WO2007116786A1 - 平版印刷版材料及び印刷方法 - Google Patents

平版印刷版材料及び印刷方法 Download PDF

Info

Publication number
WO2007116786A1
WO2007116786A1 PCT/JP2007/056588 JP2007056588W WO2007116786A1 WO 2007116786 A1 WO2007116786 A1 WO 2007116786A1 JP 2007056588 W JP2007056588 W JP 2007056588W WO 2007116786 A1 WO2007116786 A1 WO 2007116786A1
Authority
WO
WIPO (PCT)
Prior art keywords
printing plate
plate material
lithographic printing
particles
layer
Prior art date
Application number
PCT/JP2007/056588
Other languages
English (en)
French (fr)
Inventor
Hidetoshi Ezure
Original Assignee
Konica Minolta Medical & Graphic, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Medical & Graphic, Inc. filed Critical Konica Minolta Medical & Graphic, Inc.
Publication of WO2007116786A1 publication Critical patent/WO2007116786A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41CPROCESSES FOR THE MANUFACTURE OR REPRODUCTION OF PRINTING SURFACES
    • B41C1/00Forme preparation
    • B41C1/10Forme preparation for lithographic printing; Master sheets for transferring a lithographic image to the forme
    • B41C1/1008Forme preparation for lithographic printing; Master sheets for transferring a lithographic image to the forme by removal or destruction of lithographic material on the lithographic support, e.g. by laser or spark ablation; by the use of materials rendered soluble or insoluble by heat exposure, e.g. by heat produced from a light to heat transforming system; by on-the-press exposure or on-the-press development, e.g. by the fountain of photolithographic materials
    • B41C1/1016Forme preparation for lithographic printing; Master sheets for transferring a lithographic image to the forme by removal or destruction of lithographic material on the lithographic support, e.g. by laser or spark ablation; by the use of materials rendered soluble or insoluble by heat exposure, e.g. by heat produced from a light to heat transforming system; by on-the-press exposure or on-the-press development, e.g. by the fountain of photolithographic materials characterised by structural details, e.g. protective layers, backcoat layers or several imaging layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41CPROCESSES FOR THE MANUFACTURE OR REPRODUCTION OF PRINTING SURFACES
    • B41C2201/00Location, type or constituents of the non-imaging layers in lithographic printing formes
    • B41C2201/02Cover layers; Protective layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41CPROCESSES FOR THE MANUFACTURE OR REPRODUCTION OF PRINTING SURFACES
    • B41C2201/00Location, type or constituents of the non-imaging layers in lithographic printing formes
    • B41C2201/04Intermediate layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41CPROCESSES FOR THE MANUFACTURE OR REPRODUCTION OF PRINTING SURFACES
    • B41C2201/00Location, type or constituents of the non-imaging layers in lithographic printing formes
    • B41C2201/14Location, type or constituents of the non-imaging layers in lithographic printing formes characterised by macromolecular organic compounds, e.g. binder, adhesives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41CPROCESSES FOR THE MANUFACTURE OR REPRODUCTION OF PRINTING SURFACES
    • B41C2210/00Preparation or type or constituents of the imaging layers, in relation to lithographic printing forme preparation
    • B41C2210/04Negative working, i.e. the non-exposed (non-imaged) areas are removed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41CPROCESSES FOR THE MANUFACTURE OR REPRODUCTION OF PRINTING SURFACES
    • B41C2210/00Preparation or type or constituents of the imaging layers, in relation to lithographic printing forme preparation
    • B41C2210/08Developable by water or the fountain solution
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41CPROCESSES FOR THE MANUFACTURE OR REPRODUCTION OF PRINTING SURFACES
    • B41C2210/00Preparation or type or constituents of the imaging layers, in relation to lithographic printing forme preparation
    • B41C2210/14Multiple imaging layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41CPROCESSES FOR THE MANUFACTURE OR REPRODUCTION OF PRINTING SURFACES
    • B41C2210/00Preparation or type or constituents of the imaging layers, in relation to lithographic printing forme preparation
    • B41C2210/24Preparation or type or constituents of the imaging layers, in relation to lithographic printing forme preparation characterised by a macromolecular compound or binder obtained by reactions involving carbon-to-carbon unsaturated bonds, e.g. acrylics, vinyl polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41NPRINTING PLATES OR FOILS; MATERIALS FOR SURFACES USED IN PRINTING MACHINES FOR PRINTING, INKING, DAMPING, OR THE LIKE; PREPARING SUCH SURFACES FOR USE AND CONSERVING THEM
    • B41N3/00Preparing for use and conserving printing surfaces
    • B41N3/03Chemical or electrical pretreatment
    • B41N3/036Chemical or electrical pretreatment characterised by the presence of a polymeric hydrophilic coating

Definitions

  • the present invention relates to a lithographic printing plate material and a printing method, and more particularly to a lithographic printing plate material and a printing method used in a computer 'to' plate (hereinafter referred to as CTP) system.
  • CTP computer 'to' plate
  • DI direct imaging
  • An infrared laser recording system having a wavelength of near infrared to infrared rays is mainly used for image formation of a thermal processless plate.
  • thermal processless plates There are two types of thermal processless plates that can form images using this method: an ablation type and a thermal fusion image layer development type.
  • thermoplastic fine particles and a water-soluble polymer compound to a thermal image forming layer as disclosed in Japanese Patent No. 2938397, Japanese Patent No. 2938397, Japanese Patent Laid-Open No. 9-123387, Japanese Patent Laid-Open No. 9-123388 CTP printing plate material that can be developed with dampening water or ink on a printing press using an agent.
  • on-press developable printing plate materials provide sharp dot shapes and high-definition images, do not require a development process after exposure, and are excellent in environmental suitability.
  • a lithographic printing plate precursor having an image recording layer containing microcapsules containing a polymerizable compound may be developed on-press.
  • Patent Document 3 Known (for example, see Patent Document 3).
  • an on-press developable lithographic printing plate precursor having a photosensitive layer containing an infrared absorber, a radical polymerization initiator and a polymerizable compound on a support is known (for example, a patent (Ref. 4).
  • Patent Document 1 Japanese Patent Laid-Open No. 2005-297233
  • Patent Document 2 Japanese Patent Laid-Open No. 2005-305690
  • Patent Document 3 Japanese Patent Laid-Open No. 2001-277740
  • Patent Document 4 Column 2002-365789 Disclosure of the invention
  • An object of the present invention is to provide a lithographic printing plate material for CTP method and a printing method which are excellent in on-press development property, excellent in printing durability and scratch-proofing of non-image areas.
  • a hydrophilic component as a protective colloid is added to the heat-sensitive image forming layer.
  • a lithographic printing plate material comprising a latex having a hydrophobic component.
  • the hydrophobic component is a heat-meltable particle, and the heat-meltable particle is formed from a wax having a softening point of 40 ° C to 120 ° C and a melting point of 60 ° C to 150 ° C. 2.
  • the lithographic printing plate material as described in 2 above, wherein
  • the hydrophobic component is a hydrophobic polymer
  • the hydrophobic polymer is a blended water 14 polymer having a mass average molecular weight force of 500 to 500,000 and a force average molecular weight force of 200 to 60000.
  • the lithographic printing plate material according to 2.
  • the hydrophobic polymer is at least one selected from a (meth) acrylate (co) polymer, a (meth) acrylic acid (co) polymer, a vinyl ester (co) polymer, polystyrene, and a synthetic rubber cartridge. 5. The lithographic printing plate material according to 5, wherein
  • the hydrophilic component as the protective colloid is at least one selected from polybulal alcohol and derivatives thereof, polyacrylic acid and derivatives thereof, polystyrene sulfonic acid and derivatives thereof, and gelatin force 1
  • the lithographic printing plate material according to any one of 1 to 6.
  • the content ratio of the hydrophilic component to the hydrophobic component is 90 ZlO to 50 Z50.
  • thermo image-forming layer contains an infrared absorbing dye.
  • the lithographic printing plate material according to any one of 1 to 9 is subjected to image exposure with a laser beam, and then developed with dampening water or dampening water and printing ink on a plate cylinder of the lithographic printing machine, A printing method comprising printing after the development.
  • the lithographic printing plate material and printing method for the CTP system according to the present invention are excellent in on-press developability, and have excellent effects on printing durability and prevention of scratches on non-image areas.
  • the present invention provides a lithographic printing plate material having a hydrophilic layer containing a photothermal conversion agent and a heat-sensitive image forming layer (hereinafter also simply referred to as an image forming layer) on the base material in the order of the base material side force.
  • the heat-sensitive image-forming layer contains a latex of a hydrophobic component having a hydrophilic component as a protective colloid (hereinafter referred to as a latex according to the present invention).
  • a latex a latex according to the present invention.
  • the hydrophobic component is protected by a protective colloid.
  • the ink deposition property is good, the on-press developability is excellent, and the printing durability and scratch resistance are improved.
  • An excellent lithographic printing plate material for CTP can be provided.
  • the hydrophilic component can be efficiently arranged only on the surface, the amount of the hydrophilic component can be reduced compared to the case where the hydrophobic component and the hydrophilic component are mixed, and can be uniformly arranged. This is presumed to be due to an improvement in sex. [0022] (Thermal imaging layer)
  • the heat-sensitive image-forming layer is a layer that can form an image by heating. It is a thermoplastic material such as a heat-meltable material or heat-fusible material. A material that changes from hydrophilic to hydrophobic by heating (hydrophobization) Precursor).
  • a method using heat generated by exposure to actinic rays is preferable, and a method using heat generated by laser light exposure is more preferable.
  • the heat-sensitive image forming layer according to the present invention has a great effect when the image formation is capable of on-press development.
  • On-press development refers to lithographic printing on the image-forming layer of a lithographic printing plate material that has been image-exposed on a printing press after the lithographic printing plate material is image-exposed and then passed through a process of developing with a special developer. It means developing by supplying dampening water or dampening water and printing ink and removing the image forming layer in the non-image area to obtain a lithographic printing plate for printing. Using the obtained printing plate, it is possible to proceed to the printing process as it is.
  • the hydrophobic component of the latex according to the present invention is preferably one capable of forming an image by heating, and more preferably heat-fusible particles or heat-fusible particles.
  • the heat-meltable particles are particles formed of a material (wax material) generally classified as a wax having a low viscosity when melted, among thermoplastic materials.
  • the physical properties are preferably a soft melting point of 40 ° C to 120 ° C and a melting point of 60 ° C to 150 ° C, and a soft melting point of 40 ° C to 100 ° C and a melting point of 60 ° C. More preferably, the temperature is 120 ° C or lower.
  • the ranges of the melting point and soft spot are preferable in terms of storage stability and ink deposition sensitivity.
  • Usable wax materials include paraffin, polyolefin, polyethylene wax, microcrystalline wax, fatty acid ester wax, fatty acid wax and the like. These have a molecular weight of about 800 to 10,000. In order to facilitate emulsification, these waxes can be oxidized to introduce polar groups such as a hydroxyl group, an ester group, a carboxyl group, an aldehyde group, and a peroxide group. Among these, polyethylene wax, microcrystalline wax, fatty acid ester wax, and fatty acid wax are preferable. Since these waxes have a relatively low melting point and a low melt viscosity, high-sensitivity image formation can be performed.
  • these waxes have lubricity, damage when a shearing force is applied to the surface of the printing plate material is reduced, and resistance to printing stains due to scratches or the like is improved.
  • these waxes are treated with stearoamide, linolenamide, laurylamide, myristamide, hardened beef fatty acid amide, palmitoamide, oleic acid amide, rice sugar. It is also possible to add fatty acid amide, coconut fatty acid amide, or methylol cocoa of these fatty acid amides, methylene bisstellaramide, ethylene bisstellaramide and the like.
  • Coumarone-indene resin rosin-modified phenol resin, terbene-modified phenol resin, xylene resin, ketone resin, acrylic resin, ionomer, and copolymers of these resins can also be used. .
  • the heat-meltable particles are dispersible in water.
  • the average particle diameter is 0.01 to LO / zm from the viewpoint of on-image development and resolution. More preferably, it is 0.1 to 3 ⁇ m.
  • composition of the heat-meltable particles may be continuously changed between the inside and the surface layer, or may be coated with a different material.
  • thermoplastic hydrophobic polymer hereinafter referred to as hydrophobic polymer
  • hydrophobic polymer thermoplastic hydrophobic polymer
  • the softening temperature of the hydrophobic polymer is preferably lower than its decomposition temperature.
  • hydrophobic polymer constituting the hydrophobic polymer particle include, for example, gen (co) polymers such as polypropylene, polybutadiene, polyisoprene, and ethylene butadiene copolymer, Styrene Butadiene copolymer, methyl methacrylate-butadiene copolymer, synthetic rubbers such as acrylonitrile butadiene copolymer, methyl methacrylate, methyl methacrylate (2-ethylhexyl acrylate) copolymer, methyl methacrylate (Meth) acrylic acid ester such as methacrylic acid copolymer, methyl acrylate (N-methylol acrylamide) copolymer, or (meth) acrylic acid (mono or co) polymer, polyvinyl acetate, vinyl acetate Vinyl pionate copolymer, butyl acetate, ethylene copolymer, vinyl acetate -Bulester (sing
  • Hydrophobic polymer particles may be those obtained by any known method such as emulsion polymerization, suspension polymerization, solution polymerization, and gas phase polymerization.
  • a method for making a polymer polymer polymer polymerized by a solution polymerization method or a gas phase polymerization method into a fine particle a solution is sprayed in an inert gas in an organic solvent of a high molecular weight polymer and dried to make a fine particle.
  • surfactants such as sodium lauryl sulfate, sodium dodecyl benzene sulfonate, polyethylene glycol, and polybutyl alcohol can be used as dispersants and stabilizers for polymerization or microparticulation as required.
  • Use water-soluble rosin Use water-soluble rosin.
  • the heat-fusible particles are dispersible in water.
  • the average particle size is preferably on-surface image properties, resolution and other surface powers of 0.01 to: LO m. More preferably, it is 0.1 to 3 ⁇ m.
  • the heat-fusible particles may be continuously changed in composition between the inside and the surface layer, or may be coated with different materials.
  • the core-shell form is preferable.
  • the core shell form makes it easy to control the surface reactivity and physical properties such as particle hardness and Tg.
  • the weight average molecular weight of the hydrophobic polymer is 500 to 500,000, and the number average molecular weight is 200 to 600,000.
  • the hydrophilic component of the latex according to the present invention is preferably a water-soluble material.
  • a natural polymer gum arabic, water-soluble soybean polysaccharide, fiber derivative (for example, carboxymethyl cellulose) , Carboxyethyl cellulose, methyl cellulose, etc.), modified products thereof, white dextrin, pullulan, enzymatically-decomposed etherified dextrin, gelatin, etc.
  • synthetic polymers such as polybulal alcohol or polybutyl alcohol derivatives, polyacrylic acid Or its derivative, its alkali metal salt or amine salt, polyacrylic acid copolymer, its alkali metal salt or amine salt, polymethacrylic acid, its alkali metal salt or amine salt, butyl alcohol Z acrylic acid copolymer and its Alkali metal salt or amine salt, polyacrylic Bromide, copolymers thereof, polyhydroxy E chill ⁇ Tarireto, poly Bulle pyrrolidon
  • the hydrophilic component of the latex according to the present invention is preferably polyvinyl alcohol or a polybutyl alcohol derivative, polyacrylic acid or a derivative thereof, polystyrene sulfonic acid or a derivative thereof.
  • the latex according to the present invention is preferably 3 to 80% by mass, particularly preferably 5 to 60% by mass, as a solid content in the image forming layer.
  • the above range is preferable in terms of printing durability and scratch resistance.
  • the content ratio of the hydrophobic component and the hydrophilic component of the latex according to the present invention is preferably 90ZlO to 30Z70, more preferably 90ZlO to 50/50. Particularly preferred is 90ZlO to 70Z30.
  • the above range is preferable in terms of printing durability and developability.
  • the latex according to the present invention can be prepared by synthesis or dispersion by a known method.
  • a method prepared by emulsion polymerization is particularly preferable.
  • the emulsion polymerization it can be used by a known method, and the polymerization initiator, concentration, polymerization temperature, reaction time and the like can be widened and easily changed according to the purpose.
  • the emulsion polymerization reaction may be carried out by adding all of the monomer, surfactant, water-soluble polymer, and medium in a container in advance and adding an initiator, and if necessary, a part of each component. Or you can polymerize while dropping the whole amount!
  • the thermal image-forming layer according to the present invention may contain other materials.
  • the heat-sensitive image forming layer according to the present invention includes the above-mentioned heat-meltable material, heat-fusible material, water-soluble resin material, etc. (however, it does not participate in the formation of latex as described above) In the form).
  • the heat-sensitive image forming layer contains an infrared absorbing dye.
  • Infrared absorbing dyes that can be used in the present invention are general infrared absorbing dyes such as cyanine dyes, croconium dyes, polymethine dyes, azurenium dyes, and screw.
  • Organic compounds such as phthalocyanine dyes, thiopyrylium dyes, naphthoquinone dyes, anthraquinone dyes, phthalocyanine dyes, naphthalocyanine dyes, azo dyes, thioamide dyes, dithiol dyes, and indoor phosphorus phosphorus organic metal complexes .
  • the amount of addition of these infrared absorbing dyes is preferably 0.1% by mass or more and less than 10% by mass with respect to the total solid content of the image forming layer from the viewpoint of preventing abrasion, and 0.3% by mass or more. Less than 7% by mass is more preferable, and more preferably 0.5% by mass or more and less than 6% by mass.
  • the amount of the heat-sensitive image forming layer is preferably 0.01 to 5 gZm 2 and more preferably 0.
  • the hydrophilic layer and the image forming layer achieve high sensitivity by containing the following photothermal conversion material.
  • the photothermal conversion agent it is possible to use a material that exhibits black color in a visible light castle !, a material that has conductivity, or that is a semiconductor.
  • the former include black iron oxide (Fe 2 O 3) and black mixed metal oxides containing two or more of the aforementioned metals.
  • TiO titanium oxynitride, generally titanium black
  • metal oxides can also be used as a core material (BaSO, TiO, 9A1 ⁇ 2 ⁇ 0, ⁇ ⁇
  • black composite metal oxides containing two or more metals are more preferred materials.
  • it is a composite metal oxide composed of two or more metals selected from Al, Ti, Cr, Mn, Fe, Co, Ni, Cu, Zn, Sb, and Ba. These are produced by the methods disclosed in JP-A-8-27393, JP-A-9-25126, JP-A-9-237570, JP-A-9-241529, JP-A-10-231441, and the like. can do.
  • the complex metal oxide used in the present invention is particularly preferably a Cu-Cr-Mn-based or Cu-Fe-Mn-based complex metal oxide.
  • a Cu—Cr—Mn system it is preferable to perform the treatment disclosed in JP-A-8-273393 in order to reduce elution of hexavalent chromium.
  • These composite metal oxides are colored with respect to the amount added, that is, they have good photothermal conversion efficiency.
  • These composite metal oxides preferably have an average primary particle size of 1 ⁇ m or less, and an average primary particle size in the range of 0.01 to 0.5 m. More preferred.
  • the average primary particle size force Sl m or less By making the average primary particle size force Sl m or less, the photothermal conversion capacity with respect to the added amount becomes better, and by making the average primary particle size within the range of 0.01-0. The conversion ability is better.
  • the photothermal conversion ability with respect to the amount added is greatly affected by the degree of dispersion of the particles, and the better the dispersion, the better.
  • a dispersion liquid (paste).
  • a suitable dispersing agent can be used for dispersion.
  • the addition amount of the dispersant is preferably 0.01 to 5% by mass, more preferably 0.1 to 2% by mass with respect to the composite metal oxide particles.
  • the amount of these composite metal oxides added is preferably 20% or more and less than 40%, more preferably 25% or more and less than 39%, more preferably based on the total solid content of the hydrophilic layer.
  • the range is 25% or more and less than 30%. The above range is preferable in terms of improving sensitivity and reducing ablation caused by ablation.
  • the following infrared absorbing dye can be added as a photothermal conversion material to the hydrophilic layer and the image forming layer.
  • Common infrared absorbing dyes such as cyanine dyes, croconium dyes, polymethine dyes, azurenium dyes, and sculium dyes
  • organic compounds such as thiopyrylium dyes, naphthoquinone dyes, anthraquinone dyes, phthalocyanine dyes, naphthalocyanine dyes, azo dyes, thioamide dyes, dithionole dyes, and indoline phosphorus organic metal complexes.
  • the content of these infrared absorbing dyes in the hydrophilic layer is from 0.1% to less than 10%, more preferably from 0.3% to less than 7%, based on the total solid content of the hydrophilic layer. More preferably, it is in the range of 0.5% or more and less than 6%.
  • the added amount deviates from this, as described above, if the added amount is less than 0.1%, sufficient sensitivity cannot be obtained, and if it is 10% or more, abrasion residue is generated due to abrasion.
  • the hydrophilic layer according to the present invention preferably contains a material for forming the following hydrophilic matrix structure in addition to the photothermal conversion agent.
  • metal oxides other than those described above are preferable.
  • the metal oxide is preferably contained as particles (hereinafter referred to as metal oxide particles).
  • the metal oxide particles include colloidal silica, alumina sol, titania sol, and other metal oxide sols, and the form of the metal oxide particles may be spherical, feathered, or other.
  • the average particle diameter is preferably 3 to: LOOnm, and several kinds of metal oxide particles having different average particle diameters may be used in combination.
  • the surface of the particles may be surface treated.
  • the metal oxide particles can be used as a binder by utilizing the film-forming property.
  • hydrophilic layer in which the decrease in hydrophilicity is smaller than when an organic binder is used.
  • the content of the metal oxide particles in the hydrophilic layer is preferably 20 to 80% by mass, more preferably 30 to 70% by mass.
  • colloidal silica is particularly preferably used among the above. Colloidal silica has the advantage of high film-forming properties even under relatively low temperature drying conditions, and can provide good strength.
  • colloidal silica necklace-like colloidal silica, and alkaline colloidal silica, which is preferably colloidal silica having an average particle size of 20 nm or less, is preferred.
  • Necklace-shaped colloidal silica is a general term for the water-dispersed diameter of spherical silica in the order of primary particle diameter of 5 m.
  • Necklace-shaped colloidal silica means “pearl necklace-shaped” colloidal silica in which spherical colloidal silica having a primary particle diameter of 10 to 50 nm is bonded to a length of 50 to 400 nm.
  • a pearl necklace shape (that is, a pearl necklace shape) means that an image in a state where silica particles of colloidal silica are connected and linked together has a shape like a pearl necklace. It is presumed that the silica particles composing the necklace-like colloidal silica are Si—O—Si in which SiOH groups present on the silica particle surface are dehydrated. Specific examples of the neckless colloidal silica include “Snowtex PS” series manufactured by Nissan Chemical Industries, Ltd.
  • colloidal silica having an average particle diameter of 20 nm or less.
  • alkaline colloidal silica is particularly preferably used because it is highly effective in suppressing the occurrence of background contamination in colloidal silica.
  • Colloidal silica having an average particle size of 20 nm or less is particularly preferred because it can be used to improve the strength while maintaining the porous property of the layer when used in combination with the aforementioned necklace-like colloidal silica force.
  • Ratio of colloidal silica Z necklace-shaped colloidal silica having an average particle size of 20 nm or less ⁇ 95/5 to 5/95 force S, preferably 70/30 to 20/80 force S, more preferably 60/40 to 30/70 is more preferred.
  • porous metal oxide particles having a particle size of less than 1 ⁇ m can be contained.
  • porous silica, porous aluminosilicate particles, or zeolite particles described later can be preferably used.
  • the porous silica particles are generally produced by a wet method or a dry method.
  • the wet method it can be obtained by drying and pulverizing the gel obtained by neutralizing the aqueous silicate solution, or by pulverizing the precipitate deposited after neutralization.
  • the dry method can be obtained by burning silica with hydrogen and oxygen and precipitating silica.
  • the porosity and particle size of these particles can be controlled by adjusting the production conditions.
  • porous silica particles those obtained by a wet gel force are particularly preferable.
  • the porous aluminosilicate particles are produced, for example, by the method described in JP-A-10-71764.
  • the ratio of alumina to silica in the particles can be synthesized in the range of 1: 4 to 4: 1.
  • particles produced by adding other metal alkoxides at the time of production as composite particles of three or more components can also be used in the present invention. These composite particles can also control the porosity and particle size by adjusting the production conditions.
  • the porosity of the particles is preferably 0.5 mlZg or more in terms of pore volume, more preferably 0.8 ml / g or more. 1.0 to 2.5 mlZg or less Further preferred.
  • Zeolite can also be used as the porous material of the present invention.
  • Zeolite is a crystalline aluminokeate and is a porous body having pores with a regular three-dimensional network structure with a pore diameter of 0.3 to Lnm.
  • the hydrophilic layer according to the present invention may contain mineral particles.
  • Mineral particles include clay minerals such as kaolinite, rhosite, talc, smectite (montmorillonite, piderite, hectolite, sabonite, etc.), vermiculite, my strength (mica), chlorite and And lamellar mineral particles such as anodic, id mouth talcite, and layered polysilicate (such as kanemite, macatite, eyelite, magadiite, kenyaite).
  • clay minerals such as kaolinite, rhosite, talc, smectite (montmorillonite, piderite, hectolite, sabonite, etc.), vermiculite, my strength (mica), chlorite and And lamellar mineral particles such as anodic, id mouth talcite, and layered polysilicate (such as kanemite, macatite
  • the charge density is preferably 0.25 or more, more preferably 0.6 or more.
  • the layered mineral having such a charge density include smectite (charge density 0.25 to 0.6; negative charge), vermiculite (charge density 0.6 to 0.9; negative charge), and the like.
  • synthetic fluorine mica is preferable because it can be obtained with a stable quality such as particle size.
  • the size of the layered mineral particles is that it is contained in the layer!
  • the ratio is preferably 50 or more.
  • the particle size is in the above range, the continuity and flexibility in the planar direction, which are the characteristics of the thin layered particles, are imparted to the coating film, and it is difficult to crack and it can be made a tough coating film in a dry state.
  • the coating liquid containing many particulate matters sedimentation of particulate matter can be suppressed by the thickening effect of the layered clay mineral. If the particle diameter is larger than the above range, the coating film may become non-uniform and the strength may be locally reduced.
  • the content of the layered mineral particles is preferably 0.1 to LO mass% of the entire layer, more preferably 0.1 to 3 mass%.
  • swellable synthetic fluoromica is preferred because smectite is effective even when added in a small amount.
  • the layered mineral particles may be added to the coating solution in powder form, but in order to obtain a good degree of dispersion even with a simple preparation method (which does not require a dispersion step such as media dispersion), the layered mineral particles It is preferable to add the gel to the coating solution after preparing a gel swelled alone in water.
  • a silicate aqueous solution can also be used as another additive material.
  • Alkaline metal silicates such as Na, Ca, and Li are preferred, and the SiO / M0 ratio of the coating solution should not exceed 13 when the silicate is added.
  • an inorganic polymer or an organic-inorganic hybrid polymer by a so-called sol-gel method using a metal alkoxide can be used.
  • sol-gel method for example, the force described in “Application of the sol-gel method” (published by Sakuo Sakuo, published by Z. The known methods described in the literature can be used.
  • the hydrophilic layer may contain water-soluble or water-dispersible resin.
  • resins include conjugates of polysaccharides, polyethylene oxide, polypropylene oxide, polybutyl alcohol, polyethylene glycol (PEG), polybutyl ether, styrene butadiene copolymer, methyl methacrylate-butadiene copolymer. Examples include coalescence latex, acrylic polymer latex, bull polymer latex, polyacrylamide, and polyvinylpyrrolidone.
  • polysaccharides starches, celluloses, polyuronic acids, pullulans and the like can be used.
  • Cellulose derivatives such as methylcellulose salts, carboxymethylcellulose salts, hydroxyethylcellulose salts, etc. Sodium salt and ammonium salt are preferred.
  • the hydrophilic layer coating solution of the present invention may contain a water-soluble surfactant for the purpose of improving coating properties.
  • Surfactants such as S-based, F-based, and acetylene glycol-based surfactants can be used, but it is particularly preferable to use a surfactant containing Si element because there is no fear of causing printing stains.
  • the content of the surfactant is preferably from 0.01 to 3% by mass, more preferably from 0.03 to 1% by mass, based on the entire hydrophilic layer (solid content as the coating solution).
  • the hydrophilic layer of the present invention may contain a phosphate.
  • the hydrophilic layer coating solution is preferably alkaline, it is preferable to add trisodium phosphate as disodium hydrogen phosphate as the phosphate.
  • the addition amount of phosphate is preferably 0.1 to 5% by mass, and more preferably 0.5 to 2% by mass, as an effective amount excluding hydrates.
  • the drying with the amount of the hydrophilic layer preferably is 0. l ⁇ 20gZm 2 instrument 0. 5 ⁇ 15gZm 2 Gayo Ri preferably still, L ⁇ 10gZm 2 is particularly preferred.
  • the hydrophilic layer contains spherical silica particles having an average particle diameter of 4.0 to 8. O / zm and a ⁇ g ⁇ CV value of 1 to 10%.
  • the surface irregularities of the hydrophilic layer and the image forming layer can be controlled. When used, etc., there is an effect of preventing abrasion of the image forming portion against foreign matter, and further improving the scratch resistance and visibility of the non-image portion.
  • the CV value according to the present invention is a value called a variometer coefficient, and is an index that represents a relative dispersion.
  • the coefficient of variation CV (%) of the particle size is expressed by the following equation.
  • the particle size distribution (CV) and the average particle size can be obtained using a calibrated coulter counter after calibrating the counter counter using standard particles having different particle sizes.
  • the CV value of the particle size of the spherical silica particles is preferably 1 to 10%, particularly preferably 1 to 5% from the viewpoint of printability and scratch resistance.
  • the average particle size of the spherical silica particles is preferably 4.0 to 8.0 ⁇ m from the viewpoint of scratch resistance and printing durability.
  • the silica particles contained in the hydrophilic layer are preferably 3 to 40% by mass with respect to the total solid content of the hydrophilic layer in terms of film strength, scratch resistance, and printability. Particularly preferred is 5 to 25% by mass.
  • the hydrophilic layer may be divided into two layers (upper layer and lower layer). It is preferable because some performance can be separated by separating the hydrophilic layer into two layers.
  • the material used for the upper and lower layers is a force that can use the same material. Therefore, it is preferable that the content of the porous matrix in the hydrophilic matrix is less than that in the hydrophilic layer. Good. Along with this, the spherical silica particles and particles having the following average particle diameter of 1 to 12 / zm can be retained, so it is effective to add more particles to the lower layer. On the other hand, since the upper layer is required to be porous, it is preferable to use the opposite method to the lower layer.
  • the particles other than those described above preferably contain inorganic particles having a particle size force of ⁇ 12 m or particles coated with an inorganic material.
  • the average particle size is preferably 2 to: 3 to 8 ⁇ m, more preferably LO / z m.
  • 3 to 4 ⁇ m spherical particles improve the printing durability and scratch resistance of non-image areas when used in combination with the spherical silica particles.
  • the additive amount of particles having a particle size of 1 to 12 ⁇ m is preferably 0.5 to 50% by mass of the entire hydrophilic layer, more preferably 3 to 30% by mass. preferable.
  • the composition and structure of the particles can be any of porous, non-porous, organic resin particles, and inorganic fine particles. Examples of inorganic particles that can be used include silica, alumina, zirconium, titanium, carbon black, graph Aito, TiO, Ba
  • Examples of the particles coated with an inorganic material include particles obtained by coating organic particles such as PMMA, polystyrene, and melamine with inorganic particles having a particle diameter smaller than that of the core particles.
  • the particle size of the inorganic particles is preferably about 1Z10 to 1Z100 of the core particles.
  • known metal oxide particles such as silica, alumina, titania, zirconia and the like can be used.
  • As the coating method various known methods can be used.
  • the core material particles and the coating material particles are collided at high speed in the air like a hybridizer, and the coating material particles are eaten on the surface of the core material particles. Fixed, covered and dried The coating method of the formula can be preferably used.
  • the effect is not particularly limited as long as it is a granule satisfying the scope of the present invention.
  • porous silica particles Porous inorganic particles such as porous aluminosilicate particles and porous inorganic coated particles are preferably used.
  • a protective layer may be provided on the thermal image forming layer.
  • the above-mentioned water-soluble rosin can be preferably used.
  • hydrophilic overcoat layers described in JP-A-2002-19318 and JP-A-2002-86948 can be preferably used.
  • the amount per the protective layer, 0. 01: A LOG / m 2, is Ri preferably 0. l ⁇ 3g / m 2 der, more preferably 0. 2 ⁇ 2gZm 2.
  • substrate of a printing plate can be used.
  • a metal plate, a plastic film, paper treated with polyolefin, a composite substrate obtained by appropriately bonding the above materials, and the like can be given.
  • the thickness of the substrate is not particularly limited as long as it can be mounted on a printing press, but a thickness of 50 to 500 ⁇ m is generally easy to handle.
  • metal plate aluminum is particularly preferable because of the relationship between the force specific gravity and rigidity, such as iron, stainless steel, and aluminum.
  • the aluminum plate is usually used after degreasing with an alkali, acid, solvent, etc. in order to remove the oil used at the time of rolling and stripping on the surface.
  • degreasing treatment degreasing with an alkaline aqueous solution is particularly preferable.
  • an easy adhesion treatment or undercoat layer coating on the coated surface.
  • Anodizing treatment is also considered as a kind of easy adhesion treatment and can be used.
  • a combination of anodizing treatment and the above dipping or coating treatment can be used.
  • An aluminum plate roughened by the above method can also be used.
  • plastic film examples include polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polyimide, polyamide, polycarbonate, polysulfone, polyethylene oxide, and cellulose esters.
  • polyester PET and PEN are preferable from the viewpoint of handling suitability and the like, and PET is particularly preferable.
  • PET is composed of terephthalic acid and ethylene glycol
  • PEN is composed of naphthalenedicarboxylic acid and ethylene glycol, and these can be polymerized by combining them under appropriate reaction conditions in the presence of a catalyst. At this time, an appropriate one type or two or more third components may be mixed.
  • any compound having a divalent ester-forming functional description may be used.
  • dicarboxylic acids include the following.
  • isophthalic acid phthalic acid, 2, 6-naphthalenedicarboxylic acid, 2, 7-naphthalene dicarboxylic acid, diphenylsulfone dicarboxylic acid, diphenyl ether dicarboxylic acid, diphenylethane dicarboxylic acid, cyclohexanedicarboxylic acid
  • examples thereof include acid, diphenyl dicarboxylic acid, diphenyl thioether dicarboxylic acid, diphenyl ketone dicarboxylic acid, and phenylindane dicarboxylic acid.
  • glycols examples include ethylene glycol, propylene glycol, tetramethylene glycol, cyclohexane dimethanol, 2, 2-bis (4-hydroxyphenol) propan, 2, 2-bis (4 —Hydroxyethoxyphenyl) propane, bis (4-hydroxyphenol) sulfone, bisphenol full orange hydroxyethyl ether, diethylene glycol, neopentyl glycol, hydroquinone, cyclohexanediol, and the like.
  • the intrinsic viscosity of the resin used in the plastic film is preferably 0.5 to 0.8.
  • the PET synthesis method of the present invention is not particularly limited, and can be produced according to a conventionally known PET production method.
  • a direct esterification method in which a dicarboxylic acid component is directly esterified with a diol component.
  • a dialkyl ester is used as the dicarboxylic acid component, and this is subjected to a transesterification reaction with the diol component. It is possible to use a transesterification method in which the polymer is polymerized by heating under reduced pressure to remove excess diol component.
  • a transesterification catalyst or a polymerization reaction catalyst may be used, or a heat-resistant stabilizer may be added.
  • a heat stabilizer phosphoric acid, phosphorous acid, and those ester compounds are mentioned, for example.
  • the fine particles may be organic materials or inorganic materials!
  • inorganic substances silica described in Swiss Patent No. 330158 and the like, glass powder described in French Patent No. 1296995 and the like, described in British Patent Nos. 1, 173 and 181, etc.
  • Al-earth metal or carbonates such as cadmium and zinc can be used.
  • Examples of organic substances include starch described in US Pat. No. 2,322,037 and the like, and starch described in Belgian Patent Nos. 625 and 451 and British Patent Nos. 981,198 and the like. Insulators, polybutyl alcohol described in Japanese Patent Publication No. 44-3643, etc., polystyrene or polymetatalylate described in Swiss Patent No. 330, 158, etc., US Pat. No. 3,079,257 Organic fine particles such as polyacrylonitrile as described in U.S. Pat. No. 3,022,169 and the like described in U.S. Pat. The shape of the fine particles may be either regular or irregular.
  • the substrate from the viewpoint of imparting the handling aptitude to printing plate material of the present invention, is preferably from preferably tool is elastic modulus is 300kg / mm 2 ⁇ 800kg / mm 2 Or 400 kgZmm 2 to 600 kgZmm 2 .
  • the elastic modulus is a strain in a region where a strain indicated by a standard line of a sample conforming to JIS C2318 and a corresponding stress have a linear relationship using a tensile tester. The slope of the stress with respect to the flow amount is obtained. This is a value called Young's modulus.
  • the Young's modulus is defined as an elastic modulus.
  • the base material according to the present invention is from the viewpoint of improving the handling ability when the printing plate material is installed in a printing machine in order for the planographic printing plate material of the present invention to exhibit the effects described in the present invention.
  • the average film thickness is preferably in the range of 100 ⁇ m to 500 ⁇ m, and the thickness distribution is preferably 5% or less. Particularly preferred is a range of 120 ⁇ m to 300 ⁇ m and a thickness distribution force of 2% or less.
  • the thickness distribution of the support according to the present invention is a value obtained by dividing the difference between the maximum value and the minimum value of the thickness by the average thickness and expressed as a percentage.
  • the thickness distribution of the support was measured by dividing the support cut into a square with a side of 60 cm into vertical and horizontal 10 cm intervals, measuring the thickness at these 36 points, and calculating the average value. Find the maximum and minimum values.
  • a plastic film support is preferably used as the base material according to the present invention.
  • a plastic film and a metal plate for example, iron, stainless steel, aluminum, etc.
  • a material composite base
  • These composite substrates may be bonded together before forming the coating layer, or may be bonded after forming the coating layer, or may be bonded immediately before being attached to a printing press.
  • an undercoat layer between the base material and the hydrophilic layer it is preferable to provide an undercoat layer between the base material and the hydrophilic layer.
  • the base material side (undercoat lower layer) for which the two-layer structure is preferred is made of a material that considers adhesiveness to the base material, and the hydrophilic layer side (undercoat upper layer) It is preferable to use a material that considers the adhesion between the undercoat layer and the hydrophilic layer.
  • Examples of the material used in the undercoat layer include vinyl polymers, polyesters, styrene-dioffins, and the like. In particular, it is preferable that the bull polymers and polyesters are preferably combined or modified! .
  • a material that can be used in the undercoat upper layer it is preferable to contain a water-soluble polymer in order to improve the adhesion to the hydrophilic layer, in particular gelatin, polyvinyl alcohol, modified polyvinyl alcohol, water-soluble Water-soluble polyester resin is preferred for water-soluble acrylic resin.
  • a water-soluble polymer in particular gelatin, polyvinyl alcohol, modified polyvinyl alcohol, water-soluble Water-soluble polyester resin is preferred for water-soluble acrylic resin.
  • An embodiment having an undercoat layer containing polybulal alcohol, acrylic resin or polyester resin is a preferable embodiment.
  • adhesion between the substrate and the hydrophilic layer can be improved, and foreign matter resistance and on-press developability can be further improved.
  • the following inorganic particles can be used.
  • examples thereof include inorganic substances such as silica, alumina, barium sulfate, calcium carbonate, titanium, tin oxide, indium oxide and talc.
  • the shape of these fine particles can be used in the form of needles, spheres, plates, or crushed particles that are not particularly limited.
  • the preferred size is 0.1 to 15 m, more preferably 0.2 to: LO / z m, and still more preferably 0.3 to 7 / ⁇ ⁇ .
  • the amount of particles added is preferably 0.1 to 50 mg, more preferably 0.2 to 30 mg, and still more preferably 0.3 to 20 mg per lm 2 on one side.
  • the undercoat layer is preferably from 0.05 to 0.50 m, more preferably from 0.10 to 0.30 / z m, from the viewpoint of transparency and coating unevenness (interference unevenness).
  • the undercoat layer is applied online after the support is formed, in which the coating solution is applied to one side or both sides of the polyester film before the completion of crystal orientation, particularly during the formation of the support.
  • the coating solution is applied to one side or both sides of the polyester film offline.
  • any known coating method can be applied.
  • the antistatic layer is composed of an antistatic agent and a binder.
  • a metal oxide is preferably used as the antistatic agent.
  • metal oxides include ZnO, TiO, SnO, AlO, InO, SiO, MgO, BaO, MoO, and V2O.
  • Nb a halogen element, or the like can be added.
  • the amount of these different elements added is preferably in the range of 0.01 to 25 mol%, particularly preferably in the range of 0.1 to 15 mol%.
  • the lithographic printing plate material is image-exposed using a laser beam.
  • image exposure with a thermal laser is particularly preferable.
  • a laser that emits light in the infrared and Z or near infrared regions that is, in the wavelength range of 700 to 1500 nm is preferred.
  • a gas laser may be used as the laser, it is particularly preferable to use a semiconductor laser that emits light in the near infrared region.
  • any system can be used as long as it can form an image on the surface of a printing plate material using the semiconductor laser in accordance with an image signal of a computer manufacturer. Even a device.
  • the printing plate material held along the cylindrical surface inside the fixed cylindrical holding mechanism is used in the circumferential direction of the cylinder (mainly using one or more laser beams from the inside of the cylinder). (Scanning direction) and moving in the direction perpendicular to the circumferential direction (sub-scanning direction) to expose the entire surface of the printing plate material, (3) on the surface of a cylindrical drum that rotates around the axis as a rotating body
  • the held printing plate material is scanned in the circumferential direction (main scanning direction) by rotating the drum using one or more laser beams, such as a cylindrical outer cover, and in the direction perpendicular to the circumferential direction (sub-scanning) And a method of exposing the entire surface of the printing plate material.
  • the scanning exposure method (3) is particularly preferred, and the exposure method (3) is used particularly for an apparatus that performs exposure on a printing apparatus.
  • a general planographic printing method using a fountain solution and printing ink can be applied.
  • no isopronol is contained as a fountain solution. (It is a content of 0.5% by mass or less with respect to water.) It is preferable to use dampening water.
  • dampening water or dampening water and printing ink are supplied to the printing plate material image-exposed on a lithographic printing machine, and a non-image is obtained.
  • a non-image is obtained.
  • Develop and print by removing the image forming layer.
  • the printing plate material after image formation is attached to the plate cylinder of the printing press as it is, or the printing plate material is attached to the printing plate cylinder of the printing press and then image formation is performed.
  • the image forming layer in the non-image area is removed by bringing a watering roller and an ink roller into contact with the image forming layer of the printing plate material exposed to the image.
  • Removal of the non-image area (unexposed area) of the image forming layer on the printing press involves image exposure of the water roller or water roller and ink roller while rotating the plate cylinder. The printing plate material is brought into contact with the image forming layer.
  • the on-press development can be performed by, for example, the following sequences or various other sequences.
  • the water amount adjustment by increasing or decreasing the amount of dampening water required at the time of printing can be divided into multiple stages or steplessly. You may change it to.
  • transesterification catalyst To 100 parts by mass of dimethyl terephthalate and 65 parts by mass of ethylene glycol, 0.05 part by mass of magnesium acetate hydrate was added as a transesterification catalyst, and transesterification was performed according to a conventional method. To the obtained product, 0.05 part by mass of antimony trioxide and 0.03 part by mass of trimethyl ester phosphate were added.
  • PET polyethylene terephthalate
  • a biaxially stretched PET film was prepared as follows.
  • a PET resin-coated pellet is vacuum-dried at 150 ° C for 8 hours, then melt-extruded in layers from a T die at 285 ° C, and brought into close contact with electrostatic printing on a 30 ° C cooling drum and cooled. The film was solidified to obtain an unstretched film.
  • This unstretched sheet was stretched 3.3 times in the longitudinal direction at 80 ° C using a roll-type longitudinal stretching machine.
  • the first stretching zone was stretched by 50% of the total transverse stretching ratio at 90 ° C, and further at the second stretching zone at 100 ° C.
  • Total transverse stretching Ratio 3. Stretched to 3 times.
  • the upper surface of the undercoat layer A-1 was subjected to a corona discharge treatment of 8 WZm 2 ', and the undercoat coating solution a-2 was applied to the undercoat layer A-1 with a dry film thickness of 0. .: Applied to L m, dried at 123 ° C, provided with subbing layer A-2, and further heat-treated at 140 ° C for 2 minutes to obtain substrate 1 with a single-sided subbing layer formed .
  • Car-on surfactant S-1 (2% by mass) 30 g Water was used to make 1 kg.
  • Kuraray exeval polybulal alcohol and ethylene copolymer
  • Anionic surfactant S-1 (2% by mass) 6g Hardener H-1 (0.5% by mass) lOOg
  • Spherical silica matting agent (Nippon Shokubai Co., Ltd. Sea Hoster KE-P50) 2% by mass dispersion
  • the intrinsic viscosity of the obtained water-soluble polyester was 0.33.
  • the weight-average molecular weight was 80, 000-100,000.
  • a modified water-wet polyester solution B1 (acrylic component modification rate 20 mass%) with a solid content concentration of 18 mass%.
  • a modified water-soluble polyester solution L-4 was prepared in the same manner as described above except that the acrylic component modification rate was 5% by mass and the solid content concentration was 23%.
  • the upper hydrophilic layer coating solution prepared as described below was applied using a wire bar to a dry mass of 1.80 gZm 2 and a 30 m long drying zone set at 100 ° C. Passing speed was 15mZ.
  • the lower layer hydrophilic coating solution composition shown in Table 1 was sufficiently stirred and mixed using a homogenizer, and then filtered to prepare a lower layer hydrophilic coating solution.
  • Porous metal oxide Shilton JC—40 (manufactured by Mizusawa Chemical Co., Ltd.) 8.3 Layered clay mineral Montmorillonite: Mineral colloid M0
  • Cu-Fe-Mn-based metal oxide black pigment TM-3550 black powder
  • Colloidal force ⁇ 4 5 40 0 ⁇ (manufactured by Nissan Chemical Co., Ltd., solid content 40 % by mass) 99.0 High pressure force (manufactured by Ube Nisshin Kasei) 22.0
  • FZ 2161 (silicon active agent: Nippon Yunika Co. I) (solid content 20 wt%) 8.8 Oputobizu 3500S (manufactured by Nissan Chemical Industries, Ltd. particle diameter 3. 5 m) 8.8 Porous metal oxide: SILTON JC one 70 (Mizusawa Chemical Co. 11.0)
  • the upper hydrophilic coating solution composition shown in Table 2 was sufficiently mixed with stirring using a homogenizer, and then filtered to prepare an upper hydrophilic coating solution.
  • ETB- 3 00 (manufactured by Titanium Industry Co., Ltd.) Aqueous dispersion (solid content 40 %) 180.0 Carboxymethylcellulose 4% aqueous solution 1.0 Trisodium phosphate 12 hydrate (Kanto Chemical) 10% aqueous solution 1.0 Colloidal silica: SNOTEX
  • ADS830WS (Amer i canDyeSource) Infrared dye 2% aqueous solution 180.0 Pure water 110.0 Total rest 1000.00 [0182] (Preparation of coating solution for image forming layer)
  • the image forming layer coating liquid composition described in Table 3 was stirred and mixed using a stirrer and then filtered to prepare an image forming layer coating liquid.
  • the image forming layer coating solution prepared above was applied onto the upper hydrophilic layer using a wire bar so that the dry mass was 0.55 gZm 2 , and the dryness was set to 70 ° C with a length of 30 m.
  • the heat-sensitive image forming layer was formed by passing through the drying zone at a conveyance speed of 15 mZ.
  • the coated sample was aged at 50 ° C for 2 days to obtain a lithographic printing plate material sample.
  • the lithographic printing plate material sample was cut to a width of 660 mm, and rolled to a paper core having an outer diameter of 76 mm for 30 m to obtain a rolled lithographic printing plate material sample 1.
  • roll-shaped lithographic printing plate material samples 2 to 5 were prepared.
  • Exposure method The lithographic printing plate material sample obtained above was cut according to the exposure size and then fixed to the exposure drum by brazing.
  • a laser beam with a wavelength of 830 nm and a spot diameter of about 18 m was used, and the exposure energy was 240 mjZcm 2 , and 2,400 dpi (dpi represents 2.5 dots per 54 cm) and 175 lines.
  • Exposed to form, an exposed lithographic printing plate material sample was prepared.
  • the exposed printing plate material sample was mounted on a plate cylinder of a printing press, and printing was performed by supplying dampening water and printing ink to the mounted exposed printing plate material sample.
  • powder (trade name: Nitsuka Rico M (manufactured by Nitsuka Co., Ltd.) was used and sprayed on the powder scale 10 of the printing apparatus.
  • Printing machine DAIYA1-F manufactured by Mitsubishi Heavy Industries, Ltd.
  • Printing paper Coated paper (for evaluations other than printing durability)
  • Printing evaluation was performed using a backing paper printed on the above printing conditions using high-quality paper.
  • the printing end point was determined at the stage where either 3% of small dots in the image were missing or the density of the solid portion was reduced, and the number of sheets was determined. This number was used as an index of printing durability.
  • Latex A had a solid content of 16% by weight, and latex particles had a number average particle size of 130 nm at 50 ° C.
  • the latex A water-soluble resin of latex A was 70Z30 (mass ratio).
  • Dissolve osein gelatin with an average molecular weight of 100,000 in water in advance and apply carnauba wax, microcrystalline wax, and polyethylene wax, the raw materials of A-118, A-206, and A-514, to the image forming layer shown in Table 3. Raise the temperature to 100 to 150 ° C at the same WAX ratio as that of the composition, and stir with an atmospheric homomixer (T. K homomixer manufactured by Tokushu Kika Kogyo Co., Ltd.) And a pre-emulsion was obtained.
  • T. K homomixer manufactured by Tokushu Kika Kogyo Co., Ltd. an atmospheric homomixer
  • the obtained pre-emulsion was further treated with a high-pressure homogenizer (LA-31 type, manufactured by Nanomizer Co., Ltd.) at a treatment pressure of 1,300 kg / cm 2 to obtain Latex B containing gelatin as a protective colloid.
  • Latex B wax / water soluble rosin was 70/30 (weight ratio).
  • Latex C containing sodium polyacrylate as a protective colloid was prepared in the same manner as Latex A, except that emulsion was used in place of sodium polyacrylate: DL522 instead of polybulal alcohol.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Thermal Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials For Photolithography (AREA)
  • Printing Plates And Materials Therefor (AREA)

