WO2008047428A1 - COMPTEUR ÉLECTRONIQUE DE kWh - Google Patents

COMPTEUR ÉLECTRONIQUE DE kWh Download PDF

Info

Publication number
WO2008047428A1
WO2008047428A1 PCT/JP2006/320773 JP2006320773W WO2008047428A1 WO 2008047428 A1 WO2008047428 A1 WO 2008047428A1 JP 2006320773 W JP2006320773 W JP 2006320773W WO 2008047428 A1 WO2008047428 A1 WO 2008047428A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
detection output
azd
current sensor
reference potential
Prior art date
Application number
PCT/JP2006/320773
Other languages
English (en)
French (fr)
Inventor
Kazunori Go
Noriko Yoshikawa
Original Assignee
Osaki Electric Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaki Electric Co., Ltd. filed Critical Osaki Electric Co., Ltd.
Priority to PCT/JP2006/320773 priority Critical patent/WO2008047428A1/ja
Priority to CN2006800561508A priority patent/CN101542298B/zh
Priority to JP2008539644A priority patent/JP4896150B2/ja
Priority to SK5030-2009A priority patent/SK50302009A3/sk
Publication of WO2008047428A1 publication Critical patent/WO2008047428A1/ja

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R21/00Arrangements for measuring electric power or power factor
    • G01R21/133Arrangements for measuring electric power or power factor by using digital technique

