing boron nitride nanotubes of the present invention has superior mechanical properties, thermal dimensional stability and thermal conductivity compared to thermosetting resins not containing boron nitride nanotubes. I understand that.
以上のとおり、 本発明により熱硬化性樹脂中に窒化ホウ素ナノチューブが均一 にナノ分散している樹脂組成物が得られる。 本発明の熱硬化性樹脂組成物では、 従来の熱硬化性樹脂に対して優れた機械特性、 耐熱性、 低吸水性、 成形性および または寸法安定性を付与することができる。 また本発明の熱硬化性樹脂組成物 では、 熱伝導性を付与することが期待される。  As described above, the present invention provides a resin composition in which boron nitride nanotubes are uniformly nano-dispersed in a thermosetting resin. The thermosetting resin composition of the present invention can impart superior mechanical properties, heat resistance, low water absorption, moldability and / or dimensional stability to conventional thermosetting resins. In addition, the thermosetting resin composition of the present invention is expected to impart thermal conductivity.
本発明の熱硬化性樹脂組成物の用途としては、 とりわけ熱伝導性と絶縁性が必 要な電子機器に用いられる電子部品の素材、 例えば多層基板のコア層やビルドア ップ層等を形成するための基板用材料、 シート、 積層板、 樹脂付き銅箔、 銅張積 層板、 TAB用フィルム、 プリント基板、 ワニス、 光導波路材料等に好適に用い られる。 更には他用途として、 耐候性、 耐燃性および高度の機械強度が要求され る自動車、 航空機及び鉄道用構造部材ゃ建築用の樹脂シート材料など幅広い分野 に有用な複合材料として好適に利用することができる。 また土木 ·建築、 電気 · 電子、 自動車、 鉄道、 船舶、 航空機、 スポーツ用品、 美術 ·工芸などの産業用、 民生用にわたる各種分野における固定材、 構造部材、 補強剤、 型どり材、 絶縁材 などの用途においても好ましく使用することができる。  The thermosetting resin composition of the present invention can be used to form materials for electronic parts used in electronic devices that particularly require thermal conductivity and insulation, such as core layers and buildup layers of multilayer boards. It is suitably used for materials for substrates, sheets, laminates, copper foils with resin, copper-clad laminates, TAB films, printed circuit boards, varnishes, optical waveguide materials, and the like. Furthermore, as other applications, it can be suitably used as a composite material useful in a wide range of fields such as automobile, aircraft and railway structural members that require weather resistance, flame resistance and high mechanical strength, and resin sheet materials for construction. it can. In addition, fixing materials, structural members, reinforcing agents, molding materials, insulation materials, etc. in various fields ranging from civil engineering / architecture, electricity / electronics, automobiles, railways, ships, aircraft, sports equipment, arts / crafts, and industrial / consumer use It can also be preferably used in applications.

Claims

請 求 の 範 囲 The scope of the claims
1 . 熱硬化性樹脂 1 0 0重量部と窒化ホウ素ナノチューブ 0 . 0 1〜 1 0 0重 量部とを含有することを特徴とする樹脂組成物。 1. A resin composition comprising 100 parts by weight of a thermosetting resin and 0.01 to 100 parts by weight of boron nitride nanotubes.
2 . 窒化ホウ素ナノチューブの平均直径が 0 . 4 ηπ!〜 1 imそして平均ァス ぺクト比が 5以上である請求項 1に記載の樹脂組成物。 2. The average diameter of boron nitride nanotubes is 0.4 ηπ! The resin composition according to claim 1, wherein the resin composition is 1 im and the average aspect ratio is 5 or more.
3 . 窒化ホウ素ナノチューブが共役系高分子で被覆されている請求項 1または 2に記載の樹脂組成物。 3. The resin composition according to claim 1 or 2, wherein the boron nitride nanotubes are coated with a conjugated polymer.
4. 熱硬化性樹脂が、 フエノール樹脂、 エポキシ樹脂、 熱硬化型変性ポリフエ 二レンエーテル樹脂、 熱硬化性ポリイミド樹脂、 ケィ素樹脂、 尿素樹脂およびメ ラミン樹脂からなる群より選択される少なくとも 1種である請求項 1〜 3のいず れか 1項に記載の樹脂組成物。 4. The thermosetting resin is at least one selected from the group consisting of phenol resin, epoxy resin, thermosetting modified polyphenylene ether resin, thermosetting polyimide resin, key resin, urea resin and melamine resin. The resin composition according to any one of claims 1 to 3, which is:
5 . 請求項 1〜 4のいずれかに記載の樹脂組成物の硬化体からなることを特徴 とする樹脂成形体。 5. A resin molded body comprising a cured body of the resin composition according to any one of claims 1 to 4.
6 . シートである請求項 5に記載の樹脂成形体。 6. The resin molded article according to claim 5, which is a sheet.
7 . 請求項 5または 6に記載の樹脂成形体からなる基板用材料。 7. A substrate material comprising the resin molding according to claim 5 or 6.
8 . 共役系高分子で被覆した窒化ホウ素ナノチューブを、 熱硬化性樹脂に混合 分散させることを特徴とする請求項 1〜 4のいずれかに記載の樹脂組成物の製造 方法。 8. The method for producing a resin composition according to any one of claims 1 to 4, wherein boron nitride nanotubes coated with a conjugated polymer are mixed and dispersed in a thermosetting resin.
PCT/JP2008/055799 2007-03-23 2008-03-19 Thermosetting resin composite composition, resin molded body, and method for producing the composition WO2008123326A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009509153A JP5201367B2 (en) 2007-03-23 2008-03-19 Thermosetting resin composite composition, resin molded body and method for producing the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2007-076497 2007-03-23
JP2007076497 2007-03-23
JP2007222508 2007-08-29
JP2007-222508 2007-08-29