Abstract

 本発明は、基材上に、光熱変換剤を含む親水性層と感熱画像形成層とを基材側からこの順に有する平版印刷版材料であって、該感熱画像形成層に、保護コロイドとして親水性成分を有する疎水性成分のラテックスを含有することを特徴とし、機上現像性、耐刷性および耐傷性に優れる平版印刷版材料を提供する。

Description

明 細 書
平版印刷版材料及び印刷方法
技術分野
[0001] 本発明は平版印刷版材料及び印刷方法に関し、特にコンピューター 'トゥー'プレ ート (以下 CTPと称す)方式に用いられる平版印刷版材料及び印刷方法に関する。 背景技術
[0002] 現在、印刷の分野にぉ 、ては、印刷画像データのデジタルィ匕に伴 、、 CTP方式に よる印刷が行われるようになってきている力 この印刷においては、安価で取り扱いが 容易で従来の所謂 PS版と同等の印刷適性を有した CTP方式用印刷版材料が求め られている。
[0003] 特に近年、特別な薬剤による現像処理が不要であるダイレクトイメージング (以下 DI と称す)性能を有し、この機能を備えた印刷機に適用可能であり、また PS版と同等の 使い勝手を有するものとして、汎用タイプのプロセスレスプレートが求められている。
[0004] サーマルプロセスレスプレートの画像形成に主として用いられるのは近赤外〜赤外 線の波長を有する赤外線レーザー記録方式である。この方式で画像形成可能なサ 一マルプロセスレスプレートには、大きく分けて、アブレーシヨンタイプと熱融着画像 層機上現像タイプが存在する。
[0005] アブレーシヨンタイプとしては、例えば、特開平 8— 507727号、同 6— 186750号、 同 6— 199064号、同 7— 314934号、同 10— 58636号、同 10— 244773号に記載 されて!/、るものが挙げられる。
[0006] これらは、例えば、基材上に親水性層と親油性層とをいずれかの層を表層として積 層したものである。表層が親水性層であれば、画像様に露光し、親水性層をアブレ ートさせて画像様に除去して親油性層を露出することで画像部を形成することができ る。ただし、アブレートした表層の飛散物による露光装置内部の汚染が問題となるた め、露光装置には特別な吸引装置が必要となる場合があり、露光装置に対する汎用 性は低い。
[0007] 一方、アブレーシヨンを生じることなく画像形成が可能であり、かつ特別な現像液に よる現像処理や拭き取り処理の不要な印刷版材料の開発も進められている。
[0008] たとえば、特許 2938397号、特許 2938397号、特開平 9— 123387号、特開平 9 — 123388号に開示されているような、感熱画像形成層に熱可塑性微粒子と水溶性 高分子化合物の結合剤を用いた、印刷機上で湿し水またはインクを用いて現像する ことが可能な CTP用印刷版材料が挙げられる。これらの機上現像可能な印刷版材料 は、鮮鋭なドット形状、高精細な画像が得られ、又露光後の現像プロセスを必要とせ ず、環境適性にも優れている。
[0009] し力しながら、これらの上記印刷版材料は、親水性層、画像形成層自身の膜強度 が弱いため、耐刷性が不充分であるといった問題があった。これらの課題に対し、画 像形成層に反応性の熱可塑性榭脂を添加し改善がなされている(例えば、特許文献 1、 2を参照)。
[0010] 上記反応性の熱可塑性榭脂を添加すると、現像性が劣化したり、汚れや非画像部 のキズ汚れが発生しやすくなり、上記を両立した印刷版の開発が強く要望されている
[0011] さらにアブレーシヨンを生じることなく機上現像可能な印刷版材料として、重合性ィ匕 合物を内包するマイクロカプセルを含む画像記録層を有する平版印刷版原版が機 上現像可能であることも知られている(例えば、特許文献 3を参照)。
[0012] また支持体上に、赤外線吸収剤とラジカル重合開始剤と重合性化合物とを含有す る感光層を設けた機上現像可能な平版印刷版原版が知られて ヽる (例えば、特許文 献 4を参照)。
[0013] 上記印刷版の機上現像性、汚れ、耐刷性との両立のために、支持体と画像記録層 との間の特定の水溶性榭脂を使用した下塗り層を設けるが開示されている。しかし、 耐刷性にぉ 、てはパウダーを使用した印刷のような場合には十分でなぐまた重合 性ィ匕合物を使用するため、現像性や汚れ等が劣化することがわ力 た
特許文献 1:特開 2005 - 297233号公報
特許文献 2:特開 2005 - 305690号公報
特許文献 3:特開 2001— 277740号公報
特許文献 4:欄 2002— 365789号公報 発明の開示
発明が解決しょうとする課題
[0014] 本発明の目的は、機上現像性に優れ、かつ、耐刷性、非画像部のキズ汚れ防止性 に優れる CTP方式用の平版印刷版材料及び印刷方法を提供することにある。
課題を解決するための手段
[0015] 本発明の上記目的は、下記構成により達成される。
1.基材上に、光熱変換剤を含む親水性層と感熱画像形成層とを基材側からこの順 に有する平版印刷版材料において、該感熱画像形成層に、保護コロイドとして親水 性成分を有する疎水性成分のラテックスを含有することを特徴とする平版印刷版材 料。
2.前記疎水性成分が、熱融着性粒子または熱溶融性粒子であることを特徴とする 1 に記載の平版印刷版材料。
3.前記疎水性成分が熱溶融性粒子であり、該熱溶融性粒子が、軟化点が 40°C〜1 20°Cであり、かつ融点が 60°C〜150°Cであるワックスから形成されていることを特徴 とする 2に記載の平版印刷版材料。
4.前記ワックスが、ポリエチレンワックス、マイクロクリスタリンワックス、脂肪酸エステ ルワックスおよび脂肪酸ワックス力 選ばれる少なくとも 1つであることを特徴とする 3 に記載の平版印刷版材料。
5.前記疎水性成分が、疎水性ポリマーであり、該疎水性ポリマーが質量平均分子量 力 500〜500000であり、力つ数平均分子量力 200〜60000である練水' 14ポリマー であることを特徴とする 2に記載の平版印刷版材料。
6.前記疎水性ポリマーが、(メタ)アタリレート(共)重合体、(メタ)アクリル酸 (共)重合 体、ビニルエステル (共)重合体、ポリスチレンおよび合成ゴムカゝら選ばれる少なくとも 1つであることを特徴とする 5に記載の平版印刷版材料。
7.前記保護コロイドとしての親水性成分が、ポリビュルアルコールおよびその誘導体 、ポリアクリル酸およびその誘導体、ポリスチレンスルフォン酸およびその誘導体、お よびゼラチン力 選ばれる少なくとも 1つであることを特徴とする 1〜6のいずれか 1項 に記載の平版印刷版材料。 8.前記親水性成分と前記疎水性成分との含有量比 (疎水性成分 Z親水性成分 (質 量比))が 90ZlO〜50Z50であることを特徴とする 1〜7のいずれ力 1項に記載の平 版印刷版材料。
9.前記感熱画像形成層が赤外線吸収色素を含有することを特徴とする 1〜8のいず れカ 1項に記載の平版印刷版材料。
10. 1〜9のいずれか 1項に記載の平版印刷版材料をレーザー光により画像露光し た後、平版印刷機のプレートシリンダー上で湿し水または湿し水と印刷インキにより 現像を行い、該現像の後、印刷することを特徴とする印刷方法。
発明の効果
[0016] 本発明による CTP方式用の平版印刷版材料及び印刷方法は、機上現像性に優れ 、かつ、耐刷性、非画像部のキズ汚れ防止に優れた効果を有する。
発明を実施するための最良の形態
[0017] 以下本発明を更に詳細に説明する。
[0018] 本発明は、基材上に、光熱変換剤を含む親水性層と感熱画像形成層(以下、単に 、画像形成層ともいう)とを該基材側力もこの順に有する平版印刷版材料において、 該感熱画像形成層に保護コロイドとして親水性成分を有する疎水性成分のラテックス (以下、本発明に係わるラテックスという)を含有することを特徴とする。ここで、疎水性 成分は保護コロイドで保護されて ヽる。
[0019] 本発明にお ヽては、感熱画像形成層に上記本発明に係わるラテックスを含有する ことにより、インキ着肉性が良好で機上現像性に優れ、かつ耐刷性、耐傷性に優れる CTP方式用の平版印刷版材料が提供できる。
[0020] 本発明の効果の発生メカニズムは不明である力 本発明者は以下のような効果と推 定している。親水性成分を保護コロイドとして含む画像形成層においては、疎水性成 分と親水性成分を混合する場合と異なり、上記各々の成分を効率的に使用できると 考えている。
[0021] すなわち、親水性成分を表面のみで効率よく配置できるため、疎水性成分と親水 性成分を混合する場合より親水性成分を少ない量にでき、均一に配置できるため、 耐刷性ゃ耐傷性の向上が見込まれるためと推定して 、る。 [0022] (感熱画像形成層)
感熱画像形成層は加熱により、画像を形成し得る層であり、熱溶融性素材、熱融着 性素材等の熱可塑性素材ある 、は加熱により親水性から疎水性へと変化する素材( 疎水化前駆体)を含む。加熱の方法は活性光線の露光により発生する熱を利用する 方法が好ましぐ特にレーザー光の露光により発生する熱を利用するものがより好ま しい。
[0023] 本発明に係る感熱画像形成層は、機上現像可能な画像形成である場合に本発明 の効果が大きい。機上現像とは、平版印刷版材料を画像露光した後、特別な現像液 にて現像処理する工程を経ることなぐ印刷機上で画像露光された平版印刷版材料 の画像形成層に平版印刷の湿し水、または湿し水と印刷インキを供給し、非画像部 の画像形成層を除去することによって現像し、印刷用の平版印刷版を得ることを言う 。得られた印刷版を利用して、そのまま印刷工程へと移行可能である。
[0024] 本発明に係わるラテックスの疎水性成分としては、好ましくは加熱により画像を形成 し得るものであり、より好ましくは熱溶融性粒子または熱融着性粒子である。
[0025] 上記熱溶融性粒子は、熱可塑性素材の中でも特に溶融した際の粘度が低ぐ一般 的にワックスとして分類される素材 (ワックス素材)で形成された粒子である。物性とし ては、軟ィ匕点 40°C以上 120°C以下、融点 60°C以上 150°C以下であることが好ましく 、軟ィ匕点 40°C以上 100°C以下、融点 60°C以上 120°C以下であることが更に好まし い。上記融点、軟ィ匕点の範囲は、保存性、インク着肉感度の点で好ましい。
[0026] 使用可能なワックス素材としては、パラフィン、ポリオレフイン、ポリエチレンワックス、 マイクロクリスタリンワックス、脂肪酸エステルワックス、脂肪酸系ワックス等が挙げられ る。これらは分子量 800から 10000程度のものである。又、乳化しやすくするために これらのワックスを酸化し、水酸基、エステル基、カルボキシル基、アルデヒド基、ペル ォキシド基などの極性基を導入することもできる。これらの中でもポリエチレンワックス 、マイクロクリスタリンワックス、脂肪酸エステルワックス、脂肪酸ワックスが好ましい。こ れらのワックスは融点が比較的低ぐ溶融粘度も低いため、高感度の画像形成を行う ことができる。又、これらのワックスは潤滑性を有するため、印刷版材料の表面に剪断 力が加えられた際のダメージが低減し、擦りキズ等による印刷汚れ耐性が向上する。 [0027] 更には、軟ィ匕点を下げたり作業性を向上させるためにこれらのワックスにステアロア ミド、リノレンアミド、ラウリルアミド、ミリステルアミド、硬化牛脂肪酸アミド、パルミトアミド 、ォレイン酸アミド、米糖脂肪酸アミド、ヤシ脂肪酸アミド又はこれらの脂肪酸アミドの メチロールイ匕物、メチレンビスステラロアミド、エチレンビスステラロアミドなどを添カロす ることも可能である。又、クマロン一インデン榭脂、ロジン変性フエノール榭脂、テルべ ン変性フエノール榭脂、キシレン榭脂、ケトン樹脂、アクリル榭脂、アイオノマー、これ らの榭脂の共重合体も使用することができる。
[0028] 又、熱溶融性粒子は水に分散可能であることが好ましぐその平均粒径は機上現 像性、解像度などの面より、 0. 01〜: LO /z mであることが好ましぐより好ましくは 0. 1 ~3 μ mである。
[0029] 又、熱溶融性粒子は内部と表層との組成が連続的に変化していたり、もしくは異な る素材で被覆されて 、てもよ 、。
[0030] 本発明に用いられる熱融着性粒子として、熱可塑性疎水性高分子重合体 (以下、 疎水性高分子重合体という)粒子が挙げられる。疎水性高分子重合体の軟化温度に 特定の上限はないが、該疎水性高分子重合体の軟化温度はその分解温度より低い ことが好ましい。
[0031] 疎水性高分子重合体粒子を構成する疎水性高分子重合体の具体例としては、例 えば、ポリプロピレン、ポリブタジエン、ポリイソプレン、エチレン ブタジエン共重合 体等のジェン (共)重合体類、スチレン ブタジエン共重合体、メチルメタクリレートー ブタジエン共重合体、アクリロニトリル ブタジエン共重合体等の合成ゴム類、ポリメ チルメタタリレート、メチルメタクリレートー(2—ェチルへキシルアタリレート)共重合体 、メチルメタクリレートーメタクリル酸共重合体、メチルアタリレート一(N—メチロールァ クリルアミド)共重合体等の (メタ)アクリル酸エステル、または (メタ)アクリル酸の(単独 または共)重合体、ポリ酢酸ビニル、酢酸ビニループ口ピオン酸ビニル共重合体、酢 酸ビュル エチレン共重合体、酢酸ビ-ルー(2—ェチルへキシルアタリレート)共重 合体等のビュルエステルの(単独または共)重合体、アクリロニトリル、塩化ビニル、塩 化ビ-リデン、スチレン等の単独または共重合体が挙げられる。これらのうち、(メタ) アクリル酸エステル (共)重合体、(メタ)アクリル酸 (共)重合体、ビュルエステル (共) 重合体、ポリスチレン、合成ゴム類が好ましく用いられる。
[0032] 疎水性高分子重合体粒子は乳化重合法、懸濁重合法、溶液重合法、気相重合法 等、公知の何れの方法で重合された高分子重合体力 なるものでもよい。溶液重合 法又は気相重合法で重合された高分子重合体を微粒子化する方法としては、高分 子重合体の有機溶媒に溶解液を不活性ガス中に噴霧、乾燥して微粒子化する方法 、高分子重合体を水に非混和性の有機溶媒に溶解し、この溶液を水又は水性媒体 に分散、有機溶媒を留去して微粒子化する方法等が挙げられる。又、何れの方法に おいても、必要に応じ重合あるいは微粒子化の際に分散剤、安定剤として、ラウリル 硫酸ナトリウム、ドデシルベンゼンスルホン酸ナトリウム、ポリエチレングリコール等の 界面活性剤やポリビュルアルコール等の水溶性榭脂を用いてもょ 、。
[0033] 又、熱融着性粒子は水に分散可能であることが好ましぐその平均粒径は機上現 像性、解像度などの面力も 0. 01〜: LO mであることが好ましぐより好ましくは 0. 1 ~3 μ mである。
[0034] 又、熱融着性粒子は内部と表層との組成が連続的に変化していたり、もしくは異な る素材で被覆されていてもよい。特にコアシェル形態であることが好ましい。コアシェ ル形態によって、表面の反応性と粒子の硬さや Tg等の物性の制御がし易くなる。ま た、疎水性高分子重合体の重量平均分子量が 500〜500、 000、数平均分子量が 2 00〜600、 000であること力 子まし!/ヽ。
[0035] 一方、本発明に係わるラテックスの親水性成分としては、好ましくは水溶性素材で あり、例えば、天然高分子では、アラビアガム、水溶性大豆多糖類、繊維素誘導体( 例えば、カルボキシメチルセルローズ、カルボキシェチルセルローズ、メチルセル口 ーズ等)、その変性体、ホワイトデキストリン、プルラン、酵素分解エーテル化デキスト リン、ゼラチン等、合成高分子では、ポリビュルアルコールまたはポリビュルアルコー ル誘導体、ポリアクリル酸またはその誘導体、そのアルカリ金属塩またはアミン塩、ポ リアクリル酸共重合体、そのアルカリ金属塩またはアミン塩、ポリメタクリル酸、そのァ ルカリ金属塩またはアミン塩、ビュルアルコール Zアクリル酸共重合体及びそのアル カリ金属塩またはアミン塩、ポリアクリルアミド、その共重合体、ポリヒドロキシェチルァ タリレート、ポリビュルピロリドン、その共重合体、ポリビュルメチルエーテル、ビュルメ チルエーテル Z無水マレイン酸共重合体、ポリ 2—アクリルアミド 2—メチル 1 プロパンスルホン酸、そのアルカリ金属塩またはアミン塩、ポリ 2—アクリルアミド 2—メチルー 1 プロパンスルホン酸共重合体、そのアルカリ金属塩またはアミン塩 、ポリスチレンスルホン酸またはその誘導体等を挙げることができる。
[0036] 本発明に係わるラテックスの親水性成分としては、本発明の効果の点から、ポリビ- ルアルコールまたはポリビュルアルコール誘導体、ポリアクリル酸またはその誘導体、 ポリスチレンスルホン酸またはその誘導体が好ましい。
[0037] 本発明に係わるラテックスは、画像形成層に固形分で、 3〜80質量%が好ましぐ 特に好ましくは 5〜60質量%である。上記の範囲は、耐刷性、耐傷性の点で、好まし い。
[0038] 本発明に係わるラテックスの疎水性成分と親水性成分の含有量比 (疎水性成分 Z 親水性成分 (質量比))は、 90ZlO〜30Z70が好ましぐ更に好ましくは 90ZlO〜 50/50,特に好ましくは 90ZlO〜70Z30である。上記範囲は、耐刷性や現像性 の点で、好ましい。
[0039] 本発明に係わるラテックスは公知の方法で合成または分散等で作製することができ る。特に乳化重合で作製する方法が好ましい。乳化重合においては、公知の方法で 用いることができ、その目的に応じて、重合開始剤、濃度、重合温度、反応時間など を幅広ぐかつ、容易に変更できる。又、乳化重合反応は、モノマー、界面活性剤、 水溶性ポリマー、媒体を予め容器に全量入れておき、開始剤を投入して行ってもよ V、し、必要に応じて各成分の一部或いは全量を滴下しながら重合を行ってもよ!、。
[0040] 本発明に係わる感熱画像形成層は、その他の素材を含有することができる。
[0041] 本発明に係わる感熱画像形成層には、上記にあげた熱溶融性素材、熱融着性素 材、水溶性榭脂素材等を (但し、上記のようなラテックスの形成に関与しない形で)含 有することができる。
[0042] 本発明では、感熱画像形成層が赤外線吸収色素を含有することが好ましい態様で ある。
[0043] 本発明で使用できる赤外線吸収色素は、一般的な赤外線吸収色素、例えば、シァ ニン系色素、クロコニゥム系色素、ポリメチン系色素、ァズレニウム系色素、スクヮリウ ム系色素、チォピリリウム系色素、ナフトキノン系色素、アントラキノン系色素などの有 機化合物、フタロシアニン系、ナフタロシアニン系、ァゾ系、チォアミド系、ジチオール 系、インドア-リン系の有機金属錯体などが挙げられる。具体的には、特開昭 63— 1 39191号、特開昭 64— 33547号、特開平 1— 160683号、特開平 1— 280750号、 特開平 1— 293342号、特開平 2— 2074号、特開平 3— 26593号、特開平 3— 309 91号、特開平 3— 34891号、特開平 3— 36093号、特開平 3— 36094号、特開平 3 — 36095号、特開平 3— 42281号、特開平 3— 97589号、特開平 3— 103476号等 に記載の化合物が挙げられる。これらは一種又は二種以上を組み合わせて用いるこ とがでさる。
[0044] これらの赤外線吸収色素の添カ卩量としては、アブレーシヨン防止の面から画像形成 層全固形分に対して 0. 1質量%以上 10質量%未満が好ましぐ 0. 3質量%以上 7 質量%未満がより好ましぐさらに好ましくは 0. 5質量%以上 6質量%未満の範囲で ある。
[0045] 感熱画像形成層の付き量としては、 0. 01〜5gZm2が好ましぐさらに好ましくは 0
. l〜3g/m2であり、特に好ましくは 0. 2〜2g/m2である。
[0046] <親水性層 >
(光熱変換剤)
本発明にお ヽては、親水性層および画像形成層は下記の光熱変換素材を含有す ることで高感度を実現して 、る。特に親水性層には下記金属酸ィ匕物を光熱変換素材 として添加することが好ま 、。
[0047] 光熱変換剤としては、可視光城で黒色を呈して!、る素材、または素材自体が導電 性を有するか、半導体であるような素材を使用することができる。前者としては、黒色 酸化鉄 (Fe O )や、前述の二種以上の金属を含有する黒色複合金属酸化物が挙げ
3 4
られる。後者とては、例えば Sbをドープした SnO (ATO)、 Snを添カ卩した In O (ITO
2 2 3
;)、 TiO、 TiOを還元した TiO (酸化窒化チタン、一般的にはチタンブラック)などが
2 2
挙げられる。又、これらの金属酸化物で芯材(BaSO、 TiO、 9A1 Ο · 2Β 0、 Κ Ο·
4 2 2 3 2 2 nTiO等)を被覆したものも使用することができる。これらの 粒径は、 0. 以
2
下、好ましくは lOOnm以下、更に好ましくは 50nm以下である。 [0048] これらの光熱変換素材のうち、二種以上の金属を含有する黒色複合金属酸化物が より好ましい素材として挙げられる。
[0049] 具体的には、 Al、 Ti、 Cr、 Mn、 Fe、 Co、 Ni、 Cu、 Zn、 Sb、 Ba、から選ばれる二種 以上の金属からなる複合金属酸化物である。これらは、特開平 8— 27393号公報、 特開平 9— 25126号公報、特開平 9 237570号公報、特開平 9— 241529号公報 、特開平 10— 231441号公報等に開示されている方法により製造することができる。
[0050] 本発明に用いる複合金属酸ィ匕物としては、特に Cu— Cr— Mn系または Cu— Fe— Mn系の複合金属酸化物であることが好ましい。 Cu—Cr—Mn系の場合には、 6価ク ロムの溶出を低減させるために、特開平 8— 273393号公報に開示されている処理 を施すことが好ましい。これらの複合金属酸化物は添加量に対する着色、つまり、光 熱変換効率が良好である。
[0051] これらの複合金属酸ィ匕物は平均 1次粒子径が 1 μ m以下であることが好ましぐ平 均 1次粒子径が 0. 01-0. 5 mの範囲にあることがより好ましい。平均 1次粒子径 力 Sl m以下とすることで、添加量に対する光熱変換能がより良好となり、平均 1次粒 子径が 0. 01-0. 5 mの範囲とすることで添加量に対する光熱変換能がより良好と なる。ただし、添加量に対する光熱変換能は、粒子の分散度にも大きく影響を受け、 分散が良好であるほど良好となる。
[0052] したがって、これらの複合金属酸化物粒子は、層の塗布液に添加する前に、別途 公知の方法により分散して、分散液 (ペースト)としておくことが好ましい。分散には適 宜分散剤を使用することができる。分散剤の添加量は複合金属酸ィ匕物粒子に対して 0. 01〜5質量%が好ましぐ 0. 1〜2質量%がより好ましい。
[0053] これらの複合金属酸ィ匕物の添加量としては、親水性層全固形分に対して 20%以上 、 40%未満であり 25%以上、 39%未満がより好ましぐさらに好ましくは 25%以上 3 0%未満の範囲である。上記の範囲は、感度を向上し、アブレートによるアブレーショ ンカスを減少させる点において、好ましい。
[0054] また、本発明にお 、ては親水性層、画像形成層には下記赤外線吸収色素を光熱 変換素材として添加することができる。一般的な赤外線吸収色素であるシァニン系色 素、クロコニゥム系色素、ポリメチン系色素、ァズレニウム系色素、スクヮリウム系色素 、チォピリリウム系色素、ナフトキノン系色素、アントラキノン系色素などの有機化合物 、フタロシアニン系、ナフタロシアニン系、ァゾ系、チォアミド系、ジチォ一ノレ系、インド ァ-リン系の有機金属錯体などが挙げられる。
[0055] 具体的には、特開昭 63— 139191号、特開昭 64— 33547号、特開平 1— 16068 3号、特開平 1 280750号、特開平 1 293342号、特開平 2— 2074号、特開平 3 — 26593号、特開平 3— 30991号、特開平 3— 34891号、特開平 3— 36093号、特 開平 3— 36094号、特開平 3— 36095号、特開平 3— 42281号、特開平 3— 97589 号、特開平 3— 103476号等に記載の化合物が挙げられる。これらは一種又は二種 以上を組み合わせて用いることができる。
[0056] これらの赤外線吸収色素の親水性層中における含有量としては、親水性層全固形 分に対して 0. 1%以上 10%未満であり 0. 3%以上 7%未満がより好ましぐさらに好 ましくは 0. 5%以上 6%未満の範囲である。添加量がこれを逸脱すると、上記同様に 添加量が 0. 1%未満であると、十分な感度がでず、また 10%以上であると、アブレ一 トによるアブレーシヨンカスが発生する。
[0057] 本発明に係る親水性層には上記光熱変換剤以外に下記のような親水性マトリックス 構造を形成するための素材を含むことが好ましい。
[0058] 親水性マトリックスを形成する素材としては上記以外の金属酸ィ匕物が好ましい。該 金属酸化物は、粒子(以下、金属酸ィ匕物粒子という)として含まれることが好ましい。
[0059] この金属酸化物粒子としては、例えばコロイダルシリカ、アルミナゾル、チタニアゾル 、その他の金属酸ィ匕物のゾルが挙げられ、金属酸ィ匕物粒子の形態としては、球状、 羽毛状その他のいずれの形態でもよぐ平均粒径としては 3〜: LOOnmであることが好 ましぐ平均粒径が異なる数種の金属酸ィ匕物粒子を併用することもできる。また、粒子 表面に表面処理がなされて 、てもよ 、。
[0060] 上記金属酸ィ匕物粒子はその造膜性を利用して結合剤としての使用が可能である。
有機の結合剤を用いるよりも親水性の低下が少なぐ親水性層への使用に適してい る。
[0061] 該金属酸ィ匕物粒子の親水性層中における含有量は、好ましくは 20〜80質量%、 より好ましくは 30〜70質量%である。 [0062] 本発明では、上記の中でも特にコロイダルシリカが好ましく使用できる。コロイダル シリカは比較的低温の乾燥条件であっても造膜性が高いという利点が有り、良好な 強度を得ることが出来る。
[0063] コロイダルシリカとしては、ネックレス状コロイダルシリカ、平均粒径 20nm以下のコロ ィダルシリカが好ましぐアルカリ性コロイダルシリカが好まし 、。
[0064] ネックレス状コロイダルシリカとは 1次粒子径カ mのオーダーである球形シリカの水 分散径の総称である。ネックレス状コロイダルシリカとは 1次粒子径が 10〜50nmの 球形コロイダルシリカが 50〜400nmの長さに結合した「パールネックレス状」のコロイ ダルシリカを意味する。
[0065] パールネックレス状 (すなわち真珠ネックレス状)とは、コロイダルシリカのシリカ粒子 が連なって結合した状態のイメージが真珠ネックレスのような形状をしていることを意 味する。ネックレス状コロイダルシリカを構成するシリカ粒子同士の結合は、シリカ粒 子表面に存在する SiOH基が脱水結合した Si— O— Si と推定される。ネック レス状のコロイダルシリカとしては具体的には日産化学工業 (株)性の「スノーテックス PS」シリーズなどが挙げられる。
[0066] また、コロイダルシリカは粒子系が小さいほど結合力が強くなることが知られており、 本発明には平均粒径が 20nm以下であるコロイダルシリカを用いることが好ましく 3〜
15nmであることが更に好ましい。
[0067] 又、前述のようにコロイダルシリカの中ではアルカリ性の物が地汚れ発生を抑制す る効果が高いため、アルカリ性のコロイダルシリカを使用することが特に好ましい。
[0068] 平均粒径がこの範囲にあるアルカリ性のコロイダルシリカ日産化学性の「スノーテツ タス 20 (平均粒子径 10〜20nm)」、 「スノーテックス— 30 (平均粒子系径 10〜20nm
)」、 「スノーテックスー40 (平均粒子径 10〜20nm)」、 「スノーテックス N (平均粒子 径 10〜20nm)」、 「スノーテックス一 S (平均粒子径 8〜: L lnm)」、 「スノーテックス一
XS (平均粒子径 4〜6nm)」が挙げられる。
[0069] 平均粒径が 20nm以下であるコロイダルシリカは前述のネックレス状コロイダルシリ 力と併用することで、層の多孔質性維持しながら、強度をさらに向上させることが可能 となり、特に好ましい。 [0070] 平均粒径が 20nm以下であるコロイダルシリカ Zネックレス状コロイダルシリカの比 率 ίま 95/5〜5/95力 S好ましく、 70/30〜20/80力 Sより好ましく、 60/40〜30/ 70が更に好ましい。
[0071] 本発明に係る親水性層の親水性マトリックスの多孔質ィ匕材として 粒径が 1 μ m 未満の多孔質金属酸化物粒子を含有することが出来る。多孔質金属酸化物粒子とし ては、後述する多孔質シリカまたは多孔質アルミノシリケート粒子もしくはゼオライト粒 子を好ましく用いることが出来る。
[0072] 多孔質シリカ粒子は一般に湿式法または乾式法により製造される。湿式法ではケィ 酸塩水溶液を中和して得られるゲルを乾燥、粉砕するか、中和して析出した沈降物 を粉砕することで得ることが出来る。乾式法では四塩ィ匕ケィ素を水素と酸素とともに燃 焼し、シリカを析出することで得られる。
[0073] これらの粒子は製造条件の調整により多孔性や粒径を制御することが可能である。
多孔質シリカ粒子としては、湿式法のゲル力 得られるものがとくに好ましい。多孔質 アルミノシリケート粒子は例えば特開平 10— 71764号に記載されている方法により 製造される。
[0074] 即ちアルミニウムアルコキシドとケィ素アルコキシドを主成分として加水分解法により 合成された非晶質な複合体粒子である。粒子中のアルミナとシリカの比率は 1 :4〜4 : 1の範囲で合成することが可能である。又、製造時にその他の金属アルコキシドを添 加して 3成分系以上の複合体粒子として製造したものも本発明に使用できる。これら の複合体粒子も製造条件の調整により多孔性や粒径を制御することが可能である。
[0075] 粒子の多孔性としては細孔容積で 0. 5mlZg以上であることが好ましぐ 0. 8ml/ g以上であることがより好ましぐ 1. 0〜2. 5mlZg以下であることが更に好ましい。
[0076] 本発明の多孔質ィ匕材としては、ゼォライトも使用できる。ゼォライトは結晶性のアル ミノケィ酸塩であり、細孔径が 0. 3〜: Lnmの規則正しい三次元網目構造の空隙を有 する多孔質体である。
[0077] 本発明に係る親水性層は、鉱物粒子を含有することができる。鉱物粒子としては、 カオリナイト、ノ、ロイサイト、タルク、スメクタイト(モンモリロナイト、パイデライト、へクトラ イト、サボナイト等)、バーミキユライト、マイ力(雲母)、クロライトといった粘土鉱物及び 、ノ、イド口タルサイト、層状ポリケィ酸塩 (カネマイト、マカタイト、アイァライト、マガディ アイト、ケニヤアイト等)等の層状鉱物粒子が挙げられる。
[0078] 中でも、単位層(ユニットレイヤー)の電荷密度が高いほど極性が高ぐ親水性も高 いと考えられる。好ましい電荷密度としては 0. 25以上、更に好ましくは 0. 6以上であ る。このような電荷密度を有する層状鉱物としては、スメクタイト(電荷密度 0. 25〜0. 6 ;陰電荷)、バーミキユライト (電荷密度 0. 6〜0. 9 ;陰電荷)等が挙げられる。特に、 合成フッ素雲母は粒径等安定した品質のものを入手することができ好ましい。
[0079] 又、合成フッ素雲母の中でも、膨潤性であるものが好ましぐ自由膨潤であるものが 更に好ましい。
[0080] 層状鉱物粒子のサイズとしては、層中に含有されて!ヽる状態で (膨潤工程、分散剥 離工程を経た場合も含めて)、平均粒径が 1 m未満であり、平均アスペクト比が 50 以上であることが好ましい。粒子サイズが上記範囲にある場合、薄層状粒子の特徴 である平面方向の連続性及び柔軟性が塗膜に付与され、クラックが入りにくく乾燥状 態で強靭な塗膜とすることができる。また、粒子物を多く含有する塗布液においては 、層状粘土鉱物の増粘効果によって、粒子物の沈降を抑制することができる。粒子径 が上記範囲より大きくなると、塗膜に不均一性が生じて、局所的に強度が弱くなる場 合がある。
[0081] 層状鉱物粒子の含有量としては、層全体の 0. 1〜: LO質量%であることが好ましぐ 0. 1〜3質量%であることがより好ましい。特に膨潤性合成フッ素雲母ゃスメクタイト は少量の添加でも効果が見られるため好ましい。層状鉱物粒子は、塗布液に粉体で 添加してもよ 、が、簡便な調液方法 (メディア分散等の分散工程を必要としな 、)でも 良好な分散度を得るために、層状鉱物粒子を単独で水に膨潤させたゲルを作成した 後、塗布液に添加することが好ましい。
[0082] (その他の素材)
本発明に係る親水性層にはその他の添加素材として、ケィ酸塩水溶液も使用する ことができる。ケィ酸 Na、ケィ酸 K、ケィ酸 Liといったアルカリ金属ケィ酸塩が好ましく 、その SiO /M O比率はケィ酸塩を添加した際の塗布液全体の pHが 13を超えな
2 2
V、範囲となるように選択することが無機粒子の溶解を防止する上で好ま 、。 [0083] また、金属アルコキシドを用いた、 、わゆるゾルーゲル法による無機ポリマーもしく は有機 無機ハイブリッドポリマーも使用することができる。ゾルーゲル法による無機 ポリマーもしくは有機 無機ハイブリッドポリマーの形成については、例えば「ゾルー ゲル法の応用」(作花済夫著 Zァグネ承風社発行)に記載されている力、又は本書に 弓 I用されて ヽる文献に記載されて ヽる公知の方法を使用することができる。
[0084] また、親水性層には水溶性榭脂もしくは水分散性榭脂を含有してもよい。このような 榭脂としては、多糖類、ポリエチレンオキサイド、ポリプロピレンオキサイド、ポリビュル アルコール、ポリエチレングリコール(PEG)、ポリビュルエーテル、スチレン ブタジ ェン共重合体、メチルメタクリレートーブタジエン共重合体の共役ジェン系重合体ラ テックス、アクリル系重合体ラテックス、ビュル系重合体ラテックス、ポリアクリルアミド、 ポリビニルピロリドン等の樹脂が挙げられる。
[0085] 多糖類としては、デンプン類、セルロース類、ポリウロン酸、プルランなどが使用可 能である力 特にメチルセルロース塩、カルボキシメチルセルロース塩、ヒドロキシェ チルセルロース塩等のセルロース誘導体が好ましぐカルボキシメチルセルロースの ナトリウム塩やアンモニゥム塩がより好まし 、。
[0086] また、本発明の親水性層の塗布液には、塗布性改善等の目的で水溶性の界面活 性剤を含有させることができる。 S係、 F系、アセチレングリコール系等の界面活性剤 を使用することができるが、特に Si元素を含む界面活性剤を使用することが印刷汚 れを生じる懸念がなぐ好ましい。該界面活性剤の含有量は親水性層全体 (塗布液と しては固形分)の 0. 01〜3質量%が好ましぐ 0. 03〜1質量%が更に好ましい。
[0087] また、本発明の親水性層はリン酸塩を含むことができる。本発明では親水性層の塗 布液がアルカリ性であることが好ましいため、リン酸塩としてはリン酸三ナトリウムゃリ ン酸水素ニナトリウムとして添加することが好ましい。リン酸塩を添加することで、印刷 時の網の目開きを改善する効果が得られる。リン酸塩の添加量としては、水和物を除 いた有効量として、 0. 1〜5質量%が好ましぐ 0. 5〜2質量%が更に好ましい。
[0088] 親水性層の乾燥付き量としては、 0. l〜20gZm2が好ましぐ 0. 5〜15gZm2がよ り好ましくさらに、 l〜10gZm2が特に好ましい。
[0089] (球状シリカ粒子) 本発明では、親水性層に平均粒径が 4. 0〜8. O /z mであり、かつ ^g^CV値が 1 〜 10%である球状シリカ粒子を含有することが好ま 、。上記範囲の平均粒径と粒 径の CV値を兼ね備える球状シリカ粒子を含有することにより、親水性層及び画像形 成層の表面凹凸を制御でき、パウダーを使用した耐刷性や紙粉が多い紙等を使用し た場合の異物に対する画像形成部の摩耗防止、さらには非画像部の耐傷性や可視 画性を向上させる効果がある。
[0090] 本発明に係わる CV値とは、変動計係数と呼ばれる値で、相対的な散らばりを表す 指標である。
