WO2007105611A1 - 保持治具、半導体ウエハの研削方法、半導体ウエハの保護構造及びこれを用いた半導体ウエハの研削方法、並びに半導体チップの製造方法 - Google Patents

保持治具、半導体ウエハの研削方法、半導体ウエハの保護構造及びこれを用いた半導体ウエハの研削方法、並びに半導体チップの製造方法 Download PDF

Info

Publication number
WO2007105611A1
WO2007105611A1 PCT/JP2007/054628 JP2007054628W WO2007105611A1 WO 2007105611 A1 WO2007105611 A1 WO 2007105611A1 JP 2007054628 W JP2007054628 W JP 2007054628W WO 2007105611 A1 WO2007105611 A1 WO 2007105611A1
Authority
WO
WIPO (PCT)
Prior art keywords
semiconductor wafer
wafer
jig
layer
adhesive
Prior art date
Application number
PCT/JP2007/054628
Other languages
English (en)
French (fr)
Inventor
Kiyofumi Tanaka
Satoshi Odashima
Noriyoshi Hosono
Hironobu Fujimoto
Takeshi Segawa
Original Assignee
Shin-Etsu Polymer Co., Ltd.
Lintec Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2006071488A external-priority patent/JP2007250789A/ja
Priority claimed from JP2006070816A external-priority patent/JP2007250738A/ja
Priority claimed from JP2006071489A external-priority patent/JP2007250790A/ja
Application filed by Shin-Etsu Polymer Co., Ltd., Lintec Corporation filed Critical Shin-Etsu Polymer Co., Ltd.
Priority to US12/282,984 priority Critical patent/US7875501B2/en
Priority to KR1020087023313A priority patent/KR101426572B1/ko
Publication of WO2007105611A1 publication Critical patent/WO2007105611A1/ja
Priority to US12/945,078 priority patent/US8212345B2/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B41/00Component parts such as frames, beds, carriages, headstocks
    • B24B41/06Work supports, e.g. adjustable steadies
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/687Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
    • H01L21/68714Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support
    • H01L21/6875Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support characterised by a plurality of individual support members, e.g. support posts or protrusions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/04Lapping machines or devices; Accessories designed for working plane surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/04Lapping machines or devices; Accessories designed for working plane surfaces
    • B24B37/042Lapping machines or devices; Accessories designed for working plane surfaces operating processes therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B41/00Component parts such as frames, beds, carriages, headstocks
    • B24B41/06Work supports, e.g. adjustable steadies
    • B24B41/061Work supports, e.g. adjustable steadies axially supporting turning workpieces, e.g. magnetically, pneumatically
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G49/00Conveying systems characterised by their application for specified purposes not otherwise provided for
    • B65G49/05Conveying systems characterised by their application for specified purposes not otherwise provided for for fragile or damageable materials or articles
    • B65G49/06Conveying systems characterised by their application for specified purposes not otherwise provided for for fragile or damageable materials or articles for fragile sheets, e.g. glass
    • B65G49/061Lifting, gripping, or carrying means, for one or more sheets forming independent means of transport, e.g. suction cups, transport frames
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G2249/00Aspects relating to conveying systems for the manufacture of fragile sheets
    • B65G2249/04Arrangements of vacuum systems or suction cups
    • B65G2249/045Details of suction cups suction cups
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24273Structurally defined web or sheet [e.g., overall dimension, etc.] including aperture
    • Y10T428/24322Composite web or sheet