Definitions

  • the present invention relates to an electronic watt-hour meter that calculates the power consumption of a measurement target based on a digital signal converted by an A / D (analog Z digital) conversion means.
  • AZD converters built in microcomputers hereinafter referred to as microcomputers
  • microcomputers that are widely used as arithmetic processing units generally have a resolution of 10 bits and at most 12 bits.
  • An electronic watt-hour meter using a general-purpose microcomputer will lack resolution.
  • conventional electronic watt-hour meters amplify the current to be measured with an amplification factor according to the magnitude of the AZD converter with a built-in microcomputer.
  • the amplification factor is automatically adjusted based on the level of the rectified and averaged measurement current and the rated level of the amplification means, and the amplification means Then, the output of the current sensor is amplified based on the adjusted amplification factor.
  • a conventional electronic watt-hour meter in which a plurality of amplifiers are provided in multiple stages as shown in FIG.
  • This electronic watt-hour meter is configured to include a general-purpose microcomputer 1.
  • the microcomputer 1 is provided with a successive approximation type AZD converter 2 and a software processing unit 3 that performs an operation based on the digital data converted by the A / D converter 2.
  • the AZD converter 2 is connected via a selection switch 7 to amplifiers 9, 10, 11 and 12 that amplify the input signal five times in four stages.
  • a voltage sensor 13 and a current sensor 14 are connected to the amplifier 9 at the first stage via a selection switch 8.
  • Selection switch 8 has terminals 8a, 8b, 8 The connection is selectively switched to one of the terminals in c.
  • the selection switch 7 selects the number of stages of amplifiers used to amplify the current signal detected by the current sensor 14, the selection switch 7 is selectively connected to one of the terminals 7a, 7b, 7c, 7d. Can be switched. When switched to terminal 7a, one-stage amplifier 9 is selected and the input signal is amplified five times.
  • two-stage amplifiers 9 and 10 are selected.
  • three-stage amplifiers 9 to 11 are selected, and when switched to terminal 7d, four-stage amplifiers 9 to 12 are selected and the input signal is selected. 5 twice, respectively, 5 three times and amplified in 5 four times.
  • the software processing unit 3 is connected to an LED (light emitting diode) 15 and a liquid crystal driver 5 for controlling the display of the liquid crystal display unit 6.
  • the software processing unit 3 calculates power by multiplying the voltage value and current value converted into digital data by the AZD converter 2 and cumulatively adds this power to calculate the power amount.
  • the calculated power amount is displayed on the liquid crystal display unit 6, and based on the calculated power amount, a nors signal proportional to the used power amount is generated and the LED 15 blinks.
  • FIG. 2 is a flowchart showing an outline of the calculation process of the electric energy in the software processing unit 3 described above.
  • a current dummy AZD conversion process is performed (see FIG. 2, step (hereinafter referred to as S) 1).
  • S the digital data of the current value that is first converted by the AZD converter 2 after the selection switch 8 is switched to the terminal 8b is discarded to improve the current measurement accuracy.
  • a current pre-AZD conversion process is performed (S2).
  • the measuring process for determining the optimum number of stages of the amplifiers used to amplify the current signal is also performed.
  • current production AZD conversion processing is performed (S3).
  • the amplifier of the number of stages determined in S2 is selected by switching the selection switch 7, the detection signal output from the current sensor 14 is amplified by the selected amplifier, and then converted into digital data by the AZD converter 2. Is performed.
  • a voltage dummy AZD conversion process is performed (S4).
  • the power of S1 Similar to the current dummy AZD conversion process, the selection switch 8 is switched to the terminal 8a and is discarded to increase the digital data power of the voltage value first converted by the AZD converter 2 to increase the voltage measurement accuracy.
  • voltage production AZD conversion processing is performed (S5). In this process, the selection switch 7 is switched to select the one-stage amplifier 9, and the amplifier 9 amplifies the detection signal output from the voltage sensor 13 and then converts it to digital data by the AZD converter 2. Done.
  • the offset obtained in the process of S13 described later is removed from the current value obtained in S3 and the voltage value obtained in S5, and power (instantaneous power) is calculated (S6 ).
  • the offset is the voltage output from the AZD converter 2 when the input of each amplifier 9 to 12 is zero, and the power calculation formula in S6 is expressed as (Voltage value offset) X (Current value-Offset). It is.
  • a gain adjustment process (S7) is performed. That is, the gain adjustment is performed by multiplying the power calculation result obtained in S6 by a predetermined number according to the amplification factor of the amplifier having the number of stages determined in S2. Subsequently, gain error correction processing is performed (S8). In other words, a process for removing an error in the power calculation result due to an error of the internal resistance that determines the amplification factor in each of the amplifiers 9 to 12 is performed. Next, processing for calculating the amount of power by accumulating (integrating) the power data obtained by the processing of S6 to S8 is performed (S9). Based on the amount of power calculated in this power accumulation process, the pulse signal is output to the pulse signal power LED 15 proportional to the amount of power used (S10), and the calculated amount of power is displayed on the liquid crystal display unit 6.
  • an offset dummy AZD conversion process is performed (Sll).
  • the offset data first obtained by the A / D converter 2 when the selection switch 8 is switched to the terminal 8c is discarded to increase the offset measurement accuracy of each amplifier 9-12.
  • an offset production AZD conversion process is performed (S12).
  • the offset of each stage of the amplifiers 9 to 12 is measured in turn by switching the selection switch 7, and the measured offset is converted into digital data by the AZD converter 2.
  • the offset is measured several times, and the average value of the offset is calculated based on the measurement result (S13). Based on the offset obtained in this way, the next power calculation process (S6) is performed as described above.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2004-177228 (paragraphs [0025] to [0031])
  • the current pre-AZD conversion process of S2 optimizes the amplifier. Determine the number of stages, measure the offset of the amplifiers 9 to 12 at each stage by the offset dummy AZD conversion process of S11, or use the offset values of several times measured by the offset AZD conversion process of S 12 to amplifiers 9 to 12 Must be stored for each stage. Further, it is necessary to adjust the gain for each of the amplifiers 9 to 12 in each stage by the gain adjustment process of S7, or to correct the resistance error for the amplifiers 9 to 12 of each stage by the gain error correction process of S8. Therefore, the conventional electronic watt-hour meter shown in FIG. 1 requires a lot of processing, increases the scale of the software, and requires a large data storage capacity. Therefore, a microcomputer with a large memory size is required. It becomes.
  • the operating clock frequency of the microcomputer 1 must be increased to improve the processing speed, and the current consumption of the microcomputer 1 increases.
  • the analog circuit portion is increased in size and the board size is increased, and the current consumption in the analog circuit portion is increased. Therefore, the conventional electronic watt-hour meter shown in Fig. 1 cannot use a small power source.
  • the current consumption increases, the fluctuation range of the output voltage of the power supply also increases, so the conventional electronic energy meter shown in Fig. 1 requires circuit components to stabilize the output voltage of the power supply. Incurs an increase in cost.
  • the conventional electronic energy meter shown in Fig. 1 requires measures such as electromagnetic shielding to improve noise resistance (EMC).
  • the conventional electronic watt-hour meter shown in FIG. 1 has not been able to sufficiently reduce the size and cost of the product.
  • the present invention has been made to solve such a problem
  • a voltage sensor for detecting a voltage to be measured; and A current sensor for detecting a current to be measured;
  • a selection switch that selectively selects and outputs either the detection output of the voltage sensor or current sensor or the reference potential of the detection output
  • Amplifying means for amplifying at least the detection output of the current sensor
  • the detection output of the voltage sensor and current sensor output by the selection switch, the AZD conversion means for converting the reference potential into an analog signal force digital signal, and the use of the measurement target based on the digital signal converted by the AZD conversion means An arithmetic processing unit with a built-in arithmetic means for calculating electric energy,
  • the amplification means is composed of differential amplification means for differentially amplifying the input signal
  • AZD conversion means converts the input signal to analog signal power digital signal by ⁇ modulation
  • the computing means is characterized by calculating the power consumption of the measurement target by respectively removing the reference potential converted by the AZD conversion means from the detection output of the voltage sensor and current sensor converted by the AZD conversion means. To do.
  • the detection output of the voltage sensor, the detection output of the current sensor, and the reference potential of these detection outputs are converted from an analog signal to a digital signal by ⁇ modulation in the AZD conversion means.
  • the calculation means removes the reference potential converted into the digital signal from each detection output of the voltage sensor and the current sensor converted into the digital signal, so that the differential amplification means from the detection output of the voltage sensor and the current sensor.
  • the offset of the AZD conversion means is removed.
  • the power consumption of the measurement target is calculated using the detection outputs of the voltage sensor and current sensor from which the offset has been removed.
  • Analog signal power in AZD conversion means Conversion to a digital signal is performed with high resolution by fine sampling by oversampling at the time of ⁇ modulation, so that it is like a conventional electronic watt-hour meter. Therefore, it is not necessary to configure the amplification means in multiple stages to supplement the resolution of the AZD conversion means. For this reason, the detection output of a current sensor that requires a wide range of guaranteed measurement accuracy is not required to be configured in multiple stages. Therefore, it becomes possible to measure with high accuracy. In addition, since it is not necessary to configure the amplification means in multiple stages, it is possible to determine the optimum number of amplifiers, measure the offsets of the amplifiers in each stage, and measure the number of times measured, as in conventional electronic watt-hour meters.
  • a small power source can be used as the power source of the electronic watt-hour meter.
  • the current consumption can be reduced and the fluctuation range of the output voltage can be reduced, there is no need for circuit components to stabilize the output voltage of the power supply, such as a conventional electronic watt-hour meter.
  • the operation clock frequency of the arithmetic processing unit can be kept low, the influence of the radiation electric field intensity caused by the electromagnetic noise generated from the arithmetic processing unit can be reduced, and the cost for countermeasures against noise resistance can be suppressed. .
  • the electronic watt-hour meter according to the present invention can sufficiently reduce the size and cost of the product.
  • the differential amplifying means is used as the amplifying means, it is possible to apply a bias voltage to the detection signal output from the amplifying means with at least a current sensor. For this reason, even if the detection signal of the current sensor fluctuates in the negative range, it is converted into a signal that fluctuates in the positive range by applying a bias voltage, and the detection signal of the current sensor is amplified by the amplification means. It can be amplified and converted to a digital signal by AZD conversion means. Further, since the differential amplifying means is used as the amplifying means, even if noise is applied to the input terminal, it is canceled and the influence of the noise can be eliminated, so that the input signal can be amplified with high accuracy.
  • the calculation means reduces the absolute error of the power consumption by multiplying the power consumption by a predetermined value or by adjusting the threshold value of the pulse output according to the power consumption. correction It is characterized by doing.
  • the absolute error of the calculated power consumption is corrected by multiplying the calculated power consumption by a predetermined amount according to the amplification factor of the amplifying unit.
  • the pulse output timing is adjusted so that the pulse is output according to the actual power consumption. Therefore, the absolute error of the calculated power consumption is corrected. This makes it possible to correct the absolute error of the calculated power consumption by multiplying it by a predetermined amount or by adjusting the pulse output threshold value, which frees the design of an electronic watt-hour meter. The degree increases.
  • the present invention provides a method in which the reference potential converted by the AZD conversion means is converted into a current sensor when the calculation means makes the reference potential of the detection output of the current sensor different from the reference potential of the detection output of the voltage sensor. It is characterized in that it is removed from either the detection output of the sensor or the detection output of the voltage sensor.
  • the power value calculated from the detection output of each sensor is a force that is a DC component force.
  • the amplification means that appears in the detection output of the force without the removal of the reference potential
  • the offset of the AZD conversion means becomes an AC component that appears evenly in the positive and negative voltages, and is removed by the integration process in the process of integrating the amount of power used. Accordingly, the reference potential converted by the AZD conversion means is removed only for either the current sensor detection output or the voltage sensor detection output, and the calculated power consumption power amplification means and AZD The offset of the conversion means can be removed. This simplifies the process of calculating the power consumption of the measurement target, further reduces the memory size of the arithmetic processing unit as the software scale becomes smaller, and further lowers the operating clock frequency. Thus, the current consumption can be further reduced.
  • the arithmetic processing unit switches the selection switch immediately after completion of the conversion by the AZD conversion unit with respect to any of the detection output of the voltage sensor and the current sensor and the reference potential of the detection output. After the next selection is made, time is taken! / And the next conversion by the AZ D conversion means is performed.
  • the present invention provides that the arithmetic processing device stops the operation of the AZD conversion unit immediately after the completion of each conversion by the AZD conversion unit, and prepares to start the next conversion by the AZD conversion unit.
  • the present invention is characterized in that the reference voltage of the AZD conversion means is set to the same potential as the operating voltage of the arithmetic processing unit.
  • the power source that supplies the reference voltage to the AZD conversion unit and the power source that supplies the operating voltage to the arithmetic processing unit can be shared. This eliminates the need for a separate power supply for supplying the reference voltage to the A / D conversion means, further reducing the size and cost of the product.
  • FIG. 1 is a block diagram showing an outline of a circuit configuration of a conventional electronic watt-hour meter.
  • FIG. 2 is a flowchart showing an outline of calculation processing of electric energy in the electronic watt-hour meter shown in FIG.
  • FIG. 3 is a block diagram showing an outline of a circuit configuration of an electronic watt-hour meter according to one embodiment of the present invention.
  • FIG. 4 is a partial detailed circuit diagram of the block diagram shown in FIG.
  • FIG. 5 is a flowchart showing an outline of calculation processing of electric energy in the electronic watt-hour meter shown in FIG.
  • FIG. 6 is a flowchart showing details of the electric energy calculation process shown in FIG.
  • FIG. 7 is a block diagram showing an outline of a circuit configuration of an electronic watt-hour meter according to a first modification of the present invention.
  • FIG. 8 is a block diagram showing an outline of a circuit configuration of an electronic watt-hour meter according to a second modification of the present invention.
  • FIG. 9 is a block diagram showing an outline of a circuit configuration of an electronic watt-hour meter according to a third modification of the present invention.
  • Fig. 10 is a diagram showing a relationship between a cumulative amount of used electric power and a generated pulse signal in an electronic watt-hour meter according to a fourth modification of the present invention.
  • FIG. 11 is an internal circuit diagram of an AZD converter used in an electronic watt-hour meter according to a fifth modification of the present invention.
  • FIG. 3 is a block diagram showing an outline of the circuit configuration of the single-phase two-wire electronic watt-hour meter according to the present embodiment.
  • FIG. 4 is a partial detailed circuit diagram of the block diagram shown in FIG. In FIG. 3 and FIG. 4, the same or corresponding parts as in FIG.
  • the electronic watt-hour meter includes a voltage sensor 13, a current sensor 14, a general-purpose microcomputer 21, and a liquid crystal display unit 6.
  • the microcomputer 21 that constitutes the arithmetic processing unit includes a selection switch 22, a differential amplifier 23, an AZD converter 24, and software processing. It includes a logic unit 25, a liquid crystal driver 5, and an LED 15.
  • the circuit ground (GND) is connected to the reference potential V of 0 [V].
  • the voltage sensor 13 is composed of a voltage dividing circuit that divides the voltage V'sin cot input between the power supply terminals PO and P1 by the resistors 13a, 13b, and 13c, and the divided voltage that appears across the resistor 13c.
  • the voltage E 'sin cot is detected and output as the voltage to be measured. Signal to which resistor 13c is connected
  • the ground is a bias voltage that is 1Z2 of the operating voltage V (3.6 [V]) of microcomputer 21.
  • V (1.8 [V]) is set to the potential applied to the reference potential V as shown in Fig.4.
  • the current sensor 14 is composed of a shunt resistor 14a, and the voltage E ⁇ sin ⁇ t that appears across the shunt resistor 14a due to the load current I ⁇ sin ⁇ t flowing between the load terminals IS and 1L is measured.
  • the power supply terminal P1 and load terminal 1S are connected to 0 [V], which is the same as the reference potential V of the microcomputer 21. This 0 [V] is detected by the current sensor 14.
  • the reference potential of the detection output of the current sensor 14 and the reference potential of the detection output of the voltage sensor 13 are set to 0 [V] and 1.8 [V], respectively, and are different. .
  • the selection switch 22 is selectively switched to one of the terminals 22a, 22b, and 22c.
  • the detection output of voltage sensor 13 is selected
  • the detection output of current sensor 14 is selected
  • the reference potential of current sensor 14 is selected. Therefore, the selection switch 22 selects and outputs either the detection output of the voltage sensor 13 or the current sensor 14 or the reference potential of this detection output.
  • the differential amplifier 23 is connected to the sensors 13 and 14 via the selection switch 22 and outputs the amplified output to the AZD converter 24.
  • the bias voltage V (1.8 [V]) generated by the power supply 26 is circuit ground (0 [V]).
  • the potential added to is the reference potential, and the operating voltage V (3.
  • the inverting input terminal ( ⁇ ) of the differential amplifier 23 is connected to the output terminal of the selection switch 22 via the resistor 23a, and each sensor selected by the selection switch 22 is connected.
  • the detection output from 13 and 14 and its reference potential are input.
  • Non-inverting input terminal (+) Is connected to the reference potential of 0 [V] of the current sensor 14 via the resistor 23b and to the power source 26 via the resistor 23c.
  • a resistor 23d is provided between the inverting input terminal (one) and the output terminal of the differential amplifier 23 to apply negative feedback.
  • the differential amplifier 23 constitutes an amplifying means for amplifying at least the detection output of the current sensor 14 selected by the selection switch 22, and is input to the inverting input terminal (one) and the non-inverting input terminal (+). It constitutes differential amplification means for differentially amplifying the input signal.
  • An AZD converter 24 is connected to the output terminal of the differential amplifier 23.
  • the microcomputer 21 switches the selection switch 22 at regular time intervals, and performs conversion of the detection output of the voltage sensor 13 and the current sensor 14 and the reference potential of the detection output to the AZD comparator 24 at regular time intervals. Make it.
  • the AZD converter 24 refers to the reference voltage V and converts the signal input from the differential amplifier 23 into analog signal power by ⁇ modulation.
  • the AZD converter 24 constitutes AZD conversion means for converting the detection output of the voltage sensor 13 and the current sensor 14 and the reference potential of the current sensor 14 into an analog signal and a digital signal by ⁇ modulation.
  • a software processing unit 25 is connected to the output side of the AZD converter 24. Connected to the software processing unit 25 are an LED 15 that outputs a pulse signal proportional to the amount of power used, and a liquid crystal driver 5 that controls the display of the liquid crystal display unit 6.
  • the software processing unit 25 calculates the power by multiplying the detection output of the voltage sensor 13 and the detection output of the current sensor 14 converted into a digital signal by the AZD converter 24, accumulates the calculated power, and applies the result. Calculate the power consumption to be measured. The calculated power consumption is displayed on the liquid crystal display unit 6 under the control of the liquid crystal driver 5.
  • the software processing unit 25 generates a pulse signal proportional to the calculated power consumption. When this generated pulse signal is output, current flows through LED 15 and LED 15 emits light.
  • the light emitted from the LED 15 is detected by a light receiving sensor, and a pulse signal proportional to the amount of power used is used to test the accuracy of power measurement.
  • the software processing unit 25 constitutes a calculation unit that calculates the power consumption of the measurement target based on the digital signal converted by the AZD converter 24.
  • FIG. 5 is a flowchart showing an outline of the calculation processing of the electric energy used by the software processing unit 25 described above. It is a chart.
  • a current AZD conversion process is performed (see FIG. 5, S21).
  • the selection switch 22 is switched to the terminal 22b, and the analog signal force is also converted into a digital signal by the ⁇ ⁇ modulation of the detection output force A / D converter 24 of the current sensor 14 amplified by the differential amplifier 23.
  • voltage A / D conversion processing is performed (S22).
  • the selection switch 22 is switched to the terminal 22a, and the detection output of the voltage sensor 13 amplified by the differential amplifier 23 is also converted into a digital signal by the ⁇ modulation of the AZD converter 24.
  • the offset converted into the digital signal in the process of S27 described later is removed from the current value converted into the digital signal in S21 and the voltage value converted into the digital signal in S22.
  • Current value and voltage value power with offset removed are calculated (S23).
  • the offset is a voltage that appears at the output of the AZD converter 24 when the input of the differential amplifier 23 is zero, and the power calculation formula in the processing of S23 is expressed as (voltage value offset) X (current value offset).
  • gain adjustment processing is performed (S24).
  • the absolute error of the instantaneous power is corrected by multiplying the power data calculated in S23 by a predetermined factor according to the amplification factor of the differential amplifier 23.
  • the power data obtained by the processing of S23 and S24 is cumulatively added to calculate the power consumption (S25), and the calculated power consumption is displayed on the liquid crystal display unit 6.
  • a pulse signal proportional to the calculated power consumption is generated, and the generated pulse signal is output to the LED 15 (S26).
  • an offset AZD conversion process is performed (S27).
  • the selection switch 22 is switched to the terminal 22c, and a reference potential of 0 [V] is input to the differential amplifier 23 for differential amplification.
  • the differentially amplified reference potential is converted into a digital signal by ⁇ modulation of the AZD converter 24, and the offset of the differential amplifier 23 and the AZD converter 24 is calculated.
  • the offset obtained by the offset AZD conversion process of S27 is removed from the voltage value and the current value as described above, and the power is calculated.
  • FIG. 6 is a flowchart showing details of the above-described calculation process of the power consumption. The calculation process of the power consumption is performed as a timer interrupt process of the microcomputer 21.
  • T 500 [ ⁇ 5 ]
  • timer interrupt processing is started.
  • the microcomputer 21 first determines whether or not the T flag is set (see FIG. 6, S31). T hula
  • S2 S2 is set in S39 as described later while the voltage AZD conversion process (see FIG. 5, S22) is performed. If this determination is "No", then whether the V medium flag is set
  • V middle flag is offset AZD conversion processing (Fig. 5,
  • the microcomputer 21 starts current AZD conversion processing (see FIG. 5, S21) (S34).
  • the selection switch 22 has already been switched to the terminal 22b for outputting the detection output of the current sensor 14 to the AZD converter 24 in the process of S56 described later.
  • the microcomputer 21 determines whether or not the current AZD conversion process started in S 34 is completed (S 35). When this determination is “Yes”, the operation of the AZD converter 24 is immediately stopped. (S36). Then, the selection switch 22 is switched to the terminal 22a to set the detection output of the voltage sensor 13 to be input to the differential amplifier 23 (S37), and preparation for starting the next voltage ⁇ AZD conversion (see S41). To do.
  • V value an offset value that has already been converted into a digital signal in S55 described later from the detection output value (AD value) of the current sensor 14 converted into a digital signal in the processes of S34 and S35.
  • the removed value (current value—offset) is used as the current value for power calculation.
  • V value an offset value that has already been converted into a digital signal in S55, which will be described later, from the detection output value (AD value) of the voltage sensor 13 converted into a digital signal in the processing of S41 and S42.
  • the removed value (voltage value—offset) is
  • the power value is calculated by multiplying the current value set in the area by the voltage value set in the work data storage area in S46 (S48).
  • the power data calculated in S48 is subjected to the above-described gain adjustment processing (see Fig. 5 and S24) and power accumulation processing (see Fig. 5 and S25) to calculate the amount of power used and Absolute error is corrected.
  • a pulse signal proportional to the power consumption is generated (S49), and the timer interrupt process is terminated.
  • the generated pulse signal is output to the LED 15 as described above (see FIG. 5, S26).
  • S34 current ⁇ AZD conversion starts.
  • the microcomputer 21 starts offset AZD conversion processing (see FIG. 5, S27) (S52).
  • the selection switch 22 has already been switched to the terminal 22c for outputting the reference potential of the current sensor 14 to the AZD converter 24 in the process of S44.
  • the microcomputer 21 determines whether or not the offset AZD conversion process started in S52 is complete (S53). When this determination is “Yes”, the operation of the AZD comparator 24 is immediately stopped.
  • the offset value (V value) converted into a digital signal by the processing of S52 and S53 is used to operate the RAM built in the microcomputer 21.
  • the detection output of the voltage sensor 13, the detection output of the current sensor 14, and the reference potential of these detection outputs are the same in the AZD converter 24.
  • Analog signal force is converted into a digital signal by ⁇ modulation (see Fig. 5, S21, S22, S27, Fig. 6, S34, S41, S52).
  • the reference potential converted into the digital signal is removed from the detection outputs of the voltage sensor 13 and the current sensor 14 converted into the digital signal by the calculation in the software processing unit 25 (FIG. 6).
  • the offset of the differential amplifier 23 and the AZD converter 24 is also removed from the detected output forces of the voltage sensor 13 and the current sensor 14.
  • the amount of power used for the measurement target is calculated using the detection outputs of the voltage sensor 13 and the current sensor 14 from which the offset has been removed (see FIGS. 5, S23, S25, and FIGS. 6, S48).
  • Analog signal power in the AZD converter 24 Conversion to digital signals is performed with high resolution by oversampling by oversampling at the time of ⁇ modulation, so that it is like a conventional electronic watt-hour meter.
  • the amplification means is multistage Since there is no need to configure, it is possible to determine the optimum number of amplifier stages, measure the offset of the amplifier at each stage, and measure the measured offset value for the amplifier like a conventional electronic watt-hour meter. There is no need to store the data in RAM for each stage. Furthermore, it is not necessary to adjust the gain for each stage of the amplifier by the gain adjustment process, or to correct the resistance error for the amplifier of each stage by the gain error correction process. Therefore, as the amount of processing decreases, the size of the software in the software processing unit 25 decreases, and the data storage capacity of the RAM built into the microcomputer 21 also decreases, so the memory size of RAM required for the microcomputer 21 Can be small.
  • the operation clock frequency of the microcomputer 21 can be kept low, and the current consumption can be reduced.
  • the analog circuit portion is reduced in size, the electronic circuit board incorporated in the electronic watt-hour meter is reduced in size, and the current consumption in the analog circuit portion is reduced. Can also be reduced. Therefore, a small power source can be used as the power source for the electronic watt-hour meter.
  • a circuit component for stabilizing the output voltage of the power supply such as a conventional electronic watt-hour meter is not required, and the cost is reduced. Can be suppressed.
  • the operation clock frequency of the microcomputer 21 can be kept low, the influence of the radiation electric field intensity due to the electromagnetic noise generated from the microcomputer 21 can be reduced, and the cost for measures against noise resistance can be suppressed.
  • the electronic watt-hour meter according to the present embodiment can sufficiently reduce the size and cost of the product.
  • the bias voltage V is applied to the detection signal of the voltage sensor 13 and the current sensor 14 output from the differential amplifier 23.
  • the signal detected by the voltage sensor 13 and the current sensor 14 can be amplified by the differential amplifier 23 and converted into a digital signal by the AZD converter 24. Further, since the differential amplifier 23 is used as the amplifying means, even if noise is applied to the inverting input terminal (one) and the non-inverting input terminal (+), it is canceled and the influence of the noise can be eliminated.
  • the detection signals of sensors 13 and 14 can be amplified with high accuracy.
  • the operation of the AZD converter 24 is immediately stopped (FIG. 6, S36). , S43, S54), preparation for starting the next conversion by the AZD converter 24 is performed. Therefore, each conversion by the AZD converter 24 is quickly executed even when the AZD converter 24 is stopped. Therefore, when converting continuously without stopping the operation of the AZD converter 24, the start of the next conversion is delayed by waiting for the completion of the previous conversion operation of the AZD converter 24 at the start of conversion.
  • the measurement timing of the voltage and current of the measurement target and the offset measurement timing are performed at a constant period, and the calculation process of the power consumption of the measurement target can be performed accurately.
  • the force S (FIG. 5, S23, FIG. 6, S38, S46, S48) has been described in the case where the power calculation is performed by the equation (voltage value offset) X (current value offset).
  • the present invention is not limited to this.
  • software processing Computational power in section 25 With A / D converter 24 The reference potential of the detection output of the converted current sensor 14 may be removed (offset cancellation) only from the detection output of the current sensor 14 converted by the AZD converter 24.
  • the voltage value force detected by the voltage sensor 13 also removes the offset.
  • S46 is not performed, and the power is given by the equation (voltage value) X (current value offset). Calculated. As described below, the power consumption is accurately calculated without performing only offset cancellation on the current side and offset cancellation on the voltage side.
  • the voltage between the power terminals PO and P1 is V'sincot
  • the signal ground of the voltage sensor 13 is V
  • the offset by the differential amplifier 23 and the AZD converter 24 is V
  • the AZD conversion result is
  • the power value calculated from the detection outputs of the sensors 13 and 14 is the force that is the DC component of the first term ⁇ ⁇ ⁇ ⁇ 'sin 2 cot) force
  • AC component E 'V-V sin cot that swings positive and negative in the second term.
  • the power to be used for calculating the power of the differential amplifier 23 and the A / A can be calculated only for the detection output of the current sensor 14 by removing the reference potential converted by the AZD converter 24.
  • the offset of the D converter 24 can be removed. This simplifies the process of calculating the amount of power used for the measurement target, further reducing the size of the software, further reducing the memory size of the microcomputer 21, and further reducing the operating clock frequency. Thus, the current consumption can be further reduced.
  • the reference potential of the detection output of the current sensor 14 and the reference potential of the detection output of the voltage sensor 13 are 0 [V] and 1.
  • the reference potential of the detection output of the current sensor 14 that is set to 8 [V] and converted by the AZD converter 24 is removed only from the detection output of the current sensor 14 converted by the A ZD converter 24, The present invention is not limited to this.
  • the reference potential of the detection output of the current sensor 14 is the reference potential of the signal ground (for example, 1.8 [V])
  • the reference potential of the detection output of the voltage sensor 13 is the reference potential V of the circuit ground (for example, 0 [V]).
  • the reference potential of the detection output of the voltage sensor 13 converted by the barter 24 may be removed only from the detection output of the voltage sensor 13 converted by the AZD converter 24.
  • the power value calculated from the detection output of each of the sensors 13 and 14 is composed of a DC component, but the differential amplifier 23 and the output appearing in the detected output without the reference potential being removed.
  • the offset of the AZD converter 24 becomes an alternating current component that appears evenly in voltage positive and negative, and is removed by integration processing (see FIG. 5, S25) in the process of integrating power consumption. Therefore, the removal power of the reference potential converted by the AZD converter 24 Detection of the current sensor 14 Only by either the output or the detection output of the voltage sensor 13, the offset of the differential amplifier 23 and the AZD converter 24 can be removed from the calculated power consumption amount. This simplifies the process of calculating the power consumption of the measurement target, further reducing the size of the software, further reducing the memory size of the microcomputer 21, and lowering the operating clock frequency. The current consumption can be further reduced.
  • FIG. 7 is a block diagram showing an outline of a circuit configuration of an electronic watt-hour meter including three sets of voltage sensors and current sensors.
  • the same or corresponding parts as in FIG. 3 are denoted by the same reference numerals, and the description thereof is omitted.
  • the voltage sensor 13A, 13B, 13C, and the current sensor 14A, 14B, 14C is connected.
  • Each of the current sensors 14A to 14C is composed of a current transformer or a mouth gosky key, and power calculation by the software processing unit 25a is performed for each element of each set. Except for these points, the configuration is the same as that of the above embodiment. Even in this configuration, the same operational effects as the electronic watt-hour meter in the above-described embodiment can be obtained.
  • the present invention is not limited to this. is not.
  • the voltage to be measured has a wider measurement accuracy guarantee range than the current to be measured, and the amplitude of the detection signal is larger than the current to be measured. Therefore, as shown in FIG. 8, the voltage sensor 13 can be directly connected to the AZD converter 24 without using the differential amplifier 23.
  • the same or corresponding parts as in FIG. 3 are denoted by the same reference numerals, and the description thereof is omitted.
  • the voltage sensor 13 is connected to the AZD converter 24 without using the differential amplifier 23 using the two selection switches 22 and 52, and the software processing unit 25b according to these configurations.
  • the configuration is the same as that of the above embodiment except that the processing in is different.
  • the selection switches 22 and 52 are respectively switched to terminals 22a and 52a as shown in FIG.
  • the detection output of the voltage sensor 13 is directly input to the A / D converter 24 via the selection switches 22 and 52.
  • the selection switches 22 and 52 are switched to the terminals 22 b and 52 b, and the detection output of the current sensor 14 Is amplified by the differential amplifier 23 and then input to the AZD converter 24.
  • the selection switches 22 and 52 are switched to the terminals 22c and 52b, respectively, and the reference potential of the current sensor 14 is Then, after being differentially amplified by the differential amplifier 23, it is input to the AZD converter 24. Therefore, also in this configuration, the same operational effects as the electronic watt-hour meter in the above embodiment are exhibited.
  • differential amplifier 23 is built in the front stage of the AZD converter 24 inside the microcomputer 21 , but the present invention is not limited to this. Absent.
  • the differential amplifier 23 may be built in the microcomputer 21 or provided outside the microcomputer 21.
  • FIG. 9 is a block diagram showing an outline of a circuit configuration of an electronic watt-hour meter configured with the differential amplifier 23 provided outside the microcomputer 21.
  • the same or corresponding parts as in FIG. 3 are denoted by the same reference numerals, and the description thereof is omitted.
  • the microcomputer 61 in this configuration is a general-purpose microcomputer provided with an amplifier 63, and the amplifier 63 is connected to the AZD converter 24 via a selection switch 62.
  • the current sensor 14 is connected to a selection switch 22 inside the microcomputer 61 via a selection switch 65 and a differential amplifier 64 provided outside the microcomputer 61. Except for these points and the point that the processing in the software processing unit 25c differs depending on these configurations, the configuration is the same as that of the above embodiment.
  • the selection switches 22 and 62 are switched to terminals 22a and 62a, respectively, as shown in FIG.
  • the detection output of the voltage sensor 13 is directly input to the AZD converter 24 via the selection switches 22 and 62. Further, when the detection output of the current sensor 14 is input to the AZD comparator 24 and converted into a digital signal, the selection switches 65, 22, and 62 are switched to terminals 65a, 22b, and 62b, respectively.
  • the detection output of the current sensor 14 is amplified by the differential amplifier 23 and the amplifier 63 and then input to the AZD converter 24. Further, when the reference potential of the current sensor 14 is input to the AZD converter 24 and converted into a digital signal, the selection switches 65, 22, and 62 are switched to the terminals 65b, 22c, and 62b, respectively.
  • the reference potential of the current sensor 14 is amplified by the differential amplifier 23 and the amplifier 63, and the force is also input to the AZD converter 24. Therefore, even in this configuration, the same effects as those of the electronic watt-hour meter in the above embodiment can be obtained.
  • FIG. 10 is a diagram showing the relationship between the accumulated power consumption (see FIG. 5, S 25) and the pulse signal output from the software processing unit 25 to the LED 15.
  • Figure (a) shows the amount of power used cumulatively added over time.
  • Figure (b) shows the output when the power consumption shown in Figure (a) reaches a certain value (threshold). The output timing of each pulse signal is shown.
  • the horizontal axis represents the time axis.
  • the pulse output threshold is set to a as shown by the solid line in FIG.
  • a pulse signal is output as shown in Fig. 5 (b), and the cumulative amount of power used is reset to "0".
  • the Similarly, a pulse signal is output each time the time t has elapsed and the amount of power used reaches the threshold value ⁇ .
  • the threshold value ⁇ is adjusted so that the time t becomes constant and the pulse signal frequency becomes 6.4 [Hz], for example, when the rated voltage and current are applied to the electronic watt-hour meter.
  • the rate of increase in the amount of power used that is actually cumulatively added depends on the sensitivity and internal sensitivity of each sensor 13, 14. Resistance value, reference voltage V applied to AZD converter 24, differential amplifier 23 ⁇
  • the waveform changes as it becomes smaller or larger like the sawtooth waveform shown by the dotted line and the alternate long and short dash line in Fig. 9 (a).
  • the timing at which the amount of power used reaches the threshold value a also changes.
  • the absolute amount of power used Correct the error. Specifically, when the rate of increase in the amount of power used decreases as shown by the dotted line in Fig. 9 (a), the threshold value is changed from a force to ⁇ ( ⁇ ⁇ ).
  • the threshold value is changed from ⁇ to ⁇ ( ⁇ ).
  • the pulse output timing is adjusted by adjusting the threshold value, so the pulse signal is output according to the actual power consumption, and the absolute error in the calculated power consumption Is corrected.
  • the absolute error of the calculated power consumption is corrected by multiplying the gain of S24 by a predetermined amount according to the amplification factor of the differential amplifier 23 by the gain adjustment of S24, as described above. It is also corrected by adjusting the negative value. This increases the degree of freedom in designing electronic watt-hour meters.
  • FIG. 11 is a circuit diagram showing a switched capacitor integrating circuit configured inside the AZD converter 24.
  • the AZD converter 24 includes an operational amplifier 71 and a comparator 72 connected to the output side thereof.
  • the input side and the output side of the operational amplifier 71 are connected in feedback by hold capacitors 79 and 80.
  • sampling capacitors 73 and 74 having a capacity Ci for sampling an input signal and feedback capacitors 75 and 76 having a capacity Cr for performing feedback are connected.
  • Switching capacitors 77 and 78 are connected to the feedback capacitors 75 and 76, respectively, and these switches 77 and 78 are switched by the output of the comparator 72 to provide feedback.
  • the reference voltage + V or 1 V is applied to the capacitor 75 and 76.
  • the densityr 73 is connected to the selection switch 22 described above, and the detection output of each of the sensors 13 and 14 and the reference potential are input to the sampling capacitor 73 in accordance with the switching of the selection switch 22.
  • the sampling capacitor 74 is connected to the reference potential of the current sensor 14, and a reference potential of 0 [V] is input to the sampling capacitor 74.
  • the signals input to the sampling capacitors 73 and 74 are differentially amplified and ⁇ -modulated with an amplification factor of the input capacitor ratio CiZCr, and converted into an analog signal and a digital signal. Therefore, even in this configuration, the same effects as those of the above-described embodiment are achieved.
  • the force voltage sensor 13 and the current sensor 14 have been described in the case where the voltage sensor 13 is composed of the voltage dividing resistors 13a to 13c and the current sensor 14 is composed of the shunt resistor 14a.
  • the type of can be changed as appropriate.
  • the current sensor 14 may be a current transformer (CT), a Rogowski coil, or the like shown in FIG.
  • the AZD conversion process is performed in the AZD converter 24 in the order of the detection output of the current sensor 14, the detection output of the voltage sensor 13, and the reference potential of the current sensor 14 by switching the selection switch 22.
  • the case where the AZD conversion process is performed has been described (see FIGS. 5, S21, S22, and S27), but the order of the AZD conversion processing for these signals can be changed as appropriate.
  • the reference voltage V of the AZD converter 24 is
  • the power source and the power source that supplies the operating voltage V to the microcomputer 21 can be shared. This structure
  • DD SI S2 SS V and V are not limited to these values and can be changed as appropriate.
  • the present invention is applied to a single-phase two-wire electronic watt-hour meter.
  • the measurement target is based on the digital signal converted by the AZD conversion means. It can also be applied to various electronic watt-hour meters such as single-phase three-wire and three-phase three-wire systems that calculate the amount of power used. Even when the present invention is applied to such various electronic watt-hour meters, the same effects as those of the above-described embodiment can be obtained.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Current Or Voltage (AREA)
  • Analogue/Digital Conversion (AREA)

Description

電子式電力量計
技術分野
[0001] 本発明は、 A/D (アナログ Zデジタル)変換手段で変換されたデジタル信号に基 づいて被計測対象の使用電力量を演算する電子式電力量計に関するものである。 背景技術
[0002] 電子式電力量計の計測精度保証範囲は、一般的に、電圧が定格値の ± 10%程 度であるのに対して、電流が定格値の 6倍〜 1Z40倍と広範囲である。このため、こ の計測精度保証範囲内にある電流を ± 1%の精度で計測するには、 1/240 X 1% = 1/24, 000、すなわち、 24, 000分の 1の分解能が必要となり、 A/Dコンバータ には約 15ビットの分解能が必要となる。し力しながら、演算処理装置として汎用され るマイクロコンピュータ(以下、マイコンと記す)に内蔵される AZDコンバータは、分 解能が一般的に 10ビット、多くても 12ビットであり、このような汎用のマイコンを使用 する電子式電力量計では分解能が不足してしまう。このため、従来の電子式電力量 計では、マイコン内蔵 AZDコンバータで不足する分解能を補うため、計測する電流 をその大きさに応じた増幅率で増幅している。例えば、特許文献 1に開示される従来 の電子式電力量計では、整流'平均化された計測電流のレベルと増幅手段の定格レ ベルとに基づいて増幅率が自動的に調節され、増幅手段では、この調節された増幅 率に基づいて電流センサの出力が増幅される。また、計測電流をその大きさに応じて 種々の増幅率で増幅できるように、複数の増幅器が図 1に示すように多段に設けられ た従来の電子式電力量計もある。
[0003] この電子式電力量計は、汎用のマイコン 1を備えて構成されている。マイコン 1には 、逐次比較型の AZDコンバータ 2、およびこの A/Dコンバータ 2で変換されたデジ タルデータに基づ 、て演算を行なうソフトウェア処理部 3が設けられて 、る。 AZDコ ンバータ 2には、選択スィッチ 7を介して、入力信号を 5倍に増幅する増幅器 9, 10, 11, 12が 4段に接続されている。 1段目の増幅器 9には、選択スィッチ 8を介して電圧 センサ 13および電流センサ 14が接続されている。選択スィッチ 8は、端子 8a, 8b, 8 cの中のいずれかの端子に接続が択一的に切り換えられる。端子 8aに切り換えられ ると電圧センサ 13からの電圧信号、端子 8bに切り換えられると電流センサ 14力もの 電流信号、端子 8cに切り換えられると各センサ 13, 14の検出出力の基準電位が選 択されて計測される。選択スィッチ 7は、電流センサ 14で検出された電流信号の増幅 に用いる増幅器の段数を選択する際に、端子 7a, 7b, 7c, 7dの中のいずれかの端 子に接続が択一的に切り換えられる。端子 7aに切り換えられると 1段の増幅器 9が選 択され、入力信号は 5倍に増幅される。また、端子 7bに切り換えられると 2段の増幅 器 9, 10、端子 7cに切り換えられると 3段の増幅器 9〜11、端子 7dに切り換えられる と 4段の増幅器 9〜12が選択され、入力信号はそれぞれ 52倍, 53倍, 54倍に増幅さ れる。
[0004] ソフトウェア処理部 3には、 LED (発光ダイオード) 15および液晶表示部 6の表示を 制御する液晶ドライバ 5が接続されている。ソフトウェア処理部 3は、 AZDコンバータ 2でデジタルデータに変換された電圧値および電流値を乗算して電力を算出し、この 電力を累積加算して電力量を算出する。算出した電力量は液晶表示部 6に表示され 、また、算出した電力量に基づいて、使用電力量に比例したノルス信号が生成され て LED15が点滅される。
[0005] 図 2は、上記のソフトウェア処理部 3における電力量の算出処理の概略を示すフロ 一チャートである。
[0006] この電力量の算出処理では、始めに、電流ダミー AZD変換処理が行なわれる(図 2,ステップ (以下、 Sと記す) 1参照)。この処理では、選択スィッチ 8が端子 8bに切り 換えられて AZDコンバータ 2によって最初に変換される電流値のデジタルデータが 、電流計測精度を上げるために捨てられる。次に、電流プリ AZD変換処理が行なわ れる(S2)。この処理では、増幅器 9〜12の中力も電流信号の増幅に用いる増幅器 の最適な段数を決定するための測定処理が行なわれる。次に、電流本番 AZD変換 処理が行なわれる(S3)。この処理では、 S2で決定した段数の増幅器を選択スィッチ 7の切り換えによって選択し、選択した増幅器で電流センサ 14から出力される検出信 号を増幅した後、 AZDコンバータ 2によりデジタルデータに変換する処理が行なわ れる。次に、電圧ダミー AZD変換処理が行なわれる(S4)。この処理では、 S1の電 流ダミー AZD変換処理と同様、選択スィッチ 8が端子 8aに切り換えられて AZDコン バータ 2によって最初に変換される電圧値のデジタルデータ力 電圧計測精度を上 げるために捨てられる。次に、電圧本番 AZD変換処理が行なわれる(S5)。この処 理では、選択スィッチ 7の切り換えによって 1段の増幅器 9を選択し、この増幅器 9で 電圧センサ 13から出力される検出信号を増幅した後、 AZDコンバータ 2によりデジ タルデータに変換する処理が行なわれる。
[0007] 次に、 S3で得られた電流値および S5で得られた電圧値から、前回の後述する S13 の処理で得られたオフセットが除去され、電力(瞬時電力)が計算される(S6)。オフ セットは、各増幅器 9〜12において入力が零であるときに AZDコンバータ 2から出力 される電圧であり、 S6における電力計算式は、(電圧値 オフセット) X (電流値ーォ フセット)と表わされる。
[0008] 次に、ゲイン (利得)調整処理 (S7)が行なわれる。すなわち、 S6で得られる電力計 算結果を、 S2で決定された段数の増幅器による増幅率に応じて所定倍することで、 ゲイン調整が行なわれる。続いて、ゲインエラー補正処理が行なわれる(S8)。すな わち、各増幅器 9〜12における増幅率を決める内部抵抗の誤差によって電力計算 結果に生じる誤差を取り除く処理が行なわれる。次に、 S6〜S8の処理によって得ら れた電力データを累積 (積算)して電力量を算出する処理が行なわれる(S9)。この 電力累積処理で算出された電力量に基づいて、使用電力量に比例したパルス信号 力LED15へ出力され (S10)、液晶表示部 6には、算出された電力量が表示される。
[0009] 次に、オフセットダミー AZD変換処理が行なわれる(Sll)。この処理では、選択ス イッチ 8が端子 8cに切り換えられて A/Dコンバータ 2によって最初に得られるオフセ ットデータが、各増幅器 9〜 12のオフセット計測精度を上げるために捨てられる。次 に、オフセット本番 AZD変換処理が行なわれる(S 12)。この処理では、選択スイツ チ 7の切り換えにより、増幅器 9〜12の各段毎のオフセットが順番に計測され、この計 測されたオフセットが AZDコンバータ 2によってデジタルデータに変換される。この オフセットの計測は数回行なわれ、この計測結果に基づ 、てオフセットの平均値が算 出される(S13)。このようにして得られたオフセットに基づいて、次回の電力計算処 理(S6)が上述したように行なわれる。 特許文献 1:特開 2004 - 177228号公報 (段落 [0025]〜[0031])
発明の開示
[0010] し力しながら、上記の図 1に示す従来の電子式電力量計では、増幅器 9〜12を多 段に接続した構成であるため、 S2の電流プリ AZD変換処理によって増幅器の最適 な段数を決定したり、 S11のオフセットダミー AZD変換処理によって各段の増幅器 9 〜 12のオフセットを計測したり、 S 12のオフセット本番 AZD変換処理によって計測し た数回分のオフセット値を増幅器 9〜12の各段毎に記憶しなければならない。さらに 、 S7のゲイン調整処理によって各段の増幅器 9〜12毎にゲイン調整をしたり、 S8の ゲインエラー補正処理によって各段の増幅器 9〜12についての抵抗誤差を補正す る必要がある。従って、上記の図 1に示す従来の電子式電力量計では、多くの処理 が必要になってソフトウエアの規模が大きくなり、大きなデータ記憶容量も必要になる ので、メモリサイズの大きなマイコンが必要となる。
[0011] また、処理量が増大することで、マイコン 1の動作クロック周波数を高めにして処理 速度を向上させなければならず、マイコン 1の消費電流が大きくなつてしまう。また、 増幅器 9〜12を多段に接続した構成であるため、アナログ回路部分の規模も大きく なって基板サイズが大型化すると共に、アナログ回路部分における消費電流も大き なものとなってしまう。従って、図 1に示す従来の電子式電力量計では、小型電源を 使用することができない。また、消費電流の増加に伴い、電源力もの出力電圧の変 動幅も大きくなるため、図 1に示す従来の電子式電力量計では、電源の出力電圧を 安定させるための回路部品が必要となり、コストアップを招いてしまう。また、マイコン 1 の動作クロック周波数を高くすると、マイコン 1から発生する電磁ノイズによる放射電 界強度の影響が大きくなる。このため、図 1に示す従来の電子式電力量計では、耐ノ ィズ性能 (EMC)を高めるための電磁シールドなどの対策が必要となり、この点にお
V、てもコストがかかってしまう。
[0012] この結果、図 1に示す従来の電子式電力量計では、製品の小型化およびコストダウ ンを十分に図ることができな力つた。
[0013] 本発明はこのような課題を解決するためになされたもので、
被計測対象の電圧を検出する電圧センサと、 被計測対象の電流を検出する電流センサと、
電圧センサもしくは電流センサの検出出力またはこの検出出力の基準電位のいずれ かを択一的に選択して出力する選択スィッチと、
少なくとも電流センサの検出出力を増幅する増幅手段と、
選択スィッチによって出力される電圧センサおよび電流センサの検出出力ならびに 上記基準電位をアナログ信号力 デジタル信号に変換する AZD変換手段、および この AZD変換手段で変換されたデジタル信号に基づいて被計測対象の使用電力 量を演算する演算手段を内蔵した演算処理装置と
を備えた電子式電力量計において、
増幅手段は、入力信号を差動増幅する差動増幅手段から構成され、
AZD変換手段は、 Δ∑変調によって入力信号をアナログ信号力 デジタル信号に 変換し、
演算手段は、 AZD変換手段で変換された電圧センサおよび電流センサの検出出 力から AZD変換手段で変換された上記基準電位をそれぞれ除去して被計測対象 の使用電力量を算出することを特徴とする。
[0014] この構成によれば、電圧センサの検出出力、電流センサの検出出力、およびこれら 検出出力の基準電位は、 AZD変換手段において Δ∑変調によってアナログ信号 からデジタル信号に変換される。デジタル信号に変換された電圧センサおよび電流 センサの各検出出力から、演算手段により、デジタル信号に変換された基準電位が 除去されることにより、電圧センサおよび電流センサの各検出出力から差動増幅手段 および AZD変換手段のオフセットが除去される。被計測対象の使用電力量は、オフ セットが除去された電圧センサおよび電流センサの各検出出力を用いて算出される
[0015] AZD変換手段におけるアナログ信号力 デジタル信号への変換は、 Δ Σ変調の 際のオーバーサンプリングによって細力べサンプリングされて高い分解能で行なわれ るので、従来の電子式電力量計のように、 AZD変換手段の分解能を補うために増 幅手段を多段に構成する必要がなくなる。このため、増幅手段を多段に構成しなくて も、広範囲の計測精度保証範囲を必要とする電流センサの検出出力を広範囲にわ たって高精度に計測することができるようになる。また、増幅手段を多段に構成する 必要がなくなるので、従来の電子式電力量計のように、増幅器の最適な段数を決定 したり、各段の増幅器のオフセットを計測したり、計測した数回分のオフセット値を増 幅器の各段毎に記憶する必要がなくなる。さらに、ゲイン調整処理によって各段の増 幅器毎にゲイン調整をしたり、ゲインエラー補正処理によって各段の増幅器について の抵抗誤差を補正する必要が無くなる。従って、処理の量が少なくなつてソフトウェア の規模が小さくなり、データ記憶容量も小さくなるので、演算処理装置に必要とされる メモリサイズが小さくて済むようになる。また、処理量が減少するので、演算処理装置 の動作クロック周波数を低く抑えて、その消費電流を小さくすることができる。また、増 幅手段を多段に構成する必要がないので、アナログ回路部分の規模も小さくなつて 基板サイズが小型化すると共に、アナログ回路部分における消費電流も小さくするこ とができる。従って、電子式電力量計の電源として小型電源を用いることが可能とな る。また、消費電流を小さくして電源力もの出力電圧の変動幅を小さくすることができ るので、従来の電子式電力量計のような電源の出力電圧を安定させるための回路部 品が不要となり、コストを抑えることができる。また、演算処理装置の動作クロック周波 数を低く抑えることができるので、演算処理装置から発生する電磁ノイズによる放射 電界強度の影響を小さくして、耐ノイズ性能の対策に係るコストを抑えることもできる。 この結果、本発明による電子式電力量計によれば、製品の小型化およびコストダウン を十分に図ることが可能になる。
[0016] また、増幅手段に差動増幅手段を用いているため、増幅手段から出力される少なく とも電流センサ力もの検出信号にバイアス電圧を印加することができる。このため、電 流センサの検出信号が負の範囲に振れるものであっても、バイアス電圧を印加するこ とによって正の範囲で変動する信号にして、電流センサの検出信号を増幅手段によ つて増幅し、 AZD変換手段によってデジタル信号に変換できる。また、増幅手段に 差動増幅手段を用いているため、その入力端子に雑音が乗っても相殺されて雑音の 影響を排除できるので、入力信号を高 、精度で増幅することができる。
[0017] また、本発明は、演算手段が、使用電力量を所定倍することで、または、使用電力 量に応じたパルス出力のしきい値を調整することで、使用電力量の絶対誤差を補正 することを特徴とする。
[0018] この構成によれば、算出した使用電力量を増幅手段の増幅率に応じて所定倍する ことで、算出した使用電力量の絶対誤差が補正される。また、算出した使用電力量に 応じたノルス出力のしき!/ヽ値を調整することによっても、パルス出力のタイミングが調 整されて、パルスは実際の使用電力量に応じて出力されるようになり、算出した使用 電力量の絶対誤差が補正される。このため、算出した使用電力量は、所定倍すること によっても、パルス出力のしきい値を調整することによつても、その絶対誤差の補正が 可能となり、電子式電力量計の設計の自由度が増す。
[0019] また、本発明は、演算手段が、電流センサの検出出力の基準電位と電圧センサの 検出出力の基準電位とを異ならせた場合に、 AZD変換手段で変換された基準電位 を電流センサの検出出力または電圧センサの検出出力のいずれか一方のみから除 去することを特徴とする。
[0020] この構成によれば、各センサの検出出力から算出される電力値は直流成分力 な る力 基準電位の除去が行なわれな力つた方の検出出力に現れる増幅手段および
AZD変換手段のオフセットは、電圧の正負均等に現れる交流成分となって、使用電 力量の積算処理過程における積分処理で除去される。従って、 AZD変換手段で変 換された基準電位の除去が、電流センサの検出出力または電圧センサの検出出力 のいずれか一方に対してのみ行なわれるだけで、算出する使用電力量力 増幅手 段および AZD変換手段のオフセットを除去することができる。このため、被計測対象 の使用電力量の算出処理が簡略化されるようになり、ソフトウェアの規模がさらに小さ くなつて演算処理装置のメモリサイズがさらに小さくなると共に、動作クロック周波数を さらに低くして消費電流をさらに減少させることができる。
[0021] また、本発明は、演算処理装置が、電圧センサおよび電流センサの検出出力なら びにこの検出出力の基準電位のいずれかに対する AZD変換手段による変換の完 了後即座に選択スィッチを切り換えて次の選択を行なわせた後、時間をお!/、て AZ D変換手段による次の変換を行なわせることを特徴とする。
[0022] この構成によれば、電圧センサおよび電流センサの検出出力ならびにこの検出出 力の基準電位のいずれかに対する AZD変換手段による変換が完了すると、即座に 選択スィッチが切り換えられ、その後時間をおいて、切り換えられた選択スィッチによ つて入力される信号に対し、 AZD変換手段による変換が行なわれる。このため、 A ZD変換手段による各変換は、選択スィッチが切り換えられて力 ある程度の時間が 経過して、 AZD変換手段に入力される信号が安定した状態で開始されるようになる 。従って、計測誤差の発生要因が取り除かれて、 AZD変換手段による各変換は正 確に行なわれるようになる。
[0023] また、本発明は、演算処理装置が、 AZD変換手段による各変換の完了後即座に AZD変換手段の動作を停止させて、 AZD変換手段による次の変換の開始準備を 行なわせることを特徴とする。
[0024] この構成によれば、電圧センサおよび電流センサの検出出力ならびにこの検出出 力の基準電位に対する各変換が完了すると、 AZD変換手段の動作が即座に停止 し、 AZD変換手段による次の変換の開始準備が行なわれる。このため、 AZD変換 手段による各変換は、 AZD変換手段が停止した状態力 速やかに実行されるように なる。従って、 AZD変換手段の動作を停止させずに継続して変換する場合には、変 換開始時に AZD変換手段の前の変換動作の完了を待つことなどにより次の変換の 開始が遅延して、各変換の開始を一定周期で行なうことができないが、この構成によ れば、一定周期で行なうことができる。この結果、被計測対象の電圧および電流の計 測タイミングならびにオフセットの計測タイミングが一定周期で行なわれて、被計測対 象の使用電力量の算出処理が正確に行なえるようになる。
[0025] また、本発明は、 AZD変換手段の参照電圧が演算処理装置の動作電圧と同電位 に設定されて ヽることを特徴とする。
[0026] この構成によれば、 AZD変換手段にその参照電圧を供給する電源と、演算処理 装置にその動作電圧を供給する電源とを共通化することができる。このため、 A/D 変換手段にその参照電圧を供給する電源を別個に用意する必要がなくなり、さらに 製品の小型化およびコストダウンを図ることができる。
[0027] 本発明によれば、上記のように、製品の小型化およびコストダウンを十分に図ること ができる電子式電力量計を提供することが可能になる。
図面の簡単な説明 [0028] [図 1]従来の電子式電力量計の回路構成の概略を示すブロック図である。
[図 2]図 1に示す電子式電力量計における電力量の算出処理の概略を示すフローチ ヤートである。
[図 3]本発明の一実施形態による電子式電力量計の回路構成の概略を示すブロック 図である。
[図 4]図 3に示すブロック図の一部詳細回路図である。
[図 5]図 3に示す電子式電力量計における電力量の算出処理の概略を示すフローチ ヤートである。
[図 6]図 5に示す電力量の算出処理の詳細を示すフローチャートである。
[図 7]本発明の第 1の変形例による電子式電力量計の回路構成の概略を示すブロッ ク図である。
[図 8]本発明の第 2の変形例による電子式電力量計の回路構成の概略を示すブロッ ク図である。
[図 9]本発明の第 3の変形例による電子式電力量計の回路構成の概略を示すブロッ ク図である。
[図 10]本発明の第 4の変形例による電子式電力量計における、累積加算される使用 電力量と生成されるパルス信号との関係を示す図である。
[図 11]本発明の第 5の変形例による電子式電力量計に用いられる AZDコンバータ の内部回路図である。
発明を実施するための最良の形態
[0029] 次に、本発明を実施するための最良の形態について説明する。
[0030] 図 3は、本実施形態による単相 2線式の電子式電力量計の回路構成の概略を示す ブロック図である。また、図 4は、図 3に示すブロック図の一部詳細回路図である。な お、図 3および図 4において図 1と同一または相当する部分には同一の符号を付して 説明する。
[0031] 本実施形態による電子式電力量計は、電圧センサ 13、電流センサ 14、汎用のマイ コン 21、および液晶表示部 6を備えて構成されている。演算処理装置を構成している マイコン 21は、選択スィッチ 22、差動増幅器 23、 AZDコンバータ 24、ソフトウェア処 理部 25、液晶ドライバ 5、および LED15を備えており、回路グランド (GND)は 0[V] の基準電位 V に接続されている。
ss
[0032] 電圧センサ 13は、電源端子 PO, P1間に入力される電圧 V'sin cotを抵抗 13a, 13b , 13cで分圧する分圧回路から構成されており、抵抗 13cの両端に現れる分圧電圧 E 'sin cotを被計測対象の電圧として検出し、出力する。抵抗 13cが接続される信号
V
グランドは、マイコン 21の動作電圧 V (3. 6[V])の 1Z2の電圧であるバイアス電圧
DD
V (1. 8[V])が図 4に示すように基準電位 V に印加された電位にされている。電
COM SS
流センサ 14は、シャント抵抗 14aから構成されており、負荷端子 IS, 1L間を流れる 負荷電流 I · sin ω tによってシャント抵抗 14aの両端間に現れる電圧 E · sin ω tを被計
I
測対象の電流として検出し、出力する。電源端子 P1および負荷端子 1Sはマイコン 2 1の基準電位 V と同じ 0[V]に接続されており、この 0[V]は、電流センサ 14の検出出
SS
力の基準電位となっている。このように、本実施形態では、電流センサ 14の検出出力 の基準電位と電圧センサ 13の検出出力の基準電位とは、それぞれ 0[V]と 1. 8[V]に 設定されて異なっている。
[0033] 選択スィッチ 22は、端子 22a, 22b, 22cの中のいずれかの端子に接続が択一的 に切り換えられる。端子 22aに切り換えられると電圧センサ 13の検出出力、端子 22b に切り換えられると電流センサ 14の検出出力、端子 22cに切り換えられると電流セン サ 14の基準電位が選択される。従って、選択スィッチ 22は、電圧センサ 13もしくは 電流センサ 14の検出出力またはこの検出出力の基準電位のいずれかを択一的に選 択して出力する。
[0034] 差動増幅器 23は、選択スィッチ 22を介して上記各センサ 13, 14と接続されており 、その増幅出力を AZDコンバータ 24へ出力する。差動増幅器 23および AZDコン バータ 24は、電源 26が発生するバイアス電圧 V (1. 8[V])が回路グランド (0[V])
COM
に加算された電位を基準電位としており、それぞれ、マイコン 21の動作電圧 V (3.
DD
6[V])が供給されて動作する。
[0035] 図 4に示すように、差動増幅器 23の反転入力端子(-)は、抵抗 23aを介して選択 スィッチ 22の出力端子と接続されており、選択スィッチ 22によって選択された各セン サ 13, 14からの検出出力およびその基準電位が入力される。また、非反転入力端子 (+ )は、抵抗 23bを介して電流センサ 14の 0[V]の基準電位、抵抗 23cを介して電源 26に接続されている。また、差動増幅器 23の反転入力端子(一)と出力端子との間 には抵抗 23dが設けられて負帰還がかけられている。差動増幅器 23は、選択スイツ チ 22によって選択された少なくとも電流センサ 14の検出出力を増幅する増幅手段を 構成しており、反転入力端子(一)および非反転入力端子(+ )に入力される入力信 号を差動増幅する差動増幅手段を構成して 、る。
[0036] 差動増幅器 23の出力端子には AZDコンバータ 24が接続されている。マイコン 21 は、選択スィッチ 22を一定時間間隔毎に切り換えて、電圧センサ 13および電流セン サ 14の検出出力ならびにこの検出出力の基準電位に対する各変換を AZDコンパ ータ 24に一定時間間隔毎に行なわせる。 AZDコンバータ 24は、差動増幅器 23か ら入力される信号を、参照電圧 V を参照して Δ∑変調によってアナログ信号力 デ
ref
ジタル信号に変換する。 AZDコンバータ 24は、電圧センサ 13および電流センサ 14 の検出出力ならびに電流センサ 14の基準電位を、 Δ∑変調によってアナログ信号 カゝらデジタル信号に変換する AZD変換手段を構成している。
[0037] AZDコンバータ 24の出力側には、ソフトウェア処理部 25が接続されている。ソフト ウェア処理部 25には、使用電力量に比例したパルス信号が出力される LED15およ び液晶表示部 6の表示を制御する液晶ドライバ 5が接続されて 、る。ソフトウェア処理 部 25は、 AZDコンバータ 24でデジタル信号に変換された電圧センサ 13の検出出 力および電流センサ 14の検出出力を乗算して電力を計算し、この計算した電力を累 積加算して被計測対象の使用電力量を算出する。算出した使用電力量は、液晶ドラ ィバ 5の制御によって液晶表示部 6に表示される。また、ソフトウェア処理部 25は、算 出した使用電力量に比例したパルス信号を生成する。この生成したパルス信号が出 力されているときに LED15に電流が流れ、 LED15が発光する。この LED15で発光 する光は受光センサで検出され、使用電力量に比例したパルス信号が用いられて電 力量計測精度の検定処理が行なわれる。ソフトウェア処理部 25は、 AZDコンバータ 24で変換されたデジタル信号に基づいて被計測対象の使用電力量を演算する演算 手段を構成している。
[0038] 図 5は、上記のソフトウェア処理部 25による使用電力量の算出処理の概略を示すフ ローチャートである。
[0039] 本実施形態における使用電力量の算出処理では、まず始めに、電流 AZD変換処 理が行なわれる(図 5, S21参照)。この処理では、選択スィッチ 22が端子 22bに接 続を切り換えられ、差動増幅器 23で増幅された電流センサ 14の検出出力力 A/D コンバータ 24の Δ∑変調によってアナログ信号力もデジタル信号に変換される。続 いて、電圧 A/D変換処理が行なわれる(S 22)。この処理では、選択スィッチ 22が 端子 22aに接続を切り換えられ、差動増幅器 23で増幅された電圧センサ 13の検出 出力が、 AZDコンバータ 24の Δ∑変調によってアナログ信号力もデジタル信号に 変換される。
[0040] 次に、 S21でデジタル信号に変換された電流値および S22でデジタル信号に変換 された電圧値から、前回の後述する S27の処理でデジタル信号に変換されたオフセ ットが除去され、オフセットが除去された電流値および電圧値力 電力が計算される ( S23)。オフセットは、差動増幅器 23の入力が零のときに AZDコンバータ 24の出力 に現れる電圧であり、上記 S23の処理における電力計算式は、(電圧値 オフセット ) X (電流値 オフセット)として表わされる。
[0041] 次に、ゲイン調整処理が行なわれる (S24)。この処理では、 S23で計算された電力 データを、差動増幅器 23の増幅率に応じて予め決められた倍率で所定倍することで 、瞬時電力の絶対誤差が補正される。次に、 S23および S24の処理で得られた電力 データが累積加算されて使用電力量が算出され (S25)、この算出された使用電力 量が液晶表示部 6に表示される。また、算出された使用電力量に比例したパルス信 号が生成され、この生成されたパルス信号が LED15へ出力される(S26)。
[0042] 次に、オフセット AZD変換処理が行なわれる(S27)。この処理では、選択スィッチ 22が端子 22cに接続を切り換えられ、差動増幅器 23に 0[V]の基準電位が入力され て差動増幅される。そして、差動増幅された基準電位が AZDコンバータ 24の Δ∑ 変調によってデジタル信号に変換されて、差動増幅器 23および AZDコンバータ 24 のオフセットが算出される。次回の S23の電力計算処理では、この S27のオフセット A ZD変換処理で得られたオフセットが上述したように電圧値および電流値から除去さ れて、電力が計算される。 [0043] 図 6は、上記の使用電力量の算出処理の詳細を示すフローチャートである。使用電 力量の算出処理は、マイコン 21のタイマ割込処理として行なわれる。
[0044] タイマ割込処理の割込タイミングを計時するタイマの計時時間が T ( = 500[^ 5])
SS
に達すると、タイマ割込処理が開始される。このタイマ割込処理で、マイコン 21は、ま ず始めに、 T フラグがセットされている力否かを判別する(図 6, S31参照)。 T フラ
S2 S2 グは、電圧 AZD変換処理(図 5, S22参照)が行なわれる間、後述するように S39で セットされる。この判別が" No"である場合、次に、 V 中フラグがセットされているか
OFF
否力 すなわち、差動増幅器 23および AZDコンバータ 24のオフセットを計測してい る最中か否かを判別する(S32)。 V 中フラグは、オフセット AZD変換処理(図 5,
OFF
S27参照)が行なわれる間後述するように S45でセットされる。オフセット AZD変換 処理が行なわれていなくて、 S32の判別が" No"である場合、マイコン 21は、タイマに T ( = 93 3])の時間をセットし(S33)、時間 T の計時を開始させる。この時間 T
SI SI S1 の計時が行なわれる間に、以下に示す S39までの一連の処理が行なわれる。また、 S33のタイマセットにより、 T の時間経過後、次のタイマ割込が発生して S41の電圧
S1
Δ∑AZD変換が開始される。次に、マイコン 21は、電流 AZD変換処理(図 5, S21 参照)を開始させる(S34)。この際、選択スィッチ 22は、後述する S56の処理で、電 流センサ 14の検出出力が AZDコンバータ 24へ出力される端子 22bに既に切り換え られている。次に、マイコン 21は、 S 34で開始させた電流 AZD変換処理が完了した か否かを判別し(S35)、この判別が" Yes"になると、 AZDコンバータ 24の動作を即 座に停止させる(S36)。そして、選択スィッチ 22を端子 22aに切り換えて、電圧セン サ 13の検出出力が差動増幅器 23に入力される状態にセットし (S37)、次の電圧 Δ ∑AZD変換 (S41参照)の開始準備を行なう。
[0045] 次に、 S34および S35の処理でデジタル信号に変換された電流センサ 14の検出 出力値 (AD値)から、後述する S55で既にデジタル信号に変換してあるオフセット値 (V 値)を除去した値 (電流値—オフセット)を、電力計算に用いる電流値としてマイ
OFF
コン 21が内蔵する RAM (ランダム ·アクセス 'メモリ)の図示しな ヽ作業データ格納領 域にセットする(S38)。次に、マイコン 21は、 T フラグをセットして(S39)、タイマ割
S2
込処理を終了する。 [0046] また、 T フラグがセットされていて S31の判別が" Yes"である場合、マイコン 21は、
S2
タイマに T (=T — Τ = 500— 93=407[ 5])の時間をセットし(S40)、この時
S2 SS S1
間 T の計時を開始させる。この時間 T の計時が行なわれる間に、以下に示す S49
S2 S2
までの一連の処理が行なわれる。また、 S40のタイマセットにより、 T の時間経過後
S2
、次のタイマ割込が発生して S52の V Δ∑AZD変換が開始される。次に、マイコ
OFF
ン 21は、電圧 AZD変換処理(図 5, S22参照)を開始させる(S41)。この際、選択ス イッチ 22は、 S37の処理で、電圧センサ 13の検出出力が AZDコンバータ 24へ出 力される端子 22aに既に切り換えられている。次に、マイコン 21は、 S41で開始させ た電圧 AZD変換処理が完了したか否かを判別し (S42)、この判別カ 'Yes"になる と、 AZDコンバータ 24の動作を即座に停止させる(S43)。そして、選択スィッチ 22 を端子 22cに切り換えて、電流センサ 14の基準電位が差動増幅器 23に入力される 状態にセットし (S44)、V 中フラグをセットして(S45)、次の V Δ ΣΑ/D変換(
OFF OFF
S52参照)の開始準備を行なう。
[0047] 次に、 S41および S42の処理でデジタル信号に変換された電圧センサ 13の検出 出力値 (AD値)から、後述する S55で既にデジタル信号に変換してあるオフセット値 (V 値)を除去した値 (電圧値—オフセット)を、電力計算に用いる電圧値としてマイ
OFF
コン 21が内蔵する RAMの図示しな 、作業データ格納領域にセットする(S46)。次 に、 S39でセットした T フラグをクリアし(S47)、引き続いて、 S38で作業データ格納
S2
領域にセットした電流値と S46で作業データ格納領域にセットした電圧値とを乗算し て電力を計算する(S48)。この S48で算出した電力データに対しては、上述したゲイ ン調整処理(図 5, S24参照)および電力累積処理(図 5, S25参照)が行なわれ、使 用電力量が算出されると共にその絶対誤差が補正される。次に、算出した使用電力 量に基づいて、使用電力量に比例したパルス信号を生成し (S49)、タイマ割込処理 を終了する。生成したパルス信号は上述したように LED15へ出力される(図 5, S26 参照)。
[0048] また、 V 中フラグがセットされていて S32の判別が" Yes"である場合、マイコン 21
OFF
は、タイマに T ( = 500[ 3])の時間をセットし (S51)、時間 T の計時を開始させる
SS SS
。この時間 T の計時が行なわれる間に、以下に示す S57までの一連の処理が行な われる。また、 S51のタイマセットにより、 T の時間経過後、次のタイマ割込が発生し
SS
て S34の電流 Δ∑AZD変換が開始される。次に、マイコン 21は、オフセット AZD 変換処理(図 5, S27参照)を開始させる(S52)。この際、選択スィッチ 22は、 S44の 処理で、電流センサ 14の基準電位が AZDコンバータ 24へ出力される端子 22cに 既に切り換えられている。次に、マイコン 21は、 S52で開始させたオフセット AZD変 換処理が完了した力否かを判別し (S53)、この判別カ 'Yes"になると、 AZDコンパ ータ 24の動作を即座に停止させる(S54)。続いて、 S52および S53の処理でデジタ ル信号に変換されたオフセット値 (V 値)を、マイコン 21が内蔵する RAMの作業
OFF
データ格納領域にセットする(S55)。そして、選択スィッチ 22を端子 22bに切り換え て、電流センサ 14の検出出力が差動増幅器 23に入力される状態にセットし (S56)、 次の電流 Δ∑AZD変換 (S34参照)の開始準備を行なう。次に、 S45でセットした V 中フラグをクリアして(S57)、タイマ割込処理を終了する。
OFF
[0049] 本実施形態による電子式電力量計によれば、上述したように、電圧センサ 13の検 出出力、電流センサ 14の検出出力、およびこれら検出出力の基準電位は、 AZDコ ンバータ 24において Δ∑変調によってアナログ信号力 デジタル信号に変換される (図 5, S21, S22, S27、図 6, S34, S41, S52参照)。そして、ソフ卜ウェア処理部 2 5における演算により、デジタル信号に変換された電圧センサ 13および電流センサ 1 4の各検出出力から、デジタル信号に変換された基準電位が除去されることにより( 図 6, S38, S46参照)、電圧センサ 13および電流センサ 14の各検出出力力も差動 増幅器 23および AZDコンバータ 24のオフセットが除去される。被計測対象の使用 電力量は、オフセットが除去された電圧センサ 13および電流センサ 14の各検出出 力を用いて算出される(図 5, S23, S25、図 6, S48参照)。
[0050] AZDコンバータ 24におけるアナログ信号力 デジタル信号への変換は、 Δ Σ変 調の際のオーバーサンプリングによって細力べサンプリングされて高い分解能で行な われるので、従来の電子式電力量計のように、 AZDコンバータ 24の分解能を補うた めに増幅手段を多段に構成する必要がなくなる。このため、増幅手段を多段に構成 しなくても、広範囲の計測精度保証範囲を必要とする電流センサ 14の検出出力を広 範囲にわたって高精度に計測することができるようになる。また、増幅手段を多段に 構成する必要がなくなるので、従来の電子式電力量計のように、増幅器の最適な段 数を決定したり、各段の増幅器のオフセットを計測したり、計測した数回分のオフセッ ト値を増幅器の各段毎に RAMに記憶する必要がなくなる。さらに、ゲイン調整処理 によって各段の増幅器毎にゲイン調整をしたり、ゲインエラー補正処理によって各段 の増幅器についての抵抗誤差を補正する必要が無くなる。従って、処理の量が少な くなつてソフトウェア処理部 25におけるソフトウェアの規模が小さくなり、マイコン 21に 内蔵される RAMのデータ記憶容量も小さくなるので、マイコン 21に必要とされる RA Mのメモリサイズが小さくて済むようになる。また、処理量が減少するので、マイコン 2 1の動作クロック周波数を低く抑えて、その消費電流を小さくすることができる。また、 増幅手段を多段に構成する必要がないので、アナログ回路部分の規模も小さくなつ て電子式電力量計に内蔵する電子回路基板の基板サイズが小型化すると共に、ァ ナログ回路部分における消費電流も小さくすることができる。従って、電子式電力量 計の電源として小型電源を用いることが可能となる。また、消費電流を小さくして電源 からの出力電圧の変動幅を小さくすることができるので、従来の電子式電力量計のよ うな電源の出力電圧を安定させるための回路部品が不要となり、コストを抑えることが できる。また、マイコン 21の動作クロック周波数を低く抑えることができるので、マイコ ン 21から発生する電磁ノイズによる放射電界強度の影響を小さくして、耐ノイズ性能 の対策に係るコストを抑えることもできる。この結果、本実施形態による電子式電力量 計によれば、製品の小型化およびコストダウンを十分に図ることが可能になる。
また、増幅手段に差動増幅器 23を用いているため、差動増幅器 23から出力される 電圧センサ 13および電流センサ 14力もの検出信号にバイアス電圧 V を印加する
COM
ことができる。このため、電圧センサ 13および電流センサ 14の検出信号が電圧の負 の範囲に振れるものであっても、バイアス電圧 V を印加することによって正の範囲
COM
で変動する信号にして、電圧センサ 13および電流センサ 14の検出信号を差動増幅 器 23によって増幅し、 AZDコンバータ 24によってデジタル信号に変換できる。また 、増幅手段に差動増幅器 23を用いているため、その反転入力端子(一)および非反 転入力端子(+ )に雑音が乗っても相殺されて雑音の影響を排除できるので、各セン サ 13, 14の検出信号を高!、精度で増幅することができる。 [0052] また、本実施形態では、図 6, S34の電流 Δ ΣΑ/Dスタート、 S41の電圧 Δ ΣΑ/ Dスタート、 S52の V Δ∑AZDスタートは、それぞれ、 T +T +T (= 1000[
OFF SI S2 SS μ s])の一定時間間隔で行なわれる。そして、電圧センサ 13および電流センサ 14の 検出出力ならびにこの検出出力の基準電位のいずれかに対する AZDコンバータ 2 4による変換が完了すると、即座に選択スィッチ 22が切り換えられ(図 6, S37, S44, S56参照)、その後時間をおいて、切り換えられた選択スィッチ 22によって入力され る信号に対し、 AZDコンバータ 24による変換が行なわれる(図 6, S34, S41, S52 参照)。このため、 AZDコンバータ 24による各変換は、選択スィッチ 22が切り換えら れて力 ある程度の時間が経過して、 AZDコンバータ 24に入力される信号が安定 した状態で開始されるようになる。従って、計測誤差の発生要因が取り除かれて、 A ZDコンバータ 24による各変換は正確に行なわれるようになる。
[0053] また、本実施形態では、電圧センサ 13および電流センサ 14の検出出力ならびにこ の検出出力の基準電位に対する各変換が完了すると、 AZDコンバータ 24の動作が 即座に停止し(図 6, S36, S43, S54参照)、 AZDコンバータ 24による次の変換の 開始準備が行なわれる。このため、 AZDコンバータ 24による各変換は、 AZDコン バータ 24が停止した状態力も速やかに実行されるようになる。従って、 AZDコンパ ータ 24の動作を停止させずに継続して変換する場合には、変換開始時に AZDコン バータ 24の前の変換動作の完了を待つことなどにより次の変換の開始が遅延して、 各変換の開始を一定周期で行なうことができないが、本実施形態によれば、 1000 ( = 93 +407 + 500) [ /z s]毎の一定周期で行なうこと力 Sできる(図 6, S34, S41, S52 参照)。この結果、被計測対象の電圧および電流の計測タイミングならびにオフセット の計測タイミングが一定周期で行なわれて、被計測対象の使用電力量の算出処理 が正確に行なえるようになる。
[0054] なお、上記実施形態では、電力計算が、式 (電圧値 オフセット) X (電流値 オフ セット)によって行なわれる場合を説明した力 S (図 5, S23、図 6, S38, S46, S48参 照)、本発明はこれに限られるものではない。上記実施形態のように、電流センサ 14 の検出出力の基準電位 (0[V])と電圧センサ 13の検出出力の基準電位(1. 8[V])と を異ならせた場合に、ソフトウェア処理部 25における演算力 A/Dコンバータ 24で 変換された電流センサ 14の検出出力の基準電位を、 AZDコンバータ 24で変換さ れた電流センサ 14の検出出力のみから除去 (オフセットキャンセル)する構成とする ことも可能である。
[0055] つまり、この構成では、電圧センサ 13で検出した電圧値力もオフセットを除去する 図 6, S46の処理は行なわれず、電力は、式 (電圧値) X (電流値 オフセット)によつ て計算される。このように電流側のオフセットキャンセルのみ行ない、電圧側のオフセ ットキャンセルを行なわなくても、以下に示すように、使用電力量は正確に算出される
[0056] 図 4における電源端子 PO, P1間の電圧を V'sincot、電圧センサ 13の信号グランド を V 、差動増幅器 23および AZDコンバータ 24によるオフセットを V 、抵抗 13
COM OFF
a, 13b, 13cの抵抗値をそれぞれ R, R, R、 a =R Z(R +R +R )とすると、抵
1 2 3 3 1 2 3
抗 13cの両端に現れる電圧 E 'sinc tに基づいて電圧センサ 13で計測される電圧の
V
AZD変換結果は、
E 'sinc t + V
V OFF
= (V'sincot - V ) X α + V
COM OFF
となる。また、負荷端子 1L, IS間を流れる電流 I'sincotによってシャント抵抗 14aの 両端に電圧 E 'sin cotが現れるので、電流センサ 14で計測される電流の AZD変換
I
結果は、
E 'sinc t + V
I OFF
となる。従って、電力は、以下に示すように計算される。
電力
= (電圧値) X (電流値 オフセット)
=(E 'sinc t + V ) X (E ^ίηωΐ + V - V )
V OFF I OFF OFF
= {(V'sino>t - V ) X α + V } X (Ε ^ίηωΐ + V - V )
COM OFF I OFF OFF
=( a•V'sinc t ― a 9V + V ) XE 'sinc t
COM OFF I
= a ·ν·Ε esin ωΐ ― E ( a eV ― V ) sin cot
I I COM OFF
[0057] この場合、各センサ 13, 14の検出出力から算出される電力値は、第 1項の直流成 分 ·ν·Ε 'sin2 cot)力もなる力 基準電位の除去が行なわれな力つた電圧センサ 1
I 3の検出出力に現れる差動増幅器 23および AZDコンバータ 24のオフセット V は
OFF
、第 2項の正負に振れる交流成分 E 'V - V ) sin cotとなって、図 5, S25
I COM OFF
の電力累積処理における積分処理により零になる。従って、電圧側のオフセットキヤ ンセルを行なわなくとも、 V の影響は電力計算の際に自動的に除去されることにな
OFF
る。つまり、上記の式で α ·ν = Εとすると、時刻 0〜tの間に算出される使用電力量
V
は、以下の式で計算される。ここで、 sin2cot=— (cos2cot— 1)/2と変換される。また 、 ω = 2 π f = 2 π Ztであるので、 t = 2 π Ζ ωと変換される。
[数 1]
tv-Ei 「t
~~
Figure imgf000021_0001
F^j」 ί'Λ t i
2 I - in 2uJt ― t S )i 2 )
Figure imgf000021_0002
.
― El (0 - VCOM一 . 27L — I
こ +' ώ
Figure imgf000021_0003
2一
ここで、 E , Eはピーク値であるので、実効値で上記の使用電力量を表わすと以下
V I
の式となる。
[数 2]
Figure imgf000022_0001
二 £v · Ei - t
[0059] このように、電圧側のオフセットキャンセルを行なわなくとも、 V の影響は電力計
OFF
算の際に自動的に除去される。
[0060] 上記の構成によれば、 AZDコンバータ 24で変換された基準電位の除去力 電流 センサ 14の検出出力に対してのみ行なわれるだけで、算出する使用電力量力も差 動増幅器 23および A/Dコンバータ 24のオフセットを除去することができる。このた め、被計測対象の使用電力量の算出処理が簡略化されるようになり、ソフトウェアの 規模がさらに小さくなつてマイコン 21のメモリサイズがさらに小さくなると共に、動作ク ロック周波数をさらに低くして消費電流をさらに減少させることができる。
[0061] また、上記構成では、図 3および図 4に示すように、電流センサ 14の検出出力の基 準電位と電圧センサ 13の検出出力の基準電位とが、それぞれ 0[V]と 1. 8[V]に設定 され、 AZDコンバータ 24で変換された電流センサ 14の検出出力の基準電位を、 A ZDコンバータ 24で変換された電流センサ 14の検出出力のみから除去する場合を 説明したが、本発明はこれに限られるものではない。例えば、電流センサ 14の検出 出力の基準電位を信号グランドの基準電位 (例えば 1. 8[V])、電圧センサ 13の検出 出力の基準電位を回路グランドの基準電位 V (例えば 0[V])に設定すると共に、選
SS
択スィッチ 22の端子 22cをこの回路グランドの基準電位 V に接続して、 AZDコン
SS
バータ 24で変換された電圧センサ 13の検出出力の基準電位を、 AZDコンバータ 2 4で変換された電圧センサ 13の検出出力のみから除去する構成とすることもできる。
[0062] 上記のように、各センサ 13, 14の検出出力から算出される電力値は直流成分から なるが、基準電位の除去が行なわれな力つた方の検出出力に現れる差動増幅器 23 および AZDコンバータ 24のオフセットは、電圧の正負均等に現れる交流成分となつ て、使用電力量の積算処理過程における積分処理 (図 5, S25参照)で除去される。 従って、 AZDコンバータ 24で変換された基準電位の除去力 電流センサ 14の検出 出力または電圧センサ 13の検出出力のいずれか一方に対してのみ行なわれるだけ で、算出する使用電力量力も差動増幅器 23および AZDコンバータ 24のオフセット を除去することができる。このため、被計測対象の使用電力量の算出処理が簡略ィ匕 されるようになり、ソフトウェアの規模がさらに小さくなつてマイコン 21のメモリサイズが さらに小さくなると共に、動作クロック周波数をさらに低くして消費電流をさらに減少さ せることができる。
[0063] また、上記の実施形態においては、 1組の電圧センサ 13および電流センサ 14が選 択スィッチ 22を介して差動増幅器 23に接続されて構成されている場合を説明したが 、複数組の電圧センサおよび電流センサを備えた多素子計器の構成とすることも可 能である。
[0064] 図 7は、 3組の電圧センサおよび電流センサを備えた電子式電力量計の回路構成 の概略を示すブロック図である。なお、同図において図 3と同一または相当する部分 には同一の符号を付して、その説明は省略する。
[0065] 本構成による多素子の電子式電力量計では、マイコン 41に内蔵された差動増幅器 23に、選択スィッチ 42を介して電圧センサ 13A, 13B, 13C、および電流センサ 14 A, 14B, 14Cが接続されている。各電流センサ 14A〜14Cは電流トランスまたは口 ゴスキーコイルで構成されており、ソフトウェア処理部 25aによる電力計算は各組の素 子毎に行なわれる。これらの点以外については、上記実施形態と同一の構成となつ ている。この構成においても、上記実施形態における電子式電力量計と同様の作用 効果が奏される。
[0066] また、上記実施形態においては、電圧センサ 13および電流センサ 14の両方のセン サの検出出力が差動増幅器 23によって増幅される場合を説明したが、本発明はこ れに限られるものではない。被計測対象となる電圧は、被計測対象となる電流と比べ て計測精度保証範囲は広範囲ではなぐまた、被計測対象となる電流と比べて検出 信号の振幅も大きい。このため、図 8に示すように、電圧センサ 13を差動増幅器 23を 介さずに直接 AZDコンバータ 24に接続する構成とすることも可能となる。なお、同 図において図 3と同一または相当する部分には同一の符号を付して、その説明は省 略する。 [0067] 本構成においては、 2つの選択スィッチ 22, 52を使って電圧センサ 13が差動増幅 器 23を介さずに AZDコンバータ 24に接続される点、これら構成に応じてソフトゥェ ァ処理部 25bにおける処理が異なっている点以外、上記実施形態と同一の構成とな つている。
[0068] 電圧センサ 13の検出出力が AZDコンバータ 24に入力されてデジタル信号に変 換される際には、選択スィッチ 22, 52が、それぞれ図 8に示すように端子 22a, 52a に切り換えられ、電圧センサ 13の検出出力は、選択スィッチ 22, 52を介して直接 A /Dコンバータ 24に入力される。また、電流センサ 14の検出出力が A/Dコンバータ 24に入力されてデジタル信号に変換される際には、選択スィッチ 22, 52が、端子 22 b, 52bに切り換えられ、電流センサ 14の検出出力は、差動増幅器 23で増幅されて から AZDコンバータ 24に入力される。また、電流センサ 14の基準電位が AZDコン バータ 24に入力されてデジタル信号に変換される際には、選択スィッチ 22, 52が、 それぞれ端子 22c, 52bに切り換えられ、電流センサ 14の基準電位は、差動増幅器 23において差動増幅されてから AZDコンバータ 24に入力される。従って、この構成 においても、上記実施形態における電子式電力量計と同様の作用効果が奏される。
[0069] また、上記実施形態においては、差動増幅器 23が、マイコン 21の内部の、 AZDコ ンバータ 24の前段に内蔵されている場合を説明したが、本発明はこれに限られるも のではない。差動増幅器 23は、マイコン 21に内蔵されていても、また、マイコン 21の 外部に設けられて 、ても構わな 、。
[0070] 図 9は、差動増幅器 23がマイコン 21の外部に設けられて構成された電子式電力量 計の回路構成の概略を示すブロック図である。なお、同図において図 3と同一または 相当する部分には同一の符号を付して、その説明は省略する。
[0071] 本構成におけるマイコン 61は、増幅器 63を備えた汎用のマイコンであり、増幅器 6 3は、選択スィッチ 62を介して AZDコンバータ 24と接続されている。また、電流セン サ 14は、マイコン 61の外部に設けられた選択スィッチ 65および差動増幅器 64を介 してマイコン 61内部の選択スィッチ 22に接続されている。これらの点、およびこれら 構成に応じてソフトウェア処理部 25cにおける処理が異なっている点以外については 、上記実施形態と同一の構成となっている。 [0072] 電圧センサ 13の検出出力が AZDコンバータ 24に入力されてデジタル信号に変 換される際には、選択スィッチ 22, 62が、それぞれ図 9に示すように端子 22a, 62a に切り換えられる。電圧センサ 13の検出出力は、選択スィッチ 22, 62を介して直接 AZDコンバータ 24に入力される。また、電流センサ 14の検出出力が AZDコンパ一 タ 24に入力されてデジタル信号に変換される際には、選択スィッチ 65, 22, 62がそ れぞれ端子 65a, 22b, 62bに切り換えられる。電流センサ 14の検出出力は、差動増 幅器 23および増幅器 63でそれぞれ増幅されてから AZDコンバータ 24に入力され る。また、電流センサ 14の基準電位が AZDコンバータ 24に入力されてデジタル信 号に変換される際に ίま、選択スィッチ 65 , 22, 62力 それぞれ端子 65b, 22c, 62b に切り換えられる。電流センサ 14の基準電位は、差動増幅器 23および増幅器 63で それぞれ増幅されて力も AZDコンバータ 24に入力される。従って、この構成におい ても、上記実施形態における電子式電力量計と同様の作用効果が奏される。
[0073] また、上記実施形態においては、ゲイン調整処理(図 5, S 24参照)において瞬時 電力を所定倍することで使用電力量の絶対誤差を補正する場合を説明したが、本発 明はこれに限られるものではない。
[0074] 図 10は、累積加算される使用電力量(図 5, S 25参照)とソフトウェア処理部 25から LED 15へ出力されるパルス信号との関係を示す図である。同図(a)は、時間の経過 に応じて累積加算される使用電力量、同図 (b)は、同図 (a)に示す使用電力量が一 定値 (しきい値)に達すると出力されるパルス信号の出力タイミングを、それぞれ示し ている。なお、同図(a) , (b)において横軸は時間軸を表している。
[0075] 使用電力量の絶対誤差を補正する必要がない場合には、同図(a)において実線で 示すように、パルス出力のしきい値が aに設定されている。ソフトウェア処理部 25に おいて累積加算される使用電力量が ocに達すると、同図(b)に示すようにパルス信 号が出力され、累積加算された使用電力量が" 0"にリセットされる。以後同様に、時 間 tが経過して使用電力量がしきい値 αに達する度にパルス信号が出力される。しき い値 αは、電子式電力量計に定格電圧および定格電流が印加された場合、時間 tが 一定になってパルス信号周波数が例えば 6. 4[Hz]になるように調整される。しかしな がら、実際に累積加算される使用電力量の増加率は、各センサ 13, 14の感度や内 部抵抗の値、 AZDコンバータ 24に印加される参照電圧 V の値、差動増幅器 23〖こ
ref
おけるゲインエラーといった、各部品の精度などに応じて、同図(a)に点線や一点鎖 線で示すのこぎり歯状波形のように小さくなつたり、大きくなつたりして変化する。この ように増加率が変化すると使用電力量がしきい値 aに達するタイミングも変化してしま うため、使用電力量に応じたパルス出力のしきい値を調整することで、使用電力量の 絶対誤差を補正する。具体的には、同図(a)において点線で示すように使用電力量 の増加率が小さくなる場合には、しきい値を a力 ら β ( α〉β )に変更する。また、一点 鎖線で示すように使用電力量の増加率が大きくなる場合には、しきい値を αから γ ( αく γ )に変更する。このように、しきい値を調整することで、パルス出力のタイミングが 調整されるので、パルス信号は実際の使用電力量に応じて出力されるようになり、算 出した使用電力量の絶対誤差が補正される。
[0076] 算出した使用電力量の絶対誤差は、図 5, S24のゲイン調整によって差動増幅器 2 3の増幅率に応じて所定倍することで補正される力 上記のように、パルス出力のしき い値を調整することによつても、補正される。このため、電子式電力量計の設計の自 由度は増す。
[0077] また、上記実施形態においては、差動増幅器 23を用いて各センサ 13, 14の検出 信号や基準電位を増幅する場合を説明したが、本発明はこれに限られるものではな い。例えば、図 3および図 4に示す電子式電力量計において、差動増幅器 23の代わ りに AZDコンバータ 24の入力コンデンサ比によって各センサ 13, 14の検出信号や 基準電位を増幅するようにしてもよい。図 11は、 AZDコンバータ 24の内部に構成さ れるスィッチトキャパシタ積分回路を示す回路図である。
[0078] AZDコンバータ 24は、演算増幅器 71およびその出力側に接続されたコンパレー タ 72を備えて構成されている。演算増幅器 71の入力側と出力側とは、ホールドコン デンサ 79, 80によって帰還接続されている。また、演算増幅器 71の入力側には、入 力信号のサンプリングを行なう容量 Ciのサンプリングコンデンサ 73, 74、およびフィ ードバックを行なう容量 Crのフィードバックコンデンサ 75, 76が、接続されている。フ イードバックコンデンサ 75, 76には、切換スィッチ 77, 78がそれぞれ接続されており 、これらスィッチ 77, 78はコンパレータ 72の出力によって切り換えられ、フィードバッ クコンデンサ 75, 76に参照電圧 +V または一 V が印加される。サンプリングコン ref ref
デンサ 73は上述した選択スィッチ 22に接続され、サンプリングコンデンサ 73には選 択スィッチ 22の切り換えに応じて各センサ 13, 14の検出出力や基準電位が入力さ れる。また、サンプリングコンデンサ 74は電流センサ 14の基準電位に接続され、サン プリングコンデンサ 74には 0[V]の基準電位が入力される。
[0079] 上記構成において、サンプリングコンデンサ 73, 74に入力される信号は、それぞれ 入力コンデンサ比 CiZCrの増幅率で差動増幅されて Δ∑変調され、アナログ信号 カゝらデジタル信号に変換される。従って、この構成においても、上記実施形態と同様 の作用効果が奏されることになる。
[0080] また、上記の実施形態においては、電圧センサ 13が分圧抵抗 13a〜 13cから構成 され、電流センサ 14がシャント抵抗 14aから構成される場合を説明した力 電圧セン サ 13や電流センサ 14の種類は適宜変更可能である。例えば、電流センサ 14として 、図 7に示した電流トランス (CT)やロゴスキーコイルなどを用いることも可能である。
[0081] また、上記実施形態においては、選択スィッチ 22の切り換えにより、電流センサ 14 の検出出力、電圧センサ 13の検出出力、および電流センサ 14の基準電位の順番で 、 AZDコンバータ 24において AZD変換処理が行なわれる場合を説明したが(図 5 , S21, S22, S27参照)、これら各信号に対する AZD変換処理の順番は適宜変更 可能である。
[0082] また、上記実施形態においては、 AZDコンバータ 24に印加される参照電圧 V が ref マイコン 21の動作電圧 V とは別に用意される場合を説明したが、本発明はこれに
DD
限られるものではない。例えば、 AZDコンバータ 24の参照電圧 V をマイコン 21の ref
動作電圧 V と同電位に設定し、 AZDコンバータ 24に参照電圧 V を供給する電
DD ref
源と、マイコン 21に動作電圧 V を供給する電源とを共通化することができる。この構
DD
成によれば、 AZDコンバータ 24に参照電圧 V を供給する電源を別個に用意する ref
必要がなくなり、さらに製品の小型化およびコストダウンを図ることができる。
[0083] また、上記実施形態のタイマ割込処理においては、 Τ , Τ , T の時間を、それ
SI S2 SS
ぞれ、 93 [ s], 407[ μ s], 500 [ s]とすると共に、バイアス電圧 V ,マイコン 21
COM
の動作電圧 V を、それぞれ、 1. 8[V], 3. 6[V]として説明した力 Τ , Τ , T や
DD SI S2 SS V , V はこれらの値に限定されるものではなぐ適宜変更可能である。
COM DD
[0084] また、上記実施形態においては、電圧センサ 13の耐電圧性能の向上を図るため、 電源端子 POと抵抗 13cとの間に 2つの抵抗 13a, 13bを直列に接続した場合を説明 したが、電源端子 P0と抵抗 13cとの間に接続される抵抗は 1つでもよぐその個数は 適宜変更可能である。
産業上の利用可能性
[0085] 上記実施形態においては、本発明を単相 2線式の電子式電力量計に適用した場 合を説明したが、 AZD変換手段で変換されたデジタル信号に基づ ヽて被計測対象 の使用電力量を演算する、単相 3線式や三相 3線式などの種々の電子式電力量計 に適用することも可能である。このような種々の電子式電力量計に本発明を適用した 場合においても、上記実施形態と同様な作用効果が奏される。

Claims

請求の範囲
[1] 被計測対象の電圧を検出する電圧センサと、
被計測対象の電流を検出する電流センサと、
前記電圧センサもしくは前記電流センサの検出出力またはこの検出出力の基準電 位のいずれかを択一的に選択して出力する選択スィッチと、
少なくとも前記電流センサの検出出力を増幅する増幅手段と、
前記選択スィッチによって出力される前記電圧センサおよび前記電流センサの検 出出力ならびに前記基準電位をアナログ信号力 デジタル信号に変換する AZD変 換手段、およびこの AZD変換手段で変換されたデジタル信号に基づ 、て被計測対 象の使用電力量を演算する演算手段を内蔵した演算処理装置と
を備えた電子式電力量計において、
前記増幅手段は、入力信号を差動増幅する差動増幅手段から構成され、 前記 AZD変換手段は、 Δ∑変調によって入力信号をアナログ信号力 デジタル 信号に変換し、
前記演算手段は、前記 AZD変換手段で変換された前記電圧センサおよび前記 電流センサの検出出力から前記 AZD変換手段で変換された前記基準電位をそれ ぞれ除去して被計測対象の使用電力量を算出することを特徴とする電子式電力量 計。
[2] 前記演算手段は、前記使用電力量を所定倍することで、または、前記使用電力量 に応じたパルス出力のしきい値を調整することで、前記使用電力量の絶対誤差を補 正することを特徴とする請求項 1に記載の電子式電力量計。
[3] 前記演算手段は、前記電流センサの検出出力の前記基準電位と前記電圧センサ の検出出力の前記基準電位とを異ならせた場合に、前記 AZD変換手段で変換され た前記基準電位を前記電流センサの検出出力または前記電圧センサの検出出力の いずれか一方のみから除去することを特徴とする請求項 1または請求項 2に記載の 電子式電力量計。
[4] 前記演算処理装置は、前記電圧センサおよび前記電流センサの検出出力ならび にこの検出出力の基準電位のいずれかに対する前記 AZD変換手段による変換の 完了後即座に前記選択スィッチを切り換えて次の選択を行なわせた後、時間をおい て前記 AZD変換手段による次の変換を行なわせることを特徴とする請求項 1から請 求項 3のいずれか 1項に記載の電子式電力量計。
[5] 前記演算処理装置は、前記 AZD変換手段による各変換の完了後即座に前記 A
ZD変換手段の動作を停止させて、前記 AZD変換手段による次の変換の開始準 備を行なわせることを特徴とする請求項 4に記載の電子式電力量計。
[6] 前記 AZD変換手段の参照電圧は前記演算処理装置の動作電圧と同電位に設定 されていることを特徴とする請求項 1から請求項 5のいずれか 1項に記載の電子式電 力量計。
PCT/JP2006/320773 2006-10-18 2006-10-18 COMPTEUR ÉLECTRONIQUE DE kWh WO2008047428A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/JP2006/320773 WO2008047428A1 (fr) 2006-10-18 2006-10-18 COMPTEUR ÉLECTRONIQUE DE kWh
CN2006800561508A CN101542298B (zh) 2006-10-18 2006-10-18 电子电度表
JP2008539644A JP4896150B2 (ja) 2006-10-18 2006-10-18 電子式電力量計
SK5030-2009A SK50302009A3 (sk) 2006-10-18 2006-10-18 Elektronický watthodinový elektromer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2006/320773 WO2008047428A1 (fr) 2006-10-18 2006-10-18 COMPTEUR ÉLECTRONIQUE DE kWh

Publications (1)

Publication Number Publication Date
WO2008047428A1 true WO2008047428A1 (fr) 2008-04-24

Family

ID=39313687

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/320773 WO2008047428A1 (fr) 2006-10-18 2006-10-18 COMPTEUR ÉLECTRONIQUE DE kWh

Country Status (4)

Country Link
JP (1) JP4896150B2 (ja)
CN (1) CN101542298B (ja)
SK (1) SK50302009A3 (ja)
WO (1) WO2008047428A1 (ja)

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202010016329U1 (de) 2010-12-08 2011-02-24 Getsis, Michael Leistungsmessgerät für elektrische Last jeder Art
JP2014086593A (ja) * 2012-10-24 2014-05-12 Renesas Electronics Corp 半導体装置
US9046554B2 (en) 2010-08-31 2015-06-02 Alps Green Devices Co., Ltd. Current sensor
KR102092065B1 (ko) * 2019-12-24 2020-03-24 김응석 측정 회로 소자의 공차 최소화 및 자동보정 기능을 구비한 전자식 전력량계
US10640763B2 (en) 2016-05-31 2020-05-05 Cellular Research, Inc. Molecular indexing of internal sequences
US10669570B2 (en) 2017-06-05 2020-06-02 Becton, Dickinson And Company Sample indexing for single cells
US10927419B2 (en) 2013-08-28 2021-02-23 Becton, Dickinson And Company Massively parallel single cell analysis
US10941396B2 (en) 2012-02-27 2021-03-09 Becton, Dickinson And Company Compositions and kits for molecular counting
USRE48913E1 (en) 2015-02-27 2022-02-01 Becton, Dickinson And Company Spatially addressable molecular barcoding
US11319583B2 (en) 2017-02-01 2022-05-03 Becton, Dickinson And Company Selective amplification using blocking oligonucleotides
US11332776B2 (en) 2015-09-11 2022-05-17 Becton, Dickinson And Company Methods and compositions for library normalization
US11365409B2 (en) 2018-05-03 2022-06-21 Becton, Dickinson And Company Molecular barcoding on opposite transcript ends
US11390914B2 (en) 2015-04-23 2022-07-19 Becton, Dickinson And Company Methods and compositions for whole transcriptome amplification
US11460468B2 (en) 2016-09-26 2022-10-04 Becton, Dickinson And Company Measurement of protein expression using reagents with barcoded oligonucleotide sequences
US11492660B2 (en) 2018-12-13 2022-11-08 Becton, Dickinson And Company Selective extension in single cell whole transcriptome analysis
US11525157B2 (en) 2016-05-31 2022-12-13 Becton, Dickinson And Company Error correction in amplification of samples
US11535882B2 (en) 2015-03-30 2022-12-27 Becton, Dickinson And Company Methods and compositions for combinatorial barcoding
US11639517B2 (en) 2018-10-01 2023-05-02 Becton, Dickinson And Company Determining 5′ transcript sequences
US11649497B2 (en) 2020-01-13 2023-05-16 Becton, Dickinson And Company Methods and compositions for quantitation of proteins and RNA
US11661625B2 (en) 2020-05-14 2023-05-30 Becton, Dickinson And Company Primers for immune repertoire profiling
US11661631B2 (en) 2019-01-23 2023-05-30 Becton, Dickinson And Company Oligonucleotides associated with antibodies
US11739443B2 (en) 2020-11-20 2023-08-29 Becton, Dickinson And Company Profiling of highly expressed and lowly expressed proteins
US11773441B2 (en) 2018-05-03 2023-10-03 Becton, Dickinson And Company High throughput multiomics sample analysis
US11773436B2 (en) 2019-11-08 2023-10-03 Becton, Dickinson And Company Using random priming to obtain full-length V(D)J information for immune repertoire sequencing
US11845986B2 (en) 2016-05-25 2023-12-19 Becton, Dickinson And Company Normalization of nucleic acid libraries
US11932849B2 (en) 2018-11-08 2024-03-19 Becton, Dickinson And Company Whole transcriptome analysis of single cells using random priming
US11932901B2 (en) 2020-07-13 2024-03-19 Becton, Dickinson And Company Target enrichment using nucleic acid probes for scRNAseq
US11939622B2 (en) 2019-07-22 2024-03-26 Becton, Dickinson And Company Single cell chromatin immunoprecipitation sequencing assay
US11970737B2 (en) 2009-12-15 2024-04-30 Becton, Dickinson And Company Digital counting of individual molecules by stochastic attachment of diverse labels

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI746292B (zh) * 2020-11-27 2021-11-11 茂達電子股份有限公司 電路量測裝置及方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07128375A (ja) * 1993-11-04 1995-05-19 Tamura Electric Works Ltd 電圧検出装置
JPH1164402A (ja) * 1997-08-11 1999-03-05 Mitsubishi Electric Corp 電子式電力量計及びその誤差調整方法
JP2003168976A (ja) * 2001-12-04 2003-06-13 Osaki Electric Co Ltd A/d変換器のオフセット補正装置及び電力量計
JP2006197795A (ja) * 2005-01-11 2006-07-27 Internatl Business Mach Corp <Ibm> 複数のタイム・フレームに関して電力測定および省電力を行うための方法、システム、および調整技術

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07128375A (ja) * 1993-11-04 1995-05-19 Tamura Electric Works Ltd 電圧検出装置
JPH1164402A (ja) * 1997-08-11 1999-03-05 Mitsubishi Electric Corp 電子式電力量計及びその誤差調整方法
JP2003168976A (ja) * 2001-12-04 2003-06-13 Osaki Electric Co Ltd A/d変換器のオフセット補正装置及び電力量計
JP2006197795A (ja) * 2005-01-11 2006-07-27 Internatl Business Mach Corp <Ibm> 複数のタイム・フレームに関して電力測定および省電力を行うための方法、システム、および調整技術

Cited By (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11993814B2 (en) 2009-12-15 2024-05-28 Becton, Dickinson And Company Digital counting of individual molecules by stochastic attachment of diverse labels
US11970737B2 (en) 2009-12-15 2024-04-30 Becton, Dickinson And Company Digital counting of individual molecules by stochastic attachment of diverse labels
US9046554B2 (en) 2010-08-31 2015-06-02 Alps Green Devices Co., Ltd. Current sensor
DE202010016329U1 (de) 2010-12-08 2011-02-24 Getsis, Michael Leistungsmessgerät für elektrische Last jeder Art
US11634708B2 (en) 2012-02-27 2023-04-25 Becton, Dickinson And Company Compositions and kits for molecular counting
US10941396B2 (en) 2012-02-27 2021-03-09 Becton, Dickinson And Company Compositions and kits for molecular counting
JP2014086593A (ja) * 2012-10-24 2014-05-12 Renesas Electronics Corp 半導体装置
US11618929B2 (en) 2013-08-28 2023-04-04 Becton, Dickinson And Company Massively parallel single cell analysis
US10927419B2 (en) 2013-08-28 2021-02-23 Becton, Dickinson And Company Massively parallel single cell analysis
US10954570B2 (en) 2013-08-28 2021-03-23 Becton, Dickinson And Company Massively parallel single cell analysis
US11702706B2 (en) 2013-08-28 2023-07-18 Becton, Dickinson And Company Massively parallel single cell analysis
USRE48913E1 (en) 2015-02-27 2022-02-01 Becton, Dickinson And Company Spatially addressable molecular barcoding
US11535882B2 (en) 2015-03-30 2022-12-27 Becton, Dickinson And Company Methods and compositions for combinatorial barcoding
US11390914B2 (en) 2015-04-23 2022-07-19 Becton, Dickinson And Company Methods and compositions for whole transcriptome amplification
US11332776B2 (en) 2015-09-11 2022-05-17 Becton, Dickinson And Company Methods and compositions for library normalization
US11845986B2 (en) 2016-05-25 2023-12-19 Becton, Dickinson And Company Normalization of nucleic acid libraries
US11525157B2 (en) 2016-05-31 2022-12-13 Becton, Dickinson And Company Error correction in amplification of samples
US11220685B2 (en) 2016-05-31 2022-01-11 Becton, Dickinson And Company Molecular indexing of internal sequences
US10640763B2 (en) 2016-05-31 2020-05-05 Cellular Research, Inc. Molecular indexing of internal sequences
US11467157B2 (en) 2016-09-26 2022-10-11 Becton, Dickinson And Company Measurement of protein expression using reagents with barcoded oligonucleotide sequences
US11460468B2 (en) 2016-09-26 2022-10-04 Becton, Dickinson And Company Measurement of protein expression using reagents with barcoded oligonucleotide sequences
US11782059B2 (en) 2016-09-26 2023-10-10 Becton, Dickinson And Company Measurement of protein expression using reagents with barcoded oligonucleotide sequences
US11319583B2 (en) 2017-02-01 2022-05-03 Becton, Dickinson And Company Selective amplification using blocking oligonucleotides
US10669570B2 (en) 2017-06-05 2020-06-02 Becton, Dickinson And Company Sample indexing for single cells
US10676779B2 (en) 2017-06-05 2020-06-09 Becton, Dickinson And Company Sample indexing for single cells
US11773441B2 (en) 2018-05-03 2023-10-03 Becton, Dickinson And Company High throughput multiomics sample analysis
US11365409B2 (en) 2018-05-03 2022-06-21 Becton, Dickinson And Company Molecular barcoding on opposite transcript ends
US11639517B2 (en) 2018-10-01 2023-05-02 Becton, Dickinson And Company Determining 5′ transcript sequences
US11932849B2 (en) 2018-11-08 2024-03-19 Becton, Dickinson And Company Whole transcriptome analysis of single cells using random priming
US11492660B2 (en) 2018-12-13 2022-11-08 Becton, Dickinson And Company Selective extension in single cell whole transcriptome analysis
US11661631B2 (en) 2019-01-23 2023-05-30 Becton, Dickinson And Company Oligonucleotides associated with antibodies
US11939622B2 (en) 2019-07-22 2024-03-26 Becton, Dickinson And Company Single cell chromatin immunoprecipitation sequencing assay
US11773436B2 (en) 2019-11-08 2023-10-03 Becton, Dickinson And Company Using random priming to obtain full-length V(D)J information for immune repertoire sequencing
WO2021132867A1 (ko) * 2019-12-24 2021-07-01 김응석 측정 회로 소자의 공차 최소화 및 자동보정 기능을 구비한 전자식 전력량계
KR102092065B1 (ko) * 2019-12-24 2020-03-24 김응석 측정 회로 소자의 공차 최소화 및 자동보정 기능을 구비한 전자식 전력량계
US11649497B2 (en) 2020-01-13 2023-05-16 Becton, Dickinson And Company Methods and compositions for quantitation of proteins and RNA
US11661625B2 (en) 2020-05-14 2023-05-30 Becton, Dickinson And Company Primers for immune repertoire profiling
US11932901B2 (en) 2020-07-13 2024-03-19 Becton, Dickinson And Company Target enrichment using nucleic acid probes for scRNAseq
US11739443B2 (en) 2020-11-20 2023-08-29 Becton, Dickinson And Company Profiling of highly expressed and lowly expressed proteins

Also Published As

Publication number Publication date
JP4896150B2 (ja) 2012-03-14
JPWO2008047428A1 (ja) 2010-02-18
CN101542298B (zh) 2012-06-13
SK50302009A3 (sk) 2010-03-08
CN101542298A (zh) 2009-09-23

Similar Documents

Publication Publication Date Title
WO2008047428A1 (fr) COMPTEUR ÉLECTRONIQUE DE kWh
JP6204474B2 (ja) 入力電力及び電流測定のシステム及び方法
US10181787B2 (en) Power factor correction device, and current sensing method and apparatus thereof
JP2000136966A (ja) サ―モパイルセンサを用いた温度測定回路
JP2004177228A (ja) 電流計測装置
US9257900B2 (en) Signal peak detector and detection method, and control IC and method for a PFC converter
US20070007969A1 (en) Circuit and system for detecting dc component in inverter device for grid-connection
TW201917975A (zh) 電流平衡電路
US6826503B2 (en) Physical quantity detection equipment
JP2008085745A (ja) 補正係数取得方法およびインピーダンス測定装置
JP2003264462A (ja) 電圧補正回路、並びに、電圧補正機能付き増幅器及びこれを用いたスイッチング電源装置
US6748344B2 (en) Method and apparatus employing a scaling factor for measuring and displaying an electrical parameter of an electrical system
US7260481B1 (en) Vector detecting device and living-body complex impedance measuring apparatus having the vector detecting device
JP3193390B2 (ja) 電池容量表示装置
JP7491880B2 (ja) 電流センサ
JP5717427B2 (ja) 抵抗測定装置
JP4220708B2 (ja) 電圧補正回路、並びに、電圧補正機能付き増幅器及びこれを用いたスイッチング電源装置
JP2007132777A (ja) インピーダンス測定装置
JPH0833213A (ja) 二次電池の容量表示装置
KR20080000258A (ko) 에이직을 이용한 lvdt 신호변환기
KR900008302B1 (ko) 디지탈 적산 전력계의 역률 측정회로 및 방법
JP2009287956A (ja) 半導体試験装置
KR100196822B1 (ko) 전력계기능이 내장된 디지탈멀티메터의 구동장치 및 그 구동방법
KR970000905B1 (ko) 위상차 측정 시스템
US20060164070A1 (en) Method and device for voltage measurement of an ac power supply

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680056150.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 06811966

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2008539644

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 50302009

Country of ref document: SK

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06811966

Country of ref document: EP

Kind code of ref document: A1