[0091] この値が小さいほど散らばりが少ないことを意味する。標準偏差はスケールの影響 を受けるため相互に比較ができないが、変動係数は標準偏差力 スケールの影響を 排除しているため、単位が異なる値でも散らばりの度合いが相互に比較できる。
[0092] 多量の測定値は、通常正規分布をとるので、平均値と標準偏差から変動係数が算 出される。
[0093] 本発明において、粒径の変動係数 CV(%)は、次式によって表される。
[0094] 粒径の変動係数 CV (%) = (粒径の標準偏差 Z粒子の平均粒径) X 100
上記粒子径分布 (CV)、平均粒径は、粒径の分力ゝつている標準粒子を用いてコー ルターカウンターを校正し、校正されたコールターカウンターを用いて求めることがで きる。
[0095] 球状シリカ粒子の粒径の CV値は、印刷適正、耐傷性の面から 1〜10%であること が好ましぐ 1〜5%が特に好ましい。
[0096] 球状シリカ粒子の平均粒径は耐傷性、耐刷性、の面から、 4. 0〜8. 0 μ mが好まし い。
[0097] 本発明にお 、て、親水性層中に含まれる上記シリカ粒子は、親水性層の全固形分 に対して膜強度、耐傷性、印刷適正の面から 3〜40質量%が好ましぐ特に 5〜25 質量%が好ましい。
[0098] 本発明の形態として、親水性層を 2層(上層、下層)に分けて設置しても良い。親水 性層を 2層に分けることで一部性能が機能分離できるので、好ま 、。
[0099] 上下層とも用いる素材は、同様の素材を用いることができる力 下層では多孔質性 であることの利点が少ないため、より無孔質である方が塗膜強度が向上するといつた 理由から、親水性マトリクスの多孔質ィ匕材の含有量は親水性層よりも少ないことが好 ましい。また、それに伴って、上記球状シリカ粒子や下記の平均粒径が 1〜 12 /z mの 粒子が保持できるため、下層により多くの粒子を添加することが有効である。一方、上 層は多孔質性が求められるため、下層とは反対の方法を採る方が好まし 、。
[0100] (平均粒径が 1〜 12 mの球状粒子)
本発明では上記以外の粒子として、粒径力^〜 12 mの無機粒子もしくは無機素 材で被覆された粒子を含有することが好ましい。特に平均粒径は 2〜: LO /z mが好ま しぐ 3〜8 μ mがさらに好ましい。
[0101] その中でも 3〜4 μ mの球状粒子は、上記球状シリカ粒子と併用することで、耐刷性 や非画像部の耐傷性が向上する。
[0102] 粒径が 1〜12 μ mの粒子の添カ卩量としては、親水性層全体の 0. 5〜50質量%で あることが好ましぐ 3〜30質量%であることがより好ましい。粒子の組成、構造は、多 孔質、無孔質、有機榭脂粒子、無機微粒子を問わず用いても良ぐ無機粒子として はシリカ、アルミナ、ジルコ -ァ、チタ-ァ、カーボンブラック、グラフアイト、 TiO、 Ba
2
SO、 ZnSゝ MgCO、 CaCO、 ZnO、 CaO、 WS、 MoS、 MgO、 SnO、 Al O、 a
4 3 3 2 2 2 2 3
— Fe O、 a— FeOOH、 SiC、 CeO、 BN、 SiN、 MoC、 BC、 WC、チタンカーバイ
2 3 2
ド、コランダム、人造ダイアモンド、ザクロ石、ガーネット、ケィ石、トリボリ、ケイソゥ土、 ドロマイト等、有機榭脂粒子としてはポリエチレン微粒子、フッ素榭脂粒子、グァナミ ン榭脂粒子、アクリル榭脂粒子、シリコン榭脂粒子、メラミン榭脂粒子等を挙げること が出来る。
[0103] また無機素材で被覆された粒子としてはたとえば PMMAやポリスチレン、メラミンと いった有機粒子の芯剤を芯剤粒子よりも粒径の小さな無機粒子で被覆した粒子が挙 げられる。無機粒子の粒径としては芯材粒子の 1Z10〜1Z100程度であることが好 ましい。また、無機粒子としては、同様にシリカ、アルミナ、チタニア、ジルコニァなど 公知の金属酸ィ匕物粒子を用いることができる。被覆方法としては、種々の公知の方 法を用いることができるが、ハイブリダィザのような空気中で芯材粒子と被覆材粒子と を高速に衝突させて芯材粒子表面に被覆材粒子を食 、込ませて固定、被覆する乾 式の被覆方法を好ましく用いることができる。
[0104] 本発明にお 、ては、本発明の範囲を満たす粒王であれば特に制限無く効果が発 揮できるが、特に塗布液中での沈降を抑制するためには多孔質シリカ粒子、多孔質 アルミノシリケート粒子等の多孔質無機粒子、多孔質無機被覆粒子を用いるのがよ い。
[0105] (保護層)
感熱画像形成層の上に保護層を設けることもできる。
[0106] 保護層に用いる素材としては、上述の水溶性榭脂などを好ましく用いることができる
[0107] また、特開 2002— 19318号ゃ特開 2002— 86948号に記載されている親水性ォ 一バーコート層も好ましく用いることができる。
[0108] 保護層の付き量としては、 0. 01〜: LOg/m2であり、好ましくは 0. l〜3g/m2であ り、さらに好ましくは 0. 2〜2gZm2である。
[0109] (基材)
基材としては、印刷版の基板として使用される公知の材料を使用することができる。 例えば、金属板、プラスチックフィルム、ポリオレフイン等で処理された紙、上記材料 を適宜貼り合わせた複合基材等が挙げられる。基材の厚さとしては、印刷機に取り付 け可能であれば特に制限されるものではないが、 50-500 μ mのものが一般的に取 り扱いやすい。
[0110] 金属板としては、鉄、ステンレス、アルミニウム等が挙げられる力 比重と剛性との関 係から特にアルミニウムが好ましい。アルミニウム板は、通常その表面に存在する圧 延-卷取り時に使用されたオイルを除去するためにアルカリ、酸、溶剤等で脱脂した 後に使用される。脱脂処理としては特にアルカリ水溶液による脱脂が好ましい。
[0111] また、塗布層との接着性を向上させるために、塗布面に易接着処理や下塗り層塗 布を行うことが好ましい。例えば、ケィ酸塩ゃシランカップリング剤等のカップリング剤 を含有する液に浸漬するか、液を塗布した後、十分な乾燥を行う方法が挙げられる。 陽極酸化処理も易接着処理の一種と考えられ、使用することができる。また、陽極酸 化処理と上記浸漬または塗布処理を組み合わせて使用することもできる。また、公知 の方法で粗面化されたアルミニウム板を使用することもできる。
[0112] プラスチックフィルムとしては、例えば、ポリエチレンテレフタレート(PET)、ポリェチ レンナフタレート(PEN)、ポリイミド、ポリアミド、ポリカーボネート、ポリスルホン、ポリフ ェ-レンオキサイド、セルロースエステル類等を挙げることができる。
[0113] これらの中でもハンドリング適性等から、好ましいのはポリエステルの PETならびに PENであり、特に好ましくは PETである。
[0114] PETはテレフタル酸とエチレングリコール、 PENはナフタレンジカルボン酸とェチレ ングリコールから構成されるが、これらを触媒の存在下で適当な反応条件下で結合さ せることによって重合できる。このとき、適当な 1種、または 2種以上の第 3成分を混合 しても良い。
[0115] 適当な第 3成分としては、 2価のエステル形成官能記を有する化合物であればよく 、例えば、ジカルボン酸の例として次のようなものが挙げられる。
[0116] 例えばイソフタル酸、フタル酸、 2、 6—ナフタレンジカルボン酸、 2、 7—ナフタレン ジカルボン酸、ジフエ-ルスルホンジカルボン酸、ジフエ-ルエーテルジカルボン酸、 ジフエ-ルエタンジカルボン酸、シクロへキサンジカルボン酸、ジフエ-ルジカルボン 酸、ジフエ-ルチオエーテルジカルボン酸、ジフエ-ルケトンジカルボン酸、フエニル インダンジカルボン酸などを挙げることができる。
[0117] また、グリコールの例としては、エチレングリコール、プロピレングリコール、テトラメチ レングリコール、シクロへキサンジメタノール、 2、 2—ビス(4—ヒドロキシフエ-ル)プロ パン、 2、 2—ビス(4—ヒドロキシエトキシフエ-ル)プロパン、ビス(4—ヒドロキシフエ -ル)スルホン、ビスフエノールフルオレンジヒドロキシェチルエーテル、ジエチレング リコール、ネオペンチルグリコール、ハイドロキノン、シクロへキサンジオールなどを挙 げることができる。
[0118] プラスチックフィルムに使用される榭脂の固有粘度は 0. 5〜0. 8であることが好まし い。
[0119] また固有粘度の異なるものを混合して使用しても良い。
[0120] 本発明の PETの合成方法は、特に限定があるわけではなぐ従来公知の PETの製 造方法に従って製造できる。 [0121] 例えば、ジカルボン酸成分をジオール成分と直接エステルイ匕反応させる直接エス テル化法、初めにジカルボン酸成分としてジアルキルエステルを用いて、これとジォ ール成分とでエステル交換反応させ、これを減圧下で加熱して余剰のジオール成分 を除去することにより重合させるエステル交換法を用いることができる。
[0122] この際、必要に応じてエステル交換触媒あるいは重合反応触媒を用い、あるいは 耐熱安定剤を添加することができる。熱安定剤としては、例えば、リン酸、亜リン酸、 及びそれらのエステルイ匕合物が挙げられる。また、合成時の各過程で着色防止剤、 結晶核剤、すべり剤、安定剤、ブロッキング防止剤、紫外線吸収剤、粘度調節剤、透 明化剤、帯電防止剤、 pH調整剤、染料、顔料などを添加させてもよい。
[0123] (微粒子)
また、上記の基材中にはハンドリング性向上のため 0. 01 μ m〜10 μ mの微粒子を lppm〜: LOOOppm添カ卩することが好ましい。
[0124] ここで、微粒子としては、有機物及び無機物の!/、ずれでもよ ヽ。例えば、無機物とし ては、スイス特許第 330158号明細書等に記載のシリカ、仏国特許第 1296995号 明細書等に記載のガラス粉、英国特許第 1、 173、 181号明細書等に記載のアル力 リ土類金属又はカドミウム、亜鉛等の炭酸塩、等を用いることができる。
[0125] 有機物としては、米国特許第 2、 322、 037号明細書等に記載の澱粉、ベルギー特 許第 625、 451号明細書や英国特許第 981、 198号明細書等に記載された澱粉誘 導体、特公昭 44— 3643号公報等に記載のポリビュルアルコール、スイス特許第 33 0、 158号公報等に記載のポリスチレン或いはポリメタアタリレート、米国特許第 3、 07 9、 257号明細書等に記載のポリアクリロニトリル、米国特許第 3、 022、 169号明細 書等に記載されたポリカーボネートの様な有機微粒子を用いることができる。微粒子 の形状は、定形、不定形どちらでもよい。
[0126] 本発明に係る基材は、本発明の印刷版材料に上記のハンドリング適性を付与する 観点から、弾性率が 300kg/mm2〜800kg/mm2であることが好ましぐより好まし くは 400kgZmm2〜600kgZmm2である。
[0127] ここで、弾性率とは、引張試験機を用い、 JIS C2318に準拠したサンプルの標線 が示すひずみと、それに対応する応力が直線的な関係を示す領域において、ひず み量に対する応力の傾きを求めたものである。これがヤング率と呼ばれる値であり、 本発明では、前記ヤング率を弾性率と定義する。
[0128] さらに本発明に係る基材は、本発明の平版印刷版材料が本発明に記載の効果を 奏するためには、前記印刷版材料を印刷機へ設置する際のハンドリング適性向上の 観点から、平均膜厚が 100 μ m〜500 μ mの範囲であり、且つ、厚み分布が 5%以 下であることが好ましい。特に好ましくは 120 μ m〜300 μ mの範囲であり、厚み分布 力 2%以下である。本発明に係る支持体の厚み分布とは、厚みの最大値と最小値の 差を平均厚みで割り百分率で表した値である。ここで、支持体の厚み分布の測定方 法は、一辺が 60cmの正方形に切り出した支持体を縦、横 10cm間隔で碁盤目状に 線を引き、この 36点の厚みを測定し平均値と最大値、最小値を求める。
[0129] 本発明に係る基材としては、プラスチックフィルム支持体が好ましく用いられるが、 プラスチックフィルムと金属板 (例えば、鉄、ステンレス、アルミニウムなど)やポリェチ レンで被覆した紙などの材料 (複合基材とも 、う)を適宜貼り合わせた複合支持体を 用いることもできる。これらの複合基材は、塗布層を形成する前に貼り合わせても良く 、また、塗布層を形成した後に貼り合わせても良ぐ印刷機に取り付ける直前に貼り 合わせても
本発明にお ヽては、基材と親水性層間に下引層を設置することが好ま 、。
[0130] 下引層の構成としては、 2層構成が好ましぐ基材側(下引下層)には基材に接着 性を考慮した素材を使用し、親水性層側(下引上層)には下引下層と親水性層との 接着性を考慮した素材を使用することが好まし 、。
[0131] 下引下層で使用する素材としてはビニル系ポリマー、ポリエステル、スチレンージォ レフイン等があげられ、特にビュル系ポリマー、ポリエステルが好ましぐこれらの組み 合わせまたは変性されて!ヽることが好ま 、。
[0132] 一方、下引上層で使用できる素材としては、親水性層との接着性を向上させる意味 で、水溶性ポリマーを含有することが好ましぐ特にゼラチン、ポリビニルアルコール、 変性ポリビニルアルコール、水溶性アクリル榭脂ゃ水溶性ポリエステル榭脂が好まし い。これらは下引下層との接着性、親水性層との接着性を考慮する点で、下引下層 で使用される素材と上記水溶性ポリマーを混合することが好ましい。 [0133] 本発明にお 、ては、 PETを基材とし、ポリビニルアルコール、アクリル榭脂またはポ リエステル榭脂を含有する下引き層を有する態様、またアルミニウムを基材とし、カル ボキシメチルセルロース、ポリビュルアルコール、アクリル榭脂またはポリエステル榭 脂を含有する下引き層を有する態様が好ましい態様である。
[0134] 本発明では上記下引き上層に上記素材を含有することで、基材と親水性層間の接 着性を向上させ、異物耐性や機上現像性をさらに向上させることができる。
[0135] 下引層には、以下のような無機粒子を用いることができる。例えば、シリカ、アルミナ 、硫酸バリウム、炭酸カルシウム、チタ-ァ、酸化スズ、酸化インジウム、タルクのような 無機物が挙げられる。これらの微粒子の形状は特に制限がなぐ針状でも、球形でも 、板状でも破砕状でも用いることができる。好ましい大きさは 0. 1〜15 m、より好ま しくは 0. 2〜: LO /z m、さらに好ましくは 0. 3〜7 /ζ πιである。粒子の添加量は片面 lm 2あたり好ましくは 0. l〜50mg、より好ましくは 0. 2〜30mg、さらにより好ましくは 0. 3〜20mgである。
[0136] 下引層は、透明性や塗布ムラ(干渉ムラ)の点から、 0. 05〜0. 50 mが好ましく、 より好ましくは 0. 10〜0. 30 /z mである。
[0137] 本発明において下引層は、支持体の製膜中、特に結晶配向化が完了する前のポリ エステルフィルムの片面又は両面に塗布液を塗布する、支持体の製膜後に、オンラ インまたはオフラインにポリエステルフィルムの片面又は両面に塗布液を塗布するこ とが好ましい。
[0138] 下引層の塗布方法としては、公知の任意の塗工法が適用できる。例えばキスコート 法、リバースコート法、ダイコート法、リバースキスコート法、オフセットグラビアコート法 、マイヤーバーコート法、ロールブラッシュ法、スプレーコート法、エアーナイフコート 法、含浸法、カーテンコート法などを単独または組み合わせて適用するとよい。
[0139] 下引層に帯電防止層を設置することが好ましい。帯電防止層は、帯電防止剤とバ インダ一力 構成されて ヽる。
[0140] 帯電防止剤としては、金属酸ィ匕物を用いることが好ましい。金属酸化物の例として は、 ZnO、 TiO、 SnO、 Al O、 In O、 SiO、 MgO、 BaO、 MoO、 V O等、あるい
2 2 2 3 2 3 2 2 2 5 はこれらの複合酸ィ匕物が好ましぐ特にバインダーとの混和性、導電性、透明性等の 点から、 SnO (酸化スズ)が好ましい。異元素を含む例としては SnO〖こ対しては Sb、
2 2
Nb、ハロゲン元素等を添加することができる。これらの異元素の添加量は 0. 01〜2 5mol%の範囲が好ましいが、 0. l〜15mol%の範囲が特に好ましい。
[0141] (画像露光)
本発明にお 、ては、平版印刷版材料をレーザー光を用いて画像露光するのが好 ましい。その中でも、特にサーマルレーザーによる画像露光が好ましい。
[0142] 例えば赤外及び Zまたは近赤外領域で発光する、即ち 700〜1500nmの波長範 囲で発光するレーザーを使用した走査露光が好まし 、。レーザーとしてはガスレーザ 一を用いてもよいが、近赤外領域で発光する半導体レーザーを使用することが特に 好ましい。
[0143] 本発明の走査露光に好適な装置としては、該半導体レーザーを用いてコンビユー タカゝらの画像信号に応じて印刷版材料表面に画像を形成可能な装置であればどの ような方式の装置であってもよ 、。
[0144] 一般的には、(1)平板状保持機構に保持された印刷版材料に一本もしくは複数本 のレーザービームを用いて 2次元的な走査を行って印刷版材料全面を露光する方式
、(2)固定された円筒状の保持機構の内側に、円筒面に沿って保持された印刷版材 料に、円筒内部から一本もしくは複数本のレーザービームを用いて円筒の周方向( 主走査方向)に走査しつつ、周方向に直角な方向(副走査方向)に移動させて印刷 版材料全面を露光する方式、 (3)回転体としての軸を中心に回転する円筒状ドラム 表面に保持された印刷版材料に、円筒外部カゝら一本もしくは複数本のレーザービー ムを用いてドラムの回転によって周方向(主走査方向)に走査しつつ、周方向に直角 な方向(副走査方向)に移動させて印刷版材料全面を露光する方式が挙げられる。
[0145] 本発明に関しては特に(3)の走査露光方式が好ましぐ特に印刷装置上で露光を 行う装置にぉ 、ては、(3)の露光方式が用いられる。
[0146] (印刷)
本発明の印刷方法は、湿し水及び印刷インクを用いる一般的な平版印刷方法が適 用できる。