Definitions

  • the present invention relates to a holding jig used in a back grinding process of a semiconductor wafer and a semiconductor wafer grinding method.
  • the present invention relates to a semiconductor wafer protective structure and a semiconductor wafer grinding method using the same, and is particularly used when grinding a semiconductor wafer to an extremely thin thickness. After grinding, a fixed jig force can be removed without damaging the semiconductor wafer.
  • the present invention relates to a semiconductor wafer protective structure and a semiconductor wafer grinding method using the same.
  • the present invention also relates to a method for manufacturing a semiconductor chip that reduces the thickness of the wafer by grinding the back surface of the wafer and finally divides the wafer into individual chips. Particularly, the semiconductor chip is excellent in handling of the semiconductor chip after the back surface grinding. It is related with the manufacturing method. Background art
  • the force is about 775 ⁇ m. Because it is suitable for recent semiconductor packages that need to be made, it is sometimes thinned to 100 m or less by grinding the back surface in a process called a knock grinding process, and then separated into individual chips in a dicing process.
  • a flexible protective sheet also called a BG sheet 1 is adhered and the surface is formed. Cut the size slightly larger than the semiconductor wafer W (see Fig. 25), set the semiconductor wafer and W in the back grinding machine, rotate the table, and place the semiconductor wafer W in the work area of the grinding machine. Place and position.
  • the protective sheet 1 is made of, for example, an acrylic, urethane, butadiene, or silicone-based film having a thickness of 50 to 200 ⁇ based on, for example, an ethylene vinyl acetate copolymer or a soft polysilvene base. Is formed by laminating an ultraviolet (UV) curable and non-UV curable adhesive layer with a thickness of 10-60 / ⁇ ⁇ , and is peeled off after the knock grinding process. It is discarded without being reused.
  • UV ultraviolet
  • the back surface of the semiconductor wafer W is ground with the rotating turret 33 (see Fig. 26), and then the back surface of the semiconductor wafer W is converted to a chemical.
  • the semiconductor wafer W is thinned (see Patent Document 1) by etching about 1 ⁇ m by 41 to remove the damaged layer due to grinding (see FIG. 27).
  • the semiconductor wafer W is self-supporting at a thickness of about 100 ⁇ m! Therefore, even if an upward force is attracted to the suction pad with suction holes, it can be supported and transported.
  • a method of attaching the protective sheet 1 to the semiconductor wafer W can be considered.
  • a sufficient protective sheet 1 cannot maintain sufficient strength, and stagnation occurs due to gravity.
  • a method using a rigid protective sheet 1 is also conceivable.
  • the strength force S of the semiconductor wafer W is small in the thickness direction (perpendicular to the surface). )
  • a tensile force acts on the semiconductor wafer W, which increases the risk of damage to the semiconductor wafer W.
  • the protection sheet once used in W's knock grinding process is difficult to reuse and must be disposed of. Therefore, there is a big problem that it is not possible to suppress a large amount of waste.
  • the chips divided by the tip dicing method are connected with the adhesive sheet for surface protection, and the adhesive sheet does not have rigidity, so a special conveying device that supports the entire surface must be used. There was a problem that the subsequent steps could not be performed. In addition, when the adhesive sheet is rigid enough to support the chip, there is a problem that it is difficult to peel the adhesive sheet from the chip.
  • the present invention has been made in view of the above, and an object of the present invention is to provide a holding jig and a semiconductor wafer grinding method capable of solving the problems associated with the use of a protective sheet.
  • thin wafers can support the wafer sufficiently when grinding a large-diameter wafer on the back surface, and can be ground to an extremely thin thickness without bending the wafer. The wafer is damaged when the fixed jigka is also removed.
  • An object of the present invention is to provide a semiconductor wafer protection structure that is not used and a semiconductor wafer grinding method using the protection structure.
  • Another object of the present invention is to provide a method of manufacturing a semiconductor chip that can be used with an ordinary transfer device or the like in the prior dicing method, thereby realizing an extremely thin and highly reliable chip at a relatively low cost. To do. Means for solving the problem
  • a holding jig for holding a semiconductor wafer in order to solve the above problems, a holding jig for holding a semiconductor wafer,
  • the adhesion film layer and the air in the recesses covered with the adhesion film layer And an exhaust passage for guiding the body to the outside.
  • the adhesive film layer can contain an antistatic agent.
  • the arrangement pitch of the plurality of support protrusions can be set to 0.2 to 2. Omm. Further, the width of the support protrusion can be set to 0.05-1.
  • the height of the support protrusion can be set to 0.05 to 0.5 mm.
  • the thickness of the adhesive film layer can be 20 to 200 ⁇ m.
  • the bow I tension breaking strength of the adhesive film layer can be 5 MPa or more.
  • the tensile elongation at break of the adhesive film layer can be 500% or more.
  • the bending elastic modulus at room temperature of the adhesive film layer can be set to 10 to: LOOMPa.
  • the holding jig according to any one of claims 1 to 10 is used in a semiconductor wafer grinding process.
  • the surface on which the semiconductor wafer circuit is formed is brought into contact and held in contact with the adhesive film layer of the holding jig according to any one of claims 1 and 10, and the rear surface of the semiconductor wafer Is characterized by grinding to a predetermined thickness.
  • the back surface of the semiconductor wafer is ground to a predetermined thickness
  • the back surface of the semiconductor wafer can be further etched while the semiconductor wafer is held in close contact with the holding jig.
  • the semiconductor wafer protection structure according to the present invention is a semiconductor wafer protection structure in which a semiconductor wafer, an adhesive sheet laminated on the circuit surface of the semiconductor wafer, and a fixing jig are laminated in this order.
  • the fixed jig has a plurality of projections on one side and a jig base having a side wall substantially the same height as the projection on the outer periphery of the one side, and a surface having the projections of the jig base. And a bonding space formed on the surface having the protrusions of the jig base by the adhesion layer, the protrusions, and the sidewalls.
  • the jig base is provided with at least one through-hole penetrating the outside and the partition space, and the adhesion layer is stacked on the surface of the pressure-sensitive adhesive sheet laminated on the circuit surface of the semiconductor wafer. It is characterized by becoming.
  • the pressure-sensitive adhesive sheet is composed of a base material having a surface energy of 20 to 60 mNZm on one side and a surface roughness (arithmetic average roughness Ra) of 1.0 m or less and a pressure-sensitive adhesive layer provided on the opposite surface.
  • the pressure-sensitive adhesive layer is preferably in contact with the circuit surface.
  • the pressure-sensitive adhesive sheet comprises a base material, an intermediate layer formed on the base material, and a pressure-sensitive adhesive layer formed on the intermediate layer, and the pressure-sensitive adhesive layer at 23 ° C. It is also preferred that the elastic modulus is in the range of 5 ⁇ 10 4 to 1.0 ⁇ 10 7 Pa, and the elastic modulus at 23 ° C. of the intermediate layer is less than or equal to the elastic modulus at 23 ° C. of the adhesive layer. .
  • the pressure-sensitive adhesive sheet preferably comprises a base material having a maximum value of tan ⁇ of dynamic viscoelasticity in a temperature range of ⁇ 5 to 80 ° C. and a pressure-sensitive adhesive layer.
  • the semiconductor wafer grinding method according to the present invention is such that the jig base side of the semiconductor wafer protection structure is mounted on a processing table of a grinding apparatus and the wafer back surface is ground to a predetermined wafer thickness. After sharpening, the through-hole force sucks the gas in the partition space to deform the adhesion layer into irregularities, and then removes the semiconductor wafer with the adhesive sheet from the adhesion layer, and then attaches the adhesive sheet to the semiconductor wafer. It is characterized by removing from.
  • a wafer having a plurality of circuits formed on the circuit surface side of the wafer has a cutting depth shallower than the thickness of the wafer along the circuits.
  • a step of forming a groove (i) a step of laminating a fixed jig on the circuit surface, and (III) a step of grinding the back surface of the wafer until it reaches the groove and dividing it into chip groups,
  • the fixed jig has a plurality of protrusions on one side and a jig base having a side wall substantially the same height as the protrusions on the outer periphery of the one surface, and a surface having the protrusions of the jig base. And a bonding space formed on the surface having the protrusions of the jig base by the adhesion layer, the protrusions, and the sidewalls.
  • the jig base is provided with at least one through-hole penetrating the outside and the partition space, and the adhesion layer is laminated on the circuit surface.
  • a transfer tape fixed to the frame is attached to the back surface of the chip group, It is preferable to remove the chip group from the adhesion layer and transfer it to the transfer tape by sucking the gas in the partition space and deforming the adhesion layer into an uneven shape.
  • the adhesion layer is preferably laminated on the circuit surface of the wafer via the adhesion layer.
  • the semiconductor wafer in the claims is not particularly limited to the 200 mm type or 300 mm type.
  • orientation flats and notches for discriminating crystal orientation and facilitating alignment are appropriately formed.
  • the holding jig and its substrate can be formed in a circular shape, an elliptical shape, a rectangular shape, a polygonal shape or the like in plan view.
  • the number of recesses, adhesion layers, and exhaust passages is not particularly limited.
  • the concave portion can be formed in a circular shape, an elliptical shape, a rectangular shape, a polygonal shape, or the like in a plan view.
  • the plurality of protrusions may be regularly arranged in the recesses or irregularly arranged.
  • the plurality of protrusions may be integrated with the recess, or may be a separate structure.
  • the protrusion can be formed in a cylindrical shape, a truncated cone shape, a prism shape, a truncated pyramid shape, or the like.
  • the adhesion layer may be the same size or larger than the semiconductor wafer as long as the size corresponds to the semiconductor wafer.
  • the semiconductor wafer grinding step can be performed without using the protective sheet for the semiconductor wafer, problems associated with the use of the protective sheet, for example, the waste associated with the disposal of the protective sheet This has the effect of effectively eliminating the problems of poor conduction and contamination of semiconductor wafers due to increased calories and adhesive residue.
  • the adhesion film layer may break or tear when the holding jig is used repeatedly. Variation in thickness can be reduced.
  • the width (thickness) of the support protrusion is 0.05-1 Omm, when the semiconductor wafer is removed, the support protrusion may perforate and damage the adhesion film layer, or the strength of the support protrusion itself. Low It does not invite the bottom. In addition, it is possible to prevent the adhesion of the support protrusions to the semiconductor wafer from becoming excessively large and making it difficult to remove the semiconductor wafer.
  • the semiconductor wafer can be easily removed from the adhesive film layer. Therefore, it is possible to eliminate the possibility that the semiconductor wafer will be ground or the adhesive film layer will be stretched more than necessary, and this will interfere with the adhesion of the semiconductor wafer.
  • the thickness of the adhesive film layer is 20 to 200 ⁇ m, the durability of the adhesive film layer is improved, and the force is made to follow the unevenness of the pattern forming surface of the semiconductor wafer, so It becomes possible to suppress the contamination of the semiconductor wafer due to the penetration.
  • the adhesion film layer force enables the semiconductor wafer to be removed quickly.
  • the tensile breaking strength of the adhesive film layer is 5 MPa or more, wrinkles that the adhesive film layer breaks when deformed can be eliminated.
  • the adhesive film layer surely follows the plurality of supporting protrusions at the time of deformation, and there is no possibility of breaking.
  • the bending elastic modulus at room temperature of the adhesive film layer is 10 to 100 MPa, it is supported by the supporting protrusions of the adhesive film layer! It is possible to prevent the difficulty of attaching the semiconductor wafer and to prevent the semiconductor wafer from being attached to and detached from the adhesive film layer.
  • the thin wafer can sufficiently support the wafer when grinding the back surface of the large-diameter wafer, and the wafer is curved.
  • the wafer can be removed from the fixed jig without damaging the wafer.
  • the divided chip can be easily removed and a special jig having rigidity is used to perform special dicing after the tip dicing. It is possible to proceed to the next step without using a simple transfer device.
  • FIG. 1 is an explanatory plan view schematically showing a back grinding apparatus in an embodiment of a holding jig and a semiconductor wafer grinding method according to the present invention.
  • ⁇ 2 It is a side explanatory view schematically showing a back grinding apparatus in an embodiment of a holding jig and a semiconductor wafer grinding method according to the present invention.
  • ⁇ 3 It is a cross-sectional explanatory view schematically showing an embodiment of a holding jig according to the present invention.
  • FIG. 5 is a schematic cross-sectional view showing an example of a protective structure for a semiconductor wafer according to the present invention.
  • FIG. 6 is a schematic sectional view showing an example of a protective structure for a semiconductor wafer according to the present invention.
  • FIG. 7 is a schematic top view of a jig base constituting the semiconductor wafer protection structure according to the present invention.
  • FIG. 8 is a schematic cross-sectional view of a jig base constituting a semiconductor wafer protection structure according to the present invention.
  • FIG. 9 is a schematic cross-sectional view showing a jig base constituting a fixed jig used in the present invention.
  • FIG. 10 is a schematic cross-sectional view showing one step of a method of manufacturing a semiconductor chip according to the present invention.
  • FIG. 11 is a schematic cross-sectional view showing a step of the method of manufacturing a semiconductor chip according to the present invention.
  • 12] A schematic cross-sectional view showing one step of a method of manufacturing a semiconductor chip according to the present invention.
  • 13 A schematic cross-sectional view showing one step of a method of manufacturing a semiconductor chip according to the present invention.
  • 14 A schematic cross-sectional view showing one step of a method of manufacturing a semiconductor chip according to the present invention.
  • FIG. 15 A schematic cross-sectional view showing one step of a method of manufacturing a semiconductor chip according to the present invention.
  • FIG. 16 is a schematic cross-sectional view showing a step of the method of manufacturing a semiconductor chip according to the present invention.
  • FIG. 17 is a schematic cross-sectional view showing a step of the method of manufacturing a semiconductor chip according to the present invention.
  • FIG. 18 is a schematic cross-sectional view showing a step of the method of manufacturing a semiconductor chip according to the present invention.
  • FIG. 19 A schematic cross-sectional view showing a step of the method of manufacturing a semiconductor chip according to the present invention.
  • FIG. 20 A schematic cross-sectional view showing one step of a method of manufacturing a semiconductor chip according to the present invention.
  • FIG. 21 A schematic cross-sectional view showing one step of a method of manufacturing a semiconductor chip according to the present invention.
  • FIG. 22 is a schematic cross-sectional view showing a step of the method of manufacturing a semiconductor chip according to the present invention.
  • FIG. 23 is a schematic cross-sectional view showing a step of the method of manufacturing a semiconductor chip according to the present invention.
  • FIG. 24 is an explanatory plan view showing measurement points of wafer thickness and variation in an embodiment of the holding jig according to the present invention.
  • FIG. 26 is an explanatory perspective view showing a state where the back surface of the semiconductor wafer is back-ground with a rotating grindstone.
  • FIG. 27 is a perspective view showing a state where the damaged back surface of the semiconductor wafer is etched with chemicals.
  • FIG. 28 is a perspective view illustrating a state where the protective sheet is peeled off from the pattern forming surface of the semiconductor wafer.
  • FIG. 29 is an explanatory plan view showing a state in which the UV tape is attached to the carrier jig in the dicing process.
  • Adhesive film Adhesive film layer
  • a backgrinding apparatus 10 for a semiconductor wafer is installed on a base 11 as shown in FIGS.
  • the table 13, the plurality of holding jigs 20 rotatably mounted on the table 13 via the chuck table 15, and the back surface of the semiconductor wafer W held by the holding jig 20 are subjected to rough grinding and finish grinding.
  • a grinding device 30 for grinding and a cleaning device 40 for the ground semiconductor wafer W are provided, and a 300 mm diameter semiconductor wafer W having a thickness of about 775 ⁇ m is back-ground to 100 ⁇ m or less. It functions to slice into thickness.
  • the gantry 11 is formed long in the front-rear direction (vertical direction in Fig. 1), and the handling device 12 is installed at the front center of the work surface.
  • a flat circular table 13 is rotatably installed in a substantially central part with the upper part exposed, and a grinding device 30 is installed at the rear part of the work surface so that upward force is also opposed to the rear part of the surface of the table 13.
  • On both left and right sides of the handling device 12, there are a wafer cassette 14 in which multiple thick semiconductor wafers W before knock grinding are aligned and stored, and a wafer cassette 14A in which the thin semiconductor wafers W after knock grinding are aligned and stored. are installed.
  • the table 13 is formed into a disk shape using a predetermined material, for example.
  • a plurality of chuck tables 15 are rotatably supported at intervals in the circumferential direction of the exposed upper surface, and a holding jig 20 is detachably mounted on each chuck table 15. It functions to change the position of the holding jig 20 to the direction of the winding device 12 or the direction of the grinding device 30 by rotating at a predetermined rotation angle (see the arrow in FIG. 1).
  • the chuck table 15 is formed into a flat planar circle by fitting a porous ceramic disk to a stainless steel frame, for example, and is based on the pressure reduction of a vacuum device (not shown) in the gantry 11. It functions to detachably hold the holding jig 20 holding the semiconductor wafer W by adhesion. At the position corresponding to the exhaust passage 25 of the holding jig 20 in the chuck table 15, an eye is provided so as not to depressurize the inside of the recessed hole 22 covered with the adhesion film 24.
  • the plurality of holding jigs 20 are, for example, a holding jig 20 that holds the semiconductor wafer W for rough grinding, and a holding jig 20 that holds the semiconductor wafer W for finish grinding. And a holding jig 20 for holding the waiting semiconductor wafer W or the like.
  • each holding jig 20 has a rigid substrate 21 mounted on the surface of the chuck table 15, a recessed hole 22 formed in the substrate 21, and a protrusion into the recessed hole 22.
  • a simple structure including a film 24 and an exhaust path 25 that guides the air in the recessed hole 22 covered with the adhesion film 24 to the outside and deforms the adhesion film 24 to allow the semiconductor wafer W to be peeled off. It is structured and stored in wafer cassettes 14 ⁇ 14A and substrate storage containers (eg FOUP, FOSB, etc.) as required.
  • the substrate 21 is formed into a flat thin plate having a thickness of about 0.5 to 2. Omm using a predetermined material, and is a flat circle slightly larger than the semiconductor wafer W.
  • the material of the substrate 21 include resin molding such as metal materials such as aluminum alloy, magnesium alloy, and stainless steel, polyamide (PA), polycarbonate (PC), polypropylene (PP), acrylic, and polyvinyl chloride. Materials and glass.
  • the material of the substrate 21 can be freely selected. However, from the viewpoint of securing the rigidity of the holding jig 20 and the substrate 21, it is preferable to bend at least lGPa based on the method of ASTM D74. It is preferable that an elastic modulus can be obtained. When the flexural modulus is less than lGPa, the thickness of the substrate 21 must be increased, and this is a force that causes inconvenience when stored in the wafer cassette 14 ⁇ 14A or the substrate storage container.
  • the thickness of the substrate 21 is preferably in the range of 0.5 to 2. Omm, more preferably about 0.8 to 1.5 mm. This is because the thickness of the substrate 21 is less than 0.5 mm. In this case, the semiconductor wafer W is bent or broken when the thinned semiconductor wafer W is handled. On the other hand, if the thickness of the substrate 21 exceeds 2. Omm, it will be caught when the wafer cassette 14 ⁇ 14A or the substrate storage container is taken in or out, and this may cause trouble.
  • the recess hole 22 is formed as a shallow recess in most of the substrate 21 except for the peripheral edge of the substrate 21, and is a planar circle having a size equal to or larger than the semiconductor wafer W.
  • the recessed hole 22 is preferably formed to a depth (ie, protrusion height) of 0.05 to 0.5 mm, more preferably about 0.2 mm, and the bottom surface thereof supports the adhesion film 24 with a downward force.
  • a plurality of supporting projections 23 are arranged side by side.
  • the plurality of support protrusions 23 are regularly arranged on the bottom surface of the recess hole 22 by a molding method, a sandblasting method, an etching method, or the like, and each support protrusion 23 is substantially the same as the depth of the recess hole 22. It is formed in a cylindrical shape with a height and length.
  • the adhesive film 24 is made of, for example, ethylene-methyl methacrylate, silicone rubber, urethane elastomer, linear low density polyethylene (LLPE), ethylene methyl methacrylate copolymer, olefin thermoplastic elastomer, Using a propylene-olefin copolymer or the like, it is formed into a flat circular thin film larger than the semiconductor wafer W and adhered to the surface peripheral portion of the substrate 21. It is bonded and covers the recessed hole 22 to define a space for air circulation between the bottom surface.
  • ethylene-methyl methacrylate is excellent in flexibility, workability, and adhesive properties.
  • the exhaust passage 25 is perforated on the lower outer side of the substrate 21, and the downstream portion thereof is detachably connected to the vacuum pump 26 via a peeling table, a peeling hand, or the like.
  • the air functions in such a manner that the air in the recessed hole 22 covered with the adhesive film 24 is exhausted to a negative pressure.
  • the flat adhesive film 24 follows the plurality of support projections 23 in the direction of the bottom surface of the recess hole 22. Deforms into irregularities, and the pattern forming surface force of the semiconductor wafer W is partially separated to facilitate the peeling of the semiconductor wafer w in close contact.
  • the size of the exhaust passage 25 is not particularly limited, but is preferably 2 mm or less so as not to adversely affect the back grinding operation.
  • the peeling table and the peeling hand are installed outside the back grinding device 10 together with the vacuum pump 26, and the substrate 21 of the holding jig 20 carried out from the back grinding device 10 can be freely attached and detached. To be installed.
  • the grinding device 30 includes a rough grinding device 32 that performs rough grinding treatment on the back surface of the semiconductor wafer W from above with a rotating grindstone 31 of about # 320 to 360 through a grinding liquid.
  • the surface of the semiconductor wafer W which is disposed adjacent to the rough grinding device 32 and subjected to the rough grinding process, is provided with a finishing grinding device 34 for performing a finishing grinding process with a grinding fluid 33 with a rotating grindstone 33 of about # 2000. Configured.
  • the support protrusion 23 and the adhesion film 24 of the holding jig 20 have the following characteristics from the viewpoint of preventing damage to the holding jig 20 and facilitating smooth backgrinding work. It is preferable to have.
  • the pitch of the plurality of support protrusions 23 is preferably 0.2 to 2. Omm, more preferably about lmm. Is. This is because if the distance between the support protrusions 23 and the support protrusions 23 is less than 0.2 mm, the adhesion film 24 is excessively stretched when the semiconductor wafer and W are peeled off, and therefore the adhesion film 24 breaks during repeated use. It is also a force that may cause tearing. Conversely, when the distance between the support protrusion 23 and the support protrusion 23 exceeds 2. Omm, the thickness variation after grinding of the semiconductor wafer W between the support protrusion 23 and other portions becomes very large. Is from
  • the pitch of the plurality of support protrusions 23 is a force that can be freely changed in the range of 0.2 to 2. Omm.
  • the support protrusions 23 are thick, the semiconductor wafer W from the adhesion film 24 It is preferable to expand the pitch with the viewpoint power to facilitate peeling.
  • Each support protrusion 23 has a width of preferably 0.05-1 mm, more preferably about 0.4 mm, and a height of preferably 0.05-0.5 mm, more preferably 0.2 mm. Is the best. support
  • the width of the protrusion 23 is in the range of 0.05 mm: L Omm. If the width of the support protrusion 23 is less than 0.05 mm, the support protrusion 23 is perforated and damaged in the adhesion film 24 when the semiconductor wafer W is peeled off. This is based on the reason that the strength of the support protrusion 23 itself is reduced.
  • the height of the support protrusion 23 is in the range of 0.05 to 0.5 mm because when the height of the support protrusion 23 is less than 0.05 mm, the semiconductor wafer W may be peeled from the adhesive film 24. Based on the reason that it becomes difficult. On the other hand, if the height of the support protrusion 23 exceeds 0.5 mm, the semiconductor wafer W at the support protrusion portion is ground more than necessary during back grinding, or the adhesion film 24 is stretched more than necessary and the semiconductor wafer W This is based on the reason that there is a risk of interfering with the contact between the two.
  • the thickness of the adhesion film 24 is preferably 20 to 200 ⁇ m, more preferably 50 to LOO ⁇ m. This is because, when the thickness of the adhesive film 24 is less than 20 / zm, the rugged force during repeated use cannot follow the unevenness of the patterning surface of the semiconductor wafer W. This is because the grinding liquid infiltrates between the adhesive film 24 and the semiconductor wafer W during grinding, resulting in contamination of the pattern forming surface of the semiconductor wafer W.
  • the semiconductor wafer W is peeled from the adhesive film 24, although it can follow the unevenness of the pattern forming surface of the semiconductor wafer W. This is because it takes a long time to complete the work.
  • the tensile breaking strength of the adhesive film 24 is preferably 5 MPa or more, more preferably 9 MPa or more, based on the test method of JIS K7127. This is because if the tensile breaking strength of the adhesive film 24 is less than 5 MPa, the adhesive film 24 may break during deformation.
  • the tensile elongation at break of the adhesive film layer is preferably 500% or more, more preferably 600% or more, based on the test method of JIS K7127. This is because the adhesive film 24 is supported during deformation when the tensile breaking elongation of the adhesive film layer is less than 500%. This is because the projection 23 cannot be followed and may break.
  • the flexural modulus at room temperature of the adhesive film 24 is preferably in the range of 10 to 100 MPa, more preferably 27 MPa, based on the method of ASTM D74. This is because when the adhesive film 24 has a flexural modulus of less than lOMPa, it is supported by the support projections 23 of the adhesive film 24, and other parts than that are squeezed downward due to gravity. This is based on the reason that it interferes with the adhesion of the semiconductor wafer W. On the other hand, if the adhesive film 24 has a bending elastic modulus exceeding lOOMPa, the adhesive film 24 may be deformed, and it becomes difficult to attach or detach the semiconductor wafer W to the adhesive film 24.
  • the adhesive strength of the adhesive film 24 is 30 mm long x 30 mm wide x 3 mm thick.
  • the adhesive film 24 is attached to a well-known glass plate and wound on the mirror surface of the silicon wafer.
  • the load when it starts moving is preferably 20 N or more, more preferably 35 N or more. Is good.
  • the adhesion force of the adhesion film 24 is placed on a wafer with a rubber roller so that the adhesion film 24 cut to a width of 25 mm is placed on the wafer, and air does not enter the mirror surface of the silicon wafer.
  • the adhesive film 24 is peeled off at an angle of 180 ° at a speed of 300 mmZ, and the peel strength is preferably 2NZ25mm or less, more preferably 1NZ25mm or less.
  • the adhesive film 24 at the time of manufacture may have an electrical conductivity of one bon, carbon Use nanotubes, polymer antistatic agents, conductive polymers, etc. as appropriate You may mix
  • the pattern of the semiconductor wafer W is previously stored in the wafer cassette 14.
  • the holding jig 20 with the formation surface closely held is stored and set in the back grinding apparatus 10, and the holding jig 20 is transferred from the wafer cassette 14 onto the chuck table 15 of the table 13 by the nodling apparatus 12 and chucked. Hold the holding jig 20 against the table 15 and hold it under reduced pressure.
  • the table 13 rotates and transports the holding jig 20 from the nodling device 12 side to the grinding device 30 side, and also holds the holding jig 20 together with the chuck table 15.
  • the back surface of the semiconductor wafer W is ground sequentially with the rough grinding device 32 and the rotating grindstones 31 and 33 of the finish grinding device 34.
  • Wafer cassette 14A accommodates holding jig 20.
  • the semiconductor wafer W has the physical properties described above, so that the semiconductor wafer W is in close contact with each other, and even if it is ground with the rotating turrets 31 and 33, It will not be released. In addition, since the semiconductor wafer W is held in close contact with the adhesive film 24 without any power or energy during the grinding process, significant reductions in equipment and costs can be expected. Then, if necessary, the back surface of the semiconductor wafer W is etched by a chemical 41 for about 1 m, and the damage layer accompanying grinding is removed. By removing the damaged layer, the strength of the thinned chip is improved and the reliability of the semiconductor is improved.
  • the etched back surface of the semiconductor wafer W is fixed to the hollow carrier jig 44 via a dicing tape, which is another adhesive tape used in the dicing process, and the semiconductor wafer W is held.
  • a dicing tape which is another adhesive tape used in the dicing process
  • the semiconductor wafer W is held.
  • the vacuum pump 26 connected through a peeling tape or a peeling hand is driven to deform the adhesive film 24 of the holding jig 20 into irregularities in the direction of the bottom surface of the recessed hole 22. Since the semiconductor wafer W can be easily peeled off, it can be easily removed from the holding jig 20.
  • the excess part of the dicing tape is cut to form the hollow part of the carrier jig 44.
  • the arranged semiconductor wafer w can be separated into individual chips with a mortar.
  • the protective sheet 1 needs to be adhered to the pattern forming surface of the semiconductor wafer W one by one. There is no. Therefore, it is possible to prevent the increase in the waste due to the disposal of the protective sheet 1 and to surely solve the problem that the degree of freedom in selecting the material of the protective sheet 1 is narrowed.
  • the semiconductor film W can be expected to be prevented from being damaged by the adhesive force of the adhesive film 24.
  • the adhesive film 24 is an elastomer film that is not just an elastomer, it can be used repeatedly within the elastic deformation region, and if the elastomer film has a thickness of 20 to 50 / ⁇ ⁇ . This makes it possible to shorten the removal time of the semiconductor wafer W.
  • the adhesion film 24 is excessively dented over a wide area, or the position of the semiconductor wafer W It is possible to reliably prevent the material from collapsing and tilting, or being displaced and displaced.
  • FIG. 4 shows another embodiment of the present invention.
  • the adhesive film 24 of the holding jig 20 and the elastically deformable antistatic layer 27 are in contact with the semiconductor wafer W.
  • the back side force is also laminated and bonded so that the adhesion film 24 and the antistatic layer 27 are integrated.
  • the antistatic layer 27 is made of, for example, a film made of ethylene-methyl methacrylate or a thin elastomer, and has an antistatic property having a quaternary ammonium salt represented by Chemical Formula 1 in the side chain. Fats, organic conductive polymers, metal oxides, and / or carbon are added. Other parts are the same as those in the above embodiment, and thus the description thereof is omitted.
  • R 1 R 2 and R 3 represent an alkyl group having 1 to 10 carbon atoms
  • R 4 represents an alkylene group having 1 to 10 carbon atoms
  • X- represents an anion
  • the same effect as that of the above embodiment can be expected. Moreover, since the antistatic layer 27 that hardly accumulates static electricity is provided on the adhesive film 24 to form a multilayer structure, it is possible to prevent peeling electrification. In addition, it is clear that the adhesive film 24 can be used in various ways and the durability can be improved.
  • the adhesive film 24 simply showing the adhesive film 24 covering the recess hole 22 is colored with a dark color such as black, dark blue, brown, etc., and the image analysis is hindered by reflection of light. It is also possible to prevent the contamination or the appearance of dirt. Furthermore, the back side of the semiconductor wafer and W was etched with chemical chemicals 41, but the damaged layer may be removed by polishing with easy drainage treatment.
  • the protective structure for a semiconductor wafer according to the present invention is formed by laminating an adhesive sheet 50 and a fixing jig 60 laminated on the circuit surface of the semiconductor wafer W in this order.
  • the fixed jig 60 also acts as a force with the jig base 61 and the adhesion layer 62.
  • the shape of the jig base 61 include a substantially circular shape, a substantially elliptical shape, a substantially rectangular shape, and a substantially polygonal shape, and a substantially circular shape is preferable.
  • a plurality of protrusions 64 are formed on one surface of the jig base 61 so as to protrude upward at intervals.
  • the shape of the protrusion 64 is not particularly limited. A frustum shape is preferred.
  • a side wall 63 having the same height as that of the protrusion 64 is formed on the outer peripheral portion of the surface having the protrusion 64.
  • an adhesion layer 62 is laminated on the surface having the protrusions 64.
  • the adhesion layer 62 is bonded to the upper surface of the side wall 63, but the upper surface of the protrusion 64 and the adhesion layer 62 may be bonded or may not be bonded.
  • a partition space 65 is formed by the projection 64, the side wall 63, and the adhesion layer 62 between the surface of the jig base 61 having the projections 64, that is, between the jig base 61 and the adhesion layer 62.
  • a through-hole 66 that penetrates the outside of the surface side and the partition space 65 is provided in the thickness direction of the jig base 61.
  • the through hole 66 is provided on the jig base 61, a plurality of through holes 66 may be provided. Also, instead of the through hole 66 on the surface of the jig base 61 that does not have the protrusion 64, the through hole 66 is provided in the horizontal direction of the jig base 61, and an opening is provided in the side wall 63 of the jig base 61. By connecting a detachable vacuum device 70 to the opening of the through hole 66, the gas in the partition space 65 is exhausted, and the adhesion layer 62 can be deformed into an uneven shape.
  • the material of the jig base 61 is not particularly limited as long as it has excellent mechanical strength!
  • Thermoplastic resins such as: metal materials such as aluminum alloys, magnesium alloys, and stainless steels; inorganic materials such as glass; and organic-inorganic composite materials such as glass fiber reinforced epoxy resins.
  • the flexural modulus of the jig base 61 is preferably lGPa or more. If it has such a bending elastic modulus, rigidity can be given without making the thickness of the jig base 61 unnecessarily thick. By using such a material, the semiconductor wafer W can be sufficiently supported without being bent after the back surface grinding of the semiconductor wafer W.
  • the outer diameter of the jig base 61 is preferably substantially the same as the outer diameter of the semiconductor wafer W or larger than the outer diameter of the semiconductor wafer W. If the jig base 61 has an outer diameter that can accommodate the maximum diameter (for example, 300 mm diameter) of the standard size of the semiconductor wafer W, it can be applied to all semiconductor wafers W smaller than that.
  • the thickness of the jig base 61 is 0.5 to 2.0. mm is preferred 0.5 to 1. Omm is more preferred. When the thickness of the jig base 61 is within the above range, the semiconductor wafer W can be sufficiently supported without being curved after the back surface grinding of the semiconductor wafer W.
  • the height of the protrusion 64 and the side wall 63 is preferably 0.05 to 0.5 mm. Further, the diameter of the upper surface of the protrusion 64 is preferably 0.05-: L Omm. Furthermore, the interval between the protrusions is preferably 0.2 to 2 Omm.
  • the adhesion layer 62 can be sufficiently deformed into an uneven shape by sucking the gas in the partition space 65 by the vacuum device 70.
  • the semiconductor wafer W with the adhesive sheet 50 can be easily removed from the adhesion layer 62. Furthermore, even after the deformation of the unevenness of the adhesion layer 62 is repeated many times, it can be restored to the original flat state.
  • the diameter of the through hole 66 is not particularly limited, but is preferably 2 mm or less.
  • Such a jig base 61 may be manufactured by, for example, heat-molding a thermoplastic resin material using a mold and integrally manufacturing the bottom part, the side wall 63, and the protrusion 64 of the jig base 61.
  • the side wall 63 and the protrusion 64 may be formed on the flat circular plate, or the protrusion 64 may be formed on the concave inner surface of the concave disk.
  • a method of forming the protrusion 64 As a method of forming the protrusion 64, a method of depositing metal into a predetermined shape by an electroplating method, a method of forming the protrusion 64 by screen printing, a photoresist layered on a flat circular plate, and exposure And a method of forming the protrusion 64 by development. In addition, the method of removing the erosion by leaving the projection formation part by etching the surface of the metal flat circular plate by the method of removing the surface of the flat circular plate by leaving the projection formation part by sandblasting, etc.
  • the jig base 61 can also be manufactured.
  • the through-hole 66 may be formed in advance before the protrusion 64 is formed, or may be formed later. Further, the jig base 61 may be formed simultaneously with the molding.
  • An adhesion layer 62 is formed on the surface of the jig base 61 having the protrusions 64.
  • the material of the adhesion layer 62 include urethane-based, acrylic-based, fluorine-based, and silicone-based elastomers that are excellent in flexibility, flexibility, heat resistance, elasticity, adhesiveness, and the like.
  • Various additives such as a reinforcing filler and hydrophobic silica may be added to the elastomer as necessary.
  • the adhesion layer 62 is preferably a flat plate having substantially the same shape as the jig base 61.
  • the outer diameter of the adhesion layer 62 is preferably substantially the same as the outer diameter of the jig base 61.
  • the thickness of the adhesion layer 62 is less than 20 m, the mechanical durability against repeated suction may be poor. On the other hand, when the thickness of the adhesive layer 62 exceeds 200 m, it is not preferable because it takes a considerable time to peel off the adhesive sheet 50 by suction.
  • the tensile break strength of the adhesive layer 62 is preferably 5 MPa or more, and the tensile break elongation is preferably 500% or more. If the tensile rupture strength and tensile rupture elongation are in the above ranges, the adhesive layer 62 will not break or loosen even if the adhesive layer 62 is repeatedly deformed, and the original flat state should be restored. Can do.
  • the flexural modulus of the adhesive layer 62 is preferably in the range of 10 to 100 MPa. If the bending elastic modulus of the adhesion layer 62 is less than lOMPa, the adhesion layer 62 may be swollen by gravity at portions other than the contact points with the protrusions 64 and may not adhere to the semiconductor wafer W. On the other hand, if it exceeds 100 MPa, deformation due to suction becomes difficult to occur, and the semiconductor wafer W may not be easily peeled off.
  • the shear adhesive strength of the surface of the adhesive layer 62 on the side in contact with the adhesive sheet 50 is 35N or more. If it is less than 35N, the semiconductor wafer and W may peel off together with the adhesive sheet 50 when a force is applied in the shearing direction of the semiconductor wafer W (horizontal to the wafer surface), possibly damaging the semiconductor wafer and W. .
  • the shear adhesion force is a value measured between the adhesion layer 62 and the mirror surface of the silicon wafer.
  • the adhesion layer 62 is formed on a well-known glass plate having a size of 30 mm in length X 30 mm in width X 3 mm in thickness.
  • the glass plate When the glass plate is placed on a mirror wafer with a silicon force and a load of 900 g is applied to the entire glass plate and adhesion layer 62 for 5 seconds, and the glass plate is pressed with a load parallel to the mirror wafer, it starts moving. The load at the time of measurement is measured.
  • the adhesion of the adhesion layer 62 is desirably 2NZ25 mm or less. If the value exceeds this value, the adhesion between the adhesive layer 62 and the base material 51 of the pressure-sensitive adhesive sheet 50 becomes too large to be in a blocking state, and there is a possibility that peeling by suction cannot be performed.
  • the adhesion strength refers to the peel strength when the adhesion layer 62 is attached to the mirror surface of the wafer and peeled off.
  • Such an adhesion layer 62 is formed by, for example, a calendar method, a press method, a coating method, or a printing method.
  • a film made of the above elastomer is prepared in advance by a method, etc., and this elastomer film can be formed by adhering it to at least the upper surface of the side wall 63 of the jig base 61. It is formed.
  • the adhesion layer 62 can be adhered by adhering via an adhesive made of acrylic resin, polyester resin, epoxy resin, silicone resin, or elastomer resin, and the adhesion layer 62 is heat-sealable. In this case, a method of bonding with a heat seal can be mentioned.
  • the surface of the adhesive layer 62 may be subjected to non-adhesive treatment.
  • the protrusion 64 that comes into contact with the adhesive sheet 50 when deformed into a concavo-convex shape is applied.
  • it is.
  • the adhesive layer 62 deformed into an uneven shape is the surface above the protrusion 64, that is, Since only the non-adhesive convex surface is in contact with the pressure-sensitive adhesive sheet 50, the semiconductor wafer W with the pressure-sensitive adhesive sheet 50 can be removed more easily.
  • the non-adhesive treatment method for example, the air in the partition space 65 is sucked by the vacuum device 70 to deform the adhesion layer 62 into an uneven shape, and the tip of the convex portion is physically roughened by a mortar roller or the like.
  • a UV treatment method for example, a non-adhesive rubber layering method, and a non-adhesive coating method.
  • the non-adhesive portion may be formed in a cross pattern so as to pass through the center of the adhesion layer 62 that is not in the convex portion.
  • the surface roughness of the non-adhesive part is preferably an arithmetic average roughness Ra of 1. or more, more preferably 1.6-12.
  • the holding jig 20 may be used as the fixing jig 60 used in the semiconductor wafer protection structure and the semiconductor wafer grinding method in the present invention.
  • the adhesive sheet 50 is laminated on the adhesion layer 62. As shown in FIG. 5 and FIG. 6, it is preferable that the pressure-sensitive adhesive sheet 50 also has a force between at least the base material 51 and the pressure-sensitive adhesive layer 52. More preferably, it has an intermediate layer 53.
  • the pressure-sensitive adhesive sheet 50 has a 10% elongation in a tensile test where it is preferable to have excellent stress relaxation properties.
  • the stress relaxation rate during stretching is usually 40% or more after 1 minute, preferably 50% or more, more preferably 60% or more.
  • the upper limit that is preferred as the stress relaxation rate is higher is theoretically 100%, but may be 99.9%, 99%, or 95% in some cases.
  • the substrate 51 used in the pressure-sensitive adhesive sheet 50 is not particularly limited as long as it is a resin sheet, and can be used.
  • the resin sheet include low-density polyethylene, linear low-density polyethylene, polypropylene, polypropylene, polybutene, and other polyolefins, ethylene acetate butyl copolymer, ethylene (meth) acrylic acid copolymer, and ethylene (meth) acrylic acid ester.
  • examples thereof include an ethylene copolymer such as a copolymer, a polyester film such as polyethylene terephthalate and polyethylene naphthalate, a resin film such as polychlorinated butyl, acrylic rubber, polyamide, urethane, and polyimide.
  • the substrate 51 may be a single layer of these, or may have a laminate strength.
  • crosslinking etc. may be used.
  • the thickness of the substrate 51 is preferably 30 to: L000 ⁇ m, more preferably 50 to 800 ⁇ m, particularly preferably 80 to 500 m.
  • the base material 51 preferably has a surface energy of at least 20 to 60 mNZm, more preferably 25 to 5 OmNZm, on the surface of the fixed jig 60 that contacts the adhesion layer 62. When the surface energy is within the above range, the adhesion with the adhesion layer 62 is optimal, and the wafer does not drop due to blocking or adhesion.
  • the substrate 51 preferably has a surface roughness (arithmetic average roughness Ra) of 1.0 m or less, and more preferably 0.2 m or less.
  • arithmetic average roughness Ra is within the above range, there is no factor for reducing the adhesion between the adhesion layer 62 and the adhesive sheet 50, and thus a stable adhesion can be obtained.
  • the base material 51 has a maximum value of tan ⁇ of dynamic viscoelasticity in the temperature range of 5 to 80 ° C of 0.5 or more than 0.5 to 2.0 force. 0.7 to 1.8 is particularly preferable.
  • the pressure-sensitive adhesive sheet 50 having the maximum value of tan ⁇ of the base material 51 within the above range is the pressure due to the concave / convex even when the semiconductor wafer W having bumps and other irregularities formed on the circuit surface is to be protected.
  • the dimples can be made difficult to form on the grinding surface. . If dimples occur on the ground surface, the semiconductor chip is likely to be damaged, and the semiconductor device incorporating the dimple becomes less reliable.
  • the means for the base material 51 to satisfy the above physical properties is not particularly limited, and other additives can be covered even if the resin itself used as the base material 51 exhibits the above physical properties. May exhibit the above physical properties.
  • the substrate 51 may be formed by curing and curing a curable resin, or may be formed by forming a thermoplastic resin.
  • the curable resin showing such physical properties a photocurable resin, a thermosetting resin, or the like is used, and a photocurable resin is preferably used.
  • a photocurable resin for example, a resin composition mainly composed of a photopolymerizable urethane acrylate oligomer or a polyethylene thiol resin is preferably used.
  • the urethane acrylate oligomer has a hydroxyl group in a terminal isocyanate urethane prepolymer obtained by reacting a polyol compound such as a polyester type or a polyether type with a polyvalent isocyanate compound or the like. It can be obtained by reacting (meth) acrylate.
  • the molecular weight of the urethane acrylate oligomer preferably used in the present invention is 1000 to 50000, more preferably ⁇ 2000 to 30000.
  • the above urethane vacylate oligomers can be used alone or in combination of two or more.
  • the film is usually diluted with a photopolymerizable monomer and then cured to form a substrate. May be obtained.
  • the polymerization curing time and the amount of light irradiation by light irradiation can be reduced by blending the resin with a photopolymerization initiator.
  • photopolymerization initiators include photoinitiators such as benzoin compounds, acetophenone compounds, acylphosphine oxide compounds, titanocene compounds, thixanthone compounds, peroxide compounds, and amines. Specific examples include photosensitizers such as quinone.
  • the amount of the photopolymerization initiator used is preferably 0.05 to 15 parts by weight, more preferably 0.1 to: L0 parts by weight, particularly preferably 0, with respect to 100 parts by weight of the total amount of the resin. 5 to 5 parts by weight.
  • the curable resin as described above can be selected from various combinations of oligomers or monomers so as to have the aforementioned physical property values.
  • additives capable of improving the tan ⁇ value to the above-mentioned rosin.
  • additives that can improve the tan ⁇ value include inorganic fillers such as calcium carbonate, silica, and mica, and metal fillers such as iron and lead. Particularly, metal fillers having a large specific gravity are effective. It is. Furthermore, additives such as inorganic fillers such as calcium carbonate, silica, and mica, metal fillers such as iron and lead, and colorants such as pigments and dyes may be contained in the above-mentioned rosin.
  • the substrate 51 is prepared by casting a liquid resin (eg, a resin before curing, a solution of resin) into a thin film on the adhesion layer 62, and then forming the film by a predetermined means. Can be manufactured. According to such a manufacturing method, the formation of fish eyes with less stress applied to the resin during film formation is small. Also, the thickness accuracy with high film thickness uniformity is usually within 2%. As another film forming method, there is a method in which the substrate 51 is produced as a single layer film by extrusion molding using a die or inflation method or a calendar method.
  • a liquid resin eg, a resin before curing, a solution of resin
  • the pressure-sensitive adhesive sheet 50 can be obtained by forming the pressure-sensitive adhesive layer 52 and the intermediate layer 53 described later on the base material 51 thus obtained.
  • the pressure-sensitive adhesive layer 52 can be formed of various conventionally known pressure-sensitive pressure-sensitive adhesives.
  • a pressure-sensitive adhesive is not limited at all, but, for example, a rubber-based, acrylic-based, silicone-based, polybutyl ether, or the like is used.
  • an energy ray curable adhesive, a heat-foaming adhesive, or a water swelling adhesive can be used.
  • an energy ray curable adhesive, particularly an ultraviolet curable adhesive is preferably used.
  • the energy ray-curable pressure-sensitive adhesive mainly comprises an acrylic pressure-sensitive adhesive and an energy ray-polymerizable composite.
  • energy linear polymerizable compounds used for energy ray curable adhesives low molecular weight compounds having at least two photopolymerizable carbon-carbon double bonds in the molecule are widely used.
  • the blending ratio of the acrylic pressure-sensitive adhesive and the energy beam polymerizable compound in the energy ray curable pressure sensitive adhesive is 10 to 100 parts by weight of the energy ray polymerizable compound with respect to 100 parts by weight of the acrylic pressure sensitive adhesive. It is desirable to use L000 parts by weight, preferably ⁇ 20 to 500 parts by weight, particularly preferably ⁇ 50 to 200 parts by weight.
  • the pressure-sensitive adhesive sheet 50 to be obtained has a large initial adhesive strength, and the pressure-sensitive adhesive strength greatly decreases after irradiation with energy rays. Therefore, peeling at the interface between the semiconductor wafer W and the energy ray curable pressure-sensitive adhesive layer after the back surface grinding is facilitated.
  • the energy ray curable pressure-sensitive adhesive may be formed from an energy line curable copolymer having an energy ray polymerizable group in the side chain.
  • an energy ray curable copolymer has the property of having both adhesiveness and energy ray curable properties.
  • photopolymerization initiators such as benzoin compounds, acetophenone compounds, acylphosphine oxide compounds, titanocene compounds, thixanthone compounds, peroxide compounds, and amines.
  • photosensitizers such as quinone
  • specific examples include 1-hydroxycyclohexyl phenyl ketone, benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, benzyl diphenyl sulfide, and tetramethyl.
  • Examples include thiuram monosulfide, azobisisobutyryl-tolyl, dibenzyl, diacetyl, and ⁇ -chloranthraquinone.
  • the amount of the photopolymerization initiator used is preferably 0.05 to 15 parts by weight, more preferably 0.1 to L0 parts by weight, particularly preferably 0. 5 to 5 parts by weight.
  • a cross-linking agent may be used to partially cross-link the polymer component in the pressure-sensitive adhesive.
  • examples of the crosslinking agent include epoxy-based crosslinking agents, isocyanate-based crosslinking agents, and methylol.
  • a cross-linking agent, a chelate cross-linking agent, an aziridine cross-linking agent and the like are used.
  • the acrylic energy ray-curable pressure-sensitive adhesive as described above has a sufficient adhesive force to the semiconductor wafer W before the irradiation with the energy beam, and the adhesive force significantly decreases after the irradiation with the energy beam. That is, the adhesive sheet 50 and the semiconductor wafer W are brought into close contact with each other with sufficient adhesive force before irradiation with the energy beam, and the surface can be protected, and after the irradiation with the energy beam, it can be easily peeled off from the ground semiconductor wafer W. Can do.
  • the thickness of the pressure-sensitive adhesive layer 52 is a force depending on the material, usually 3 to: about LOO / zm, and preferably about 10 to 50 ⁇ m.
  • the adhesive layer 52 has an elastic modulus at 23 ° C, preferably 5. OX 10 4 to 1. OX 10 8 Pa, more preferably ⁇ 7. 0 X 10 4 to 8.0 X 10 7 Pa Especially preferably, it is in the range of 8.0 x 10 4 to 5.0 x 10 7 Pa. Further, when the pressure-sensitive adhesive sheet 50 has the intermediate layer 53, the elastic modulus at 23 ° C of the pressure-sensitive adhesive layer 52 is in the range of 5.0 X 10 4 to 1.0 X 10 7 Pa, preferably 6.0. X 10 4 to 5.0 X 10 6 Pa, more preferably 8.0 X 10 4 to 1. OX 10 6 Pa. When the pressure-sensitive adhesive layer 52 is formed of an energy ray-curable pressure-sensitive adhesive described later, the elastic modulus indicates the elastic modulus of the pressure-sensitive adhesive layer before irradiation with energy rays.
  • the elastic modulus of the adhesive layer 52 at 23 ° C is lower than 5. OX 10 4 Pa, the adhesive oozes out from the edge of the adhesive sheet 50 or the cohesive force is insufficient. It becomes easy to deform, and the thickness variation of the semiconductor wafer W after grinding becomes large. In addition, if a shearing force is applied to the adhesive that has also sunk into the recesses of the bumps formed on the circuit surface of the semiconductor Ueno and W, the risk of the adhesive remaining on the wafer surface increases. On the contrary, when the elastic modulus of the adhesive layer 52 at 23 ° C is higher than 1. OX 10 8 Pa, the adhesive layer 52 becomes hard and follows the bump irregularities. Problems such as increased variation in the thickness of W and clearance between the bump and the adhesive sheet 50 and intrusion of cooling water in the grinding process are likely to occur.
  • the intermediate layer 53 provided as necessary has a modulus of elasticity at 23 ° C of not more than the modulus of elasticity of the pressure-sensitive adhesive layer 52 at 23 ° C, and preferably 1 to the elastic modulus of the pressure-sensitive adhesive layer 52: L00 %, More preferably 10 to 90%, particularly preferably 30 to 80%.
  • the elastic modulus at 23 ° C of the adhesive layer 52 and the intermediate layer 53 is the above-mentioned relationship, the semiconductor layer Even if the bumps provided on the wafer circuit have a height difference exceeding 30 m, it is possible to adhere the bumps sufficiently, and the shearing force against the adhesive layer 52 is also dispersed, so that the peeling of the bumps At this time, the adhesive is less likely to remain.
  • the bumps on the wafer surface can be attached so that there is no difference in thickness between the dense and sparse bumps.
  • the material of the intermediate layer 53 is not particularly limited as long as the above physical properties are satisfied.
  • it is used for the preparation of various pressure-sensitive adhesive compositions such as talyl, rubber, and silicone, and the substrate 51.
  • An ultraviolet curable resin that can be used, a thermoplastic elastomer, and the like are used.
  • the upper surface of the intermediate layer 53 that is, the surface on the side where the pressure-sensitive adhesive layer 52 is provided, is subjected to corona treatment or other layers such as a primer in order to improve adhesion to the pressure-sensitive adhesive. May be installed.
  • the total thickness of the intermediate layer 53 and the pressure-sensitive adhesive layer 52 is appropriately selected in consideration of the bump height of the adherend to which the pressure-sensitive adhesive sheet 50 is stuck, the bump shape, the pitch of the bump interval, and the like. In general, it is desirable that the total thickness of the intermediate layer 53 and the pressure-sensitive adhesive layer 52 is selected to be 50% or more, preferably 100 to 200%, of the bump height. When the total thickness of the intermediate layer 53 and the pressure-sensitive adhesive layer 52 is selected in this way, the pressure-sensitive adhesive sheet 50 follows the unevenness on the circuit surface, and the unevenness difference can be eliminated. Therefore, the thickness of the intermediate layer 53 is also in the range of, for example, 5 to 500 / ⁇ ⁇ depending on the unevenness of the circuit surface.
  • the pressure-sensitive adhesive sheet 50 is dried by applying the above-mentioned pressure-sensitive adhesive on the base material 51 according to a generally known method such as a knife coater, roll coater, gravure coater, die coater, reverse coater and the like.
  • a knife coater, roll coater, gravure coater, die coater, reverse coater and the like is applied to the base material 51 according to a generally known method.
  • the pressure-sensitive adhesive layer 52 is formed, and then a release sheet is bonded onto the pressure-sensitive adhesive layer 52 as necessary.
  • the pressure-sensitive adhesive sheet 50 may be obtained by bonding the base material 51 after forming the pressure-sensitive adhesive layer 52 on the release-treated surface of the release sheet.
  • the resin is dried or cured by a required means to form the intermediate layer 53.
  • the pressure-sensitive adhesive layer 52 is formed on the intermediate layer 53 by the above method.
  • an intermediate layer 53 is formed on the release surface of the release sheet, transferred to the base material 51, and the adhesive layer 52 formed on another release sheet is pasted on the surface of the intermediate layer 53 from which the release sheet has been peeled off. It is also possible to obtain an adhesive sheet 50 with an intermediate layer 53 in combination.
  • the semiconductor wafer W, the adhesive sheet 50, and the fixing jig 60 are laminated in this order, and the semiconductor wafer W and the adhesive sheet 50 are separated from each other through the adhesive layer 52.
  • the circuit surface of Ueno and W is adhered, and the adhesive sheet 50 and the fixing jig 60 are laminated with the base material 51 and the adhesion layer 62 adhered to each other.
  • Such a protective structure of the semiconductor wafer W is suitable as a surface protective structure when storing, transferring, or processing an ultrathin semiconductor wafer W, for example, and the back surface of the semiconductor wafer W is polished to an extremely thin thickness.
  • it is useful as a semiconductor wafer protection structure for protecting the circuit surface.
  • the circuit surface of the semiconductor wafer W may be bonded to the surface 52.
  • the semiconductor wafer grinding method of the present invention is a method of grinding the back surface of the semiconductor wafer W to a predetermined thickness using a grinder or other grinding apparatus while protecting the semiconductor wafer W using such a protective structure. It is. Specifically, the jig base side of the semiconductor wafer protection structure is mounted on a processing table of a wafer grinding apparatus and subjected to backside grinding. During this grinding process, the jig base 61 is sucked and fixed to the processing table. The processing table blocks the through hole 66 by closing the suction surface of the processing table that contacts the through hole 66 of the jig base 61. It is structured so that the gas in the partition space 65 cannot be sucked through. By this grinding, the semiconductor wafer W is ground to a thickness of 30 ⁇ m to 100 ⁇ m, for example.
  • the fixing jig 60 is removed and the adhesive sheet 50 is peeled off.
  • a vacuum device is connected to the through hole 66 of the jig base 61, the gas in the partition space 65 is sucked from the through hole 66, and the adhesion layer 62 is deformed into an uneven shape. Only the upper surface of the side wall 63 and the upper surface of the convex portion of the adhesion layer 62 are brought into contact with the fixing jig 60 via the adhesive sheet 50. As a result, the adhesion between the semiconductor wafer W with the adhesive sheet 50 and the fixing jig 60 is reduced, and the fixing jig 60 can be easily removed from the semiconductor wafer W with the adhesive sheet 50 (step a).
  • a dicing tape for separating the semiconductor wafer W is applied to the ground surface of the semiconductor wafer W (step b), and the adhesive sheet 50 is peeled from the semiconductor wafer W (step c).
  • the pressure-sensitive adhesive sheet 50 is preferably peeled off by using a peeling adhesive tape so that the pressure-sensitive adhesive sheet 50 is peeled off in the 180 ° direction. If peeled off in the direction of 180 °, force is applied only in the plane direction of the semiconductor wafer w, resulting in cracks and less adhesive residue on the circuit surface.
  • the fixing jig 60 removal step (step a), dicing tape application step (step b), and adhesive sheet 50 peeling step (step c) are performed in the order of a> b> c, a> c>
  • the order may be either b or b> a> c.
  • the dicing tape is affixed and fixed to the ring frame before the fixing jig 60 is peeled off (b> a> c)
  • the semiconductor wafer and W affixed to the dicing tape are then processed through processes such as a dicing process and a die bonding process to manufacture a semiconductor device.
  • the holding jig 20 and the fixing jig 60 described above can be used as they are.
  • an adhesive sheet 50A may be attached to the circuit surface of the semiconductor wafer W as shown in FIG.
  • the pressure-sensitive adhesive sheet 50A is preferably composed of a base material and a pressure-sensitive adhesive layer, and more preferably has an intermediate layer between the base material and the pressure-sensitive adhesive layer.
  • the base material used for the pressure-sensitive adhesive sheet 50A can be used without being particularly selected as long as it is a resin sheet.
  • a resin sheet include polyolefins such as low density polyethylene, linear low density polyethylene, polypropylene, and polybutene, ethylene acetate butyl copolymer, ethylene (meth) acrylic acid copolymer, and ethylene (meth) acrylic.
  • examples thereof include ethylene copolymers such as acid ester copolymers, resin films such as polyesters such as polyethylene terephthalate and polyethylene naphthalate, polysalt polybutyl, attalinole rubber, polyamide, urethane, and polyimide.
  • the substrate may be a single layer of these or a laminate.
  • crosslinking etc. may be used.
  • the base material may be one obtained by forming and curing a curable resin, or one obtained by forming a thermoplastic resin.
  • the thickness of the substrate is preferably 30 to: LOOO ⁇ m, more preferably 50 to 800 ⁇ m, and particularly preferably 80 to 500 / ⁇ ⁇ .
  • the substrate preferably has a surface energy of at least 20 to 60 mNZm, more preferably 25 to 50 mNZm on the surface contacting the adhesive layer 62 of the fixed jig 60. When the surface energy is within the above range, the adhesion with the adhesion layer 62 is optimum, and the wafer does not fall off due to blocking or insufficient adhesion.
  • the substrate preferably has a surface roughness (arithmetic average roughness Ra) of 1.0 m or less, and more preferably 0.2 m or less.
  • arithmetic average roughness Ra is in the above range, there is no factor for reducing the adhesion between the adhesion layer 62 and the pressure-sensitive adhesive sheet 50A, so that a stable adhesion can be obtained.
  • the substrate is not particularly limited as long as it has the strength of the resin film and satisfies the above physical properties. Even if the resin itself exhibits the above physical properties, other additives may be covered. By applying a surface treatment, the above physical properties may be obtained. Furthermore, the above-mentioned coconut resin contains additives such as inorganic fillers such as calcium carbonate, silica and mica, metal fillers such as iron and lead, and colorants such as pigments and dyes.
  • the base material is a thin layer of liquid resin (such as pre-cured resin, resin solution) on the casting process sheet. After casting into a film, it can be produced by forming it into a film by a predetermined means. According to such a manufacturing method, the formation of fish eyes with less stress applied to the resin during film formation is small. Also, the thickness accuracy with high film thickness uniformity is usually within 2%. As another production method, there is a method in which the substrate is produced as a single-layer film by extrusion molding using a T-die or inflation method or a calendar method.
  • the pressure-sensitive adhesive layer can be formed of various conventionally known pressure-sensitive pressure-sensitive adhesives. Such an adhesive is not limited at all, but rubber-based, acrylic-based, silicone-based, polyvinyl ether and the like are used. In addition, an energy ray curable adhesive, a heated foaming adhesive, or a water swelling adhesive can be used. In the present invention, an energy ray curable adhesive, particularly an ultraviolet curable adhesive is preferably used.
  • the energy ray-curable pressure-sensitive adhesive generally comprises an acrylic pressure-sensitive adhesive and an energy beam-polymerizable composite as main components.
  • the energy linear polymerizable compound used in the energy ray curable adhesive is a low molecular weight compound having at least two photopolymerizable carbon-carbon double bonds in a molecule that can be three-dimensionally networked by light irradiation.
  • trimethylolpropane tritalylate pentaerythritol tritalylate, pentaerythritol tetratalylate, dipentaerythritol monohydroxypentatalylate, dipentaerythritol hexaatalylate or 1,4-butylene glycol Cole diatalylate, 1,6 hexanediol diatalate, polyethylene glycol diatalate, oligoester acrylate, urethane acrylate, etc. are used.
  • the mixing ratio of the acrylic pressure-sensitive adhesive and the energy ray-polymerizable compound in the energy-ray-curable pressure-sensitive adhesive is 10 to 100 parts by weight of the energy ray-polymerizable compound relative to 100 parts by weight of the acrylic pressure-sensitive adhesive. It is desirable to use L000 parts by weight, preferably ⁇ 20 to 500 parts by weight, particularly preferably ⁇ 50 to 200 parts by weight.
  • the pressure-sensitive adhesive sheet 50A obtained has a large initial adhesive force, and the adhesive strength is greatly reduced after energy beam irradiation. Therefore, peeling at the interface between the semiconductor chip and the energy ray curable pressure-sensitive adhesive layer after the back surface grinding is facilitated.
  • the energy ray-curable pressure-sensitive adhesive has an energy ray-polymerizable group in the side chain. It may be formed from a LUG single-line curable copolymer. Such an energy ray curable copolymer has the property of having both adhesiveness and energy ray curable properties.
  • photopolymerization initiators such as benzoin compounds, acetophenone compounds, acylphosphine oxide compounds, titanocene compounds, thixanthone compounds, peroxide compounds, and amines.
  • photosensitizers such as quinone
  • specific examples include 1-hydroxycyclohexyl phenyl ketone, benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, benzyl diphenyl sulfide, and tetramethyl.
  • Examples include thiuram monosulfide, azobisisobutyryl-tolyl, dibenzyl, diacetyl, and ⁇ -chloranthraquinone.
  • the use amount of the photopolymerization initiator is preferably 0.05 to 15 parts by weight, more preferably 0.1 to: L0 parts by weight, particularly preferably 0. 5 to 5 parts by weight.
  • a crosslinking agent may be used to partially crosslink the polymer component in the pressure-sensitive adhesive.
  • this crosslinking agent for example, an epoxy crosslinking agent, an isocyanate crosslinking agent, a methylol crosslinking agent, a chelate crosslinking agent, an aziridine crosslinking agent, and the like are used.
  • the acrylic energy ray-curable pressure-sensitive adhesive as described above has a sufficient adhesive force to the semiconductor wafer W before the irradiation with the energy beam, and the adhesive force significantly decreases after the irradiation with the energy beam. That is, before the energy beam irradiation, the adhesive sheet 50 mm and the semiconductor wafer W are brought into close contact with each other with sufficient adhesive force to enable surface protection. After the energy beam irradiation, the ground semiconductor chip force is easily peeled off. be able to.
  • the thickness of the pressure-sensitive adhesive layer is a force depending on the material. Usually, it is about 3 to: LOO / z m, preferably about 10 to 50 ⁇ m.
  • the adhesive sheet 50A When bumps with large unevenness are formed on the circuit surface of the semiconductor wafer W, in order to make the adhesive layer follow the uneven surface of the bumps, in the adhesive sheet 50A, there is an intermediate between the base material and the adhesive layer. A layer may be provided.
  • the material of the intermediate layer satisfies the above physical properties As long as it is not particularly limited, for example, various pressure-sensitive adhesive compositions such as acrylic, rubber-based, silicone-based, ultraviolet curable resin, thermoplastic elastomer, and the like are used.
  • the total thickness of the intermediate layer and the pressure-sensitive adhesive layer is appropriately selected in consideration of the bump height of the adherend to which the pressure-sensitive adhesive sheet 50A is stuck, the bump shape, the pitch of the bump interval, and the like. It is desirable that the total thickness of the intermediate layer and the pressure-sensitive adhesive layer be selected so that it is 50% or more of the bump height, preferably 100 to 200%. When the total thickness of the intermediate layer and the pressure-sensitive adhesive layer is selected in this way, the pressure-sensitive adhesive sheet 50A follows the unevenness on the circuit surface, and the unevenness difference can be eliminated. For this reason, the thickness of the intermediate layer is, for example, in the range of 5 to 500 / ⁇ ⁇ depending on the unevenness of the circuit surface.
  • the pressure-sensitive adhesive sheet 50 ⁇ is coated with a suitable thickness of the above-mentioned pressure-sensitive adhesive on a base material according to a generally known method such as knife coater, roll coater, gravure coater, die coater, reverse coater, etc. Then, it is obtained by adhering a release sheet on the pressure-sensitive adhesive layer as necessary. On the other hand, after forming an adhesive layer on the release-treated surface of the release sheet, it is possible to obtain 50 ⁇ of the adhesive sheet by pasting it onto the base material.
  • the resin is dried or cured by a required means to form the intermediate layer. Further, by forming the pressure-sensitive adhesive layer according to the above method, a pressure-sensitive adhesive sheet with an intermediate layer of 50 mm is obtained. Also, an intermediate layer is formed on the release surface of the release sheet, transferred to the substrate, and the adhesive layer formed on another release sheet is attached to the surface of the intermediate layer from which the release sheet has been peeled off. Adhesive sheet 5 OA may be obtained.
  • the semiconductor chip Wc is transferred to the transfer tape 80 so that the semiconductor chip Wc separated on the fixed jig 60 or the adhesive sheet 50A can be picked up.
  • this transfer tape 80 is composed of a base material and an adhesive layer, and is formed by a re-peelable adhesive sheet that exhibits a peel strength sufficient to pick up the transferred semiconductor chip Wc, or by irradiation with energy rays.
  • An energy ray-curable pressure-sensitive adhesive sheet that can reduce or eliminate the adhesive strength is preferably used.
  • Such a transfer tape 80 can be used later in the same way as a so-called dicing sheet.
  • a groove Ws having a cutting depth shallower than the thickness of the semiconductor wafer W is formed along the circuit on the circuit surface side of the semiconductor wafer W on which a plurality of circuits are formed.
  • the groove Ws is formed so as to partition a plurality of circuits formed on the surface of the semiconductor wafer W.
  • the depth of the groove Ws is not particularly limited as long as it is slightly deeper than the target chip thickness.
  • the groove Ws is formed by using a dicing blade or the like of a dicing apparatus.
  • a fixing jig 60 is attached to the surface on which the groove Ws is formed so that the surface and the adhesive layer 62 are in contact with each other (FIG. 13).
  • the back surface (grinding surface) Wg of the semiconductor wafer W is ground using a grinder to reduce the thickness of the semiconductor wafer W, and finally, the semiconductor wafer W is divided into individual semiconductor chips Wc. That is, backside grinding is performed until the bottom of the groove Ws is removed, and the semiconductor wafer W is formed into chips for each circuit (FIG. 14).
  • a plurality of semiconductor chips (hereinafter also referred to as “chip groups”) Wc having a predetermined thickness can be obtained by performing back surface grinding as necessary.
  • the jig base 61 is sucked and fixed to the processing table.
  • the processing table passes through, for example, by closing the suction surface of the processing table that contacts the through hole 66 of the jig base 61.
  • the structure is such that the gas in the partition space 65 cannot be sucked through the hole 66. Since the fixed jig 60 is an extremely rigid support, the semiconductor wafer W can be ground to an extremely thin thickness of, for example, 100 m or less, particularly 50 ⁇ m or less.
  • the method for picking up the obtained chip group is not particularly limited.
  • the following method can be preferably employed.
  • a pickup transfer tape 80 is attached to the polished surface (back surface) of each of the divided semiconductor chips Wc while keeping the aligned state (FIG. 15).
  • the transfer tape 80 has a larger area than the chip group, and its periphery is fixed by a frame 81.
  • the vacuum device 70 sucks the gas in the partition space 65 from the through-hole 66 of the fixed jig 60 to deform the adhesion layer 62 into an uneven shape, so that the semiconductor chip Wc is formed on the upper surface of the sidewall 63 and the adhesion layer. Only the upper surface of 62 convex parts is brought into contact with the fixed jig 60 (Fig. 16). As a result, the adhesive force between the semiconductor chip Wc and the fixed jig 60 is reduced and can be easily removed from the fixed jig 60, and the semiconductor chip Wc is transferred to the transfer tape 80 (FIG. 17).
  • the semiconductor chip Wc transferred to the transfer tape 80 in this manner is picked up from the transfer tape 80 by a conventionally known method, and a semiconductor device is manufactured through a normal process.
  • the transfer tape 80 is formed of an energy ray curable adhesive
  • the semiconductor chip Wc is transferred by irradiating energy rays from the substrate side of the transfer tape 80 to reduce the adhesive force of the transfer tape 80. It can be easily picked up from tape 80.
  • an adhesive sheet 50A is affixed to the circuit surface on which the groove Ws is formed (Fig. 18).
  • a fixing jig 60 is attached to the base material surface of the adhesive sheet 50A (FIG. 19).
  • an adhesive sheet 50A having an intermediate layer is used.
  • the wafer W fixed to the fixing jig 60 via the adhesive sheet 50A is also subjected to back grinding in the same manner as described above, and the separated chips are transferred to the transfer tape 80 (FIG. 2). 0 to Figure 23).
  • the adhesive sheet 50A is also removed from the semiconductor chip Wc force.
  • the pressure-sensitive adhesive layer is formed of an energy line curable pressure-sensitive adhesive
  • the adhesive force of the pressure-sensitive adhesive layer is reduced by irradiating the energy line from the base material side of the pressure-sensitive adhesive sheet 50A, thereby causing the pressure-sensitive adhesive from the semiconductor chip Wc.
  • the sheet 50A can be easily peeled off.
  • the fixing jig 60 is removed from the substrate surface of the adhesive sheet 50A before the transfer tape 80 is attached to the chip group, and then the chip group is attached to the transfer tape 80. After the transfer, the order of peeling the adhesive sheet 50A may be followed.
  • the holding jig shown in FIG. 3 or FIG. 4 is manufactured in different configurations as shown in Table 1, and Example 1 is also manufactured up to Example 17, and each holding jig is chucked in a semiconductor wafer back grinding apparatus.
  • a 300mm type semiconductor wafer was back ground supported on a table, and the evaluation items of repeated durability, removal time, infiltration of grinding fluid, wafer holding power, wafer thickness and wafer thickness variation were evaluated.
  • the adhesion strength and adhesion strength were determined by the methods described in the embodiments.
  • the materials for the substrate and adhesive film shown in Table 1 are as follows.
  • n 5
  • 300 mm type semiconductor wafer having a thickness of 775 m was ground to a set value of 75 ⁇ m, and the minimum number of breakage was shown. If no damage occurred, repeat up to 100 times.
  • Removal time The time it took for the semiconductor wafer to be removable after the vacuum pump was driven to deform the adhesive film on the holding jig.
  • Grinding fluid penetration The maximum penetration distance of grinding fluid penetration marks in the holding jig after grinding is shown.
  • Wafer holding force Holds the semiconductor wafer in close contact with the adhesive film of the holding jig, and also fixes the double-sided force with a vacuum chuck and shows the strength when pulled in the peeling direction.
  • Wafer thickness As shown in Fig. 5 The thickness of 17 points of the semiconductor wafer after grinding was measured and shown as an average value.
  • Wafer thickness variation As shown in Fig. 5, the thickness of the 17 points of the semiconductor wafer after grinding was measured, and the maximum and minimum values were the largest.
  • Example 1 Evaluation results In the case of Example 1, the pitch of the support protrusion, the width of the support protrusion, the height of the support protrusion, the thickness of the adhesion film, the breaking strength, the elongation at break, the bending elastic modulus, the shear adhesion force, and the adhesion force are all It was in the preferable range, and the result which was excellent in repeated durability was obtained. In addition, the time required for removing the semiconductor wafer is very short, and the infiltration of the grinding fluid is at a level that does not cause any problems. The wafer holding strength is sufficiently strong. Was also small enough.
  • Example 2 As compared with Example 1, the pitch of the support protrusions was reduced within a preferable range, and the width of the support protrusions and the height of the support protrusions were reduced within the preferable ranges. The removal time was slightly longer. Although it was within the range that could withstand sufficient use, the thickness was slightly better than that of Example 1 with respect to thickness variation.
  • Example 4 In the case of Example 4, the pitch of the support protrusions, the width of the support protrusions, and the height of the support protrusions were reduced by removing the preferred range force, and the thickness of the adhesive film was reduced within the preferred range.
  • the removal time was 11 seconds, and the infiltration of the grinding fluid was increased to 2 mm.
  • the wafer thickness variation was on an improving trend.
  • Example 5 In the case of Example 5, the pitch of the support protrusions was returned to lmm, and the width of the support protrusions, the height of the support protrusions, and the thickness of the adhesive film were reduced within a preferable range. Compared with Example 1, the removal time became longer and the degree of penetration of the grinding fluid increased, but practically sufficient results could be obtained.
  • Example 6 compared to Example 1, the pitch of the support protrusions, the width of the support protrusions, and the height of the support protrusions were increased within a preferable range. As a result, the time required for the removal was remarkably improved and the wafer thickness was increased, but it was within the adjustable range.
  • Example 7 In the case of Example 7, the pitch of the support protrusions, the width of the support protrusions, and the height of the support protrusions were increased by removing the preferred range force. As a result, the removal time is very good at less than 1 second. However, with regard to repeated durability, the shortest one was confirmed to be broken at the 84th time. Although the wafer thickness is within the adjustable range, it was thicker and the thickness variation was 11 m. In the case of Example 8, as compared with Example 1, only the thickness of the adhesive film was reduced within a preferable range. As a result, the removal time was significantly improved. The infiltration of the grinding fluid was 2 mm, but there was no problem.
  • Example 9 compared with Example 1, only the thickness of the adhesive film was reduced except for the preferred range. The force was good for removal time. With regard to repeated durability, damage was confirmed at the shortest 66th time. In addition, the penetration of the grinding fluid was 4 mm, and it was confirmed that cleaning was required when there were chips formed in this range.
  • Example 10 compared with Example 1, the thickness of the adhesive film was increased within a preferable range. As a result, the removal time was as long as 34 seconds. The penetration of the grinding fluid was good at less than lmm, and good results were obtained even with other characteristics.
  • Example 11 the adhesion film was made thicker than Example 10 to make it out of the preferred range. As a result, the penetration of the grinding fluid was good at less than lmm, but the time required for removal was 68 seconds.
  • Example 12 the material of the adhesive film was changed. Along with this, the breaking strength decreased within the preferred range, and the breaking elongation decreased outside the preferred range. Compared with Example 1, only the repeated durability was inferior at 58 times.
  • Example 13 while changing the material of the adhesive film, the breaking strength and breaking elongation were also reduced by removing the preferred range force. As a result, the repeated durability was 32 times, which was inferior to Example 12.
  • Example 14 In the case of Example 14, the material of the adhesive film was changed. Along with this, the preferred range force also deviated and became smaller, and the flexural modulus decreased within the preferred range, but the breaking elongation was greatly improved within the preferred range. Further, compared with Example 1, although the repeated durability was inferior to 45 times, the penetration of the grinding fluid was less than 1 mm, and a very good result was obtained.
  • Example 15 Although the adhesive film material was changed to reduce the flexural modulus from the preferred range, the elongation at break was improved to 900%. As a result, grinding fluid immersion The force was very good at less than lm. The time required for removal was 72 seconds.
  • Example 16 the material of the adhesive film was changed so that the flexural modulus exceeded the preferred range. As a result, it was necessary to clean the wafer with a grinding fluid penetration of 5mm.
  • Example 17 the material of the adhesive film was changed so that the flexural modulus was preferred and increased beyond the range, and the shear adhesive force was reduced from the preferred range. As a result, the penetration of the grinding fluid became 35 mm, and the wafer was forced to be cleaned.
  • the bending elastic modulus of the jig base is determined by the bending test method specified in JIS K6911.
  • Adhesion layer is pasted on a well-known glass plate having a size of 30mm in length X 30mm in width X 3mm in thickness and placed on a mirror wafer made of silicon. 900g on the entire glass plate and adhesion layer When the glass plate was pressed in parallel with the mirror wafer for 5 seconds, the load when it started moving was measured. When it did not start at a load of 35N, the result was “over 35N”, and the measurement above this was forceful.
  • Adhesion is as follows: the film itself constituting the adhesion layer is cut to a width of 30 mm, attached to the mirror surface of the wafer with a rubber roller, left for 20 minutes, and then peeled off at a speed of 300 mmZ at an angle of 180 °. The peel strength when evaluated was evaluated.
  • Stress relaxation rate Pull an adhesive sheet sample with a length of 100 mm at a speed of 200 mmZ, stretch 10%, and stop pulling.
  • the stress relaxation rate was calculated from (A ⁇ B) ZA X 100 (%) from the stress A at 10% elongation and the stress B 1 minute after the elongation stop.
  • (tan ⁇ ) tan ⁇ was measured with a dynamic viscoelasticity measuring device at a tensile stress of 110 Hz. Specifically, the base material is sampled to a predetermined size, and Rheovibron manufactured by Orientec Co., Ltd.
  • DDV— ⁇ — ⁇ was used to measure tan ⁇ in the range of ⁇ 40 ° C to 150 ° C at a frequency of 110 Hz, and the maximum value in the range of ⁇ 5 ° C to 80 ° C was adopted as the “tan ⁇ value”. .
  • the elastic modulus G ′ of the adhesive and the intermediate layer at 23 ° C. was measured by a torsional shear method of 110 Hz using a dynamic viscoelasticity measuring device (RDAII manufactured by Leometritas).
  • the adhesion layer has a thickness of 100 m, a tensile breaking strength of 9 MPa, a tensile breaking elongation of 750%, a flexural modulus of 27 MPa, a shear adhesion strength of over 35 N, and an adhesion strength of less than 0.1 NZ25 mm (less than the lower limit of measurement).
  • Glue a film made of ethylene methyl methacrylate (trade name: ACLIFT WH303, manufactured by Sumitomo Chemical Co., Ltd.) to the side wall of the jig base and the upper surface of the projection with a modified silicone adhesive, and fix the fixed jig with a diameter of 202 mm. Produced.
  • urethane acrylate oligomer having a weight average molecular weight of 5000 (Arakawa Chemical Co., Ltd.)
  • 25 parts by weight of isobutyl acrylate, 25 parts by weight of hydroxyhydroxy propyl acrylate, and 1- Hydroxycyclohexyl phenol ketone (Irgaki Your 184, manufactured by Ciba Geigy Co., Ltd.) 2.0 parts by weight and 0.2 part by weight of a phthalocyanine pigment were blended to obtain an energy ray-curable resin composition.
  • the obtained resin composition was formed on a polyethylene terephthalate film (hereinafter referred to as “PET film”, manufactured by Torayen earth: 38 ⁇ m in thickness), which is a process sheet for casting, by a fountain die method.
  • the resin composition layer was formed by coating to m.
  • the same PET film is laminated on the resin composition layer, and then UV irradiation is performed using a high-pressure mercury lamp (16 OW / cm, height 10 cm) at a light intensity of 250 mj / cm 2.
  • the resin composition layer was cross-linked and cured, and the PET films on both sides were peeled off to obtain a substrate having a thickness of 110 m.
  • the surface energy of this substrate was 34 mNZm, the arithmetic average roughness Ra was 0.0988 m, and the maximum value of tan ⁇ was 1.20.
  • acrylic pressure-sensitive adhesive manufactured by Soken Chemical Co., Ltd., trade name: SK Dyne 909 ⁇ -6
  • urethane acrylate oligomer manufactured by Dainichi Seiki Co., Ltd., trade name: EXL800, weight average molecular weight: approx.
  • This adhesive sheet is affixed to the mirror surface of a silicon wafer (200 mm diameter, thickness 750 m) using a tape laminator (Adwill RAD3500 / ml2 manufactured by Lintec Corporation) via an adhesive layer, along the contour of the silicon wafer.
  • the adhesive sheet was cut.
  • the adhesion layer surface of the fixing jig is adhered to the exposed surface of the adhesive sheet with a vacuum bonding apparatus (manufactured by Shibaura Mechatronics Co., Ltd.) to protect the semiconductor wafer.
  • a vacuum bonding apparatus manufactured by Shibaura Mechatronics Co., Ltd.
  • the protective structure of this semiconductor wafer was supported and fixed by suction on a processing table of a wafer grinding apparatus (trade name: DFG-840, manufactured by Disco Corporation), and backside grinding was performed until the wafer thickness reached 150 m. .
  • the suction surface of the processing table located in the through hole of the fixed jig was partially blocked with an adhesive tape so that the gas in the partitioning space of the fixed jig was not sucked by suction when the processing table was fixed.
  • After grinding take the wafer grinding machine power semiconductor wafer protective structure, connect the nozzle of the vacuum pump to the opening of the through hole of the fixed jig, and suck the gas in the partition space of the fixed jig to adhere Was deformed. As a result, the wafer with the adhesive sheet could be easily removed from the fixed jig.
  • the wafer with the removed adhesive sheet was attached to the dicing tape with a wafer mounter (Adwill RAD-2500F / 8, manufactured by Lintec Co., Ltd.) with an adhesive sheet peeling mechanism.
  • the semiconductor wafer could be provided to the dicing process by peeling the adhesive sheet. During these processes, the silicon wafer could be transferred to each device without being damaged.
  • the silicon wafer was ground using the same material and the same equipment as in Example 18 except that the thickness after grinding of the wafer was 50 m.
  • the wafer grinding machine power semiconductor wafer protection structure was taken out and mounted on a wafer mounter with an adhesive sheet peeling mechanism.
  • the ground surface of the wafer with the adhesive sheet supported by the fixture was affixed to the dicing tape and fixed to the ring frame.
  • the nozzle of the vacuum pump was connected to the opening of the through hole of the fixed jig, the adhesive layer was deformed by sucking the gas in the partitioning space of the fixed jig, and the fixed jig was removed.
  • the adhesive sheet was peeled off by the peeling mechanism of the wafer mounter with a peeling mechanism, so that the silicon wafer could be supplied to the dicing process.
  • Solvent-free urethane acrylate (PM-654F, manufactured by Dainichi Seika Co., Ltd.) was cast on one side of a base material obtained in the same manner as in Example 18 to form an intermediate layer having a thickness of 110 m.
  • the elastic modulus of the intermediate layer at 23 ° C was 1.27 X 10 5 Pa.
  • an adhesive layer having a thickness of 20 / zm was formed in the same manner as in Example 18 to obtain an adhesive sheet.
  • the stress relaxation rate of the adhesive sheet was 88%.
  • a protective structure for a semiconductor wafer was produced in the same manner as in Example 18.
  • This semiconductor Using the wafer protective structure, wafer grinding was performed in the same manner as in Example 18 to obtain a silicon wafer having a thickness of 150 m. During these steps, the silicon wafer could be transferred to each device without damaging it.
  • Polyethylene film (thickness 110 m, arithmetic average roughness Ra: 0.120 ⁇ m, surface energy) with low-density polyethylene resin (product name: Sumikasen L705, manufactured by Sumitomo Chemical Co., Ltd.) as the base material
  • a semiconductor wafer protection structure was fabricated in the same manner as in Example 18 except that 31 mNZm and the maximum value of tan ⁇ : 0.13) were used.
  • the stress relaxation rate of the adhesive sheet is 30%.
  • a silicon wafer of / z m thickness was obtained. During these steps, the silicon wafer could be transferred to each device without breaking.
  • Ink dots (height 100 m, diameter 100-200 m, pitch lmm) were formed on the mirror surface of a silicon wafer having a diameter of 200 mm and a thickness of 750 ⁇ m instead of the silicon wafer of Example 20, and the silicon wafer was A silicon wafer having a thickness of 150 m was obtained by grinding the wafer using the same material and the same apparatus as in Example 20 except that a high bump wafer was simulated. During these steps, silicon wafers could be delivered to each device without damage. Also, no dimples due to high bumps were observed on the ground surface of the wafer.
  • a fixing jig was produced in the same manner as in Example 18.
  • a dicing machine (Disco, DF, made of silicon wafer (200mm diameter, 750 ⁇ m thick) with a chip size of 10mm x 10mm and a groove depth of 120 ⁇ m on the mirror side.
  • Half-cut dicing was performed using D-6561).
  • the adhesion layer surface of the fixed jig was adhered to the mirror surface of the wafer by a vacuum bonding apparatus (manufactured by Shibaura Mechatronics Co., Ltd.) so that the wafer was fixed to the fixed jig.
  • transfer tape UV-curable dicing tape manufactured by Lintec, trade name Adwill
  • D650 was affixed to the grinding surface (chip surface) of the wafer and fixed to the ring frame using a wafer mounter with a peeling mechanism (Adwill RAD-2500F / 8MUL, manufactured by Lintec Corporation). Subsequently, a nozzle of a vacuum pump was connected to the opening of the through hole of the fixed jig, and the gas in the partition space of the fixed jig was sucked to deform the adhesion layer. As a result, the adhesive layer of the fixed jig was easily peeled from the chip group, and the fixed jig was transferred to the transfer tape.
  • the first dicing step could be performed without causing breakage of the chip or disorder of the arrangement.
  • the tip dicing process could be performed using a wafer grinding machine that does not have a special delivery device. Also, during these processes, each device could be delivered without damaging the silicon wafer (chip group).
  • ink dots (height 100 ⁇ m, diameter 100 to 200 ⁇ m, pitch lmm) were formed on the mirror surface of a silicon wafer having a diameter of 200 mm and a thickness of 750 m.
  • a wafer having bumps was used.
  • an adhesive sheet having an intermediate layer a UV-curable protective adhesive sheet (trade name Adwill E8310LS342 2F, intermediate layer thickness 110 / ⁇ , adhesive layer thickness 40 m) manufactured by Lintec Corporation was used.
  • Adwill E8310LS342 2F intermediate layer thickness 110 / ⁇ , adhesive layer thickness 40 m
  • Half-cut dicing was performed on the bump side of the wafer having bumps using a dicing machine so that the groove size would be 120 m with a chip size of 10 mm x 10 mm.
  • an adhesive sheet was attached to the bump surface using a tape laminator (Adwill RAD3500 / ml2 manufactured by Lintec Corporation), and the adhesive sheet was cut along the contour of the silicon wafer. Further, the adhesion layer surface of the fixed jig was adhered to the base material surface of the adhesive sheet by a vacuum bonding apparatus so that the respective centers coincided, and the wafer was fixed to the fixed jig.
  • the transfer tape was affixed to the ground surface (chip surface) of the wafer by a wafer mounter and fixed to the ring frame.
  • a nozzle of a vacuum pump was connected to the opening of the through hole of the fixed jig, and the gas in the partition space of the fixed jig was sucked to deform the adhesion layer.
  • the adhesion layer of the chip group force fixing jig easily peeled off, and the chip group with the adhesive sheet was transferred to the transfer tape.
  • the adhesive sheet was peeled off using the wafer mounter peeling mechanism, and only the chip group was stuck on the transfer tape.
  • the first dicing step could be performed without causing breakage of the chip or disorder of the arrangement.
  • the tip dicing process could be performed using a wafer grinding machine that does not have a special delivery device.
  • the silicon wafers (chips) could be delivered without damaging them.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Description

明 細 書
保持治具、半導体ウェハの研削方法、半導体ウェハの保護構造及びこ れを用いた半導体ウェハの研削方法、並びに半導体チップの製造方法
技術分野
[0001] 本発明は、半導体ウェハのバックグラインド工程等で使用される保持治具及び半導 体ウェハの研削方法に関するものである。また、半導体ウェハの保護構造及びこれ を用いた半導体ウェハの研削方法に関し、特に半導体ウェハを極薄にまで研削する 際に用いられ、研削後に固定ジグ力 半導体ウェハを破損させずに取り外すことの できる半導体ウェハの保護構造及びこれを用いた半導体ウェハの研削方法に関す るものである。また、ウェハを裏面研削することにより、ウェハの厚さを薄くするとともに 、最終的に個々のチップへ分割する半導体チップの製造方法に関し、特に裏面研削 後の半導体チップの取扱性に優れた半導体チップの製造方法に関するものである。 背景技術
[0002] 半導体ウェハは、半導体製造の前工程では反らないように、例えば口径が 300m mタイプの場合には、約 775 μ mの厚さにされている力 この肉厚のままでは、薄片 化が必要な近年の半導体パッケージには適さな 、ので、ノ ックグラインド工程と呼ば れる工程において裏面の研削処理により時には 100 m以下に薄くされ、その後、 ダイシング工程で個々のチップに分離される。
[0003] 半導体ウェハ Wのバックグラインド工程においては、先ず、半導体ウェハ Wの回路 が形成されたパターン形成面を保護するために柔軟な保護シート (BGシートとも 、う ) 1を貼着してその大きさが半導体ウェハ Wよりも僅かに大きくなるようカット(図 25参 照)し、半導体ウエノ、 Wをバックグラインド装置にセットしてそのテーブルを回転させ、 研削装置の作業領域に半導体ウェハ Wを配置して位置決めする。
[0004] 保護シート 1は、例えばエチレン酢酸ビニル共重合体や軟質ポリ塩ィ匕ビュルを基材 とした 50〜200 πιの厚さを有するフィルムに、アクリル系、ウレタン系、ブタジエン系 、シリコーン系等の紫外線 (UV)硬化型、非 UV硬化型の粘着層が 10〜60 /ζ πιの厚 さで積層されることにより形成され、ノ ックグラインド工程後に剥離されて使用後には 再使用されることなく廃棄される。
[0005] 研削装置の作業領域に半導体ウェハ Wを配置して位置決めした後、半導体ウェハ Wの裏面を回転砲石 33で研削(図 26参照)し、その後、半導体ウェハ Wの裏面を化 学薬品 41により約 1 μ m程度エッチングして研削に伴うダメージ層を除去(図 27参照 )することにより、半導体ウェハ Wを薄片化する (特許文献 1参照)。
[0006] こうして半導体ウェハ Wを薄片化した後、半導体ウェハ Wのエッチングされた裏面 を中空のキャリア治具 44にダイシング工程で使用される粘着テープ、具体的には U Vテープ 42を介して固定するとともに、半導体ウェハ Wのパターン形成面から保護シ ート 1を剥離テープ 43により剥離(図 28参照)し、キャリア治具 44に支持された半導 体ウエノ、 W (図 29参照)をブレードと呼ばれる砲石により個々のチップに分離する。 特許文献 1 :特開 2005-93882号公報
発明の開示
発明が解決しょうとする課題
[0007] ところで、半導体ウェハ Wは、 100 μ m程度の厚さまでは自己支持性を有して!/、る ので、吸着孔を有する吸着パッドに上方力も吸着されても、支持や搬送が可能であ つた o
[0008] し力しながら、半導体ウェハ Wが 50 μ m程度かそれ以下の厚さまで研削された場 合には、半導体ウェハ Wの自己支持性が不十分となり、強度が低下するので、吸着 ノ^ドの吸着孔力 離れた位置が重力で橈んでしま 、、半導体ウェハ Wが割れてし まうことが多い。
[0009] この半導体ウェハ Wの割れを防止する手段として、半導体ウェハ Wに保護シート 1 を貼着する方法が考えられるが、例え半導体ウェハ Wに保護シート 1を貼着しても、 通常の柔軟な保護シート 1では十分な強度を維持することができず、重力による橈み が発生することとなる。また、剛性の保護シート 1を使用する方法も考えられるが、この 場合には、半導体ウェハ Wから保護シート 1を剥離する際、半導体ウェハ Wの強度 力 S小さい厚さ方向(面に対し垂直方向)に引張力が作用するので、半導体ウェハ W の破損する虞が大きくなる。
[0010] 従来における半導体ウエノ、 Wのバックグラインド工程後の操作においては、以上の ように極薄化された半導体ウェハ wが重力で橈み、破損を招く虞があるので、これを 防止するため、半導体ウェハ Wの全面を吸着支持することのできる特別なハンドリン グ構造の搬送装置を使用しなければならないという問題がある。また、半導体ウェハ
Wのノ ックグラインド工程で一度使用した保護シートは、再利用することが困難で廃 棄処分するしかな 、ので、廃棄物の大量発生を抑制することができな 、と 、う大きな 問題がある。
[0011] 一方、回路パターンの形成後に半導体ウェハ Wの裏面を研削することは従来より 行われており、その際、回路面に粘着シートを貼付し、回路面の保護及び半導体ゥ ェハ Wの固定を行い、裏面研削を行っている。従来、この用途には、軟質基材上に 粘着剤が塗工されてなる粘着シートが用いられていた。しかしながら、軟質基材を用 いた粘着シートでは、貼付時にかける張力が残留応力として蓄積してしまう。半導体 ウェハ wが大口径の場合や極薄に研削すると、半導体ウェハ Wの強度よりも粘着シ ートの残留応力が勝り、この残留応力を解消しょうとする力によって半導体ウェハ w に反りが発生してしまっていた。また、研削後には半導体ウェハ Wが脆いため、軟質 基材では搬送時に半導体ウェハ wが破損してしまうことがあった。
[0012] このため、薄厚の半導体ウェハ Wゃ大口径の半導体ウェハ Wの保護用粘着シート の基材として、剛性の基材の使用が検討されている。し力しながら、剛性の基材を用 いた粘着シートを剥離しょうとすると、基材の剛性のため、剥離時に加えられる曲げ 応力が半導体ウェハ Wにまで伝わり、脆くなって 、る半導体ウェハ Wを破損する虞が ある。このような課題を解消するため、剛性基材を用いた粘着シートの剥離を容易に すべぐ粘着剤としてエネルギー線硬化型粘着剤を用いることが検討された。しかし、 エネルギー線硬化型粘着剤を半導体ウエノヽ W貼付用の粘着剤に用いただけでは、 剥離時の曲げ応力は完全には消失しな 、ので、なお半導体ウェハ Wを破損する虡 がある。
[0013] そこで、このような問題を解消するため、剛性基材と粘着剤層との間に応力緩和フィ ルムを設けることが検討された (特開 2003-261842号公報参照)。しかし、応力緩 和フィルムを用いても、粘着シートの剥離時には、消失しきれない応力がかかることが あり、なお半導体ウェハ Wを破損する虞がある。また、従来の剛性基材では、大口径 の半導体ウェハ wを支持しきれな 、ことがある。
[0014] また、チップの薄厚化を達成する方法として、半導体ウェハ Wの表面側力 所定深 さの溝を形成 (ノヽーフカットダイシング)した後、半導体ウェハ Wの裏面側から研削す る半導体チップの製造方法が知られている。このようなプロセスは、「先ダイシング法」 とも呼ばれて 、る(特開平 5 - 335411号公報参照)。
[0015] 先ダイシング法によるプロセスでは、半導体ウエノ、 Wが極薄の状態になるときは同 時にチップに分割され、厚さに比較して面積が狭くなるため、半導体ウェハ Wの搬送 や受け渡しで破損が起こりに《なる。また、フルカットダイシングを行った場合に起き やすいチップ断面の欠け (チッビング)は、先ダイシング法では起こりにくい。
[0016] ところで、先ダイシング法によって分割されたチップは表面保護用の粘着シートで 連結された状態であり、粘着シートが剛直性を持たないため、全面を支えられる特殊 な搬送装置を使わなければ、その後の工程が行えないという問題があった。また、粘 着シートにチップを支持できるまでの剛直性を与えた場合は、チップから粘着シート を剥離することが困難になるという問題があった。
[0017] 本発明は上記に鑑みなされたもので、保護シートの使用に伴う問題を解消すること のできる保持治具及び半導体ウェハの研削方法を提供することを目的として 、る。ま た、薄厚ウェハゃ大口径ウェハの裏面研削時に、十分にウェハを支持することがで き、ウェハを湾曲させずに極薄まで研削可能であり、ウェハを固定ジグカも取り外す 際にウェハを破損しない半導体ウェハの保護構造及びこの保護構造を用いた半導 体ウェハの研削方法を提供することを目的としている。また、先ダイシング法において 通常の搬送装置等の使用が可能な半導体チップの製造方法を提供することを目的 とし、これにより極薄で高信頼性のチップを比較的安価に実現することも目的とする。 課題を解決するための手段
[0018] 本発明においては上記課題を解決するため、半導体ウェハを保持する保持治具で あって、
剛性の基板に形成される凹部と、この凹部に配列して設けられる複数の支持突起と 、凹部を被覆して複数の支持突起に支持され、半導体ウェハを着脱自在に密着保 持する変形可能な密着フィルム層と、この密着フィルム層に被覆された凹部内の気 体を外部に導く排気路とを含んでなることを特徴とする。
[0019] なお、凹部を負圧にして密着フィルム層を変形させる負圧源を含むことが好ましい。
また、密着フィルム層は帯電防止剤を含むことができる。
また、複数の支持突起の配列ピッチを 0. 2〜2. Ommとすることができる。 また、支持突起の幅を 0. 05-1. Ommとすることができる。
また、支持突起の高さを 0. 05-0. 5mmとすることができる。
[0020] また、密着フィルム層の厚さを 20〜200 μ mとすることができる。
また、密着フィルム層の弓 I張り破断強度を 5MPa以上とすることができる。 また、密着フィルム層の引張り破断伸びを 500%以上とすることができる。 また、密着フィルム層の常温の曲げ弾性率を 10〜: LOOMPaとすることができる。 また、請求項 1な!、し 10 、ずれかに記載の保持治具を半導体ウェハの研削工程で 用いることを特徴とする。
[0021] また、請求項 1な!、し 10 、ずれかに記載の保持治具の密着フィルム層に半導体ゥ ェハの回路が形成された表面を接触させて密着保持させ、半導体ウェハの裏面を所 定の厚さまで研削することを特徴とする。
なお、半導体ウェハの裏面を所定の厚さまで研削した後、保持治具に半導体ゥェ ハを密着保持させたまま、半導体ウェハの裏面をさらにエッチング処理することがで きる。
[0022] また、本発明に係る半導体ウェハの保護構造は、半導体ウェハ、該半導体ウェハ の回路面上に積層された粘着シート及び固定ジグがこの順で積層されてなる半導体 ウェハの保護構造であって、
前記固定ジグは、片面に複数の突起物を有し、かつ該片面の外周部に該突起物と 略同じ高さの側壁を有するジグ基台と、該ジグ基台の突起物を有する面上に積層さ れ、該側壁の上面で接着された密着層とからなり、前記ジグ基台の突起物を有する 面には、前記密着層、前記突起物及び前記側壁により区画空間が形成され、前記ジ グ基台には、外部と前記区画空間とを貫通する少なくとも 1つの貫通孔が設けられ、 前記密着層は、前記半導体ウェハの回路面上に積層された粘着シートの表面に積 層されてなることを特徴とする。 [0023] 前記粘着シートは、片面の表面エネルギーが 20〜60mNZm及び表面粗さ(算術 平均粗さ Ra)が 1. 0 m以下の基材とその反対面に設けられた粘着剤層とからなり、 該粘着剤層が前記回路面と当接していることが好ましい。
[0024] また、前記粘着シートは、基材と、該基材上に形成された中間層と、該中間層上に 形成された粘着剤層とからなり、前記粘着剤層の 23°Cにおける弾性率が 5 X 104〜1 . 0 X 107Paの範囲にあり、前記中間層の 23°Cにおける弾性率が前記粘着剤層の 2 3°Cにおける弾性率以下であることも好ま 、。
さらに、前記粘着シートが、—5〜80°Cの温度範囲における動的粘弾性の tan δの 最大値が 0. 5以上の基材と粘着剤層とからなることも好ましい。
[0025] また、本発明に係る半導体ウェハの研削方法は、前記半導体ウェハの保護構造の ジグ基台側をウエノ、研削装置の処理テーブルに搭載して所定のウェハ厚さまでゥェ ハ裏面を削研した後、前記貫通孔力 前記区画空間内の気体を吸引して密着層を 凹凸状に変形させ、次いで、該密着層から粘着シート付きの半導体ウェハを取り外し た後、該粘着シートを半導体ウェハから取り除くことを特徴とする。
[0026] また、本発明に係る半導体チップの製造方法は、(I)複数の回路が形成されたゥェ ハの回路面側に、該回路に沿って該ウェハの厚さより浅い切込み深さの溝を形成す る工程、(Π)前記回路面上に固定ジグを積層する工程、及び (III)前記溝に到達す るまで前記ウェハを裏面研削してチップ群に分割する工程とを含み、
前記固定ジグが、片面に複数の突起物を有し、かつ該片面の外周部に該突起物と 略同じ高さの側壁を有するジグ基台と、該ジグ基台の突起物を有する面上に積層さ れ、該側壁の上面で接着された密着層とからなり、前記ジグ基台の突起物を有する 面には、前記密着層、前記突起物及び前記側壁により区画空間が形成され、前記ジ グ基台には、外部と前記区画空間とを貫通する少なくとも 1つの貫通孔が設けられ、 前記密着層が前記回路面上に積層されていることを特徴とする。
[0027] また、上記製造方法では、前記工程 (III)でウェハをチップ群に分割した後、フレー ムに固定した転写テープを該チップ群の裏面に貼着し、次いで、前記貫通孔から前 記区画空間内の気体を吸引して密着層を凹凸状に変形させることにより、前記チッ プ群を密着層から取り外し、前記転写テープに転写することが好ましい。 前記密着層は、密着層を介してウェハの回路面上に積層されていることが好ましい
[0028] ここで、特許請求の範囲における半導体ウェハは、口径 200mmタイプや 300mm タイプ等を特に問うものではない。この半導体ウェハには、結晶方位を判別したり、整 列を容易化するオリフラやノッチが適宜形成される。また、保持治具やその基板は、 平面視で円形、楕円形、矩形、多角形等に形成することができる。また、凹部、密着 層、及び排気路は、その数を特に問うものではない。
[0029] 凹部は、平面視で円形、楕円形、矩形、多角形等に形成することができる。また、複 数の突起物は、凹部に規則的に配列されるものでも良いし、不規則に配列されるも のでも良い。この複数の突起物は、凹部と一体構造でも良いし、別体の構造にするこ ともできる。突起物は、円柱形、円錐台形、角柱形、角錐台形等に形成することがで きる。さらに、密着層は、半導体ウェハに対応する大きさであれば、同じ大きさでも良 いし、半導体ウェハより大きくても良い。
発明の効果
[0030] 本発明によれば、半導体ウェハ用の保護シートを使用することなく半導体ウェハの 研削工程を行うことができるので、保護シートの使用に伴う問題、例えば保護シート の廃棄に伴う廃棄物の増カロ、糊残りに伴う半導体ウェハの導通不良や汚染という問 題を有効に解消することができるという効果がある。
[0031] また、単なるフィルムやシートではなぐ粘着性に優れる密着フィルム層を使用する ので、例え半導体ウェハを 100 m未満の薄さに薄片化しても、密着フィルム層の密 着作用により半導体ウェハの位置ずれや破損を防ぐことができる。
また、密着フィルム層に帯電防止剤を添加すれば、半導体ウェハの静電気破壊を 抑帘 Uすることができる。
また、複数の支持突起の配列ピッチを 0. 2〜2. Ommとすれば、保持治具の反復 使用時に密着フィルム層が破断したり、裂けたりする虞がなぐし力も、半導体ウェハ の研削後における厚さばらつきを小さくすることができる。
[0032] また、支持突起の幅(太さ)を 0. 05-1. Ommとすれば、半導体ウェハの取り外し 時に密着フィルム層に支持突起が孔を空けて損傷させたり、支持突起自体の強度低 下を招くことがない。また、支持突起部分の半導体ウェハに対する密着力が過剰に 大きくなり、半導体ウェハの取り外しが困難になるのを防ぐことができる。
また、支持突起の高さを 0. 05-0. 5mmとすれば、密着フィルム層から半導体ゥェ ハを簡単に取り外すことができ、し力も、バックグラインド時に支持突起部分の半導体 ウェハが必要以上に研削されたり、密着フィルム層が必要以上に伸ばされて半導体 ウェハの密着に支障を来たす虞を排除することが可能になる。
[0033] また、密着フィルム層の厚さを 20〜200 μ mとすれば、密着フィルム層の耐久性を 向上させ、し力も、半導体ウェハのパターン形成面の凹凸に追従させ、研削液等の 浸入に伴う半導体ウェハの汚染を抑制することが可能になる。また、密着フィルム層 力も半導体ウェハを迅速に取り外すことが可能になる。
また、密着フィルム層の引張り破断強度を 5MPa以上とすれば、密着フィルム層が 変形時に破断する虡を排除することができる。
また、密着フィルム層の引張り破断伸びを 500%以上とすれば、変形時に密着フィ ルム層が複数の支持突起に確実に追従し、破断する虞がない。
[0034] さらに、密着フィルム層の常温の曲げ弾性率を 10〜100MPaとすれば、密着フィ ルム層の支持突起に支持されて!、る部分以外の部分が橈み、密着フィルム層に対 する半導体ウェハの密着に支障を来たす虞がなぐし力も、密着フィルム層に対する 半導体ウェハの着脱が困難になるのを防ぐこともできる。
[0035] また、本発明に係る半導体ウェハの保護構造を用いて半導体ウェハを研削するこ とにより、薄厚ウェハゃ大口径ウェハの裏面研削時に、十分にウェハを支持すること ができ、ウェハを湾曲させずに極薄まで研削可能であり、ウェハを破損させずにゥェ ハを固定ジグから取り外すことができる。
[0036] また、本発明に係る半導体チップの製造方法によれば、分割されたチップを容易に 取り外すことができ、かつ剛直性を有する固定ジグを用いることにより、先ダイシング を行った後で特殊な搬送装置を使用することなく次工程に進むことができる。
図面の簡単な説明
[0037] [図 1]本発明に係る保持治具及び半導体ウェハの研削方法の実施形態におけるバッ クグラインド装置を模式的に示す平面説明図である。 圆 2]本発明に係る保持治具及び半導体ウェハの研削方法の実施形態におけるバッ クグラインド装置を模式的に示す側面説明図である。
圆 3]本発明に係る保持治具の実施形態を模式的に示す断面説明図である。
圆 4]本発明に係る保持治具の他の実施形態を模式的に示す断面説明図である。 圆 5]本発明に係る半導体ウェハの保護構造の一例を示す概略断面図である。 圆 6]本発明に係る半導体ウェハの保護構造の一例を示す概略断面図である。 圆 7]本発明に係る半導体ウェハの保護構造を構成するジグ基台の概略上面図であ る。
圆 8]本発明に係る半導体ウェハの保護構造を構成するジグ基台の概略断面図であ る。
圆 9]本発明に用いられる固定ジグを構成するジグ基台を示す概略断面図である。 圆 10]本発明に係る半導体チップの製造方法の一工程を示す概略断面図である。 圆 11]本発明に係る半導体チップの製造方法の一工程を示す概略断面図である。 圆 12]本発明に係る半導体チップの製造方法の一工程を示す概略断面図である。 圆 13]本発明に係る半導体チップの製造方法の一工程を示す概略断面図である。 圆 14]本発明に係る半導体チップの製造方法の一工程を示す概略断面図である。 圆 15]本発明に係る半導体チップの製造方法の一工程を示す概略断面図である。 圆 16]本発明に係る半導体チップの製造方法の一工程を示す概略断面図である。 圆 17]本発明に係る半導体チップの製造方法の一工程を示す概略断面図である。 圆 18]本発明に係る半導体チップの製造方法の一工程を示す概略断面図である。 圆 19]本発明に係る半導体チップの製造方法の一工程を示す概略断面図である。 圆 20]本発明に係る半導体チップの製造方法の一工程を示す概略断面図である。 圆 21]本発明に係る半導体チップの製造方法の一工程を示す概略断面図である。 圆 22]本発明に係る半導体チップの製造方法の一工程を示す概略断面図である。 圆 23]本発明に係る半導体チップの製造方法の一工程を示す概略断面図である。 圆 24]本発明に係る保持治具の実施例にお 、て、ウェハの厚さ ·ばらつきの測定点 を示す平面説明図である。
圆 25]半導体ウェハのパターン形成面に保護シートを密着する状態を示す斜視説明 図である。
[図 26]半導体ウェハの裏面を回転砥石でバックグラインドする状態を示す斜視説明 図である。
圆 27]半導体ウェハの損傷した裏面をィ匕学薬品でヱツチングする状態を示す斜視説 明図である。
[図 28]半導体ウェハのパターン形成面から保護シートを剥離する状態を示す斜視説 明図である。
圆 29]ダイシング工程でキャリア治具に UVテープを貼着する状態を示す平面説明 図である。
符号の説明
1 保護テープ
10 ノ ックグラインド装置
13 テーブル
15 チャックテープノレ
20 保持治具
21 基板
22 凹み穴(凹部)
23 支持突起
24 密着フィルム(密着フィルム層)
25 排気路
26 真空ポンプ (負圧源)
27 帯電防止層
30 研削装置
32 粗研削装置
34 仕上げ研削装置
50 粘着シート
50A 粘着シート
60 固定ジグ 61 ジグ基台
62 密着層
63 側壁
64 突起物
65 区画空間
66 貫通孔
70 ノキューム装置
W 半導体ウェハ
Wc 半導体チップ
Wg 半導体ウェハの研削面
Ws 半導体ウェハの溝
発明を実施するための最良の形態
[0039] 以下、図面を参照して本発明の好ましい実施の形態を説明すると、本実施形態に おける半導体ウェハのバックグラインド装置 10は、図 1ないし図 3に示すように、架台 11〖こ設置されたテーブル 13と、このテーブル 13にチャックテーブル 15を介し回転可 能に搭載された複数の保持治具 20と、保持治具 20に保持された半導体ウェハ Wの 裏面を粗研削と仕上げ研削を通じて研削処理する研削装置 30と、研削処理された 半導体ウェハ W用の洗浄装置 40とを備え、約 775 μ mの厚さを有する口径 300mm タイプの半導体ウェハ Wをバックグラインドして 100 μ m以下の厚さに薄片化するよう 機能する。
[0040] 架台 11は、図 1や図 2に示すように、前後方向(図 1の上下方向)に長く形成され、 作業面の前部中央にハンドリング装置 12が設置されるとともに、作業面の略中央部 に平面円形のテーブル 13が上部の露出した状態で回転可能に設置されており、作 業面の後部には、テーブル 13の表面後部に上方力も対向する研削装置 30が立設さ れる。ハンドリング装置 12の左右両側部には、ノ ックグラインド前の厚い半導体ゥェ ハ Wを複数枚整列収納したウェハカセット 14と、ノ ックグラインド後の薄 、半導体ゥ エノ、 Wを整列収納するウェハカセット 14Aとがそれぞれ搭載される。
[0041] テーブル 13は、図 1や図 2に示すように、例えば所定の材料を使用して円板形に形 成され、その露出した上部表面の周方向には複数のチャックテーブル 15が間隔をお き回転可能〖こ支持されるとともに、各チャックテーブル 15には保持治具 20が着脱自 在に搭載されており、所定の回転角度で回転(図 1の矢印参照)して保持治具 20の 位置をノ、ンドリング装置 12方向や研削装置 30方向に変更するよう機能する。
[0042] チャックテーブル 15は、例えばステンレス製の枠体に多孔質セラミックス製の円板 が嵌合されることにより平坦な平面円形に構成され、架台 11内の図示しない真空装 置の減圧に基づき、半導体ウェハ Wを粘着保持した保持治具 20を着脱自在に吸着 保持するよう機能する。このチャックテーブル 15における保持治具 20の排気路 25に 対応する位置には、密着フィルム 24に被覆された凹み穴 22内を減圧しないよう目止 めが施される。
[0043] 複数の保持治具 20は、図 1に示すように、例えば粗研削用の半導体ウェハ Wを保 持する保持治具 20と、仕上げ研削用の半導体ウェハ Wを保持する保持治具 20と、 待機中の半導体ウェハ W等を保持する保持治具 20とを備えて形成される。
[0044] 各保持治具 20は、図 3に示すように、チャックテーブル 15の表面に搭載される剛性 の基板 21と、この基板 21に形成される凹み穴 22と、この凹み穴 22に突設される複 数の支持突起 23と、凹み穴 22を被覆して複数の支持突起 23に支持され、半導体ゥ ェハ Wの表面であるパターン形成面を着脱自在に密着保持する変形可能な密着フ イルム 24と、この密着フィルム 24に被覆された凹み穴 22内の空気を外部に導き、密 着フィルム 24を変形させて半導体ウェハ Wの剥離を可能にする排気路 25とを備えた 簡素な構造に構成され、必要に応じてウェハカセット 14· 14Aや基板収納容器 (例え ば、 FOUPや FOSB等)に収納される。
[0045] 基板 21は、所定の材料を使用して 0. 5〜2. Omm程度の厚さを有する平坦な薄板 に形成され、半導体ウェハ Wよりも僅か〖こ大きい平面円形とされる。この基板 21の材 料としては、例えばアルミニウム合金、マグネシウム合金、ステンレス等の金属材料、 ポリアミド (PA)、ポリカーボネート(PC)、ポリプロピレン (PP)、アクリル、ポリ塩ィ匕ビ- ル等の樹脂成形材料、ガラスがあげられる。
[0046] これら基板 21の材料は、自由に選択することができるが、保持治具 20や基板 21の 剛性確保の観点から、 ASTM D74の方法に基づき、好ましくは lGPa以上の曲げ 弾性率を得ることができるのが好ましい。これは、曲げ弾性率が lGPa未満の場合に は、基板 21の肉厚を厚くしなければならず、ウェハカセット 14· 14Aや基板収納容器 への収納の際に不都合を来たす力 である。
[0047] 基板 21の厚さは好ましくは 0. 5〜2. Ommの範囲、より好ましくは 0. 8〜1. 5mm 程度とされる力 これは、基板 21の厚さが 0. 5mm未満の場合には、薄片化された半 導体ウェハ Wのハンドリング時に半導体ウェハ Wが橈んだり、折曲して破損するから である。逆に、基板 21の厚さが 2. Ommを超える場合には、ウェハカセット 14· 14A や基板収納容器に対する出し入れ時に引つかかり、支障を来たす力もである。
[0048] 凹み穴 22は、基板 21の表面周縁部を除く大部分に浅く凹み形成され、半導体ゥ ェハ W以上の大きさの平面円形とされる。この凹み穴 22は、好ましくは 0. 05〜0. 5 mm、より好ましくは 0. 2mm程度の深さ(すなわち、突起高さ)に形成され、その底面 には、密着フィルム 24を下方力も支持する複数の支持突起 23が並設される。
[0049] 複数の支持突起 23は、例えば凹み穴 22の底面に成形法、サンドブラスト法、エツ チング法等により間隔をおき規則的に配列され、各支持突起 23が凹み穴 22の深さと 略同じ高さ、長さの円柱形に形成される。
[0050] 密着フィルム 24は、例えばエチレン-メチルメタタリレート、シリコーンゴム、ウレタン 系エラストマ一、直鎖状低密度ポリエチレン (LLPE)、エチレン メチルメタタリレート 共重合物、ォレフィン系熱可塑性エラストマ一、プロピレンーォレフイン共重合物等を 使用して半導体ウェハ Wよりも大きい平面円形の薄膜に成形され、基板 21の表面周 縁部に接着されるとともに、複数の支持突起 23の平坦な表面に接着されており、凹 み穴 22を被覆してその底面との間に空気流通用の空間を区画する。密着フィルム 2 4の材料としては、上記に列挙した中でも、可撓性、施工性、粘着特性に優れるェチ レン-メチルメタタリレートが最適である。
[0051] 排気路 25は、図 2や図 3に示すように、基板 21の下部外側に穿孔されてその下流 部が真空ポンプ 26に剥離用テーブルや剥離用ハンド等を介し着脱自在に接続され ており、真空ポンプ 26の駆動に基づき、密着フィルム 24に被覆された凹み穴 22内の 空気を外部に排気して負圧化するよう機能する。そして、この空気の排気により、平 坦な密着フィルム 24は、複数の支持突起 23に追従しながら凹み穴 22の底面方向に 凹凸に変形し、半導体ウェハ Wのパターン形成面力 部分的に離隔して密着状態の 半導体ウェハ wの剥離を容易化する。
[0052] 排気路 25の大きさは、特に限定されるものではないが、バックグラインド作業に悪 影響を及ぼさないよう 2mm以下であることが好ましい。また、剥離用テーブルや剥離 用ハンドは、図示しないが、真空ポンプ 26と共にバックグラインド装置 10の外部に設 置されており、バックグラインド装置 10から搬出された保持治具 20の基板 21を着脱 自在に搭載する。
[0053] 研削装置 30は、図 1や図 2に示すように、半導体ウェハ Wの裏面に上方から # 320 〜360程度の回転砥石 31で研削液を介し粗研削処理を施す粗研削装置 32と、この 粗研削装置 32に隣接配置されて粗研削処理された半導体ウェハ Wの裏面に上方 カゝら # 2000程度の回転砥石 33で研削液を介し仕上げ研削処理を施す仕上げ研削 装置 34とを備えて構成される。
[0054] ところで、保持治具 20の支持突起 23と密着フィルム 24とは、保持治具 20の損傷を 防止したり、バックグラインド作業の円滑ィ匕ゃ容易化等を図る観点から以下の特徴を 有することが好ましい。
[0055] 先ず、複数の支持突起 23のピッチ (支持突起 23の中心から他の支持突起 23の中 心までの距離)は、好ましくは 0. 2〜2. Omm、より好ましくは lmm程度が最適である 。これは、支持突起 23と支持突起 23との間隔が 0. 2mm未満の場合には、半導体ゥ エノ、 Wの剥離時に密着フィルム 24が過剰に引き伸ばされるので、繰り返し使用時に 密着フィルム 24が破断したり、裂けたりする虞がある力もである。逆に、支持突起 23と 支持突起 23との間隔が 2. Ommを超える場合には、支持突起 23上とそれ以外の部 分とで半導体ウェハ Wの研削後における厚さばらつきが非常に大きくなるからである
[0056] なお、複数の支持突起 23のピッチは、 0. 2〜2. Ommの範囲で自由に変更するこ とができる力 支持突起 23が太い場合には、密着フィルム 24からの半導体ウェハ W の剥離を容易にする観点力 ピッチを拡大することが好まし 、。
[0057] 各支持突起 23は、幅が好ましくは 0. 05-1. Omm、より好ましくは 0. 4mm程度で あり、高さが好ましくは 0. 05-0. 5mm、より好ましくは 0. 2mmが最適である。支持 突起 23の幅が 0. 05〜: L Ommの範囲なのは、支持突起 23の幅が 0. 05mm未満 の場合には、半導体ウェハ Wの剥離時に密着フィルム 24に支持突起 23が孔を空け て損傷させたり、支持突起 23自体の強度低下を招くという理由に基づく。
[0058] 逆に、支持突起 23の幅が 1. Ommを超える場合には、支持突起部分の半導体ゥェ ハ Wに対する密着力が必要以上に大きくなり、半導体ウェハ Wの剥離が困難になる という理由に基づく。
[0059] 支持突起 23の高さが 0. 05〜0. 5mmの範囲なのは、支持突起 23の高さが 0. 05 mm未満の場合には、密着フィルム 24から半導体ウェハ Wを剥離することが困難に なるという理由に基づく。逆に、支持突起 23の高さが 0. 5mmを超える場合には、バ ックグラインド時に支持突起部分の半導体ウェハ Wが必要以上に研削されたり、密着 フィルム 24が必要以上に伸ばされて半導体ウェハ Wの密着に支障を来たす虞があ るという理由に基づく。
[0060] 次に、密着フィルム 24である力 この密着フィルム 24の厚さは好ましくは 20〜200 μ m、より好ましくは 50〜: LOO μ mであるのが最適である。これは、密着フィルム 24の 厚さが 20 /z m未満の場合には、繰り返し使用時の耐久性に乏しぐし力も、半導体ゥ ェハ Wのパターン形成面の凹凸に追従することができないので、バックグラインド時 に密着フィルム 24と半導体ウェハ Wとの間に研削液が浸入し、半導体ウェハ Wのパ ターン形成面の汚染を招くからである。
[0061] 逆に、密着フィルム 24の厚さが 200 μ mを超える場合には、半導体ウェハ Wのパタ ーン形成面の凹凸に追従することができるものの、密着フィルム 24から半導体ウェハ Wを剥離する作業に長時間を要するからである。
[0062] 密着フィルム 24の引張り破断強度は、 JIS K7127の試験方法に基づき、好ましく は 5MPa以上、より好ましくは 9MPa以上であるのが好適である。これは、密着フィル ム 24の引張り破断強度が 5MPa未満の場合には、変形時に密着フィルム 24が破断 する虞があるからである。
[0063] 密着フィルム層の引張り破断伸びは、 JIS K7127の試験方法に基づき、好ましく は 500%以上、より好ましくは 600%以上であるのが好適である。これは、密着フィル ム層の引張り破断伸びが 500%未満の場合には、変形時に密着フィルム 24が支持 突起 23に追従することができず、破断する虞があるからである。
[0064] 密着フィルム 24の常温の曲げ弾性率は、 ASTM D74の方法に基づき、好ましく は 10〜100MPaの範囲内、より好ましくは 27MPaが良い。これは、密着フィルム 24 の曲げ弾性率が lOMPa未満の場合には、密着フィルム 24の支持突起 23に支持さ れて 、る部分以外の部分が重力で下方に橈んでしま、、密着フィルム 24に対する半 導体ウェハ Wの密着に支障を来たすという理由に基づく。逆に、密着フィルム 24の 曲げ弾性率が lOOMPaを超える場合には、密着フィルム 24の変形に支障を来たし、 密着フィルム 24に対する半導体ウェハ Wの着脱が困難になるという理由に基づく。
[0065] 密着フィルム 24のせん断密着力は、縦 30mm X横 30mm X厚さ 3mmの大きさを 有する周知のガラス板に密着フィルム 24を貼り巻き付けてシリコンウェハのミラー面 上に配置し、ガラス板と密着フィルム 24の全体に 900gの荷重を 5秒間加え、ガラス 板をウェハと平行に荷重をカ卩えて押圧した場合に、動き出した時の荷重が好ましくは 20N以上、より好ましくは 35N以上になるのが良い。
[0066] これは、動き出した時の荷重が 20N未満の場合には、半導体ウェハ Wの裏面の粗 研削が終了して仕上げ研削に移り、半導体ウェハ Wに対する研削装置 30の回転砲 石 3133の圧力が開放されて回転可能な状態となる際、密着フィルム 24から半導体 ウエノ、 Wが剥離して破損する虞があると 、う理由に基づく。
[0067] 密着フィルム 24の密着力は、ウェハ上に幅 25mmにカットした密着フィルム 24を配 置し、この密着フィルム 24をシリコンウェハのミラー面上に空気が侵入しな 、ようにゴ ムローラで圧着し、 20分後に密着フィルム 24を 300mmZ分の速度で 180° の角度 を付けて剥離した際、剥離強度が好ましくは 2NZ25mm以下、より好ましくは 1NZ 25mm以下になるのが最適である。
[0068] これは、剥離強度が 2NZ25mmを超える場合には、保持治具 20から空気を排気 しても、密着フィルム 24から半導体ウェハ Wが剥離し難ぐノ ックグラインドの終了し た半導体ウェハ Wの取り外しに支障を来たす力 である。
[0069] なお、密着フィルム 24から半導体ウェハ Wを剥離する際、剥離帯電の生じることが あるが、この剥離帯電を防止したい場合には、製造時の密着フィルム 24に、導電力 一ボン、カーボンナノチューブ、高分子型の帯電防止剤、導電性ポリマー等を適宜 配合しても良いし、これらの配合された別の層を積層しても良い。その他の部分につ いては、従来例と同様である。
[0070] 上記において、半導体ウェハ Wをバックグラインドにより 100 μ m以下の厚さに薄片 化し、ダイシング工程で個々のチップに分離する場合には、先ず、ウェハカセット 14 に、予め半導体ウェハ Wのパターン形成面を密着保持した保持治具 20を収納して バックグラインド装置 10にセットし、ウェハカセット 14からテーブル 13のチャックテー ブル 15上に保持治具 20をノヽンドリング装置 12により移載し、チャックテーブル 15に 保持治具 20を対向させて減圧保持させる。
[0071] チャックテーブル 15に保持治具 20が保持されると、テーブル 13が回転して保持治 具 20をノヽンドリング装置 12側から研削装置 30側に搬送するとともに、チャックテープ ル 15と共に保持治具 20が回転し、研削装置 30が回転する半導体ウェハ Wの裏面 を粗研削装置 32と仕上げ研削装置 34の回転砥石 31 · 33で順次研削し、半導体ゥ エノ、 Wが薄片化された後、ウェハカセット 14Aが保持治具 20を収納する。
[0072] 係る研削の際、半導体ウェハ Wは、密着フィルム 24が上記した物性を有して 、るの で、確実に密着され、例え回転砲石 31 · 33により研削されても、密着状態の解除され ることがない。また、研削処理の間、密着フィルム 24に半導体ウェハ Wが何らの動力 やエネルギー無しに密着保持されるので、設備やコストの大幅な削減が期待できる。 そしてその後、必要に応じ、半導体ウェハ Wの裏面が化学薬品 41により約 1 m程 度エッチングされ、研削に伴うダメージ層が除去される。このダメージ層の除去により 、薄片化されたチップの強度が向上し、半導体の信頼性が向上する。
[0073] 次いで、半導体ウェハ Wのエッチングされた裏面が中空のキャリア治具 44にダイシ ング工程で使用される別の粘着テープであるダイシングテープを介して固定されると ともに、半導体ウェハ Wが保持治具 20から取り外される。具体的には、剥離用テープ ルゃ剥離用ハンド等を介して接続された真空ポンプ 26が駆動して保持治具 20の密 着フィルム 24を凹み穴 22の底面方向に凹凸に変形させることにより、半導体ウェハ Wが容易に剥離可能となるので、保持治具 20から簡単に取り外すことができる。
[0074] 半導体ウェハ Wをダイシングテープによりキャリア治具 44に支持(図 29参照)させ たら、ダイシングテープの余剰部をカットすることにより、キャリア治具 44の中空部に 配置された半導体ウェハ wを砲石により個々のチップに分離することができる。
[0075] 上記構成によれば、使い捨ての保護シート 1の代わりに反復使用可能な保持治具 20を使用するので、半導体ウェハ Wのパターン形成面に保護シート 1を一枚毎に貼 着する必要が全くない。したがって、保護シート 1の廃棄に伴う廃棄物の増加を防止 したり、保護シート 1の材料を選択する自由度が狭められるという問題を確実に解消 することができる。
[0076] また、密着フィルム 24には粘着剤が使用されていないので、いわゆる「糊残り」の生 じることが全くない。また、保護シート 1を省略することができるので、糊残りの発生す ることがあり得ず、半導体ウェハ Wのパターン形成面に残留した粘着剤が導通不良 の原因となる虞をきわめて有効に排除することができる。
[0077] また、例え半導体ウェハ Wを 75 μ m以下の薄さに薄片化しても、密着フィルム 24の 密着力により半導体ウェハ Wの破損防止が大いに期待できる。また、密着フィルム 2 4が単なるエラストマ一ではなぐエラストマ一フィルムであるので、弾性変形領域内で 確実に繰り返し使用することができ、しかも、エラストマ一フィルムを 20〜50 /ζ πιの厚 さとすれば、半導体ウェハ Wの取り外し時間を短縮することが可能になる。
[0078] また、凹み穴 22の底面に、密着フィルム 24を接着支持する複数の支持突起 23を 配列するので、密着フィルム 24が広範囲に亘つて過剰に大きく凹んだり、半導体ゥェ ハ Wの姿勢が崩れて傾斜したり、位置ずれして脱落するのを確実に防止することが 可會 になる。
[0079] 次に、図 4は本発明の他の実施形態を示すもので、この場合には、保持治具 20の 密着フィルム 24に、弾性変形可能な帯電防止層 27を半導体ウェハ Wに接触しない ように裏面側力も積層して接着し、密着フィルム 24と帯電防止層 27とを一体ィ匕するよ うにしている。
[0080] 帯電防止層 27は、例えばエチレン-メチルメタタリレート製のフィルムや薄いエラスト マー等力 なり、側鎖に化学式 1で示される第四級アンモ-ゥム塩を有する帯電防止 性の榭脂、有機導電性ポリマー、金属酸化物、及び又はカーボンが添加される。そ の他の部分については、上記実施形態と同様であるので説明を省略する。
[0081] [化 1] R1
R4—— N+—— R2 X—
R3
式中、 R1 R2および R3 は、炭素数 1〜10のアルキル基を示し、 R4は、炭素数 1〜10のアルキレン基を示し、 X-は、ァニオンを示す。
[0082] 本実施形態においても上記実施形態と同様の作用効果が期待でき、しかも、密着 フィルム 24に、静電気の蓄積しにくい帯電防止層 27をカ卩えて多層構造にするので、 剥離帯電の防止の他、密着フィルム 24の多様ィ匕を図ったり、耐久性を向上させること ができるのは明らかである。
[0083] なお、上記実施形態では凹み穴 22を被覆する密着フィルム 24を単に示した力 密 着フィルム 24に、黒色、濃紺、茶色等の暗色を着色し、光の反射により画像解析に 支障を来たしたり、汚れが顕在化するのを防止するようにしても良い。さらに、半導体 ウエノ、 Wの裏面をィ匕学薬品 41でエッチングしたが、排水処理の容易なポリッシュによ りダメージ層を除去しても良い。
[0084] 次に、図面を参照しながら、本発明に係る半導体ウェハの保護構造及び半導体ゥ ェハの研削方法を具体的に説明する。
本発明に係る半導体ウェハの保護構造は、図 5及び図 6に示すように半導体ゥェ ハ Wの回路面上に積層された粘着シート 50及び固定ジグ 60がこの順で積層されて なる。
[0085] 固定ジグ 60は、ジグ基台 61と密着層 62と力もなる。ジグ基台 61の形状としては、 略円形、略楕円形、略矩形、略多角形があげられ、略円形が好ましい。ジグ基台 61 の一方の面には、図 7及び図 8に示すように、複数の突起物 64が間隔をおいて上方 に突出して形成されている。突起物 64の形状は特に限定されないが、円柱形又は円 錐台形が好ましい。この突起物 64を有する面の外周部には、突起物 64と略同じ高さ の側壁 63が形成されて ヽる。
[0086] また、突起物 64を有する面上には密着層 62が積層されている。この密着層 62は 側壁 63の上面で接着されるが、突起物 64の上面と密着層 62は接着されても良いし 、接着されていなくても良い。ジグ基台 61の突起物 64を有する面、すなわちジグ基 台 61と密着層 62との間には、突起物 64、側壁 63及び密着層 62により区画空間 65 が形成されている。一方、ジグ基台 61の突起物 64を有しない面には、この面側の外 部と区画空間 65とを貫通する貫通孔 66がジグ基台 61の厚さ方向に設けられている
[0087] なお、貫通孔 66は、ジグ基台 61に少なくとも 1個が設けられていればよぐ複数個 が設けられていても良い。また、ジグ基台 61の突起物 64を有しない面の貫通孔 66 の代わりに、ジグ基台 61の水平方向に貫通孔 66を設けるとともに、ジグ基台 61の側 壁 63に開口部を設け、この貫通孔 66の開口部に、着脱自在のバキューム装置 70を 接続することにより、区画空間 65内の気体を排気して密着層 62を凹凸状に変形させ ることがでさる。
[0088] ジグ基台 61の材質は、機械強度に優れたものであれば特に限定されな!、が、例え ばポリカーボネート、ポリプロピレン、ポリエチレン、ポリエチレンテレフタレート榭脂、 アクリル榭脂、ポリ塩ィ匕ビュル等の熱可塑性榭脂;アルミニウム合金、マグネシウム合 金、ステンレス等の金属材料;ガラス等の無機材料;ガラス繊維強化エポキシ榭脂等 の有機無機複合材料等があげられる。また、ジグ基台 61の曲げ弾性率は、 lGPa以 上であることが好ましい。このような曲げ弾性率を有していれば、ジグ基台 61の厚さを 必要以上に厚くすることなく剛直性を与えることができる。このような材料を用いること により、半導体ウェハ Wの裏面研削の後で半導体ウェハ Wを湾曲させずに十分に支 持することができる。
[0089] ジグ基台 61の外径は、半導体ウェハ Wの外径と略同一又は半導体ウェハ Wの外 径よりも大きいことが好ましい。ジグ基台 61が半導体ウェハ Wの規格サイズの最大径 (例えば 300mm径)に対応できる外径を有していれば、それより小さい全ての半導 体ウェハ Wに対して適用することができる。また、ジグ基台 61の厚さは、 0. 5〜2. 0 mmが好ましぐ 0. 5〜1. Ommがより好ましい。ジグ基台 61の厚さが上記範囲にあ ると、半導体ウェハ Wの裏面研削の後で半導体ウェハ Wを湾曲させずに十分に支持 することができる。
[0090] 突起物 64及び側壁 63の高さは 0. 05〜0. 5mmが好ましい。また、突起物 64の上 面の径は 0. 05〜: L Ommが好ましい。さらに、突起物の間隔は 0. 2〜2. Ommが好 ましい。突起物 64の大きさ及び突起物 64の間隔が上記範囲にあると、バキューム装 置 70により区画空間 65内の気体を吸引することにより、密着層 62を十分に凹凸状に 変形させることができ、粘着シート 50付きの半導体ウェハ Wを容易に密着層 62から 取り外すことができる。さらに、密着層 62の凹凸の変形を何度も繰り返した後でも、元 の平坦な状態に復元させ続けることができる。貫通孔 66の径は特に限定されないが 、 2mm以下が好ましい。
[0091] このようなジグ基台 61は例えば熱可塑性の榭脂材料を金型を用いて加熱成形し、 ジグ基台 61の底部、側壁 63及び突起物 64を一体で製造しても良いし、平面円形板 上に側壁 63及び突起物 64を形成して製造しても良いし、あるいは凹型円板の凹部 内表面に突起物 64を形成して製造しても良い。
[0092] 突起物 64の形成方法としては、電铸法により金属を所定の形状に析出させる方法 、スクリーン印刷により突起物 64を形成する方法、平面円形板上にフォトレジストを積 層し、露光、現像して突起物 64を形成する方法等があげられる。また、金属製の平 面円形板の表面をエッチングにより突起物形成部分を残して侵食除去する方法ゃサ ンドブラストにより平面円形板の表面を突起物形成部分を残して除去する方法等によ りジグ基台 61を製造することもできる。
[0093] なお、貫通孔 66は、突起物 64を形成する前に予め形成しても良いし、後で形成し ても良い。また、ジグ基台 61の成形と同時に形成しても良い。
[0094] ジグ基台 61の突起物 64を有する面上には密着層 62が形成されている。この密着 層 62の材質としては、可撓性、柔軟性、耐熱性、弾性、粘着性等に優れたウレタン 系、アクリル系、フッ素系、又はシリコーン系のエラストマ一があげられる。このエラスト マーには、必要に応じて補強性フイラ一や疎水性シリカ等の各種添加剤を添加して も良い。 [0095] 密着層 62はジグ基台 61と略同一形状の平板であることが好ましぐ密着層 62の外 径はジグ基台 61の外径と略同一であることが好ましぐ厚さは 20〜200 μ mが好まし い。密着層 62の厚さが 20 m未満では、吸引の繰り返しに対する機械的な耐久性 に乏しくなることがある。一方、密着層 62の厚さが 200 mを超えると、吸引による粘 着シート 50との剥離に著しく時間が力かることがあり好ましくない。
[0096] また、密着層 62の引張破断強度は 5MPa以上であることが好ましぐ引張破断伸 度は 500%以上であることが好ましい。引張破断強度や引張破断伸度が上記範囲 にあると、密着層 62の変形を何度も繰り返した場合でも、密着層 62の破断も弛みも 発生せず、元の平坦な状態に復元させることができる。
[0097] また、密着層 62の曲げ弾性率は、 10〜100MPaの範囲が好ましい。密着層 62の 曲げ弾性率が lOMPa未満の場合、密着層 62は突起物 64との接点以外の部分は 重力で橈んでしまい、半導体ウェハ Wに密着できなくなる場合がある。一方、 100M Paを超えると、吸引による変形が起こりにくくなり、半導体ウェハ Wを容易に剥離する ことができなくなる場合がある。
[0098] また、密着層 62の粘着シート 50に接する側の面のせん断密着力は 35N以上であ ることが好ましい。 35N未満の場合、半導体ウェハ Wの剪断方向(ウェハ面に水平方 向)に力が加えられた場合に半導体ウエノ、 Wが粘着シート 50ごと剥離し、半導体ゥ エノ、 Wを破損させる虞がある。本発明においてせん断密着力は、密着層 62とシリコ ンウェハのミラー面との間で測定した値を 、 、、縦 30mm X横 30mm X厚さ 3mmの 大きさを有する周知のガラス板に密着層 62を貼り付けてシリコン力もなるミラーウェハ 上に配置し、ガラス板と密着層 62の全体に 900gの荷重を 5秒間加え、ガラス板をミラ 一ウェハと平行に荷重を加えて押圧した場合に、動き出した時の荷重を測定したも のである。
[0099] さらに、密着層 62の密着力は 2NZ25mm以下であることが望ましい。これを超える 値では、密着層 62と粘着シート 50の基材 51との密着が大きくなりすぎてブロッキング 状態となり、吸引による剥離ができなくなる虞がある。なお、本発明において密着力と は、密着層 62をウェハのミラー面に貼り付け、これを剥離したときの剥離強度をいう。
[0100] このような密着層 62は、例えばカレンダ一法、プレス法、コーティング法、又は印刷 法等により、予め上記エラストマ一からなるフィルムを作製し、このエラストマ一フィル ムをジグ基台 61の少なくとも側壁 63の上面に接着することにより形成することができ 、これ〖こより、区画空間 65が形成される。上記密着層 62を接着する方法としては、ァ クリル樹脂、ポリエステル榭脂、エポキシ榭脂、シリコーン榭脂、あるいはエラストマ一 榭脂からなる接着剤を介して接着する方法、密着層 62がヒートシール性の場合にヒ ートシールにより接着する方法があげられる。
[0101] 密着層 62の表面には非粘着処理が施されていてもよぐ特に、凹凸状に変形した 時に粘着シート 50と接触する突起物 64上部の密着層表面のみ力 非粘着処理され ていることが好ましい。このように処理すると、密着層 62が変形する前は密着層表面 の非粘着処理されていない部分で粘着シート 50に密着し、凹凸状に変形した密着 層 62は突起物 64上部の表面、すなわち非粘着性の凸部表面のみで粘着シート 50 と接触して ヽるため、粘着シート 50付きの半導体ウェハ Wをさらに容易に密着層 62 力 取り外すことができる。
[0102] 非粘着処理方法としては、例えばバキューム装置 70により区画空間 65内の空気を 吸引して密着層 62を凹凸状に変形させ、凸部先端を砲石ローラー等により物理的に 粗面化する方法、 UV処理する方法、非粘着性ゴムを積層する方法、非粘着性塗料 をコーティングする方法等があげられる。また、非粘着部は、上記凸部ではなぐ密着 層 62の中心を通るように十字にパターン形成しても良い。非粘着部の表面粗さは、 算術平均粗さ Raが 1. 以上が好ましぐ 1. 6-12. がより好ましい。非粘 着部を上記範囲の表面粗さで粗面化することにより、密着層 62は劣化せず、さらに、 粘着シート 50付きの半導体ウェハ Wを容易に密着層 62から取り外すことができる。
[0103] なお、本発明における半導体ウェハの保護構造及び半導体ウェハの研削方法に 用いられる固定ジグ 60として、上記保持治具 20を用いても良 、。
[0104] 本発明の半導体ウェハの保護構造は、密着層 62上に粘着シート 50が積層されて いる。粘着シート 50は、図 5及び図 6に示すように、少なくとも基材 51と粘着剤層 52と 力もなることが好ましぐ図 6に示すように基材 51と粘着剤層 52との間に中間層 53を 有することがより好まし 、。
[0105] 粘着シート 50は、応力緩和性に優れることが好ましぐ引張試験における 10%伸 張時の応力緩和率が、 1分後で通常 40%以上、好ましくは 50%以上、さらに好ましく は 60%以上である。応力緩和率は高いほど好ましぐその上限は、理論的には 100 %であるが、場合によっては 99. 9%、 99%、あるいは 95%であっても良い。このよう な応力緩和性に優れた粘着シート 50を被着体に貼付すると、速やかに残留応力が 減衰する。したがって、極薄にまで研削され、脆くなつた半導体ウェハ Wであっても、 固定ジグ 60と粘着シート 50とを剥離した後、粘着シート 50の残留応力が極めて小さ くなつているので、湾曲させずに保持できる。
[0106] 粘着シート 50に用いられる基材 51は、榭脂シートであれば、特に限定されず使用 可能である。榭脂シートとしては、例えば低密度ポリエチレン、直鎖低密度ポリエチレ ン、ポリプロピレン、ポリブテン等のポリオレフイン、エチレン酢酸ビュル共重合体、ェ チレン (メタ)アクリル酸共重合体、エチレン (メタ)アクリル酸エステル共重合体等のェ チレン共重合体、ポリエチレンテレフタレート、ポリエチレンナフタレート等のポリエス テル、ポリ塩化ビュル、アクリルゴム、ポリアミド、ウレタン、ポリイミド等の樹脂フィルム があげられる。基材 51は、これらの単層であっても良いし、積層体力もなつても良い。 また、架橋等の処理を施したシートであっても良い。
[0107] 基材 51の厚さは、好ましくは 30〜: L000 μ m、さら〖こ好ましくは 50〜800 μ m、特 に好ましくは 80〜500 mである。また、基材 51は、少なくとも固定ジグ 60の密着層 62に当接する面の表面エネルギーが 20〜60mNZmであることが好ましぐ 25〜5 OmNZmがより好ましい。表面エネルギーが上記範囲にあると、密着層 62との密着 力が最適となり、ブロッキングも密着力不足によるウェハの脱落も起こらな 、。
[0108] また、基材 51は、表面粗さ(算術平均粗さ Ra)が 1. 0 m以下であることが好ましく 、 0. 2 m以下がより好ましい。算術平均粗さ Raが上記範囲にあると、密着層 62と粘 着シート 50との密着力を低下させる要因がないので、安定した密着力が得られる。
[0109] さらに、基材 51は、 5〜80°Cの温度範囲における動的粘弾性の tan δの最大値 が 0. 5以上であることが好ましぐ 0. 5〜2. 0力より好ましく、 0. 7〜1. 8が特に好ま しい。基材 51の tan δの最大値が上記範囲にある粘着シート 50は、回路面にバンプ のような凹凸が形成されている半導体ウェハ Wを保護対象とする場合であっても、凹 凸による圧力の差を分散させ、研削面にディンプルが形成されにくくすることができる 。研削面にディンプルが生じると、半導体チップは破損しやすくなり、これを組み込ん だ半導体装置は低信頼性となる。
[0110] 基材 51が上記物性を満たすための手段は、特に限定されず、基材 51として使用 する榭脂そのものが上記物性を示すものであっても、他の添加剤をカ卩えることにより 上記物性を示すものであっても良い。また、基材 51は硬化性榭脂を成膜、硬化した ものであっても、熱可塑性榭脂を成膜したものでも良い。
[0111] このような物性を示す硬化性榭脂としては、光硬化型榭脂、熱硬化型榭脂等が用 いられ、好ましくは光硬化型榭脂が用いられる。光硬化型榭脂としては、例えば、光 重合性のウレタンアタリレート系オリゴマーを主剤とした榭脂組成物又はポリェン 'チ オール系榭脂等が好ましく用いられる。
[0112] ウレタンアタリレート系オリゴマーは、ポリエステル型又はポリエーテル型等のポリオ ール化合物と多価イソシアナ一ト化合物等とを反応させて得られる末端イソシアナ一 トウレタンプレボリマーに、ヒドロキシル基を有する(メタ)アタリレートを反応させて得ら れる。
[0113] 本発明で好ましく用いられるウレタンアタリレート系オリゴマーの分子量は、 1000〜 50000、さらに好まし <は 2000〜30000の範囲にある。上記のウレタンァクジレー卜 系オリゴマーは一種単独で、又は二種以上を組み合わせて用いることができる。
[0114] 上記のようなウレタンアタリレート系オリゴマーのみでは、成膜が困難な場合が多い ため、通常は、光重合性のモノマーで希釈して成膜した後、これを硬化して基材を得 ても良い。
[0115] 基材 51を、上記光硬化型榭脂から形成する場合には、該榭脂に光重合開始剤を 配合することにより、光照射による重合硬化時間並びに光照射量を少なくすることが できる。このような光重合開始剤としては、ベンゾインィ匕合物、ァセトフ ノンィ匕合物、 ァシルフォスフィンオキサイド化合物、チタノセンィ匕合物、チォキサントンィ匕合物、パ 一オキサイド化合物等の光開始剤、アミンゃキノン等の光増感剤等があげられ、具体 的には、 1ーヒドロキシシクロへキシルフェニルケトン、ベンゾイン、ベンゾインメチルェ 一テル、ベンゾインェチルエーテル、ベンゾインイソプロピルエーテル、ベンジルジフ -ルサルファイド、テトラメチルチウラムモノサルファイド、ァゾビスイソブチ口-トリル 、ジベンジル、ジァセチル、 β クロールアンスラキノン等が例示できる。
[0116] 光重合開始剤の使用量は、榭脂の合計 100重量部に対して、好ましくは 0. 05〜1 5重量部、さらに好ましくは 0. 1〜: L0重量部、特に好ましくは 0. 5〜5重量部である。 上記のような硬化性榭脂は、オリゴマー又はモノマーを前述の物性値となるよう種 々の組合せの配合より選択することができる。
[0117] また、上記榭脂中に tan δ値を向上させることが可能な添加物を添加することが好 ましい。このような tan δ値を向上させることが可能な添加物としては、炭酸カルシウム 、シリカ、雲母等の無機フィラー、鉄、鉛等の金属フィラーがあげられ、特に比重の大 きな金属フィラーが有効である。さらに、上記榭脂中に、炭酸カルシウム、シリカ、雲 母等の無機フィラー、鉄、鉛等の金属フィラー、顔料や染料等の着色剤等の添加物 が含有されていても良い。
[0118] 基材 51は、液状の榭脂 (硬化前の榭脂、榭脂の溶液等)を、上記密着層 62上に薄 膜状にキャストした後に、これを所定の手段によりフィルム化することで製造できる。こ のような製法によれば、成膜時に榭脂にかかる応力が少なぐフィッシュアイの形成が 少ない。また、膜厚の均一性も高ぐ厚さ精度は、通常 2%以内になる。別の成膜方 法として、 Τダイやインフレーション法による押出成形やカレンダ一法により、基材 51 を単層のフィルムとして製造する方法があげられる。
[0119] 本発明では、このようにして得られた基材 51上に後述する粘着剤層 52や中間層 5 3を形成して粘着シート 50を得ることができる。粘着剤層 52は、従来より公知の種々 の感圧性粘着剤により形成され得る。このような粘着剤としては、何ら限定されるもの ではないが、例えばゴム系、アクリル系、シリコーン系、ポリビュルエーテル等の粘着 剤が用いられる。また、エネルギー線硬化型や加熱発泡型、水膨潤型の粘着剤も用 いることができる。本発明においては、エネルギー線硬化型、特に紫外線硬化型粘 着剤が好ましく用いられる。
[0120] エネルギー線硬化型粘着剤は、一般的には、アクリル系粘着剤と、エネルギー線重 合性ィ匕合物とを主成分としてなる。エネルギー線硬化型粘着剤に用いられるェネル ギ一線重合性化合物としては、分子内に光重合性炭素 炭素二重結合を少なくとも 2個以上有する低分子量ィ匕合物が広く用いられ、具体的には、トリメチロールプロパ ントリアタリレート、ペンタエリスリトールトリアタリレート、ペンタエリスリトールテトラアタリ レート、ジペンタエリスリトーノレモノヒドロキシペンタアタリレート、ジペンタエリスリトーノレ へキサアタリレートあるいは 1, 4ーブチレングリコールジアタリレート、 1, 6—へキサン ジオールジアタリレート、ポリエチレングリコールジアタリレート、オリゴエステルアタリレ ート、ウレタンアタリレート等が用いられる。
[0121] エネルギー線硬化型粘着剤中のアクリル系粘着剤とエネルギー線重合性化合物と の配合比は、アクリル系粘着剤 100重量部に対してエネルギー線重合性ィ匕合物は 1 0〜: L000重量部、好まし <は 20〜500重量部、特に好まし <は 50〜200重量部の 範囲の量で用いられることが望ましい。この場合には、得られる粘着シート 50は初期 の接着力が大きぐし力も、エネルギー線照射後には粘着力は大きく低下する。した がって、裏面研削終了後における半導体ウェハ Wとエネルギー線硬化型粘着剤層と の界面での剥離が容易になる。
[0122] また、エネルギー線硬化型粘着剤は、側鎖にエネルギー線重合性基を有するエネ ルギ一線硬化型共重合体から形成されて ヽても良 ヽ。このようなエネルギー線硬化 型共重合体は、粘着性とエネルギー線硬化性とを兼ね備える性質を有する。
[0123] エネルギー線硬化型粘着剤に光重合開始剤を配合することにより、光照射による 重合硬化時間並びに光照射量を少なくすることができる。このような光重合開始剤と しては、ベンゾイン化合物、ァセトフエノン化合物、ァシルフォスフィンオキサイド化合 物、チタノセンィ匕合物、チォキサントンィ匕合物、パーオキサイドィ匕合物等の光開始剤 、アミンゃキノン等の光増感剤等があげられ、具体的には、 1ーヒドロキシシクロへキ シルフェニルケトン、ベンゾイン、ベンゾインメチルエーテル、ベンゾインェチルエー テル、ベンゾインイソプロピルエーテル、ベンジルジフエ-ルサルファイド、テトラメチ ルチウラムモノサルファイド、ァゾビスイソブチ口-トリル、ジベンジル、ジァセチル、 β —クロールアンスラキノン等が例示できる。
[0124] 光重合開始剤の使用量は、粘着剤の合計 100重量部に対して、好ましくは 0. 05 〜15重量部、さらに好ましくは 0. 1〜: L0重量部、特に好ましくは 0. 5〜5重量部であ る。前記粘着剤中のポリマー成分を部分架橋するために架橋剤を用いても良い。こ の架橋剤としては、例えばエポキシ系架橋剤、イソシアナート系架橋剤、メチロール 系架橋剤、キレート系架橋剤、アジリジン系架橋剤等が用いられる。
[0125] 上記のようなアクリル系エネルギー線硬化型粘着剤は、エネルギー線照射前には 半導体ウェハ Wに対して充分な接着力を有し、エネルギー線照射後には接着力が 著しく減少する。すなわち、エネルギー線照射前には、粘着シート 50と半導体ウェハ Wとを充分な接着力で密着させて表面保護を可能にし、エネルギー線照射後には、 研削された半導体ウェハ Wから容易に剥離することができる。
粘着剤層 52の厚さは、その材質にもよる力 通常は 3〜: LOO /z m程度であり、好ま しくは 10〜50 μ m程度である。
[0126] 粘着剤層 52は、 23°Cにおける弾性率力 好ましくは 5. O X 104〜1. O X 108Pa、よ り好ましく ίま 7. 0 X 104〜8. 0 X 107Pa、特に好ましく ίま 8. 0 X 104〜5. 0 X 107Paの 範囲にある。さらに、粘着シート 50が中間層 53を有する場合、粘着剤層 52の 23°C における弾性率は、 5. 0 X 104〜1. 0 X 107Paの範囲にあり、好ましくは 6. 0 X 104 〜5. 0 X 106Pa、より好ましくは 8. 0 X 104〜1. O X 106Paの範囲にある。なお、粘着 剤層 52を後述するエネルギー線硬化型粘着剤で形成する場合には、上記弾性率は エネルギー線照射前の粘着剤層の弾性率を示す。
[0127] 粘着剤層 52の 23°Cにおける弾性率が 5. O X 104Paより低いと粘着シート 50の端 部より粘着剤がしみだしたり、凝集力の不足により、研削による力に対し剪断変形し やすくなり、研削後の半導体ウェハ Wの厚さのバラツキが大きくなつてしまう。また、半 導体ウエノ、 Wの回路面に形成されるバンプの凹部にもぐりこんだ粘着剤に剪断力が 加わると、ウェハ面に粘着剤が残留する虞が高くなる。反対に、粘着剤層 52の 23°C における弾性率が 1. O X 108Paよりも高くなると、粘着剤層 52が硬くなり、バンプの凹 凸に追従しに《なり、研削後の半導体ウェハ Wの厚さのバラツキを大きくしたり、バ ンプと粘着シート 50のすきま力 研削加工の冷却水が侵入する等の問題が起こりや すくなる。
[0128] 必要に応じて設けられる中間層 53は、 23°Cにおける弾性率力 粘着剤層 52の 23 °Cにおける弾性率以下であり、好ましくは粘着剤層 52の弾性率の 1〜: L00%、さらに 好ましくは 10〜90%、特に好ましくは 30〜80%の範囲にある。
[0129] 粘着剤層 52と中間層 53の 23°Cにおける弾性率が前記の関係であれば、半導体ゥ ェハ回路に設けられたバンプが 30 mを越えるような高低差をもっていても、その凹 凸に充分に追従して貼付が可能となる上、粘着剤層 52に対する剪断力も分散する ため、剥離の際に粘着剤が残留しにくくなる。また、ウェハ面上のバンプの密集して いる部分と疎の部分との間も厚み差が無くなるように貼付できる。
[0130] 中間層 53の材質としては、上記物性を満たす限り特に限定はされず、例えばアタリ ル系、ゴム系、シリコーン系等の各種の粘着剤組成物、及び基材 51の調製に用いら れ得る紫外線硬化型榭脂、並びに熱可塑性エラストマ一等が用いられる。
[0131] さらに、上記中間層 53の上面、すなわち粘着剤層 52が設けられる側の面には粘着 剤との密着性を向上するために、コロナ処理を施したり、プライマー等の他の層を設 けても良い。
[0132] 中間層 53と粘着剤層 52の合計厚さは、粘着シート 50が貼着される被着体のバン プ高さ、バンプ形状、バンプ間隔のピッチ等を考慮して適宜に選定され、一般的には 、中間層 53と粘着剤層 52の合計厚さは、バンプ高さの 50%以上、好ましくは 100〜 200%となるように選定することが望ま 、。このように中間層 53と粘着剤層 52の合 計厚さを選定すると、回路面の凹凸に粘着シート 50が追随して凹凸差を解消できる 。このため、中間層 53の厚さも回路面の凹凸差に応じ、例えば 5〜500 /ζ πιの範囲 にある。
[0133] 粘着シート 50は、上記粘着剤をナイフコーター、ロールコーター、グラビアコーター 、ダイコ一ター、リバースコーター等一般に公知の方法にしたがって基材 51上に適 宜の厚さで塗工して乾燥させて粘着剤層 52を形成し、次 、で必要に応じ粘着剤層 5 2上に剥離シートを貼り合わせることによって得られる。また、反対に、剥離シートの剥 離処理面に粘着剤層 52を形成した後、基材 51と貼合することによって粘着シート 50 を得ても良い。
[0134] 中間層 53を形成する場合には、基材 51上に、中間層 53を形成する榭脂を塗布後 、所要の手段で榭脂を乾燥又は硬化させて中間層 53を形成し、この中間層 53上に 上記方法により粘着剤層 52を形成することによって中間層 53付き粘着シート 50が得 られる。また、剥離シートの剥離面に中間層 53を形成して基材 51に転写し、この剥 離シートを剥がした中間層 53の面に別の剥離シート上に形成した粘着剤層 52を貼 合して中間層 53付き粘着シート 50を得ても良 、。
[0135] 本発明の半導体ウェハの保護構造は半導体ウェハ W、粘着シート 50及び固定ジ グ 60がこの順で積層されており、半導体ウェハ Wと粘着シート 50とは粘着剤層 52を 介して半導体ウエノ、 Wの回路面が貼着され、粘着シート 50と固定ジグ 60とは基材 5 1と密着層 62とが密着して積層されている。このような半導体ウェハ Wの保護構造は 、例えば極薄の半導体ウェハ Wの保管、移送、あるいは加工時における表面保護構 造として好適であり、特に半導体ウエノ、 Wの裏面を極薄にまで研磨する際に、回路 面を保護するための半導体ウェハ保護構造として有用である。
[0136] このような半導体ウェハの保護構造は、先ず、粘着シート 50と半導体ウェハ Wの回 路面とを貼合し、次に、この粘着シート付き半導体ウエノ、 Wの基材 51と固定ジグ 60 の密着層 62とを貼り合わせることによって得られる。また、逆に、固定ジグ 60の密着 層 62と粘着シート 50の基材 51とを貼り合わせ、次に、この粘着シート 50の粘着剤層
52の面に半導体ウェハ Wの回路面を貼り合わせも良い。最初に半導体ウェハ Wと粘 着シート 50とを貼付する工程順以外の貼合では、界面に空気を巻き込まないように 真空下で処理することが好まし ヽ。
[0137] 本発明の半導体ウェハの研削方法は、このような保護構造を用いて半導体ウェハ Wを保護しながら、半導体ウェハ Wの裏面をグラインダー等のウエノ、研削装置により 所定の厚さまで研削する方法である。具体的には、半導体ウェハの保護構造のジグ 基台側をウェハ研削装置の処理テーブルに搭載して裏面研削する。この研削加工 の間、ジグ基台 61は処理テーブルに吸引固定されている力 ジグ基台 61の貫通孔 66に当接する処理テーブルの吸着面を塞ぐ等して、処理テーブルは、貫通孔 66を 通じて区画空間 65の気体を吸引できない構造となっている。この研削により、半導体 ウェハ Wは、例えば厚さ 30 μ m〜100 μ mにまで研削されるようになっている。
[0138] 通常の粘着シートを使った半導体ウェハ Wの裏面研削後に、処理テーブルから半 導体ウェハ Wを取り出すと、貼付時の張力が粘着シート中に残留応力として蓄積さ れているため、半導体ウェハ Wを極薄にまで研削すると、極薄の半導体ウェハ Wが 湾曲することがある。ところ力 本発明の半導体ウェハの保護構造では、固定ジグ 60 の剛直性により粘着シート 50の内部応力の影響を受けず、また、固定ジグ 60を剥離 した後であっても、応力緩和性に優れた粘着シート 50を使用することにより、極薄の 半導体ウェハ Wの湾曲は軽減される。
[0139] 次に、固定ジグ 60の取り外し及び粘着シート 50の剥離を行う。具体的には、ジグ基 台 61の貫通孔 66にバキューム装置を接続し、区画空間 65内の気体を貫通孔 66か ら吸引して密着層 62を凹凸状に変形させ、半導体ウェハ Wを、側壁 63の上面及び 密着層 62の凸部上面のみで粘着シート 50を介して固定ジグ 60と接触させる。これ により、粘着シート 50付き半導体ウェハ Wと固定ジグ 60との密着力が低下し、粘着シ ート 50付き半導体ウェハ Wから容易に固定ジグ 60を容易に取り外すことができる(a 工程)。
[0140] 続いて、半導体ウェハ Wを個片化するためのダイシングテープを半導体ウェハ W の研削面に貼付する (b工程)とともに、粘着シート 50を半導体ウェハ Wから剥離する (c工程)。粘着シート 50の剥離は、剥離用の接着テープを用いて粘着シート 50が 18 0° 方向に引き剥がされるように行うことが好ましい。 180° 方向へ引き剥がせば、半 導体ウェハ wの平面方向にしか力が加わらず、割れに《なるとともに、回路面への 糊残りも少なくなる。
[0141] なお、固定ジグ 60の取り外し工程 (a工程)、ダイシングテープの貼付工程 (b工程) 、粘着シート 50の剥離工程(c工程)は、 a >b >cの順、 a>c >bの順、 b >a>cの順 のいずれの順番で実施しても良い。特に、固定ジグ 60を剥離する前にダイシングテ ープを貼付しリングフレームに固定する工程順 (b >a>c)で実施すれば、半導体ゥ エノ、 Wが脆弱な状態で取り扱われる工程がな 、ので好まし 、。
ダイシングテープに貼付された半導体ウエノ、 Wは、その後、ダイシング工程、ダイボ ンデイング工程等の工程を経て加工され、半導体装置が製造される。
[0142] 次に、図面を参照しながら、本発明に係る半導体チップの製造方法について具体 的に説明する。
<固定ジグ>
先ず、本発明に係る半導体チップの製造方法については、既に述べた保持治具 2 0や固定ジグ 60をそのまま使用することができる。
[0143] <粘着シート > 本発明では、半導体ウェハの回路面を保護するために、必要に応じて、図 18に示 すように半導体ウェハ Wの回路面に粘着シート 50Aを貼着しても良い。この粘着シ ート 50Aは、基材と粘着剤層とからなり、基材と粘着剤層との間に中間層を有するこ とがより好ましい。
[0144] (基材)
粘着シート 50Aに用いられる基材は、榭脂シートであれば、特に選択されず使用可 能である。このような榭脂シートとしては、例えば低密度ポリエチレン、直鎖低密度ポ リエチレン、ポリプロピレン、ポリブテン等のポリオレフイン、エチレン酢酸ビュル共重 合体、エチレン (メタ)アクリル酸共重合体、エチレン (メタ)アクリル酸エステル共重合 体等のエチレン共重合体、ポリエチレンテレフタレート、ポリエチレンナフタレート等の ポリエステル、ポリ塩ィ匕ビュル、アタリノレゴム、ポリアミド、ウレタン、ポリイミド等の樹脂 フィルムがあげられる。基材はこれらの単層であっても良いし、積層体からなっても良 い。また、架橋等の処理を施したシートであっても良い。さらに、基材は硬化性榭脂を 成膜、硬化したものであっても、熱可塑性榭脂を成膜したものであっても良い。
[0145] 基材の厚さは、好ましくは 30〜: LOOO μ m、さら〖こ好ましくは 50〜800 μ m、特に好 ましくは 80〜500 /ζ πιである。また、基材は、少なくとも固定ジグ 60の密着層 62に当 接する面の表面エネルギーが 20〜60mNZmが好ましく、 25〜50mNZmがより好 ましい。表面エネルギーが上記範囲にあると、密着層 62との密着力が最適となり、ブ ロッキングも密着力不足によるウェハの脱落も起こらない。
[0146] また、基材は、表面粗さ(算術平均粗さ Ra)が 1. 0 m以下が好ましく、 0. 2 m以 下がより好ましい。算術平均粗さ Raが上記範囲にあると、密着層 62と粘着シート 50 Aとの密着力を低下させる要因がないので、安定した密着力が得られる。
[0147] 基材は、榭脂フィルム力 なり、上記の物性を満たす限り、特に限定されず、榭脂そ のものが上記物性を示すものであっても、他の添加剤をカ卩えたり表面処理を施すこと により、上記物性となるものであっても良い。さらに、上記榭脂中に、炭酸カルシウム、 シリカ、雲母等の無機フィラー、鉄、鉛等の金属フィラー、顔料や染料等の着色剤等 の添加物が含有されて!、ても良 、。
[0148] 基材は、液状の榭脂 (硬化前の榭脂、榭脂の溶液等)を、キャスト用工程シートに薄 膜状にキャストした後に、これを所定の手段によりフィルム化することで製造できる。こ のような製法によれば、成膜時に榭脂にかかる応力が少なぐフィッシュアイの形成が 少ない。また、膜厚の均一性も高ぐ厚さ精度は、通常 2%以内になる。また、別の製 造方法としては、 Tダイやインフレーション法による押出成形やカレンダ一法により、 基材を単層のフィルムとして製造する方法があげられる。
[0149] (粘着剤層)
粘着剤層は、従来より公知の種々の感圧性粘着剤により形成され得る。このような 粘着剤としては、何ら限定されるものではないが、例えばゴム系、アクリル系、シリコー ン系、ポリビニルエーテル等の粘着剤が用いられる。また、エネルギー線硬化型や加 熱発泡型、水膨潤型の粘着剤も用いることができる。本発明においては、エネルギー 線硬化型、特に紫外線硬化型粘着剤が好ましく用いられる。
[0150] エネルギー線硬化型粘着剤は、一般的には、アクリル系粘着剤と、エネルギー線重 合性ィ匕合物とを主成分としてなる。エネルギー線硬化型粘着剤に用いられるェネル ギ一線重合性ィ匕合物としては、光照射によって三次元網状化しうる分子内に光重合 性炭素 炭素二重結合を少なくとも 2個以上有する低分子量化合物が広く用いられ 、具体的には、トリメチロールプロパントリアタリレート、ペンタエリスリトールトリアタリレ ート、ペンタエリスリトールテトラアタリレート、ジペンタエリスリトールモノヒドロキシペン タアタリレート、ジペンタエリスリトールへキサアタリレートあるいは 1, 4ーブチレングリ コールジアタリレート、 1, 6 へキサンジオールジアタリレート、ポリエチレングリコー ルジアタリレート、オリゴエステルアタリレート、ウレタンアタリレート等が用いられる。
[0151] エネルギー線硬化型粘着剤中のアクリル系粘着剤とエネルギー線重合性化合物と の配合比は、アクリル系粘着剤 100重量部に対してエネルギー線重合性ィ匕合物は 1 0〜: L000重量部、好まし <は 20〜500重量部、特に好まし <は 50〜200重量部の 範囲の量で用いられることが望ましい。この場合には、得られる粘着シート 50Aは初 期の接着力が大きぐし力も、エネルギー線照射後には粘着力は大きく低下する。し たがって、裏面研削終了後における半導体チップとエネルギー線硬化型粘着剤層と の界面での剥離が容易になる。
[0152] また、エネルギー線硬化型粘着剤は、側鎖にエネルギー線重合性基を有するエネ ルギ一線硬化型共重合体から形成されて ヽても良 ヽ。このようなエネルギー線硬化 型共重合体は、粘着性とエネルギー線硬化性とを兼ね備える性質を有する。
[0153] エネルギー線硬化型粘着剤に光重合開始剤を配合させることにより、光照射による 重合硬化時間並びに光照射量を少なくすることができる。このような光重合開始剤と しては、ベンゾイン化合物、ァセトフエノン化合物、ァシルフォスフィンオキサイド化合 物、チタノセンィ匕合物、チォキサントンィ匕合物、パーオキサイドィ匕合物等の光開始剤 、アミンゃキノン等の光増感剤等があげられ、具体的には、 1ーヒドロキシシクロへキ シルフェニルケトン、ベンゾイン、ベンゾインメチルエーテル、ベンゾインェチルエー テル、ベンゾインイソプロピルエーテル、ベンジルジフエ-ルサルファイド、テトラメチ ルチウラムモノサルファイド、ァゾビスイソブチ口-トリル、ジベンジル、ジァセチル、 β —クロールアンスラキノン等が例示できる。
[0154] 光重合開始剤の使用量は、粘着剤の合計 100重量部に対して、好ましくは 0. 05 〜15重量部、さらに好ましくは 0. 1〜: L0重量部、特に好ましくは 0. 5〜5重量部であ る。
[0155] 前記粘着剤中のポリマー成分を部分架橋するために架橋剤を用いても良い。この 架橋剤としては、例えばエポキシ系架橋剤、イソシアナート系架橋剤、メチロール系 架橋剤、キレート系架橋剤、アジリジン系架橋剤等が用いられる。
[0156] 上記のようなアクリル系エネルギー線硬化型粘着剤は、エネルギー線照射前には 半導体ウェハ Wに対して充分な接着力を有し、エネルギー線照射後には接着力が 著しく減少する。すなわち、エネルギー線照射前には、粘着シート 50Αと半導体ゥェ ハ Wとを充分な接着力で密着させ、表面保護を可能にし、エネルギー線照射後には 、研削された半導体チップ力 容易に剥離することができる。
粘着剤層の厚さは、その材質にもよる力 通常は 3〜: LOO /z m程度であり、好ましく は 10〜50 μ m程度である。
[0157] (中間層)
半導体ウェハ Wの回路面に凹凸差の大きなバンプが形成されている場合は、粘着 剤層をバンプの凹凸面に追従させるために、粘着シート 50Aにおいて、基材と粘着 剤層との層間に中間層を設けても良い。中間層の材質としては、上記物性を満たす 限り、特に限定されず、例えばアクリル系、ゴム系、シリコーン系等の各種の粘着剤組 成物、紫外線硬化型榭脂及び熱可塑性エラストマ一等が用いられる。
[0158] 中間層と粘着剤層の合計厚さは粘着シート 50Aが貼着される被着体のバンプ高さ 、バンプ形状、バンプ間隔のピッチ等を考慮して適宜に選定され、一般的には、中間 層と粘着剤層の合計厚さは、バンプ高さの 50%以上、好ましくは 100〜200%となる ように選定することが望ま 、。このように中間層と粘着剤層の合計厚さを選定すると 、回路面の凹凸に粘着シート 50Aが追随して凹凸差を解消できる。このため、中間 層の厚さも回路面の凹凸差に応じ、例えば 5〜500 /ζ πιの範囲にある。
[0159] (粘着シートの製造方法)
粘着シート 50Αは、上記粘着剤をナイフコーター、ロールコーター、グラビアコータ 一、ダイコーター、リバースコーター等一般に公知の方法にしたがって基材上に適宜 の厚さで塗工して乾燥させて粘着剤層を形成し、次 、で必要に応じ粘着剤層上に剥 離シートを貼り合わせることによって得られる。反対に、剥離シートの剥離処理面に粘 着剤層を形成した後、基材と貼合することによって粘着シート 50Αを得ても良い。
[0160] 中間層を形成する場合には、基材上に、中間層を形成する榭脂を塗布後、所要の 手段で榭脂を乾燥又は硬化させて中間層を形成し、この中間層上に上記方法により 粘着剤層を形成することによって中間層付き粘着シート 50Αが得られる。また、剥離 シートの剥離面に中間層を形成して基材に転写し、この剥離シートを剥がした中間 層の面に別の剥離シート上に形成した粘着剤層を貼合して中間層付き粘着シート 5 OAを得ても良い。
[0161] <転写テープ >
固定ジグ 60又は粘着シート 50A上で個片化された半導体チップ Wcをピックアップ できるようにするため、半導体チップ Wcを転写テープ 80に転写する。この転写テー プ 80は粘着シート 50Aと同様に基材と粘着剤層カゝらなり、転写された半導体チップ Wcをピックアップできる程度の剥離力を示す再剥離性粘着シートや、エネルギー線 の照射により粘着力を低減又は消失できるエネルギー線硬化型粘着シートが好まし く用いられる。このような転写テープ 80は、いわゆる巿販のダイシングシートと同様の ちのち使用でさる。 [0162] <半導体チップの製造方法 >
本発明に係る半導体チップの製造方法では、先ず、複数の回路が形成された半導 体ウェハ Wの回路面側に、該回路に沿って半導体ウェハ Wの厚さより浅い切込み深 さの溝 Wsを形成する(図 12)。溝 Wsは、半導体ウェハ Wの表面に形成された複数の 回路を区画するように形成される。溝 Wsの深さは、目的とするチップの厚さよりもや や深い程度であれば、特に限定されない。溝 Wsの形成は、ダイシング装置のダイシ ングブレード等を用いて行われる。
[0163] 次に、溝 Wsを形成した面に、この面と密着層 62とが当接するように固定ジグ 60を 貼着する(図 13)。その後、半導体ウェハ Wの裏面 (研削面) Wgを、グラインダーを 用いて研削をすることで半導体ウェハ Wの厚さを薄くするとともに、最終的には個々 の半導体チップ Wcへ分割する。すなわち、溝 Wsの底部が除去されるまで裏面研削 を行い、半導体ウェハ Wを各回路毎にチップ化する(図 14)。さらに、必要に応じて 裏面研削を行うことにより、所定厚さの複数の半導体チップ (以下、「チップ群」ともい う) Wcを得ることができる。
[0164] この研削加工の間、ジグ基台 61は処理テーブルに吸引固定されている力 ジグ基 台 61の貫通孔 66に当接する処理テーブルの吸着面を塞ぐ等して、処理テーブルは 、貫通孔 66を通じて区画空間 65の気体を吸引できない構造となっている。固定ジグ 60が極めて剛直な支持体となるため、半導体ウェハ Wは例えば 100 m以下、特に 50 μ m以下の極薄まで研削加工することができる。
[0165] 得られたチップ群のピックアップ方法は特に限定されな 、が、例えば、以下の方法 が好ましく採用できる。分割された各半導体チップ Wcを、整列状態を保ったまま、研 削面 (裏面)にピックアップ用転写テープ 80を貼着する(図 15)。転写テープ 80はチ ップ群よりも面積が広く、その周囲がフレーム 81で固定される。
[0166] 次いで、バキューム装置 70により固定ジグ 60の貫通孔 66から区画空間 65内の気 体を吸引して密着層 62を凹凸状に変形させ、半導体チップ Wcを側壁 63の上面及 び密着層 62の凸部上面のみで固定ジグ 60と接触させる(図 16)。これにより、半導 体チップ Wcと固定ジグ 60との密着力が低下して固定ジグ 60から容易に取り外すこと ができ、半導体チップ Wcは転写テープ 80に転写される(図 17)。 [0167] このようにして転写テープ 80に転写された半導体チップ Wcを、従来公知の方法で 転写テープ 80からピックアップし、通常の工程を経て半導体装置が製造される。転 写テープ 80をエネルギー線硬化型粘着剤で形成した場合には、転写テープ 80の基 材側からエネルギー線を照射して転写テープ 80の接着力を低下させることにより、半 導体チップ Wcを転写テープ 80から容易にピックアップすることができる。
[0168] また、回路面の凹凸が大きく密着層 62では半導体ウェハ Wをしつかりと固定できな い場合は、溝 Wsが形成された回路面に粘着シート 50Aを貼付し(図 18)、その粘着 シート 50Aの基材面に固定ジグ 60を貼着する(図 19)。回路面に電極等のバンプが 形成され、凹凸の大きさがさらに大きい場合は、中間層を有する粘着シート 50Aが用 いられる。
[0169] その後、粘着シート 50Aを介して固定ジグ 60に固定されたウェハ Wも、前述と同様 に裏面研削を施し、さらに個片化されたチップ群は転写テープ 80に転写される(図 2 0〜図 23)。次に、半導体チップ Wc力も粘着シート 50Aを取り除く。粘着剤層をエネ ルギ一線硬化型粘着剤で形成した場合には、粘着シート 50Aの基材側からェネル ギ一線を照射して粘着剤層の接着力を低下させることにより、半導体チップ Wcから 粘着シート 50Aを容易に剥離することができる。
[0170] また、上記の工程の代わりに、転写テープ 80をチップ群に貼着する前に固定ジグ 6 0を粘着シート 50Aの基材面カゝら取り外した後、チップ群を転写テープ 80に転写し、 次、で、粘着シート 50Aを剥離する順番であっても良 、。
実施例
[0171] 以下、本発明に係る保持治具を半導体ウェハのバックグラインド装置に使用して 30 Ommタイプの半導体ウェハをバックグラインドした実施例を説明する。
先ず、図 3又は図 4に示す保持治具を表 1に示すように構成を異ならせて実施例 1 力も実施例 17まで製造し、各保持治具を半導体ウェハのバックグラインド装置にお けるチャックテーブルに支持させて 300mmタイプの半導体ウェハをバックグラインド し、繰り返し耐久性、取り外し時間、研削液の浸入、ウェハ保持力、ウェハ厚さ、ゥェ ハ厚さばらつきの評価項目について評価した。
[0172] [表 1]
Figure imgf000040_0001
1に示す密着フィルムの引張り破断強度、引張り破断伸び、曲げ弾性率、せん断 密着力、密着力については、実施形態中に記載した方法により求めた。また、表 1に 示す基板及び密着フィルムの材料については、以下の通りとした。
[0174] ユーピロン(登録商標) E— 2000R〔曲げ弾性率 2. 3GPa (IS0178で測定)〕 ポリカーボネート(表 1では PCの略称で表示)(三菱エンジニアリングプラス チックス製)
WH302 エチレン-メチルメタタリレート共重合物 (住友化学製)
KE941 -U シリコーンゴム (信越ィ匕学工業製)
KE742-U シリコーンゴム (信越ィ匕学工業製)
T3712 プロピレン-ォレフィン共重合物 (住友ィ匕学製)
KE1950-20 シリコーンゴム (信越ィ匕学工業製)
FS370 直鎖低密度ポリエチレン (住友化学製)
プラチロン U01 ウレタン系エラストマ一(バイエル製)
[0175] 評価方法
繰り返し耐久性: n= 5とし、 775 mの厚さを有する 300mmタイプの半導体ゥエー ハを設定値の 75 μ mまで研削し、破損が生じた回数の最小値を示すこととした。破 損が生じなければ、 100回まで繰り返した。
取り外し時間:真空ポンプを駆動して保持治具の密着フィルムを変形させ、半導体 ウェハが取り外し可能になるまでの時間を示した。
研削液の浸入:研削後の保持治具における研削液の浸入痕の最大浸入距離を示 した。
ウェハ保持力:保持治具の密着フィルムに半導体ウェハを密着保持させるとともに 、両面力も真空チャックにより固定し、引き剥がし方向に引っ張った際の強さを示した ウェハ厚さ:図 5に示すように、研削後の半導体ウェハの 17点の厚さを測定し、平 均値で示した。
ウェハ厚さばらつき:図 5に示すように、研削後の半導体ウェハの 17点の厚さを測 定し、最大値 最小値の一番大きな値を示した。
[0176] 評価結果 実施例 1の場合には、支持突起のピッチ、支持突起の幅、支持突起の高さ、密着フ イルムの厚さ、破断強度、破断伸び、曲げ弾性率、せん断密着力、密着力の全てが 好ましい範囲にあり、繰り返し耐久性に優れる結果を得た。また、半導体ウェハの取り 外しに要する時間も非常に短ぐ研削液の浸入も問題の無いレベルであり、ウェハ保 持力も十分に強ぐウェハ厚さは調整可能な範囲であり、ウェハ厚さばらつきも十分 に小さくすることができた。
[0177] 実施例 2の場合には、実施例 1と比較すると、支持突起のピッチを好ましい範囲内 で小さくするとともに、支持突起の幅、支持突起の高さを好ましい範囲内で小さくした ことにより、取り外し時間が僅かに長くなつた。し力しながら、十分使用に耐えうる範囲 内であり、し力も、厚さばらつきに関しては、実施例 1より僅かではあるが良好な結果 を得た。
[0178] 実施例 3の場合には、好ましい範囲力も支持突起のピッチを外して小さくし、支持突 起の幅、支持突起の高さを好ましい範囲内で小さくしたので、取り外し時間が 7秒に なった。しかしながら、ウェハ厚さばらつきについては、さらに改善傾向にあるのを確 した 0
[0179] 実施例 4の場合には、支持突起のピッチ、支持突起の幅、支持突起の高さを好まし い範囲力 外して小さくし、密着フィルムの厚さを好ましい範囲内で小さくしたので、 取り外し時間が 11秒になり、研削液の浸入も 2mmと大きくなつた。しかし、ウェハ厚さ ばらつきについては、さらに改善傾向にあるのを確認した。
[0180] 実施例 5の場合には、支持突起のピッチを lmmに戻し、支持突起の幅、支持突起 の高さ、密着フィルムの厚さを好ましい範囲内で小さくした。実施例 1と比較すると、 取り外し時間が長くなり、研削液の浸入度合いも大きくなつたが、実用上十分な結果 を得ることができた。
[0181] 実施例 6の場合には、実施例 1と比較し、支持突起のピッチ、支持突起の幅、支持 突起の高さを好ましい範囲内で大きくした。その結果、取り外しに要する時間が著しく 改善し、又ウェハ厚さが厚めとなったものの、調整可能な範囲であった。
[0182] 実施例 7の場合には、支持突起のピッチ、支持突起の幅、支持突起の高さを好まし い範囲力 外して大きくした。その結果、取り外し時間は 1秒以下で非常に良好であ つたが、繰り返し耐久性では、一番短いもので 84回目で破損を確認した。また、ゥェ ハ厚さが調整可能な範囲ではあるが、厚めとなり、厚さばらつきも 11 mになった。 実施例 8の場合には、実施例 1と比較し、密着フィルムの厚さのみ好ましい範囲内 で小さくした。その結果、取り外し時間は著しく改善した。また、研削液の浸入は 2m mとなったが、問題無い範囲であった。
[0183] 実施例 9の場合には、実施例 1と比較し、密着フィルムの厚さのみ好ましい範囲を 外して小さくした。取り外し時間は良好だった力 繰り返し耐久性では、最短 66回目 で破損を確認した。また、研削液の浸入は 4mmとなり、この範囲に形成されたチップ が有る場合には、洗浄を要するのを確認した。
[0184] 実施例 10の場合には、実施例 1と比較し、密着フィルムの厚さを好ましい範囲内で 厚くした。その結果、取り外し時間が 34秒と長めになった力 研削液の浸入が lmm 未満と良好であり、他の特性にっ 、ても好結果を得た。
実施例 11の場合には、実施例 10よりもさらに密着フィルムを厚くして好ましい範囲 外とした。その結果、研削液の侵入については、 lmm未満で良好であったが、取り 外しに要する時間が 68秒になった。
[0185] 実施例 12の場合には、密着フィルムの材質を変更した。これに伴い、破断強度が 好ましい範囲内で小さくなり、破断伸びが好ましい範囲を外れて小さくなつた。実施 例 1と比較すると、繰り返し耐久性のみが 58回と劣る結果となった。
実施例 13の場合には、密着フィルムの材質を変更するとともに、破断強度、破断伸 びを好ましい範囲力も外して小さくした。その結果、繰り返し耐久性が 32回であり、実 施例 12よりも劣る結果となった。
[0186] 実施例 14の場合には、密着フィルムの材質を変更した。これに伴い、破断強度が 好ましい範囲力も外れて小さくなり、曲げ弾性率が好ましい範囲内で小さくなつたが、 破断伸びが好ましい範囲で大きく向上した。また、実施例 1と比較すると、繰り返し耐 久性は 45回と劣るものの、研削液の浸入は lmm未満であり、非常に良好な結果を 得た。
実施例 15の場合には、密着フィルム材質を変更して曲げ弾性率を好ま ヽ範囲か ら外して小さくしたものの、破断伸びを 900%に向上させた。その結果、研削液の浸 入は lm未満で非常に良好であった力 取り外しに要する時間が 72秒になった。
[0187] 実施例 16の場合には、密着フィルムの材料を変更し、曲げ弾性率が好ましい範囲 を超えて大きくなるようにした。その結果、研削液の浸入度合いが 5mmと大きぐゥェ ハの洗浄を要した。
実施例 17の場合には、密着フィルムの材料を変更して曲げ弾性率が好ま 、範囲 を超えて大きくなるようにし、せん断密着力を好ましい範囲から外して小さくした。その 結果、研削液の浸入が 35mmになり、ウェハの洗浄を余儀なくされた。
[0188] 次に、本発明に係る半導体ウェハの保護構造の実施例を説明するが、本発明は、 この実施例により何ら限定されるものではない。また、以下の方法により評価した。
[0189] (曲げ弾性率)ジグ基台の曲げ弾性率は、 JIS K6911に規定された曲げ試験方法
(3点曲げ試験方法)により測定した。また、密着層の曲げ弾性率は、 ASTM D747 70により測定した。
(引張破断強度) JIS K7127に準拠し、試験片タイプ 2、引張速度 200mmZ分で 測定した。
(引張破断応力) JIS K7127に準拠し、試験片タイプ 2、引張速度 200mmZ分で 測定した。
(せん断密着力)縦 30mm X横 30mm X厚さ 3mmの大きさを有する周知のガラス 板に密着層を貼り付けて、シリコン力 なるミラーウェハ上に配置し、ガラス板と密着 層の全体に 900gの荷重を 5秒間加え、ガラス板をミラーウェハと平行に荷重を加え て押圧した場合に、動き出した時の荷重を測定した。荷重 35Nで動き出さない場合、 結果は「35N超」とし、これより上の測定は行わな力つた。
(密着力)密着力は、密着層を構成するフィルム単体を 30mm幅にカットし、ウェハ のミラー面にゴムローラーで貼り付け、 20分間放置した後、 300mmZ分の速度、角 度 180° で剥離したときの剥離強度により評価した。
(表面粗さ) JIS B0601— 2001に基づき、表面粗さ計 (ミツトヨ社製、商品名 SU RFPACK SV- 3000)により算術平均粗さ Raを測定した。
(表面エネルギー)水、ジョードメタン及び α—ブロモナフタレンを試験溶媒として用 いて得た接触角力 拡張 Fowkes式に基づく幾何平均法による解析により得られた 値を表面エネルギーとした。
(応力緩和率)長さ 100mmの粘着シートサンプルを、速度 200mmZ分で引つ張り 、 10%伸張させて引っ張りを停止する。 10%伸張時の応力 Aと、伸張停止の 1分後 の応力 Bとから (A— B) ZA X 100 (%)により算出された値を応力緩和率とした。
(tan δ ) tan δは、動的粘弾性測定装置により 110Hzの引張応力で測定した。具 体的には、基材を所定のサイズにサンプリングして、オリエンテック社製 Rheovibron
DDV—Π—ΕΡを用いて周波数 110Hzで—40°C〜150°Cの範囲で tan δを測定 し、— 5°C〜80°Cの範囲における最大値を「tan δ値」として採用した。
(弾性率)粘着剤、中間層の 23°Cにおける弾性率 G'は、動的粘弾性測定装置 (レ オメトリタス社製 RDAII)を用いて 110Hzの捻り剪断法により測定した。
[0190] 実施例 18
(固定ジグの作製)
厚さ 0. 7mmのポリカーボネートシート(曲げ弾性率 2. 3GPa)を直径 202mmの円 形にカットし、片面に高さ 0. lmm,直径 0. 2mmの突起物をピッチ 1. Ommの配列 で、又外周部を幅 1. Omm、高さ 0. 1mmの側壁となるように熱プレス法で成形した。 さらに、側壁から lcm内側の位置で突起物のない部分に、ボール盤を使って直径 1 mmの貫通孔を設け、ジグ基台を作製した。
[0191] また、密着層として、厚さ 100 m、引張破断強度 9MPa、引張破断伸度 750%、 曲げ弾性率 27MPa、せん断密着力 35N超、密着力 0. lNZ25mm未満 (測定下 限未満)のエチレンメチルメタタリレート榭脂よりなるフィルム (住友化学社製、商品名 :ァクリフト WH303)を変性シリコーン系接着剤でジグ基台の側壁及び突起物の上 面に接着し、直径 202mmの固定ジグを作製した。
[0192] (粘着シートの作製)
重量平均分子量 5000のウレタンアタリレート系オリゴマー(荒川化学社製) 50重量 部と、イソボル-ルアタリレート 25重量部と、フエ-ルヒドロキシプロピルアタリレート 25 重量部と、光重合開始剤として 1ーヒドロキシシクロへキシルフエ-ルケトン (ィルガキ ユア 184、チバ 'ガイギ一社製) 2. 0重量部と、フタロシアニン系顔料 0. 2重量部とを 配合してエネルギー線硬化型榭脂組成物を得た。 [0193] 得られた榭脂組成物を、フアウンテンダイ方式により、キャスト用工程シートであるポ リエチレンテレフタレートフィルム(以下「PETフィルム」、東レネ土製:厚さ 38 μ m)の上 に厚さが 110 mとなるように塗工して榭脂組成物層を形成した。塗工直後に、榭脂 組成物層の上にさらに同じ PETフィルムをラミネートし、その後、高圧水銀ランプ(16 OW/cm,高さ 10cm)を用いて、光量 250mj/cm2の条件で紫外線照射を行うこと により榭脂組成物層を架橋'硬化させ、両面の PETフィルムを剥離して厚さ 110 m の基材を得た。この基材の表面エネルギーは 34mNZm、算術平均粗さ Raは 0. 09 8 m、 tan δの最大値は 1. 20であった。
[0194] この基材の片面に、アクリル系粘着剤(綜研化学社製、商品名: SKダイン 909Α— 6) 100重量部と、ウレタンアタリレート系オリゴマー(大日精ィ匕社製、商品名: EXL80 0、重量平均分子量:約 6000) 66重量部と、イソシアナート系架橋剤 (東洋インキ製 造社製、商品名: BHS— 8515) 10重量部と、エポキシ系架橋剤(三菱ガス化学社製 、商品名: TC— Χ) 0. 05重量部と、光重合開始剤(チバ 'スぺシャリティケミカルズ社 製、商品名:ィルガキュア 184) 3重量部とを配合した粘着剤組成物を塗布乾燥し、厚 さ 20 mの粘着剤層を形成して粘着シートを得た。粘着剤層の 23°Cにおける弾性 率は 2. 1 X 105Paであった。また、粘着シートの応力緩和率は 88%であった。
[0195] (ウェハ研削)
この粘着シートを、テープラミネータ(リンテック社製、 Adwill RAD3500/ml2) を用いてシリコンウェハ(200mm直径、厚さ 750 m)の鏡面に粘着剤層を介して貼 付し、シリコンウェハの輪郭に沿って粘着シートを切断した。
[0196] 続いて、粘着シートの露出面に対して、固定ジグの密着層面をそれぞれの中心が 一致するようにして真空貼り合せ装置 (芝浦メカトロニクス社製)により貼付し、これを 半導体ウェハの保護構造とした。
[0197] この半導体ウェハの保護構造をウェハ研削装置 (ディスコ社製、商品名 DFG— 84 0)の処理テーブルに吸引により支持固定し、ウェハの厚さが 150 mとなるまで裏面 研削を行った。なお、固定ジグの貫通孔に位置する処理テーブルの吸着面を粘着テ ープで部分的に塞ぎ、処理テーブル固定時の吸引によって固定ジグの区画空間の 気体を吸引しな 、ようにした。 [0198] 研削終了後、ウェハ研削装置力 半導体ウェハの保護構造を取り出し、固定ジグ の貫通孔の開口部に真空ポンプのノズルを接続し、固定ジグの区画空間の気体を吸 引して密着層を変形させた。これによつて、粘着シート付きのウェハは簡単に固定ジ グより取り外すことができた。
[0199] 続 、て、取り外した粘着シート付きのウェハを粘着シート剥離機構付きのウェハマ ゥンタ(リンテック社製、 Adwill RAD- 2500F/8)により、ウェハの研削面をダイシ ングテープに貼付してリングフレームに固定するとともに、粘着シートを剥離すること により、半導体ウェハをダイシング工程に供与できる状態にできた。これらの工程の 間、シリコンウェハは破損させることなぐ各装置に受け渡すことができた。
[0200] 実施例 19
ウェハの研削後の厚さが 50 mになるようにした以外は、実施例 18と同じ材料及 び同じ装置を用いてシリコンウェハの研削を行った。
[0201] 研削終了後、ウェハ研削装置力 半導体ウェハの保護構造を取り出し、粘着シート 剥離機構付きのウェハマウンタに搭載した。固定ジグに支持された粘着シート付きの ウェハの研削面をダイシングテープに貼付してリングフレームに固定した。この状態 で、固定ジグの貫通孔の開口部に真空ポンプのノズルを接続し、固定ジグの区画空 間の気体を吸引して密着層を変形させ、固定ジグを取り外した。続いて、剥離機構付 きのウェハマウンタの剥離機構により、粘着シートを剥離することにより、シリコンゥェ ハをダイシング工程に供与できる状態にできた。
[0202] この工程では、極薄となったウェハに湾曲を起こさせずにウェハを取り扱うことがで き、これによつてシリコンウェハは破損させずに各装置を受け渡すことができた。
[0203] 実施例 20
実施例 18と同様にして得た基材の片面に、無溶剤型ウレタンアタリレート(大日精 化社製、 PM— 654F)をフアウンテンダイ方式によりキャストし、厚さ 110 mの中間 層を形成した。中間層の 23°Cにおける弾性率は 1. 27 X 105Paであった。この中間 層上に、実施例 18と同様にして厚さ 20 /z mの粘着剤層を形成し、粘着シートを得た 。粘着シートの応力緩和率は 88%であった。
[0204] その後、実施例 18と同様にして半導体ウェハの保護構造を作製した。この半導体 ウェハの保護構造を用いて実施例 18と同様のウェハ研削を行い、厚さ 150 mのシ リコンウェハを得た。これらの工程の間、シリコンウェハを破損させることなしに各装置 に受け渡すことができた。
[0205] 実施例 21
基材として、低密度ポリエチレン榭脂 (住友ィ匕学社製、商品名:スミカセン L705)を 成膜したポリエチレンフィルム(厚さ 110 m、算術平均粗さ Ra: 0. 120 ^ m,表面ェ ネルギー: 31mNZm、 tan δの最大値: 0. 13)を用いた以外は、実施例 18と同様 にして半導体ウェハ保護構造を作製した。なお、粘着シートの応力緩和率は 30%で めつに。
[0206] この半導体ウェハの保護構造を用いて実施例 18と同様のウェハ研削を行い、 150
/z m厚のシリコンウェハを得た。これらの工程の間、シリコンウェハは破損させることな しに各装置に受け渡すことができた。
[0207] 実施例 22
実施例 20のシリコンウェハに代えて直径 200mm、厚さ 750 μ mのシリコンウエノ、 のミラー面に、インクドット(高さ 100 m、直径 100〜200 m、ピッチ lmm)を形成 し、シリコンウェハを模擬的に高バンプウェハとしたこと以外は、実施例 20と同じ材料 及び同じ装置を用いてウェハの研削を行い、厚さ 150 mのシリコンウェハを得た。 これらの工程の間、シリコンウェハは破損させることなしに各装置に受け渡すことがで きた。また、ウェハの研削面に高バンプによるディンプルは観測されなカゝつた。
[0208] 次に、本発明に係る半導体チップの製造方法を実施例により説明するが、本発明 は、この実施例により何ら限定されるものではない。また、以下の方法により評価した
[0209] 実施例 23
(固定ジグの作成)
実施例 18と同様にして固定ジグを作製した。
[0210] (ウェハ先ダイシング工程)
シリコンウェハ(200mm直径、厚さ 750 μ m)の鏡面側に対して、 10mm X 10mm のチップサイズで溝の深さが 120 μ mとなるようにダイシング装置(ディスコ社製、 DF D— 6561)を用いてハーフカットダイシングを行った。続いて、ウェハの鏡面に対して 、固定ジグの密着層面をそれぞれの中心が一致するようにして真空貼り合せ装置( 芝浦メカトロニクス社製)により貼付し、ウェハを固定ジグに固定させた。
[0211] これを先ダイシング用の受け渡し機構を具備していないウェハ研削装置 (ディスコ 社製、商品名 DFG— 840)の処理テーブルに吸引により支持固定し、ウェハの厚さ 力 S 100 /z mとなるまで裏面研削を行い、ウェハを個片化した。なお、固定ジグの貫通 孔に位置する処理テーブルの吸着面を粘着テープで部分的に塞ぎ、処理テーブル 固定時の吸引によって固定ジグの区画空間の気体を吸引しな 、ようにした。
[0212] 次に、転写テープ(リンテック社製紫外線硬化型ダイシングテープ、商品名 Adwill
D650)を剥離機構付きのウェハマウンタ(リンテック社製、 Adwill RAD— 2500F /8MUL)により、ウェハの研削面(チップ面)に貼付してリングフレームに固定した。 続いて、固定ジグの貫通孔の開口部に真空ポンプのノズルを接続し、固定ジグの区 画空間の気体を吸引して密着層を変形させた。これによつて、チップ群から固定ジグ の密着層が容易に剥離し、チップ群は固定ジグカも転写テープに転写された。
[0213] このように固定ジグを使用することにより、チップの破損や配列の乱れを起こすこと なく先ダイシング工程を行うことができた。さらに、特別な受け渡し装置が具備されて いないウェハ研削装置を用いて先ダイシング工程を行うことができた。また、これらの 工程の間、シリコンウェハ (チップ群)を破損させることなしに各装置を受け渡すことが できた。
[0214] 実施例 24
実施例 23のシリコンウェハに代えて、直径 200mm、厚さ 750 mのシリコンウエノ、 の鏡面にインクドット(高さ 100 μ m、直径 100〜200 μ m、ピッチ lmm)形成した、 模擬的に高バンプを有するウェハを用いた。また、中間層を有する粘着シートとして 、リンテック社製の紫外線硬化型保護用粘着シート (商品名 Adwill E8310LS34 2F、中間層厚 110 /ζ πι、粘着剤層厚 40 m)を用いた。また、特に記述しない装置 、材料等は実施例 1と同じものを使用した。
[0215] バンプを有するウェハのバンプ側を、 10mm X 10mmのチップサイズで溝の深さが 120 mとなるようにダイシング装置を用いてハーフカットダイシングを行った。続い て、バンプ面にテープラミネータ(リンテック社製、 Adwill RAD3500/ml2)を用いて粘 着シートを貼付し、シリコンウェハの輪郭に沿って粘着シートを切断した。さらに、粘 着シートの基材面に対し、固定ジグの密着層面をそれぞれの中心が一致するように して真空貼り合せ装置により貼付し、ウェハを固定ジグに固定させた。
[0216] これをウェハ研削装置の処理テーブルに吸引により支持固定し、ウェハの厚さが 1 00 mとなるまで裏面研削を行い、ウェハを個片化した。なお、固定ジグの貫通孔に 位置する処理テーブルの吸着面を粘着テープで部分的に塞ぎ、処理テーブル固定 時の吸弓 Iによって固定ジグの区画空間の気体を吸弓 Iしな 、ようにした。
[0217] 次に、転写テープをウェハマウンタにより、ウェハの研削面 (チップ面)に貼付してリ ングフレームに固定した。続いて、固定ジグの貫通孔の開口部に真空ポンプのノズ ルを接続し、固定ジグの区画空間の気体を吸引して密着層を変形させた。これにより 、チップ群力 固定ジグの密着層が容易に剥離し、粘着シート付きのチップ群は固定 ジグカも転写テープに転写された。さらに、ウェハマウンタの剥離機構を用いて粘着 シートを剥離し、転写テープにチップ群だけが貼付されて 、る状態とした。
[0218] このように固定ジグを使用することにより、チップの破損や配列の乱れを起こすこと なく先ダイシング工程を行うことができた。さらに、特別な受け渡し装置の用意されて いないウェハ研削装置を用いて先ダイシング工程を行うことができた。また、これらの 工程の間、シリコンウェハ (チップ群)は破損させることなしに各装置を受け渡すことが できた。

Claims

請求の範囲
[I] 半導体ウェハを保持する保持治具であって、剛性の基板に形成される凹部と、この 凹部に配列して設けられる複数の支持突起と、凹部を被覆して複数の支持突起に支 持され、半導体ウェハを着脱自在に密着保持する変形可能な密着フィルム層と、こ の密着フィルム層に被覆された凹部内の気体を外部に導く排気路とを含んでなること を特徴とする保持治具。
[2] 凹部を負圧にして密着フィルム層を変形させる負圧源を含んでなる請求項 1記載の 保持治具。
[3] 密着フィルム層は帯電防止剤を含んでなる請求項 1又は 2記載の保持治具。
[4] 複数の支持突起の配列ピッチを 0. 2〜2. Ommとした請求項 1、 2、又は 3記載の 保持治具。
[5] 支持突起の幅を 0. 05〜: L Ommとした請求項 1ないし 4いずれかに記載の保持治 具。
[6] 支持突起の高さを 0. 05〜0. 5mmとした請求項 1ないし 5いずれかに記載の保持 治具。
[7] 密着フィルム層の厚さを 20〜200 μ mとした請求項 1ないし 6いずれかに記載の保 持治具。
[8] 密着フィルム層の弓 I張り破断強度を 5MPa以上とした請求項 1な 、し 7 、ずれかに 記載の保持治具。
[9] 密着フィルム層の引張り破断伸びを 500%以上とした請求項 1ないし 8いずれかに 記載の保持治具。
[10] 密着フィルム層の常温の曲げ弾性率を 10〜: LOOMPaとした請求項 1ないし 9いず れかに記載の保持治具。
[II] 半導体ウェハの研削工程で用いられることを特徴とする請求項 1ないし 10いずれか に記載の保持治具。
[12] 請求項 1な!、し 10 、ずれかに記載の保持治具の密着フィルム層に半導体ウェハの 回路が形成された表面を接触させて密着保持させ、半導体ウェハの裏面を所定の 厚さまで研削することを特徴とする半導体ウェハの研削方法。
[13] 半導体ウェハの裏面を所定の厚さまで研削した後、保持治具に半導体ウェハを密 着保持させたまま、半導体ウェハの裏面をさらにエッチング処理する請求項 12記載 の半導体ウェハの研削方法。
[14] 半導体ウェハ、該半導体ウェハの回路面上に積層された粘着シート及び固定ジグ 力 の順で積層されてなる半導体ウェハの保護構造であって、
前記固定ジグは、片面に複数の突起物を有し、かつ該片面の外周部に該突起物と 略同じ高さの側壁を有するジグ基台と、該ジグ基台の突起物を有する面上に積層さ れ、該側壁の上面で接着された密着層とからなり、
前記ジグ基台の突起物を有する面には、前記密着層、前記突起物及び前記側壁 により区画空間が形成され、
前記ジグ基台には、外部と前記区画空間とを貫通する少なくとも 1つの貫通孔が設 けられ、
前記密着層は、前記半導体ウェハの回路面上に積層された粘着シートの表面に積 層されてなる半導体ウェハの保護構造。
[15] 前記粘着シートが、片面の表面エネルギーが 20〜60mNZm及び表面粗さ(算術 平均粗さ Ra)が 1. 0 m以下の基材とその反対面に設けられた粘着剤層とからなり、 該粘着剤層が前記回路面と当接していることを特徴する請求項 14記載の半導体ゥ ェハの保護構造。
[16] 前記粘着シートは、基材と、該基材上に形成された中間層と、該中間層上に形成さ れた粘着剤層とからなり、
前記粘着剤層の 23°Cにおける弾性率が 5 X 104〜1. O X 107Paの範囲〖こあり、前 記中間層の 23°Cにおける弾性率が前記粘着剤層の 23°Cにおける弾性率以下であ ることを特徴とする請求項 14又は 15記載の半導体ウェハの保護構造。
[17] 前記粘着シートが、 - 5〜80°Cの温度範囲における動的粘弾性の tan δの最大値 が 0. 5以上の基材と粘着剤層とからなることを特徴とする請求項 14、 15、又は 16記 載の半導体ウェハの保護構造。
[18] 請求項 14〜 17のいずれかに記載の半導体ウェハの保護構造のジグ基台側をゥェ ハ研削装置の処理テーブルに搭載して所定のウェハ厚さまでウェハ裏面を削研した 後、前記貫通孔力 前記区画空間内の気体を吸引して密着層を凹凸状に変形させ 次いで、該密着層から粘着シート付きの半導体ウェハを取り外した後、該粘着シー トを半導体ウェハから取り除くことを特徴とする半導体ウェハの研削方法。
[19] (I)複数の回路が形成されたウェハの回路面側に、該回路に沿って該ウェハの厚 さより浅い切込み深さの溝を形成する工程、(Π)前記回路面上に固定ジグを積層す る工程、及び (ΠΙ)前記溝に到達するまで前記ウェハを裏面研削してチップ群に分割 する工程とを含み、
前記固定ジグが、片面に複数の突起物を有し、かつ該片面の外周部に該突起物と 略同じ高さの側壁を有するジグ基台と、該ジグ基台の突起物を有する面上に積層さ れ、該側壁の上面で接着された密着層とからなり、
前記ジグ基台の突起物を有する面には、前記密着層、前記突起物及び前記側壁 により区画空間が形成され、
前記ジグ基台には、外部と前記区画空間とを貫通する少なくとも 1つの貫通孔が設 けられ、
前記密着層が前記回路面上に積層されていることを特徴とする半導体チップの製 造方法。
[20] 前記工程 (ΠΙ)でウェハをチップ群に分割した後、フレームに固定した転写テープ を該チップ群の裏面に貼着し、
次いで、前記貫通孔から前記区画空間内の気体を吸引して密着層を凹凸状に変 形させることにより、前記チップ群を密着層から取り外し、前記転写テープに転写する ことを特徴とする請求項 19記載の半導体チップの製造方法。
[21] 前記密着層が密着層を介してウェハの回路面上に積層されていることを特徴とする 請求項 19又は 20記載の半導体チップの製造方法。
PCT/JP2007/054628 2006-03-15 2007-03-09 保持治具、半導体ウエハの研削方法、半導体ウエハの保護構造及びこれを用いた半導体ウエハの研削方法、並びに半導体チップの製造方法 WO2007105611A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US12/282,984 US7875501B2 (en) 2006-03-15 2007-03-09 Holding jig, semiconductor wafer grinding method, semiconductor wafer protecting structure and semiconductor wafer grinding method and semiconductor chip fabrication method using the structure
KR1020087023313A KR101426572B1 (ko) 2006-03-15 2007-03-09 보유 지그, 반도체 웨이퍼의 연삭 방법
US12/945,078 US8212345B2 (en) 2006-03-15 2010-11-12 Holding jig, semiconductor wafer grinding method, semiconductor wafer protecting structure and semiconductor wafer grinding method and semiconductor chip fabrication method using the structure

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2006071488A JP2007250789A (ja) 2006-03-15 2006-03-15 半導体ウエハの保護構造およびこれを用いた半導体ウエハの研削方法
JP2006-071488 2006-03-15
JP2006070816A JP2007250738A (ja) 2006-03-15 2006-03-15 保持治具及び半導体ウェーハの研削方法
JP2006071489A JP2007250790A (ja) 2006-03-15 2006-03-15 半導体チップの製造方法
JP2006-071489 2006-03-15
JP2006-070816 2006-03-15

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US12/282,984 A-371-Of-International US7875501B2 (en) 2006-03-15 2007-03-09 Holding jig, semiconductor wafer grinding method, semiconductor wafer protecting structure and semiconductor wafer grinding method and semiconductor chip fabrication method using the structure
US12/945,078 Division US8212345B2 (en) 2006-03-15 2010-11-12 Holding jig, semiconductor wafer grinding method, semiconductor wafer protecting structure and semiconductor wafer grinding method and semiconductor chip fabrication method using the structure

Publications (1)

Publication Number Publication Date
WO2007105611A1 true WO2007105611A1 (ja) 2007-09-20

Family

ID=38509434

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/054628 WO2007105611A1 (ja) 2006-03-15 2007-03-09 保持治具、半導体ウエハの研削方法、半導体ウエハの保護構造及びこれを用いた半導体ウエハの研削方法、並びに半導体チップの製造方法

Country Status (4)

Country Link
US (2) US7875501B2 (ja)
KR (1) KR101426572B1 (ja)
TW (1) TWI405293B (ja)
WO (1) WO2007105611A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100164155A1 (en) * 2007-08-09 2010-07-01 Lintec Corporation Fixing jig and method of processing work
JP2010245498A (ja) * 2009-03-31 2010-10-28 Top Engineering Co Ltd 帯電防止処理された作業ステージ
KR101169580B1 (ko) 2008-03-31 2012-07-31 고쿠리츠 다이가쿠 호진 큐슈 코교 다이가쿠 배선용 전자 부품 및 그 제조 방법
JPWO2016125841A1 (ja) * 2015-02-07 2017-12-07 株式会社クリエイティブテクノロジー 被加工物保持装置及びレーザカット加工方法
JP7109844B1 (ja) * 2022-04-18 2022-08-01 大宮工業株式会社 転写装置

Families Citing this family (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007105611A1 (ja) * 2006-03-15 2007-09-20 Shin-Etsu Polymer Co., Ltd. 保持治具、半導体ウエハの研削方法、半導体ウエハの保護構造及びこれを用いた半導体ウエハの研削方法、並びに半導体チップの製造方法
JP5196838B2 (ja) * 2007-04-17 2013-05-15 リンテック株式会社 接着剤付きチップの製造方法
SG147330A1 (en) * 2007-04-19 2008-11-28 Micron Technology Inc Semiconductor workpiece carriers and methods for processing semiconductor workpieces
KR100963675B1 (ko) * 2008-03-14 2010-06-15 제일모직주식회사 반도체 패키징용 복합기능 테이프 및 이를 이용한 반도체소자의 제조방법
JP5543812B2 (ja) * 2010-03-23 2014-07-09 日東電工株式会社 粘着テープ貼付け方法および粘着テープ貼付け装置
JP2011233711A (ja) * 2010-04-27 2011-11-17 Toshiba Corp 半導体装置の製造方法
TWI475499B (zh) * 2010-05-06 2015-03-01 Fih Hong Kong Ltd 治具設計變更管理系統及其管理方法
CN102842512A (zh) * 2011-06-22 2012-12-26 日东电工株式会社 半导体装置的制造方法
EP2761664A4 (en) 2011-09-30 2015-06-17 Intel Corp DIELECTRIC RECOVERY STRUCTURE FOR TRANSISTOR GRIDS
EP2761662B1 (en) 2011-09-30 2022-02-02 Sony Group Corporation Tungsten gates for non-planar transistors
US9637810B2 (en) 2011-09-30 2017-05-02 Intel Corporation Tungsten gates for non-planar transistors
CN103918083A (zh) 2011-10-01 2014-07-09 英特尔公司 非平面晶体管的源极/漏极触点
US8905680B2 (en) 2011-10-31 2014-12-09 Masahiro Lee Ultrathin wafer transport systems
WO2013082076A1 (en) * 2011-11-30 2013-06-06 Corning Incorporated Carrier for thin glass sheets and method of using
KR101387387B1 (ko) * 2011-12-21 2014-04-30 (주)탑나노시스 대전방지용 시트 및 이를 포함하여 대전방지된 작업 스테이지
WO2013096036A1 (en) * 2011-12-22 2013-06-27 3M Innovative Properties Company Electrically conductive article with high optical transmission
WO2013095527A1 (en) * 2011-12-22 2013-06-27 Intel Corporation Electrostatic discharge compliant patterned adhesive tape
US8753924B2 (en) 2012-03-08 2014-06-17 Texas Instruments Incorporated Grown carbon nanotube die attach structures, articles, devices, and processes for making them
CN103123913A (zh) * 2012-07-03 2013-05-29 上海华力微电子有限公司 一种打薄晶圆降低***闪存单元失败率的工艺方法
JP5943742B2 (ja) * 2012-07-04 2016-07-05 三菱電機株式会社 半導体試験治具およびそれを用いた半導体試験方法
CN104508801B (zh) * 2012-08-03 2017-11-10 琳得科株式会社 切割片及装置晶片的制造方法
DE102013100563A1 (de) * 2013-01-21 2014-07-24 Ev Group E. Thallner Gmbh Aufnahmeeinrichtung zur Handhabung strukturierter Substrate
US9195929B2 (en) * 2013-08-05 2015-11-24 A-Men Technology Corporation Chip card assembling structure and method thereof
US9287151B2 (en) * 2014-01-10 2016-03-15 Taiwan Semiconductor Manufacturing Co., Ltd Systems and method for transferring a semiconductor substrate
CN106103076B (zh) * 2014-01-16 2018-08-10 纽约城市大学研究基金会 产生超疏水表面的中心-侧面方法
WO2015133420A1 (ja) * 2014-03-03 2015-09-11 リンテック株式会社 半導体関連部材加工用シートおよび当該シートを用いるチップの製造方法
JP6645959B2 (ja) * 2014-03-17 2020-02-14 リンテック株式会社 ダイシングシートおよび当該ダイシングシートを用いるチップの製造方法
US9700988B2 (en) * 2014-08-26 2017-07-11 Ebara Corporation Substrate processing apparatus
CN106794684B (zh) * 2014-10-20 2020-09-01 琳得科株式会社 表面保护片用基材及表面保护片
EP3376527A4 (en) 2015-11-09 2019-05-08 Furukawa Electric Co., Ltd. INTEGRATED MASK SURFACE PROTECTION FILM
JP6510461B2 (ja) * 2016-05-25 2019-05-08 日本特殊陶業株式会社 基板保持装置
JP6353969B1 (ja) * 2017-11-29 2018-07-04 株式会社ユー・エム・アイ 搬送具と搬送方法と搬送具ユニット
TW202106761A (zh) * 2019-04-26 2021-02-16 美商設計者分子公司 酚官能化聚醯亞胺及其組成物
CN112624589B (zh) * 2020-12-18 2022-12-20 湖北骏腾拓达光电有限公司 一种计算机屏幕面板加工用切割设备
CN113334244B (zh) * 2021-05-18 2023-04-28 长江存储科技有限责任公司 一种承载装置以及研磨设备
CN113732851B (zh) * 2021-11-05 2022-02-01 四川明泰微电子有限公司 一种用于半导体晶圆背面打磨的装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001093864A (ja) * 1999-09-24 2001-04-06 Toshiba Corp 半導体ウェーハ固定治具及び半導体装置の製造方法
JP3882004B2 (ja) * 2004-04-09 2007-02-14 信越エンジニアリング株式会社 粘着チャック装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4356529A (en) * 1981-01-21 1982-10-26 Sprague Electric Company Terminated monolithic ceramic chip capacitor
JPH05335411A (ja) * 1992-06-02 1993-12-17 Toshiba Corp ペレットの製造方法
JP4219605B2 (ja) 2002-03-12 2009-02-04 リンテック株式会社 半導体ウエハ加工用粘着シートおよびその使用方法
US6910898B2 (en) * 2002-07-09 2005-06-28 Yamaichi Electronics Co., Ltd. Socket for semiconductor device
JP4314868B2 (ja) * 2003-04-10 2009-08-19 パナソニック株式会社 半導体チップのピックアップ装置およびピックアップ方法ならびに吸着剥離ツール
JP4193983B2 (ja) * 2003-08-27 2008-12-10 信越ポリマー株式会社 基板保持具
JP4354769B2 (ja) 2003-09-19 2009-10-28 株式会社ディスコ ウェーハの研磨方法
JP4282537B2 (ja) 2004-04-27 2009-06-24 信越ポリマー株式会社 電子部品保持具及びその製造方法並びに電子部品保持具から電子部品を取り外す方法
JP4068610B2 (ja) * 2004-10-01 2008-03-26 山一電機株式会社 半導体装置用キャリアユニットおよびそれを備える半導体装置用ソケット
US7501839B2 (en) * 2005-04-21 2009-03-10 Endicott Interconnect Technologies, Inc. Interposer and test assembly for testing electronic devices
WO2007105611A1 (ja) * 2006-03-15 2007-09-20 Shin-Etsu Polymer Co., Ltd. 保持治具、半導体ウエハの研削方法、半導体ウエハの保護構造及びこれを用いた半導体ウエハの研削方法、並びに半導体チップの製造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001093864A (ja) * 1999-09-24 2001-04-06 Toshiba Corp 半導体ウェーハ固定治具及び半導体装置の製造方法
JP3882004B2 (ja) * 2004-04-09 2007-02-14 信越エンジニアリング株式会社 粘着チャック装置

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100164155A1 (en) * 2007-08-09 2010-07-01 Lintec Corporation Fixing jig and method of processing work
US8465011B2 (en) * 2007-08-09 2013-06-18 Lintec Corporation Fixing jig and method of processing work
KR101169580B1 (ko) 2008-03-31 2012-07-31 고쿠리츠 다이가쿠 호진 큐슈 코교 다이가쿠 배선용 전자 부품 및 그 제조 방법
JP2010245498A (ja) * 2009-03-31 2010-10-28 Top Engineering Co Ltd 帯電防止処理された作業ステージ
JPWO2016125841A1 (ja) * 2015-02-07 2017-12-07 株式会社クリエイティブテクノロジー 被加工物保持装置及びレーザカット加工方法
JP7109844B1 (ja) * 2022-04-18 2022-08-01 大宮工業株式会社 転写装置

Also Published As

Publication number Publication date
US7875501B2 (en) 2011-01-25
KR20080108251A (ko) 2008-12-12
US20110281509A1 (en) 2011-11-17
TW200741951A (en) 2007-11-01
TWI405293B (zh) 2013-08-11
US8212345B2 (en) 2012-07-03
US20090081852A1 (en) 2009-03-26
KR101426572B1 (ko) 2014-08-05

Similar Documents

Publication Publication Date Title
WO2007105611A1 (ja) 保持治具、半導体ウエハの研削方法、半導体ウエハの保護構造及びこれを用いた半導体ウエハの研削方法、並びに半導体チップの製造方法
KR101399690B1 (ko) 접착제 부착 칩의 제조방법
TWI403568B (zh) 半導體裝置製造用薄膜及半導體裝置的製造方法
US7201969B2 (en) Pressure-sensitive adhesive film for the surface protection of semiconductor wafers and method for protection of semiconductor wafers with the film
JP4312419B2 (ja) 半導体ウエハの加工方法
JP2007250789A (ja) 半導体ウエハの保護構造およびこれを用いた半導体ウエハの研削方法
KR20160137506A (ko) 수지막 형성용 시트 적층체
JP2009239124A (ja) ウェハ表面保護テープ
TW201728457A (zh) 遮罩一體型表面保護膜
JP5379377B2 (ja) 表面保護用シートおよび半導体ウエハの研削方法
JP2009188010A (ja) 脆質部材用支持体および脆質部材の処理方法
JP4307825B2 (ja) 半導体ウエハの保護構造、半導体ウエハの保護方法、これらに用いる積層保護シートおよび半導体ウエハの加工方法
TW201729276A (zh) 遮罩一體型表面保護帶
JP4266120B2 (ja) 半導体ウェハ表面保護用粘着フィルム及び該粘着フィルムを用いる半導体ウェハの保護方法
TWI686853B (zh) 附剝離襯墊之遮罩一體型表面保護帶
TWI498955B (zh) A method for manufacturing a semiconductor wafer with a spin - die tape and an adhesive layer
JP5438522B2 (ja) ダイシング−ダイボンディングテープ及びその製造方法
TW201403694A (zh) 基板之切割方法
JP2007250790A (ja) 半導体チップの製造方法
JP2009130333A (ja) 半導体装置の製造方法
TW201945487A (zh) 黏著膠帶及半導體裝置的製造方法
JP2007250738A (ja) 保持治具及び半導体ウェーハの研削方法
TW202245030A (zh) 工件的處理方法
JP2004356377A (ja) 脆質部材の剥離方法及び脆質部材の支持ユニット
JP2009135509A (ja) 半導体ウエハの保護構造、半導体ウエハの保護方法、これらに用いる積層保護シートおよび半導体ウエハの加工方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07738113

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12282984

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1020087023313

Country of ref document: KR

122 Ep: pct application non-entry in european phase

Ref document number: 07738113

Country of ref document: EP

Kind code of ref document: A1