Publications (1)

Publication Number Publication Date
WO2008123326A1 true WO2008123326A1 (en) 2008-10-16

Family

ID=39830814

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/055799 WO2008123326A1 (en) 2007-03-23 2008-03-19 Thermosetting resin composite composition, resin molded body, and method for producing the composition

Country Status (3)

Country Link
JP (1) JP5201367B2 (en)
TW (1) TWI425039B (en)
WO (1) WO2008123326A1 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012041715A1 (en) * 2010-09-29 2012-04-05 Siemens Aktiengesellschaft Electrically insulating nanocomposite having semiconductive or non-conductive nanoparticles, use of said nanocomposite, and method for producing same
JP2013507324A (en) * 2009-10-13 2013-03-04 ナショナル・インスティチュート・オブ・エアロスペース・アソシエイツ Energy conversion materials made of boron nitride nanotubes (BNNT) and BNNT polymer composites
CN103589109A (en) * 2013-11-08 2014-02-19 苏州市双赢包装材料有限公司 Formula of reinforced melaminoformaldehyde resin
WO2017086226A1 (en) * 2015-11-19 2017-05-26 積水化学工業株式会社 Thermosetting material and cured product
JP2017095555A (en) * 2015-11-19 2017-06-01 積水化学工業株式会社 Filler complex and thermosetting material
JP2017095292A (en) * 2015-11-19 2017-06-01 積水化学工業株式会社 Boron nitride nano tube and thermosetting material
JP2017094541A (en) * 2015-11-19 2017-06-01 積水化学工業株式会社 Thermosetting Sheet, Cured Product Sheet and Laminate
JP2017095293A (en) * 2015-11-19 2017-06-01 積水化学工業株式会社 Boron nitride nano tube and thermosetting material
JP2017094542A (en) * 2015-11-19 2017-06-01 積水化学工業株式会社 Laminate
JP2017520633A (en) * 2014-04-30 2017-07-27 ロジャーズ コーポレーション Thermally conductive composite material, method for producing the same, and article containing the composite material
JP2017132662A (en) * 2016-01-28 2017-08-03 積水化学工業株式会社 Boron nitride nano tube material and thermosetting material
US20170343936A1 (en) * 2016-05-26 2017-11-30 Xerox Corporation Endless belt comprising boron nitride nanotubes
US10607742B2 (en) 2011-05-09 2020-03-31 National Institute Of Aerospace Associates Radiation shielding materials containing hydrogen, boron and nitrogen
WO2022013511A1 (en) * 2020-07-17 2022-01-20 Commissariat A L'energie Atomique Et Aux Energies Alternatives Nanocomposite with polymer matrix and boron nitride nanotubes
CN117603555A (en) * 2024-01-24 2024-02-27 四川大学 High-heat-conductivity high-toughness epoxy resin composite material and preparation method and application thereof

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10246623B2 (en) 2016-09-21 2019-04-02 NAiEEL Technology Resin composition, article prepared by using the same, and method of preparing the same
KR101898234B1 (en) * 2018-02-07 2018-09-12 내일테크놀로지 주식회사 Resin composition, article prepared by using the same and method of preparing the same

Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001270707A (en) * 2000-03-28 2001-10-02 National Institute For Materials Science Boron nitride nanotube having sp3 bond and method for producing the nanotube
JP2004244490A (en) * 2003-02-13 2004-09-02 Toray Ind Inc Carbon nanotube-containing resin composite and method for producing the same, and high-modulus film
JP2004256607A (en) * 2003-02-25 2004-09-16 Hitachi Metals Ltd Resin-reinforcing material, resin composition
JP2007146081A (en) * 2005-11-30 2007-06-14 Teijin Ltd Polycarbonate-based resin molded article and method for producing the same
JP2007197595A (en) * 2006-01-27 2007-08-09 Teijin Ltd Polyethersulfone-based resin composition with high thermal stability and method for producing the same
JP2007197555A (en) * 2006-01-26 2007-08-09 Teijin Ltd Heat-resistant resin composition and method for producing the same
JP2007197597A (en) * 2006-01-27 2007-08-09 Teijin Ltd Resin composition with both high heat resistance and dimensional stability and method for producing the same
JP2007197596A (en) * 2006-01-27 2007-08-09 Teijin Ltd Heat-resistant resin composition with excellent mechanical properties and method for producing the same
JP2007197594A (en) * 2006-01-27 2007-08-09 Teijin Ltd Reinforced phenoxy resin-based composition and method for producing the same
WO2007091737A1 (en) * 2006-02-10 2007-08-16 Teijin Limited Resin composition and method for producing same
JP2007211156A (en) * 2006-02-10 2007-08-23 Teijin Ltd Resin composition improved in heat-resistance and mechanical property and its preparation method
JP2007217449A (en) * 2006-02-14 2007-08-30 Teijin Ltd Heat resistant resin composition and method for producing the same
JP2007231156A (en) * 2006-03-01 2007-09-13 Teijin Ltd Polyether ester amide elastomer resin composition and its manufacturing method
JP2007231155A (en) * 2006-03-01 2007-09-13 Teijin Ltd Heat-resistant resin composition and its manufacturing method
JP2007254654A (en) * 2006-03-24 2007-10-04 Teijin Ltd Transparent heatproof resin composition and method for manufacturing the same
JP2007297463A (en) * 2006-04-28 2007-11-15 Teijin Ltd Reinforced resin composition and its manufacturing method
JP2007321070A (en) * 2006-06-01 2007-12-13 Teijin Ltd Thermoplastic resin composite composition and its manufacturing method
JP2007321071A (en) * 2006-06-01 2007-12-13 Teijin Ltd Resin composite composition and its manufacturing method
JP2008007699A (en) * 2006-06-30 2008-01-17 Teijin Ltd Heat-resistant resin composite composition and method for producing the same
JP2008031206A (en) * 2006-07-26 2008-02-14 Teijin Ltd Resin composite composition and method for producing the same

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005029555A2 (en) * 2003-09-16 2005-03-31 Koila, Inc. Nanostructure augmentation of surfaces for enhanced thermal transfer
US8044142B2 (en) * 2004-12-21 2011-10-25 Asahi Kasei Chemicals Corporation Polyphenylene sulfide resin composition
JP2006306843A (en) * 2005-03-29 2006-11-09 Kose Corp Thermomassage material
JP2006273806A (en) * 2005-03-30 2006-10-12 Kose Corp Cosmetic for eyelash
KR20080014789A (en) * 2005-04-26 2008-02-14 리뉴어블 루브리컨츠 인코포레이션 High temperature biobased lubricant compositions comprising boron nitride

Patent Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001270707A (en) * 2000-03-28 2001-10-02 National Institute For Materials Science Boron nitride nanotube having sp3 bond and method for producing the nanotube
JP2004244490A (en) * 2003-02-13 2004-09-02 Toray Ind Inc Carbon nanotube-containing resin composite and method for producing the same, and high-modulus film
JP2004256607A (en) * 2003-02-25 2004-09-16 Hitachi Metals Ltd Resin-reinforcing material, resin composition
JP2007146081A (en) * 2005-11-30 2007-06-14 Teijin Ltd Polycarbonate-based resin molded article and method for producing the same
JP2007197555A (en) * 2006-01-26 2007-08-09 Teijin Ltd Heat-resistant resin composition and method for producing the same
JP2007197595A (en) * 2006-01-27 2007-08-09 Teijin Ltd Polyethersulfone-based resin composition with high thermal stability and method for producing the same
JP2007197597A (en) * 2006-01-27 2007-08-09 Teijin Ltd Resin composition with both high heat resistance and dimensional stability and method for producing the same
JP2007197596A (en) * 2006-01-27 2007-08-09 Teijin Ltd Heat-resistant resin composition with excellent mechanical properties and method for producing the same
JP2007197594A (en) * 2006-01-27 2007-08-09 Teijin Ltd Reinforced phenoxy resin-based composition and method for producing the same
JP2007211156A (en) * 2006-02-10 2007-08-23 Teijin Ltd Resin composition improved in heat-resistance and mechanical property and its preparation method
WO2007091737A1 (en) * 2006-02-10 2007-08-16 Teijin Limited Resin composition and method for producing same
JP2007217449A (en) * 2006-02-14 2007-08-30 Teijin Ltd Heat resistant resin composition and method for producing the same
JP2007231156A (en) * 2006-03-01 2007-09-13 Teijin Ltd Polyether ester amide elastomer resin composition and its manufacturing method
JP2007231155A (en) * 2006-03-01 2007-09-13 Teijin Ltd Heat-resistant resin composition and its manufacturing method
JP2007254654A (en) * 2006-03-24 2007-10-04 Teijin Ltd Transparent heatproof resin composition and method for manufacturing the same
JP2007297463A (en) * 2006-04-28 2007-11-15 Teijin Ltd Reinforced resin composition and its manufacturing method
JP2007321070A (en) * 2006-06-01 2007-12-13 Teijin Ltd Thermoplastic resin composite composition and its manufacturing method
JP2007321071A (en) * 2006-06-01 2007-12-13 Teijin Ltd Resin composite composition and its manufacturing method
JP2008007699A (en) * 2006-06-30 2008-01-17 Teijin Ltd Heat-resistant resin composite composition and method for producing the same
JP2008031206A (en) * 2006-07-26 2008-02-14 Teijin Ltd Resin composite composition and method for producing the same

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013507324A (en) * 2009-10-13 2013-03-04 ナショナル・インスティチュート・オブ・エアロスペース・アソシエイツ Energy conversion materials made of boron nitride nanotubes (BNNT) and BNNT polymer composites
US10435293B2 (en) 2009-10-13 2019-10-08 National Institute Of Aerospace Associates Methods of manufacturing energy conversion materials fabricated with boron nitride nanotubes (BNNTs) and BNNT polymer composites
US9171656B2 (en) 2010-09-29 2015-10-27 Siemens Aktiengesellschaft Electrically insulating nanocomposite having semiconducting or nonconductive nanoparticles, use of this nanocomposite and process for producing it
WO2012041715A1 (en) * 2010-09-29 2012-04-05 Siemens Aktiengesellschaft Electrically insulating nanocomposite having semiconductive or non-conductive nanoparticles, use of said nanocomposite, and method for producing same
US10607742B2 (en) 2011-05-09 2020-03-31 National Institute Of Aerospace Associates Radiation shielding materials containing hydrogen, boron and nitrogen
CN103589109A (en) * 2013-11-08 2014-02-19 苏州市双赢包装材料有限公司 Formula of reinforced melaminoformaldehyde resin
CN103589109B (en) * 2013-11-08 2015-05-06 苏州凯丰电子电器有限公司 Formula of reinforced melaminoformaldehyde resin
JP2017520633A (en) * 2014-04-30 2017-07-27 ロジャーズ コーポレーション Thermally conductive composite material, method for producing the same, and article containing the composite material
JP2017094542A (en) * 2015-11-19 2017-06-01 積水化学工業株式会社 Laminate
US11866635B2 (en) 2015-11-19 2024-01-09 Sekisui Chemical Co., Ltd. Thermosetting material and cured product
CN107614619B (en) * 2015-11-19 2023-05-09 积水化学工业株式会社 Thermosetting material and cured product
JP2017094541A (en) * 2015-11-19 2017-06-01 積水化学工業株式会社 Thermosetting Sheet, Cured Product Sheet and Laminate
KR102606624B1 (en) * 2015-11-19 2023-11-27 세키스이가가쿠 고교가부시키가이샤 Thermosetting materials and cured products
JP6212660B1 (en) * 2015-11-19 2017-10-11 積水化学工業株式会社 Thermosetting material and cured product
JP2017095292A (en) * 2015-11-19 2017-06-01 積水化学工業株式会社 Boron nitride nano tube and thermosetting material
CN107614619A (en) * 2015-11-19 2018-01-19 积水化学工业株式会社 Thermoset materials and solidfied material
KR20180084631A (en) * 2015-11-19 2018-07-25 세키스이가가쿠 고교가부시키가이샤 Thermosetting materials and cured products
EP3378899A4 (en) * 2015-11-19 2019-06-26 Sekisui Chemical Co., Ltd. Thermosetting material and cured product
JP2017095293A (en) * 2015-11-19 2017-06-01 積水化学工業株式会社 Boron nitride nano tube and thermosetting material
JP2017095555A (en) * 2015-11-19 2017-06-01 積水化学工業株式会社 Filler complex and thermosetting material
WO2017086226A1 (en) * 2015-11-19 2017-05-26 積水化学工業株式会社 Thermosetting material and cured product
JP2017132662A (en) * 2016-01-28 2017-08-03 積水化学工業株式会社 Boron nitride nano tube material and thermosetting material
US20170343936A1 (en) * 2016-05-26 2017-11-30 Xerox Corporation Endless belt comprising boron nitride nanotubes
US10365597B2 (en) * 2016-05-26 2019-07-30 Xerox Corporation Endless belt comprising boron nitride nanotubes
FR3112552A1 (en) * 2020-07-17 2022-01-21 Commissariat A L'energie Atomique Et Aux Energies Alternatives Nanocomposite with polymer matrix and boron nitride nanotubes
WO2022013511A1 (en) * 2020-07-17 2022-01-20 Commissariat A L'energie Atomique Et Aux Energies Alternatives Nanocomposite with polymer matrix and boron nitride nanotubes
CN117603555A (en) * 2024-01-24 2024-02-27 四川大学 High-heat-conductivity high-toughness epoxy resin composite material and preparation method and application thereof
CN117603555B (en) * 2024-01-24 2024-03-22 四川大学 High-heat-conductivity high-toughness epoxy resin composite material and preparation method and application thereof

Also Published As

Publication number Publication date
JPWO2008123326A1 (en) 2010-07-15
TW200904870A (en) 2009-02-01
JP5201367B2 (en) 2013-06-05
TWI425039B (en) 2014-02-01

Similar Documents

Publication Publication Date Title
WO2008123326A1 (en) Thermosetting resin composite composition, resin molded body, and method for producing the composition
JP4782870B2 (en) Cured body, sheet-like molded body, laminated board and multilayer laminated board
TWI682967B (en) Resin composition, prepreg, metal foil-clad laminate, resin composite sheet, and printed wiring board
JP5363841B2 (en) Epoxy resin composition, prepreg, cured body, sheet-like molded body, laminate and multilayer laminate
JP4686750B2 (en) Cured body and laminate
JP4911795B2 (en) Manufacturing method of laminate
TWI631009B (en) Resin composition for printed wiring board material, and prepreg, resin sheet, metal foil-clad laminate and printed wiring board using same
JP4674730B2 (en) Semi-cured body, cured body, laminate, method for producing semi-cured body, and method for producing cured body
JP4107394B2 (en) Resin composition, sheet-like molded body, prepreg, cured body, laminated board, and multilayer laminated board
TWI555733B (en) Perpreg and laminated board
TW200302851A (en) Resin composition
JP2010053334A (en) Epoxy-based resin composition, prepreg, cured product, sheet-like molded article, laminate plate, and multilayer laminate plate
WO2002046312A1 (en) Material for insulating substrate, printed board, laminate, copper foil with resin, copper-clad laminate, polyimide film, film for tab, and prepreg
WO2001040380A1 (en) Resin composition and flexible printed circuit board
WO2019208129A1 (en) Thermosetting composition, prepreg, metal foil-clad laminate, resin sheet, and printed wiring board
JP4872160B2 (en) Resin composition having excellent dielectric properties, varnish produced using the same, varnish production method, prepreg and metal-clad laminate
JP2010083966A (en) Resin composition, cured body, and laminate
TW201636211A (en) Resin sheet and print circuit board
JP4187548B2 (en) Wiring board
JP2005133055A (en) Resin composition, material for substrate and substrate film
JP2010083965A (en) Resin composition, cured body, and laminate
WO2010047398A1 (en) Prepreg having excllent heat conductivity, method for producing prepreg, and molded plate
JP2018100232A (en) Hydroxyl group-containing maleimide compound
JP2012025785A (en) Prepreg having excellent thermal conductivity, method for producing prepreg, and laminated plate
JP2004182775A (en) Resin composition and method for producing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08751815

Country of ref document: EP

Kind code of ref document: A1

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2009509153

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08751815

Country of ref document: EP

Kind code of ref document: A1