[0147] 本発明の印刷方法としては、特に湿し水としてイソプロノールを含有しな ヽ(含有し ないとは水に対して 0. 5質量%以下の含有率である)湿し水を使用する場合が好ま しい態様である。
[0148] 上記のようにして画像形成がなされた印刷版材料は、現像処理工程を経ることなく 印刷を行う。
[0149] 即ち、本発明の印刷版材料をレーザー光により画像露光をした後、平版印刷機上 で画像露光された印刷版材料に湿し水または湿し水と印刷インキを供給し、非画像 部の画像形成層を除去することにより現像を行 ヽ、印刷する。
[0150] 画像形成後の印刷版材料をそのまま印刷機の版胴に取り付けるか、あるいは印刷 版材料を印刷機の版胴に取り付けた後に画像形成を行い、版胴を回転させながら水 付けローラーまたは水付けローラー及びインクローラーを該画像露光された印刷版 材料の画像形成層に接触させることで非画像部の画像形成層を除去する。
[0151] 上記の非画像部の除去、いわゆる機上現像方法を下記に示す。
[0152] 印刷機上での画像形成層の非画像部 (未露光部)の除去 (機上現像)は、版胴を回 転させながら水付けローラーまたは水付けローラー及びインクローラーを画像露光さ れた印刷版材料の画像形成層に接触させて行う。
[0153] 上記機上現像は、例えば、下記に挙げるようなシークェンス、もしくは、それ以外の 種々のシークェンスによって行うことができる。また、その際には、印刷時に必要な湿 し水水量に対して、水量を増加させたり、減少させたりといった水量調整を行ってもよ ぐ水量調整を多段階に分けて、もしくは、無段階に変化させて行ってもよい。
(1)印刷開始のシークェンスとして、水付けローラーを接触させて版胴を 1回転〜数 十回転させ、次いで、インクローラーを接触させて版胴を 1回転〜数十回転させ、次 いで、印刷を開始する。
(2)印刷開始のシークェンスとして、インクローラーを接触させて版胴を 1回転〜数十 回転させ、次いで、水付けローラーを接触させて版胴を 1回転〜数十回転させ、次い で、印刷を開始する。
(3)印刷開始のシークェンスとして、水付けローラーとインクローラーとを実質的に同 時に接触させて版胴を 1回転〜数十回転させ、次いで、印刷を開始する。
実施例 [0154] 以下、実施例を挙げて本発明を具体的に説明するが、本発明はこれらに限定され るものではない。尚、特に断りない限り、実施例における「部」は、「質量部」、%は、質 量%を表す。
[0155] (基材 1の作製)
(PET樹脂)
テレフタル酸ジメチル 100質量部、エチレングリコール 65質量部にエステル交換触 媒として酢酸マグネシウム水和物 0. 05質量部を添カ卩し、常法に従ってエステル交換 を行った。得られた生成物に、三酸化アンチモン 0. 05質量部、リン酸トリメチルエス テル 0. 03質量部を添加した。
[0156] 次いで、徐々に昇温、減圧にし、 280°C、 6. 65 X lOPaで重合を行い、固有粘度 0
. 70のポリエチレンテレフタレート (PET)榭脂を得た。
[0157] 以上のようにして得られた PET榭脂を用いて、以下のようにして二軸延伸 PETフィ ルムを作製した。
[0158] (二軸延伸 PETフィルム)
PET樹脂をペレツトイ匕したものを 150°Cで 8時間真空乾燥した後、 285°Cで Tダイか ら層状に溶融押しだし、 30°Cの冷却ドラム上で静電印カロしながら密着させ、冷却固 化させ、未延伸フィルムを得た。
[0159] この未延伸シートをロール式縦延伸機を用いて、 80°Cで縦方向に 3. 3倍延伸した
[0160] 得られた一軸延伸フィルムに引き続き、テンター式横延伸機を用いて、第一延伸ゾ ーン 90°Cで総横延伸倍率の 50%延伸し、さらに第二延伸ゾーン 100°Cで総横延伸 倍率 3. 3倍になるように延伸した。
[0161] 次いで、 70°C2秒間、前熱処理し、さらに第一固定ゾーン 150°Cで 5秒間熱固定し 、第二固定ゾーン 220°Cで 15秒間熱固定した。次いで 160°Cで横 (幅手)方向に 5 %弛緩処理し、テンターを出た後に、室温まで 60秒かけて冷却し、フィルムをクリップ から解放、スリットし、それぞれ巻き取り、厚さ 175 mの二軸延伸 PETフィルムを得 た。この二軸延伸 PETフィルムの Tgは 79°Cであった。なお、得られた基材の厚み分 布は 2%であった。 [0162] 二軸延伸 PETフィルムの親水性層側表面に 8WZm2.分のコロナ放電処理を施し 、下引塗布液 a— 1を乾燥膜厚が 0. 8 mとなるよう塗布し、 123°Cで乾燥し、親水性 側の表面に下引層 A— 1を設けた。
[0163] この後、下引層 A— 1の上表面に 8WZm2'分のコロナ放電処理を施し、下引層 A —1の上には下引塗布液 a— 2を乾燥膜厚が 0.: L mとなるよう塗布し、 123°Cで乾 燥して下引層 A— 2を設け、更に 140°Cで 2分間熱処理し、片面下引層形成済みの 基材 1を得た。
[0164] (下引塗布液 a— 1)
スチレン Zグリシジルメタタリレート Zブチルアタリレート = 60Z39Zl (モル比)の 3 元系共重合ラテックス (Tg = 75°C)固形分濃度 30質量% 250g
スチレン Zグリシジルメタタリレート Zブチルアタリレート = 20Z40Z40(モル比)の 3元系共重合ラテックス (Tg = 20°C)固形分濃度 30質量% 25g
ァ-オン系界面活性剤 S— 1 (2質量%) 30g 水で lkgに仕上げた。
[0165] (下引塗布液 a— 2)
変性水溶性ポリエステル溶液 L— 4 (固形分濃度 23質量%) (後記)
31g
クラレ製ェクセバール(ポリビュルアルコールとエチレンの共重合体) RS— 2117の 5質量%水溶液 58g
ァニオン系界面活性剤 S— 1 (2質量%) 6g 硬膜剤 H— 1 (0. 5質量%) lOOg
真球状シリカマット剤(日本触媒社のシーホスター KE— P50) 2質量%分散液
10g
以上に蒸留水をカ卩えて 1000mlとした。
[0166] [化 1]
Figure imgf000028_0001
Figure imgf000028_0002
[0167] (変性水溶性ポリエステルの溶液 L 4の調製)
テレフタル酸ジメチル 35. 4質量部、イソフタル酸ジメチル 33. 63質量部、 5—スル ホイソフタル酸ジメチルナトリウム塩 17. 92質量部、エチレングリコール 62質量部、酢 酸カルシウム一水塩 0. 065質量部、酢酸マンガン四水塩 0. 022質量部を、窒素気 流下において、 170〜220°Cでメタノールを留去しながらエステル交換反応を行った 後、リン酸トリメチル 0. 04質量部、重縮合触媒とし三酸ィ匕アンチモン 0. 04質量部及 び 1、 4ーシクロへキサンジカルボン酸 6. 8質量部を加え、 220〜235°Cの反応温度 で、ほぼ理論量の水を留去しエステルイ匕を行った。
[0168] その後、更に反応系内を約 1時間かけて減圧、昇温し最終的に 280°C、 133Pa以 下で約 1時間重縮合を行 ヽ、水湿性ポリエステルを作製した。
[0169] 得られた水溶性ポリエステル固有粘度は 0. 33であった。
[0170] また、重量平均分子量は 80、 000〜100、 000であった。
[0171] 次いで、撹拌翼、環流冷却管、温度計を付した 2Lの 3つ口フラスコに、純水 850ml を入れ、撹拌翼を回転させながら、水溶性ポリエステルを 150g徐々に添加した。
[0172] 室温でこのまま 30分間撹拌した後、 1. 5時間かけて内温が 98°Cになるように加熱 し、この温度で 3時間加熱溶解した。加熱終了後、 1時間かけて室温まで冷却し、一 夜放置して、 15質量%の水湿性ポリエステル溶液 A1を調製した。
[0173] 撹拌翼、環流冷却管、温度計、滴下ロートを付した 3Lの 4つ口フラスコに、前記 1 5質量%の水溶性ポリエステル溶液 Al 1900mlを入れ、撹拌翼を回転させながら、 内温度を 80°Cまで加熱する。
[0174] この中に、過酸化アンモ-ゥムの 24%水溶液を 6. 52mlカ卩え、モノマー混合液 (メ タクリル酸グリシジル 28. 5g、アクリル酸ェチル 21. 4g、メタクリル酸メチル 21. 4g)を 30分間かけて滴下し、さらに 3時間反応を続ける。
[0175] その後、 30°C以下まで冷却、濾過して、固形分濃度が 18質量%の変性水湿性ポリ エステル溶液 B1 (アクリル系成分変性率 20質量%)を調製した。また、アクリル系成 分変性率を 5質量%、固形分濃度を 23%にした以外は、上記と同様にして、変性水 溶性ポリエステル溶液 L - 4を調製した。
[0176] (下層、上層親水性層の塗布)
下記のように作製した下層親水性層塗布液を基材 1の下引き塗布面にワイヤーバ 一を用いて、乾燥質量 3. OgZm2になるように塗布し 15mの長さの 100°Cに設定押 された乾燥ゾーンを搬送スピード 15mZ分の速度で通過させた。
[0177] 引き続き下記のように作製した上層親水性層塗布液をワイヤーバーを用いて、乾燥 質量 1. 80gZm2になるように塗布し 30mの長さの 100°Cに設定された乾燥ゾーンを 搬送スピード 15mZ分の速度で通過させた。
[0178] (下層親水性層塗布液の作製)
表 1に示す下層親水性層塗布液組成物を、ホモジナイザーを用いて十分に攪拌混 合した後、濾過して下層親水性塗布液を作製した。
[0179] [表 1]
原材料名 量 ) 多孔質金属酸化物: シルトン JC— 40(水澤化学社製) 8.3 層状粘土鉱物モンモリロナイ ト : ミネラルコロイ ド M0
(水沢化学社製、 多孔質ァルミノシリゲート粒子、 平均粒径4 m)を 26.0 ホモジナイザで強攪拌して 5質量%の水膨潤ゲルとしたもの
Cu— Fe— Mn系金属酸化物黒色顔料: TM— 3550ブラック粉体
(大日精化工業社製、 粒径 0. l ^ ra程度)の固形分40% 41 .5 (うち 0.2 %質量%は分散材 )水分散物
カルボキシメチルセルロース(関東化学製) %水溶液 17.5 リン酸 3ナトリウム · 12水和物(関東化学製) 10%zK溶液 4.0 コロイダルシリカ : スノーテックス一 XS
372.9 (日産化学社製、 固形分 20質量%)
コロイダルシリ力 : ΜΡ4540Μ (日産化学社製、 固形分 40質量%) 99.0 ハイプレシ力(宇部日束化成製) 22.0
FZ— 2161 (シリコン活性剤: 日本ュニカ一製)(固形分 20質量%) 8.8 ォプトビーズ 3500S (日産化学社製 粒径 3.5 m) 8.8 多孔質金属酸化物: シルトン JC一 70(水澤化学社製) 11 .0
ETB— 300 (チタン工業社製)水分散物(固形濃度 40 % ) 82.5 純水 297.7 全体量 1000.00
[0180] (上層親水性層塗布液の作製)
表 2に示す上層親水性層塗布液組成物を、ホモジナイザーを用いて十分に攪拌混 合した後、濾過して上層親水性塗布液を作製した。
[0181] [表 2] 原材料名 量(g )
ETB— 300 (チタン工業社製)水分散物(固形分濃度 40 % ) 180.0 カルボキシメチルセルロース 4 %水溶液 1 .0 リン酸 3ナトリウム · 12水和物(関東化学製) 10%水溶液 1 .0 コロイダルシリカ : スノ一テックス一 s
120.0
(日産化学社製、 固形分 30質量%)
コロィダルシリカ : スノーテックス一 PSM
270.0
(日産化学社製、 固形分 20質量% )
多孔質金属酸化物粒子シルトン AMT— 08
48.0
(水澤化学社製 平均粒径 0.8 m)
コロイダルシリ力 : MP4540M (日産化学社製、 固形分 40質量%) 30.0 多孔質金属酸化物: シルトン JC一 20 (水澤化学社製) 12.0
ADS830WS ( Amer i canDyeSource社製)赤外色素 2 %水溶液 180.0 純水 110.0 全休量 1000.00 [0182] (画像形成層塗布液の調製)
表 3記載の画像形成層塗布液組成物を攪拌機を用いて攪拌混合した後、濾過して 画像形成層塗布液を作製した。
[0183] [表 3]
Figure imgf000031_0001
[0184] (平版印刷版材料試料の作製)
上記で作製した画像形成層塗布液を前記上層親水性層の上にワイヤーバーを用 いて、乾燥質量 0. 55gZm2になるように塗布し、 30mの長さの 70°Cに設定された乾 燥ゾーンを搬送スピード 15mZ分の速度で通過させ、感熱画像形成層を形成した。 塗布後のサンプルは 50°Cで 2日間のエイジングを行い、平版印刷版材料試料を得 た。
[0185] 上記平版印刷版材料試料を 660mm幅に断裁し、外径 76mmの紙コアに 30m卷 回し、ロール状平版印刷版材料試料 1を得た。画像形成層中の A— 118、 A— 206、 A— 514、 DL522を表 4に示すようなラテックス A、 B、 C (後述)に置換し (但し、固形 分量は同じ)、上記平版印刷版材料試料 1の作製と同様にして、ロール状の平版印 刷版材料試料 2〜5を作製した。
[0186] <評価 >
露光方法 上記で得られた平版印刷版材料試料は、露光サイズに合わせて切断した後に、露 光ドラムに卷付け固定した。露光には波長 830nm、スポット径約 18 mのレーザー ビームを用い、露光エネルギーを 240mjZcm2として、 2、 400dpi (dpiとは、 2. 54c m当たりのドット数を表す。)、 175線で画像を形成するように露光し、露光済みの平 版印刷版材料試料を作製した。
[0187] 印刷方法
上記露光済みの印刷版材料試料を印刷機のプレートシリンダーに装着し、装着さ れた露光済み印刷版材料試料に、湿し水および印刷インキを供給して印刷を行った
[0188] 表印刷時にはパウダー(商品名:ニツカリコ M (ニツカ (株)製))を使用し、印刷装置 のパウダー目盛 10で噴霧した。
[0189] 使用された印刷機、湿し水、印刷インク 及び印刷紙は下記に示す。
[0190] 印刷機: 三菱重工工業 (株)製 DAIYA1— F
湿し水: ァストロマーク 3 (日研ィ匕学研究所社製)、 2質量%
印刷インク: トーョーハイュ-ティ M紅 (東洋インキ社製)
印刷紙: コート紙 (耐刷性以外の評価の場合)
上質紙 (耐刷性評価の場合)
(機上現像性)
刷り出し時、良好な SZN比(非画像部に地汚れが無ぐすなわち、画像形成層の 非画像部が印刷機上で除去され、かつ、画像部の濃度が適正範囲となっている。印 刷物が得られるまでの印刷枚数を測定し、機上現像性の指標とした。損紙の枚数が 少な 、ほど優れて 、る。 40枚以上では実用上問題がある。
[0191] (耐刷性)
上質紙を用いて上記印刷条件で印刷した裏紙を用いて印刷評価した。画像の 3% の小点の欠落、または、ベタ部の濃度低下のいずれかが確認された段階で耐刷終 点とし、その枚数を求め、この枚数を耐刷性の指標とした。
[0192] (耐傷性 (インキ付着))
露光前に人差し指の爪の腹で平版印刷版材料の画像形成層表面をこすり、印刷 2 0枚目の実害度合いを下記ランクで評価し、非画像部の耐傷性を評価し、耐傷性の 指標とした。
A:インキが付着してない
B:わずかにインキが付着して 、る
C:少 Wンキが付着している
D: 50%網部と同程度の濃度でインキが付着して 、る
E:ベタ部と同程度の濃度でインキが付着して!/、る
結果を表 4に示す。
[0193] ラテックス Aの作製
攪拌器、還流冷却器、滴下槽および温度計を取りつけた反応容器に、水 45部を投 入し反応容器内を 80°Cにした。次に「アデカリアソープ SE1025N」(旭電化工業 (株 )製、界面活性剤:商品名)の 25%水溶液 0. 3部と過硫酸アンモ-ゥムの 2%水溶液 0. 5部を添カ卩した。
[0194] その 5分後に、メタクリル酸メチル 2部、アクリル酸ブチル 1. 7部、アクリル酸 1部、「 アデカリアソープ SE1025N」の 25%水溶液 0. 8部、過硫酸アンモ-ゥムの 2%水溶 液 1部と水 10部をホモジナイザーによりプレ乳化液としたものと、ポリビュルアルコー ル(ケン化度 99モル0 /0、重合度 1700、(株)クラレ製、クラレポバール PVA117 :商 品名) 2部を水 160部に溶解した液とを反応容器に各々添加を開始し、 4時間かけて 添加を終了させた。添カ卩中および添加終了後 1時間、反応容器内液温を 80°Cに保 つた後、 50°Cで保存することによって保護コロイドとしてポリビュルアルコールを含む ラテックス Aを得た。ラテックス Aの榭脂固形分は 16質量%、ラテックス粒子は、 50°C における数平均粒子径が 130nmであった。また、ラテックス Aの榭脂 Z水溶性榭脂 は 70Z30 (質量比)であった。
[0195] ラテックス Bの作製
水にあらかじめ平均分子量 10万のォセインゼラチンを溶解させ、 A—118、 A- 20 6、 A— 514の原料であるカルナバワックス、マイクロクリスタリンワックス、ポリエチレン ワックスを表 3に示した画像形成層塗布組成物のそれらと同じ WAX比率で 100〜15 0°Cまで昇温し、常圧ホモミキサー (特殊機化工業 (株)製 T. Kホモミキサー)で攪拌 し、プレ乳化物を得た。得られたプレ乳化物をさらに高圧ホモジナイザー(ナノマイザ 一 (株)製 LA— 31型)で処理圧力 1、 300kg/cm2で処理し、保護コロイドとしてゼラ チンを含むラテックス Bを得た。ラテックス Bのワックス/水溶性榭脂は、 70/30 (重 量比)であった。
[0196] ラテックス Cの作製
ポリビュルアルコールの代わりにポリアクリル酸ナトリウム: DL522でェマルジヨンを 使用した以外は、ラテックス Aと同様にして、保護コロイドとしてポリアクリル酸ナトリウ ムを含むラテックス Cを作製した。
[0197] [表 4]
Figure imgf000034_0001
[0198] 表 4から、本発明の平版印刷版材料試料は機上現像性、耐刷性、耐傷性に優れて いることが分かる

Claims

請求の範囲
[1] 基材上に、光熱変換剤を含む親水性層と感熱画像形成層とを基材側からこの順に 有する平版印刷版材料において、該感熱画像形成層に、保護コロイドとして親水性 成分を有する疎水性成分のラテックスを含有することを特徴とする平版印刷版材料。
[2] 前記疎水性成分が、熱融着性粒子または熱溶融性粒子であることを特徴とする請求 の範囲第 1項に記載の平版印刷版材料。
[3] 前記疎水性成分が熱溶融性粒子であり、該熱溶融性粒子が、軟ィ匕点が 40°C〜120
°Cであり、かつ融点が 60°C〜150°Cであるワックスから形成されていることを特徴とす る請求の範囲第 2項に記載の平版印刷版材料。
[4] 前記ワックス力 ポリエチレンワックス、マイクロクリスタリンワックス、脂肪酸エステルヮ ックスおよび脂肪酸ワックスカゝら選ばれる少なくとも 1つであることを特徴とする請求の 範囲第 3項に記載の平版印刷版材料。
[5] 前記疎水性成分が疎水性ポリマーであり、該疎水性ポリマーが、質量平均分子量が
500〜500000であり、力つ数平均分子量力 200〜60000である練水' 14ポリマーで あることを特徴とする請求の範囲第 2項に記載の平版印刷版材料。
[6] 前記疎水性ポリマーが、(メタ)アタリレート(共)重合体、(メタ)アクリル酸 (共)
重合体、ビニルエステル (共)重合体、ポリスチレンおよび合成ゴムカゝら選ばれる少な くとも 1つであることを特徴とする請求の範囲第 5項に記載の平版印刷版材料。
[7] 前記保護コロイドとしての親水性成分が、ポリビニルアルコールおよびその誘導体、 ポリアクリル酸およびその誘導体、ポリスチレンスルフォン酸およびその誘導体、およ びゼラチン力 選ばれる少なくとも 1つであることを特徴とする請求の範囲第 1〜6項 の 、ずれか 1項に記載の平版印刷版材料。
[8] 前記親水性成分と前記疎水性成分との前記ラテックスに対する含有量比 (疎水性成 分 Z親水性成分 (質量比))が 90ZlO〜50Z50であることを特徴とする請求の範囲 第 1〜7項のいずれか 1項に記載の平版印刷版材料。
[9] 前記感熱画像形成層が赤外線吸収色素を含有することを特徴とする請求の範囲第
1〜8項のいずれか 1項に記載の平版印刷版材料。
[10] 請求の範囲第 1〜9項のいずれか 1項に記載の平版印刷版材料をレーザー光により 画像露光した後、平版印刷機のプレートシリンダー上で湿し水または湿し水と印刷ィ ンキにより現像を行い、該現像の後、印刷することを特徴とする印刷方法。
PCT/JP2007/056588 2006-04-11 2007-03-28 平版印刷版材料及び印刷方法 WO2007116786A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-108403 2006-04-11
JP2006108403 2006-04-11

Publications (1)

Publication Number Publication Date
WO2007116786A1 true WO2007116786A1 (ja) 2007-10-18

Family

ID=38575717

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/056588 WO2007116786A1 (ja) 2006-04-11 2007-03-28 平版印刷版材料及び印刷方法

Country Status (2)

Country Link
US (1) US20070238049A1 (ja)
WO (1) WO2007116786A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012000870A (ja) * 2010-06-17 2012-01-05 Mitsubishi Paper Mills Ltd 感熱型平版印刷版

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4888853B2 (ja) 2009-11-12 2012-02-29 学校法人慶應義塾 液晶表示装置の視認性改善方法、及びそれを用いた液晶表示装置
EP2824506B1 (en) 2010-06-22 2020-05-20 Toyobo Co., Ltd. Liquid crystal display device, polarizer and protective film
TWI551919B (zh) 2011-05-18 2016-10-01 東洋紡績股份有限公司 液晶顯示裝置
WO2012157663A1 (ja) * 2011-05-18 2012-11-22 東洋紡株式会社 液晶表示装置、偏光板および偏光子保護フィルム

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001315453A (ja) * 2000-05-10 2001-11-13 Fuji Photo Film Co Ltd 平版印刷用原板
JP2003039840A (ja) * 2001-07-31 2003-02-13 Konica Corp 熱融着性により画像形成がなされる画像形成材料、平版印刷版材料及び平版印刷版の作製方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005035003A (ja) * 2003-07-15 2005-02-10 Konica Minolta Medical & Graphic Inc 版下シート材料、版掛け方法及び印刷方法
JP2005305690A (ja) * 2004-04-19 2005-11-04 Konica Minolta Medical & Graphic Inc 印刷版材料、印刷版材料の印刷方法及びオフセット印刷機

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001315453A (ja) * 2000-05-10 2001-11-13 Fuji Photo Film Co Ltd 平版印刷用原板
JP2003039840A (ja) * 2001-07-31 2003-02-13 Konica Corp 熱融着性により画像形成がなされる画像形成材料、平版印刷版材料及び平版印刷版の作製方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012000870A (ja) * 2010-06-17 2012-01-05 Mitsubishi Paper Mills Ltd 感熱型平版印刷版

Also Published As

Publication number Publication date
US20070238049A1 (en) 2007-10-11

Similar Documents

Publication Publication Date Title
JP4244757B2 (ja) ロール状に巻回された形態で市場に流通される機上現像型印刷版材料
WO2007063682A1 (ja) 平版印刷版材料及び印刷方法
WO2007116786A1 (ja) 平版印刷版材料及び印刷方法
JP2007190879A (ja) 平版印刷版材料及び印刷方法
JP2005319590A (ja) 印刷版材料、印刷版及び印刷方法
JP2006056184A (ja) 印刷版材料および印刷版
JP2007237586A (ja) 平版印刷版材料及び印刷方法
JP2006321090A (ja) 平版印刷方法および湿し水
JP2006321089A (ja) 平版印刷方法および湿し水
JP2007190880A (ja) 平版印刷版材料及び平版印刷方法
WO2006090570A1 (ja) 平版印刷版材料および印刷方法
JP2008149467A (ja) 平版印刷版材料および印刷方法
JP2007276196A (ja) 平版印刷版材料及び印刷方法
JP2005288931A (ja) 平版印刷版材料、画像記録方法及び印刷方法
WO2006059484A1 (ja) 平版印刷版材料及び平版印刷方法
JP2006088354A (ja) 印刷版材料、印刷版及び印刷方法
JP2006212786A (ja) 平版印刷版材料及び印刷方法
JP2007069560A (ja) 平版印刷版の修正方法及び修正液
JP2006062236A (ja) 平板印刷版材料及びそれを用いた印刷方法
WO2006080244A1 (ja) 平版印刷版材料、それを用いた印刷方法及びプラスチック支持体の回収方法
JP2006187911A (ja) 平版印刷版材料及び平版印刷方法
JP2005178014A (ja) 印刷版材料及び印刷方法
WO2007083506A1 (ja) 印刷版材料、印刷版材料の製造方法及び平版印刷方法
JP2006231597A (ja) 印刷版材料の製版方法、印刷版材料および印刷方法
JP2006341483A (ja) 平版印刷版材料及びそれを用いた印刷方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07740026

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07740026

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP