WO2007083506A1 - 印刷版材料、印刷版材料の製造方法及び平版印刷方法 - Google Patents

印刷版材料、印刷版材料の製造方法及び平版印刷方法 Download PDF

Info

Publication number
WO2007083506A1
WO2007083506A1 PCT/JP2006/326195 JP2006326195W WO2007083506A1 WO 2007083506 A1 WO2007083506 A1 WO 2007083506A1 JP 2006326195 W JP2006326195 W JP 2006326195W WO 2007083506 A1 WO2007083506 A1 WO 2007083506A1
Authority
WO
WIPO (PCT)
Prior art keywords
plate material
printing plate
printing
particles
metal oxide
Prior art date
Application number
PCT/JP2006/326195
Other languages
English (en)
French (fr)
Inventor
Takeshi Sampei
Original Assignee
Konica Minolta Medical & Graphic, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Medical & Graphic, Inc. filed Critical Konica Minolta Medical & Graphic, Inc.
Publication of WO2007083506A1 publication Critical patent/WO2007083506A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41CPROCESSES FOR THE MANUFACTURE OR REPRODUCTION OF PRINTING SURFACES
    • B41C1/00Forme preparation
    • B41C1/10Forme preparation for lithographic printing; Master sheets for transferring a lithographic image to the forme
    • B41C1/1008Forme preparation for lithographic printing; Master sheets for transferring a lithographic image to the forme by removal or destruction of lithographic material on the lithographic support, e.g. by laser or spark ablation; by the use of materials rendered soluble or insoluble by heat exposure, e.g. by heat produced from a light to heat transforming system; by on-the-press exposure or on-the-press development, e.g. by the fountain of photolithographic materials
    • B41C1/1016Forme preparation for lithographic printing; Master sheets for transferring a lithographic image to the forme by removal or destruction of lithographic material on the lithographic support, e.g. by laser or spark ablation; by the use of materials rendered soluble or insoluble by heat exposure, e.g. by heat produced from a light to heat transforming system; by on-the-press exposure or on-the-press development, e.g. by the fountain of photolithographic materials characterised by structural details, e.g. protective layers, backcoat layers or several imaging layers
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/09Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers
    • G03F7/11Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers having cover layers or intermediate layers, e.g. subbing layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41CPROCESSES FOR THE MANUFACTURE OR REPRODUCTION OF PRINTING SURFACES
    • B41C2210/00Preparation or type or constituents of the imaging layers, in relation to lithographic printing forme preparation
    • B41C2210/04Negative working, i.e. the non-exposed (non-imaged) areas are removed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41CPROCESSES FOR THE MANUFACTURE OR REPRODUCTION OF PRINTING SURFACES
    • B41C2210/00Preparation or type or constituents of the imaging layers, in relation to lithographic printing forme preparation
    • B41C2210/08Developable by water or the fountain solution
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41CPROCESSES FOR THE MANUFACTURE OR REPRODUCTION OF PRINTING SURFACES
    • B41C2210/00Preparation or type or constituents of the imaging layers, in relation to lithographic printing forme preparation
    • B41C2210/22Preparation or type or constituents of the imaging layers, in relation to lithographic printing forme preparation characterised by organic non-macromolecular additives, e.g. dyes, UV-absorbers, plasticisers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41CPROCESSES FOR THE MANUFACTURE OR REPRODUCTION OF PRINTING SURFACES
    • B41C2210/00Preparation or type or constituents of the imaging layers, in relation to lithographic printing forme preparation
    • B41C2210/24Preparation or type or constituents of the imaging layers, in relation to lithographic printing forme preparation characterised by a macromolecular compound or binder obtained by reactions involving carbon-to-carbon unsaturated bonds, e.g. acrylics, vinyl polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41NPRINTING PLATES OR FOILS; MATERIALS FOR SURFACES USED IN PRINTING MACHINES FOR PRINTING, INKING, DAMPING, OR THE LIKE; PREPARING SUCH SURFACES FOR USE AND CONSERVING THEM
    • B41N3/00Preparing for use and conserving printing surfaces
    • B41N3/03Chemical or electrical pretreatment
    • B41N3/036Chemical or electrical pretreatment characterised by the presence of a polymeric hydrophilic coating

Definitions

  • Printing plate material printing plate material manufacturing method and planographic printing method
  • the present invention relates to a printing plate material, a method for producing the same, and a lithographic printing method, and more particularly, a printing plate material capable of image formation by a computer 'to' plate (CTP) method and developable on a printing press,
  • the present invention relates to a manufacturing method and a planographic printing method using the same.
  • the substrate has a hydrophilic layer containing metal oxide particles and an image forming functional layer as the photothermal conversion material.
  • Printing plate materials are known (see Patent Document 2).
  • Patent Document 1 Japanese Patent Laid-Open No. 2000-225780
  • Patent Document 2 JP 2004-167973 A
  • An object of the present invention is to provide a printing plate material that is excellent in coating defect prevention property, in which coating failure is unlikely to occur during manufacturing, has high sensitivity, and is excellent in initial ink landing property and printing durability, its production method, and use thereof It is to provide a lithographic printing method.
  • a printing plate material that can be developed on a printing press having a hydrophilic layer and an image forming functional layer on a substrate, and the hydrophilic layer has a coercive force (HC) force of 8 kAZm or less in a magnetic field of OOkAZm.
  • a printing plate material comprising metal oxide particles.
  • HC coercive force
  • a lithographic printing method characterized by printing.
  • a printing plate material excellent in coating defect prevention property, in which coating failure is unlikely to occur during manufacturing, and having high sensitivity, initial ink flaking property, and printing durability, a manufacturing method thereof, and the same A lithographic printing method using can be provided.
  • the present invention relates to a printing plate material which can be developed on a printing press having a hydrophilic layer and an image forming functional layer on a substrate, and the hydrophilic layer has a coercive force (HC) of 400 kAZm at a temperature of 20 ° C. It is characterized by containing metal oxide particles that are 8 kAZm or less in a magnetic field.
  • HC coercive force
  • the hydrophilic layer contains metal oxide particles having a coercive force (HC) of 8 kAZm or less in a magnetic field of 400 kAZm at a temperature of 20 ° C, a coating failure occurs during production.
  • HC coercive force
  • the hydrophilic layer contains metal oxide particles having a coercive force (HC) of 8 kAZm or less in a magnetic field of 400 kAZm at a temperature of 20 ° C.
  • HC coercive force
  • the coercive force means the magnitude of the magnetic field in the opposite direction that must be added in order to turn over the magnetic polarity of the magnet. Can be measured.
  • the coercive force (HC) is measured with a magnetometer, and can be measured using, for example, a vibrating sample type magnetometer VSM-P7-15 manufactured by Toei Kogyo Co., Ltd.
  • the coercive force (HC) of the metal oxide particles used in the present invention is a force that is 8 kAZm or less in the magnetic field of 400 kAZm as described above, preferably OAZm or more and 6.5 kAZm or less, more preferably OAZm. Above 5kAZm.
  • the metal oxide particles according to the present invention having such a coercive force are preferably metal oxide particles mainly having titanium oxide and iron oxide strength. Specifically, ilmenite (FeTiO 3) particles, pseudo brookite (Fe TiO 2) particles described in JP-A-1-298028,
  • the substrate was coated with Fe TiO phase Particles or composite oxides mainly composed of Fe TiO as described in JP-A-2005-68323
  • the metal oxide particles according to the present invention can be produced by the method described in the aforementioned published patent publication.
  • One of the characteristics of the metal oxide particles according to the present invention is that they are relatively safe and harmless to the environment and the human body.
  • the metal oxide particles according to the present invention are used as a photothermal conversion agent in a hydrophilic layer where black particles are preferred.
  • the photothermal conversion agent preferably has an L * value power in the L * aV color system of not less than 13 and not more than 13, and more preferably has an L * value of not less than 0 and not more than 10.
  • the “L * a * b * color system” is a color system used to represent the color of an object. It was standardized by the International Commission on Illumination (CIE) in 1976, and also in Japan. Used in JIS (Z8729).
  • CIE International Commission on Illumination
  • JIS JIS
  • the L * a * b * color system lightness is represented by L *
  • chromaticity representing hue and saturation is represented by a * and b *.
  • the L * value which is an index indicating brightness, is evaluated as an index of blackness. The smaller the L * value, the better the blackness. That is, when the L * value of the black particles is 0 or more and 10 or less, the black particle has sufficient blackness as a photothermal conversion agent.
  • the photothermal conversion ability with respect to the addition amount of the metal oxide particles according to the present invention is greatly affected by the degree of dispersion of the particles, and the better the dispersion, the better.
  • the product particles Before being added to the coating solution for the hydrophilic layer, the product particles are put in a sand grinder together with various media having a particle diameter of 0.2 to 2 mm as described in, for example, JP-A-2002-226842.
  • the dispersion is preferably carried out as a dispersion or paste by a method such as a method of dispersing for 1 to 60 minutes at a rotation speed of 2000 to 8000 rpm Z.
  • a dispersing agent can be used for dispersion as needed.
  • the dispersant a known one (for example, a surfactant described in JP-A-2002-226842) can be used.
  • the addition amount of the dispersant is preferably 0.01 to 5% by mass, more preferably 0.1 to 2% by mass with respect to the metal oxide particles.
  • the dispersion or paste is mixed with the hydrophilic layer coating liquid according to the present invention, and this is applied onto a substrate to provide a hydrophilic layer.
  • the mixing ratio is preferably 5 to 85% by mass with respect to the hydrophilic layer coating solution.
  • a known disperser can be used, and among these, it is preferable to perform a dispersion treatment using a medialess disperser.
  • a medialess disperser an internal shear type medialess disperser is particularly preferably used.
  • the internal shear type medialess disperser is a device that has a rotor and a stator that rotate at high speed, and applies shear to the inside of the coating liquid with a narrow clearance between them to disperse. Examples of this disperser include CLEAMIX manufactured by MTechnic Co., Ltd., Tornado manufactured by Asada Steel Co., Ltd., and high-pressure homogenizer and particle sizer manufactured by LosoAvi.
  • the time until the dispersion treatment force is applied is between about 0 to 3 minutes of developing surface force on the printing press.
  • This dispersion treatment is preferably performed by installing a disperser in the middle of the coating liquid feeding pipe or in the middle of the coating liquid feeding circulation pipe.
  • Examples of the mode in which the disperser is installed in the coater include, for example, a mode in which the mechanism of an extrusion coater incorporating a stirring rotor in a coater chamber described in JP-A-5-50001 is applied to a slide coater. There is.
  • Such dispersion of the coating solution can also be performed while feeding and circulating the coating solution.
  • the coating liquid is circulated by supplying an excessive amount of coating liquid to the die chamber of the slide coater in excess of the required amount of application, drawing out the excessive coating liquid from the coater die chamber, and drawing it out.
  • the liquid can be returned to the coating liquid supply tank or the liquid feeding pipe from the coating liquid supply tank to the coater.
  • the average particle size of the metal oxide particles contained in the hydrophilic layer is such that the average particle size is preferably not more than Lm.
  • the average particle size is 0.01 to 0.8 / zm. It is better to be in range.
  • the photothermal conversion ability with respect to the added amount becomes better, and by making the average primary particle size within the range of 0.01 to 0.8 m, photothermal conversion with respect to the added amount is achieved. Performance is better.
  • the photothermal conversion ability with respect to the amount added is greatly affected by the degree of dispersion of the particles, and the better the dispersion, the better.
  • these metal oxide particles are dispersed by a known method before being added to the layer coating solution to form a dispersion (paste). It is preferable to keep it. An average primary particle size of less than 0.01 m is not preferable because dispersion becomes difficult.
  • the average particle size refers to the number average primary particle size.
  • the particle size is increased by 10,000 times by observation with a transmission electron microscope, and the short side and the long side of 100 particles are measured at random.
  • the value obtained by dividing the total value by 200 is ⁇ ⁇ .
  • the addition amount of the metal oxide particles according to the present invention is 5% by mass or more and 80% by mass with respect to the total solid content of the hydrophilic layer in terms of sensitivity and prevention of generation of abrasion residue. It is less than 10% by mass and more preferably less than 70% by mass and more preferably less than 70% by mass and more preferably in the range of 15% by mass to less than 60% by mass.
  • the hydrophilic layer according to the present invention is a non-image part that has low affinity for ink and repels ink when the printing plate material of the present invention is used as a printing plate, and has high affinity for water and retains water.
  • the image forming layer is provided on the hydrophilic layer (on the side opposite to the substrate).
  • the hydrophilic layer may be composed of a plurality of layers.
  • the metal oxide particles according to the present invention are preferably contained in a hydrophilic layer adjacent to the image forming layer.
  • the hydrophilic layer according to the present invention preferably has a porous structure.
  • hydrophilic layer having the porous structure In order to form the hydrophilic layer having the porous structure, a hydrophilic material that forms the hydrophilic matrix described below is preferably used.
  • hydrophilic material forming the hydrophilic matrix a metal oxide is preferably used.
  • the metal oxide the following hydrophilic materials are preferably used. However, the metal oxide particles according to the present invention may partially serve as a hydrophilic material.
  • metal oxide particles are preferred. Examples thereof include colloidal silica, alumina sol, titasol, and other metal oxide sols.
  • the form of the metal oxide fine particles may be any of spherical, needle-like, feather-like, and other average particle sizes. Therefore, several kinds of metal oxide particles having different average particle sizes, preferably in the range of 3 to: LOOnm, can be used in combination. Further, the surface of the particles may be subjected to a surface treatment.
  • the metal oxide particles can be used as a binder by utilizing the film-forming property. It is suitable for use in a hydrophilic layer where the decrease in hydrophilicity is less than when an organic binder is used.
  • colloidal silica can be particularly preferably used.
  • Colloidal silica has the advantage of high film-forming properties even under relatively low temperature drying conditions, and can provide good strength.
  • the colloidal silica preferably includes a necklace-shaped colloidal silica, which will be described later, and a fine particle colloidal silica having an average particle size of 20 ⁇ m or less. Further, the colloidal silica preferably exhibits alkalinity when used as a colloid solution.
  • Necklace-shaped colloidal silica is a general term for an aqueous dispersion of spherical silica having an order of primary particle size of 111, and spherical colloidal silica having a primary particle size of 10 to 50 nm has a length of 50 to 400 nm. It means the combined “pearl necklace” colloidal silica.
  • the shape of a pearl necklace (that is, a pearl necklace shape) means that it has a shape similar to that of a pearl necklace in which the silica particles of colloidal silica are joined together.
  • the bond between the silica particles constituting the necklace-shaped colloidal silica is presumed to be -Si-O-Si-, which is present on the surface of the silica particles-SiOH groups are dehydrated.
  • colloidal silica in the form of necklace include the “Snowtex 3” series manufactured by Nissan Chemical Industries, Ltd., and the product name is “Snowtex—PS—S” (average particle size in the connected state).
  • V especially preferred, even if the occurrence of soiling is suppressed.
  • colloidal silica has a stronger binding force as the particle diameter is smaller.
  • colloidal silica having an average particle diameter of 20 nm or less, and more preferably 3 ⁇ 15nm.
  • the colloidal silica is particularly preferable because it is alkaline and has an effect of suppressing the occurrence of soiling.
  • Average particle size force S Alkaline colloidal silica in this range includes, for example, “Snowtex-20 (particle size 10-20 nm)”, “Snowtex-30” (particle size 10 to 20nm), “Snowtex-40 (particle size 10-20nm)”
  • Colloidal silica having an average particle size of 20 nm or less is particularly preferred, when used in combination with the above-mentioned necklace-shaped colloidal silica, since the strength of the layer to be formed can be further improved while maintaining the porosity. .
  • the ratio of colloidal silica Z necklace colloidal silica having an average particle size of 20 nm or less is preferably in the range of 95Z5 to 5Z95, more preferably in the range of 70Z30 to 20Z80, and more preferably in the range of 60/40 to 30/70.
  • the range power is even better! / ⁇ .
  • porous metal oxide particles having a particle size of less than 1 ⁇ m can be contained as a porous material having a hydrophilic layer matrix structure.
  • porous metal oxide particles the following porous silica particles, porous aluminosilicate particles, or zeolite particles can be preferably used.
  • the porous silica particles are generally produced by a wet method or a dry method.
  • the gel obtained by neutralizing the aqueous silicate solution can be obtained by drying and pulverizing, or by pulverizing the precipitate precipitated after neutralization.
  • silicon tetrachloride is combusted with hydrogen and oxygen, and silica is deposited. These particles can be adjusted by adjusting manufacturing conditions.
  • the gel strength is particularly preferred.
  • Porous aluminosilicate particles are produced, for example, by the method described in JP-A-10-71764. That is, amorphous composite particles synthesized by hydrolysis using aluminum alkoxide and silicon alkoxide as main components. The ratio of alumina to silica in the particles can be synthesized in the range of 1: 4 to 4: 1. In addition, particles produced by adding alkoxides of other metals during production to produce composite particles of three or more components can also be used in the present invention. The porosity and particle size of these composite particles can also be controlled by adjusting the production conditions.
  • the pore volume is preferably 0.5 mlZg or more, more preferably 0.8 ml Zg or more, and more preferably 1.0 to 2.5 mlZg. preferable.
  • Zeolite is a crystalline aluminosilicate, and is a porous body having regular three-dimensional network voids having a pore diameter of 0.3 to Lnm.
  • hydrophilic layer matrix structure constituting the hydrophilic layer may contain layered mineral particles.
  • Examples of the layered mineral particles include clay minerals such as kaolinite, rhosite, talc, smectite (montmorillonite, noiderite, hectorite, sabonite, etc.), vermiculite, my power (mica), chlorite. And hydrated talcite, layered polysilicate (kanemite, macatite, eyelite, magadiite, Kenyaite, etc.).
  • the charge density is preferably 0.25 or more, more preferably 0.6 or more.
  • Examples of the layered mineral having such a charge density include smectite (charge density 0.25 to 0.6; negative charge), vermiculite (charge density 0.6 to 0.9; negative charge), and the like.
  • synthetic fluorine mica is preferable because it can be obtained with stable quality such as particle size. Further, among the synthetic fluorine mica, those which are free swellable are preferred, which are swellable.
  • intercalation compounds such as billard crystals of the above layered minerals, those subjected to ion exchange treatment, surface treatment (silane coupling treatment, composite treatment with organic noinder) Etc.
  • the average particle size is 1 ⁇ m in the state of being contained in the layer (including the case where it has undergone the swelling process and dispersion peeling process). It is preferably less than m and the average aspect ratio is 50 or more.
  • the particle size is in the above range, the continuity and flexibility in the planar direction, which are the characteristics of the lamellar particles, are imparted to the coating film, and cracks can be formed to make the coating film strong in the dry state. . Further, in a coating solution containing a large amount of particulate matter, sedimentation of the particulate matter can be suppressed by the thickening effect of the layered clay mineral.
  • the particle diameter is larger than the above range, non-uniformity may occur in the coating film, and the strength may be locally reduced.
  • the aspect ratio is not more than the above range, the number of tabular grains with respect to the addition amount is reduced, the viscosity is insufficient, and the effect of suppressing the sedimentation of the particles is reduced.
  • the content of the layered mineral particles is preferably 0.1 to 30% by mass, more preferably 1 to 10% by mass, based on the entire layer.
  • swellable synthetic fluoromica is preferred because smectite is effective even when added in small amounts.
  • the layered mineral particles may be added to the coating solution as a powder! /, But in order to obtain a good degree of dispersion even with a simple preparation method (no need for a dispersion step such as media dispersion) It is preferable to prepare a gel in which layered mineral particles are swelled alone in water and then add it to the coating solution.
  • an aqueous silicate solution can also be used as another additive material.
  • Alkali metal silicates such as Na, Ca and Li are preferred.
  • the SiO / M O ratio is the pH of the whole coating solution when the silicate is added.
  • an inorganic polymer or an organic-inorganic hybrid polymer by a so-called sol-gel method using a metal alkoxide can also be used.
  • sol-gel method for example, the force described in “Application of the sol-gel method” (published by Zakune Sakuo, Zagne Jofusha Co., Ltd.) or cited in this document. The known methods described in the literature can be used.
  • the hydrophilic layer may contain water-soluble rosin!
  • water-soluble rosin examples include polysaccharides, polyethylene oxide, and polypropylene oxide. Side, polybutyl alcohol, polyethylene glycol (PEG), polybutyl ether, styrene butadiene copolymer, methyl methacrylate-butadiene copolymer conjugated diene polymer latex, acrylic polymer latex, vinyl polymer latex Strengths including resins such as polyacrylamide and polyvinylpyrrolidone As the water-soluble rosin used in the present invention, it is preferable to use polysaccharides.
  • polysaccharides starches, celluloses, polyuronic acids, pullulans, and the like can be used.
  • Cellulose derivatives such as methylcellulose salts, carboxymethylcellulose salts, hydroxyethylcellulose salts and the like are preferred.
  • Sodium salt and ammonium salt are preferred. This is because the effect of forming the surface shape of the hydrophilic layer in a favorable state can be obtained by including the polysaccharide in the hydrophilic layer.
  • the surface of the hydrophilic layer preferably has a concavo-convex structure with a pitch of 0.1 to 20 m like the aluminum grain of the PS plate, and this concavo-convex improves water retention and image area retention.
  • a concavo-convex structure can be formed by containing an appropriate amount of a filler having an appropriate particle size in the hydrophilic layer matrix.
  • the alkaline colloidal silica and the aqueous solution described above are added to the coating solution for the hydrophilic layer. It is preferable to form a phase separation when the hydrophilic polysaccharide is applied and dried to form a structure having better printability.
  • the shape of the concavo-convex structure depends on the type and amount of alkaline colloidal silica, the type and amount of water-soluble polysaccharides, the type and amount of other additives, and the solid content of the coating liquid. It is possible to appropriately control the concentration, wet film thickness, drying conditions, and the like.
  • the water-soluble rosin added to the hydrophilic matrix structure is present in a state where at least a part thereof is water-soluble and can be eluted in water. This is because even if a water-soluble material is cross-linked by a cross-linking agent or the like and becomes insoluble in water, there is a concern that its hydrophilicity is lowered and printability is deteriorated.
  • the cationic resin that may further contain a cationic resin include polyalkylene polyamines such as polyethyleneamine and polypropylene polyamine or derivatives thereof, tertiary amino groups and quaternary compounds. Examples thereof include acrylic resin having an ammonium group and diacrylamine.
  • Cationic rosin May be added in the form of fine particles, for example, a cationic microgel described in JP-A-6-161101.
  • hydrophilicity it is a preferred embodiment to form a layer by coating and drying using a coating solution for the hydrophilic layer.
  • a coating solution for the hydrophilic layer As described above, in order to include the metal oxide particles according to the present invention in the coating liquid for the hydrophilic layer, before adding the metal oxide particles, the dispersion is performed by a known method. Or it is preferable to make it a paste.
  • HC coercive force
  • this step is a step in which the metal oxide particles according to the present invention are dispersed and then added to the hydrophilic layer coating solution is a preferable embodiment.
  • the coating solution used for coating the hydrophilic layer can contain a water-soluble surfactant for the purpose of improving the coating property, and a surfactant such as S-type or F-type is added. Although it can be used, it is particularly preferable to use a surfactant containing Si element because there is no concern of causing printing stains.
  • the content of the surfactant is preferably 0.01 to 3% by mass, more preferably 0.03 to 1% by mass, based on the entire hydrophilic layer (solid content as the coating solution).
  • the hydrophilic layer may contain a phosphate.
  • the phosphate is preferably added as trisodium phosphate or disodium hydrogen phosphate. By adding phosphate, the effect of improving the mesh opening during printing can be obtained.
  • the addition amount of phosphate is preferably 0.1 to 5% by mass, more preferably 0.5 to 2% by mass, excluding hydrates.
  • the hydrophilic layer contains the metal oxide particles according to the present invention as a photothermal conversion agent, but may contain a photothermal conversion agent other than the metal oxide particles.
  • a photothermal conversion agent may be included in the image forming functional layer, the hydrophilic overcoat layer and the other layers provided in the present invention.
  • Examples of such a photothermal conversion material include infrared absorbing dyes or pigments. [0072] (Infrared absorbing dye)
  • Common infrared absorbing dyes such as cyanine dyes, croconium dyes, polymethine dyes, azurenium dyes, squalium dyes, thiopyrylium dyes, naphthoquinone dyes, anthraquinone dyes and other organic compounds, phthalocyanine dyes, naphthalocyanine dyes , Azo, thiamide, dithiol, and indoor diphosphorus organometallic complexes.
  • cyanine dyes such as cyanine dyes, croconium dyes, polymethine dyes, azurenium dyes, squalium dyes, thiopyrylium dyes, naphthoquinone dyes, anthraquinone dyes and other organic compounds, phthalocyanine dyes, naphthalocyanine dyes , Azo, thiamide, dithiol, and indoor diphosphorus organometallic complexes.
  • JP-A-63-139191, JP-A-64-33547, JP-A-1-160683, JP-A-280750, JP-A-1-293342, JP-A-2-2074, JP-A-3-26593 3-30991, 3-34891, 3-36093, 3-36094, 3-36094, 3-42281, 3-97589, 3-103476 Examples thereof include compounds described in JP-A-7-43851, JP-A-7-102179, and JP-A-2001-117201. These can be used alone or in combination of two or more.
  • Examples of the pigment include carbon, graphite, metal, metal oxides other than the metal oxide particles, and the like.
  • the particle size (d50) is preferably lOOnm or less, more preferably 50 nm or less.
  • the graphite has a particle size of 0.5 ⁇ m or less, preferably lOOnm or less, more preferably
  • Fine particles of 50 nm or less can be used.
  • any metal can be used as long as it has a particle size of 0.5 ⁇ m or less, preferably lOOnm or less, more preferably 50nm or less.
  • the shape may be any shape such as a sphere, a piece, or a needle. Colloidal metal fine particles (Ag, Au, etc.) are particularly preferred.
  • the metal oxide it is possible to use a material that exhibits a black color in a visible light castle !, a material that is electrically conductive, or that is a semiconductor.
  • the printing plate material that can be developed on a printing press in the present invention is a printing plate material having an image forming functional layer that can be developed on a printing press.
  • the image forming layer that can be developed on a printing press is subjected to processing with a special chemical after image exposure.
  • the image forming functional layer of the present invention is preferably an image forming functional layer containing heat-fusible particles or heat-fusible particles.
  • the heat-meltable particles that can be used in the image-forming functional layer according to the present invention are particles formed of a material generally classified as a wax having a low viscosity when melted, among thermoplastic materials. .
  • the surface strength of storability and ink deposition property is also preferably a soft point of 40 ° C to 120 ° C and a melting point of 60 ° C to 150 ° C. More preferably, the temperature is 40 ° C or higher and 100 ° C or lower, and the melting point is 60 ° C or higher and 120 ° C or lower.
  • Examples of materials that can be used include paraffin, polyolefin, polyethylene wax, microcrystalline wax, and fatty acid wax. These have a molecular weight of about 800 to 10,000, and in order to facilitate emulsification, these waxes are acidified to introduce polar groups such as hydroxyl groups, ester groups, carboxyl groups, aldehyde groups, and peroxide groups. You can also.
  • these waxes include, for example, stearamide, linolenamide, laurylamide, myristamide, hardened beef fatty acid amide, palmitoamide, oleic acid amide, rice It is also possible to add sugar fatty acid amide, coconut fatty acid amide, methylolated products of these fatty acid amides, methylene bissteraroamide, ethylene bissteraroamide, and the like.
  • Coumarone-indene resin, rosin-modified phenol resin, terpene-modified phenol resin, xylene resin, ketone resin, acrylic resin, ionomer, and copolymers of these resins can also be used.
  • thermoplastic material it is preferable to contain any one of polyethylene, microcrystalline, fatty acid ester, and fatty acid. Since these materials have a relatively low melting point and a low melt viscosity, high-sensitivity image formation can be performed. Further, since these materials have lubricity, damage when a shearing force is applied to the surface of the printing plate material is reduced, and resistance to printing stains due to scratches and the like is improved. [0085] These heat-meltable particles are preferably dispersible in water, and the average particle size is preferably 0.01 to 10 111 from the viewpoint of on-machine developability. Is 0.05-3 / ⁇ ⁇ .
  • a nonionic surfactant In order to disperse these heat-meltable particles in water, it is preferable to use a nonionic surfactant, a ionic surfactant, a cationic surfactant or a polymer surfactant.
  • a nonionic surfactant By using these compounds, an aqueous dispersion of hot-melt fine particles can be stabilized, and a uniform coated product can be obtained without failure.
  • composition of the heat-meltable particles may vary continuously between the inside and the surface layer, or may be coated with a different material.
  • a coating method a known microcapsule formation method, a sol-gel method, or the like can be used.
  • the content of the heat-meltable particles in the constituent layers is preferably 1 to 90% by mass, more preferably 5 to 80% by mass of the entire layer.
  • thermoplastic hydrophobic polymer particles examples include thermoplastic hydrophobic polymer particles, and there is no specific upper limit to the softening temperature of the thermoplastic hydrophobic polymer particles. It is preferably lower than the decomposition temperature of the polymer fine particles.
  • the weight average molecular weight (Mw) of the polymer is preferably in the range of 10,000 to 1,000,000! /.
  • thermoplastic hydrophobic polymer particles include, for example, gen (co) polymers such as polypropylene, polybutadiene, polyisoprene and ethylene butadiene copolymer, styrene.
  • gen (co) polymers such as polypropylene, polybutadiene, polyisoprene and ethylene butadiene copolymer, styrene.
  • Synthetic rubbers such as butadiene copolymer, methyl methacrylate butadiene copolymer, acrylonitrile butadiene copolymer, polymethyl methacrylate, methyl methacrylate (2-ethylhexyl acrylate) copolymer, methyl methacrylate Methacrylic acid copolymer, methyl acrylate (N-methyl acrylamide) copolymer, (meth) acrylic acid ester such as polyacrylonitrile, (meth) acrylic acid (co) polymer, polyvinyl acetate, vinyl acetate Vinyl pionate copolymer, vinyl acetate-ethylene copolymer, etc.
  • Vinyl ester (co) polymer vinyl acetate- (2-ethylhexyl acrylate) copolymer, polychlorinated butyl, polysalt-vinylidene, polystyrene and the like and their copolymers.
  • (meth) acrylic acid ester Tellurium (meth) acrylic acid (co) polymers, vinyl ester (co) polymers, polystyrene, and synthetic rubbers are preferably used.
  • the thermoplastic hydrophobic polymer particles may be a polymer polymer polymerized by any known method such as emulsion polymerization, suspension polymerization, solution polymerization, and gas phase polymerization. ,.
  • the polymer polymerized by the solution polymerization method or the gas phase polymerization method is made into fine particles by spraying a solution in an organic solvent of the polymer polymer into an inert gas and drying it. And a method in which a polymer is dissolved in an organic solvent immiscible in water, this solution is dispersed in water or an aqueous medium, and the organic solvent is distilled off to form fine particles.
  • the heat-meltable particles and the heat-fusible particles can be used as a dispersant or a stabilizer, for example, sodium lauryl sulfate, dough, etc.
  • a surfactant such as sodium decylbenzenesulfonate and polyethylene glycol, and a water-soluble resin such as polybutyl alcohol may be used.
  • tryletylamine, triethanolamine and so on are examples of the surfactant or a stabilizer.
  • the heat-fusible particles are preferably dispersible in water, and the average particle size is preferably 0.01 to 10 m from the viewpoint of on-image development and resolution. More preferably, it is 0.1-3 ⁇ m.
  • the composition of the heat-fusible particles may be continuously changed between the inside and the surface layer, or may be coated with a different material.
  • a coating method a known microcapsule formation method, a sol-gel method, or the like can be used.
  • the content of the heat-fusible particles in the constituent layer is more preferably 5 to 80% by mass, preferably 1 to 90% by mass of the entire layer.
  • the image-forming functional layer may contain a water-soluble binder.
  • water-soluble binders include polysaccharides, polyethylene oxide, polypropylene oxide, polybutyl alcohol, polyethylene glycol (PEG), polybutyl ether, and styrene butadiene.
  • examples thereof include copolymers, conjugation polymer latex of methyl methacrylate-butadiene copolymer, acrylic polymer latex, vinyl polymer latex, polyacrylamide, polytalic acid or salts thereof, and resins such as polybulurpyrrolidone. . [0097] Among them, it is preferable to use polyacrylic acid or a salt or polysaccharide thereof that does not deteriorate the printing performance!
  • the dry coating mass of the image-forming functional layer is preferably 0.1 to 1.5 g / m 2 , more preferably 0.1-1-1. Og / m 2 .
  • a known substrate used for a conventional printing plate material can be used.
  • the thickness of the substrate is not particularly limited as long as it can be attached to a printing press! /
  • Examples of the substrate include a metal plate, a plastic film, paper treated with polyolefin, a composite support obtained by appropriately bonding the above materials, and the like in the present invention.
  • a metal plate a plastic film, paper treated with polyolefin, a composite support obtained by appropriately bonding the above materials, and the like in the present invention.
  • an aluminum alloy (hereinafter referred to as aluminum) metal plate is preferably used.
  • Plastic films include polyethylene terephthalate and polyethylene naphthalate
  • polyester films such as polyethylene terephthalate (hereinafter sometimes abbreviated as PET) and polyethylene naphthalate (hereinafter sometimes abbreviated as PEN) are used as base materials. are preferably used.
  • a preferred polyester film is an unstretched polyester film, a uniaxially stretched polyester film, or a biaxially stretched polyester film.
  • a longitudinally stretched polyester film that is uniaxially stretched in the film extrusion direction (longitudinal direction) is particularly preferred.
  • PET is polymerized with terephthalic acid and ethylene glycol
  • PEN polymerized with naphthalene dicarboxylic acid and ethylene glycol as constituent components.
  • Dicarboxylic acid or diol constituting PET or PEN is used as another appropriate one, or May be a mixture of two or more third components and polymerized.
  • a suitable third component is a compound having a divalent ester-forming functional group. Examples of the dicarboxylic acid include the following.
  • Terephthalic acid isophthalic acid, phthalic acid, 2,6-naphthalenedicarboxylic acid, 2,7-naphthalenedicarboxylic acid, diphenylsulfone dicarboxylic acid, diphenyl ether dicarboxylic acid, diphenylethanedicarboxylic acid And cyclohexanedicarboxylic acid, diphenyldicarboxylic acid, diphenylthioether dicarboxylic acid, diphenylketone dicarboxylic acid, phenylindanedicarboxylic acid, and the like.
  • glycols examples include propylene glycol, tetramethylene glycol, cyclohexane dimethanol, 2,2-bis (4-hydroxyphenol) propane, 2,2-bis (4-hydroxyethoxy).
  • propane bis (4-hydroxyphenol) snorephone
  • bisphenol full orange hydroxyethyl ether diethylene glycol, neopentyl alcohol, hydroquinone, cyclohexanediol and the like.
  • a polyfunctional carboxylic acid or a polyhydric alcohol can also be mixed, but these can be mixed in an amount of about 0.005 to 5% by mass with respect to all the polyester components.
  • the intrinsic viscosity of the polyester film is preferably 0.5 to 0.8. In addition, different intrinsic viscosities may be mixed and used.
  • the method for polymerizing the polyester film is not particularly limited, and can be produced according to a conventionally known method for polymerizing a polyester.
  • polymerization is carried out by directly reacting a dicarboxylic acid component with a diol component, diesterifying one hydroxyl group of the diol to a dicarboxylic acid, and heating one of the diols under reduced pressure to distill off the excess diol.
  • a dialkyl ester for example, dimethyl ester
  • the diol component is subjected to an ester exchange reaction to distill alkyl alcohol (for example, methanol) to distill the diol.
  • transesterification catalysts include Ca (OAc) ⁇ ) O, Zn (OAc) ⁇ 2 ⁇ ⁇ , Mn (OAc) ⁇ 4 ⁇ ⁇ , Mg (OAc) ⁇ 4 ⁇ ⁇ , etc.
  • Thermal stabilizers include phosphoric acid, phosphorous acid, PO (OH) (CH), PO (OC H), P (OC H)
  • anti-coloring agents crystal nucleating agents, slipping agents, stabilizers, anti-blocking agents, UV absorbers, viscosity modifiers, clearing agents, antistatic agents, pH adjusters, dyes, pigments, etc. May be added.
  • the heat treatment is accomplished by the following means after cooling and winding after heat setting and then unwinding in a separate step.
  • a heat treatment method a transport method in which both ends of a film such as a tenter are gripped by pins or clips, a roll transport method using a plurality of roll groups, a method of transporting air by blowing air onto the film, and the like (Method of spraying heated air from one or both sides of a film surface from a plurality of slits), a method of using radiant heat by an infrared heater, a method of heat-treating a method of contacting with a plurality of heated rolls singly or in combination, In addition, it is preferable to hang the film by its own weight and use a method such as winding or the like below alone or in combination.
  • the tension of the heat treatment can be adjusted by adjusting the torque of the take-up roll and Z or the delivery roll, and / or by installing a dancer roll in the process and adjusting the load applied to it.
  • the processing temperature is preferably in the temperature range of 8 + 50 ° ⁇ to 8 + 150 ° ⁇ of polyester film, and 5 Pa to lMPa is more preferable as the transport tension. Is 5 Pa to 500 kPa, more preferably 5 Pa to 200 kPa, and the treatment time is preferably 30 seconds to 30 minutes, more preferably 30 seconds to 15 minutes.
  • the heat-treated polyester film is cooled from a temperature near Tg to room temperature and wound up by force, and in order to prevent deterioration of flatness due to cooling at this time, at least 5 ° between Tg and lowering to room temperature It is preferable to have a process of cooling at a speed of CZ seconds or more.
  • the water content of the substrate is preferably 0.5% by mass or less.
  • the moisture content of the substrate is D ′ represented by the following formula.
  • W is the mass of the support in a humidity-controlled equilibrium under an atmosphere of 25 ° C and 60% relative humidity
  • w ' is the mass of the support in a humidity-controlled equilibrium under an atmosphere of 25 ° C and 60% relative humidity. Represents moisture content.
  • the moisture content of the base material is preferably 0.5% by mass or less, more preferably 0.01 to 0.5% by mass, particularly preferably 0.01 to 0.3% by mass. %.
  • Means for controlling the moisture content of the base material to 0.5% by mass or less are as follows: (1) The support is heat-treated at 100 ° C or higher immediately before the coating liquid for the hydrophilic layer and other layers is applied. (2) Control the relative humidity in the process of applying the coating solution for the hydrophilic layer and other layers. (3) Before applying the coating solution for the hydrophilic layer and other layers, place the support at 100 ° C. For example, heat treatment, cover with a moisture-proof sheet, store, and apply immediately after opening. Two or more of these may be combined.
  • the particles may be organic or inorganic, which may be misaligned! /.
  • silica described in Swiss Patent No. 330, 158, etc. glass powder described in French Patent No. 1,296, 995, etc., British Patent No. 1, 173, No. 181 Alkaline earth metals or carbonates such as cadmium and zinc described in the specification and the like can be used.
  • Organic substances include starch described in U.S. Pat.No. 2,322,037, etc., starch derivatives described in Belgian Patent 625,451 and British Patent 981,198, etc.
  • Organic fine particles such as polyacrylonitrile, polycarbonates described in US Pat. No. 3,022,169 and the like can be used. The shape of the particles may be either regular or irregular.
  • polyester film substrate easy adhesion treatment or undercoat layer coating can be performed to give various functions.
  • Examples of the easy adhesion treatment include corona discharge treatment, flame treatment, plasma treatment, and ultraviolet irradiation treatment.
  • the undercoat layer a layer containing gelatin or latex or the like is preferably provided on the polyester film support.
  • the antistatic undercoat layer described in paragraph Nos. 0044 to 0116 of JP-A-7-191433 is preferably used.
  • the conductive polymer-containing layer described in paragraph Nos. 0031 to 0073 of JP-A-7-20596 is a conductive layer such as the metal oxide-containing layer described in paragraph Nos. 0074 to 0081 of JP-A-7-20596. It is preferred to have it! / ⁇ .
  • the conductive layer may be coated on the side of slippage as long as it is on the polyester film support, but is preferably coated on the opposite side of the image forming functional layer with respect to the support.
  • this conductive layer is provided, the chargeability is improved, the adhesion of dust and the like is reduced, and the whiteout failure during printing is greatly reduced.
  • the aluminum metal plate is not roughened or anodized to form a hydrophilic surface. It is preferable to use it after applying it.
  • the aluminum metal plate is preferably subjected to a degreasing treatment in order to remove the rolling oil on the aluminum surface prior to the roughening treatment.
  • a degreasing treatment using a solvent such as trichlene or thinner an emulsion degreasing treatment using an emulsion such as kesilon or triethanol, or the like is used.
  • an alkaline aqueous solution such as sodium hydroxide, potassium hydroxide, sodium carbonate, sodium phosphate or the like can be used for the degreasing treatment.
  • Dirt and acid film can also be removed.
  • the roughening of the substrate can be performed by chemical roughening, mechanical roughening, or a roughening treatment appropriately combining these.
  • an anodizing treatment is preferably performed.
  • a known method without particular limitation can be used for the method of anodizing treatment.
  • the anodized base material may be subjected to a sealing treatment as necessary.
  • These sealing treatments can be performed using known methods such as hot water treatment, boiling water treatment, water vapor treatment, dichromate aqueous solution treatment, nitrite treatment, and acetic acid ammonium treatment.
  • the anodized base material can be appropriately subjected to a surface treatment other than the sealing treatment.
  • a surface treatment include known treatments such as silicate treatment, phosphate treatment, various organic acid treatments, PVP A treatment, and boehmite toe treatment.
  • the treatment with an aqueous solution containing a bicarbonate described in JP-A-8-314157 or the treatment with an aqueous solution containing a bicarbonate may be followed by an organic acid treatment such as citrate.
  • the printing plate material of the present invention forms an image by irradiating an active ray from the surface having the image forming functional layer according to image data.
  • the image exposure according to the present invention more specifically, in the infrared and Z or near infrared region. Scanning exposure using a laser that emits light, that is, emits light in the wavelength range of 700 to 1500 nm is preferably used.
  • a gas laser may be used as the laser, but it is particularly preferable to perform scanning exposure using a semiconductor laser that emits light in the near infrared region.
  • any system can be used as long as it can form an image on the surface of a printing plate material in accordance with an image signal using a semiconductor laser. Even the device! /.
  • the printing plate material held along the cylindrical surface inside the fixed cylindrical holding mechanism is used in the circumferential direction of the cylinder (mainly using one or more laser beams from the inside of the cylinder).
  • the printing plate material held on the plate is scanned in the circumferential direction (main scanning direction) by rotating the drum using one or more laser beams from the outside of the cylinder. And exposing the entire surface of the printing plate material.
  • the scanning exposure method (3) is particularly preferred, and the exposure method (3) is used particularly for an apparatus that performs exposure on a printing apparatus.
  • the printing plate material on which an image has been formed in this way can be printed without being subjected to development processing.
  • the printing plate material after image formation is directly attached to the plate cylinder of the printing press, or image formation is performed after the printing plate material is attached to the plate cylinder of the printing press, and the water supply roller and Z or The non-image portion of the image forming layer can be removed by bringing the ink supply roller into contact with the printing plate material.
  • the non-image part removing step of the image forming functional layer according to the present invention can be performed by a normal printing sequence using a PS plate, and is a step performed by so-called on-press development processing. U is preferred.
  • the ink that can be used in the lithographic printing method of the present invention can be used for lithographic printing.
  • specific examples include rosin-modified phenolic resins and vegetable oils (such as flax oil, tung oil, soybean oil), petroleum-based solvents, pigments, and oxidation polymerization catalysts (cobalt, manganese). , Lead, iron, zinc, etc.), UV-curable UV inks composed of components such as acrylic oligomers, acrylic monomers, photopolymerization initiators and pigments, and the properties of oil-based inks. Hybrid inks that combine the properties of UV inks.
  • a known lithographic printing machine having a plate cylinder on which a printing plate material is mounted, a member for supplying dampening water on the printing plate surface, and a member for supplying ink can be used.
  • transesterification catalyst To 100 parts by mass of dimethyl terephthalate and 65 parts by mass of ethylene glycol, 0.05 part by mass of magnesium acetate hydrate was added as a transesterification catalyst, and transesterification was performed according to a conventional method. To the obtained product, 0.05 part by mass of antimony trioxide and 0.03 part by mass of trimethyl ester phosphate were added.
  • PET polyethylene terephthalate
  • a biaxially stretched PET film was prepared as follows.
  • a PET resin-coated pellet is vacuum-dried at 150 ° C for 8 hours, then melt-extruded in layers from a T die at 285 ° C, and brought into close contact with electrostatic printing on a 30 ° C cooling drum and cooled. The film was solidified to obtain an unstretched film.
  • This unstretched sheet was stretched 3.3 times in the longitudinal direction at 80 ° C using a roll-type longitudinal stretching machine. [0159] Following the obtained uniaxially stretched film, using a tenter-type transverse stretching machine, the first stretching zone was stretched by 50% of the total transverse stretching ratio at 90 ° C, and further at the second stretching zone at 100 ° C. Total transverse stretching Ratio 3. Stretched to 3 times.
  • pre-heat treatment was performed at 70 ° C for 2 seconds, and heat setting was further performed at the first fixing zone at 150 ° C for 5 seconds, and then heat setting was performed at the second fixing zone at 220 ° C for 15 seconds.
  • relax 5% in the lateral (width) direction at 160 ° C exit the tenter, cool to room temperature over 60 seconds, release the film from the clip, slit, wind up each, A biaxially stretched PET film was obtained.
  • the biaxially stretched PET film had a Tg of 79 ° C.
  • the obtained substrate had a thickness distribution of 2%.
  • the undercoating liquid a-1 was applied so that the dry film thickness was 0.8 / zm, and dried at 123 ° C. to provide the undercoating layer A-1 on the hydrophilic side.
  • the upper surface of the undercoat layer A-1 was subjected to a corona discharge treatment of 8 WZm 2 ', and the undercoat coating solution a-2 was applied to the undercoat layer A-1 with a dry film thickness of 0. .: Applied to L m, dried at 123 ° C, provided with subbing layer A-2, and further heat-treated at 140 ° C for 2 minutes to obtain substrate 1 with a single-sided subbing layer formed .
  • Car-on surfactant S-1 (2% by mass) 30 g Water was used to make 1 kg.
  • Anionic surfactant S-1 (2% by mass) 6g
  • Spherical silica matting agent (Nippon Shokubai Co., Ltd. Sea Hoster KE-P50) 2% by mass dispersion
  • the obtained aqueous polyester had an intrinsic viscosity of 0.33 (100 mlZg).
  • the weight average molecular weight was 80,000 to 100,000.
  • modified aqueous polyester B1 solution (vinyl component modification ratio 20 mass%) having a solid content concentration of 18 mass%.
  • a modified water-based polyester L-4 was prepared with a vinyl-based component modification ratio of 5% by mass.
  • Aluminum plate having a thickness of 0.24 mm AA1050 was degreased using an aqueous sodium hydroxide solution. The amount of aluminum dissolved was 2 gZm2. After thoroughly washing with pure water, it was immersed in a 1 mass% disodium hydrogenphosphate aqueous solution at 70 ° C for 30 seconds. Next, after thoroughly washing with pure water, the substrate 2 was obtained by drying.
  • Colloidal silica Snowtex - XS (Nissan Chemical Industries, Ltd., solid content 20 mass 0/0)
  • Matting agent PMMA average particle size 5.5 ⁇ m
  • compositions were sufficiently stirred and mixed using a homogenizer and then filtered to prepare a backcoating layer coating solution. [0177] (Application of back coating layer)
  • amount with the back coating layer was 2. OgZm 2.
  • composition shown in Table 1 was sufficiently stirred and mixed using a homogenizer, and then filtered to prepare a lower hydrophilic layer coating solution.
  • composition shown in Table 2 was sufficiently stirred and mixed using a homogenizer, and then filtered to prepare an upper hydrophilic layer coating solution.
  • Colloidal silica (alkaline): Snowtex I S
  • Porous particle Shilton AMT08L (manufactured by Mizusawa Chemical Co., Ltd.
  • Porous particles Shilton JC 1 20 (Mizuwazawa Chemical Co., Ltd.
  • Metal oxide dispersion (shown in Table 3) 30 parts
  • Water-soluble resin R— 1 130 (with silanol groups in the side chain)
  • Silicone surfactant FZ2161 (manufactured by Nippon Tunica) 0.1 part
  • the metal oxide dispersion used for the lower hydrophilic layer and the upper hydrophilic layer was placed in a sand grinder with the following dispersion composition together with steel beads with a diameter of 1.5 mm, and the number of revolutions was 1500 rpm and 2. Dispersed for 5 hours. After dispersion, the final volume was 200 g with pure water.
  • Table 3 shows the metal oxide particles used.
  • the coercive force (HC) was obtained by allowing metal oxide particles to stand in a magnetic field of 400 kAZm for 1 hour at 20 ° C using a vibrating sample magnetometer VSM-P7-15 type manufactured by Toei Industry Co., Ltd. Post HC was measured.
  • OS-2 SMT_02 (Sehan Media, average particle size 0.2 im FesO-i) 9,6
  • Ti02 rutile titanium oxide with an average particle size of 0.22jum
  • the hydrous acid-titanium slurry with a specific surface area of 260 m 2 / g obtained by the sulfuric acid method is prepared to 150 gZ liter as acid-titanium, and ⁇ is neutralized to 9 using 400 gZ liter of caustic soda.
  • the slurry was prepared using a salty-ferric iron solution of lOOg / liter as FeO.
  • Reduction was performed with gas at 500 ° C. for 5 hours to obtain a black powder.
  • Table 4 shows the details of the material for the image forming functional layer coating solution. After sufficiently stirring and mixing, the solution was filtered and coated on the upper hydrophilic layer prepared above.
  • Dispersion in which 20 parts by weight of pure water was added to 5% by weight of the solid content of an average particle size of 0.6 ⁇ and solid content of 40% by weight.
  • Dispersion liquid obtained by diluting 15 parts of hot melt particles with an average particle diameter of 0.6 m ) to a solid content of 5% by mass with pure water
  • Hydrodiether-modified starch (trade name: Benon) E66 Nissho Kagaku Co., Ltd. 2 parts Infrared dye 2 2 parts Sodium polyacrylate aqueous solution (trade name: Aqualic DL522,
  • substrate 2 aluminum substrate
  • the coating solution for the upper hydrophilic layer was applied using a wire bar to a dry weight of 1.80 gZm 2 and applied to 100 ° C with a length of 30 m.
  • the dried drying zone was passed at a transfer speed of 15 mZ.
  • the sample after application was aged at 60 ° C for 2 days.
  • the image forming layer coating solution having the composition shown in Table 3 below was applied onto the upper hydrophilic layer prepared above using a wire bar so that the dry mass was 0.55 g / m 2.
  • a thermal image forming layer was formed by passing through a drying zone set at ° C at a conveyance speed of 15 mZ. The coated sample was aged for 2 days at 50 ° C, and a lithographic printing plate material was obtained.
  • the lithographic printing plate material was cut to a width of 660 mm, and the one using the substrate 1 (PET substrate) was wound on a paper core having an outer diameter of 76 mm for 30 m to obtain a rolled lithographic printing plate material.
  • a material using base material 2 (aluminum base material) was cut to a width of 660 mm to obtain a sheet-like planographic printing plate material.
  • the metal oxide particles, silica particles, added resin or image forming layer material were changed as shown in Table 5, and in the same manner as in the preparation of the lithographic printing plate material, a roll shape was obtained. Alternatively, a sheet-like lithographic printing plate material was prepared.
  • the printing plate sample was cut in accordance with the exposure size and then fixed to the exposure drum by brazing.
  • a laser beam with a wavelength of 830 nm and a spot diameter of about 18 ⁇ m is used.
  • the exposure energy is 240 mj / cm 2 and 2,400 dpi (dpi is the number of dots per 2.54 cm), 175 lines. Then, an image was formed and an image-formed printing plate sample was prepared.
  • the printing start sequence was the PS printing sequence, and there was no special on-press development operation. When the plate surface was observed after printing, the non-image area of the printing plate sample was removed.
  • the printing start sequence was carried out using the PS printing sequence, and the number of sheets in which ink smears in the non-image area disappeared was evaluated and used as an index for initial ink setting. The smaller the number of sheets, the better the ink fillability.
  • the exposed printing plate sample was put on the printing machine and printed on the surface side under the above conditions for 50,000 sheets. After the ink was dried, it was inverted and the back side was printed up to 50,000 sheets under the above conditions. The number of printed sheets in which more than half of the dots in the 3% halftone dot image on the back side were missing was determined as the number of printed sheets. The higher the number of prints, the better.
  • Table 5 shows the results obtained by the above evaluation. From Table 5, the printing plate material of the present invention has excellent coating defect prevention properties that make it difficult for coating failures to occur during production, and high initial ink inking properties.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Thermal Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Architecture (AREA)
  • Structural Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Printing Plates And Materials Therefor (AREA)
  • Materials For Photolithography (AREA)

Abstract

 本発明は、製造時塗布故障が起きにくく塗布欠陥防止性に優れ、感度が高く、初期インキ着肉性、耐刷性に優れる印刷版材料、その製造方法及びそれを用いた平版印刷方法を提供する。この手段として、基材上に、親水性層及び画像形成機能層を有する印刷機上現像可能な印刷版材料であって、親水性層が、保磁力(HC)が400kA/mの磁場において8kA/m以下である金属酸化物粒子を含有する印刷版材料を特徴とする。

Description

明 細 書
印刷版材料、印刷版材料の製造方法及び平版印刷方法
技術分野
[0001] 本発明は印刷版材料、及びその製造方法、平版印刷方法に関し、特にコンビユー ター'トゥー'プレート (CTP)方式により画像形成が可能で、印刷機上現像可能な印 刷版材料、その製造方法及びそれを用いた平版印刷方法に関する。
背景技術
[0002] 印刷データのデジタルィ匕に伴 、、安価で取扱!/、が容易で PS版と同等の印刷適性 を有した CTP (コンピュータ一'トウ一'プレート)技術が求められて 、る。
[0003] 近年、地球環境への負荷の低減のために、特別な薬剤による現像液処理が不要な CTP印刷版への期待が高まっている。その中でも近年、印刷版材料に赤外サーマ ルレーザ一で画像を形成させた後に薬液で処理することなくそのまま印刷機に装着 し、湿し水とインキにより不要部分を除去してすぐに印刷可能な、いわゆる機上現像 可能な印刷版材料 (特許文献 1参照)を用いた印刷方法が注目を集めるようになって いる。
[0004] これらの印刷版材料は赤外サーマルレーザーで露光すると印刷版材料中に含有さ れる光熱変換素材により熱が発生し、それによつて画像を形成するものである。そし て光熱変換素材により発生した熱を利用する印刷機上現像可能な印刷版材料として は、基材上に光熱変換素材として金属酸化物粒子を含有する親水性層及び画像形 成機能層を有する印刷版材料が知られて ヽる (特許文献 2参照)。
[0005] し力しながら、上記のような従来の機上現像可能な印刷版材料を用いた印刷方法 では、塗布故障が起きやす力つたり、印刷感度が低力つたり、初期インキ着肉性が不 十分であったり、耐刷性が不十分であったりする場合があった。巿場では、これらの 問題点を解決した印刷版材料が強く要望されていた。
特許文献 1:特開 2000— 225780号公報
特許文献 2 :特開 2004— 167973号公報
発明の開示 発明が解決しょうとする課題
[0006] 本発明の目的は、製造時塗布故障が起きにくぐ塗布欠陥防止性に優れ、感度が高 ぐ初期インキ着肉性、耐刷性に優れる印刷版材料、その製造方法及びそれを用い た平版印刷方法を提供することにある。
課題を解決するための手段
[0007] 本発明の上記目的は、下記の手段により達成される。
1.基材上に親水性層及び画像形成機能層を有する印刷機上現像可能な印刷版材 料であって、親水性層が、保磁力(HC)力 OOkAZmの磁場において 8kAZm以 下である金属酸化物粒子を含有することを特徴とする印刷版材料。
2.前記金属酸化物粒子が、酸化チタン及び酸化鉄を主成分とする金属酸化物粒子 であることを特徴とする 1に記載の印刷版材料。
3.前記画像形成機能層が、熱溶融性粒子又は熱融着性粒子を含有することを特徴 とする 1又は 2に記載の印刷版材料。
4.前記金属酸化物粒子が、前記画像形成機能層に隣接する親水性層に含有され ていることを特徴とする 1から 3のいずれか 1項に記載の印刷版材料。
5.基材上に親水性層及び画像形成機能層を有する印刷機上現像可能な印刷版材 料の製造方法であって、親水性層を形成する親水性層塗布液に、保磁力(HC)が 4 OOkAZmの磁場において 8kAZm以下である金属酸化物粒子を含有させる工程 を有することを特徴とする印刷版材料の製造方法。
6. 1から 4のいずれ力 1項に記載の印刷版材料を画像露光した後に、印刷機に装着 し、湿し水及びインキを該印刷版材料の表面に供給して非画像部を除去し、印刷す ることを特徴とする平版印刷方法。
発明の効果
[0008] 本発明の上記構成により、製造時塗布故障が起きにくぐ塗布欠陥防止性に優れ、 感度が高ぐ初期インキ着肉性、耐刷性に優れる印刷版材料、その製造方法及びそ れを用いた平版印刷方法が提供できる。
発明を実施するための最良の形態 [0009] 本発明は、基材上に親水性層及び画像形成機能層を有する印刷機上現像可能な 印刷版材料において、親水性層が、保磁力(HC)が温度 20°Cにおける 400kAZm の磁場において 8kAZm以下である金属酸ィ匕物粒子を含有することを特徴とする。
[0010] 本発明では、特に親水性層に、保磁力(HC)が温度 20°Cにおける 400kAZmの 磁場において 8kAZm以下である金属酸ィ匕物粒子を含有させることにより、製造時 塗布故障が起きにくぐ塗布欠陥防止性に優れ、感度が高ぐ初期インキ着肉性、耐 刷性に優れる印刷版材料が得られる。
[0011] (金属酸化物粒子)
本発明においては、親水性層に保磁力(HC)が温度 20°Cにおける 400kAZmの 磁場において 8kAZm以下である金属酸ィ匕物粒子を含有することが特徴である。
[0012] 本発明において、保磁力(HC)とは、マグネットの磁ィ匕極性をひっくり返すために加 えなければならな!/ヽ逆向きの磁界の大きさを指し、下記する様に磁力計で測定する ことができる。
[0013] この保磁力が大き!/ヽと前記粒子を含有する塗布液及び塗布材料にお!ヽては、粒子 同士が再凝集して均一な分散体になりに《なり、様々な問題を生じやすくなる。
[0014] 保磁力 (HC)は磁力計で測定され、例えば東英工業株式会社製振動試料型磁力 計 VSM -P7- 15型などを用 、て測定できる。
[0015] 本発明に用いられる金属酸ィ匕物粒子の保磁力(HC)は、上記の様に 400kAZm の磁場において 8kAZm以下である力 好ましくは OAZm以上 6. 5kAZm以下で あり、更に好ましくは OAZm以上 5kAZm以下である。
[0016] こうした保磁力を有する本発明に係る金属酸化物粒子は、主に酸化チタン及び酸 化鉄力もなる金属酸ィ匕物粒子であることが好ましい。具体的には、特開平 1— 29802 8号報に記載のィルメナイト (FeTiO )粒子、シユードブルッカイト(Fe TiO )粒子、特
3 2 5 開平 3— 2276号報に記載のシユードブルッカイトとへマタイト (Fe O )—ィルメナイト
2 3
(FeTiO )の混合組成を有する粒子、特開 2001— 253717号報に記載の第一鉄塩
3
水溶液、加水分解性有機チタン化合物及び乳化剤を含有するェマルジヨンを噴霧 熱分解溶液として用いて噴霧熱分解法により生成した鉄 チタン複合酸化物粒子、 特開 2002— 129063号報記載のルチル型 TiO相の基体を Fe TiO相で被覆した 粒子、または特開 2005— 68323号報に記載の Fe TiOを主成分とする複合酸化物
2 4
を挙げることができ、また、 Tiに対する Fe (II)と Fe (III)の総量が 150〜300原子0 /0で Fe (II)と Fe (III)の総量に対する Fe (II)が 0. 50以上でありフーバー式マラー法によ る塗膜の L値が 9. 0以下である粒子が好ましく用いられる。
[0017] 本発明に係る金属酸ィ匕物粒子は、前記の公開特許公報に記載されて ヽる方法で 製造することができる。本発明に係る金属酸化物粒子は、環境並びに人体に対し比 較的安全、無害であることも特徴の一つである。
[0018] 本発明に係る金属酸ィ匕物粒子は黒色粒子であることが好ましぐ親水性層中で光 熱変換剤として使われる。
[0019] 光熱変換剤としては L*aV表色系における L*値力 ^以上 13以下であることが好まし く、更に好ましくは L*値が 0以上 10以下である。ここで、「L*a*b*表色系」とは、物体の 色を表すのに用いられる表色系であり、 1976年に国際照明委員会 (CIE)で規格ィ匕 され、 日本でも JIS (Z8729)に採用されている。 L*a*b*表色系では、明度を L*、色相 と彩度を示す色度を a*、 b*で表す。本発明においては、明度を表す指標である L*値 を黒色度の指標として評価する。この L*値が小さいほど黒色度に優れる。即ち黒色 粒子の L*の値が、 0以上 10以下であることとすることにより、光熱変換剤として、十分 な黒色度を有することとなる。
[0020] 本発明に係る金属酸化物粒子の添加量に対する光熱変換能は、粒子の分散度に も大きく影響を受け、分散が良好であるほど良好となるので、本発明に係る金属酸ィ匕 物粒子は、親水性層の塗布液に添加する前に、公知の方法 (例えば、特開 2002— 226842等に記載の如ぐ粒径 0. 2〜2mmの各種メディアとともにサンドグラインダ 一に入れて 2000〜8000回転 Z分の回転数で 1分〜 60分間分散する方法等)によ り分散して、分散液またはペーストとしておくことが好ましい。分散には必要に応じて 分散剤を使用することができる。分散剤としては公知のもの(例えば、特開 2002— 2 26842に記載の界面活性剤等)を使用することが出来る。分散剤の添加量は金属酸 化物粒子に対して 0. 01〜5質量%が好ましぐ 0. 1〜2質量%がより好ましい。
[0021] 本発明に係る印刷版材料を製造する際に、上記分散液またはペーストは、本発明 に係る親水性層塗布液に混合し、これを基材上に塗布して親水性層を設けるが、こ の場合、混合比は、親水性層塗布液に対して、上記分散液またはペーストは、 5〜8 5質量%の範囲で添加させ含有させることが好ましい。
また、この混合には、公知の分散機が使用できるが、その中でもメディアレス分散機 を用いて分散処理することが好ましい。メディアレス分散機のなかでも特に内部剪断 型メディアレス分散機が好ましく用いられる。内部剪断型メディアレス分散機とは、高 速回転するローターとステーターを有し、これらの間の狭小なクリアランスで塗布液内 部に剪断を与え分散する装置である。この分散機の例として、例えばェムテクニック 株式会社製のクレアミックス、浅田鉄鋼株式会社製トルネード、 -ロソアビ社製の高 圧ホモジナイザーやパーティクルサイザ一が上げられる。
[0022] また、分散処理力 塗布するまでの時間は、印刷機上現像性の面力 0〜3分程度 の間であることが好ましい。この分散処理は、塗布液の送液配管途中もしくは塗布液 送液循環配管途中に分散機を設置して行なうことが好ま 、。
[0023] また分散機を複数連結して処理効果を高めることもできる。
[0024] コーターに分散機を設置する態様としては、例えば特開平 5— 50001に記載され ているコーターチャンバ一内に攪拌ローターを内蔵する押し出しコーターの機構をス ライドコーターに応用して用いる態様などがある。
[0025] このような塗布液の分散は、塗布液を送液循環しながら行なうこともできる。塗布液 の送液循環は、具体的には、例えば塗布液をスライドコーターのダイスチャンバ一に 塗布必要量よりも過剰に供給し、過剰の塗布液をコーターダイスチャンバ一から引き 抜き、引き抜いた塗布液を塗布液供給タンク、もしくは、塗布液供給タンクカゝらコータ 一までの送液配管に戻すことで行なうことができる。
[0026] 親水性層に含まれる金属酸ィ匕物粒子の平均粒子径は、平均粒子径が: L m以下 であることが好ましぐ平均粒子径が 0. 01〜0. 8 /z mの範囲にあることがより好まし い。平均粒子径を 1 m以下とすることで、添加量に対する光熱変換能がより良好と なり、平均 1次粒子径を 0. 01〜0. 8 mの範囲とすることで添加量に対する光熱変 換能がより良好となる。但し、添加量に対する光熱変換能は粒子の分散度にも大きく 影響を受け、分散が良好であるほど良好となる。従って、これらの金属酸ィ匕物粒子は 層の塗布液に添加する前に、別途公知の方法により分散して、分散液 (ペースト)とし ておくことが好ましい。平均 1次粒子径が 0. 01 m未満となると、分散が困難となる ため好ましくない。
[0027] 平均粒子径は、数平均一次粒径を指し、粒子径は、透過型電子顕微鏡観察によつ て 10000倍に拡大し、ランダムに 100個の粒子のそれぞれ短辺と長辺を実測した合 計値を 200で割った値を ヽぅ。
[0028] また、本発明に係る金属酸ィ匕物粒子の添加量としては、感度、アブレーシヨンカス の発生防止の面から、親水性層全固形分に対して 5質量%以上、 80質量%未満で あり 10質量%以上、 70質量%未満がより好ましぐさらに好ましくは 15質量%以上 6 0質量%未満の範囲である。
[0029] (親水性層)
本発明に係る親水性層とは、本発明の印刷版材料を印刷版として用いる際にイン クに対する親和性が低くインクを反撥し、且つ水に対する親和性が高く水を保水する 非画像部、となり得る層であり、親水性層の上 (基材と反対側)に画像形成層が設け られる。
[0030] 親水性層は、複数層からなってもよい。この場合、本発明に係る前記金属酸化物粒 子は、画像形成層に隣接する親水性層に含まれることが好ま 、態様である。
[0031] 本発明に係る親水性層は、多孔質構造を有することが好ましい。
[0032] 前記多孔質構造を有する親水性層を形成するためには、下記に記載の親水性マト リクスを形成する親水性素材が好ましく用いられる。
[0033] 親水性マトリクスを形成する親水性素材としては、金属酸ィ匕物が好ましく用いられる
[0034] 金属酸ィ匕物としては、下記の親水性素材が好ましく用いられるが、上記の本発明に 係る金属酸ィ匕物粒子が、親水性素材としての機能を一部兼ねてもよい。
[0035] <親水性素材 >
(金属酸化物)
金属酸ィ匕物としては金属酸ィ匕物粒子が好ましぐ例えば、コロイダルシリカ、アルミ ナゾル、チタ-ァゾル、その他の金属酸ィ匕物のゾルが挙げられる。該金属酸化物微 粒子の形態としては球状、針状、羽毛状、その他の何れの形態でもよぐ平均粒径と しては 3〜: LOOnmの範囲が好ましぐ平均粒径が異なる数種の金属酸化物粒子を併 用することもできる。また、粒子表面に表面処理がなされていてもよい。
[0036] 上記金属酸ィ匕物粒子は、その造膜性を利用して結合剤としての使用が可能である 。有機の結合剤を用いるよりも親水性の低下が少なぐ親水性層への使用に適して いる。
[0037] (コロイダルシリカ)
中でも、コロイダルシリカが特に好ましく使用できる。コロイダルシリカは比較的低温 の乾燥条件であっても造膜性が高いという利点があり、良好な強度を得ることができ る。コロイダルシリカとしては、後述するネックレス状コロイダルシリカ、平均粒径 20η m以下の微粒子コロイダルシリカを含むことが好ましぐ更にコロイダルシリカはコロイ ド溶液とした場合アルカリ性を呈するものが好ましい。
[0038] ネックレス状コロイダルシリカとは、一次粒子径カ 111のオーダーである球状シリカの 水分散系の総称であり、一次粒粒子径が 10〜50nmの球状コロイダルシリカが 50〜 400nmの長さに結合した「パールネックレス状」のコロイダルシリカを意味する。パー ルネックレス状 (即ち、真珠ネックレス状)とは、コロイダルシリカのシリカ粒子が連なつ て結合した状態のイメージ力 真珠ネックレスの様な形状をして 、ることを意味して ヽ る。
[0039] ネックレス状コロイダルシリカを構成するシリカ粒子同士の結合は、シリカ粒子表面 に存在する― SiOH基が脱水結合した - Si- O - Si-と推定される。ネックレス状の コロイダルシリカとしては、具体的には日産化学工業社製の「スノーテックス 3」シ リーズなどが挙げられ、製品名としては「スノーテックス— PS— S (連結した状態の平 均粒子径は 110nm程度)」、「スノーテックス PS— M (連結した状態の平均粒子径 は 120nm程度)」及び「スノーテックス PS— L (連結した状態の平均粒子径は 170 nm程度)」があり、これらに各々対応する酸性の製品が「スノーテックス— PS— S— O 」、「スノーテックス PS— M— 0」及び「スノーテックス PS— L— 0」である。
[0040] ネックレス状コロイダルシリカを添加することにより、層の多孔性を確保しつつ強度を 維持することが可能となり、親水性層マトリクスの多孔質ィ匕材として好ましく使用できる 。これらの中でも、アルカリ性である「スノーテックス PS— S」、「スノーテックス PS— M 」、 「スノーテックス PS— L」を用いると親水性層の強度が向上し、また印刷枚数が多
V、場合でも地汚れの発生が抑制され、特に好ま 、。
[0041] また、コロイダルシリカは粒子径が小さいほど結合力が強くなることが知られており、 本発明では平均粒径が 20nm以下であるコロイダルシリカを用いることが好ましぐ更 に好ましくは 3〜15nmのものである。
[0042] 前述のようにコロイダルシリカの中ではアルカリ性のもの力 地汚れ発生を抑制する 効果が高く特に好ましい。平均粒径力 Sこの範囲にあるアルカリ性のコロイダルシリカと しては、例えば、 日産化学社製の「スノーテックス— 20 (粒子径 10〜20nm)」、「スノ 一テックス— 30 (粒子径 10〜20nm)」、 「スノーテックス— 40 (粒子径 10〜20nm)」
、 「スノーテックス一 N (粒子径 10〜20nm)」、 「スノーテックス一 S (粒子径 8〜: L lnm
)」、 「スノーテックス一 XS (粒子径 4〜6nm)」が挙げられる。
[0043] 平均粒径が 20nm以下であるコロイダルシリカは、前述のネックレス状コロイダルシ リカと併用することで、形成する層の多孔質性を維持しながら強度を更に向上させる ことが可能となり特に好ま 、。
[0044] 平均粒径が 20nm以下であるコロイダルシリカ Zネックレス状コロイダルシリカの比 率は 95Z5〜5Z95の範囲が好ましぐ更に好ましくは 70Z30〜20Z80の範囲が より好ましく、 60/40〜30/70の範囲力更に好まし!/ヽ。
[0045] 本発明において、親水性層マトリクス構造の多孔質ィ匕材として、粒径が 1 μ m未満 の多孔質金属酸ィ匕物粒子を含有することができる。
[0046] (多孔質金属酸化物粒子)
多孔質金属酸ィ匕物粒子としては、以下に記載の多孔質シリカ粒子、多孔質アルミノ シリケート粒子またはゼォライト粒子を好ましく用いることができる。
[0047] (多孔質シリカ粒子、多孔質アルミノシリケート粒子)
多孔質シリカ粒子は一般に湿式法または乾式法により製造される。湿式法では、ケ ィ酸塩水溶液を中和して得られるゲルを乾燥、粉砕するか、もしくは中和して析出し た沈降物を粉砕することで得ることができる。乾式法では四塩化珪素を水素と酸素と 共に燃焼し、シリカを析出することで得られる。これらの粒子は製造条件の調整により
、多孔性や粒径を制御することが可能である。多孔質シリカ粒子としては、湿式法の ゲル力 得られるものが特に好まし 、。
[0048] 多孔質アルミノシリケート粒子は、例えば、特開平 10— 71764号公報に記載されて いる方法により製造される。即ち、アルミニウムアルコキシドと珪素アルコキシドを主成 分として加水分解法により合成された非晶質な複合体粒子である。粒子中のアルミ ナとシリカの比率は 1 :4〜4 : 1の範囲で合成することが可能である。また、製造時に その他の金属のアルコキシドを添加して 3成分以上の複合体粒子として製造したもの も本発明に使用できる。これらの複合体粒子も製造条件の調整により多孔性や粒径 を制御することが可能である。
[0049] 粒子の多孔性としては、細孔容積で 0. 5mlZg以上であることが好ましぐ 0. 8ml Zg以上であることがより好ましぐ 1. 0〜2. 5mlZgであることが更に好ましい。
[0050] (ゼオライト粒子)
ゼォライトは結晶性のアルミノケィ酸塩であり、細孔径が 0. 3〜: Lnmの規則正しい 三次元網目構造の空隙を有する多孔質体である。
[0051] また、親水層を構成する親水性層マトリクス構造は、層状鉱物粒子を含有すること ができる。
[0052] この層状鉱物粒子としては、例えば、カオリナイト、ノ、ロイサイト、タルク、スメクタイト( モンモリロナイト、ノイデライト、ヘクトライト、サボナイト等)、バーミキユライト、マイ力( 雲母)、クロライトといった粘土鉱物及び、ハイド口タルサイト、層状ポリケィ酸塩 (カネ マイト、マカタイト、アイァライト、マガディアイト、ケニヤアイト等)等が挙げられる。特に 、単位層(ユニットレイヤー)の電荷密度が高いほど極性が高ぐ親水性も高いと考え られる。好ましい電荷密度としては 0. 25以上、更に好ましくは 0. 6以上である。この ような電荷密度を有する層状鉱物としては、スメクタイト(電荷密度 0. 25〜0. 6 ;陰電 荷)、バーミキユライト (電荷密度 0. 6〜0. 9 ;陰電荷)等が挙げられる。特に、合成フ ッ素雲母は粒径等安定した品質のものを入手することができ好ましい。また、合成フ ッ素雲母の中でも膨潤性のものが好ましぐ自由膨潤であるものが更に好ましい。
[0053] また、上記の層状鉱物のインターカレーシヨンィ匕合物(ビラードクリスタル等)や、ィ オン交換処理を施したもの、表面処理 (シランカップリング処理、有機ノインダ一との 複合化処理等)を施したものも使用することができる。 [0054] 層状鉱物粒子のサイズとしては、層中に含有されて!ヽる状態で (膨潤工程、分散剥 離工程を経た場合も含めて)、平均粒径 (粒子の最大長)が 1 μ m未満であり、平均ァ スぺタト比が 50以上であることが好ましい。粒子サイズが上記範囲にある場合、薄層 状粒子の特徴である平面方向の連続性及び柔軟性が塗膜に付与され、クラックが入 りに《乾燥状態で強靭な塗膜とすることができる。また、粒子物を多く含有する塗布 液においては、層状粘土鉱物の増粘効果によって、粒子物の沈降を抑制することが できる。粒子径が上記範囲より大きくなると、塗膜に不均一性が生じて、局所的に強 度が弱くなる場合がある。また、アスペクト比が上記範囲以下である場合、添加量に 対する平板状の粒子数が少なくなり、増粘性が不充分となり、粒子物の沈降を抑制 する効果が低減する。
[0055] 層状鉱物粒子の含有量としては、層全体の 0. 1〜30質量%であることが好ましぐ 1〜10質量%であることがより好ましい。特に膨潤性合成フッ素雲母ゃスメクタイトは 少量の添加でも効果が見られるため好ま 、。層状鉱物粒子は塗布液に粉体で添 カロしてもよ!/、が、簡便な調液方法 (メディア分散等の分散工程を必要としな 、)でも良 好な分散度を得るために、層状鉱物粒子を単独で水に膨潤させたゲルを調製した後 、塗布液に添加することが好ましい。
[0056] 親水層を構成する親水性層マトリクスには、その他の添加素材としてケィ酸塩水溶 液も使用することができる。ケィ酸 Na、ケィ酸 K、ケィ酸 Liといったアルカリ金属ケィ 酸塩が好ましぐその SiO /M O比率はケィ酸塩を添加した際の塗布液全体の pH
2 2
が 13を超えない範囲となるように選択することが無機粒子の溶解を防止する上で好 ましい。
[0057] また、金属アルコキシドを用いた、いわゆるゾルーゲル法による無機ポリマーもしく は有機 無機ハイブリッドポリマーも使用することができる。ゾルーゲル法による無機 ポリマーもしくは有機 無機ハイブリッドポリマーの形成については、例えば、「ゾル ゲル法の応用」(作花済夫著 Zァグネ承風社発行)に記載されている力、または本 書に引用されて 、る文献に記載されて 、る公知の方法を使用することができる。
[0058] また、親水性層は、水溶性榭脂を含有してもよ!/ヽ。
[0059] 水溶性榭脂としては、例えば、多糖類、ポリエチレンオキサイド、ポリプロピレンォキ サイド、ポリビュルアルコール、ポリエチレングリコール(PEG)、ポリビュルエーテル、 スチレン ブタジエン共重合体、メチルメタクリレートーブタジエン共重合体の共役ジ ェン系重合体ラテックス、アクリル系重合体ラテックス、ビニル系重合体ラテックス、ポ リアクリルアミド、ポリビニルピロリドン等の樹脂が挙げられる力 本発明に用いられる 水溶性榭脂としては、多糖類を用いることが好まし 、。
[0060] 多糖類としては、デンプン類、セルロース類、ポリウロン酸、プルランなどが使用可 能である力 特にメチルセルロース塩、カルボキシメチルセルロース塩、ヒドロキシェ チルセルロース塩等のセルロース誘導体が好ましぐカルボキシメチルセルロースの ナトリウム塩やアンモ-ゥム塩がより好ま 、。これは親水性層に多糖類を含有させる ことにより、親水性層の表面形状を好ましい状態形成する効果が得られるためである
[0061] 親水性層の表面は、 PS版のアルミ砂目のように 0. 1〜 20 mピッチの凹凸構造を 有することが好ましぐこの凹凸により保水性や画像部の保持性が向上する。このよう な凹凸構造は、親水性層マトリクスに適切な粒径のフィラーを適切な量含有させて形 成することも可能である力 親水性層の塗布液に前述のアルカリ性コロイダルシリカと 前述の水溶性多糖類とを含有させ、親水性層を塗布、乾燥させる際に相分離を生じ させて形成することが、より良好な印刷適性を有する構造を得ることができ好ましい。
[0062] 凹凸構造の形態 (ピッチ及び表面粗さなど)は、アルカリ性コロイダルシリカの種類 及び添加量、水溶性多糖類の種類及び添加量、その他添加材の種類及び添加量、 塗布液の固形分濃度、ウエット膜厚、乾燥条件等で適宜コントロールすることが可能 である。
[0063] 親水性マトリクス構造部に添加される水溶性榭脂は、少なくともその一部が水溶性 の状態のまま水に溶出可能な状態で存在することが好ま U、。水溶性の素材であつ ても、架橋剤等によって架橋し、水に不溶の状態になると、その親水性は低下して印 刷適性を劣化させる懸念があるためである。また、更にカチオン性榭脂を含有しても よぐカチオン性榭脂としては、例えば、ポリエチレンァミン、ポリプロピレンポリアミン 等のようなポリアルキレンポリアミン類またはその誘導体、第 3級アミノ基ゃ第 4級アン モ-ゥム基を有するアクリル榭脂、ジアクリルァミン等が挙げられる。カチオン性榭脂 は微粒子状の形態で添加してもよぐ例えば、特開平 6— 161101号公報に記載の カチオン性マイクロゲルが挙げられる。
[0064] 本発明に係る親水性を設けるには、親水性層用の塗布液を用いて、塗布、乾燥す ることにより設層することが好ましい態様である。上述のように、本発明に係る金属酸 化物粒子を、親水性層用の塗布液に含有させるには、金属酸ィ匕物粒子を添加する 前に、公知の方法により分散して、分散液またはペーストとしておくことが好ましい。
[0065] 即ち、本発明の製造方法においては、基材上に、親水性層及び画像形成機能層 を有する印刷機上現像可能な印刷版材料の製造方法であって、親水性層を形成す る親水性層塗布液に、本発明に係る保磁力(HC)が 400kAZmの磁場において 8k AZm以下である金属酸ィ匕物粒子を含有させる工程を有する。
[0066] また、この工程が、本発明に係る金属酸化物粒子を分散してから親水性層塗布液 に添加する工程である態様が好ましい態様である。
[0067] 親水性層を塗設する為に用いられる塗布液には、塗布性改善等の目的で水溶性 の界面活性剤を含有させることができ、 S係または F系等の界面活性剤を使用するこ とができるが、特に Si元素を含む界面活性剤を使用することが印刷汚れを生じる懸 念がなく好ましい。該界面活性剤の含有量は親水性層全体 (塗布液としては固形分 )の 0. 01〜3質量%が好ましぐ 0. 03〜1質量%が更に好ましい。
[0068] 親水性層にはリン酸塩を含むことができる。本発明では、親水性層の塗布液がアル カリ性であることが好ましいため、リン酸塩としてはリン酸三ナトリウムやリン酸水素二 ナトリウムとして添加することが好ましい。リン酸塩を添加することで、印刷時の網の目 開きを改善する効果が得られる。リン酸塩の添加量としては水和物を除 、た有効量と して 0. 1〜5質量%が好ましぐ 0. 5〜2質量%が更に好ましい。
[0069] (光熱変換剤)
本発明にお ヽては、親水性層が本発明に係る金属酸ィ匕物粒子を光熱変換剤とし て含むが、前記金属酸化物粒子以外の光熱変換剤を含んでもょ ヽ。
[0070] また、本発明に係る画像形成機能層、親水性オーバーコート層及びその他に設け られる層には光熱変換剤を含ませてもよ ヽ。
[0071] このような光熱変換素材としては赤外吸収色素または顔料が挙げられる。 [0072] (赤外吸収色素)
一般的な赤外吸収色素であるシァニン系色素、クロコニゥム系色素、ポリメチン系 色素、ァズレニウム系色素、スクヮリウム系色素、チォピリリウム系色素、ナフトキノン 系色素、アントラキノン系色素などの有機化合物、フタロシアニン系、ナフタロシア- ン系、ァゾ系、チォアミド系、ジチオール系、インドア二リン系の有機金属錯体などが 挙げられる。具体的には、特開昭 63— 139191号、同 64— 33547号、特開平 1—1 60683号、同 1— 280750号、同 1— 293342号、同 2— 2074号、同 3— 26593号、 同 3— 30991号、同 3— 34891号、同 3— 36093号、同 3— 36094号、同 3— 3609 5号、同 3— 42281号、同 3— 97589号、同 3— 103476号、同 7— 43851号、同 7 102179号、特開 2001— 117201の各公報等に記載の化合物が挙げられる。こ れらは一種または二種以上を組み合わせて用いることができる。
[0073] 顔料としては、カーボン、グラフアイト、金属、上記金属酸化物粒子以外の金属酸化 物等が挙げられる。
[0074] カーボンとしては特にファーネスブラックやアセチレンブラックの使用が好ましい。粒 度(d50)は lOOnm以下であることが好ましぐ 50nm以下であることが更に好ましい
[0075] グラフアイトとしては粒径が 0. 5 μ m以下、好ましくは lOOnm以下、更に好ましくは
50nm以下の微粒子を使用することができる。
[0076] 金属としては粒径が 0. 5 μ m以下、好ましくは lOOnm以下、更に好ましくは 50nm 以下の微粒子であれば何れの金属であっても使用することができる。形状としては球 状、片状、針状等何れの形状でもよい。特にコロイド状金属微粒子 (Ag、 Au等)が好 ましい。
[0077] 金属酸ィ匕物としては、可視光城で黒色を呈して!、る素材または素材自体が導電性 を有するか、半導体であるような素材を使用することができる。
[0078] (画像形成機能層)
本発明における、印刷機上現像可能な印刷版材料とは、印刷機上現像可能な画 像形成機能層を有する印刷版材料である。
[0079] 印刷機上現像可能な画像形成層とは、画像露光の後、特別な薬剤による処理を行 うことなぐ平版印刷機上で、湿し水、または湿し水および印刷インキ、により非画像 部が除去されて非画像部である親水性層が露出され、印刷可能な印刷版となし得る 層である。
[0080] 本発明の画像形成機能層としては、熱溶融性粒子または熱融着性粒子を含有す る画像形成機能層が好まし ヽ。
[0081] (熱溶融性粒子)
本発明に係る画像形成機能層に用いることができる熱溶融性粒子とは、熱可塑性 素材の中でも特に溶融した際の粘度が低ぐ一般的にワックスとして分類される素材 で形成された粒子である。
[0082] 物性としては、保存性、インク着肉性の面力も軟ィ匕点 40°C以上 120°C以下、融点 6 0°C以上 150°C以下であることが好ましぐ軟ィ匕点 40°C以上 100°C以下、融点 60°C 以上 120°C以下であることが更に好ましい。
[0083] 使用できる素材としては、パラフィン、ポリオレフイン、ポリエチレンワックス、マイクロ クリスタリンワックス、脂肪酸系ワックスが挙げられる。これらは分子量 800〜10000程 度のものであり、また乳化しやすくするためにこれらのワックスを酸ィ匕し、水酸基、エス テル基、カルボキシル基、アルデヒド基、ペルォキシド基などの極性基を導入すること もできる。更には軟ィ匕点を下げたり作業性を向上させたりするためにこれらのワックス に、例えば、ステアロアミド、リノレンアミド、ラウリルアミド、ミリステルアミド、硬化牛脂 肪酸アミド、パルミトアミド、ォレイン酸アミド、米糖脂肪酸アミド、ヤシ脂肪酸アミドまた はこれらの脂肪酸アミドのメチロール化物、メチレンビスステラロアミド、エチレンビスス テラロアミドなどを添加することも可能である。また、クマロン一インデン榭脂、ロジン 変性フエノール榭脂、テルペン変性フエノール榭脂、キシレン榭脂、ケトン樹脂、ァク リル榭脂、アイオノマー、これらの榭脂の共重合体も使用することができる。
[0084] これらの中でも、ポリエチレン、マイクロクリスタリン、脂肪酸エステル、脂肪酸の何れ かを含有することが好ましい。これらの素材は融点が比較的低ぐ溶融粘度も低いた め、高感度の画像形成を行うことができる。また、これらの素材は潤滑性を有するため 、印刷版材料の表面に剪断力が加えられた際のダメージが低減し、擦りキズ等による 印刷汚れ耐性が向上する。 [0085] これらの熱溶融性粒子は水に分散可能であることが好ましぐその平均粒径は機上 現像性の面から 0. 01〜10 111でぁることが好ましぐょり好ましくは0. 05〜3 /ζ πιで ある。
[0086] これらの熱溶融性粒子を水に分散するには、非イオン性界面活性剤、ァ-オン性 界面活性剤、カチオン性界面活性剤または高分子界面活性剤を用いることが好まし い。これらの化合物を用いることで熱溶融性微粒子の水分散物を安定ィ匕でき、かつ 故障がな 、均一な塗布物を得ることができる。
[0087] また、熱溶融性粒子は内部と表層との組成が連続的に変化していたり、もしくは異 なる素材で被覆されていてもよい。被覆方法は公知のマイクロカプセル形成方法、ゾ ルゲル法等が使用できる。
[0088] 構成層中での熱溶融性粒子の含有量としては、層全体の 1〜90質量%が好ましく 、 5〜80質量%が更に好ましい。
[0089] (熱融着性粒子)
熱融着性粒子としては、熱可塑性疎水性高分子重合体粒子が挙げられ、該熱可 塑性疎水性高分子重合体粒子の軟化温度に特定の上限はな!/、が、温度は高分子 重合体微粒子の分解温度より低いことが好ましい。また、高分子重合体の重量平均 分子量(Mw)は 10, 000〜1, 000, 000の範囲であること力好まし!/、。
[0090] 熱可塑性疎水性高分子重合体粒子を構成する高分子重合体の具体例としては、 例えば、ポリプロピレン、ポリブタジエン、ポリイソプレン、エチレン ブタジエン共重 合体等のジェン (共)重合体類、スチレン ブタジエン共重合体、メチルメタタリレート ブタジエン共重合体、アクリロニトリル ブタジエン共重合体等の合成ゴム類、ポリ メチルメタタリレート、メチルメタクリレートー(2—ェチルへキシルアタリレート)共重合 体、メチルメタクリレートーメタクリル酸共重合体、メチルアタリレート一(N—メチロー ルアクリルアミド)共重合体、ポリアクリロニトリル等の (メタ)アクリル酸エステル、(メタ) アクリル酸(共)重合体、ポリ酢酸ビニル、酢酸ビニループ口ピオン酸ビニル共重合体 、酢酸ビニルーエチレン共重合体等のビニルエステル(共)重合体、酢酸ビニルー(2 —ェチルへキシルアタリレート)共重合体、ポリ塩化ビュル、ポリ塩ィ匕ビユリデン、ポリ スチレン等及びそれらの共重合体が挙げられる。これらのうち、(メタ)アクリル酸エス テル、(メタ)アクリル酸 (共)重合体、ビニルエステル (共)重合体、ポリスチレン、合成 ゴム類が好ましく用いられる。
[0091] 熱可塑性疎水性高分子重合体粒子は、乳化重合法、懸濁重合法、溶液重合法、 気相重合法等、公知の何れの方法で重合された高分子重合体力 なるものでもよ 、 。溶液重合法または気相重合法で重合された高分子重合体を微粒子化する方法と しては、高分子重合体の有機溶媒に溶解液を不活性ガス中に噴霧、乾燥して微粒 子化する方法、高分子重合体を水に非混和性の有機溶媒に溶解し、この溶液を水 または水性媒体に分散、有機溶媒を留去して微粒子化する方法等が挙げられる。
[0092] また、熱溶融性粒子、熱融着性粒子は、何れの方法にぉ 、ても、必要に応じ重合 あるいは微粒子化の際に分散剤、安定剤として、例えば、ラウリル硫酸ナトリウム、ド デシルベンゼンスルホン酸ナトリウム、ポリエチレングリコール等の界面活性剤やポリ ビュルアルコール等の水溶性榭脂を用いてもよい。また、トリェチルァミン、トリェタノ ールァミン等を含有させてもょ 、。
[0093] また、熱融着性粒子は水に分散可能であることが好ましぐその平均粒径は機上現 像性、解像度の面から 0. 01〜10 mであることが好ましぐより好ましくは 0. 1〜3 μ mであ 。
[0094] また、熱融着性粒子は内部と表層との組成が連続的に変化していたり、もしくは異 なる素材で被覆されていてもよい。被覆方法は公知のマイクロカプセル形成方法、ゾ ルゲル法等が使用できる。
[0095] 構成層中の熱融着性粒子の含有量としては、層全体の 1〜90質量%が好ましぐ 5 〜80質量%が更に好ましい。
[0096] (水溶性バインダー)
画像形成機能層には、水溶性バインダーを含有してもよぐ水溶性バインダーとし ては、多糖類、ポリエチレンオキサイド、ポリプロピレンオキサイド、ポリビュルアルコー ル、ポリエチレングリコール(PEG)、ポリビュルエーテル、スチレン ブタジエン共重 合体、メチルメタクリレートーブタジエン共重合体の共役ジェン系重合体ラテックス、 アクリル系重合体ラテックス、ビニル系重合体ラテックス、ポリアクリルアミド、ポリアタリ ル酸あるいはその塩、ポリビュルピロリドン等の樹脂が挙げられる。 [0097] その中でも印刷性能を劣化させないポリアクリル酸あるいはその塩又は多糖類を用 、ることが好まし!/、。
[0098] また上述した光熱変換素材を含有させることできる。画像形成機能層の乾燥塗布 質量は好ましくは 0. 1〜1. 5g/m2、より好ましくは 0. 15-1. Og/m2である。
[0099] (基材)
本発明に係る基材としては、従来の印刷版材料に用いられる公知の基材を使用す ることがでさる。
[0100] 基材の厚さとしては、印刷機に取り付け可能であれば特に制限されるものではな!/、
1S 通常 50〜500 μ mのものが一般的に取り扱!/、やす!/、。
[0101] 基材としては、例えば、金属板、プラスチックフィルム、ポリオレフイン等で処理され た紙、上記材料を適宜貼り合わせた複合支持体等が挙げられるが、本発明において は、特にプラスチックフィルム及びアルミニウムまたはアルミニウム合金(以下アルミ- ゥムとする)金属板が好ましく用いられる。
[0102] プラスチックフィルムとしては、ポリエチレンテレフタレート、ポリエチレンナフタレート
、ポリイミド、ポリアミド、ポリカーボネート、ポリスルホン、ポリフエ-レンオキサイド、セ ルロースエステル類等のフィルムを挙げることができる。
[0103] 本発明では、これらのプラスチックフィルムのうち、特にポリエチレンテレフタレート( 以降、略して PETという場合がある)、ポリエチレンナフタレート(以降、 PENと略すこ とがある)などのポリエステルフィルムが基材として好ましく用いられる。
[0104] さらに特開平 10— 10676号に記載の方法で得られた 120°C30秒での熱寸法変 化率が 0. 001%以上 0. 04%以下の支持体を用いることが好ましい。
[0105] 好ましいポリエステルフィルムとしては、未延伸ポリエステルフィルム、一軸延伸ポリ エステルフィルムまたは二軸延伸ポリエステルフィルムである。
[0106] このうちフィルムの押出し方向(縦方向)に一軸延伸した縦延伸ポリエステルフィル ムが特に好ましい。
[0107] PETはテレフタル酸とエチレングリコール、また PENはナフタレンジカルボン酸とェ チレングリコールを構成成分として重合されたものである。
[0108] PETまたは PENを構成するジカルボン酸またはジオールを他の適当な 1種、また は 2種以上の第 3成分を混合して重合したものでもよい。適当な第 3成分としては、 2 価のエステル形成官能基を有する化合物で、例えば、ジカルボン酸の例として次の ようなものを挙げることができる。
[0109] テレフタル酸、イソフタル酸、フタル酸、 2, 6—ナフタレンジカルボン酸、 2, 7—ナフ タレンジカルボン酸、ジフエ-ルスルホンジカルボン酸、ジフエニルエーテルジカルボ ン酸、ジフエ-ルエタンジカルボン酸、シクロへキサンジカルボン酸、ジフエ二ルジカ ルボン酸、ジフエ-ルチオエーテルジカルボン酸、ジフエ-ルケトンジカルボン酸、フ ェニルインダンジカルボン酸等を挙げることができる。
[0110] また、グリコールの例としては、プロピレングリコール、テトラメチレングリコール、シク 口へキサンジメタノール、 2, 2—ビス(4—ヒドロキシフエ-ル)プロパン、 2, 2—ビス(4 —ヒドロキシエトキシフエ-ル)プロパン、ビス(4—ヒドロキシフエ-ル)スノレホン、ビス フエノールフルオレンジヒドロキシェチルエーテル、ジエチレングリコール、ネオペン チルダリコール、ハイドロキノン、シクロへキサンジオール等を挙げることができる。
[0111] 第 3成分としては多官能性カルボン酸や多価アルコールも混合することができるが 、これらは全ポリエステル構成成分に対して 0. 001〜5質量%程度混合することがで きる。
[0112] ポリエステルフィルムの固有粘度は 0. 5〜0. 8であることが好ましい。また、固有粘 度の異なるものを混合して使用してもよい。
[0113] ポリエステルフィルムの重合方法は特に限定があるわけではなぐ従来公知のポリ エステルの重合方法に従って製造できる。
[0114] 例えば、ジカルボン酸成分をジオール成分と直接エステルイ匕反応させ、ジオール の片方の水酸基をジカルボン酸にジエステル化し、更に一方のジオールを減圧下加 熱して余剰のジオールを留去することにより重合させる直接エステルイ匕法、またジカ ルボン酸成分としてジアルキルエステル(例えば、ジメチルエステル)を用いて、これ とジオール成分とでエステル交換反応させてアルキルアルコール(例えば、メタノー ル)を留出させてジオールの片方の水酸基をジカルボン酸にエステル化し、更に余 剰のジオール成分を減圧下で加熱して留去することにより重合させるエステル交換 法を用いることができる。 [0115] 触媒としては、通常のポリエステルの合成に使用するエステル交換触媒、重合反応 触媒及び耐熱安定剤を用いることができる。例えば、エステル交換触媒としては、 Ca (OAc) ·Η O, Zn(OAc) · 2Η Ο, Mn (OAc) ·4Η Ο, Mg (OAc) ·4Η Ο等を挙
2 2 2 2 2 2 2 2 げることができ、重合反応触媒としては Sb O、 GeOを挙げることができる。また、耐
2 3 2
熱安定剤としてはリン酸、亜リン酸、 PO (OH) (CH ) 、 PO (OC H ) 、 P (OC H )
3 3 6 5 3 6 5 3 等を挙げることができる。また、合成時の各過程で着色防止剤、結晶核剤、すべり剤 、安定剤、ブロッキング防止剤、紫外線吸収剤、粘度調節剤、透明化剤、帯電防止 剤、 pH調整剤、染料、顔料等を添加させてもよい。
[0116] 印刷時の寸法を安定ィ匕させカラー印刷時の色ズレを防ぐために、延伸及び熱固定 後のポリエステルフィルムにつ 、ては熱処理をすることが好まし 、。
[0117] 熱処理は熱固定終了後冷却して巻き取った後に、別工程で巻きほぐしてから、以 下のような手段で達成するのがよ 、。
[0118] 熱処理する方法としては、テンターのようなフィルムの両端をピンやクリップで把持 する搬送方法、複数のロール群によるロール搬送方法、空気をフィルムに吹き付けて 浮揚させるエアー搬送等により搬送させる方法 (複数のスリットから加熱空気をフィル ム面の片面あるいは両面に吹き付ける方法)、赤外線ヒーター等による輻射熱を利用 する方法、加熱した複数のロールと接触させる方法等を単独または複数組み合わせ て熱処理する方法、またフィルムを自重で垂れ下がらせ、下方で巻き等搬送方法等 を単独あるいは複数組み合わせて用いることが好まし 、。
[0119] 熱処理の張力調整は、巻き取りロール及び Zまたは送り出しロールのトルクを調整 すること、及び/または工程内にダンサーロールを設置し、これに加える荷重を調整 することで達成できる。
[0120] 熱処理中及び Zまたは熱処理後の冷却時に張力を変化させる場合、これらの工程 前後及び Zまたは工程内にダンサーロールを設置し、それらの荷重を調整すること で所望の張力状態を設定してもよい。また、振動的に搬送張力を変化させるには、熱 処理ロール間スパンを小さくすることにより有効に行うことができる。
[0121] 熱処理は熱収縮の進行を妨げずに、その後の熱処理 (熱現像)時の寸法変化を小 さくする上で、できるだけ搬送張力を低くし、熱処理時間を長くすることが望ましい。 [0122] 処理温度としてはポリェステルフィルムの丁8 + 50°〇〜丁8+ 150°〇の温度範囲が 好ましぐその温度範囲で、搬送張力としては 5Pa〜lMPaが好ましぐより好ましくは 5Pa〜500kPa、更に好ましくは 5Pa〜200kPaであり、処理時間としては 30秒〜 30 分が好ましくより好ましくは 30秒〜 15分である。上記の温度範囲、搬送張力範囲及 び処理時間にすることにより、熱処理時に支持体の熱収縮の部分的な差により支持 体の平面性が劣化することもなぐ搬送ロールとの摩擦等により細かいキズ等の発生 ち押さ免ることがでさる。
[0123] 熱処理は所望の寸法変化率を得るために少なくとも 1回は行うことが好ましぐ必要 に応じて 2回以上実施することも可能である。
[0124] 熱処理したポリエステルフィルムを Tg付近の温度から常温まで冷却して力 巻き取 り、この時の冷却による平面性の劣化を防ぐために、 Tgを跨いで常温まで下げるまで の間に少なくとも 5°CZ秒以上の速度で冷却する工程を有することが好まし 、。
[0125] ポリエステルフィルム基材の場合、露光装置等における搬送を良好に行うためには
、基材の含水率は 0. 5質量%以下であることが好ましい。基材の含水率とは下記式 で表される D' である。
[0126] D' (質量0 /o) = (w' W ) X 100
式中、 W は 25°C、 60%相対湿度の雰囲気下で調湿平衡にある支持体の質量、 w' は 25°C、 60%相対湿度の雰囲気下で調湿平衡にある支持体の水分含量を表 す。
[0127] 基材の含水率は 0. 5質量%以下であることが好ましぐ 0. 01〜0. 5質量%である ことが更に好ましぐ特に好ましくは 0. 01〜0. 3質量%である。
[0128] 基材の含水率を 0. 5質量%以下に制御する手段としては、(1)親水性層及びその 他の層の塗布液を塗布する直前に支持体を 100°C以上で熱処理する、(2)親水性 層及びその他の層の塗布液を塗布する工程の相対湿度を制御する、 (3)親水性層 及びその他の層の塗布液を塗布する前に支持体を 100°C以上で熱処理し、防湿シ ートでカバーして保管し、開封後直ちに塗布する等が挙げられる。これらを 2以上組 み合わせて行ってもよい。
[0129] (微粒子) ポリエステル基材中にはハンドリング性向上のため、 0. 01〜10 111の粒子を1〜1 OOOppm添カ卩することが好まし!/、。
[0130] この粒子としては有機物及び無機物の 、ずれでもよ!/、。
[0131] 例えば、無機物としては、スイス特許第 330, 158号明細書等に記載のシリカ、仏 国特許第 1, 296, 995号明細書等に記載のガラス粉、英国特許第 1, 173, 181号 明細書等に記載のアルカリ土類金属またはカドミウム、亜鉛等の炭酸塩等を用いるこ とができる。有機物としては、米国特許第 2, 322, 037号明細書等に記載の澱粉、 ベルギー特許第 625, 451号明細書や英国特許第 981, 198号明細書等に記載さ れた澱粉誘導体、特公昭 44— 3643号公報等に記載のポリビニルアルコール、スィ ス特許第 330, 158号明細書等に記載のポリスチレン或いはポリメタアタリレート、米 国特許第 3, 079, 257号明細書等に記載のポリアクリロニトリル、米国特許第 3, 02 2, 169号明細書等に記載されたポリカーボネートのような有機微粒子を用いることが できる。粒子の形状は定形、不定形どちらでもよい。
[0132] (基材への下引き層塗布)
ポリエステルフィルム基材においては、各種の機能を持たせるために易接着処理や 下引き層塗布を行うことができる。
[0133] 易接着処理としては、コロナ放電処理や火炎処理、プラズマ処理、紫外線照射処 理等が挙げられる。
[0134] 下引き層としては、ゼラチンやラテックスを含む層等をポリエステルフィルム支持体 上に設けること等が好ましい。その中でも特開平 7— 191433号段落番号 0044〜01 16に記載の帯電防止下塗り層が好ましく用いられる。又特開平 7— 20596号公報段 落番号 0031〜0073に記載の導電性ポリマー含有層ゃ特開平 7— 20596号公報 段落番号 0074〜0081に記載の金属酸化物含有層のような導電性層を設けること が好まし!/ヽ。導電性層はポリエステルフィルム支持体上であれば ヽずれの側に塗設 されてもよいが、好ましくは支持体に対し画像形成機能層の反対側に塗設するのが 好ましい。この導電性層を設けると帯電性が改良されてゴミなどの付着が減少し、印 刷時の白抜け故障などが大幅に減少する。
[0135] アルミニウム金属板は親水性表面を形成するために粗面化処理、陽極酸化処理な どを施されて使用されるのが好ましい。
[0136] アルミニウム金属板は、粗面化処理に先立ってアルミニウム表面の圧延油を除去す るために脱脂処理を施すことが好ましい。脱脂処理としては、トリクレン、シンナー等 の溶剤を用いる脱脂処理、ケシロン、トリエタノール等のェマルジヨンを用いたェマル ジョン脱脂処理等が用いられる。また、脱脂処理には、水酸化ナトリウム、水酸化カリ ゥム、炭酸ナトリウム、リン酸ナトリウム等のアルカリの水溶液を用いることもできる。脱 脂処理にアルカリ水溶液を用いた場合、上記脱脂処理のみでは除去できな!、汚れ や酸ィ匕皮膜も除去することができる。
[0137] 基材の粗面化としては化学的粗面化処理や機械的粗面化あるいは、これらを適宜 組み合わせた粗面化処理により行うことができる。
[0138] 粗面化処理の次に、陽極酸ィ匕処理を行うことが好ましい。
[0139] 陽極酸化処理の方法には特に制限はなぐ公知の方法を用いることができる。
[0140] 陽極酸化処理された基材は、必要に応じ封孔処理を施してもよい。これら封孔処理 は、熱水処理、沸騰水処理、水蒸気処理、重クロム酸塩水溶液処理、亜硝酸塩処理 、酢酸アンモ-ゥム処理等公知の方法を用いて行うことができる。
[0141] また、陽極酸化処理された基材は適宜、上記封孔処理以外の表面処理を行うこと もできる。表面処理としては、ケィ酸塩処理、リン酸塩処理、各種有機酸処理、 PVP A処理、ベーマイトイ匕処理といった公知の処理が挙げられる。また、特開平 8— 3141 57号に記載の炭酸水素塩を含有する水溶液による処理や、炭酸水素塩を含有する 水溶液による処理に続けてクェン酸のような有機酸処理を行ってもよい。
[0142] また、塗布層との接着性を向上させるために、塗布面に易接着処理や下塗り層塗 布を行うことが好ましい。例えば、ケィ酸塩ゃシランカップリング剤等のカップリング剤 を含有する液に浸漬するか、液を塗布した後、十分な乾燥を行う方法が挙げられる。
[0143] <平版印刷方法 >
(画像露光)
本発明の印刷版材料は、画像形成機能層を有する面から画像データに応じて活 性光線を照射して画像が形成される。
[0144] 本発明に係る画像露光としては、より具体的には赤外及び Zまたは近赤外領域で 発光する、即ち 700〜 1500nmの波長範囲で発光するレーザーを使用した走査露 光が好ましく用いられる。
[0145] レーザーとしてはガスレーザーを用いてもよいが、近赤外領域で発光する半導体レ 一ザ一を使用して、走査露光を行うことが特に好ましい。
[0146] 本発明に用いることができる走査露光に好適な装置としては、半導体レーザーを用 いてコンピュータ力もの画像信号に応じて印刷版材料表面に画像を形成可能な装置 であればどのような方式の装置であってもよ!/、。
[0147] 一般的には、(1)平板状保持機構に保持された印刷版材料に 1本もしくは複数本 のレーザービームを用いて 2次元的な走査を行って印刷版材料全面を露光する方式
、(2)固定された円筒状の保持機構の内側に、円筒面に沿って保持された印刷版材 料に、円筒内部から 1本もしくは複数本のレーザービームを用いて円筒の周方向(主 走査方向)に走査しつつ、周方向に直角な方向(副走査方向)に移動させて印刷版 材料全面を露光する方式、 (3)回転体としての軸を中心に回転する円筒状ドラム表 面に保持された印刷版材料に、円筒外部から 1本もしくは複数本のレーザービーム を用いてドラムの回転によって周方向(主走査方向)に走査しつつ、周方向に直角な 方向(副走査方向)に移動させて印刷版材料全面を露光する方式が挙げられる。
[0148] 本発明に関しては特に(3)の走査露光方式が好ましぐ特に印刷装置上で露光を 行う装置にぉ 、ては、(3)の露光方式が用いられる。
[0149] このようにして画像形成がなされた印刷版材料は、現像処理を行うことなく印刷を行 うことができる。画像形成後の印刷版材料をそのまま印刷機の版胴に取り付けるか、 あるいは印刷版材料を印刷機の版胴に取り付けた後に画像形成を行い、版胴を回 転させながら水供給ローラー及び Zまたはインク供給ローラーを印刷版材料に接触 させることで画像形成層の非画像部を除去することが可能である。
[0150] 本発明に係る画像形成機能層の非画像部の除去工程としては、 PS版を使用した 通常の印刷シークェンスで行うことができるものであり、いわゆる機上現像処理により なされる工程であることが好ま U、態様である。
[0151] (インキ)
本発明の平版印刷方法に用いることができるインキとしては、平版印刷に使用でき るインキであればいずれのインキでも良いが、具体的には、ロジン変性フエノール榭 脂と植物油 (アマ-油、桐油、大豆油等)、石油系溶剤、顔料、酸化重合触媒 (コバ ルト、マンガン、鉛、鉄、亜鉛等)等の成分よりなる油性インキ、及びアクリル系オリゴ マー、アクリルモノマー、光重合開始剤、顔料等の成分よりなる紫外線硬化型の UV インキ、さらに、油性インキの性質と UVインキの性質を併せ持つハイブリッドインキが 挙げられる。
[0152] (印刷機)
本発明の平版印刷方法においては、印刷版材料を装着する版胴、印刷版面上に 湿し水を供給する部材、インクを供給する部材を有する公知の平版印刷機を用いる ことができる。
実施例
[0153] 以下、実施例により本発明を具体的に説明するが、本発明はこれらに限定されるも のではない。尚、実施例における「部」は、特に断りない限り「質量部」を表す。
[0154] (基材 1の作製)
(PET樹脂)
テレフタル酸ジメチル 100質量部、エチレングリコール 65質量部にエステル交換触 媒として酢酸マグネシウム水和物 0. 05質量部を添カ卩し、常法に従ってエステル交換 を行った。得られた生成物に、三酸化アンチモン 0. 05質量部、リン酸トリメチルエス テル 0. 03質量部を添加した。
[0155] 次いで、徐々に昇温、減圧にし、 280°C、 66Paで重合を行い、固有粘度 0. 70の ポリエチレンテレフタレート (PET)榭脂を得た。
[0156] 以上のようにして得られた PET榭脂を用いて、以下のようにして二軸延伸 PETフィ ルムを作製した。
[0157] (二軸延伸 PETフィルム)
PET樹脂をペレツトイ匕したものを 150°Cで 8時間真空乾燥した後、 285°Cで Tダイか ら層状に溶融押しだし、 30°Cの冷却ドラム上で静電印カロしながら密着させ、冷却固 化させ、未延伸フィルムを得た。
[0158] この未延伸シートをロール式縦延伸機を用いて、 80°Cで縦方向に 3. 3倍延伸した [0159] 得られた一軸延伸フィルムに引き続き、テンター式横延伸機を用いて、第一延伸ゾ ーン 90°Cで総横延伸倍率の 50%延伸し、さらに第二延伸ゾーン 100°Cで総横延伸 倍率 3. 3倍になるように延伸した。
[0160] 次いで、 70°C2秒間、前熱処理し、さらに第一固定ゾーン 150°Cで 5秒間熱固定し 、第二固定ゾーン 220°Cで 15秒間熱固定した。次いで 160°Cで横 (幅手)方向に 5 %弛緩処理し、テンターを出た後に、室温まで 60秒かけて冷却し、フィルムをクリップ から解放、スリットし、それぞれ巻き取り、厚さ 175 のニ軸延伸 PETフィルムを得た 。この二軸延伸 PETフィルムの Tgは 79°Cであった。なお、得られた基材の厚み分布 は 2%であった。
[0161] 二軸延伸 PETフィルムの画像形成機能層上に表面に 8WZm2'分のコロナ放電処 理
を施し、下引塗布液 a— 1を乾燥膜厚が 0. 8 /z mとなるよう塗布し、 123°Cで乾燥し、 親水性側に下引層 A—1を設けた。
[0162] この後、下引層 A— 1の上表面に 8WZm2'分のコロナ放電処理を施し、下引層 A —1の上には下引塗布液 a— 2を乾燥膜厚が 0.: L mとなるよう塗布し、 123°Cで乾 燥して下引層 A— 2を設け、更に 140°Cで 2分間熱処理し、片面下引層形成済みの 基材 1を得た。
[0163] (下引塗布液 a— 1)
スチレン Zグリシジルメタタリレート Zブチルアタリレート = 60Z39Zl (モル比)の 3 元系共重合ラテックス (Tg = 75°C)固形分濃度 30質量% 250g
スチレン Zグリシジルメタタリレート Zブチルアタリレート = 20Z40Z40(モル比)の 3元系共重合ラテックス (Tg = 20°C)固形分濃度 30質量% 25g
ァ-オン系界面活性剤 S— 1 (2質量%) 30g 水で lkgに仕上げた。
[0164] (下引塗布液 a— 2)
変性水性ポリエステル L 4溶液(23質量%) 31g クラレ製ェクセバール(ポリビュルアルコールとエチレンの共重合体) RS— 2117の 5質量%水溶液 58g
ァニオン系界面活性剤 S— 1 (2質量%) 6g
硬膜剤 H— 1 (0. 5質量%) 100g
真球状シリカマット剤(日本触媒社のシーホスター KE— P50) 2質量%分散液
10g
以上に蒸留水をカ卩えて 1000mlとした。
[0165] [化 1]
S
Figure imgf000027_0001
Figure imgf000027_0002
[0166] (水性ポリエステル (L 4)溶液の調製)
テレフタル酸ジメチル 35. 4質量部、イソフタル酸ジメチル 33. 63質量部、 5—スル ホイソフタル酸ジメチルナトリウム塩 17. 92質量部、エチレングリコール 62質量部、酢 酸カルシウム一水塩 0. 065質量部、酢酸マンガン四水塩 0. 022質量部を、窒素気 流下において、 170〜220°Cでメタノールを留去しながらエステル交換反応を行った 後、リン酸トリメチル 0. 04質量部、重縮合触媒とし三酸ィ匕アンチモン 0. 04質量部及 び 1、 4ーシクロへキサンジカルボン酸 6. 8質量部を加え、 220〜235°Cの反応温度 で、ほぼ理論量の水を留去しエステルイ匕を行った。
[0167] その後、更に反応系内を約 1時間かけて減圧、昇温し最終的に 280°C、 133Pa以 下で約 1時間重縮合を行 ヽ、水性ポリエステルを作製した。
[0168] 得られた水性ポリエステル固有粘度は 0. 33 (100mlZg)であった。
[0169] また、重量平均分子量は 80, 000〜100, 000であった。
[0170] 次いで、撹拌翼、環流冷却管、温度計を付した 2Lの 3つ口フラスコに、純水 850ml を入れ、撹拌翼を回転させながら、水性ポリエステルを 150g徐々に添加した。 [0171] 室温でこのまま 30分間撹拌した後、 1. 5時間かけて内温が 98°Cになるように加熱 し、この温度で 3時間加熱溶解した。加熱終了後、 1時間かけて室温まで冷却し、一 夜放置して、 15質量%の水性ポリエステル溶液 A1を調製した。
[0172] 《変性水性ポリエステル溶液の調製》
撹拌翼、環流冷却管、温度計、滴下ロートを付した 3Lの 4つ口フラスコに、前記 15 質量%の水性ポリエステル A1溶液 1900mlを入れ、撹拌翼を回転させながら、内温 度を 80°Cまで加熱する。
[0173] この中に、過酸化アンモ-ゥムの 24%水溶液を 6. 52mlカ卩え、モノマー混合液 (メ タクリル酸グリシジル 28. 5g、アクリル酸ェチル 21. 4g、メタクリル酸メチル 21. 4g)を 30分間かけて滴下し、さらに 3時間反応を続ける。
[0174] その後、 30°C以下まで冷却、濾過して、固形分濃度が 18質量%の変性水性ポリェ ステル B1溶液 (ビニル系成分変性比率 20質量%)を調製した。またビニル系成分変 性比率 5質量%にしたものを変性水性ポリエステル L— 4とした。
[0175] (基材 2 (アルミニウム基材))
厚さ 0. 24mmのアルミ板: AA1050を水酸化ナトリウム水溶液を用いて脱脂した。 アルミの溶解量は 2gZm2であった。純水で十分に洗浄した後に、 70°Cの 1質量%リ ン酸水素ニナトリウム水溶液に 30秒間浸漬した。次いで、純水で十分に洗浄した後 に乾燥して基材 2を得た。
[0176] 〔バックコーティング層用塗布液の調製〕
コロイダルシリカ:スノーテックス— XS (日産化学社製、固形分 20質量0 /0)
33. 60咅
アクリルエマルシヨン: DK— 05 (岐阜セラック社製、固形分 48質量0 /0)
14. 00咅
マット剤(PMMA平均粒径 5. 5 μ ) 0. 56部
純水 51. 84
固形分濃度 14質量%
これらの組成をホモジナイザーを用いて十分に攪拌混合した後、濾過してバックコ 一ティング層塗布液を作製した。 [0177] (バックコーティング層の塗布)
ノックコーティング層の塗布液を上記基材 1の下引層 A— 1と反対側の面に、 8W/ m2Zminのコロナ放電処理を施し、ワイヤーバー # 6を用いて下引き済みサンプル に塗布し 15mの長さの 100°Cに設定押された乾燥ゾーンを搬送スピード 15mZ分の 速度で通過させた。
[0178] バックコーティング層の付量は 2. OgZm2であった。
[0179] (下層親水性層)
表 1の組成をホモジナイザーを用いて十分に攪拌混合した後、濾過して下層親水 性層塗布液を調製した。
[0180] [表 1]
Figure imgf000029_0001
[0181] (上層親水性層)
表 2の組成をホモジナイザーを用いて十分に攪拌混合した後、濾過して上層親水 性層塗布液を調製した。
[0182] [表 2] 素材
コロイダルシリカ(アルカリ系) : スノーテックス一 S
15部
(日産化学社製、 固形分 30質量%)
コロイダルシリカ(アルカリ系): スノ一テックス一 PSM
22 .9部
(日産化学社製、 固形分 20質量%)
シリカゾル : MP— 4540M (平均粒径 0 .45 μ ιη、 日産化学社製、
5部
固形分 30質量%)
多孔質粒子 シルトン AMT08L (水澤化学社製、
20部
多孔質アルミノシリケ一ト粒子、 平均粒径 0 .8 »
多孔質粒子 シルトン JC一 20(水澤化学社製、
5部
多孔質アルミノシリケート粒子、 平均粒径 2 m)
金属酸化物分散物 (表 3に示す) 30部
水溶性樹脂: R—1 130 (側鎖にシラノール基の
1部
ポリビニルアルコール樹脂クラレ社製 クラレ Rポリマー)
赤外色素 1 1部
シリコン系界面活性剤: FZ2161 (日本ュニカー社製) 0. 1部
[0183] [化 2] 赤外色素 1
Figure imgf000030_0001
[0184] 下層親水性層と上層親水性層に用いた金属酸化物分散物は、下記分散物組成を 直径 1. 5mmのスチールビーズとともにサンドグラインダーに入れ、 1500回転 Z分 の回転数で 2. 5時間分散した。分散後、純水にて仕上がり量 200gにした。
[0185] (分散物組成)
金属酸化物粒子 59. 6g
Na PO (10%水溶液) 4g
3 4
純水 116. 4g
用いた金属酸ィ匕物粒子を表 3に示す。なお、保磁力 (HC)は東英工業株式会社製 振動試料型磁力計 VSM— P7— 15型を用いて、 20°Cにおいて 400kAZmの磁 場に金属酸ィ匕物粒子を 1時間静置した後 HCを測定した。
[表 3] 番号 金属酸化物粒子 保磁力(kA/m)
os— 1 BL200(チタン工業社製、 平均粒径 0.2 ID FesO 11.0
OS— 2 SMT_02(セハンメディア社製、 平均粒径 0.2 im FesO-i) 9,6
OS— 3 BL100 (チタン工業社製、 平均粒径 0.27jtim FesO.) 6.0
平均粒径 0.22jumの Ti02(ルチル型酸化チタン)と
OS— 4 0.8
Fe?T i 相を主成分とする金属酸化物
[0187] (OS— 4の製造方法)
硫酸法により得られた比表面積 260m2/gの含水酸ィ匕チタンスラリーを酸ィ匕チタン として 150gZリットルに調製し、 400gZリットルの苛性ソーダを用いて ρΗを 9に中和 する。
[0188] 2時間撹拌後、 200gZリットルの塩酸により PHを 6に調整してろ過洗浄を行った。
洗浄を行った含水酸ィ匕チタンをリパルプし酸ィ匕チタンとして lOOg/リットルに調製後 、そのスラリーに Fe Oとして lOOg/リットルの塩ィ匕第二鉄溶液を用い酸ィ匕チタン 1
2 3
質量部に対し 1質量部添加した後、 200gZリットルの苛性ソーダ溶液を滴下して、該 スラリーの pHを 7に調整して含水'酸ィ匕チタン表面に水酸ィ匕鉄を被覆した。
[0189] 1時間撹拌した後、ろ過、洗浄を行 ヽ、 110°Cで乾燥した。乾燥物を磁製ルツボに 入れ、電気炉にて 900°Cで 1時間焼成を行い Fe TiO相を有する酸化チタンを合成
2 5
した。冷却後、得られた Fe TiO相を有する酸ィ匕チタンを水素ガスと炭酸ガスの混合
2 5
ガスにより 500°Cで 5時間還元を行って、黒色粉末を得た。
[0190] 〔画像形成機能層塗布液の調製〕
表 4に画像形成機能層塗布液の素材の詳細を示す。十分に攪拌混合した後、濾過 して上記で作製した上層親水性層の上に塗布した。
[0191] [表 4] 素材
H I— D ! SPER A1 18 (岐阜セラック社製、 カルナバワックスェマルジヨン
平均粒子径 0.25 μ πκ 軟化点 65 、 融点 80°C;、 t40°Cでの溶融粘度 8cps、 51部 固形分 40質量%)を固形分 5質量%に純水で希釈した分散液
マイク□クリスタリンワックスェマルジヨン A206(岐阜セラック社製、
平均粒子径 0.6 ^、 固形分 40質量%)を固形分 5質量%に純水で 20部 希尺した分散液
H I - D I SPE A— 514(株式会社岐阜セラック製造所
熱溶融性粒子平均粒径 0 .6 m)を固形分 5質量%に 15部 純水で希釈した分散液
ステアリン酸アミ ド 0. 1部 ィソプロパノール 0. 1部
2, 4, 7, 9ーテ トラメチル一 5—デシン一4,
7 _ジォ一ルージポリ才キシエチレン一エーテル O . f 部
(商品名:サーフィ ノール 465 エアープロダクツジャパン株式会社製)
ヒドロキジエーテル変性澱粉(商品名:ベノン」E66 日澱化學株式会社製) 2部 赤外色素 2 2部 ポリアクリル酸ナト リゥム水溶液(商品名: アクアリック DL522、
9.7部 株式会社日本触媒、 平均分子 S 17万 固形分 30 .5%:水溶性樹脂)
[0192] [化 3] 赤外色素 2
Figure imgf000032_0001
HNEt3
[0193] (下層、上層親水性層の塗布)
それぞれの下層親水性層塗布液を基材 1の下引き塗布面にワイヤーバーを用いて
、乾燥質量 2. 8gZm2になるように塗布し 15mの長さの 100°Cに設定された乾燥ゾ ーンを搬送スピード 15mZ分の速度で通過させた。
[0194] 弓 Iき続き上層親水層の塗布液をワイヤーバーを用いて、乾燥質量 1. 80gZm2に なるように塗布し塗布し 30mの長さの 100°Cに設定された乾燥ゾーンを搬送スピード
15mZ分の速度で通過させた。
[0195] 一方基材 2 (アルミニウム基材)は上層親水層の塗布液のみをワイヤーバーを用い て,乾燥質量 1. 80gZm2になるように塗布し塗布し 30mの長さの 100°Cに設定され た乾燥ゾーンを搬送スピード 15mZ分の速度で通過させた。塗布後のサンプルは 6 0°Cで 2日間のエイジングを行なった。
[0196] (画像形成層の塗布)
下記表 3の組成の画像形成層塗布液を上記で作製した上層親水性層の上にワイ ヤーバーを用いて、乾燥質量 0. 55g/m2になるように塗布し、 30mの長さの 70°Cに 設定された乾燥ゾーンを搬送スピード 15mZ分の速度で通過させ、感熱画像形成 層を形成した。塗布後のサンプルは 50°Cで 2日間のエイジングを行ない、平版印刷 版材料が得られた。
[0197] 上記平版印刷版材料を 660mm幅に断裁し、基材 1 (PET基材)を使用したものは 外径 76mmの紙コアに 30m卷回し、ロール状平版印刷版材料を得た。一方、基材 2 (アルミニウム基材)を用いたものも 660mm幅に断裁し、シート状平版印刷版材料を 得た。
[0198] 親水性層中の、金属酸化物粒子、シリカ粒子、添加榭脂または画像形成層の素材 を表 5に示すように変更し、上記平版印刷版材料の作製と同様にして、ロール状また はシート状の平版印刷版材料を作製した。
[0199] <評価 >
露光方法
印刷版試料は、露光サイズに合わせて切断した後に、露光ドラムに卷付け固定した 。露光には波長 830nm、スポット径約 18 μ mのレーザービームを用い、露光エネル ギーを 240mj/cm2として、 2, 400dpi (dpiとは、 2. 54cm当たりのドット数を表す。) 、 175線で画像を形成し、画像形成した印刷版試料を作製した。
[0200] 印刷方法
印刷装置:三菱重工工業 (株)製 DAIYA1— Fを用いて、湿し水はァスト口マーク 3 (株式会社日研ィ匕学研究所製) 2質量%水溶液、インクはスペースカラーフュージョン G ST 紅 N (大日本インキ化学工業株式会社製)を用いて印刷評価を行った。耐刷 性評価以外はコート氏を用いて印刷を行った。表印刷時にはパウダー(商品名:ニッ 力リコ M (ニツカ (株)製))を使用し、印刷装置のパウダー目盛 10で噴霧した。
[0201] 《塗布欠陥防止性の評価》 作製した印刷版材料の表面を観察し、塗布故障を目視評価し、下記ランク付けを 行い、塗布欠陥防止性の指標とした。故障が見えないものをランク 5とし、わずかに直 径 0. 3mm未満の故障が見えるものをランク 4、わず力に直径 0. 3mm以上 0. 5mm 未満の故障が見えるものをランク 3、直径 0. 5mm以上 lmm未満の故障がみえるも のをランク 2、直径 lmm以上の故障が見えるものをランク 1とした。ランク 2以下は印 刷で欠陥となり実用に耐えな 、。
[0202] 《感度評価》
露光可視画性が得られて ヽるサンプルをルーペで評価し、適正露光エネルギーを 評価した。適正露光エネルギーは 50%網点のスクェアドットが 50%の網点面積とな つて 、る露光エネルギーとした。値が小さ!/、ほど高感度である。
[0203] 《初期インキ着肉性の評価》
印刷開始のシークェンスは PS版の印刷シークェンスで行 ヽ、特別な機上現像操作 は行わな力つた。印刷後に版面を観察したところ、印刷版試料は非画像部は除去さ れていた。
[0204] 印刷開始のシークェンスを PS版の印刷シークェンスで行 、、何枚目で非画線部の インキ汚れがなくなるかを評価し、初期インク着肉性の指標とした。枚数が少ないほど インク着肉性が優れている。
[0205] 《耐刷性の評価》
同様に、露光した印刷版試料を前記印刷機にかけて前記条件で表面側を 5万枚印 刷した。インキが乾いた後に反転させ、裏面を前記条件で 5万枚まで印刷した。裏面 側の 3%網点画像の点が半分以上欠落する印刷枚数を耐刷枚数として求めた。印 刷枚数の多 、ほど優れて 、る。
[0206] 以上の評価により得られた結果を表 5に示す。表 5から本発明の印刷版材料は、製 造時塗布故障が起きにくぐ塗布欠陥防止性に優れ、感度が高ぐ初期インキ着肉性
、耐刷性に優れることが分かる。
[0207] [表 5]
Figure imgf000035_0001

Claims

請求の範囲
[1] 基材上に親水性層及び画像形成機能層を有する印刷機上現像可能な印刷版材 料であって、親水性層が、保磁力(HC)力 OOkAZmの磁場において 8kAZm以 下である金属酸化物粒子を含有することを特徴とする印刷版材料。
[2] 前記金属酸化物粒子が、酸化チタン及び酸化鉄を主成分とする金属酸化物粒子 であることを特徴とする請求の範囲第 1項に記載の印刷版材料。
[3] 前記画像形成機能層が、熱溶融性粒子又は熱融着性粒子を含有することを特徴と する請求の範囲第 1項又は第 2項に記載の印刷版材料。
[4] 前記金属酸化物粒子が、前記画像形成機能層に隣接する親水性層に含有されて いることを特徴とする請求の範囲第 1項〜第 3項のいずれか 1項に記載の印刷版材 料。
[5] 基材上に親水性層及び画像形成機能層を有する印刷機上現像可能な印刷版材 料の製造方法であって、親水性層を形成する親水性層塗布液に、保磁力(HC)が 4 OOkAZmの磁場において 8kAZm以下である金属酸化物粒子を含有させる工程 を有することを特徴とする印刷版材料の製造方法。
[6] 請求の範囲第 1項〜第 4項のいずれ力 1項に記載の印刷版材料を画像露光した後 に、印刷機に装着し、湿し水及びインキを該印刷版材料の表面に供給して非画像部 を除去し、印刷することを特徴とする平版印刷方法。
PCT/JP2006/326195 2006-01-17 2006-12-28 印刷版材料、印刷版材料の製造方法及び平版印刷方法 WO2007083506A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006008541 2006-01-17
JP2006-008541 2006-01-17

Publications (1)

Publication Number Publication Date
WO2007083506A1 true WO2007083506A1 (ja) 2007-07-26

Family

ID=38287462

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/326195 WO2007083506A1 (ja) 2006-01-17 2006-12-28 印刷版材料、印刷版材料の製造方法及び平版印刷方法

Country Status (1)

Country Link
WO (1) WO2007083506A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017043700A (ja) * 2015-08-27 2017-03-02 株式会社Ihi 親水性フィルム、電解質膜、及びその親水性フィルムの製造方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004291428A (ja) * 2003-03-27 2004-10-21 Konica Minolta Holdings Inc 印刷版材料及び印刷方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004291428A (ja) * 2003-03-27 2004-10-21 Konica Minolta Holdings Inc 印刷版材料及び印刷方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017043700A (ja) * 2015-08-27 2017-03-02 株式会社Ihi 親水性フィルム、電解質膜、及びその親水性フィルムの製造方法

Similar Documents

Publication Publication Date Title
JP4244757B2 (ja) ロール状に巻回された形態で市場に流通される機上現像型印刷版材料
JPWO2006095534A1 (ja) 平版印刷版材料、平版印刷版材料の製造方法、及び印刷方法
WO2007063682A1 (ja) 平版印刷版材料及び印刷方法
JP2007190879A (ja) 平版印刷版材料及び印刷方法
WO2007116786A1 (ja) 平版印刷版材料及び印刷方法
JP2005319590A (ja) 印刷版材料、印刷版及び印刷方法
WO2007083506A1 (ja) 印刷版材料、印刷版材料の製造方法及び平版印刷方法
JP2006056184A (ja) 印刷版材料および印刷版
JP2007190880A (ja) 平版印刷版材料及び平版印刷方法
JP2007237586A (ja) 平版印刷版材料及び印刷方法
WO2006090570A1 (ja) 平版印刷版材料および印刷方法
JP2006103086A (ja) 平版印刷版材料用のプラスチック支持体、それを用いた平版印刷版材料及び印刷方法
WO2006059484A1 (ja) 平版印刷版材料及び平版印刷方法
JP2007055119A (ja) 平版印刷版材料及びそれを用いた印刷方法
EP1857293A1 (en) Material of lithographic printing plate and method of printing
JP2006007697A (ja) 平版印刷版の印刷方法
JP2006212786A (ja) 平版印刷版材料及び印刷方法
JP2005288931A (ja) 平版印刷版材料、画像記録方法及び印刷方法
JP2007069560A (ja) 平版印刷版の修正方法及び修正液
JP2006062236A (ja) 平板印刷版材料及びそれを用いた印刷方法
JP2006312275A (ja) 平版印刷版材料及びそれを用いた印刷方法
WO2006080244A1 (ja) 平版印刷版材料、それを用いた印刷方法及びプラスチック支持体の回収方法
JP2008149467A (ja) 平版印刷版材料および印刷方法
JP2007007877A (ja) 印刷方法、版下シート材料および印刷版材料の装着方法
JP2007276196A (ja) 平版印刷版材料及び印刷方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06843573

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP