WO2010047398A1 - Prepreg having excllent heat conductivity, method for producing prepreg, and molded plate - Google Patents

Prepreg having excllent heat conductivity, method for producing prepreg, and molded plate Download PDF

Info

Publication number
WO2010047398A1
WO2010047398A1 PCT/JP2009/068293 JP2009068293W WO2010047398A1 WO 2010047398 A1 WO2010047398 A1 WO 2010047398A1 JP 2009068293 W JP2009068293 W JP 2009068293W WO 2010047398 A1 WO2010047398 A1 WO 2010047398A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
boron nitride
prepreg
porous body
nonwoven fabric
Prior art date
Application number
PCT/JP2009/068293
Other languages
French (fr)
Japanese (ja)
Inventor
広明 桑原
義雄 板東
チュンイ ズィ
チェンチュン タン
デミトリー ゴルバーグ
Original Assignee
帝人株式会社
独立行政法人物質・材料研究機構
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2008269820A external-priority patent/JP2012025785A/en
Priority claimed from JP2009051914A external-priority patent/JP2012025787A/en
Application filed by 帝人株式会社, 独立行政法人物質・材料研究機構 filed Critical 帝人株式会社
Publication of WO2010047398A1 publication Critical patent/WO2010047398A1/en

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/0353Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement
    • H05K1/0366Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement reinforced, e.g. by fibres, fabrics
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/241Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/0353Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement
    • H05K1/0373Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement containing additives, e.g. fillers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/02Fillers; Particles; Fibers; Reinforcement materials
    • H05K2201/0203Fillers and particles
    • H05K2201/0206Materials
    • H05K2201/0209Inorganic, non-metallic particles
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/02Fillers; Particles; Fibers; Reinforcement materials
    • H05K2201/0203Fillers and particles
    • H05K2201/0242Shape of an individual particle
    • H05K2201/026Nanotubes or nanowires

Definitions

  • the present invention relates to a prepreg comprising a thermosetting or thermoplastic resin composition, a molded plate, and a method for producing the same. More specifically, the present invention relates to a prepreg excellent in thermal conductivity by using a non-woven porous body made of boron nitride nanotubes having a defined structure and a base material made of thermosetting or thermoplastic resin, and a method for producing the same.
  • JP-A-8-167775 proposes a laminated board obtained by sticking a metal plate having high thermal conductivity to an insulating adhesive sheet made of an epoxy resin.
  • JP-A-2005-136051 in a prepreg formed by impregnating a varnish containing a thermosetting resin into a base material made of a sheet-like fiber nonwoven fabric, a filler made of an inorganic material having high thermal conductivity is added to the varnish. Is disclosed.
  • the laminated plate disclosed in JP-A-8-167775 in which the insulating adhesive sheet and the metal plate are physically attached, the insulating treatment of the metal plate becomes complicated when the through hole is formed. There is a problem that the property and dimensional characteristics are also lowered.
  • the laminated board which was disclosed by Unexamined-Japanese-Patent No.
  • the inorganic fibers used here are bulk nonwoven fabrics, and in order to more effectively express dimensional stability and heat dissipation characteristics, it is desirable to combine fibers, fillers, and resins that are finer and more homogeneous than the bulk size.
  • the bulk fillers and heat conductive inorganic fibers used here are both conventional insulating heat conductive materials, and their heat conductivity is at most 50 to 100 W / m ⁇ K, which is a low level compared to metal materials. It is in. Therefore, in principle, there is a limit from the viewpoint of thermal conductivity, including applications that require higher-level and high-performance heat dissipation characteristics than power systems.
  • thermosetting resin that is a matrix has the drawbacks of brittleness and low impact resistance based on its chemical structural characteristics, and therefore improvement has been demanded. Further, in the case of a thermosetting resin, when this is used as a prepreg, there are problems in storage management of the prepreg due to the life of the resin, and problems such as a long molding time and low productivity. In order to solve such a problem, a technique of using a carbon fiber as a composite matrix in a thermoplastic resin having excellent moldability in a short time and high impact resistance is also disclosed. Japanese Patent Application Laid-Open No.
  • 2005-255927 discloses a prepreg excellent in moldability and strength by combining carbon fiber with a thermoplastic resin, and Japanese Patent Application Laid-Open Nos. 9-298344 and 9-321395.
  • thermal conductive modules it has been said that it has been difficult to achieve a balance between performance and cost of substrates made of metal or ceramic, and has both mechanical strength and heat dissipation.
  • the filling of the heat conductive filler has a limit from the viewpoint of performance, particularly heat dissipation.
  • nano-sized inorganic particles or nano fillers such as carbon nanotubes.
  • carbon nanotubes are limited in use due to insulation problems. It tends to aggregate and it is usually difficult to achieve dispersion at the nano level.
  • layered and plate-like inorganic fine particles unlike tubes with a linear structure, have a two-dimensional extent, so they have a large effect on the surface shape of the resin combined with them, and the factors that impair surface smoothness if they are not sufficiently dispersed It becomes a cause that the use of the material becomes limited.
  • Solves conventional problems such as insufficient effect of fillers in prepregs combined with resin and reduces physical properties due to non-uniform dispersion, and has high mechanical strength and heat resistance, and high heat with excellent dimensional stability and homogeneity of the resin Nanofiller composed of nano-scale unit size, capable of homogeneous composite with resin with large specific surface area, and physicochemically high thermal conductivity to obtain prepreg made of conductive thermosetting resin composite material Development of members is desired.
  • the object of the present invention is different from conventional curable prepregs made of a thermosetting resin composition or a thermoplastic resin containing an inorganic filler that is difficult to disperse in a bulk or nanometer level. It is an object of the present invention to provide a prepreg and a molded plate thereof having improved thermal conductivity, heat resistance characteristics, heat radiation characteristics, dimensional stability, and the like efficiently without reducing the above.
  • the inventors have previously formed boron nitride nanotubes, which are insulating inorganic nanofibers and have a much higher thermal conductivity than conventional inorganic thermal conductive materials, into a nonwoven porous structure, It was found that by integrating with a thermosetting resin or a thermoplastic resin, a prepreg and a laminate comprising a resin composition excellent in heat resistance, heat dissipation and dimensional stability can be obtained efficiently, and the present invention has been achieved.
  • the above object of the present invention is firstly composed of a composition comprising 1 to 99 parts by mass of a nonwoven fabric porous body made of boron nitride nanotubes and 99 to 1 parts by mass of a thermosetting resin, and This is achieved by a prepreg characterized in that a thermosetting resin is filled in the voids of the nonwoven fabric porous body.
  • the above object of the present invention is secondly composed of a composition comprising 1 to 99 parts by mass of a nonwoven fabric porous body made of boron nitride nanotubes and 99 to 1 part by mass of a thermoplastic resin, and the nonwoven fabric porous body.
  • thermosetting resin is impregnated into a nonwoven fabric porous body made of boron nitride nanotubes, and then pre-thermosetting is performed. This is achieved by the method for producing a prepreg according to the present invention.
  • the object of the present invention is to fill the fiber void with a thermoplastic resin melted by heating under pressure together with a nonwoven fabric porous body made of boron nitride nanotubes, and then, This is achieved by the method for producing a prepreg according to the present invention, wherein the thermoplastic resin is solidified by cooling.
  • the above object of the present invention is to impregnate a nonwoven fabric porous body made of boron nitride nanotubes with a solution or dispersion of a thermoplastic resin in a solvent, and then evaporate the solvent by heating or decompressing.
  • thermoplastic resin is filled into a porous space of the nonwoven fabric porous body.
  • thermoplastic resin is filled into a porous space of the nonwoven fabric porous body.
  • the above object of the present invention is finally achieved by a molded plate formed by heating one or more prepregs according to the present invention under pressure.
  • the boron nitride nanotube is a tube-shaped material made of boron nitride, and has a structure in which a hexagonal mesh surface forms a tube parallel to the tube axis and is a single tube or multiple tube.
  • the average diameter of the boron nitride nanotubes is preferably 0.4 nm to 1 ⁇ m, more preferably 0.6 to 500 nm, and even more preferably 0.8 to 200 nm.
  • the average diameter here means the average outer diameter in the case of a single pipe, and the average outer diameter of the outermost pipe in the case of a multiple pipe.
  • the average length is preferably 10 ⁇ m or less, more preferably 5 ⁇ m or less.
  • the average aspect ratio is preferably 5 or more, and more preferably 10 or more.
  • the upper limit of the average aspect ratio is not limited as long as the average length is 10 ⁇ m or less, but the upper limit is approximately 25,000.
  • Boron nitride nanotubes having an average diameter of 0.4 nm to 1 ⁇ m and an average aspect ratio of 5 or more are particularly preferable. The average diameter and average aspect ratio of boron nitride nanotubes can be determined from observation with an electron microscope.
  • a TEM (transmission electron microscope) measurement is performed, and the diameter and the length in the longitudinal direction of the boron nitride nanotube can be directly measured from the image.
  • the form of the boron nitride nanotubes in the composition can be grasped by, for example, TEM measurement of a fiber cross section cut parallel to the fiber axis.
  • Boron nitride nanotubes can be synthesized using, for example, arc discharge, laser heating, or chemical vapor deposition. It can also be obtained by a method of using nickel boride as a catalyst and synthesizing borazine as a raw material, or a method of synthesizing boron oxide and nitrogen using carbon nanotubes as a template.
  • the boron nitride nanotubes used in the present invention are not limited to those produced by these methods.
  • boron nitride nanotubes in the present invention boron nitride nanotubes subjected to surface modification such as strong acid treatment, chemical modification, or coating with other polymers can also be used.
  • those coated with a polymer preferably have strong interaction with boron nitride nanotubes and strong interaction with thermosetting or thermoplastic matrix resin.
  • these polymers include conjugated polymers such as polyphenylene vinylene polymers, polythiophene polymers, polyphenylene polymers, polypyrrole polymers, polyaniline polymers, and polyacetylene polymers.
  • polyphenylene vinylene polymers and polythiophene polymers are preferable.
  • the conjugated polymer may be coated with another resin having compatibility or reactivity with the matrix resin in order to improve the adhesion, reactivity, etc. with the matrix resin, if necessary.
  • the thermosetting matrix resin is a phenol resin
  • boron nitride nanotubes can be surface-coated with a coupling agent.
  • Examples of the coupling agent used here include silane coupling agents, titanate coupling agents, and aluminate coupling agents.
  • Examples of silane coupling agents include triethoxysilane, vinyltris (2-methoxyethoxy) silane, N- (2-aminoethyl) 3-aminopropylmethyldimethoxysilane, and N- (2-aminoethyl) 3-aminopropyl.
  • titanate coupling agents include isopropyl triisostearoyl titanate, isopropyl oris (dioctyl bisphosphate) titanate, isopropyl tri (N-aminoethyl-aminoethyl) titanate, tetraoctyl bis (ditridecyl phosphite) titanate, tetra (2,2-diallyloxymethyl-1-butyl) bis (ditridecyl) phosphite titanate, bis (dioctyl bisphosphate) oxyacetate titanate, bis (dioctyl bisphosphate) ethylene titanate, isopropyltrioctanoyl titanate, isopropyldi Methacrylic isostearoyl titanate, isopropyltridodecylbenzenesulfonyl titanate, isopropylisostearoyldia Riruchitanet
  • aluminate coupling agent examples include acetoalkoxyaluminum diisopropylate. These compounds are used as an aqueous solution, a solution of an organic solvent such as alcohol, ketone, glycol or hydrocarbon, or a mixed solvent solution of water and these organic solvents. If necessary, the pH of the above solution can be adjusted with an acid such as acetic acid or hydrochloric acid, or an alkali.
  • the boron nitride nanotubes obtained as described above are used in the form of a nonwoven fabric (hereinafter sometimes referred to as a nonwoven fabric porous body).
  • a known method for producing a nonwoven fabric can be applied.
  • a method is simple and preferable in which a dispersion in which boron nitride nanotubes are dispersed in a solvent is filtered or wet-paper-made, and the boron nitride nanotubes are collected in a sheet shape and then dried.
  • examples of the solvent for dispersing the boron nitride nanotubes include organic solvents such as alcohols having 1 to 10 carbon atoms, amines, organic carboxylic acids, organic carboxylic esters, organic acid amides, ketones, ethers, sulfoxides, sulfones, and sulfolanes. , Water or water containing a surfactant.
  • the mixing amount of the boron nitride nanotube and the solvent is preferably 1 to 100,000 mL, more preferably 2 to 10,000 mL, more preferably 5 to 1,000 mL per 1 g of boron nitride nanotube. More preferred is an amount of 10 to 500 mL.
  • the non-woven fabric porous body used in the present invention can be obtained by further drying the boron nitride nanotube sheet obtained by filtration of the above dispersion.
  • the drying treatment may be natural drying or heat drying, may be drying under an atmospheric pressure or drying under reduced pressure, and may be continuous or batch. Even if boron nitride nanotubes are surface-treated with a conjugated polymer or a silane coupling agent as described above, a nonwoven fabric-like porous body can be obtained in the same manner as described above. It can use suitably for the prepreg of.
  • Boron nitride nanotubes are known not only to have excellent mechanical properties and thermal conductivity comparable to carbon nanotubes, but also to be chemically stable and have better oxidation resistance than carbon nanotubes. Further, it has a local polar structure due to dipole interaction between boron atom and nitrogen atom, and it is expected that the affinity and dispersibility to the medium having the polar structure are superior to those of carbon nanotubes. In addition, because it has a wide band gap in terms of electronic structure, it is insulative, and can be expected as an insulating heat dissipation material, and since it is white unlike carbon nanotubes, it has characteristics such as being applicable to applications that dislike coloring By using this, it becomes possible to create a prepreg utilizing the characteristics of the polymer.
  • the composition for forming the prepreg of the present invention contains a nonwoven fabric porous body made of boron nitride nanotubes in the range of 1 to 99 parts by mass with respect to 99 to 1 parts by mass of the thermosetting resin or thermoplastic resin. .
  • the total of the mass parts of the resin and the nonwoven fabric porous body is 100 parts by mass.
  • the nonwoven fabric porous body composed of boron nitride nanotubes is contained in the range of 5 to 80 parts by mass with respect to 95 to 20 parts by mass of the thermosetting resin or thermoplastic resin, and more preferably thermosetting.
  • the nonwoven fabric porous body made of boron nitride nanotubes is contained in the range of 10 to 70 parts by mass with respect to 90 to 30 parts by mass of the resin or thermoplastic resin. By setting it within the above range, the nonwoven fabric porous body made of boron nitride nanotubes can be efficiently combined with the thermosetting resin. Moreover, when there are too many nonwoven fabric porous bodies which consist of a boron nitride nanotube with respect to resin, it becomes difficult for the resin matrix to fully coat
  • the resin composition of the present invention may contain boron nitride flakes derived from boron nitride nanotubes, catalytic metals, and the like.
  • thermosetting resin examples include an epoxy resin, a thermosetting modified polyphenylene ether resin, a thermosetting polyimide resin, a silicon resin, a benzoxazine resin, a urea resin, a melamine resin, a furan resin, and an aniline resin. Is mentioned. These thermosetting resins may be used alone or in combination of two or more. Among the above thermosetting resins, epoxy resins, thermosetting modified polyphenylene ether resins, thermosetting polyimide resins, silicon resins, urea resins, melamine resins, and the like are preferable. It is preferable that at least one selected from these resins accounts for 50% by mass or more of the thermosetting resin.
  • thermosetting resins used in the present invention have polar atoms such as oxygen and nitrogen atoms in a polymer molecular chain, and as a result, polar boron nitride nanotubes having a structure defined at the nano level and the molecular level. Can interact electrostatically.
  • prepregs composed of a composite composition resulting from the synergistic result of the specific interaction between polymer and nanotubes and the high specific surface area of fibers with nano-sized diameters the conventional bulk Compared to thermosetting resin composite compositions at the level, heat resistance, thermal conductivity and mechanical properties can be improved more efficiently, and high performance exceeding the range of thermosetting resin prepregs with bulk inorganic filler added is achieved. It is also expected to do.
  • the epoxy resin is an organic compound having at least one epoxy group.
  • the number of epoxy groups in the epoxy resin is preferably 1 or more per molecule, and more preferably 2 or more per molecule.
  • the number of epoxy groups per molecule is obtained by dividing the total number of epoxy groups of the epoxy resin by the number of moles of the epoxy resin.
  • the epoxy resin conventionally known epoxy resins can be used, and examples thereof include epoxy resins (1) to (10) described below. These epoxy resins may be used independently and 2 or more types may be used together.
  • Examples of the epoxy resin (1) include bisphenol type epoxy resins such as bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol AD type epoxy resin, and bisphenol S type epoxy resin; phenol novolac type epoxy resin, cresol novolac type epoxy Examples thereof include novolak type epoxy resins such as resins; aromatic epoxy resins such as trisphenol methane triglycidyl ether, and hydrogenated products and brominated products thereof.
  • Examples of the epoxy resin (2) include 3,4-epoxycyclohexylmethyl-3,4-epoxycyclohexanecarboxylate, 3,4-epoxy-2-methylcyclohexylmethyl-3,4-epoxy-2-methylcyclohexanecarboxyl.
  • EHPE-3150 softening temperature 71 degreeC
  • Examples of the epoxy resin (3) include 1,4-butanediol diglycidyl ether, 1,6-hexanediol diglycidyl ether, glycerin triglycidyl ether, trimethylolpropane triglycidyl ether, and polyethylene glycol diglycidyl ether. Fats such as glycidyl ether, diglycidyl ether of polypropylene glycol, polyglycidyl ether of long-chain polyols containing polyoxyalkylene glycols containing 2 to 9, preferably 2 to 4 alkylene groups, polytetramethylene ether glycol, etc. Group epoxy resin.
  • Examples of the epoxy resin (4) include diglycidyl phthalate, diglycidyl tetrahydrophthalate, diglycidyl hexahydrophthalate, diglycidyl-p-oxybenzoic acid, glycidyl ether-glycidyl ester of salicylic acid, and glycidyl dimer acid. Examples thereof include glycidyl ester type epoxy resins such as esters and hydrogenated products thereof.
  • Examples of the epoxy resin (5) include triglycidyl isocyanurate, N, N′-diglycidyl derivative of cyclic alkylene urea, N, N, O-triglycidyl derivative of p-aminophenol, and N, N of m-aminophenol. , Glycidylamine type epoxy resins such as O-triglycidyl derivatives, and hydrogenated products thereof.
  • Examples of the epoxy resin (6) include a copolymer of glycidyl (meth) acrylate and a radical polymerizable monomer such as ethylene, vinyl acetate, and (meth) acrylic acid ester.
  • Examples of the epoxy resin (7) include those obtained by epoxidizing a double bond of unsaturated carbon in a polymer mainly composed of a conjugated diene compound such as epoxidized polybutadiene or a polymer of partially hydrogenated product thereof.
  • Examples of the epoxy resin (8) include a polymer block mainly composed of a vinyl aromatic compound such as epoxidized SBS, a polymer block mainly composed of a conjugated diene compound, or a polymer block of a partially hydrogenated product thereof. And an epoxidized unsaturated carbon double bond derived from a conjugated diene compound in a block copolymer having the same in the same molecule.
  • Examples of the epoxy resin (9) include a polyester resin having one or more, preferably two or more epoxy groups per molecule.
  • Examples of the epoxy resin (10) include urethane-modified epoxy resins and polycaprolactone-modified epoxy resins in which urethane bonds and polycaprolactone bonds are introduced into the structures of the epoxy resins (1) to (9).
  • the curing agent used for the curing reaction of the epoxy resin as described above is not particularly limited, and conventionally known curing agents for epoxy resins can be used.
  • amine compounds polyaminoamide compounds synthesized from amine compounds, ketimine compounds, etc., tertiary amine compounds, imidazole compounds, hydrazide compounds, melamine compounds, acid anhydrides, phenol compounds, thermal latent cationic polymerization catalysts, photolatency
  • cationic polymerization initiators include cationic polymerization initiators, dicyanamide and derivatives thereof.
  • amine compound examples include chain aliphatic amines such as ethylenediamine, diethylenetriamine, triethylenetetramine, tetraethylenepentamine, polyoxypropylenediamine, polyoxypropylenetriamine, and derivatives thereof; mensendiamine, isophoronediamine, bis (4-amino-3-methylcyclohexyl) methane, diaminodicyclohexylmethane, bis (aminomethyl) cyclohexane, N-aminoethylpiperazine, 3,9-bis (3-aminopropyl) 2,4,8,10-tetraoxa Cycloaliphatic amines such as spiro (5.5) undecane and derivatives thereof; m-xylenediamine, ⁇ - (m / p aminophenyl) ethylamine, m-phenylenediamine, diaminodiphenylmethane, diaminodiphe Rusurufon
  • Examples of the compound synthesized from the amine compound include the amine compound, succinic acid, adipic acid, azelaic acid, sebacic acid, dodecadic acid, isophthalic acid, terephthalic acid, dihydroisophthalic acid, tetrahydroisophthalic acid, hexahydro Polyaminoamide compounds and derivatives thereof synthesized from carboxylic acid compounds such as isophthalic acid; polyaminoimide compounds and derivatives thereof synthesized from the above amine compounds and maleimide compounds such as diaminodiphenylmethane bismaleimide; and the above amine compounds and ketone compounds Ketimine compounds synthesized from the above and derivatives thereof; polyamino compounds synthesized from the above amine compounds and epoxy compounds, urea, thiourea, aldehyde compounds, phenolic compounds, acrylic compounds, etc.
  • tertiary amine compound examples include N, N-dimethylpiperazine, pyridine, picoline, benzyldimethylamine, 2- (dimethylaminomethyl) phenol, 2,4,6-tris (dimethylaminomethyl) phenol, 1, And 8-diazabiscyclo (5.4.0) undecene-1 and derivatives thereof.
  • imidazole compound examples include 2-methylimidazole, 2-ethyl-4-methylimidazole, 2-undecylimidazole, 2-heptadecylimidazole, 2-phenylimidazole, and derivatives thereof.
  • hydrazide compound examples include 1,3-bis (hydrazinocarboethyl) -5-isopropylhydantoin, 7,11-octadecadien-1,18-dicarbohydrazide, eicosane diacid dihydrazide, adipic acid dihydrazide, and And derivatives thereof.
  • melamine compound examples include 2,4-diamino-6-vinyl-1,3,5-triazine and derivatives thereof.
  • the acid anhydride examples include phthalic anhydride, trimellitic anhydride, pyromellitic anhydride, benzophenone tetracarboxylic anhydride, ethylene glycol bisanhydro trimellitate, glycerol tris anhydro trimellitate, Methyltetrahydrophthalic anhydride, tetrahydrophthalic anhydride, nadic anhydride, methyl nadic anhydride, trialkyltetrahydrophthalic anhydride, hexahydrophthalic anhydride, methylhexahydrophthalic anhydride, 5- (2,5-dioxo Tetrahydrofuryl) -3-methyl-3-cyclohexene-1,2-dicarboxylic acid anhydride, trialkyltetrahydrophthalic anhydride-maleic anhydride adduct, dodecenyl succinic anhydride, polyazelinic anhydride, polydodecanedio
  • phenol compound examples include phenol novolak, o-cresol novolak, p-cresol novolak, t-butylphenol novolak, dicyclopentadiene cresol and derivatives thereof.
  • thermal latent cationic polymerization catalyst examples include benzylsulfonium salt, benzylammonium salt, benzylpyridinium salt, and benzylphosphonium salt using antimony hexafluoride, phosphorus hexafluoride, boron tetrafluoride and the like as counter anions.
  • thermosetting modified polyphenylene ether resin examples include resins obtained by modifying polyphenylene ether resins with functional groups having thermosetting properties such as glycidyl groups, isocyanate groups, and amino groups. These thermosetting modified polyphenylene ether resins may be used alone or in combination of two or more.
  • thermosetting polyimide resin is a resin having an imide bond in the molecular main chain, for example, a condensation polymer of an aromatic diamine and an aromatic tetracarboxylic acid, or an addition polymer of an aromatic diamine and a bismaleimide.
  • examples thereof include a bismaleimide resin, a polyamino bismaleimide resin which is an addition polymer of aminobenzoic acid hydrazide and bismaleimide, and a bismaleimide triazine resin composed of a dicyanate compound and a bismaleimide resin. Of these, bismaleimide triazine resin is preferably used.
  • These thermosetting polyimide resins may be used alone or in combination of two or more.
  • the silicon resin contains a silicon-silicon bond, silicon-carbon bond, siloxane bond, or silicon-nitrogen bond in the molecular chain, and examples thereof include polysiloxane, polycarbosilane, and polysilazane.
  • the urea resin is a thermosetting resin obtained by addition condensation reaction of urea and formaldehyde.
  • the curing agent used for the curing reaction of the urea resin include an apparent curing agent composed of an inorganic acid, an organic acid, an acidic salt such as acidic sodium sulfate; a carboxylic acid ester, an acid anhydride, ammonium chloride, and phosphoric acid.
  • latent curing agents such as salts such as ammonium.
  • the melamine resin is a thermosetting resin obtained by addition condensation reaction of melamine and its derivatives with formaldehyde.
  • the melamine derivative include methylated melamine, butylated melamine, and isobutylated melamine. Of these, methylated melamine having water solubility is most preferable.
  • the curing agent used for the curing reaction of the melamine resin include an apparent curing agent composed of an acidic salt such as an inorganic acid, an organic acid, and acidic sodium sulfate; a carboxylic acid ester, an acid anhydride, ammonium chloride, and phosphoric acid.
  • thermoplastic resin used in the present invention is preferably a crystalline or amorphous thermoplastic resin having a melting point or glass transition temperature of 150 ° C. or higher.
  • preferred thermoplastic resins include polymethacrylate, polyolefin, polysulfone, polyethersulfone, polyetherketone, polyetheretherketone, aliphatic polyamide, aromatic polyester, aromatic polycarbonate, polyetherimide, polyarylene. Oxides, thermoplastic polyimides and polyamideimide resins are mentioned. Of these, polymethacrylates and aromatic polycarbonates are particularly preferred.
  • thermoplastic resins may be used alone or in combination of two or more.
  • a resin component such as a polyvinyl acetal resin or rubber is appropriately added to the composition comprising a nonwoven fabric porous body and a thermosetting resin, as long as the effect of the present invention is not impaired. can do.
  • rubbers include styrene elastomers, olefin elastomers, urethane elastomers, and polyester elastomers. In order to enhance the compatibility with the matrix resin, those obtained by functionally modifying these thermoplastic elastomers are preferable. These thermoplastic elastomers may be used alone or in combination of two or more.
  • the rubber examples include isoprene rubber, butadiene rubber, 1,2-polybutadiene, styrene-butadiene rubber, nitrile rubber, butyl rubber, ethylene-propylene rubber, silicone rubber, and urethane rubber. In order to improve the compatibility with the resin, those rubbers modified with functional groups are preferred. These rubbers may be used alone or in combination of two or more. As the blending amount of other resin components such as these polyvinyl acetal resins and rubbers, a blending amount of 1 part by mass or less is preferable with respect to the thermosetting resin in order to make use of the characteristics of the thermosetting resin. Less than the mass part is more preferable.
  • the flame retardancy of the resin cured product may be impaired.
  • a thermoplastic resin is included, 0.4 mass part or less is preferable with respect to 1 mass part of thermosetting resins, and 0.3 mass part or less is more preferable.
  • rubbers can be appropriately added to the composition comprising the nonwoven fabric porous body and the thermoplastic resin for the prepreg of the present invention as necessary within a range that does not impair the effects of the present invention.
  • rubbers that can be used as additive compounds include isoprene rubber, butadiene rubber, 1,2-polybutadiene, styrene-butadiene rubber, nitrile rubber, butyl rubber, ethylene-propylene rubber, silicone rubber, and urethane rubber. In order to enhance compatibility with the matrix resin, those rubbers modified with functional groups are preferred. These rubbers may be used alone or in combination of two or more.
  • the blending amount of other resin components such as rubbers the blending amount of 1 part by mass or less is preferable with respect to 1 part by mass of the thermoplastic resin in order to make use of the characteristics of the thermoplastic resin, more preferably 0.8. The blending amount is not more than part by mass.
  • thermosetting resin or thermoplastic resin used in the present invention is a non-woven fabric porous body made of boron nitride nanotubes and, if necessary, combined with other additives, molded into a prepreg, and further heated to be molded. Give the molding. (About prepreg manufacturing method) The prepreg using the thermosetting resin of the present invention is produced by the method described below.
  • thermosetting resin contains the thermosetting resin by immersing a nonwoven fabric porous body made of boron nitride nanotube fibers in a solution in which the thermosetting resin is dissolved in an organic solvent or an aqueous solvent in which these thermosetting resins can be dissolved. It is manufactured by sufficiently impregnating the solution in the nonwoven fabric porous body, and then evaporating the solvent by heating under pressure and simultaneously pre-curing (pre-thermo-curing). Thereby, the prepreg which integrated the nonwoven fabric porous body and the thermosetting resin is obtained.
  • the pre-curing conditions vary depending on the type of thermosetting resin to be used, but are appropriately selected so that the curing reaction required for forming the final cured molded body does not proceed to the end.
  • thermoplastic resin prepreg of the present invention is produced by the method described below. That is, the thermoplastic resin as a matrix is heated together with a nonwoven fabric porous body made of boron nitride nanotubes under pressure to melt the thermoplastic resin and fill the fiber voids forming the porosity of the nonwoven fabric porous body, and then the thermoplastic resin Or a solution or dispersion of a thermoplastic resin as a matrix is impregnated into a nonwoven fabric porous body made of boron nitride nanotubes, and then the solvent is evaporated by heating or decompression to thereby nitride the thermoplastic resin.
  • thermoplastic resin is preferably one or more organic solvents selected from, for example, aromatic hydrocarbons, alcohols, ketones, and halogenated hydrocarbons, depending on the type of the thermoplastic resin.
  • organic solvents selected from, for example, aromatic hydrocarbons, alcohols, ketones, and halogenated hydrocarbons, depending on the type of the thermoplastic resin.
  • a mixed solvent of the organic solvent and water can be suitably used.
  • aromatic hydrocarbons for example, benzene, toluene, xylene and the like
  • alcohols for example, methanol, ethanol, isopropanol, methyl cellosolve, etc.
  • ketones for example, acetone, methyl ethyl ketone, methyl isobutyl ketone, etc.
  • halogenated hydrocarbon include methylene chloride, dichloroethane, tetrachloroethane and the like.
  • the solvent also has the effect of entering the voids between the porous fibers when the non-woven porous body made of boron nitride nanotubes is immersed and appropriately opening the fiber, so the concentration of the thermoplastic resin in the dispersion solution is 1 It is preferably ⁇ 50% by mass, more preferably 1-30% by mass, still more preferably 5-20% by mass.
  • the temperature of the suspension when the nonwoven fabric porous body made of boron nitride nanotubes is immersed is not particularly limited as long as the resin dispersion state is maintained well, and varies depending on the type and concentration of the thermoplastic resin and dispersion medium used. However, 5 to 50 ° C. is preferable, 5 to 30 ° C.
  • One or more prepregs using a thermosetting resin or thermoplastic resin according to the present invention can be heated and pressed by a die pressing method, an autoclave method, a heating pressing method, or the like to obtain a molded plate.
  • a prepreg using a thermosetting resin can also serve as a curing treatment by molding by a method that involves heating. Also, a prepreg is made in advance into a plate shape and cured by heating, etc.
  • molding process can be performed as mentioned above using two or more prepregs of this invention, and the shaping
  • thermosetting resin is a bisphenol A type epoxy resin (manufactured by Dainippon Ink & Chemicals, Ebiclon 850, epoxy equivalent: 190) as an epoxy resin, and Nissan Chemical Industries as a melamine resin. Suntop M700 (resin solid content: 55%) manufactured by KK was used.
  • thermoplastic resin an aromatic polycarbonate resin (AD5503, melt flow rate 54 g / 10 min, average molecular weight of about 15,000) manufactured by Teijin Chemicals Ltd., manufactured by Mitsubishi Rayon Co., Ltd.
  • a polymethyl methacrylate resin (ACRYPET (registered trademark) VH001, melt flow rate 2.0 g / 10 min, average molecular weight of about 1,000,000) was used.
  • a Thermal expansion coefficient The thermal expansion coefficient was measured from the value of the second scan by measuring TA2940 manufactured by TA Instrument Co., Ltd. in the air at a temperature rising rate of 10 ° C / min in the range of 30 to 80 ° C.
  • Thermal conductivity Thermal conductivity is measured using a 50 mm x 80 mm sample by a probe method (unsteady hot wire method) and a rapid thermal conductivity meter (KEMTHERM QTM-D3 type, manufactured by Kyoto Electronics Industry Co., Ltd.) It measured using.
  • boron nitride nanotubes (hereinafter sometimes abbreviated as BNNT).
  • BNNT boron nitride nanotubes
  • Reference Example 2 Production of Boron Nitride Nanotube Non-woven Fabric 1 g of boron nitride nanotubes obtained in Reference Example 1 was added to 100 ml of 1-propanol, and 10 with a three-frequency ultrasonic cleaner (manufactured by ASONE, output 100 W, 28 Hz). A dispersion liquid in which boron nitride nanotubes were suspended was obtained by performing minute ultrasonic treatment.
  • the suspension in which the boron nitride nanotubes were uniformly dispersed was spread on a filter paper having an area of 5 cm ⁇ 5 cm, collected by sucking the solvent, and dried to prepare a boron nitride nanotube nonwoven fabric having a basis weight of 400 g / m 2 .
  • Scanning electron microscope observation of the nonwoven fabric confirmed that a nonwoven fabric porous body was formed on the basis of a fine fiber structure in which boron nitride nanotubes were entangled with each other (hereinafter, the boron nitride nanotube nonwoven fabric was referred to as boron nitride nanotube). Called non-woven porous body).
  • Example 1 1 g (5 cm ⁇ 5 cm) of the boron nitride nanotube nonwoven porous body obtained in Reference Example 2 was allowed to stand on a mold substrate. To this, 57.96 parts by mass of a bisphenol A type epoxy resin (Dainippon Ink Chemical Co., Ltd., Ebicron 850, epoxy equivalent: 190), phenolic compound (Dainippon Ink Chemical Co., Ltd., Phenolite (registered) Trademark) TD-2090, hydroxyl group equivalent: 105) 1.5 g of an epoxy resin composition consisting of 32.04 parts by mass, and 2-ethyl-4-methylimidazole (manufactured by Shikoku Kasei Kogyo Co., Ltd.) as a curing accelerator 0.
  • a bisphenol A type epoxy resin Dainippon Ink Chemical Co., Ltd., Ebicron 850, epoxy equivalent: 190
  • phenolic compound Dainippon Ink Chemical Co., Ltd., Phenolite
  • the solution When a solution obtained by diluting 1 g with 5 ml of benzene was dropped, the solution uniformly penetrated into the porous body of the boron nitride nanotube nonwoven fabric.
  • the porous boron nitride nanotube porous body impregnated with this solution was dried at room temperature for 2 hours and then at 50 ° C. for 2 hours.
  • the porous boron nitride nanotube nonwoven fabric combined with the resin after drying is preheated (preliminary thermosetting) at 110 ° C. for 3 hours while being fixed to the mold, and is a plate-like molded body having a thickness of about 1 mm made of the resin composition. (Prepreg) was produced.
  • the prepreg was taken out from the mold and further heated at 170 ° C. for 30 minutes to complete the curing to obtain a molded plate. This was cut out to 50 ⁇ 10 mm and 50 mm ⁇ 80 mm to prepare test molded bodies.
  • the thermal expansion coefficient of the molded body was 24.1 ppm / ° C.
  • the thermal conductivity was 9.1 W / m ⁇ K.
  • Example 2 1 g (5 cm ⁇ 5 cm) of the boron nitride nanotube nonwoven porous body obtained in Reference Example 2 was allowed to stand on a mold substrate.
  • Example 1 An epoxy resin molded body was produced in the same manner as in Example 1 except that the porous body of the boron nitride nanotube nonwoven fabric was not included.
  • the thermal expansion coefficient of the molded body was 45.5 ppm / ° C.
  • the thermal conductivity was 0.18 W / m ⁇ K.
  • Comparative Example 2 A melamine resin molded body was prepared in the same manner as in Example 2 except that the porous body of the boron nitride nanotube nonwoven fabric was not included.
  • the thermal expansion coefficient of the molded body was 39.2 ppm / ° C.
  • the thermal conductivity was 0.17 W / m ⁇ K.
  • thermosetting resin composition containing a nonwoven fabric porous body made of boron nitride nanotubes in the present invention has superior heat resistance, heat dissipation characteristics and dimensional stability compared to thermosetting resins not containing boron nitride nanotubes. It turns out that sex etc. are shown.
  • Example 3 1 g (5 cm ⁇ 8 cm) of the boron nitride nanotube non-woven fabric porous body obtained in Reference Example 2 was allowed to stand on a mold substrate.
  • Example 4 1 g (5 cm ⁇ 8 cm) of the boron nitride nanotube non-woven fabric porous body obtained in Reference Example 2 was allowed to stand on a mold substrate.
  • Comparative Example 3 A sheet molded body of an aromatic polycarbonate resin was prepared in the same manner as in Example 3 except that the boron nitride nanotube nonwoven fabric porous body was not contained, and the thermal expansion coefficient and the thermal conductivity were measured. The results are shown in Table 1.
  • Comparative Example 4 A molded body of polymethyl methacrylate resin was produced in the same manner as in Example 4 except that the porous body of the boron nitride nanotube nonwoven fabric was not contained. A sheet molded body was prepared, and thermal expansion coefficient and thermal conductivity were measured. The results are shown in Table 1.
  • thermoplastic resin composition containing the nonwoven fabric porous body composed of boron nitride nanotubes in the present invention has superior heat resistance, heat dissipation characteristics and dimensional stability compared to the thermoplastic resin not containing boron nitride nanotubes. It can be seen that, etc.
  • a thermosetting resin or a thermoplastic resin is finer and more homogeneous in a void of a nonwoven fabric porous body composed of boron nitride nanotubes having a fiber diameter on the order of nanometers compared to a bulk fiber nonwoven fabric. Can be impregnated.
  • boron nitride nanotubes themselves have a much higher thermal conductivity than conventional inorganic thermal conductive materials, it is possible to effectively acquire the heat dissipation characteristics as a resin composite without adding a special filler. Can do.
  • the resin is homogeneously combined with the porous porous body of boron nitride nanotubes, which also functions as a highly thermally conductive filler, the interaction of both components is expressed synergistically, resulting in heat resistance and heat dissipation as a prepreg. Can be improved.
  • the excellent mechanical properties of boron nitride nanotubes and the large specific surface area effect provide sufficient interface between the resin and the tube, and even when the density of boron nitride nanotubes is low, the strength of the prepreg is maintained and the molded product is damaged.
  • the resin varnish can be impregnated into the porous structure without being subjected to the treatment.
  • the prepreg of the present invention and a molded board formed by heating and pressing one or more of the prepregs, for example, a laminated board, and a printed wiring board using the laminated board as an insulating layer, in addition to mechanical characteristics, heat resistance characteristics and high thermal conductivity Therefore, it is used for electronic devices that require thermal conductivity and insulation, such as printed wiring boards for automotive equipment that are expected to be used in high-temperature atmospheres, and high-density mounting printed wiring boards such as personal computers. It can be suitably used as a material for electronic parts.

Abstract

Provided are a prepreg and a molded plate efficiently formed from a resin composition having excellent heat resistance, heat radiating capability, and dimensional stability.  The heat-conductive prepreg is formed from a resin composition comprising 1 to 99 parts by mass of a nonwoven porous body formed from boron nitride nanotubes and 99 to 1 parts by mass of thermosetting resin or thermoplastic resin wherein the thermosetting resin or thermoplastic resin fills the voids of the nonwoven porous body.  

Description

熱伝導性に優れたプリプレグ、プリプレグの製造方法、および成形板Prepreg with excellent thermal conductivity, method for producing prepreg, and molded plate
 本発明は、熱硬化性もしくは熱可塑性樹脂組成物からなるプリプレグ、成形板およびその製造方法に関する。更に詳しくは、構造の規定された窒化ホウ素ナノチューブからなる不織布状多孔体と熱硬化性もしくは熱可塑性樹脂からなる基材を用いることによる、熱伝導性に優れるプリプレグ及びその製造方法に関する。 The present invention relates to a prepreg comprising a thermosetting or thermoplastic resin composition, a molded plate, and a method for producing the same. More specifically, the present invention relates to a prepreg excellent in thermal conductivity by using a non-woven porous body made of boron nitride nanotubes having a defined structure and a base material made of thermosetting or thermoplastic resin, and a method for producing the same.
 近年、各種電気・電子機器製品の高性能化、高機能化および小型軽量化に伴いプリプレグを用いた積層板も様々な特性が求められている。特に、積層板がプリント配線板の絶縁層として、パソコンなどへの半導体素子類の高密度実装機器、自動車のエンジンルーム等に用いられる場合は、実装部品、あるいは周辺部材の発熱に伴い、積層板が高温状態に暴露されることにより樹脂が劣化するなどして、実装部品の機能低下が避けられない。
 例えば、走行時のエンジン発熱やブレーキ系摩擦による発熱が顕著な自動車の場合、高度に電子化された車の制御システムにおける電子デバイスやユニットの耐久性や動作特性は、使用環境の影響を直接的に受けることになる。電子制御機器が自動車全体の信頼性に及ぼす影響は非常に大きいことから、エンジンルームに配置されるプリント配線板の絶縁層において、積層板の耐熱性及び放熱性を向上させることは大きな課題となっている。
 かかる絶縁層の放熱特性を向上させるべく、特開平8−167775号公報にはエポキシ樹脂からなる絶縁接着シートに高熱伝導性の金属板を貼付することによる積層板が提案されている。特開2005−136051号公報では、シート状の繊維不織布からなる基材に熱硬化性樹脂を含むワニスを含浸して形成するプリプレグにおいて、高熱伝導率の無機材料からなるフィラーをワニスに添加することが開示されている。
 しかしながら、特開平8−167775号公報に開示された、絶縁接着シートと金属板の物理的な貼付による積層板では、スルーホールを形成するときに金属板の絶縁処理が煩雑になり、また、絶縁性や寸法特性も低下するという問題がある。また特開2005−136051号公報に開示されている、高熱伝導性無機材料系のフィラーをワニスに添加した積層板では、フィラーによってワニスの粘度が顕著に増大し、繊維不織布からなる基材中にフィラーを含んだワニスを十分に含浸するには限界があり、積層板の耐熱性及び放熱性を十分に向上させることができなかった。
 一方、これらの課題に対して、特開2007−9089号公報では、熱伝導性の高い無機繊維からなる不織布に熱伝導性のフィラーおよび熱硬化性樹脂を含浸し、成形することで耐熱性と放熱性を改良し、かつ加工性も有するプリプレグが提案されている。しかしながらここで用いられる無機繊維はバルクの不織布であり、より効果的に寸法安定性や放熱特性を発現するにはバルクサイズよりも微細かつ均質な繊維とフィラー、および樹脂の複合化が望ましい。またここで用いられるバルクのフィラー、熱伝導性無機繊維は何れも従来の絶縁性熱伝導材料であり、これらの熱伝導率は高々50~100W/m・Kと金属材料と比較して低いレベルにある。従って、パワー系などより高レベルかつ高性能な放熱特性を要求される用途も含め、原理的に熱伝導率の観点から限界がある。
 一方で、マトリクスである熱硬化性樹脂に関しては、その化学的構造特性に基づく脆性、低耐衝撃性という欠点を有するため、その改善が求められていた。また、熱硬化性樹脂の場合、これをプリプレグとした時、樹脂のライフ等によるプリプレグの保存管理上の問題点や成形時間が長く生産性が低い等の問題もあった。このような課題解決のため、短時間での成形性に優れ、また耐衝撃性の高い熱可塑性樹脂に炭素繊維を複合用マトリクスに用いる技術も開示されている。特開2005−255927号公報には、熱可塑性樹脂に炭素繊維を複合化することによる成形性と強度に優れるプリプレグが開示され、また特開平9−298344号公報および特開平9−321395号公報には、熱可塑性樹脂に熱伝導性フィラーを充填した組成物を電極であるリードフレームと一体化した射出成形による熱伝導性モジュールが提案されている。特に熱伝導性モジュールにおいては、これまで金属やセラミックによる基板における性能およびコストの面で両立が難しい部分を補い、機械的強度と放熱性の両立を有するものと言われているが、やはり従来の熱伝導性フィラーの充填では性能、特に放熱性の視点からは限界がある。
 上述したような課題の解決には、ナノサイズの無機粒子やカーボンナノチューブのようなナノフィラーを使用することが考えられるが、カーボンナノチューブは絶縁上の問題から使用に制限があり、また無機粒子は凝集し易く、通常ナノレベルでの分散を実現するのが困難である。更に層状、板状の無機微粒子は線状構造のチューブとは異なり、二次元的な広がりを有するためそれと複合する樹脂の表面形状への影響が大きく、分散が十分でないと表面平滑性を損なう要因となり素材の使用が制限される一因となる。
 樹脂と複合されたプリプレグのフィラーの効果不足や不均一分散による物性低減など従来の課題を解決し、高い機械的強度、耐熱性を有し、かつ樹脂の寸法安定性,均質性に優れた高熱伝導性の熱硬化性樹脂複合材料からなるプリプレグを得るべく、ナノレベルの単位サイズで構成され、大きな比表面積による樹脂との均質複合が可能で、かつ物理化学的に高熱伝導率を有するナノフィラー部材の開発が望まれている。
2. Description of the Related Art In recent years, various properties of electrical laminates using prepregs have been demanded as various electric and electronic equipment products have been improved in performance, function and size and weight. Especially when the laminated board is used as an insulating layer for printed wiring boards in high-density mounting equipment for semiconductor elements on a personal computer or the like, in an engine room of an automobile, etc. As a result of the resin being deteriorated by being exposed to a high temperature condition, the function of the mounted component is inevitably deteriorated.
For example, in the case of automobiles that generate significant heat generation due to engine heat generation and braking system friction during driving, the durability and operating characteristics of electronic devices and units in highly electronic vehicle control systems directly affect the influence of the usage environment. Will receive. Since the influence of electronic control equipment on the reliability of the entire automobile is very large, it is a big challenge to improve the heat resistance and heat dissipation of the laminated board in the insulating layer of the printed wiring board placed in the engine room. ing.
In order to improve the heat dissipation characteristics of such an insulating layer, JP-A-8-167775 proposes a laminated board obtained by sticking a metal plate having high thermal conductivity to an insulating adhesive sheet made of an epoxy resin. In JP-A-2005-136051, in a prepreg formed by impregnating a varnish containing a thermosetting resin into a base material made of a sheet-like fiber nonwoven fabric, a filler made of an inorganic material having high thermal conductivity is added to the varnish. Is disclosed.
However, in the laminated plate disclosed in JP-A-8-167775, in which the insulating adhesive sheet and the metal plate are physically attached, the insulating treatment of the metal plate becomes complicated when the through hole is formed. There is a problem that the property and dimensional characteristics are also lowered. Moreover, in the laminated board which was disclosed by Unexamined-Japanese-Patent No. 2005-136051 and added the filler of the highly heat conductive inorganic material type | system | group to the varnish, the viscosity of a varnish will increase notably with a filler and in the base material which consists of a fiber nonwoven fabric. There is a limit to sufficiently impregnating the varnish containing the filler, and the heat resistance and heat dissipation of the laminate cannot be sufficiently improved.
On the other hand, Japanese Patent Application Laid-Open No. 2007-9089 addresses these problems by impregnating a non-woven fabric made of inorganic fibers with high thermal conductivity with a thermal conductive filler and a thermosetting resin and molding the nonwoven fabric. There has been proposed a prepreg that improves heat dissipation and also has processability. However, the inorganic fibers used here are bulk nonwoven fabrics, and in order to more effectively express dimensional stability and heat dissipation characteristics, it is desirable to combine fibers, fillers, and resins that are finer and more homogeneous than the bulk size. The bulk fillers and heat conductive inorganic fibers used here are both conventional insulating heat conductive materials, and their heat conductivity is at most 50 to 100 W / m · K, which is a low level compared to metal materials. It is in. Therefore, in principle, there is a limit from the viewpoint of thermal conductivity, including applications that require higher-level and high-performance heat dissipation characteristics than power systems.
On the other hand, the thermosetting resin that is a matrix has the drawbacks of brittleness and low impact resistance based on its chemical structural characteristics, and therefore improvement has been demanded. Further, in the case of a thermosetting resin, when this is used as a prepreg, there are problems in storage management of the prepreg due to the life of the resin, and problems such as a long molding time and low productivity. In order to solve such a problem, a technique of using a carbon fiber as a composite matrix in a thermoplastic resin having excellent moldability in a short time and high impact resistance is also disclosed. Japanese Patent Application Laid-Open No. 2005-255927 discloses a prepreg excellent in moldability and strength by combining carbon fiber with a thermoplastic resin, and Japanese Patent Application Laid-Open Nos. 9-298344 and 9-321395. Has proposed a heat conductive module by injection molding in which a composition in which a thermoplastic resin is filled with a heat conductive filler is integrated with a lead frame as an electrode. Especially in the case of thermal conductive modules, it has been said that it has been difficult to achieve a balance between performance and cost of substrates made of metal or ceramic, and has both mechanical strength and heat dissipation. The filling of the heat conductive filler has a limit from the viewpoint of performance, particularly heat dissipation.
In order to solve the problems described above, it is conceivable to use nano-sized inorganic particles or nano fillers such as carbon nanotubes. However, carbon nanotubes are limited in use due to insulation problems. It tends to aggregate and it is usually difficult to achieve dispersion at the nano level. Furthermore, layered and plate-like inorganic fine particles, unlike tubes with a linear structure, have a two-dimensional extent, so they have a large effect on the surface shape of the resin combined with them, and the factors that impair surface smoothness if they are not sufficiently dispersed It becomes a cause that the use of the material becomes limited.
Solves conventional problems such as insufficient effect of fillers in prepregs combined with resin and reduces physical properties due to non-uniform dispersion, and has high mechanical strength and heat resistance, and high heat with excellent dimensional stability and homogeneity of the resin Nanofiller composed of nano-scale unit size, capable of homogeneous composite with resin with large specific surface area, and physicochemically high thermal conductivity to obtain prepreg made of conductive thermosetting resin composite material Development of members is desired.
 本発明の目的は、従来のようなバルク、あるいはナノメートルレベルでの分散が困難な無機フィラーを含有する熱硬化性樹脂組成物あるいは熱可塑性樹脂からなるプリプレグとは異なり、成型加工プロセスにおける加工性などを低下させること無く、効率よく熱伝導性、耐熱特性、放熱特性および寸法安定性等を向上させたプリプレグおよびその成形板等を提供することにある。
 本発明者らは、絶縁性の無機ナノ繊維であり、かつ従来の無機系熱伝導性材料と比較し遥かに高い熱伝導率を有する窒化ホウ素ナノチューブを予め不織布多孔性構造体に成形した後、熱硬化性樹脂または熱可塑性樹脂と一体化せしめることにより、効率よく耐熱特性、放熱特性および寸法安定性に優れた樹脂組成物からなるプリプレグおよび積層板が得られることを見出し本発明に到達した。
 すなわち、本発明によれば、本発明の上記目的は、第1に、窒化ホウ素ナノチューブからなる不織布多孔体1~99質量部と熱硬化性樹脂99~1質量部からなる組成物からなりそして該不織布多孔体の空隙に熱硬化性樹脂が充填されていることを特徴とするプリプレグによって達成される。
 本発明によれば、本発明の上記目的は、第2に、窒化ホウ素ナノチューブからなる不織布多孔体1~99質量部と熱可塑性樹脂99~1質量部からなる組成物からなりそして該不織布多孔体の空隙に熱可塑性樹脂が充填されていることを特徴とするプリプレグによって達成される。
 本発明によれば、本発明の上記目的は、第3に、窒化ホウ素ナノチューブからなる不織布多孔体に、少なくとも1種の熱硬化性樹脂を含浸せしめた後、予備熱硬化させることを特徴とする本発明に記載のプリプレグの製造方法によって達成される。
 本発明によれば、本発明の上記目的は、第4に、熱可塑性樹脂を、窒化ホウ素ナノチューブよりなる不織布多孔体と共に加圧下に加熱して融解した熱可塑性樹脂を繊維空隙に充填せしめ、次いで冷却して熱可塑性樹脂を固化させることを特徴とする本発明に記載のプリプレグの製造方法によって達成される。
 本発明によれば、本発明の上記目的は、第5に、溶媒中の熱可塑性樹脂の溶液若しくは分散液を、窒化ホウ素ナノチューブよりなる不織布多孔体に含浸せしめ、次いで加熱若しくは減圧により溶媒を蒸発させて該熱可塑性樹脂を該不織布多孔体の多孔体空隙に充填させることを特徴とする本発明に記載のプリプレグの製造方法によって達成される。
 本発明によれば、本発明の上記目的は、最後に、本発明に記載のプリプレグ1枚以上を加圧下に加熱して形成された成形板によって達成される。
The object of the present invention is different from conventional curable prepregs made of a thermosetting resin composition or a thermoplastic resin containing an inorganic filler that is difficult to disperse in a bulk or nanometer level. It is an object of the present invention to provide a prepreg and a molded plate thereof having improved thermal conductivity, heat resistance characteristics, heat radiation characteristics, dimensional stability, and the like efficiently without reducing the above.
The inventors have previously formed boron nitride nanotubes, which are insulating inorganic nanofibers and have a much higher thermal conductivity than conventional inorganic thermal conductive materials, into a nonwoven porous structure, It was found that by integrating with a thermosetting resin or a thermoplastic resin, a prepreg and a laminate comprising a resin composition excellent in heat resistance, heat dissipation and dimensional stability can be obtained efficiently, and the present invention has been achieved.
That is, according to the present invention, the above object of the present invention is firstly composed of a composition comprising 1 to 99 parts by mass of a nonwoven fabric porous body made of boron nitride nanotubes and 99 to 1 parts by mass of a thermosetting resin, and This is achieved by a prepreg characterized in that a thermosetting resin is filled in the voids of the nonwoven fabric porous body.
According to the present invention, the above object of the present invention is secondly composed of a composition comprising 1 to 99 parts by mass of a nonwoven fabric porous body made of boron nitride nanotubes and 99 to 1 part by mass of a thermoplastic resin, and the nonwoven fabric porous body. This is achieved by a prepreg characterized in that a thermoplastic resin is filled in the gap.
According to the present invention, thirdly, the above object of the present invention is characterized in that at least one kind of thermosetting resin is impregnated into a nonwoven fabric porous body made of boron nitride nanotubes, and then pre-thermosetting is performed. This is achieved by the method for producing a prepreg according to the present invention.
According to the present invention, fourthly, the object of the present invention is to fill the fiber void with a thermoplastic resin melted by heating under pressure together with a nonwoven fabric porous body made of boron nitride nanotubes, and then, This is achieved by the method for producing a prepreg according to the present invention, wherein the thermoplastic resin is solidified by cooling.
According to the present invention, fifthly, the above object of the present invention is to impregnate a nonwoven fabric porous body made of boron nitride nanotubes with a solution or dispersion of a thermoplastic resin in a solvent, and then evaporate the solvent by heating or decompressing. This is achieved by the method for producing a prepreg according to the present invention, wherein the thermoplastic resin is filled into a porous space of the nonwoven fabric porous body.
According to the present invention, the above object of the present invention is finally achieved by a molded plate formed by heating one or more prepregs according to the present invention under pressure.
 以下本発明を詳細に説明する。
(窒化ホウ素ナノチューブおよびその不織布多孔体)
 本発明において、窒化ホウ素ナノチューブとは、窒化ホウ素からなるチューブ状材料であり、構造としては6角網目の面がチューブ軸に平行に管を形成し、一重管もしくは多重管になっているものが好ましい。窒化ホウ素ナノチューブの平均直径は、好ましくは0.4nm~1μmであり、より好ましくは0.6~500nm、さらにより好ましくは0.8~200nmである。ここでいう平均直径とは、一重管の場合、その平均外径を、多重管の場合はその最外側の管の平均外径を意味する。平均長さは、好ましくは10μm以下であり、より好ましくは5μm以下である。平均アスペクト比は、好ましくは5以上であり、さらに好ましくは10以上である。平均アスペクト比の上限は、平均長さが10μm以下であれば限定されないが、上限はほぼ25,000である。平均直径が0.4nm~1μmでありそして平均アスペクト比が5以上である窒化ホウ素ナノチューブが特に好ましい。
 窒化ホウ素ナノチューブの平均直径および平均アスペクト比は、電子顕微鏡による観察から求めることができる。例えばTEM(透過型電子顕微鏡)測定を行い、その画像から直接窒化ホウ素ナノチューブの直径および長手方向の長さを測定することが可能である。また組成物中の窒化ホウ素ナノチューブの形態は例えば繊維軸と平行に切断した繊維断面のTEM測定により把握することができる。
 窒化ホウ素ナノチューブは、例えばアーク放電法、レーザー加熱法、化学的気相成長法を用いて合成することができる。また、ホウ化ニッケルを触媒として使用し、ボラジンを原料として合成する方法あるいはカーボンナノチューブを鋳型として利用して、酸化ホウ素と窒素を反応させて合成する方法でも得られる。本発明に用いられる窒化ホウ素ナノチューブは、これらの方法により製造されるものに限定されない。本発明における窒化ホウ素ナノチューブとしては、強酸処理や化学修飾、あるいは他の高分子で被覆されるなどの表面改質を施した窒化ホウ素ナノチューブも使用することができる。特に高分子で被覆されたものでは、窒化ホウ素ナノチューブと相互作用が強く、また熱硬化性もしくは熱可塑性マトリクス樹脂との相互作用が強いものが好ましい。これらの高分子としては、例えば、ポリフェニレンビニレン系高分子、ポリチオフェン系高分子、ポリフェニレン系高分子、ポリピロール系高分子、ポリアニリン系高分子、ポリアセチレン系高分子等の共役系高分子が挙げられる。中でも、ポリフェニレンビニレン系高分子、ポリチオフェン系高分子が好ましい。更に共役系高分子以外にも、必要に応じてマトリックス樹脂との接着性、反応性等を改良するためにマトリックス樹脂と相溶性または反応性を有する他の樹脂でコーティングされてもよい。例えば、熱硬化性マトリクス樹脂がフェノール樹脂である場合、窒化ホウ素ナノチューブをノボラック型フェノール樹脂やレゾール型フェノール樹脂を付着処理して表面改質することも好ましい。
 更に共役高分子やマトリクス樹脂による被覆以外にも、窒化ホウ素ナノチューブをカップリング剤で表面被覆処理することもできる。ここで使用されるカップリング剤としては、例えばシラン系カップリング剤、チタネート系カップリング剤及びアルミネート系カップリング剤等が挙げられる。シラン系カップリング剤としては、例えばトリエトキシシラン、ビニルトリス(2−メトキシエトキシ)シラン、N−(2−アミノエチル)3−アミノプロピルメチルジメトキシシラン、N−(2−アミノエチル)3−アミノプロピルトリメトキシシラン、3−アミノプロピルトリエトキシシラン、3−グルシドキシプロピルトリメトキシシラン、3−グルシドキシプロピルメチルジメトキシシラン、2−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン、3−クロロプロピルメチルジメトキシシラン、3−クロロプロピルトリメトキシシラン、3−メタクリロキシプロピルトリメトキシシラン、3−メルカプロプロピルトリメトキシシラン等が挙げられる。チタネート系カップリング剤としては、例えばイソプロピルトリイソステアロイルチタネート、イソプロピルオリス(ジオクチルバイロフォスフェート)チタネート、イソプロピルトリ(N−アミノエチル−アミノエチル)チタネート、テトラオクチルビス(ジトリデシルホスファイト)チタネート、テトラ(2,2−ジアリルオキシメチル−1−ブチル)ビス(ジトリデシル)ホスファイトチタネート、ビス(ジオクチルバイロフォスフェート)オキシアセテートチタネート、ビス(ジオクチルバイロフォスフェート)エチレンチタネート、イソプロピルトリオクタノイルチタネート、イソプロピルジメタクリルイソステアロイルチタネート、イソプロピルトリドデシルベンゼンスルホニルチタネート、イソプロピルイソステアロイルジアクリルチタネート、イソプロピルトリ(ジオクチルフォスフェート)チタネート、イソプロピルトリクミルフェニルチタネート、テトライソプロピルビス(ジオクチルホスファイト)チタネート等が挙げられる。また、アルミネート系カップリング剤としては、例えばアセトアルコキシアルミニウムジイソプロピレート等が挙げられる。これらの化合物は、水溶液、またはアルコール、ケトン、グリコール、炭化水素の如き有機溶媒の溶液、あるいは水とこれら有機溶媒との混合溶媒の溶液として使用される。必要に応じて上記溶液に、酢酸、塩酸の如き酸、またはアルカリによりpH調整を行うことができる。
 本発明においては、上記のように得られた窒化ホウ素ナノチューブを、不織布の形状(以下、不織布多孔体と称することがある)にして用いる。窒化ホウ素ナノチューブを不織布多孔体にするには、それ自体公知の不織布の製造方法を適用しうる。なかでも、窒化ホウ素ナノチューブを溶媒に分散させた分散液を濾過または湿式抄紙して、窒化ホウ素ナノチューブをシートの形状に捕集したのち、このシート状物を乾燥する方法が簡便で好ましい。その際、窒化ホウ素ナノチューブを分散させる溶媒としては、例えば炭素数1~10のアルコール、アミン、有機カルボン酸、有機カルボン酸エステル、有機酸アミド、ケトン、エーテル、スルホキシド、スルホン、スルホランなどの有機溶媒、水または界面活性剤を含む水などが挙げられる。窒化ホウ素ナノチューブと溶媒の混合量は、窒化ホウ素ナノチューブ1gあたり、溶媒が1~100,000mLとなる量が好ましく、2~10,000mLとなる量がより好ましく、5~1,000mLとなる量が更に好ましく、10~500mLとなる量が特に好ましい。また、窒化ホウ素ナノチューブの溶媒への分散性を高めるために、攪拌・振盪処理や超音波処理を行ってもよい。
 上記の分散液の濾過などにより得られた窒化ホウ素ナノチューブのシート状物を、さらに乾燥することにより、本発明にて用いる不織布多孔体が得られる。該乾燥処理は、自然乾燥でも加熱乾燥でもよく、常圧雰囲気下での乾燥でも減圧下の乾燥でもよく、連続式でもバッチ式でもよい。
 なお、窒化ホウ素ナノチューブが前記のように共役高分子やシランカップリング剤で表面処理されたものであっても、上記の操作によって同様に不織布状多孔体を得ることができ、このものも本発明のプリプレグに好適に用いることができる。
 窒化ホウ素ナノチューブは、カーボンナノチューブに匹敵する、優れた機械的物性、熱伝導性を有するだけでなく、化学的に安定でカーボンナノチューブよりも優れた耐酸化性を有することが知られている。また、ホウ素原子と窒素原子の間のダイポール相互作用により局所的な極性構造を有しており、極性構造を有する媒体への親和性、分散性がカーボンナノチューブより優れることが期待される。更に電子構造的に広いバンドギャップを有するため絶縁性であり、絶縁放熱材料としても期待できる他、カーボンナノチューブと異なり白色であることから着色を嫌う用途にも応用できるなどの特性も備えているため、これを用いることにより、ポリマーの特徴を活かしたプリプレグの創製が可能となる。
 本発明のプリプレグを形成する組成物は、熱硬化性樹脂もしくは熱可塑性樹脂99~1質量部に対して、窒化ホウ素ナノチューブからなる不織布多孔体が、1~99質量部の範囲内で含有される。ここで、樹脂と不織布多孔体との質量部の合計は100質量部である。よりこのましくは熱硬化性樹脂もしくは熱可塑性樹脂95~20質量部に対して、窒化ホウ素ナノチューブからなる不織布多孔体が、5~80質量部の範囲内で含有され、更に好ましくは熱硬化性樹脂もしくは熱可塑性樹脂90~30質量部に対して、窒化ホウ素ナノチューブからなる不織布多孔体が、10~70質量部の範囲内で含有される。
 上記範囲内とすることにより、窒化ホウ素ナノチューブからなる不織布多孔体を効率的に熱硬化性樹脂と複合化させることが可能となる。また、樹脂に対し窒化ホウ素ナノチューブからなる不織布多孔体が過度に多い場合は、樹脂マトリクスが不織布多孔体上を十分に被覆することが困難となり好ましくない。本発明における上記樹脂組成物は、窒化ホウ素ナノチューブに由来する窒化ホウ素フレーク、触媒金属等を含んでいてもよい。
(熱硬化性樹脂)
 本発明で使用する熱硬化性樹脂としては、例えば、エポキシ樹脂、熱硬化型変性ポリフェニレンエーテル樹脂、熱硬化型ポリイミド樹脂、ケイ素樹脂、ベンゾオキサジン樹脂、尿素樹脂、メラミン樹脂、フラン樹脂、アニリン樹脂等が挙げられる。これらの熱硬化性樹脂は、単独で用いられてもよく、2種以上が併用されてもよい。上記の熱硬化性樹脂のなかでも、エポキシ樹脂、熱硬化型変性ポリフェニレンエーテル樹脂、熱硬化型ポリイミド樹脂、ケイ素樹脂、尿素樹脂、及び、メラミン樹脂等が好適である。これらの樹脂から選ばれる少なくとも1種が、熱硬化性樹脂の50質量%以上を占めることが好ましい。これら本発明において使用される熱硬化性樹脂は、ポリマー分子鎖内に酸素や窒素原子のような極性原子を有しており、その結果ナノレベルで構造の規定された極性窒化ホウ素ナノチューブと分子レベルで静電的に相互作用することが可能である。ポリマーとナノチューブ間の特異的な相互作用とナノサイズの直径を有する繊維の高い比表面積の相乗的な結果として得られた複合組成物からなるプリプレグにおいては、少量のフィラー添加においても、従来のバルクレベルでの熱硬化性樹脂複合組成物に比べて効率の良い耐熱性、熱伝導性および機械特性の改良が可能であり、バルクの無機フィラー添加熱硬化性樹脂プリプレグの範囲を超える高性能を発現することも期待される。
 上記エポキシ樹脂は、少なくとも1個のエポキシ基を有する有機化合物である。上記エポキシ樹脂中のエポキシ基の数は、1分子当たり1個以上であることが好ましく、1分子当たり2個以上であることがより好ましい。ここで、1分子当たりのエポキシ基の数は、エポキシ樹脂のエポキシ基の総数をエポキシ樹脂のモル数で除算することにより求められる。
 上記エポキシ樹脂としては、従来公知のエポキシ樹脂を用いることができ、例えば、以下に述べるエポキシ樹脂(1)~エポキシ樹脂(10)等が挙げられる。これらのエポキシ樹脂は、単独で用いられてもよく、2種以上が併用されてもよい。
 エポキシ樹脂(1)としては、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールAD型エポキシ樹脂、ビスフェノールS型エポキシ樹脂等のビスフェノール型エポキシ樹脂;フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂の如きノボラック型エポキシ樹脂;トリスフェノールメタントリグリシジルエーテルの如き芳香族エポキシ樹脂、及び、これらの水添化物や臭素化物が挙げられる。
 エポキシ樹脂(2)としては、例えば、3,4−エポキシシクロヘキシルメチル−3,4−エポキシシクロヘキサンカルボキシレート、3,4−エポキシ−2−メチルシクロヘキシルメチル−3,4−エポキシ−2−メチルシクロヘキサンカルボキシレート、ビス(3,4−エポキシシクロヘキシル)アジペート、ビス(3,4−エポキシシクロヘキシルメチル)アジペート、ビス(3,4−エポキシ−6−メチルシクロヘキシルメチル)アジペート、2−(3,4−エポキシシクロヘキシル−5,5−スピロ−3,4−エポキシ)シクロヘキサノン−メタ−ジオキサン、ビス(2,3−エポキシシクロペンチル)エーテルの如き脂環族エポキシ樹脂が挙げられる。かかるエポキシ樹脂(2)のうち市販されているものとしては、例えば、ダイセル化学工業(株)製の商品名「EHPE−3150」(軟化温度71℃)が挙げられる。
 エポキシ樹脂(3)としては、例えば、1,4−ブタンジオールのジグリシジルエーテル、1,6−ヘキサンジオールのジグリシジルエーテル、グリセリンのトリグリシジルエーテル、トリメチロールプロパンのトリグリシジルエーテル、ポリエチレングリコールのジグリシジルエーテル、ポリプロピレングリコールのジグリシジルエーテル、炭素数が2~9、好ましくは2~4のアルキレン基を含むポリオキシアルキレングリコールやポリテトラメチレンエーテルグリコール等を含む長鎖ポリオールのポリグリシジルエーテルの如き脂肪族エポキシ樹脂が挙げられる。
 エポキシ樹脂(4)としては、例えば、フタル酸ジグリシジルエステル、テトラヒドロフタル酸ジグリシジルエステル、ヘキサヒドロフタル酸ジグリシジルエステル、ジグリシジル−p−オキシ安息香酸、サリチル酸のグリシジルエーテル−グリシジルエステル、ダイマー酸グリシジルエステルの如きグリシジルエステル型エポキシ樹脂及びこれらの水添化物が挙げられる。
 エポキシ樹脂(5)としては、例えば、トリグリシジルイソシアヌレート、環状アルキレン尿素のN,N’−ジグリシジル誘導体、p−アミノフェノールのN,N,O−トリグリシジル誘導体、m−アミノフェノールのN,N,O−トリグリシジル誘導体の如きグリシジルアミン型エポキシ樹脂及びこれらの水添化物が挙げられる。
 エポキシ樹脂(6)としては、例えば、グリシジル(メタ)アクリレートと、エチレン、酢酸ビニル、(メタ)アクリル酸エステルの如きラジカル重合性モノマーとの共重合体が挙げられる。
 エポキシ樹脂(7)としては、例えば、エポキシ化ポリブタジエンの如き共役ジエン化合物を主体とする重合体又はその部分水添物の重合体における不飽和炭素の二重結合をエポキシ化したものが挙げられる。
 エポキシ樹脂(8)としては、例えば、エポキシ化SBSの如き、ビニル芳香族化合物を主体とする重合体ブロックと、共役ジエン化合物を主体とする重合体ブロック又はその部分水添物の重合体ブロックとを同一分子内に持つブロック共重合体における、共役ジエン化合物に由来する不飽和炭素の二重結合をエポキシ化したものが挙げられる。
 エポキシ樹脂(9)としては、例えば、1分子当たり1個以上、好ましくは2個以上のエポキシ基を有するポリエステル樹脂が挙げられる。
 エポキシ樹脂(10)としては、例えば、上記エポキシ樹脂(1)~(9)の構造中にウレタン結合やポリカプロラクトン結合が導入された、ウレタン変性エポキシ樹脂やポリカプロラクトン変性エポキシ樹脂が挙げられる。
 上記の如きエポキシ樹脂の硬化反応に用いられる硬化剤は特に限定されず、従来公知のエポキシ樹脂用の硬化剤を用いることができる。例えば、アミン化合物、アミン化合物から合成されるポリアミノアミド化合物、ケチミン化合物等、3級アミン化合物、イミダゾール化合物、ヒドラジド化合物、メラミン化合物、酸無水物、フェノール化合物、熱潜在性カチオン重合触媒、光潜在性カチオン重合開始剤、ジシアンアミド及びその誘導体が挙げられる。これらの硬化剤は、単独で用いられてもよく、2種以上が併用されてもよい。
 上記アミン化合物としては、例えば、エチレンジアミン、ジエチレントリアミン、トリエチレンテトラミン、テトラエチレンペンタミン、ポリオキシプロピレンジアミン、ポリオキシプロピレントリアミンの如き鎖状脂肪族アミン及びその誘導体;メンセンジアミン、イソフォロンジアミン、ビス(4−アミノ−3−メチルシクロヘキシル)メタン、ジアミノジシクロヘキシルメタン、ビス(アミノメチル)シクロヘキサン、N−アミノエチルピペラジン、3,9−ビス(3−アミノプロピル)2,4,8,10−テトラオキサスピロ(5.5)ウンデカンの如き環状脂肪族アミン及びその誘導体;m−キシレンジアミン、α−(m/pアミノフェニル)エチルアミン、m−フェニレンジアミン、ジアミノジフェニルメタン、ジアミノジフェニルスルフォン、α,α−ビス(4−アミノフェニル)−p−ジイソプロピルベンゼンの如きの芳香族アミン及びその誘導体が挙げられる。
 上記アミン化合物から合成される化合物としては、例えば、上記アミン化合物と、コハク酸、アジピン酸、アゼライン酸、セバシン酸、ドデカ二酸、イソフタル酸、テレフタル酸、ジヒドロイソフタル酸、テトラヒドロイソフタル酸、ヘキサヒドロイソフタル酸等のカルボン酸化合物とから合成されるポリアミノアミド化合物及びその誘導体;上記アミン化合物と、ジアミノジフェニルメタンビスマレイミドの如きマレイミド化合物とから合成されるポリアミノイミド化合物及びその誘導体;上記アミン化合物とケトン化合物とから合成されるケチミン化合物及びその誘導体;上記アミン化合物と、エポキシ化合物、尿素、チオ尿素、アルデヒド化合物、フェノール化合物、アクリル化合物等とから合成されるポリアミノ化合物及びその誘導体等が挙げられる。
 上記3級アミン化合物としては、例えば、N,N−ジメチルピペラジン、ピリジン、ピコリン、ベンジルジメチルアミン、2−(ジメチルアミノメチル)フェノール、2,4,6−トリス(ジメチルアミノメチル)フェノール、1,8−ジアザビスシクロ(5.4.0)ウンデセン−1及びその誘導体等が挙げられる。
 上記イミダゾール化合物としては、例えば、2−メチルイミダゾール、2−エチル−4−メチルイミダゾール、2−ウンデシルイミダゾール、2−ヘプタデシルイミダゾール、2−フェニルイミダゾール及びその誘導体が挙げられる。
 上記ヒドラジド化合物としては、例えば、1,3−ビス(ヒドラジノカルボエチル)−5−イソプロピルヒダントイン、7,11−オクタデカジエン−1,18−ジカルボヒドラジド、エイコサン二酸ジヒドラジド、アジピン酸ジヒドラジド及びその誘導体が挙げられる。
 上記メラミン化合物としては、例えば、2,4−ジアミノ−6−ビニル−1,3,5−トリアジン及びその誘導体が挙げられる。
 上記酸無水物としては、例えば、フタル酸無水物、トリメリット酸無水物、ピロメリット酸無水物、ベンゾフェノンテトラカルボン酸無水物、エチレングリコールビスアンヒドロトリメリテート、グリセロールトリスアンヒドロトリメリテート、メチルテトラヒドロ無水フタル酸、テトラヒドロ無水フタル酸、ナジック酸無水物、メチルナジック酸無水物、トリアルキルテトラヒドロ無水フタル酸、ヘキサヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸、5−(2,5−ジオキソテトラヒドロフリル)−3−メチル−3−シクロヘキセン−1,2−ジカルボン酸無水物、トリアルキルテトラヒドロ無水フタル酸−無水マレイン酸付加物、ドデセニル無水コハク酸、ポリアゼライン酸無水物、ポリドデカン二酸無水物、クロレンド酸無水物及びその誘導体が挙げられる。
 上記フェノール化合物としては、例えば、フェノールノボラック、o−クレゾールノボラック、p−クレゾールノボラック、t−ブチルフェノールノボラック、ジシクロペンタジエンクレゾール及びその誘導体が挙げられる。
 上記熱潜在性カチオン重合触媒としては、例えば、6フッ化アンチモン、6フッ化リン、4フッ化ホウ素等を対アニオンとした、ベンジルスルホニウム塩、ベンジルアンモニウム塩、ベンジルピリジニウム塩、ベンジルホスホニウム塩の如きイオン性熱潜在性カチオン重合触媒;N−ベンジルフタルイミド、芳香族スルホン酸エステルの如き非イオン性熱潜在性カチオン重合触媒が挙げられる。
 上記熱硬化型変性ポリフェニレンエーテル樹脂としては、例えば、ポリフェニレンエーテル樹脂をグリシジル基、イソシアネート基、アミノ基の如き熱硬化性を有する官能基で変性した樹脂が挙げられる。これらの熱硬化型変性ポリフェニレンエーテル樹脂は、単独で用いられてもよく、2種以上が併用されてもよい。
 上記熱硬化性ポリイミド樹脂は、分子主鎖中にイミド結合を有する樹脂であり、例えば、芳香族ジアミンと芳香族テトラカルボン酸との縮合重合体、芳香族ジアミンとビスマレイミドとの付加重合体であるビスマレイミド樹脂、アミノ安息香酸ヒドラジドとビスマレイミドとの付加重合体であるポリアミノビスマレイミド樹脂、ジシアネート化合物とビスマレイミド樹脂とからなるビスマレイミドトリアジン樹脂が挙げられる。なかでもビスマレイミドトリアジン樹脂が好適に用いられる。これらの熱硬化性ポリイミド樹脂は、単独で用いられてもよく、2種以上が併用されてもよい。
 上記ケイ素樹脂は、分子鎖中にケイ素−ケイ素結合、ケイ素−炭素結合、シロキサン結合又はケイ素−窒素結合を含むものであり、例えば、ポリシロキサン、ポリカルボシラン、ポリシラザン等が挙げられる。
 上記尿素樹脂は、尿素とホルムアルデヒドとの付加縮合反応で得られる熱硬化性樹脂である。上記尿素樹脂の硬化反応に用いられる硬化剤としては、例えば、無機酸、有機酸、酸性硫酸ナトリウムのような酸性塩からなる顕在性硬化剤;カルボン酸エステル、酸無水物、塩化アンモニウム、リン酸アンモニウム等の塩類のような潜在性硬化剤が挙げられる。なかでも、貯蔵寿命等から潜在性硬化剤が好ましい。
 上記メラミン樹脂はメラミンおよびその誘導体とホルムアルデヒドとの付加縮合反応で得られる熱硬化性樹脂である。上記メラミン誘導体としては例えばメチル化メラミン、ブチル化メラミン、イソブチル化メラミンが挙げられる。中でも水溶性を有するメチル化メラミンが最も好ましい。上記メラミン樹脂の硬化反応に用いられる硬化剤としては、例えば、無機酸、有機酸、酸性硫酸ナトリウムのような酸性塩からなる顕在性硬化剤;カルボン酸エステル、酸無水物、塩化アンモニウム、リン酸アンモニウム等の塩類のような潜在性硬化剤が挙げられる。なかでも、貯蔵寿命等から潜在性硬化剤が好ましい。
(熱可塑性樹脂)
 本発明で使用される熱可塑性樹脂としては、融点またはガラス転移温度が150℃以上の結晶性又は非晶性の熱可塑性樹脂が好ましい。好ましい熱可塑性樹脂の具体例としては、ポリメタクリル酸エステル、ポリオレフィン、ポリスルホン、ポリエーテルスルホン、ポリエーテルケトン、ポリエーテルエーテルケトン、脂肪族ポリアミド、芳香族ポリエステル、芳香族ポリカーボネート、ポリエーテルイミド、ポリアリーレンオキシド、熱可塑性ポリイミドおよびポリアミドイミド樹脂が挙げられる。なかでもポリメタクリル酸エステル、芳香族ポリカーボネートが特に好ましい。これらの熱可塑性樹脂は単独で用いられても良く、2種類以上を併用しても良い。
(その他の任意成分)
 本発明のプリプレグのための、不織布多孔体と熱硬化性樹脂からなる組成物には、本発明の効果を阻害しない範囲で必要に応じて適宜、ポリビニルアセタール樹脂やゴム類の如き樹脂成分を添加することができる。ゴム類としては例えば、スチレン系エラストマー、オレフィン系エラストマー、ウレタン系エラストマー、ポリエステル系エラストマーが挙げられる。マトリクス樹脂との相溶性を高めるために、これらの熱可塑性エラストマーを官能基変性したものが好ましい。これらの熱可塑性エラストマーは、単独で用いられてもよく、2種以上が併用されてもよい。
 上記ゴムとしては、例えば、イソプレンゴム、ブタジエンゴム、1,2−ポリブタジエン、スチレン−ブタジエンゴム、ニトリルゴム、ブチルゴム、エチレン−プロピレンゴム、シリコーンゴム、ウレタンゴムが挙げられる。樹脂との相溶性を高めるために、これらのゴムを官能基変性したものが好ましい。これらのゴムは単独で用いられてもよく、2種以上が併用されてもよい。これらポリビニルアセタール樹脂やゴム類のような他の樹脂成分の配合量としては、熱硬化性樹脂の特徴を活かすため、熱硬化性樹脂に対して1質量部以下の配合量が好ましく、0.8質量部以下がより好ましい。他の樹脂成分の配合量が、熱硬化性樹脂1質量部に対し1質量部を超えると樹脂硬化物の難燃性が損なわれることがある。また熱可塑性樹脂を含む場合には熱硬化性樹脂1質量部に対して0.4質量部以下が好ましく、0.3質量部以下がより好ましい。
 また、本発明のプリプレグのための、不織布多孔体と熱可塑性樹脂からなる組成物には、本発明の効果を阻害しない範囲で必要に応じて適宜、ゴム類を添加することができる。添加化合物として使用できるゴム類としては、例えば、イソプレンゴム、ブタジエンゴム、1,2−ポリブタジエン、スチレン−ブタジエンゴム、ニトリルゴム、ブチルゴム、エチレン−プロピレンゴム、シリコーンゴム、ウレタンゴム等が挙げられる。マトリクス樹脂との相溶性を高めるために、これらのゴムを官能基変性したものが好ましい。これらのゴム類は単独で用いられてもよく、2種以上が併用されてもよい。これらゴム類のような他の樹脂成分の配合量としては、熱可塑性樹脂の特徴を活かすため、熱可塑性樹脂1質量部に対して1質量部以下の配合量が好ましく、より好ましくは0.8質量部以下の配合量である。ゴム成分の配合量が、熱可塑性樹脂1質量部に対して1質量部を超えると樹脂成形物の難燃性が損なわれることがある。
 本発明で用いられる熱硬化性樹脂もしくは熱可塑性樹脂は、窒化ホウ素ナノチューブより成る不織布多孔体、及び必要により他の添加剤と複合されプリプレグに成形後、更に加熱し成形されることにより最終的な成形物を与える。
(プリプレグの製造方法について)
 本発明の熱硬化性樹脂を用いたプリプレグは、以下に述べる方法によって製造される。即ち、熱硬化性樹脂を、これら熱硬化性樹脂を溶解可能な有機溶媒、あるいは水系溶媒に分散した溶液に、窒化ホウ素ナノチューブ繊維より成る不織布多孔体を浸漬させて熱硬化性樹脂を含有する上記溶液を不織布多孔体内に十分に含浸せしめ、次いで加圧下に加熱することより溶媒を蒸発させ、同時に予備硬化(予備熱硬化)させることにより製造される。これにより不織布多孔体と熱硬化性樹脂を一体化させたプリプレグが得られる。
 上記予備硬化の条件は使用する熱硬化性樹脂の種類により異なるが、最終的な硬化成形体を形成するために必要となる硬化反応を最後まで進行させることのないように適宜選定される。このような条件は当業者が公知の知見を基に、必要により簡単な実験を行うことにより容易に選定することができる。
 また、本発明の熱可塑性樹脂プリプレグは、以下に述べる方法によって製造される。即ち、マトリクスとなる熱可塑性樹脂を、窒化ホウ素ナノチューブよりなる不織布多孔体と共に加圧下で加熱することで該熱可塑性樹脂を融解させ不織布多孔体の多孔をなす繊維空隙に充填せしめ、次いで熱可塑性樹脂を冷却固化させる方法、あるいはマトリクスである熱可塑性樹脂の溶液若しくは分散液を、窒化ホウ素ナノチューブよりなる不織布多孔体に含浸せしめ、次いで加熱若しくは減圧により溶媒を蒸発させることにより該熱可塑性樹脂を該窒化ホウ素ナノチューブ不織布多孔体の多孔体空隙に充填させることにより製造される。これにより窒化ホウ素ナノチューブからなる不織布多孔体と熱可塑性樹脂とをナノレベルで一体化させたプリプレグが得られる。
 熱可塑性樹脂を溶解または分散させるための上記溶媒としては、好ましくは熱可塑性樹脂の種類に応じて、例えば芳香族系炭化水素、アルコール、ケトン、ハロゲン化炭化水素から選ばれる1種類以上の有機溶媒または該有機溶媒と水との混合溶媒等を好適に用いることができる。具体的には、芳香族系炭化水素として、例えばベンゼン、トルエン、キシレン等が、アルコールとして、例えばメタノール、エタノール、イソプロパノール、メチルセロソルブ等が、ケトンとして、例えばアセトン、メチルエチルケトン、メチルイソブチルケトン等が、更にハロゲン化炭化水素として、例えば塩化メチレン、ジクロロエタン、テトラクロロエタン等が挙げられる。中でも好ましいものは、エタノール、イソプロパノール、アセトン若しくはそれらと水との混合物、又は塩化メチレン、ジクロロエタン等である。
 上記溶媒は、窒化ホウ素ナノチューブからなる不織布多孔体を浸漬させたときに多孔体繊維間の空隙に浸入し、適度に開繊させるという作用もあるので、分散溶液中の熱可塑性樹脂の濃度が1~50質量%であることが好ましく、1~30質量%であることがより好ましく、5~20質量%であることが更に好ましい。
 窒化ホウ素ナノチューブからなる不織布多孔体を浸漬させるときのサスペンジョンの温度は、樹脂の分散状態が良好に保たれている限り特に制限は無く、また用いられる熱可塑性樹脂や分散媒の種類、濃度によって異なるが、5~50℃が好ましく、5~30℃がより好ましく、15~30℃がより一層好ましい。浸漬時間は、熱可塑性樹脂の付着量にも依存するが、通常は5~180秒間で充分である。
 本発明の、熱硬化性樹脂を用いたプリプレグ、又は熱可塑性樹脂を用いたプリプレグ1枚以上を金型プレス法、オートクレーブ法、加熱プレス法等で加熱・加圧して成形板とすることができる。
 なお、熱硬化性樹脂を用いたプリプレグを、加熱を伴う方法で成形することにより硬化処理も兼ねることができ、また、予めプリプレグを板状に作り、これを加熱等により硬化して成形板とすることもできる。
 また、本発明のプリプレグを複数枚用いて上記のように成形処理を行い、積層体の成形板を得ることができる。更には、本発明のプリプレグ1枚以上と他の素材を用いて、上記のように加圧下に加熱して積層体の成形板を得ることもできる。
The present invention will be described in detail below.
(Boron nitride nanotubes and their non-woven porous bodies)
In the present invention, the boron nitride nanotube is a tube-shaped material made of boron nitride, and has a structure in which a hexagonal mesh surface forms a tube parallel to the tube axis and is a single tube or multiple tube. preferable. The average diameter of the boron nitride nanotubes is preferably 0.4 nm to 1 μm, more preferably 0.6 to 500 nm, and even more preferably 0.8 to 200 nm. The average diameter here means the average outer diameter in the case of a single pipe, and the average outer diameter of the outermost pipe in the case of a multiple pipe. The average length is preferably 10 μm or less, more preferably 5 μm or less. The average aspect ratio is preferably 5 or more, and more preferably 10 or more. The upper limit of the average aspect ratio is not limited as long as the average length is 10 μm or less, but the upper limit is approximately 25,000. Boron nitride nanotubes having an average diameter of 0.4 nm to 1 μm and an average aspect ratio of 5 or more are particularly preferable.
The average diameter and average aspect ratio of boron nitride nanotubes can be determined from observation with an electron microscope. For example, a TEM (transmission electron microscope) measurement is performed, and the diameter and the length in the longitudinal direction of the boron nitride nanotube can be directly measured from the image. The form of the boron nitride nanotubes in the composition can be grasped by, for example, TEM measurement of a fiber cross section cut parallel to the fiber axis.
Boron nitride nanotubes can be synthesized using, for example, arc discharge, laser heating, or chemical vapor deposition. It can also be obtained by a method of using nickel boride as a catalyst and synthesizing borazine as a raw material, or a method of synthesizing boron oxide and nitrogen using carbon nanotubes as a template. The boron nitride nanotubes used in the present invention are not limited to those produced by these methods. As the boron nitride nanotubes in the present invention, boron nitride nanotubes subjected to surface modification such as strong acid treatment, chemical modification, or coating with other polymers can also be used. In particular, those coated with a polymer preferably have strong interaction with boron nitride nanotubes and strong interaction with thermosetting or thermoplastic matrix resin. Examples of these polymers include conjugated polymers such as polyphenylene vinylene polymers, polythiophene polymers, polyphenylene polymers, polypyrrole polymers, polyaniline polymers, and polyacetylene polymers. Of these, polyphenylene vinylene polymers and polythiophene polymers are preferable. Furthermore, in addition to the conjugated polymer, it may be coated with another resin having compatibility or reactivity with the matrix resin in order to improve the adhesion, reactivity, etc. with the matrix resin, if necessary. For example, when the thermosetting matrix resin is a phenol resin, it is also preferable to modify the surface of the boron nitride nanotube by attaching a novolac type phenol resin or a resol type phenol resin.
In addition to coating with a conjugated polymer or matrix resin, boron nitride nanotubes can be surface-coated with a coupling agent. Examples of the coupling agent used here include silane coupling agents, titanate coupling agents, and aluminate coupling agents. Examples of silane coupling agents include triethoxysilane, vinyltris (2-methoxyethoxy) silane, N- (2-aminoethyl) 3-aminopropylmethyldimethoxysilane, and N- (2-aminoethyl) 3-aminopropyl. Trimethoxysilane, 3-aminopropyltriethoxysilane, 3-glucidoxypropyltrimethoxysilane, 3-glucidoxypropylmethyldimethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 3-chloro Examples include propylmethyldimethoxysilane, 3-chloropropyltrimethoxysilane, 3-methacryloxypropyltrimethoxysilane, and 3-mercapropropyltrimethoxysilane. Examples of titanate coupling agents include isopropyl triisostearoyl titanate, isopropyl oris (dioctyl bisphosphate) titanate, isopropyl tri (N-aminoethyl-aminoethyl) titanate, tetraoctyl bis (ditridecyl phosphite) titanate, tetra (2,2-diallyloxymethyl-1-butyl) bis (ditridecyl) phosphite titanate, bis (dioctyl bisphosphate) oxyacetate titanate, bis (dioctyl bisphosphate) ethylene titanate, isopropyltrioctanoyl titanate, isopropyldi Methacrylic isostearoyl titanate, isopropyltridodecylbenzenesulfonyl titanate, isopropylisostearoyldia Riruchitaneto, isopropyl tri (dioctyl phosphate) titanate, isopropyl tricumylphenyl titanate, tetraisopropyl bis (dioctyl phosphite) titanate. Examples of the aluminate coupling agent include acetoalkoxyaluminum diisopropylate. These compounds are used as an aqueous solution, a solution of an organic solvent such as alcohol, ketone, glycol or hydrocarbon, or a mixed solvent solution of water and these organic solvents. If necessary, the pH of the above solution can be adjusted with an acid such as acetic acid or hydrochloric acid, or an alkali.
In the present invention, the boron nitride nanotubes obtained as described above are used in the form of a nonwoven fabric (hereinafter sometimes referred to as a nonwoven fabric porous body). In order to make the boron nitride nanotube into a nonwoven fabric porous body, a known method for producing a nonwoven fabric can be applied. Among these, a method is simple and preferable in which a dispersion in which boron nitride nanotubes are dispersed in a solvent is filtered or wet-paper-made, and the boron nitride nanotubes are collected in a sheet shape and then dried. In this case, examples of the solvent for dispersing the boron nitride nanotubes include organic solvents such as alcohols having 1 to 10 carbon atoms, amines, organic carboxylic acids, organic carboxylic esters, organic acid amides, ketones, ethers, sulfoxides, sulfones, and sulfolanes. , Water or water containing a surfactant. The mixing amount of the boron nitride nanotube and the solvent is preferably 1 to 100,000 mL, more preferably 2 to 10,000 mL, more preferably 5 to 1,000 mL per 1 g of boron nitride nanotube. More preferred is an amount of 10 to 500 mL. Moreover, in order to improve the dispersibility of the boron nitride nanotube in the solvent, stirring / shaking treatment or ultrasonic treatment may be performed.
The non-woven fabric porous body used in the present invention can be obtained by further drying the boron nitride nanotube sheet obtained by filtration of the above dispersion. The drying treatment may be natural drying or heat drying, may be drying under an atmospheric pressure or drying under reduced pressure, and may be continuous or batch.
Even if boron nitride nanotubes are surface-treated with a conjugated polymer or a silane coupling agent as described above, a nonwoven fabric-like porous body can be obtained in the same manner as described above. It can use suitably for the prepreg of.
Boron nitride nanotubes are known not only to have excellent mechanical properties and thermal conductivity comparable to carbon nanotubes, but also to be chemically stable and have better oxidation resistance than carbon nanotubes. Further, it has a local polar structure due to dipole interaction between boron atom and nitrogen atom, and it is expected that the affinity and dispersibility to the medium having the polar structure are superior to those of carbon nanotubes. In addition, because it has a wide band gap in terms of electronic structure, it is insulative, and can be expected as an insulating heat dissipation material, and since it is white unlike carbon nanotubes, it has characteristics such as being applicable to applications that dislike coloring By using this, it becomes possible to create a prepreg utilizing the characteristics of the polymer.
The composition for forming the prepreg of the present invention contains a nonwoven fabric porous body made of boron nitride nanotubes in the range of 1 to 99 parts by mass with respect to 99 to 1 parts by mass of the thermosetting resin or thermoplastic resin. . Here, the total of the mass parts of the resin and the nonwoven fabric porous body is 100 parts by mass. More preferably, the nonwoven fabric porous body composed of boron nitride nanotubes is contained in the range of 5 to 80 parts by mass with respect to 95 to 20 parts by mass of the thermosetting resin or thermoplastic resin, and more preferably thermosetting. The nonwoven fabric porous body made of boron nitride nanotubes is contained in the range of 10 to 70 parts by mass with respect to 90 to 30 parts by mass of the resin or thermoplastic resin.
By setting it within the above range, the nonwoven fabric porous body made of boron nitride nanotubes can be efficiently combined with the thermosetting resin. Moreover, when there are too many nonwoven fabric porous bodies which consist of a boron nitride nanotube with respect to resin, it becomes difficult for the resin matrix to fully coat | cover the nonwoven fabric porous body, and is unpreferable. The resin composition of the present invention may contain boron nitride flakes derived from boron nitride nanotubes, catalytic metals, and the like.
(Thermosetting resin)
Examples of the thermosetting resin used in the present invention include an epoxy resin, a thermosetting modified polyphenylene ether resin, a thermosetting polyimide resin, a silicon resin, a benzoxazine resin, a urea resin, a melamine resin, a furan resin, and an aniline resin. Is mentioned. These thermosetting resins may be used alone or in combination of two or more. Among the above thermosetting resins, epoxy resins, thermosetting modified polyphenylene ether resins, thermosetting polyimide resins, silicon resins, urea resins, melamine resins, and the like are preferable. It is preferable that at least one selected from these resins accounts for 50% by mass or more of the thermosetting resin. These thermosetting resins used in the present invention have polar atoms such as oxygen and nitrogen atoms in a polymer molecular chain, and as a result, polar boron nitride nanotubes having a structure defined at the nano level and the molecular level. Can interact electrostatically. In prepregs composed of a composite composition resulting from the synergistic result of the specific interaction between polymer and nanotubes and the high specific surface area of fibers with nano-sized diameters, the conventional bulk Compared to thermosetting resin composite compositions at the level, heat resistance, thermal conductivity and mechanical properties can be improved more efficiently, and high performance exceeding the range of thermosetting resin prepregs with bulk inorganic filler added is achieved. It is also expected to do.
The epoxy resin is an organic compound having at least one epoxy group. The number of epoxy groups in the epoxy resin is preferably 1 or more per molecule, and more preferably 2 or more per molecule. Here, the number of epoxy groups per molecule is obtained by dividing the total number of epoxy groups of the epoxy resin by the number of moles of the epoxy resin.
As the epoxy resin, conventionally known epoxy resins can be used, and examples thereof include epoxy resins (1) to (10) described below. These epoxy resins may be used independently and 2 or more types may be used together.
Examples of the epoxy resin (1) include bisphenol type epoxy resins such as bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol AD type epoxy resin, and bisphenol S type epoxy resin; phenol novolac type epoxy resin, cresol novolac type epoxy Examples thereof include novolak type epoxy resins such as resins; aromatic epoxy resins such as trisphenol methane triglycidyl ether, and hydrogenated products and brominated products thereof.
Examples of the epoxy resin (2) include 3,4-epoxycyclohexylmethyl-3,4-epoxycyclohexanecarboxylate, 3,4-epoxy-2-methylcyclohexylmethyl-3,4-epoxy-2-methylcyclohexanecarboxyl. Bis (3,4-epoxycyclohexyl) adipate, bis (3,4-epoxycyclohexylmethyl) adipate, bis (3,4-epoxy-6-methylcyclohexylmethyl) adipate, 2- (3,4-epoxycyclohexyl) -5,5-spiro-3,4-epoxy) cyclohexanone-meta-dioxane, alicyclic epoxy resins such as bis (2,3-epoxycyclopentyl) ether. As what is marketed among this epoxy resin (2), the brand name "EHPE-3150" (softening temperature 71 degreeC) by Daicel Chemical Industries Ltd. is mentioned, for example.
Examples of the epoxy resin (3) include 1,4-butanediol diglycidyl ether, 1,6-hexanediol diglycidyl ether, glycerin triglycidyl ether, trimethylolpropane triglycidyl ether, and polyethylene glycol diglycidyl ether. Fats such as glycidyl ether, diglycidyl ether of polypropylene glycol, polyglycidyl ether of long-chain polyols containing polyoxyalkylene glycols containing 2 to 9, preferably 2 to 4 alkylene groups, polytetramethylene ether glycol, etc. Group epoxy resin.
Examples of the epoxy resin (4) include diglycidyl phthalate, diglycidyl tetrahydrophthalate, diglycidyl hexahydrophthalate, diglycidyl-p-oxybenzoic acid, glycidyl ether-glycidyl ester of salicylic acid, and glycidyl dimer acid. Examples thereof include glycidyl ester type epoxy resins such as esters and hydrogenated products thereof.
Examples of the epoxy resin (5) include triglycidyl isocyanurate, N, N′-diglycidyl derivative of cyclic alkylene urea, N, N, O-triglycidyl derivative of p-aminophenol, and N, N of m-aminophenol. , Glycidylamine type epoxy resins such as O-triglycidyl derivatives, and hydrogenated products thereof.
Examples of the epoxy resin (6) include a copolymer of glycidyl (meth) acrylate and a radical polymerizable monomer such as ethylene, vinyl acetate, and (meth) acrylic acid ester.
Examples of the epoxy resin (7) include those obtained by epoxidizing a double bond of unsaturated carbon in a polymer mainly composed of a conjugated diene compound such as epoxidized polybutadiene or a polymer of partially hydrogenated product thereof.
Examples of the epoxy resin (8) include a polymer block mainly composed of a vinyl aromatic compound such as epoxidized SBS, a polymer block mainly composed of a conjugated diene compound, or a polymer block of a partially hydrogenated product thereof. And an epoxidized unsaturated carbon double bond derived from a conjugated diene compound in a block copolymer having the same in the same molecule.
Examples of the epoxy resin (9) include a polyester resin having one or more, preferably two or more epoxy groups per molecule.
Examples of the epoxy resin (10) include urethane-modified epoxy resins and polycaprolactone-modified epoxy resins in which urethane bonds and polycaprolactone bonds are introduced into the structures of the epoxy resins (1) to (9).
The curing agent used for the curing reaction of the epoxy resin as described above is not particularly limited, and conventionally known curing agents for epoxy resins can be used. For example, amine compounds, polyaminoamide compounds synthesized from amine compounds, ketimine compounds, etc., tertiary amine compounds, imidazole compounds, hydrazide compounds, melamine compounds, acid anhydrides, phenol compounds, thermal latent cationic polymerization catalysts, photolatency Examples include cationic polymerization initiators, dicyanamide and derivatives thereof. These hardening | curing agents may be used independently and 2 or more types may be used together.
Examples of the amine compound include chain aliphatic amines such as ethylenediamine, diethylenetriamine, triethylenetetramine, tetraethylenepentamine, polyoxypropylenediamine, polyoxypropylenetriamine, and derivatives thereof; mensendiamine, isophoronediamine, bis (4-amino-3-methylcyclohexyl) methane, diaminodicyclohexylmethane, bis (aminomethyl) cyclohexane, N-aminoethylpiperazine, 3,9-bis (3-aminopropyl) 2,4,8,10-tetraoxa Cycloaliphatic amines such as spiro (5.5) undecane and derivatives thereof; m-xylenediamine, α- (m / p aminophenyl) ethylamine, m-phenylenediamine, diaminodiphenylmethane, diaminodiphe Rusurufon, alpha, alpha-bis (4-aminophenyl)-p-aromatic amines and their derivatives such as diisopropyl benzene.
Examples of the compound synthesized from the amine compound include the amine compound, succinic acid, adipic acid, azelaic acid, sebacic acid, dodecadic acid, isophthalic acid, terephthalic acid, dihydroisophthalic acid, tetrahydroisophthalic acid, hexahydro Polyaminoamide compounds and derivatives thereof synthesized from carboxylic acid compounds such as isophthalic acid; polyaminoimide compounds and derivatives thereof synthesized from the above amine compounds and maleimide compounds such as diaminodiphenylmethane bismaleimide; and the above amine compounds and ketone compounds Ketimine compounds synthesized from the above and derivatives thereof; polyamino compounds synthesized from the above amine compounds and epoxy compounds, urea, thiourea, aldehyde compounds, phenolic compounds, acrylic compounds, etc. and derivatives thereof Etc. The.
Examples of the tertiary amine compound include N, N-dimethylpiperazine, pyridine, picoline, benzyldimethylamine, 2- (dimethylaminomethyl) phenol, 2,4,6-tris (dimethylaminomethyl) phenol, 1, And 8-diazabiscyclo (5.4.0) undecene-1 and derivatives thereof.
Examples of the imidazole compound include 2-methylimidazole, 2-ethyl-4-methylimidazole, 2-undecylimidazole, 2-heptadecylimidazole, 2-phenylimidazole, and derivatives thereof.
Examples of the hydrazide compound include 1,3-bis (hydrazinocarboethyl) -5-isopropylhydantoin, 7,11-octadecadien-1,18-dicarbohydrazide, eicosane diacid dihydrazide, adipic acid dihydrazide, and And derivatives thereof.
Examples of the melamine compound include 2,4-diamino-6-vinyl-1,3,5-triazine and derivatives thereof.
Examples of the acid anhydride include phthalic anhydride, trimellitic anhydride, pyromellitic anhydride, benzophenone tetracarboxylic anhydride, ethylene glycol bisanhydro trimellitate, glycerol tris anhydro trimellitate, Methyltetrahydrophthalic anhydride, tetrahydrophthalic anhydride, nadic anhydride, methyl nadic anhydride, trialkyltetrahydrophthalic anhydride, hexahydrophthalic anhydride, methylhexahydrophthalic anhydride, 5- (2,5-dioxo Tetrahydrofuryl) -3-methyl-3-cyclohexene-1,2-dicarboxylic acid anhydride, trialkyltetrahydrophthalic anhydride-maleic anhydride adduct, dodecenyl succinic anhydride, polyazelinic anhydride, polydodecanedioic anhydride No chlorendic acid Things and derivatives thereof.
Examples of the phenol compound include phenol novolak, o-cresol novolak, p-cresol novolak, t-butylphenol novolak, dicyclopentadiene cresol and derivatives thereof.
Examples of the thermal latent cationic polymerization catalyst include benzylsulfonium salt, benzylammonium salt, benzylpyridinium salt, and benzylphosphonium salt using antimony hexafluoride, phosphorus hexafluoride, boron tetrafluoride and the like as counter anions. Examples include ionic thermal latent cationic polymerization catalysts; nonionic thermal latent cationic polymerization catalysts such as N-benzylphthalimide and aromatic sulfonic acid esters.
Examples of the thermosetting modified polyphenylene ether resin include resins obtained by modifying polyphenylene ether resins with functional groups having thermosetting properties such as glycidyl groups, isocyanate groups, and amino groups. These thermosetting modified polyphenylene ether resins may be used alone or in combination of two or more.
The thermosetting polyimide resin is a resin having an imide bond in the molecular main chain, for example, a condensation polymer of an aromatic diamine and an aromatic tetracarboxylic acid, or an addition polymer of an aromatic diamine and a bismaleimide. Examples thereof include a bismaleimide resin, a polyamino bismaleimide resin which is an addition polymer of aminobenzoic acid hydrazide and bismaleimide, and a bismaleimide triazine resin composed of a dicyanate compound and a bismaleimide resin. Of these, bismaleimide triazine resin is preferably used. These thermosetting polyimide resins may be used alone or in combination of two or more.
The silicon resin contains a silicon-silicon bond, silicon-carbon bond, siloxane bond, or silicon-nitrogen bond in the molecular chain, and examples thereof include polysiloxane, polycarbosilane, and polysilazane.
The urea resin is a thermosetting resin obtained by addition condensation reaction of urea and formaldehyde. Examples of the curing agent used for the curing reaction of the urea resin include an apparent curing agent composed of an inorganic acid, an organic acid, an acidic salt such as acidic sodium sulfate; a carboxylic acid ester, an acid anhydride, ammonium chloride, and phosphoric acid. Examples include latent curing agents such as salts such as ammonium. Among these, a latent curing agent is preferable from the viewpoint of shelf life.
The melamine resin is a thermosetting resin obtained by addition condensation reaction of melamine and its derivatives with formaldehyde. Examples of the melamine derivative include methylated melamine, butylated melamine, and isobutylated melamine. Of these, methylated melamine having water solubility is most preferable. Examples of the curing agent used for the curing reaction of the melamine resin include an apparent curing agent composed of an acidic salt such as an inorganic acid, an organic acid, and acidic sodium sulfate; a carboxylic acid ester, an acid anhydride, ammonium chloride, and phosphoric acid. Examples include latent curing agents such as salts such as ammonium. Among these, a latent curing agent is preferable from the viewpoint of shelf life.
(Thermoplastic resin)
The thermoplastic resin used in the present invention is preferably a crystalline or amorphous thermoplastic resin having a melting point or glass transition temperature of 150 ° C. or higher. Specific examples of preferred thermoplastic resins include polymethacrylate, polyolefin, polysulfone, polyethersulfone, polyetherketone, polyetheretherketone, aliphatic polyamide, aromatic polyester, aromatic polycarbonate, polyetherimide, polyarylene. Oxides, thermoplastic polyimides and polyamideimide resins are mentioned. Of these, polymethacrylates and aromatic polycarbonates are particularly preferred. These thermoplastic resins may be used alone or in combination of two or more.
(Other optional ingredients)
For the prepreg of the present invention, a resin component such as a polyvinyl acetal resin or rubber is appropriately added to the composition comprising a nonwoven fabric porous body and a thermosetting resin, as long as the effect of the present invention is not impaired. can do. Examples of rubbers include styrene elastomers, olefin elastomers, urethane elastomers, and polyester elastomers. In order to enhance the compatibility with the matrix resin, those obtained by functionally modifying these thermoplastic elastomers are preferable. These thermoplastic elastomers may be used alone or in combination of two or more.
Examples of the rubber include isoprene rubber, butadiene rubber, 1,2-polybutadiene, styrene-butadiene rubber, nitrile rubber, butyl rubber, ethylene-propylene rubber, silicone rubber, and urethane rubber. In order to improve the compatibility with the resin, those rubbers modified with functional groups are preferred. These rubbers may be used alone or in combination of two or more. As the blending amount of other resin components such as these polyvinyl acetal resins and rubbers, a blending amount of 1 part by mass or less is preferable with respect to the thermosetting resin in order to make use of the characteristics of the thermosetting resin. Less than the mass part is more preferable. If the blending amount of other resin components exceeds 1 part by mass with respect to 1 part by mass of the thermosetting resin, the flame retardancy of the resin cured product may be impaired. Moreover, when a thermoplastic resin is included, 0.4 mass part or less is preferable with respect to 1 mass part of thermosetting resins, and 0.3 mass part or less is more preferable.
Moreover, rubbers can be appropriately added to the composition comprising the nonwoven fabric porous body and the thermoplastic resin for the prepreg of the present invention as necessary within a range that does not impair the effects of the present invention. Examples of rubbers that can be used as additive compounds include isoprene rubber, butadiene rubber, 1,2-polybutadiene, styrene-butadiene rubber, nitrile rubber, butyl rubber, ethylene-propylene rubber, silicone rubber, and urethane rubber. In order to enhance compatibility with the matrix resin, those rubbers modified with functional groups are preferred. These rubbers may be used alone or in combination of two or more. As the blending amount of other resin components such as rubbers, the blending amount of 1 part by mass or less is preferable with respect to 1 part by mass of the thermoplastic resin in order to make use of the characteristics of the thermoplastic resin, more preferably 0.8. The blending amount is not more than part by mass. If the blending amount of the rubber component exceeds 1 part by mass with respect to 1 part by mass of the thermoplastic resin, the flame retardancy of the resin molded product may be impaired.
The thermosetting resin or thermoplastic resin used in the present invention is a non-woven fabric porous body made of boron nitride nanotubes and, if necessary, combined with other additives, molded into a prepreg, and further heated to be molded. Give the molding.
(About prepreg manufacturing method)
The prepreg using the thermosetting resin of the present invention is produced by the method described below. That is, the thermosetting resin contains the thermosetting resin by immersing a nonwoven fabric porous body made of boron nitride nanotube fibers in a solution in which the thermosetting resin is dissolved in an organic solvent or an aqueous solvent in which these thermosetting resins can be dissolved. It is manufactured by sufficiently impregnating the solution in the nonwoven fabric porous body, and then evaporating the solvent by heating under pressure and simultaneously pre-curing (pre-thermo-curing). Thereby, the prepreg which integrated the nonwoven fabric porous body and the thermosetting resin is obtained.
The pre-curing conditions vary depending on the type of thermosetting resin to be used, but are appropriately selected so that the curing reaction required for forming the final cured molded body does not proceed to the end. Such conditions can be easily selected by those skilled in the art based on known knowledge by performing simple experiments as necessary.
Moreover, the thermoplastic resin prepreg of the present invention is produced by the method described below. That is, the thermoplastic resin as a matrix is heated together with a nonwoven fabric porous body made of boron nitride nanotubes under pressure to melt the thermoplastic resin and fill the fiber voids forming the porosity of the nonwoven fabric porous body, and then the thermoplastic resin Or a solution or dispersion of a thermoplastic resin as a matrix is impregnated into a nonwoven fabric porous body made of boron nitride nanotubes, and then the solvent is evaporated by heating or decompression to thereby nitride the thermoplastic resin. It is manufactured by filling a porous body void of a boron nanotube nonwoven fabric porous body. Thereby, the prepreg which integrated the nonwoven fabric porous body which consists of a boron nitride nanotube, and a thermoplastic resin at nano level is obtained.
The solvent for dissolving or dispersing the thermoplastic resin is preferably one or more organic solvents selected from, for example, aromatic hydrocarbons, alcohols, ketones, and halogenated hydrocarbons, depending on the type of the thermoplastic resin. Alternatively, a mixed solvent of the organic solvent and water can be suitably used. Specifically, as aromatic hydrocarbons, for example, benzene, toluene, xylene and the like, as alcohols, for example, methanol, ethanol, isopropanol, methyl cellosolve, etc., as ketones, for example, acetone, methyl ethyl ketone, methyl isobutyl ketone, etc. Further, examples of the halogenated hydrocarbon include methylene chloride, dichloroethane, tetrachloroethane and the like. Among them, preferred are ethanol, isopropanol, acetone or a mixture thereof with water, methylene chloride, dichloroethane and the like.
The solvent also has the effect of entering the voids between the porous fibers when the non-woven porous body made of boron nitride nanotubes is immersed and appropriately opening the fiber, so the concentration of the thermoplastic resin in the dispersion solution is 1 It is preferably ~ 50% by mass, more preferably 1-30% by mass, still more preferably 5-20% by mass.
The temperature of the suspension when the nonwoven fabric porous body made of boron nitride nanotubes is immersed is not particularly limited as long as the resin dispersion state is maintained well, and varies depending on the type and concentration of the thermoplastic resin and dispersion medium used. However, 5 to 50 ° C. is preferable, 5 to 30 ° C. is more preferable, and 15 to 30 ° C. is even more preferable. The immersion time depends on the amount of the thermoplastic resin adhered, but usually 5 to 180 seconds is sufficient.
One or more prepregs using a thermosetting resin or thermoplastic resin according to the present invention can be heated and pressed by a die pressing method, an autoclave method, a heating pressing method, or the like to obtain a molded plate. .
A prepreg using a thermosetting resin can also serve as a curing treatment by molding by a method that involves heating. Also, a prepreg is made in advance into a plate shape and cured by heating, etc. You can also
Moreover, a shaping | molding process can be performed as mentioned above using two or more prepregs of this invention, and the shaping | molding board of a laminated body can be obtained. Furthermore, using one or more prepregs according to the present invention and other materials, it is possible to obtain a molded plate of a laminate by heating under pressure as described above.
 以下に実施例を示し、本発明を更に具体的に説明するが、本発明はこれら実施例の記載に限定されるものではない。なお、実施例1~2では、熱硬化性樹脂はエポキシ樹脂としてビスフェノールA型エポキシ樹脂(大日本インキ化学工業(株)製、エビクロン850、エポキシ当量:190)を、またメラミン樹脂として日産化学工業(株)製、サントップ・M700(樹脂固形分55%)を用いた。
 また、実施例3~4では、熱可塑性樹脂として、帝人化成(株)製の芳香族ポリカーボネート樹脂(AD5503、メルトフロレート54g/10min、平均分子量約15,000)、三菱レーヨン(株)製のポリメチルメタクリレート樹脂(ACRYPET(登録商標)VH001、メルトフロレート2.0g/10min、平均分子量約1,000,000)を用いた。
(1)熱膨張係数
 熱膨張係数は、TAインストルメント社製TA2940を用いて空気中、30~80℃の範囲で昇温速度10℃/分にて測定し、セカンドスキャンの値より求めた。
(2)熱伝導度
 熱伝導度は、50mm×80mmのサンプルを用い、プローブ法(非定常熱線法)により、迅速熱伝導率測定計(KEMTHERM QTM−D3型、京都電子工業(株)製)を用いて測定した。具体的には熱伝導率既知の基準試料の上に試料を乗せて、みかけの熱伝導率を次式により基準試料の熱伝導率(対数)に対してプロットし、偏差が0となるときの熱伝導率を内挿により求めて、試料の熱伝導率を導出した。
偏差={(未知試料込のみかけの熱伝導率)−(基準試料の熱伝導率)}/(基準試料の熱伝導率)
 参考例1 窒化ホウ素ナノチューブの製造
 窒化ホウ素製のるつぼに、1:1のモル比でホウ素と酸化マグネシウムを入れ、るつぼを高周波誘導加熱炉で1,300℃に加熱した。ホウ素と酸化マグネシウムは反応し、気体状の酸化ホウ素(B)とマグネシウムの蒸気が生成した。この生成物をアルゴンガスにより反応室へ移送し、温度を1,100℃に維持してアンモニアガスを導入した。酸化ホウ素とアンモニアが反応し、窒化ホウ素が生成した。1.55gの混合物を十分に加熱し、副生成物を蒸発させると、反応室の壁から310mgの白色の固体が得られた。続いて得られた白色固体を濃塩酸で洗浄、イオン交換水で中性になるまで洗浄後、60℃で減圧乾燥を行い窒化ホウ素ナノチューブ(以下、BNNTと略すことがある)を得た。この操作を繰り返す事で1gのBNNTを得た。いずれも、平均直径が27.6nm、平均長さが2,460nmのチューブ状であった。
 参考例2 窒化ホウ素ナノチューブ不織布多孔体の製造
 参考例1で得られた窒化ホウ素ナノチューブ1gを1−プロパノール100mlに添加して、3周波超音波洗浄器(アズワン社製、出力100W、28Hz)で10分超音波処理を行うことで窒化ホウ素ナノチューブが懸濁した分散液を得た。この窒化ホウ素ナノチューブが均一分散した懸濁液を、面積5cm×5cmの濾紙上に展開、溶媒吸引することにより捕集、乾燥することで目付け400g/mの窒化ホウ素ナノチューブ不織布を調製した。該不織布の走査型電子顕微鏡観察より、窒化ホウ素ナノチューブが互いに絡み合って積層した微細繊維構造を基本として不織布多孔体が形成されていることを確認した(以下、上記の窒化ホウ素ナノチューブ不織布を窒化ホウ素ナノチューブ不織布多孔体と称する)。
 実施例1
 参考例2で得られた窒化ホウ素ナノチューブ不織布多孔体1g(5cm×5cm)を金型基板上に静置した。これに、ビスフェノールA型エポキシ樹脂(大日本インキ化学工業(株)製、エビクロン850、エポキシ当量:190)57.96質量部、フェノール化合物(大日本インキ化学工業(株)製、フェノライト(登録商標)TD−2090、水酸基当量:105)32.04質量部からなるエポキシ樹脂組成物1.5gおよび硬化促進剤として、2−エチル−4−メチルイミダゾール(四国化成工業(株)製)0.1gを5mlのベンゼンで希釈混合した溶液を滴下したところ、溶液は窒化ホウ素ナノチューブ不織布多孔体内に均一に浸透した。この溶液が含浸された窒化ホウ素ナノチューブ不織布多孔体を室温にて2時間、ついで50℃下に2時間乾燥した。次いで、乾燥後の樹脂を複合した窒化ホウ素ナノチューブ不織布多孔体を金型に固定したまま110℃で3時間予備加熱(予備熱硬化)し、樹脂組成物からなる厚さ約1mmの板状成形体(プリプレグ)を作製した。プリプレグを金型より取り出し、更に170℃で30分間加熱して硬化を完了して成形板を得た。これを50×10mmおよび50mm×80mmに切り出すことにより試験用成形体を作成した。成形体の熱膨張係数は24.1ppm/℃であった。また、熱伝導率は9.1W/m・Kであった。
 実施例2
 参考例2で得られた窒化ホウ素ナノチューブ不織布多孔体1g(5cm×5cm)を金型基板上に静置した。これに、メラミン樹脂として日産化学工業(株)製、サントップ(登録商標)M700(樹脂固形分55%)1.5g、パラトルエンスルホン酸30%メタノール溶液を、樹脂液に対し0.1g滴下したところ、溶液は窒化ホウ素ナノチューブ不織布多孔体内に均一に浸透した。この溶液が含浸された窒化ホウ素ナノチューブ不織布多孔体を室温にて2時間、ついで50℃下に2時間乾燥した。次いで、乾燥後の樹脂を複合した窒化ホウ素ナノチューブ不織布多孔体を金型に固定したまま110℃で3時間予備加熱(予備熱硬化)し、樹脂組成物からなる厚さ約1mmの板状成形体(プリプレグ)を作製して成形板を得た。プリプレグを金型より取り出し、更に170℃で30分間加熱して硬化を完了した。これを50mm×10mmおよび50mm×80mmに切り出すことにより試験用成形体を作成した。成形体の熱膨張係数は21.7ppm/℃であった。また、熱伝導率は9.7W/m・Kであった。
 比較例1
 窒化ホウ素ナノチューブ不織布多孔体を含有しない以外は、実施例1と同様にエポキシ樹脂の成形体を作製した。成形体の熱膨張係数は45.5ppm/℃であった。また、熱伝導率は0.18W/m・Kであった。
 比較例2
 窒化ホウ素ナノチューブ不織布多孔体を含有しない以外は、実施例2と同様にメラミン樹脂の成形体を作製した。成形体の熱膨張係数は39.2ppm/℃であった。また、熱伝導率は0.17W/m・Kであった。
 以上の結果より本発明における、窒化ホウ素ナノチューブからなる不織布多孔体を含有する熱硬化性樹脂組成物は、窒化ホウ素ナノチューブを含有しない熱硬化性樹脂に比べて優れた耐熱特性、放熱特性および寸法安定性等を示すことがわかる。
 実施例3
 参考例2で得られた窒化ホウ素ナノチューブ不織布多孔体1g(5cm×8cm)を金型基板上に静置した。これに、芳香族ポリカーボネート樹脂1.5gを5mlの塩化メチレンに混合溶解した溶液を滴下したところ、溶液は窒化ホウ素ナノチューブ不織布多孔体内に均一に浸透した。この溶液が含浸された窒化ホウ素ナノチューブ不織布多孔体を、室温にて2時間、次いで50℃で2時間乾燥し、芳香族ポリカーボネートと窒化ホウ素ナノチューブ不織布多孔体からなる組成物(プリプレグ)を得た。この組成物を金型に固定したまま、200kg/cm(19.6MPa)の加圧下に210℃で5分間加熱し、厚さ約0.5mmのシート成形体を作成した。このシート成形体から、50mm×10mmの試験用成形体を切り出し、その一部を更に切り出して熱膨張係数の測定に用いた。また、上記シート成形体から50mm×50mmの試験用成形体を切り出し、熱伝導率の測定に用いた。結果を表1に示す。
 実施例4
 参考例2で得られた窒化ホウ素ナノチューブ不織布多孔体1g(5cm×8cm)を金型基板上に静置した。これに、ポリメチルメタクリレート樹脂を粒径約100μmに粉砕した粉末1.5gを均一に降り掛け、金型に固定したまま、200kg/cm(19.6MPa)の加圧下に180℃で5分間加熱し、ポリメチルメタクリレート樹脂と窒化ホウ素ナノチューブ不織布多孔体からなる組成物のプリプレグであるシート成形体(厚さ約0.5mm)を作成した。このシート成形体から、実施例3と同様に、試験用成形体を切り出して熱膨張係数、熱伝導率の測定に用いた。結果を表1に示す。
 比較例3
 窒化ホウ素ナノチューブ不織布多孔体を含有しない以外は、実施例3と同様に芳香族ポリカーボネート樹脂のシート成形体を作製し、熱膨張係数、熱伝導率の測定を行った。結果を表1に示す。
 比較例4
 窒化ホウ素ナノチューブ不織布多孔体を含有しない以外は、実施例4と同様にポリメチルメタクリレート樹脂の成形体を作製した。シート成形体を作製し、熱膨張係数、熱伝導率の測定を行った。結果を表1に示す。
 以上の結果より本発明における、窒化ホウ素系ナノチューブからなる不織布多孔体を含有する熱可塑性樹脂組成物は、窒化ホウ素ナノチューブを含有しない熱可塑性樹脂に比べて優れた耐熱特性、放熱特性および寸法安定性等を示すことがわかる。
Figure JPOXMLDOC01-appb-T000001
 以上のとおり、本発明により、ナノメートルオーダーの繊維径からなる窒化ホウ素ナノチューブにより構成される不織布多孔体の空隙に、熱硬化性樹脂もしくは熱可塑性樹脂をバルク繊維系不織布に比べてより細密かつ均質に含浸することができる。また、窒化ホウ素ナノチューブ自体が従来の無機熱伝導材に比べて遥かに高い熱伝導率を有するため、特別なフィラーを別途添加することなしに樹脂複合体としての放熱特性を効果的に獲得することができる。高度に熱伝導性のフィラーとしての機能を兼ねた窒化ホウ素ナノチューブの不織布多孔体に均質に樹脂が複合されることにより、両成分の相互作用が相乗的に発現し、プリプレグとしての耐熱性及び放熱性を向上できる。更に窒化ホウ素ナノチューブの優れた機械特性と大きな比表面積効果により、樹脂とチューブが十分に界面接触することになり、更に窒化ホウ素ナノチューブの密度が低い場合でもプリプレグの強度が維持され、成形物が損傷を受けることなく、樹脂ワニスを多孔構造内に含浸することができる。
 本発明のプリプレグ、および該プリプレグ1枚以上を加熱加圧して成形される成形板例えば積層板、および該積層板を絶縁層として用いるプリント配線板では、機械特性に加え、耐熱特性および高熱伝導性が発現するので、高温雰囲気下での使用が予想される自動車機器用のプリント配線板、パソコン等の高密度実装プリント配線板に代表される、熱伝導性と絶縁性が必要な電子機器に用いられる電子部品の素材として好適に利用することができる。
Examples Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to the description of these examples. In Examples 1 and 2, the thermosetting resin is a bisphenol A type epoxy resin (manufactured by Dainippon Ink & Chemicals, Ebiclon 850, epoxy equivalent: 190) as an epoxy resin, and Nissan Chemical Industries as a melamine resin. Suntop M700 (resin solid content: 55%) manufactured by KK was used.
In Examples 3 to 4, as the thermoplastic resin, an aromatic polycarbonate resin (AD5503, melt flow rate 54 g / 10 min, average molecular weight of about 15,000) manufactured by Teijin Chemicals Ltd., manufactured by Mitsubishi Rayon Co., Ltd. A polymethyl methacrylate resin (ACRYPET (registered trademark) VH001, melt flow rate 2.0 g / 10 min, average molecular weight of about 1,000,000) was used.
(1) Thermal expansion coefficient The thermal expansion coefficient was measured from the value of the second scan by measuring TA2940 manufactured by TA Instrument Co., Ltd. in the air at a temperature rising rate of 10 ° C / min in the range of 30 to 80 ° C.
(2) Thermal conductivity Thermal conductivity is measured using a 50 mm x 80 mm sample by a probe method (unsteady hot wire method) and a rapid thermal conductivity meter (KEMTHERM QTM-D3 type, manufactured by Kyoto Electronics Industry Co., Ltd.) It measured using. Specifically, a sample is placed on a reference sample with a known thermal conductivity, and the apparent thermal conductivity is plotted against the thermal conductivity (logarithm) of the reference sample according to the following formula. The thermal conductivity was obtained by interpolation, and the thermal conductivity of the sample was derived.
Deviation = {(apparent thermal conductivity including unknown sample) − (thermal conductivity of reference sample)} / (thermal conductivity of reference sample)
Reference Example 1 Production of Boron Nitride Nanotubes Boron and magnesium oxide were put into a boron nitride crucible at a molar ratio of 1: 1, and the crucible was heated to 1,300 ° C. in a high frequency induction heating furnace. Boron and magnesium oxide reacted to produce gaseous boron oxide (B 2 O 2 ) and magnesium vapor. This product was transferred to the reaction chamber with argon gas, and ammonia gas was introduced while maintaining the temperature at 1,100 ° C. Boron oxide and ammonia reacted to form boron nitride. When 1.55 g of the mixture was fully heated and the by-product was evaporated, 310 mg of a white solid was obtained from the walls of the reaction chamber. Subsequently, the obtained white solid was washed with concentrated hydrochloric acid and washed with ion-exchanged water until neutral, and then dried at 60 ° C. under reduced pressure to obtain boron nitride nanotubes (hereinafter sometimes abbreviated as BNNT). By repeating this operation, 1 g of BNNT was obtained. All were tube-shaped with an average diameter of 27.6 nm and an average length of 2,460 nm.
Reference Example 2 Production of Boron Nitride Nanotube Non-woven Fabric 1 g of boron nitride nanotubes obtained in Reference Example 1 was added to 100 ml of 1-propanol, and 10 with a three-frequency ultrasonic cleaner (manufactured by ASONE, output 100 W, 28 Hz). A dispersion liquid in which boron nitride nanotubes were suspended was obtained by performing minute ultrasonic treatment. The suspension in which the boron nitride nanotubes were uniformly dispersed was spread on a filter paper having an area of 5 cm × 5 cm, collected by sucking the solvent, and dried to prepare a boron nitride nanotube nonwoven fabric having a basis weight of 400 g / m 2 . Scanning electron microscope observation of the nonwoven fabric confirmed that a nonwoven fabric porous body was formed on the basis of a fine fiber structure in which boron nitride nanotubes were entangled with each other (hereinafter, the boron nitride nanotube nonwoven fabric was referred to as boron nitride nanotube). Called non-woven porous body).
Example 1
1 g (5 cm × 5 cm) of the boron nitride nanotube nonwoven porous body obtained in Reference Example 2 was allowed to stand on a mold substrate. To this, 57.96 parts by mass of a bisphenol A type epoxy resin (Dainippon Ink Chemical Co., Ltd., Ebicron 850, epoxy equivalent: 190), phenolic compound (Dainippon Ink Chemical Co., Ltd., Phenolite (registered) Trademark) TD-2090, hydroxyl group equivalent: 105) 1.5 g of an epoxy resin composition consisting of 32.04 parts by mass, and 2-ethyl-4-methylimidazole (manufactured by Shikoku Kasei Kogyo Co., Ltd.) as a curing accelerator 0. When a solution obtained by diluting 1 g with 5 ml of benzene was dropped, the solution uniformly penetrated into the porous body of the boron nitride nanotube nonwoven fabric. The porous boron nitride nanotube porous body impregnated with this solution was dried at room temperature for 2 hours and then at 50 ° C. for 2 hours. Next, the porous boron nitride nanotube nonwoven fabric combined with the resin after drying is preheated (preliminary thermosetting) at 110 ° C. for 3 hours while being fixed to the mold, and is a plate-like molded body having a thickness of about 1 mm made of the resin composition. (Prepreg) was produced. The prepreg was taken out from the mold and further heated at 170 ° C. for 30 minutes to complete the curing to obtain a molded plate. This was cut out to 50 × 10 mm and 50 mm × 80 mm to prepare test molded bodies. The thermal expansion coefficient of the molded body was 24.1 ppm / ° C. The thermal conductivity was 9.1 W / m · K.
Example 2
1 g (5 cm × 5 cm) of the boron nitride nanotube nonwoven porous body obtained in Reference Example 2 was allowed to stand on a mold substrate. To this resin, 0.1 g of Nissan Chemical Industries, Ltd., Suntop (registered trademark) M700 (resin solid content 55%) 1.5 g, paratoluenesulfonic acid 30% methanol solution was dropped as a melamine resin. As a result, the solution uniformly penetrated into the porous body of the boron nitride nanotube nonwoven fabric. The porous boron nitride nanotube porous body impregnated with this solution was dried at room temperature for 2 hours and then at 50 ° C. for 2 hours. Next, the porous boron nitride nanotube nonwoven fabric combined with the resin after drying is preheated (preliminary thermosetting) at 110 ° C. for 3 hours while being fixed to the mold, and is a plate-like molded body having a thickness of about 1 mm made of the resin composition. A (prepreg) was produced to obtain a molded plate. The prepreg was removed from the mold and further heated at 170 ° C. for 30 minutes to complete the curing. This was cut into 50 mm × 10 mm and 50 mm × 80 mm to prepare test molded bodies. The thermal expansion coefficient of the molded body was 21.7 ppm / ° C. The thermal conductivity was 9.7 W / m · K.
Comparative Example 1
An epoxy resin molded body was produced in the same manner as in Example 1 except that the porous body of the boron nitride nanotube nonwoven fabric was not included. The thermal expansion coefficient of the molded body was 45.5 ppm / ° C. The thermal conductivity was 0.18 W / m · K.
Comparative Example 2
A melamine resin molded body was prepared in the same manner as in Example 2 except that the porous body of the boron nitride nanotube nonwoven fabric was not included. The thermal expansion coefficient of the molded body was 39.2 ppm / ° C. The thermal conductivity was 0.17 W / m · K.
From the above results, the thermosetting resin composition containing a nonwoven fabric porous body made of boron nitride nanotubes in the present invention has superior heat resistance, heat dissipation characteristics and dimensional stability compared to thermosetting resins not containing boron nitride nanotubes. It turns out that sex etc. are shown.
Example 3
1 g (5 cm × 8 cm) of the boron nitride nanotube non-woven fabric porous body obtained in Reference Example 2 was allowed to stand on a mold substrate. When a solution in which 1.5 g of an aromatic polycarbonate resin was mixed and dissolved in 5 ml of methylene chloride was added dropwise thereto, the solution uniformly penetrated into the porous body of the boron nitride nanotube nonwoven fabric. The boron nitride nanotube nonwoven porous body impregnated with this solution was dried at room temperature for 2 hours and then at 50 ° C. for 2 hours to obtain a composition (prepreg) comprising an aromatic polycarbonate and a boron nitride nanotube nonwoven porous body. While this composition was fixed to the mold, it was heated at 210 ° C. for 5 minutes under a pressure of 200 kg / cm 2 (19.6 MPa) to prepare a sheet molded body having a thickness of about 0.5 mm. A 50 mm × 10 mm test molded body was cut out from the sheet molded body, and a part thereof was further cut out and used for measurement of the thermal expansion coefficient. Further, a 50 mm × 50 mm test molded body was cut out from the sheet molded body and used for measurement of thermal conductivity. The results are shown in Table 1.
Example 4
1 g (5 cm × 8 cm) of the boron nitride nanotube non-woven fabric porous body obtained in Reference Example 2 was allowed to stand on a mold substrate. To this, 1.5 g of a powder obtained by pulverizing a polymethyl methacrylate resin to a particle size of about 100 μm is uniformly applied, and while being fixed to the mold, the pressure is maintained at 180 ° C. for 5 minutes under a pressure of 200 kg / cm 2 (19.6 MPa). A sheet molded body (thickness: about 0.5 mm), which is a prepreg of a composition comprising a polymethyl methacrylate resin and a boron nitride nanotube nonwoven fabric porous body, was prepared by heating. In the same manner as in Example 3, a test molded body was cut out from this sheet molded body and used for measurement of thermal expansion coefficient and thermal conductivity. The results are shown in Table 1.
Comparative Example 3
A sheet molded body of an aromatic polycarbonate resin was prepared in the same manner as in Example 3 except that the boron nitride nanotube nonwoven fabric porous body was not contained, and the thermal expansion coefficient and the thermal conductivity were measured. The results are shown in Table 1.
Comparative Example 4
A molded body of polymethyl methacrylate resin was produced in the same manner as in Example 4 except that the porous body of the boron nitride nanotube nonwoven fabric was not contained. A sheet molded body was prepared, and thermal expansion coefficient and thermal conductivity were measured. The results are shown in Table 1.
From the above results, the thermoplastic resin composition containing the nonwoven fabric porous body composed of boron nitride nanotubes in the present invention has superior heat resistance, heat dissipation characteristics and dimensional stability compared to the thermoplastic resin not containing boron nitride nanotubes. It can be seen that, etc.
Figure JPOXMLDOC01-appb-T000001
As described above, according to the present invention, a thermosetting resin or a thermoplastic resin is finer and more homogeneous in a void of a nonwoven fabric porous body composed of boron nitride nanotubes having a fiber diameter on the order of nanometers compared to a bulk fiber nonwoven fabric. Can be impregnated. In addition, since boron nitride nanotubes themselves have a much higher thermal conductivity than conventional inorganic thermal conductive materials, it is possible to effectively acquire the heat dissipation characteristics as a resin composite without adding a special filler. Can do. When the resin is homogeneously combined with the porous porous body of boron nitride nanotubes, which also functions as a highly thermally conductive filler, the interaction of both components is expressed synergistically, resulting in heat resistance and heat dissipation as a prepreg. Can be improved. In addition, the excellent mechanical properties of boron nitride nanotubes and the large specific surface area effect provide sufficient interface between the resin and the tube, and even when the density of boron nitride nanotubes is low, the strength of the prepreg is maintained and the molded product is damaged. The resin varnish can be impregnated into the porous structure without being subjected to the treatment.
In the prepreg of the present invention and a molded board formed by heating and pressing one or more of the prepregs, for example, a laminated board, and a printed wiring board using the laminated board as an insulating layer, in addition to mechanical characteristics, heat resistance characteristics and high thermal conductivity Therefore, it is used for electronic devices that require thermal conductivity and insulation, such as printed wiring boards for automotive equipment that are expected to be used in high-temperature atmospheres, and high-density mounting printed wiring boards such as personal computers. It can be suitably used as a material for electronic parts.

Claims (11)

  1.  窒化ホウ素ナノチューブからなる不織布多孔体1~99質量部と熱硬化性樹脂99~1質量部からなる組成物からなりそして該不織布多孔体の空隙に該熱硬化性樹脂が充填されていることを特徴とするプリプレグ。 It is composed of a composition comprising 1 to 99 parts by mass of a nonwoven fabric porous body made of boron nitride nanotubes and 99 to 1 part by mass of a thermosetting resin, and the voids of the nonwoven fabric porous body are filled with the thermosetting resin. A prepreg.
  2.  窒化ホウ素ナノチューブの平均直径が0.4nm~1μmでありそして平均アスペクト比が5以上である請求項1に記載のプリプレグ。 The prepreg according to claim 1, wherein the boron nitride nanotubes have an average diameter of 0.4 nm to 1 µm and an average aspect ratio of 5 or more.
  3.  熱硬化性樹脂が、エポキシ樹脂、熱硬化型変性ポリフェニレンエーテル樹脂、熱硬化性ポリイミド樹脂、ケイ素樹脂、尿素樹脂およびメラミン樹脂からなる群より選択される少なくとも1種である請求項1に記載のプリプレグ。 The prepreg according to claim 1, wherein the thermosetting resin is at least one selected from the group consisting of an epoxy resin, a thermosetting modified polyphenylene ether resin, a thermosetting polyimide resin, a silicon resin, a urea resin, and a melamine resin. .
  4.  窒化ホウ素ナノチューブからなる不織布多孔体1~99質量部と熱可塑性樹脂99~1質量部からなる組成物からなりそして該不織布多孔体の空隙に熱可塑性樹脂が充填されていることを特徴とするプリプレグ。 A prepreg comprising a composition comprising 1 to 99 parts by mass of a nonwoven fabric porous body made of boron nitride nanotubes and 99 to 1 part by mass of a thermoplastic resin, and the voids of the nonwoven fabric porous body being filled with a thermoplastic resin .
  5.  窒化ホウ素ナノチューブの平均直径が0.4nm~1μmでありそして平均アスペクト比が5以上である請求項4に記載のプリプレグ。 The prepreg according to claim 4, wherein the boron nitride nanotubes have an average diameter of 0.4 nm to 1 µm and an average aspect ratio of 5 or more.
  6.  熱可塑性樹脂が、ポリメタクリル酸エステル、ポリオレフィン、ポリスルホン、ポリエーテルスルホン、ポリエーテルケトン、ポリエーテルエーテルケトン、脂肪族ポリアミド、芳香族ポリエステル、芳香族ポリカーボネート、ポリエーテルイミド、ポリアリーレンオキシド、熱可塑性ポリイミドおよびポリアミドイミド樹脂からなる群より選択される少なくとも1種である請求項4に記載のプリプレグ。 Thermoplastic resin is polymethacrylate, polyolefin, polysulfone, polyethersulfone, polyetherketone, polyetheretherketone, aliphatic polyamide, aromatic polyester, aromatic polycarbonate, polyetherimide, polyarylene oxide, thermoplastic polyimide The prepreg according to claim 4, wherein the prepreg is at least one selected from the group consisting of polyamideimide resins.
  7.  窒化ホウ素ナノチューブからなる不織布多孔体に、少なくとも1種の熱硬化性樹脂を含浸せしめた後、予備熱硬化させることを特徴とする請求項1~3のいずれか1項に記載のプリプレグの製造方法。 The method for producing a prepreg according to any one of claims 1 to 3, wherein the nonwoven porous body made of boron nitride nanotubes is impregnated with at least one thermosetting resin and then preliminarily cured. .
  8.  熱可塑性樹脂を、窒化ホウ素ナノチューブよりなる不織布多孔体と共に加圧下に加熱して融解した熱可塑性樹脂を繊維空隙に充填せしめ、次いで冷却して熱可塑性樹脂を固化させることを特徴とする請求項4~6のいずれか1項に記載のプリプレグの製造方法。 5. A thermoplastic resin melted by heating under pressure together with a nonwoven fabric porous body made of boron nitride nanotubes to fill the fiber voids, and then cooled to solidify the thermoplastic resin. The method for producing a prepreg according to any one of ~ 6.
  9.  溶媒中の熱可塑性樹脂の溶液若しくは分散液を、窒化ホウ素ナノチューブよりなる不織布多孔体に含浸せしめ、次いで加熱若しくは減圧により溶媒を蒸発させて該熱可塑性樹脂を該不織布多孔体の多孔体空隙に充填させることを特徴とする請求項4~6のいずれか1項に記載のプリプレグの製造方法。 A nonwoven fabric porous body made of boron nitride nanotubes is impregnated with a solution or dispersion of a thermoplastic resin in a solvent, and then the solvent is evaporated by heating or decompression to fill the porous space of the nonwoven fabric porous body with the thermoplastic resin. 7. The method for producing a prepreg according to claim 4, wherein the prepreg is produced.
  10.  請求項1~6のいずれか1項に記載のプリプレグ1枚以上を加圧下に加熱して形成された成形板。 A molded plate formed by heating one or more prepregs according to any one of claims 1 to 6 under pressure.
  11.  プリプレグ1枚以上が複数枚のプリプレグであり、形成された成形板が積層体である請求項10に記載の成形板。 The molded plate according to claim 10, wherein one or more prepregs are a plurality of prepregs, and the formed molded plate is a laminate.
PCT/JP2009/068293 2008-10-20 2009-10-19 Prepreg having excllent heat conductivity, method for producing prepreg, and molded plate WO2010047398A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2008269820A JP2012025785A (en) 2008-10-20 2008-10-20 Prepreg having excellent thermal conductivity, method for producing prepreg, and laminated plate
JP2008-269820 2008-10-20
JP2009-051914 2009-03-05
JP2009051914A JP2012025787A (en) 2009-03-05 2009-03-05 Prepreg having excellent thermal conductivity, method for producing prepreg, and laminated plate

Publications (1)

Publication Number Publication Date
WO2010047398A1 true WO2010047398A1 (en) 2010-04-29

Family

ID=42119432

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/068293 WO2010047398A1 (en) 2008-10-20 2009-10-19 Prepreg having excllent heat conductivity, method for producing prepreg, and molded plate

Country Status (1)

Country Link
WO (1) WO2010047398A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012140927A1 (en) * 2011-04-12 2012-10-18 日本碍子株式会社 Heat flow switch
WO2015167950A1 (en) * 2014-04-30 2015-11-05 Rogers Corporation Thermally conductive composites and methods of manufacture thereof, and articles containing the composites
CN113105714A (en) * 2021-03-12 2021-07-13 航天材料及工艺研究所 Continuous high-thermal-conductivity asphalt-based carbon fiber reinforced epoxy resin composite material and preparation method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007146081A (en) * 2005-11-30 2007-06-14 Teijin Ltd Polycarbonate-based resin molded article and method for producing the same
JP2007254654A (en) * 2006-03-24 2007-10-04 Teijin Ltd Transparent heatproof resin composition and method for manufacturing the same
WO2008108484A1 (en) * 2007-03-05 2008-09-12 Teijin Limited Boron nitride fiber paper and method for producing the same
JP2008214130A (en) * 2007-03-05 2008-09-18 Teijin Ltd Dispersion of boron nitride nanotubes and nonwoven fabric obtained by using the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007146081A (en) * 2005-11-30 2007-06-14 Teijin Ltd Polycarbonate-based resin molded article and method for producing the same
JP2007254654A (en) * 2006-03-24 2007-10-04 Teijin Ltd Transparent heatproof resin composition and method for manufacturing the same
WO2008108484A1 (en) * 2007-03-05 2008-09-12 Teijin Limited Boron nitride fiber paper and method for producing the same
JP2008214130A (en) * 2007-03-05 2008-09-18 Teijin Ltd Dispersion of boron nitride nanotubes and nonwoven fabric obtained by using the same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012140927A1 (en) * 2011-04-12 2012-10-18 日本碍子株式会社 Heat flow switch
JPWO2012140927A1 (en) * 2011-04-12 2014-07-28 日本碍子株式会社 Heat flow switch
WO2015167950A1 (en) * 2014-04-30 2015-11-05 Rogers Corporation Thermally conductive composites and methods of manufacture thereof, and articles containing the composites
CN106255721A (en) * 2014-04-30 2016-12-21 罗杰斯公司 Heat-conductive composite material and manufacture method thereof and comprise the goods of described composite
JP2017520633A (en) * 2014-04-30 2017-07-27 ロジャーズ コーポレーション Thermally conductive composite material, method for producing the same, and article containing the composite material
CN113105714A (en) * 2021-03-12 2021-07-13 航天材料及工艺研究所 Continuous high-thermal-conductivity asphalt-based carbon fiber reinforced epoxy resin composite material and preparation method thereof
CN113105714B (en) * 2021-03-12 2022-07-05 航天材料及工艺研究所 Continuous high-thermal-conductivity asphalt-based carbon fiber reinforced epoxy resin composite material and preparation method thereof

Similar Documents

Publication Publication Date Title
JP5201367B2 (en) Thermosetting resin composite composition, resin molded body and method for producing the same
JP4782870B2 (en) Cured body, sheet-like molded body, laminated board and multilayer laminated board
JP5363841B2 (en) Epoxy resin composition, prepreg, cured body, sheet-like molded body, laminate and multilayer laminate
JP4686750B2 (en) Cured body and laminate
KR100704320B1 (en) Resin composition
JP4911795B2 (en) Manufacturing method of laminate
JP2010053334A (en) Epoxy-based resin composition, prepreg, cured product, sheet-like molded article, laminate plate, and multilayer laminate plate
WO2010035451A1 (en) Semi-cured body, cured body, multilayer body, method for producing semi-cured body, and method for producing cured body
Gu et al. Transparent anhydride–cured epoxy nanocomposites reinforced with polyaniline stabilized nanosilica
WO2007032424A1 (en) Resin composition, sheet-like formed body, prepreg, cured body, laminate, and multilayer laminate
JP2007138095A (en) Resin composition and plate-like body
WO2017122819A1 (en) Prepreg, printed circuit board, semiconductor package, and method for producing printed circuit board
JP5276152B2 (en) Resin composition and plate-like body
WO2010047398A1 (en) Prepreg having excllent heat conductivity, method for producing prepreg, and molded plate
JP3854931B2 (en) Resin composition
JP2010083966A (en) Resin composition, cured body, and laminate
JP2012025785A (en) Prepreg having excellent thermal conductivity, method for producing prepreg, and laminated plate
JP2005133055A (en) Resin composition, material for substrate and substrate film
JP4955960B2 (en) Low dielectric material, low dielectric plate and low dielectric substrate
WO2017122820A1 (en) Frp precursor, laminated plate, metal-clad laminate, printed circuit board, semiconductor package, and method for producing same
Wang et al. Improvement of mechanical properties for epoxy composites with modified titanate whiskers via dopamine self-oxidation
JP2006282961A (en) Thermosetting resin composition, electronic material substrate and method for producing the substrate
JP2008031405A (en) Method of manufacturing thermoconductive resin composition
Zhang et al. The influences of GO-SHS hybrids on the mechanical and dielectric properties of EP composites
KR102213602B1 (en) Thermosetting resin composition and plate body comprising the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09822095

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09822095

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP