WO2007102228A1 - 自動車の制御装置及び制御方法 - Google Patents

自動車の制御装置及び制御方法 Download PDF

Info

Publication number
WO2007102228A1
WO2007102228A1 PCT/JP2006/304814 JP2006304814W WO2007102228A1 WO 2007102228 A1 WO2007102228 A1 WO 2007102228A1 JP 2006304814 W JP2006304814 W JP 2006304814W WO 2007102228 A1 WO2007102228 A1 WO 2007102228A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
obstacle
preceding vehicle
control device
distance
Prior art date
Application number
PCT/JP2006/304814
Other languages
English (en)
French (fr)
Inventor
Mikio Ueyama
Tatsuya Yoshida
Kazuhiko Hanawa
Original Assignee
Hitachi, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi, Ltd. filed Critical Hitachi, Ltd.
Priority to EP20060728932 priority Critical patent/EP1995705B1/en
Priority to PCT/JP2006/304814 priority patent/WO2007102228A1/ja
Priority to DE200660015362 priority patent/DE602006015362D1/de
Priority to US12/279,943 priority patent/US9008940B2/en
Priority to JP2008503723A priority patent/JP4862036B2/ja
Publication of WO2007102228A1 publication Critical patent/WO2007102228A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/14Adaptive cruise control
    • B60W30/16Control of distance between vehicles, e.g. keeping a distance to preceding vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/08Active safety systems predicting or avoiding probable or impending collision or attempting to minimise its consequences
    • B60W30/095Predicting travel path or likelihood of collision
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems
    • G08G1/161Decentralised systems, e.g. inter-vehicle communication
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems
    • G08G1/165Anti-collision systems for passive traffic, e.g. including static obstacles, trees
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2552/00Input parameters relating to infrastructure
    • B60W2552/20Road profile, i.e. the change in elevation or curvature of a plurality of continuous road segments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2552/00Input parameters relating to infrastructure
    • B60W2552/30Road curve radius
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2554/00Input parameters relating to objects
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2554/00Input parameters relating to objects
    • B60W2554/80Spatial relation or speed relative to objects
    • B60W2554/802Longitudinal distance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2554/00Input parameters relating to objects
    • B60W2554/80Spatial relation or speed relative to objects
    • B60W2554/804Relative longitudinal speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2556/00Input parameters relating to data
    • B60W2556/45External transmission of data to or from the vehicle
    • B60W2556/50External transmission of data to or from the vehicle of positioning data, e.g. GPS [Global Positioning System] data
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/08Active safety systems predicting or avoiding probable or impending collision or attempting to minimise its consequences
    • B60W30/09Taking automatic action to avoid collision, e.g. braking and steering

Definitions

  • the present invention relates to an automobile control device and a control method. It is particularly suitable for automobiles having means for detecting obstacles and preceding cars. Background art
  • the driver sets the set speed and the set inter-vehicle distance using the input / output display, and when there is no preceding vehicle, it controls the set speed.
  • ACC device the adaptive cruise control device
  • the function to follow between the set cars is realized.
  • highways have been targeted, but the application to general roads with large terrain changes is expanding.
  • the adaptive cruise control device may not be able to decelerate in time and may feel a danger in driving.
  • the adaptive cruise control device normally recognizes the preceding vehicle for a few seconds, and continuously confirms the presence of the preceding vehicle for a few seconds, and finally determines the preceding vehicle. Based on the result of this decision, a control command is issued to the alarm and actuate overnight (accelerator, transmission, brake, etc.). Therefore, in the normal judgment process, it is necessary to confirm the presence of the preceding vehicle for a few seconds, so it can be said that the evening time to start deceleration is delayed.
  • a C C device the current adaptive cruise control device
  • collision mitigation braking device the braking timing tends to be slower than the driver judges visually. Leading cars are beginning to be visible, and drivers need to respond quickly to deceleration.
  • Figure 1 shows the mileage and deceleration speed calculated by (Equation 1) and (Equation 2) below.
  • Travel distance own vehicle speed X travel time (Equation 1)
  • Deceleration speed deceleration acceleration X travel time... (Equation 2)
  • the acceleration can be reduced by 15.7 km / h with a deceleration acceleration of 0.8 g. It is known that if the speed at the time of the collision can be reduced to 50 km / h or less, the mortality rate at the time of the collision will be lowered, and it is necessary to reduce the speed immediately before the collision as much as possible. In other words, if the collision determination can be shortened in seconds, it can be said that a great effect can be obtained.
  • a navigation device is used to quickly determine structures such as ETC gates and railroad crossings, and early detection of a preceding vehicle based on the degree of congestion on the road (for example, JP-A-2010). 0 3 — 1 4 1 6 9 8).
  • the object of the present invention is to reduce the clogging when the preceding vehicle is found on an ascending / descending slope, a curve or an intersection, or to reduce the collision damage if the collision cannot be avoided. Is to provide a travel control device and an obstacle detection device that perform safe and appropriate follow-up control.
  • the obstacle detection information from the sensor that detects the obstacle and the terrain information of the vehicle position from the map database are input, and after the sensor detects the obstacle, When performing the process of determining the existence, the conditions for determining the presence of the obstacle are changed based on the topographical information of the vehicle position.
  • FIG. 1 shows the travel distance and deceleration speed according to one embodiment of the present invention.
  • FIG. 2 is a block diagram of this embodiment.
  • FIG. 3 is a block diagram (part 2) of the present embodiment.
  • Figure 4 shows a scene in which the vehicle suddenly finds a preceding vehicle as it passes near the top of the slope. It is.
  • Fig. 5 shows the scene where the vehicle passes near the bottom of the slope and suddenly finds the preceding vehicle.
  • Fig. 6 shows the scene where the vehicle passes through the curve and suddenly finds the preceding vehicle.
  • Figure 7 shows a scene where a preceding vehicle is suddenly found at the intersection.
  • FIG. 8 shows the flow of processing from sensor detection to operating the vehicle.
  • FIG. 9 is a timing chart for detecting the preceding vehicle.
  • Fig. 10 shows the data exchange between the obstacle determination process and the navigation device.
  • Figure 11 shows the obstacle confirmation process.
  • Figure 12 shows the terrain condition search process.
  • Figure 13 shows how to find the gradient difference and the advance angle difference.
  • Figure 14 shows the processing in the navigation device.
  • Figure 15 shows an example of laser radar detection (gradient).
  • Figure 16 shows an example (curve) of laser radar detection.
  • Fig. 17 is an example of a laser radar detection timing chart.
  • Figure 18 shows an example of laser radar recognition processing.
  • Figure 19 shows the principle of a stereo camera.
  • FIG. 20 shows an example of a stereo camera recognition process.
  • Figure 21 shows an example of recognition processing by a millimeter wave radar.
  • Fig. 22 shows an example of definite conditions for each sensor.
  • Fig. 23 shows the obstacle confirmation process and data exchange (2) of the navigation device.
  • Figure 24 shows the terrain condition search process (part 2).
  • FIG. 25 shows the processing (part 2) in the navigation device.
  • Figure 26 shows how to create a map with topographical conditions.
  • Figure 27 shows the data exchange (3) between the obstacle determination process and the navigation device.
  • Figure 28 shows the terrain condition search process (part 3).
  • Figure 29 shows the terrain information table acquisition process.
  • Figure 30 shows the obstacle confirmation process (part 3).
  • Fig. 31 shows the processing (part 3) in the navigation device.
  • Figure 32 shows the alarm and braking variations.
  • Figure 33 shows the flow of processing from sensor detection until the vehicle is operated (part 2).
  • the embodiment described below relates to an adaptive cruise control device, a collision mitigation braking device, and a sensor used in the device, and particularly when a preceding vehicle is detected in the middle of a slope or curve, at an intersection, a navigation device. Is used to shorten the judgment time for determining the preceding vehicle.
  • the travel control device includes a sensor 2 0 1 for detecting the inter-vehicle distance and relative speed, and the terrain information of the own vehicle on the map and the inter-vehicle distance Navigation device for determining topographical information of separated preceding vehicles (navigation device) 20 2, Inter-vehicle control device 20 3 for constant speed control, inter-vehicle distance control and deceleration control before collision, brake control device 20 4, It consists of an engine controller 2 0 5 and a communication cable 2 0 6 for exchanging necessary data.
  • engine control device 205 includes transmission control.
  • Sensor 2 0 1 has sensor input
  • An obstacle detection unit 20 07 that performs force processing and recognition processing is included.
  • the inter-vehicle control device 20 3 is mainly realized by software processing, and includes an obstacle determining unit 20 8 and an inter-vehicle control unit 20 9.
  • This obstacle determination unit may be stored in the inter-vehicle distance controller as in this example, or may be stored in the sensor. Further, the functions of the inter-vehicle control device 203 may be stored in the sensor, the navigation device, or other control unit.
  • the obstacle recognition apparatus includes a sensor 2 0 1 for detecting an inter-vehicle distance and a relative speed as shown in the block diagram of FIG. It consists of a navigation device as the evening of map data for obtaining topographical information of the preceding vehicle at a distance and a communication cable for exchanging necessary data.
  • the sensor includes an obstacle detection unit 2 0 7 that performs sensor input processing and recognition processing, and an obstacle determination unit 2 0 8 that confirms the presence of the obstacle and transmits the result to the inter-vehicle distance controller. .
  • FIG. 2 is a travel control device according to an embodiment of the present invention, which is a sensor 2 0 1 for obtaining a distance and relative speed between a preceding vehicle and a navigation for obtaining topographic information of the preceding vehicle and the own vehicle.
  • Device 2 0 2 (hereinafter abbreviated as navigation device), Inter-vehicle distance control device 2 0 3 for controlling the inter-vehicle distance, Brake control device 2 0 4 for controlling the brake, Eng for controlling the engine It consists of a gin control device 205 and a communication cable 206 between the devices.
  • the engine control device 205 includes transmission control.
  • a CAN Controller Area Network
  • the sensor includes an obstacle detection unit 20 07 that performs sensor input processing.
  • the sensor sends the obstacle recognition confirmation result to the inter-vehicle distance controller via CAN.
  • a dedicated communication cable may be used for exchanging data between the navigation device and the sensor without going through CAN.
  • Wireless may also be used.
  • an input unit for inputting information from a sensor or navigation device is provided in the inter-vehicle distance control device.
  • CAN or communication cable it is a connector to connect the cable, and in the case of wireless, it is an antenna.
  • the input unit from the navigation device is the terrain information input unit, and the input unit for inputting information from the sensor is the sensor information input unit.
  • FIG. 4 shows a scene in which the vehicle suddenly finds a preceding vehicle as it passes near the top of the slope.
  • the vehicle indicated by the lane (hatched) is the subject vehicle, and the white one is the other vehicle or the preceding vehicle (the same applies to the following drawings).
  • Figure 4 (a) shows a scene in which no leading vehicle has been found.
  • Fig. 4 (b) shows the scene where the driver has found the preceding vehicle visually.
  • Fig. 4 (c) shows the scene where the sensor starts detecting the preceding vehicle.
  • Figure 4 (d) shows the scene where the sensor has confirmed the presence of the preceding vehicle.
  • the inter-vehicle distance controller makes a determination of the presence of a preceding vehicle after a certain required time has elapsed.
  • the driver needs to intervene and step on the brake to determine the existence of the preceding vehicle after approaching the preceding vehicle considerably. Since the driver can see the preceding vehicle, the driver expects the inter-vehicle distance controller to operate and automatically decelerates, but because the vehicle does not decelerate, the driver will be disappointed for a moment.
  • an example of laser radar is shown in Fig. 15 as an example of gradient detection.
  • Fig. 15 (2) when a preceding vehicle suddenly appears from below, the laser radar detects the front, right, and left of the preceding vehicle and starts the process of determining the preceding vehicle. The Then, after the required time has elapsed, the detection of the preceding vehicle is confirmed.
  • S 1 8 0 the laser beam is emitted forward, and the reflected laser beam is received.
  • S 1 800 the relative distance is obtained from the time delay of the received laser beam, and the direction is obtained from the scan angle.
  • S 1 8 0 3 after the scan is completed, group by the relative distance to obtain a candidate object having a predetermined number of received beams or more.
  • S 1 8 0 4 the difference between the previous and current relative distances of the candidate object, that is, the relative speed, and the stationary object close to the own vehicle speed are excluded based on the own vehicle speed. Confirm the existence of candidate objects for several hundred ms.
  • S 1 8 0 5 outputs the relative distance, relative speed, and number of received beams of the object.
  • Fig. 5 shows a scene where the vehicle passes near the bottom of the slope and suddenly finds the preceding vehicle. Similar to passing near the top of the slope, the sensor will determine the presence of the preceding vehicle after approaching the preceding vehicle considerably.
  • Fig. 6 shows the scene where the vehicle passes through the curve and suddenly finds the preceding vehicle. If the preceding vehicle suddenly starts to appear at the end of the curve, it will take time to determine the preceding vehicle for the sensor.
  • Fig. 16 shows an example of laser radar detection on the right curve.
  • the laser radar sequentially detects the preceding vehicle on the right, detects the right and front, and detects the right, front, and left.
  • the decision process for the preceding vehicle starts when the detection of the three points on the right, front, and left of the preceding vehicle is started. Next, after the required time has elapsed, the preceding vehicle is confirmed. It is.
  • Figure 7 shows a scene where a preceding vehicle is suddenly found at the intersection. Similarly, if the vehicle changes its route and finds a preceding vehicle on the route, it will take time to determine the preceding vehicle of the sensor.
  • FIG. 8 shows the flow of processing from sensor detection to operating the vehicle.
  • the sensor detects an obstacle and outputs obstacle candidate data. Obstacle determination processing is performed in S 8 0 2. This is a process of determining an obstacle based on the duration of detection of the obstacle. As a result, information on the confirmed obstacle is output.
  • the inter-vehicle distance control device determines the torque value, brake hydraulic pressure value, transmission command value, etc. for controlling the vehicle from the distance between the fixed obstacle, relative speed, own vehicle speed, etc. Outputs control command value.
  • the vehicle control unit activates the actuate to operate the vehicle.
  • FIG. 9 shows the timing chart for detecting the preceding vehicle.
  • FIG. 9 (a) shows the conventional detection process
  • FIG. 9 (b) shows the detection process of this embodiment.
  • the vehicle control unit needs to determine the preceding vehicle based on the sensor information, and receives the confirmation result to perform actual vehicle control. Become.
  • the output of the sensor is normally “detecting (1)” and the detected object that satisfies the condition When it is found, it will move to the state of “Detecting (There are detected objects that satisfy the condition) (2)” that outputs the result.
  • the inter-vehicle distance control unit executes an action.
  • the confirmation process of this embodiment is intended to shorten the state of “Confirming (3)”. As a result, the “preceding vehicle confirmation (4)” information can be quickly passed to the vehicle control unit.
  • the time for determining the preceding vehicle can be shortened by using the terrain information.
  • the time required for confirmation can be shortened to about 0.5 seconds to 1 second. If it can be shortened for about 2 seconds, the free running distance at the vehicle speed of 65 km / h is 36.1 m, so automatic deceleration can be started 36.1 m before the conventional speed. For vehicles moving at high speed, shortening the time in seconds is very important.
  • the direction of the curve can be determined from the steering angle and the map information of the vehicle position.
  • laser beam detection can be performed without waiting until the obstacle is completely in front. Obstacles may be confirmed by reducing the number of confirmation points.
  • an obstacle may be determined by two detections, left and front or right and front. 1
  • the preceding vehicle can be confirmed in the same way.
  • the stereo camera calculates the parallax between the left and right images, and calculates the distance from the visual difference to the corresponding point.
  • Figure 19 shows the principle of a stereo camera. The distance to the object and the lateral position of the object can be measured.
  • Figure 20 shows an overview of the stereo camera recognition process.
  • stereo matching processing is performed to find the matching position of the left and right images based on the left and right gray images.
  • distance image calculation processing is performed to obtain the distance of each image point from the parallax of each point.
  • grouping is performed according to the distance. In this grouping process, the size and horizontal position of the object can be grasped.
  • a sorting process is performed to exclude a stationary object from the relative speed of the grouped objects, or an object outside the white line is excluded if it has a white line recognition function. In addition, exclude non-continuous objects for several hundred ms.
  • the relative distance, relative speed, lateral position, width, and height of the object are output.
  • the continuation of this object can be monitored and the preceding vehicle can be determined by checking the passage of the required time.
  • the preceding vehicle may be determined using the curve information as long as the required time exists in the direction of the curve.
  • the height reference in the vertical direction of the object may be reduced, and the preceding vehicle may be confirmed after confirming the required time.
  • the time for determining the preceding vehicle can be shortened by using the terrain information.
  • FIG. 21 shows an example of recognition processing for a millimeter wave radar.
  • S At 2 1 0 the radio wave is emitted forward, and the reflected radio wave is received.
  • S 2 1 0 2 the distance, relative speed, and direction of the point where the field strength is stronger than the threshold are obtained.
  • the distance can be obtained from the delay of the received radio wave, the relative speed from the Doppler frequency, and the direction from the scan angle. .
  • S 2 1 0 3 exclude stationary objects whose relative speed is close to the vehicle speed. Exclude objects in other lanes from the determined direction. Excludes objects with an existence time of about 300 m s or less.
  • S 2 1 0 4 the relative distance, relative speed, and direction of the object are output.
  • the continuation of this object can be monitored and the preceding vehicle can be determined by checking the passage of the required time.
  • the preceding vehicle can be confirmed by looking at the time required for confirmation, using the information during curve driving.
  • the time required for determining the preceding vehicle can be shortened by using the terrain information.
  • Figure 22 summarizes examples of the deterministic conditions for each sensor.
  • FIG 10 shows the obstacle confirmation process and the data exchange between the navigation devices. The details of the obstacle determination process are described below.
  • the obstacle determination process the inter-vehicle distance is transmitted to the navigation device, and the gradient of the own vehicle and the preceding vehicle position and the advance angle are received from the navigation device.
  • FIG 11 shows a flowchart of the obstacle determination process, and details the implementation method.
  • Obstacle confirmation processing is usually called and executed at time intervals such as 10 ms.
  • S 1 1 0 the data obtained from the sensor is confirmed.
  • a predetermined evening time and value are assigned, and when continuing, the evening time value is decremented.
  • S 1 1 0 2 If there is an obstacle to be checked and the minimum necessary fixed time (MIN) has passed, the judgment is Yes, and the procedure proceeds to judgment of S 1 1 0 3. If NO, return processing.
  • S 1 1 0 3 it is determined from the evening time value whether there is any that has passed the required time.
  • Figure 12 shows a flowchart of the terrain condition search process.
  • S 1 2 0 the distance from the preceding vehicle is transmitted to the navigation device via CAN.
  • S 1 2 0 2 processing the gradient and the traveling angle of the own vehicle and the preceding vehicle position are obtained from the navigation device. If the absolute value of the slope difference is greater than or equal to the threshold value or the absolute value of the advance angle difference is greater than or equal to the threshold value in the judgment process of S 1 2 0 3, the terrain condition is met and the judgment is Y es. Proceed to the processing of 4 terrain condition flag setting. If the terrain condition is not satisfied in the S 1 2 0 3 process, the process proceeds to S 1 2 0 5 terrain condition flag clear process with a No determination.
  • Figure 13 shows how to find the gradient difference and the advance angle. As shown in Fig. 13 (a), the gradient difference is obtained from the difference in gradient between the vehicle and the preceding vehicle.
  • Figure 13 (b) shows how to determine the difference in travel angle at curves and intersections.
  • the traveling angle of the vehicle is obtained from the map information of the vehicle position or the gyro information of the navigation device.
  • the advance angle of the preceding vehicle is obtained from the map information of the preceding vehicle position. I will. Therefore, the advance angle difference can be obtained from the advance angle difference between the host vehicle and the preceding vehicle.
  • Difference in travel angle 2 X a rc sin (distance between vehicles Z 2 / radius of curvature)... (Equation 3) If there is a preceding vehicle ahead of the intersection, the difference in travel angle is the progression of the host vehicle obtained from the gyro etc. It can be obtained from the angle and the advance angle of the preceding vehicle position.
  • FIG 11 shows the processing in the navigation device.
  • S 1 4 0 1 processing the inter-vehicle distance information via C A N is obtained.
  • the gradient and travel angle (traveling direction from east to west, north and south) of the preceding vehicle position that is separated from the own vehicle position and the inter-vehicle distance are obtained.
  • the obtained gradient and advance angle information is transmitted via C A N.
  • the inter-vehicle distance is passed to the navigation device, the gradient and the traveling angle are obtained from the navigation device, and the terrain condition flag It was set.
  • the embodiment can be realized without being limited to FIG. 10, the following two examples will be described.
  • Figure 23 shows the obstacle confirmation process and data exchange (2) of the navigation device.
  • the navigation device is inquired about the terrain condition, and the terrain condition is obtained from the navigation device.
  • the navigation system is equipped with an electronic map with topographical conditions.
  • the obstacle confirmation process in Fig. 11 is the same and is omitted.
  • Figure 24 shows the terrain condition search process (part 2).
  • the obstacle determination unit sends an inquiry to the navigation device about the terrain condition via CAN.
  • the terrain condition flag is received from the navigation device.
  • Figure 25 shows the processing in the navigation device (part 2).
  • the request from the inter-vehicle control unit is received via CAN.
  • terrain information associated with the vehicle position is obtained from the map from the vehicle position.
  • the setting contents of the terrain condition flag are transmitted to the obstacle determination unit.
  • Figure 26 shows how to create a map with topographic information.
  • S 2 6 0 1 is set so that the information on the slope and travel angle at each point on the road map can be extracted.
  • S 2 600 2 the slope and travel angle difference between the two points of the predetermined point (1) and the point (2) separated by the sensor detection distance are obtained.
  • S 2 600 when either or both of the difference between the gradient and the advance angle are larger than the respective threshold values, the topographic condition flag at the predetermined point (1) is set to ON.
  • the association between the predetermined point (1) and the terrain condition flag is performed on the map data.
  • the search is based on the detection distance of the sensor, so the terrain difference tends to occur. Therefore, the time required for confirmation (M I N) may be secured slightly longer.
  • the obstacle determination unit obtains a terrain information table in advance from the navigation device, and based on that information, An example of setting a condition flag is shown.
  • Figure 27 shows the obstacle confirmation process and the data exchange (3) of the navigation device.
  • the navigation device uses the processing in the navigation device (part 3) to send the terrain information table to the obstacle determination processing unit.
  • the topographic information table is a table in which the distance, the gradient of the traveling position corresponding to the distance, and the traveling angle are arranged.
  • Figure 28 shows the obstacle confirmation process (part 3).
  • the difference from Fig. 11 is that the terrain information table acquisition process of S2801 has been added and the terrain search process of S2806 (part 3) is used.
  • Figure 29 shows the terrain information table acquisition process.
  • S 29 0 1 it is determined whether or not the topographic information table is received from the navigation device. If the judgment is Y e s, the terrain information table is updated in S 2 900 and the updated distance work for determining the travel distance after the update of the terrain information table is cleared in S 2 900. If S 2 900 is No, the updated distance work value is added in S 2 90 4 based on the vehicle speed and the call interval for obtaining the terrain information table.
  • Figure 30 shows the terrain condition search process (part 3). If the judgment is S 3 0 0 1 and Yes judgment, the process proceeds to S 3 0 0 2 and below, and if it is No judgment, the terrain information table is not updated and is not used. , S 3 0 0 6 Process clears the terrain condition flag and returns. In S3002, refer to the terrain information table (distance, gradient, advance angle) and updated distance work.
  • the topographical information (gradient, advance angle) of the distance corresponding to the updated distance is obtained. If the updated distance falls between the two distances in the table, the interpolation calculation is performed to determine the slope and advance angle.
  • S 3 0 0 4 (Updated distance + car The topographical conditions (gradient and advance angle) for the distance equivalent to If the distance falls between the two distances in the table, the interpolation calculation is performed to find the slope and advance angle.
  • the gradient difference and the advance angle difference are obtained from the above two gradients and the advance angle. If the absolute value of the slope difference is greater than or equal to the threshold value or the absolute value of the advance angle difference is greater than or equal to the threshold value, the terrain condition flag is set.
  • Figure 3 1 shows the processing in the navigation device (part 3).
  • the topographical information table of the traveling path (the traveling distance from the current position and the gradient of the point corresponding to the distance, the traveling angle) is obtained at S 3 0 0 1.
  • the terrain information table is transmitted to the inter-vehicle control unit via C A N.
  • the obstacle determination unit obtains the terrain information table in the traveling direction from the navigation device in advance and sets the terrain condition flag based on this information. It was.
  • the confirmation conditions shown in FIG. 22 can be instructed to the obstacle confirmation unit by using a navigation device or other input means. Specifically, the minimum required time required for determination (MIN) and required time for determination, detection method using curves, detection method using gradients, etc.
  • MIN minimum required time required for determination
  • MIN required time for determination
  • detection method using curves detection method using gradients, etc.
  • ACC control is realized as the processing of the inter-vehicle control unit 20 9. ACC control performs constant speed control when no preceding vehicle exists, and performs follow-up control (feedback control of inter-vehicle time and relative speed) when a preceding vehicle exists.
  • the inter-vehicle control unit can also incorporate pre-collision damage reduction control at the same time. Pre-collision damage reduction control is a brake control where a collision is unavoidable. The expected collision time with the preceding vehicle is less than 0.8 seconds. 8
  • the inter-vehicle distance control unit 20 9 can also perform the alarm, preliminary deceleration, and deceleration operations shown in FIG. Specifically, it is possible to determine the expected collision time (TTC) with the preceding vehicle, determine the value, and perform warning, preliminary deceleration, and deceleration operations.
  • TTC expected collision time
  • the brake deceleration can be changed by looking at the value of TTC.
  • TTC can be obtained from (Equation 4) or from (Equation 5) considering acceleration.
  • T T C Relative distance from the preceding vehicle / Relative speed (Formula 4) Relative distance + preceding vehicle speed X T T C + 0.5 X preceding vehicle acceleration X T T C
  • X T T C g Vehicle speed X T T C + 0.5 X Vehicle acceleration X T T C
  • the obstacle determination time is shortened by topographic conditions, so the start-up operation of the inter-vehicle control unit can be accelerated, and the inter-vehicle distance is prevented from becoming clogged rapidly. it can.
  • the first embodiment can be realized.
  • the effect can be confirmed by running on a slope or a curve point. Therefore, by adding restrictions such as hiding the GPS antenna with a shielding object to some of the functions of the navigation device and running in the same way, it is possible to grasp the difference in effect, and the implementation status of the present invention I can confirm.
  • FIG. 3 shows an obstacle recognition apparatus according to a second embodiment of the present invention, which is a sensor 2 0 1 for obtaining a distance between a preceding vehicle and a relative speed, and for obtaining terrain information of the preceding vehicle and the own vehicle. It consists of a navigation device 2 0 2 and a communication cable 2 0 6 between the devices. CAN is used for communication between devices via the communication cable 206.
  • the sensor includes an obstacle detection unit 2 0 7 that performs sensor input processing and an obstacle An obstacle confirmation unit 2 0 8 for confirming the recognition of a harmful object is included.
  • the sensor sends the obstruction recognition confirmation result to the inter-vehicle distance controller via CAN.
  • a dedicated communication cable may be used for exchanging data between the navigation device and the sensor without going through CAN.
  • control processing of this embodiment is realized by software processing, and is stored in the sensor or in the navigation device.
  • Figure 3 3 shows the flow of the process from sensor detection to operation of the vehicle (part 2). Compared to Fig. 8, obstacle confirmation processing is realized by moving from the inter-vehicle controller to the inside of the sensor.
  • the navigation device By using the terrain condition of the navigation device's slope and curve, it is possible to shorten the necessary time for obstacle determination, so that the obstacle information can be transmitted promptly to the inter-vehicle distance controller.
  • the input part of the navigation device By using the input part of the navigation device, it is also possible to set the required time for confirmation and change the setting according to the topography.
  • this obstacle recognition apparatus in addition to information on many conventional obstacle candidates, it is possible to output definite obstacle information using the terrain condition that is a feature of this embodiment.
  • the obstacle recognition device As the obstacle recognition device, a laser radar, a stereo camera, and a millimeter wave radar are assumed, but the details of the detailed processing are the same as those in the first embodiment, and will be omitted.
  • Obstacle recognition devices are not limited to laser radars, stereo cameras, and millimeter wave radars, but can be applied to any sensor that can determine the relative distance and relative speed of the preceding vehicle. It can also be applied to such sensors, which are known to change the detection angle (vertical, horizontal) of the sensor based on the vehicle position gradient information and steering angle information.
  • the second embodiment can be realized.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Traffic Control Systems (AREA)
  • Navigation (AREA)
  • Radar Systems Or Details Thereof (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)

Abstract

登りあるいは下り勾配及びカーブや交差点先で先行車が発見された際に、車間距離が急速に詰まるのを防止し、あるいは衝突が避けられない場合には、衝突被害を低減し、安全かつ適切な追従制御を行う走行制御装置と障害物検出装置を提供する。障害物を検知するセンサ201から情報を入力するとともにナビゲーション装置202から自車位置の地形情報を入力し、センサ201が障害物を検知した後に所定条件を満たすことによりその障害物の存在を確定する処理を行う障害物確定処理部208を備え、ナビゲーション装置202から入力した自車位置の地形情報に基づき、障害物の存在を確定する所定条件を変更する。

Description

明 細 書
自動車の制御装置及び制御方法
技術分野
本発明は、 自動車の制御装置及び制御方法に係る。 特に障害物や先行 車などを検知する手段を有する自動車に好適である。 背景技術
ァダプティブクルーズコントロール装置 (以下 A C C装置と略す) に おいて、 ドライバが設定速度と設定車間距離を入出力表示部により設定 する機能と、 先行車が存在しないときは設定速度に制御し、 先行車が存 在する場合には、 設定車間で追従する機能が実現されている。 従来、 高 速道路が対象とされてきたが、 地形変化のより大きい一般道への適用の 拡大が進んできている。 しかしながら、 先行車や停止物が登り勾配の向 こう側に隠れて存在している場合に、 自車が勾配の頂上付近で、 先行車 を発見する際、 急に先行車が見え始める。 そのため、 ァダプティブクル ーズコントロール装置の減速が間に合わずに、 走行上の危険を感じるこ とがある。 ァダプティブクルーズコントロール装置の通常の先行車認識 時間は数秒間であり、 数秒間の先行車の存在を継続的に確認し、 最終的 に先行車の確定判定を実施する。 この確定判定の結果に基づいて、 警報 及びァクチユエ一夕 (アクセルやトランスミッショ ン, ブレーキ等) へ の制御指令を発行する。 従い、 通常の判定処理では、 先行車の存在を数 秒間確認する必要があるため、 減速を開始する夕イミングが遅れるとい える。 また、 自車が下り勾配から登り勾配にかけて走行中に、 登り勾配 の途中の先行車を発見する場合には、 同様に、 目視では見えているもの の、 センサが先行車の存在を確認する確定必要時間を要するため減速を 開始する夕イミングが遅れてしまう。
つまり、 現状のァダプティブクルーズコントロール装置 (以下 A C C 装置と略す) や衝突軽減制動装置においては、 ドライバが目視で判断す るより、 制動のかかるタイミングが遅くなる傾向がある。 先行車が見え 始めており、 ドライバにとっては速やかな減速対応が必要である。
検知時間の短縮は走行制御系とくに衝突軽減制動装置においては、 衝 突直前の速度が問題となるため、 重要な問題である。 第 1図に、 下記(式 1 ) 及び (式 2 ) により計算した走行距離と減速速度を示す。
走行距離 =自車速度 X走行時間 …(式 1 ) 減速速度 =減速加速度 X走行時間 …(式 2 ) たとえば、 自車両が 6 5 km/ hで走行中のとき、 第 1図から分かるよ うに 2秒間で 3 6 . 1 mも走行する。 また、 2秒間あれば、 減速加速度を 0 . 8 gとして、 1 5 . 7 km/ h減速することができる。 衝突時の速度を 5 0 km/ h以下に低減できれば、 衝突時の死亡率が低くなることが知ら れており、衝突直前の速度をできる限り低減する必要がある。すなわち、 衝突判断を秒単位で短縮できれば、 大きな効果が得られると言える。
また、 ナビゲーシヨン装置を用いて、 E T Cゲートや踏み切り等の構 造物を早期に判断したり、 道路の混雑度により先行車を早期に発見した りする技術が知られている (例えば特開 2 0 0 3 — 1 4 1 6 9 8号公報 参照)。
しかしながら、 勾配途中の先行車やカーブ途中の先行車を早期に発見 することはできず、 また、 勾配やカーブでの先行車認識の迅速化を図つ た発明は見当たらない。
一方、ナビゲ一ション装置においては、地図の高精度化が進んでおり、 地形情報をナビゲーシヨン装置内に備えることは既知の技術となってい る。 発明の開示
本発明の目的は、 登り · 下り勾配及びカーブや交差点先で先行車が発 見された際に、 車間距離が急速に詰まるのを軽減し、 あるいは衝突が避 けられない場合には、 衝突被害を低減し、 安全かつ適切な追従制御を行 う走行制御装置と障害物検出装置を提供することである。
そこで、 障害物を検知するセンサからの障害物検知情報と、 地図デー 夕ベースからの自車位置の地形情報とを入力し、 センサが障害物を検知 した後に所定条件を満たすことにより障害物の存在を確定する処理を行 う際に、 自車位置の地形情報に基づき、 障害物の存在を確定する条件を 変更する。
これによれば、 登り勾配から下り勾配にかかる地点の先行車及び下り 勾配から登り勾配にかかる地点の先行車及びカーブや交差点先での先行 車の発見を早めることができるので、車間距離が急に詰まるのを軽減し、 あるいは衝突軽減制動装置の起動を早めることができ、 より適切な走行 制御を行うことができる。 図面の簡単な説明
第 1図は、 本発明の一実施形態をなす、 時間による走行距離と減速速 度を示す。
第 2図は、 本実施例のブロック図である。
第 3図は、 本実施例のブロック図 (その 2 ) である。
第 4図は、 自車が勾配の頂上付近を通過し先行車を急に発見する場面 である。
第 5図は、 自車が勾配の底付近を通過し先行車を急に発見する場面で ある。
第 6図は、 自車がカーブ近辺を通過し先行車を急に発見する場面であ る。
第 7図は、 交差点先で先行車を急に発見する場面である。
第 8図は、センサ検知から車両を動作させるまでの処理の流れである。 第 9図は、 先行車検出のタイミングチャートである。
第 1 0図は、 障害物確定処理とナビゲーシヨン装置のデータのやり取 りである。
第 1 1図は、 障害物の確定処理である。
第 1 2図は、 地形条件サーチ処理である。
第 1 3図は、 勾配差と進行角差の求め方である。
第 1 4図は、 ナビゲーシヨン装置内の処理である。
第 1 5図は、 レーザレーダの検知例 (勾配) である。
第 1 6図は、 レーザレーダの検知例 (カーブ) である。
第 1 7図は、 レーザレーダの検知タイミングチャート例である。
第 1 8図は、 レーザレーダの認識処理例である。
第 1 9図は、 ステレオカメラの原理である。
第 2 0図は、 ステレオカメラの認識処理例である。
第 2 1図は、 ミ リ波レーダの認識処理例である。
第 2 2図は、 センサ毎の確定条件例である。
第 2 3図は、 障害物確定処理とナビゲーシヨン装置のデータのやり取 り (その 2 ) である。
第 2 4図は、 地形条件サーチ処理 (その 2 ) である。 第 2 5図は、 ナビゲーシヨ ン装置内の処理 (その 2 ) である。
第 2 6図は、 地形条件付地図作成方法である。
第 2 7図は、 障害物確定処理とナビゲーシヨ ン装置のデータのやり取 り (その 3 ) である。
第 2 8図は、 地形条件サーチ処理 (その 3 ) である。
第 2 9図は、 地形情報テーブル入手処理である。
第 3 0図は、 障害物確定処理 (その 3 ) である。
第 3 1 図は、 ナビゲーシヨ ン装置内の処理 (その 3 ) である。
第 3 2図は、 警報及び制動のバリエーショ ンである。
第 3 3図は、 センサ検知から車両を動作させるまでの処理の流れ (そ の 2 ) である。 発明を実施するための最良の形態
以後説明する実施形態は、 ァダプティブクルーズコントロール装置お よび衝突軽減制動装置とその装置に使用するセンサに関連し、 特に先行 車を勾配やカーブの途中、 交差点で検出した際に、 ナビゲーシヨ ン装置 を用いて、 先行車確定の判定時間を短くするものである。
本発明の一実施形態をなす走行制御装置は、 第 2図のブロック図に示 すように、 車間距離と相対速度を検出するセンサ 2 0 1 , 地図上の自車 の地形情報と車間距離を隔てた先行車の地形情報を求めるナビゲーショ ン装置 (ナビゲーシヨ ン装置) 2 0 2, 一定速度制御や車間距離制御及 び衝突前減速制御を行う車間制御装置 2 0 3,ブレーキ制御装置 2 0 4 , エンジン制御装置 2 0 5、 及び必要なデータのやりとりを行う通信ケー ブル 2 0 6で構成される。 ここで、 エンジン制御装置 2 0 5は、 トラン スミッションの制御を含むものとする。 センサ 2 0 1 には、 センサの入 力処理, 認識処理を行う障害物検知部 2 0 7が含まれている。 車間制御装置 2 0 3は、 主にソフ トウェア処理で実現されており、 障 害物確定部 2 0 8, 車間制御部 2 0 9を含む。 この障害物確定部は、 本 例のように車間制御装置内に格納しても良いし、 センサ内部に格納して も良い。 また、 車間制御装置 2 0 3の機能を、 センサやナビゲーシヨン 装置内部あるいはその他の制御ユニッ ト内に格納しても良い。
また、 本発明を第 1実施例の障害物認識装置は、 第 3図のブロック図 に示すように、 車間距離と相対速度を検出するセンサ 2 0 1 , 地図上の 自車の地形情報と車間距離を隔てた先行車の地形情報を求める地図デー 夕べ一スとしてのナビゲーショ ン装置 2 0 2, 必要なデータのやりとり を行う通信ケーブル 2 0 6で構成される。 センサには、 センサの入力処 理, 認識処理を行う障害物検知部 2 0 7 と障害物の存在を確 し、 車間 制御装置に結果を送信する障害物確定部 2 0 8が含まれている。
第 2図は、 本発明の一実施例をなす走行制御装置であって、 先行車と の車間距離と相対速度を求めるセンサ 2 0 1 , 先行車と自車の地形情報 を求めるためのナビゲーシヨン装置 2 0 2 (以下ナビゲ一シヨン装置と 略す), 車間距離を制御するための車間制御装置 2 0 3, ブレーキを制御 するための、 ブレーキ制御装置 2 0 4 , エンジンを制御するためのェン ジン制御装置 2 0 5及び装置間の通信ケーブル 2 0 6からなる。ここで、 エンジン制御装置 2 0 5は、 トランスミッショ ンの制御を含むものとす る。 通信ケーブル 2 0 6 を介した装置間の通信は C AN (Controller Area Network) を用いる。 走行制钾に必要な、 自車速度等の情報は常時 C AN経由で取り出すことができる。 センサには、 センサの入力処理を 行う障害物検知部 2 0 7が含まれる。 センサは、 障害物の認識確定結果 を CAN経由で車間制御装置に送信する。 ここで、 ナビゲーション装置とセンサのデータのやりとりには、 CAN を経由せず、 専用の通信ケーブルを使用しても良い。 また無線を用いて も良い。 どの場合でも、 センサやナビゲ一シヨン装置から情報を入力す る入力部を車間制御装置に設ける。 C A Nや通信ケーブルの場合は、 当 該ケーブルを接続するコネクタであり、 また無線の場合はアンテナが該 当する。 ナビゲ一シヨン装置からの入力部を地形情報入力部, センサか ら情報を入力する入力部をセンサ情報入力部とする。
本実施形態の障害物確定部 2 0 8の制御処理は、 ソフトウェア処理で 実現されており、 センサ内部やナビゲーシヨン装置内に格納される。 以下、従来技術による検知方法と先行車の確定処理について説明する。 第 4図は、 自車が勾配の頂上付近を通過し先行車を急に発見する場面 を記載したものである。 車線 (ハッチング) で示された方が自車, 白抜 きが他車または先行車である (以下の図面も同様)。 第 4図 ( a ) は、 先 行車を発見していない場面である。 第 4図 (b ) は、 ドライバが目視で 先行車を発見した場面である。 第 4図 ( c ) は、 センサが先行車を検知 開始した場面である。 第 4図 ( d ) は、 センサが先行車の存在を確定し た場面である。
ドライバが目視で、 先行車を発見した場面から、 ほどなく して、 セン ザが先行車の検知を開始する。 車間制御装置は、 誤認識を防ぐために、 一定の確定必要時間を経過後、 先行車有りの確定判断を行う。 しかしな がら、 第 4図のような場面では、 先行車に相当近づいてから、 先行車の 存在を確定するため、 ドライバが介入して、 ブレーキを踏む必要が出て くる。 ドライバは、 先行車が見えているので、 車間制御装置が動作し、 自動減速する動作を期待しているが、 減速が行われないため、 一瞬期待 を裏切られることになる。 ここでは、 勾配での検知例として、 レーザレーダの例を第 1 5図に示 す。
第 1 5図 ( 2 ) で、 先行車が急に下から現れると、 レーザレーダによ り、 先行車の正面, 右, 左の 3ケ所の検知が行われ、 先行車の確定処理 が開始される。続いて、確定必要時間経過後、 先行車検知が確定される。
レーザレーダの認識処理の概要を第 1 8図に示し、 説明を加える。 S 1 8 0 1でレーザ光を前方に発射し、 反射されて帰ってきたレーザ光を 受信する。 S 1 8 0 2で受信レーザ光の時間遅れから相対距離を、 スキ ヤ ン角度から方向を求める。 S 1 8 0 3で、 スキャン終了後、 相対距離 でグルーピングし、 所定の受信ビーム数以上の候補物体を求める。 S 1 8 0 4で候補物体の前回と今回の相対距離の差すなわち相対速度と、 自車速度を基準に自車速度に近い静止物を除外する。 数百 m s 間の候補 物体の存在継続を確認する。 S 1 8 0 5で物体の相対距離, 相対速度, 受信ビームの本数を出力する。
第 5図は、 自車が勾配の底付近を通過し先行車を急に発見する場面を 記載したものである。 勾配の頂上付近を通過中と同様に、 先行車に相当 近づいてから、 センサは先行車の存在を確定することになる。
第 6図は、 自車がカーブ近辺を通過し先行車を急に発見する場面であ る。 カーブの先に急に先行車が見え始めると、 やはり、 センサの先行車 の確定に時間がかかる。
ここで、 第 1 6図に右カーブでのレーザレーダの検知例を示す。 右力 ーブで先行車が現れると、 レーザレーダにより、 順次、 先行車の右の検 知, 右と正面の検知, 右, 正面, 左の 3ケ所の検知の順に検知が行われ る。 先行車の確定処理は、 先行車の右, 正面, 左の 3ケ所の検知が開始 された時点から始まる。 続いて、 確定必要時間経過後、 先行車が確定さ れる。
第 7図は、 交差点先で先行車を急に発見する場面である。 自車が進路 を変更した後、 進行路に先行車を発見すると、 同様に、 センサの先行車 の確定に時間がかかる。
以上、 第 4図から第 7図に示すように、 先行車を確定して、 ァクチュ エー夕を起動するまでには、 レーザレーダが先行車の右, 正面, 左の 3 ケ所を検知し、 その状態を確定必要時間の間、 監視する必要がある。 次に第 8図以降を用いて、 本実施形態による確定必要時間の短縮方法 について説明する。
第 8図は、センサ検知から車両を動作させるまでの処理の流れである。
S 8 0 1で、 センサは障害物を検知し、 障害物候補のデータを出力す る。 S 8 0 2で障害物の確定処理を行う。 これは、 障害物を検知してい る継続時間により、 障害物を確定する処理である。 その結果、 確定した 障害物の情報を出力する。 S 8 0 3で、 車間制御装置は、 確定した障害 物との率間距離, 相対速度, 自車速度などから、 車両を制御するための トルク値, ブレーキ油圧値, トランスミ ッショ ン指令値などの制御指令 値を出力する。 S 8 0 4で、 車両制御部は、 ァクチユエ一夕を起動し、 車両を動作させる。
第 9図に、 先行車検出のタイミングチャー トを示す。 第 9図 ( a ) に は、 従来の検出処理を示し、 第 9図 ( b ) には、 本実施形態の検知処理 を示す。
一般にセンサは、複数の障害物の情報を出力するため、車両制御部は、 センサ情報に基づく先行車の確定処理が必要になり、 その確定結果を受 けて、 実際の車両制御を行うことになる。
センサの出力は、 通常、 「検知中 ( 1 )」 から、 条件を満たす検知物が 発見されたとき、結果を出力する「検知中(条件を満たす検知物有) ( 2 )」 の状態に移る。
従来の確定処理は、 センサからの検知物の情報を受けると、 「確定中 ( 3 )」 の状態に移り、 確定必要時間の間、 継続を確認したあと、 .「先行 車確定 (4 )」 の状況に移る。
この 「先行車確定 ( 4 )」 をトリガとして、 車間制御部はァクチユエ一 ションを実行する。
本実施形態の確定処理は、 「確定中 ( 3 )」 の状態を、 短縮することを 目的としている。 その結果、 車両制御部に 「先行車確定 ( 4 )」 情報を、 すばやく渡すことができるようになる。
レーザレーダの例では、 第 1 7図 ( 1 ) に示すように、 先行車の右側, 正面, 左側の 3ケ所の検知が行われた時点で、 確定処理が始まり、 確定 必要時間経過後に先行車が確定される。 従来、 確定必要時間は約 3〜 5 秒程度確保されている。
本実施形態では、 第 1 7図 ( 2 .) に示すように、 地形情報を利用する ことにより、 先行車確定時間を短縮することができる。 確定必要時間を 一例として約 0 . 5秒〜 1秒程度に短縮することができる。約 2秒間短縮 することができれば、自車速 6 5 km/ hでの空走距離が 3 6 . 1 mなので、 従来に比べ 3 6 . 1 m手前で自動減速を開始することができる。高速で移 動する車両にとつて秒単位の時間の短縮は、非常に重要であるといえる。
ここで、 カーブの方向は、 操舵角ゃョ一レート, 自車位置の地図情報 から判定することが可能であり、 障害物が完全に正面に位置するまで待 たずに、 たとえばレーザービームの検知確認個所を減らして障害物を確 定してもよい。 たとえば、 カーブであれば、 左と正面または右と正面の 2本の検知で障害物を確定してもよい。 1
ステレオカメラを用いた場合についても、 同様に先行車の確定処理を 実施することができる。 ステレオカメラは左右の画像の視差を求め、 視 差から対応点までの距離を求めるものである。 第 1 9図にステレオカメ ラの原理を示す。 対象物までの距離と対象物の横位置を測定することが できる。
ステレオカメラの認識処理の概要を第 2 0図に示す。 S 2 0 0 1で、 左右の濃淡画像を基に左右の画像の一致する位置を求めるステレオマツ チング処理を行う。 S 2 0 0 2で、 各点の視差から画像各点の距離を求 める距離画像計算処理を行う。 S 2 0 0 3で、 距離に応じてグルーピン グ処理を行う。 このグルーピング処理において、 対象物の大きさと横位. 置を把握できる。 S 2 0 0 4で、 選別処理を行い、 グルーピングした対 象物の相対速度から静止物を除外したり、 白線認識機能をもつものであ れば、 白線外の対象物を除外したりする。 さらに数百 m s 間の継続しな い対象物を除外しする。 S 2 0 0 5で、 対象物の相対距離, 相対速度, 横位置, 幅, 高さを出力する。
この対象物の継続を監視し、 確定必要時間の経過を見て、 先行車を確 定することができる。
ここで、対象物が、正面に存在しなくても、 カーブの情報を利用して、 カーブの方向に確定必要時間存在すれば、 先行車を確定しても良い。 ま た、 自車が勾配地点を走行中と判定した際には、 対象物の上下方向の高 さ基準を小さく して、 確定必要時間確認後、 先行車を確定しても良い。 本実施形態においては、 地形情報を利用することにより、 先行車確定 時間を短縮することができる。
ミ リ波レーダを用いた場合についても、 同様に先行車の確定処理を実 施することができる。 第 2 1図にミ リ波レーダの認識処理例を示す。 S 2 1 0 1で、 電波を前方に発射し、 反射されて帰ってきた電波を受信す る。 S 2 1 0 2で電波強度が閾値より強い地点の距離, 相対速度, 方向 を求める。 ここで、 距離は、 受信電波の遅れから、 相対速度はドッブラ 周波数から、 方向は、 スキャン角などから求めることができる。 .
S 2 1 0 3で、 相対速度が自車速度に近い静止物を除外する。 求めた 方向から他車線の対象物を除外する。 存在時間が約 3 0 0 m s以下の対 象物を除外ずる。 S 2 1 0 4で対象物の相対距離, 相対速度, 方向を出 力する。
この対象物の継続を監視し、 確定必要時間の経過を見て、 先行車を確 定することができる。 ここで、 カーブ走行中の情報を利用して、 対象物 が正面に存在しなくても、 確定必要時間の経過を見て先行車を確定する ことができる。
本実施形態においては、 地形情報を利用することにより、 先行車確定 必要時間を短縮することができる。
第 2 2図にセンサ毎の確定条件例を纏めて記載する。
第 1 0図に障害物確定処理とナビゲーシヨン装置のデータのやり取り を示す。 以降、 障害物確定処理の詳細を記載する。 障害物確定処理は、 ナビゲーシヨン装置に対して、 車間距離を送信し、 ナビゲーシヨン装置 から、 自車, 先行車位置の勾配, 進行角を受信する。
第 1 1図に障害物の確定処理のフローチャートを示し、 実現方法の詳 細を記述する。 障害物確定処理は、 通常、 1 0 m s等の時間間隔で呼び 出され実行される。 S 1 1 0 1で、センサより入手したデータを確認し、 新規に障害物が現れた時には、 所定の夕イマと値を割当て、 継続のとき には、 夕イマ値をデクリメントする。 また、 障害物が消えたときや正面 から外れた時には、 その夕イマの登録を削除する。 S 1 1 0 2で、 チェ ックすべき障害物があり、 最低限必要な必要確定時間 (M I N) を経過 していれば、 Y e s判定となり、 S 1 1 0 3の判定に進む。 N o判定で あれば、 処理をリターンする。 S 1 1 0 3で、 確定必要時間を経過した ものがあるか夕イマ値より判定する。 Y e s判定であれば、 S 1 1 0 4 処理に進み、 障害物を確定する。 S 1 1 0 3判定で N oであれば、 S 1 1 0 5の地形条件サーチ処理 (詳細を第 1 2図に示す) に進む。 S 1 1 0 5の処理の後、 S 1 1 0 6の地形条件判定処理に進み、 地形条件 であれば、 Y e s判定で、 S 1 1 0 4の確定障害確定処理に進む。 S 1 1 0 6判定で N oであれば、 処理をリターンする。
本実施形態では、 S 1 1 0 5処理及び S 1 1 0 6の判定処理を追加し たことにより、 確定必要時間の経過を必ず待つ必要は無く、 地形条件が 成立すれば、 即、 障害物を確定することができる。
第 1 2図に地形条件サーチ処理のフローチャートを示す。 S 1 2 0 1 で、 ナビゲーシヨン装置に先行車との車間距離を C AN経由送信する。 次に、 S 1 2 0 2処理で、 ナビゲ一シヨン装置より、 自車と先行車位置 の勾配及び進行角を入手する。 S 1 2 0 3の判定処理で、 勾配差の絶対 値が閾値以上の時あるいは、 進行角差の絶対値が閾値以上のとき、 地形 条件が成立して、 Y e s判定となり、 S 1 2 0 4の地形条件フラグ設定 処理に進む。 S 1 2 0 3処理で地形条件が成立しないときは、 N o判定 で、 S 1 2 0 5の地形条件フラグクリア処理に進む。
第 1 3図に勾配差と進行角の求め方を示す。 第 1 3図 ( a) に示すよ うに、 勾配差は自車と先行車の勾配の差から求める。
第 1 3図 ( b) にカーブ及び交差点での進行角差の求め方を示す。 自 車の進行角は、 自車位置の地図情報または、 ナビゲ一シヨン装置のジャ イロ情報から求める。 先行車の進行角は、 先行車位置の地図情報から求 める。 従い、 進行角差は、 自車及び先行車の進行角差から求めることが できる。
また、 この方法のほかに、 カーブの曲率半径と車間距離から進行角差 を求める方法もある。 この計算方法を (式 3 ) に示す。
進行角差 = 2 X a rc s i n (車間距離 Z 2 /曲率半径) … (式 3 ) 交差点の先に先行車がある場合には、 進行角差は、 ジャイロ等から求 めた自車の進行角と先行車位置の進行角から求めることができる。
第 1 1図にナビゲーシヨ ン装置内の処理を示す。 S 1 4 0 1処理で、 C A N経由車間距離情報を得る。 次に、 S 1 4 0 2処理において、 自車 位置と車間距離を隔てた先行車位置の勾配及び進行角 (東西, 南北の進 行方向) を求める。 S 1 4 0 3処理で、求めた勾配および進行角情報を、 C A N経由送信する。
第 1 1 図から第 1 4図を用いて、 障害物確定処理の詳細を説明した。 以上のようにナビゲーシヨ ン装置の勾配やカーブの地形条件を利用す ることにより、 障害物の確定必要诗間を短くすることができる。
ここで、 第 1 0図の障害物確定処理とナビゲ一ショ ン装置のデータの やり取りにおいては、 ナビゲーシヨ ン装置に車間距離を渡し、 ナビゲー シヨ ン装置から勾配と進行角を入手し、 地形条件フラグを設定した。 し かしながら、 実施形態は第 1 0図に限らず実現できるので、 次の二例を 記載する。
最初に、 第 2 3図他を用いて、 ナビゲーシヨ ン装置内部で地形条件フ ラグを設定する例を示す。
第 2 3図は、 障害物確定処理とナビゲ一ショ ン装置のデータのやり取 り (その 2 ) を示す。 障害物確定処理は、 ナビゲーシヨ ン装置に地形条 件の問い合わせを行い、ナビゲーシヨ ン装置より、地形条件を入手する。 ナビゲ一シヨ ン装置は、 地形条件が付加された電子地図を備える。
第 1 1図の障害物確定処理は同一であるため省略する。
第 2 4図に地形条件サーチ処理 (その 2 ) を示す。 S 2 4 0 1で障害 物確定部からナビゲ一シヨ ン装置へ C AN経由地形条件の問い合わせを 行う。 S 2 4 0 2でナビゲーシヨ ン装置から地形条件フラグを受け取る。 第 2 5図にナビゲーシヨ ン装置内の処理 (その 2 ) を示す。 S2501 で C AN経由、 車間制御部からの要求を受け取る。 S 2 5 0 2で、 自車 位置から、 自車位置と関連づけられた地形情報を地図から得る。 S2503 で、 地形条件フラグの設定内容を障害物確定部に送信する。
第 2 6図に地形情報を付加した地図作成方法を示す。 S 2 6 0 1で道 路地図上の各地点における勾配, 進行角の情報を取り出すことができる ように設定する。 S 2 6 0 2で所定地点 ( 1 ) とセンサの検^!距離を隔 てた地点 ( 2 ) の 2点間の勾配, 進行角差を求める。 S 2 6 0 3で、 勾 配と進行角の差のどちらかまたは両方がそれぞれの閾値より大きいとき、 所定地点 ( 1 ) の地形条件フラグをオンと設定する。 S 2 6 0 4で、 所 定地点 ( 1 ) と地形条件フラグの関連づけを地図データ上で実施する。 S 2 6 0 5で、 全地図について、 たとえば 5 m毎にサーチし、 地図デー 夕を作成する。
センサの検知距離でサーチしているため、 地形差が出やすい方向とな る。 そこで、 確定必要時間 (M I N) を若干長く確保してもよい。
第 2 3図の障害物確定処理とナビゲーシヨ ン装置のデータのやり取り (その 2 ) においては、 ナビゲ一シヨ ン装置内部で地形条件フラグを設 定できるように、 特別に準備した地図を利用した。
次に第 2 7図他を用いて、 障害物確定部がナビゲーシヨ ン装置から予 め進行方向の地形情報テーブルを入手しておき、 その情報を元に、 地形 条件フラグを設定する例を示す。
第 2 7図に障害物確定処理とナビゲーシヨ ン装置のデータのやり取り (その 3 ) を示す。 ナビゲーシヨン装置はナビゲーシヨ ン装置内の処理 (その 3 )を用いて、地形情報テーブルを障害物確定処理部に送信する。 地形情報テーブルは、 第 3 1図の下部に示すように、 距離とそれに対 応する進行位置の勾配と進行角を並べたテーブルである。
第 2 8図に障害物確定処理(その 3 ) を示す。第 1 1図との相違点は、 S 2 8 0 1の地形情報テーブル入手処理が追加になったことと、 S2806 の地形サーチ処理 (その 3 ) を用いることである。
第 2 9図に地形情報テーブル入手処理を示す。 S 2 9 0 1で、 ナビゲ ーシヨ ン装置より地形情報テーブルを受信しているか判定する。 Y e s 判定であれば、 S 2 9 0 2で地形情報テーブルを更新し、 S 2 9 0 3で、 地形情報テーブル更新後の走行距離をもとめるための更新後距離ワーク をクリアする。 S 2 9 0 1で N o判定であれば、 S 2 9 0 4で、 自車速 度と地形情報テーブル入手処理の呼出間隔をもとに更新後距離ワークの 値を加算する。
第 3 0図に地形条件サーチ処理 (その 3 ) を示す。 S 3 0 0 1の判定 で、 Y e s判定であれば、 S 3 0 0 2以下の処理に進み、 N o判定であ れば、 地形情報テーブルが更新されておらず、 使われていないため、 S 3 0 0 6処理で、 地形条件フラグをクリアし、 リターンする。 S 3002 で、 地形情報テーブル (距離, 勾配, 進行角) と更新後距離ワークを参 照する。
S 3 0 0 3で、 更新後距離に相当する距離の地形情報 (勾配, 進行角) を求める。更新後距離が、テーブルの 2つの距離の中間に入る場合には、 補間計算を行い勾配と進行角を求める。 S 3 0 0 4で、 (更新後距離 +車 7 間距離) に相当する距離の地形条件 (勾配, 進行角) を求める。 距離が、 テーブルの 2つの距離の中間に入る場合には、 補間計算を行い勾配と進 行角を求める。
S 3 0 0 5で、 上記 2つの勾配と進行角から、 勾配差と進行角差を求 める。 勾配差の絶対値が閾値以上または進行角差の絶対値が閾値以上の ときは、 地形条件フラグをセッ トする。
第 3 1 図にナビゲーシヨ ン装置内の処理 (その 3 ) を示す。 S 3 0 0 1 で、 定期的に、 進行路の地形情報テーブル (現在地点からの進行距離と その距離に対応した地点の勾配, 進行角) を求める。 S 3 0 0 2で、 C A N経由、 地形情報テーブルを車間制御部へ送信する。
以上、 第 2 7図他を用いて、 障害物確定部が、 ナビゲーシヨ ン装置か ら予め進行方向の地形情報テーブルを入手しておき、 その情報を元に、 地形条件フラグを設定する例を示した。
以上のように、 二例の障害物確定処理とナビゲーシヨ ン装置のデータ のやり取りの実施形態を追加記載した。
また、 第 2 2図に示す確定条件は、 ナビゲーシヨ ン装置あるいはその 他の入力手段を利用することで、障害物確定部に指示することができる。 具体的には、最小限必要な確定必要時間(M I N )および確定必要時間, カーブでの検知方法, 勾配での検知方法などである。
車間制御部 2 0 9の処理として、 A C C制御が実現されている。 ACC 制御は、 先行車が存在しないときには、 定速制御を行い、 先行車が存在 する場合には、 追従制御 (車間時間と相対速度のフィードバック制御) を行うものである。 また車間制御部は、 衝突前被害低減制御を同時に組 み込むことができる。 衝突前被害低減制御は、 衝突が避けられない状態 でブレーキ制御を行うもので、先行車との衝突予想時間が 0 . 8秒以下の 8
ときに起動するものである。
車間制御部 2 0 9は、 さらに、 第 3 2図に示す警報や予備減速, 減速 動作を行うこともできる。 具体的には、 先行車との衝突予想時間 (TTC) を求め、 その値を判定して警報, 予備減速, 減速動作を行うことができ る。また、 T T Cの値をみてブレーキの減速度を変更することができる。
T T Cは、 (式 4 ) から、 あるいは、 加速度を考慮した (式 5 ) から求 めることができる。 ここで、 加速度は、 毎時計測している自車速度およ び先行車速度(=自車速度 +相対速度)を微分して求めることができる。
T T C =先行車との相対距離 /相対速度 … (式 4 ) 相対距離 +先行車速度 X T T C + 0. 5 X先行車加速度 X T T C
X T T C = g車速度 X T T C + 0. 5 X自車加速度 X T T C
X T T C …(式 5 ) 本実施形態によれば.、 地形条件により障害物確定時間が短縮されるた め、 車間制御部の起動動作を早めることができ、 車間距離が急速に詰ま ることを防止できる。
以上で、 第 1実施例を実現することができる。 第 1実施例は、 勾配や カーブ地点での走行により、 効果を確認することができる。 従い、 ナビ ゲーシヨン装置の機能の一部に G P Sのアンテナを遮蔽物で隠す等の制 約を加えて、 同様に走行することにより、 効果の相違を把握することが でき、 本発明の実施状況を確認できる。
第 3図は、 本発明の第 2実施例をなす障害物認識装置であって、 先行 車との車間距離と相対速度を求めるセンサ 2 0 1 , 先行車と自車の地形 情報を求めるためのナビゲ一シヨン装置 2 0 2 , 装置間の通信ケーブル 2 0 6からなる。 通信ケーブル 2 0 6を介した装置間の通信は C A Nを 用いる。 センサには、 センサの入力処理を行う障害物検知部 2 0 7 と障 害物の認識を確定する障害物確定部 2 0 8が含まれる。 センサは、 障害 物の認識確定結果を C A N経由で車間制御装置に送信する。
ここで、 ナビゲ一ショ ン装置とセンサのデータのやり とりには、 CAN を経由せず、 専用の通信ケーブルを使用しても良い。
本実施形態の制御処理は、 ソフ トウェア処理で実現されており、 セン サ内部やナビゲーシヨ ン装置内に格納される。
第 3 3図 センサ検知から車両を動作させるまでの処理の流れ (その 2 ) を示す。 第 8図と比較して、 障害物確定処理を車間制御装置からセ ンサ内部に移動して実現している。
ナビゲーショ ン装置の勾配やカーブの地形条件を利用することにより.、 障害物の確定必要時間を短くすることができるので、 車間制御装置に対 して迅速,な障害物情報を伝えることができる。 ナビゲーショ 装置の入 力部を利用することで、 確定必要時間の設定や地形による設定変更を指 示することもできる。
また、 本障害物認識装置においては、 従来の多数の障害物候補の情報 に加えて、 本実施形態の特徴である地形条件を利用した確定障害物情報 を出力することができる。
障害物認識装置としては、 レーザレーダ, ステレオカメラ, ミ リ波レ ーダが想定されるが、 詳細処理の内容は、 第 1実施例と同様のため、 省 略する。
障害物認識装置は、 レーザレーダ, ステレオカメラ, ミ リ波レーダに 限るものではなく、 先行車の相対距離, 相対速度を求めることができる センサであれば適用できる。 また、 自車位置の勾配情報や、 操舵角情報 により、 センサの検知角度 (垂直, 水平) を変更する技術が知られてい る力 、 このようなセンサについても、 適用できる。 以上で第 2実施例を実現することができる。

Claims

請 求 の 範 囲
1 . 障害物を検知するセンサから情報を入力するセンサ情報入力部と、 地図データベースから自車位置の地形情報を入力する地形情報入力部 と、
前記センサが障害物を検知した後に所定条件を満たすことにより前記 障害物の存在を確定する処理を行う障害物確定処理部と、
前記地形儈報入力部から入力した自車位置の地形情報に基づき、 前記 所定条件を変更する条件変更部と、
を有する自動車の制御装置。
2 . 請求の範囲第 1項の自動車の制御装置であって、
前記障害物確定処理部は、 前記センサが障害物を検知した後、 所定の 時間が経過するまで当該障害物の検知が継続したことにより前記障害物 の存在を確定する処理を行う 自動車の制御装置。
3 . 請求の範囲第 2項の自動車の制御装置であって 、
-、
前記条件変更部は、 BIJ記地形情報入力部から入力した自車位置が勾配 道路付近であった場合に 、 先行車を確定する時間を短くする自動車の制 御装置。
4 . 請求の範囲第 2項の自動車の制御装置であって 、
前記条件変更部は、 記地形情報入力部から入力した自車位置がカー ブ付近であつた場合に 、 前記所定の時間を短縮する自動車の制御装置。
5 . 請求の範囲第 2項の自動車の制御装置であって 、
前記条件変更部は、 記地形情報入力部から入力した自車位置が交差 点付近であった場合に 、 前記所定の時間を短縮する自動車の制御装置。
6 . 請求の範囲第 1項の自動車の制御装置であつて 、
前記障害物確定処理部で確定した先行車との車間距離及び相対速度に 応じて当該先行車との車間距離を制御する車間距離制御部を有する自動 車の制御装置。
7 . 請求の範囲第 1項の自動車の制御方法であって、
前記地図データベースはナビゲーシヨ ン装置である自動車の制御装置。
8 . 障害物を検知するセンサから情報を入力し、
地図データベースから自車位置の地形情報を入力し、
前記センサが先行車を検知した後に所定条件を満たすことにより前記 先行車の存在を確定し、
確定した先行車との車間距離及び相対速度に応じて当該先行車との車 間距離を制御する自動車の制御方法であって、
前記地形情報入力部から入力した自車位置の地形情報に基づき、 前記 所定条件を変更する自動車の制御方法。
9 . 請求の範囲第 8項の自動車の制御方法であって、
前記センサが先行車を検知した後、 所定の時間が経過するまで当該先 行車の検知が継続したことにより前記先行車の存在を確定する自動車の 制御方法。
1 0 . 請求の範囲第 9項の自動車の制御方法であって、
入力した自車位置が勾配道路付近であつた場合に、 先行車を確定する 時間を短くする自動車の制御方法。
1 1 . 請求の範囲第 9項の自動車の制御方法であって、
入力した自車位置がカーブ付近であった場合に、 前記所定の時間を短 縮する自動車の制御方法。
1 2 . 請求の範囲第 9項の自動車の制御方法であって、
入力した自車位置が交差点付近であつた場合に、 前記所定の時間を短 縮する自動車の制御方法。
PCT/JP2006/304814 2006-03-06 2006-03-06 自動車の制御装置及び制御方法 WO2007102228A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP20060728932 EP1995705B1 (en) 2006-03-06 2006-03-06 Control device and method for automobile
PCT/JP2006/304814 WO2007102228A1 (ja) 2006-03-06 2006-03-06 自動車の制御装置及び制御方法
DE200660015362 DE602006015362D1 (de) 2006-03-06 2006-03-06 Steuereinrichtung und verfahren für automobile
US12/279,943 US9008940B2 (en) 2006-03-06 2006-03-06 Vehicle control device and vehicle control method
JP2008503723A JP4862036B2 (ja) 2006-03-06 2006-03-06 自動車の制御装置及び制御方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2006/304814 WO2007102228A1 (ja) 2006-03-06 2006-03-06 自動車の制御装置及び制御方法

Publications (1)

Publication Number Publication Date
WO2007102228A1 true WO2007102228A1 (ja) 2007-09-13

Family

ID=38474675

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/304814 WO2007102228A1 (ja) 2006-03-06 2006-03-06 自動車の制御装置及び制御方法

Country Status (5)

Country Link
US (1) US9008940B2 (ja)
EP (1) EP1995705B1 (ja)
JP (1) JP4862036B2 (ja)
DE (1) DE602006015362D1 (ja)
WO (1) WO2007102228A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210001850A1 (en) * 2018-03-01 2021-01-07 Jaguar Land Rover Limited Vehicle control method and apparatus
CN112660125A (zh) * 2020-12-26 2021-04-16 江铃汽车股份有限公司 一种车辆巡航控制方法、装置、存储介质及车辆
CN113879304A (zh) * 2021-10-21 2022-01-04 中寰卫星导航通信有限公司 一种车辆控制方法、装置、设备及存储介质

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4914234B2 (ja) * 2007-01-31 2012-04-11 富士重工業株式会社 先行車両検出装置
US8311720B2 (en) * 2009-01-09 2012-11-13 Robert Bosch Gmbh Lost target function for adaptive cruise control
US9165468B2 (en) 2010-04-12 2015-10-20 Robert Bosch Gmbh Video based intelligent vehicle control system
US9669808B2 (en) * 2011-01-21 2017-06-06 Toyota Jidosha Kabushiki Kaisha Vehicle engine brake control apparatus
EP2708430B1 (en) * 2011-05-12 2019-06-26 Toyota Jidosha Kabushiki Kaisha Vehicle
US9771070B2 (en) * 2011-12-09 2017-09-26 GM Global Technology Operations LLC Method and system for controlling a host vehicle
WO2014006770A1 (ja) * 2012-07-06 2014-01-09 本田技研工業株式会社 車両の走行制御装置
CN111024099B (zh) * 2013-06-13 2023-10-27 移动眼视力科技有限公司 用于导航的移动装置、非暂时性机器可读介质和设备
US9145139B2 (en) * 2013-06-24 2015-09-29 Google Inc. Use of environmental information to aid image processing for autonomous vehicles
US20150166059A1 (en) * 2013-12-18 2015-06-18 Automotive Research & Testing Center Autonomous vehicle driving support system and autonomous driving method performed by the same
JP6032220B2 (ja) * 2014-02-07 2016-11-24 トヨタ自動車株式会社 車両制御装置、及び、車両制御システム
EP3020609B1 (en) * 2014-11-17 2020-04-08 Veoneer Sweden AB A vehicle safety system
JP2016148971A (ja) * 2015-02-12 2016-08-18 トヨタ自動車株式会社 運転支援装置
US10266168B2 (en) * 2015-08-06 2019-04-23 Ford Global Technologies, Llc System and method for predictive road sensing to minimize transient electrical load issues
US10120385B2 (en) * 2016-03-30 2018-11-06 Intel Corporation Comfort ride vehicle control system
US10112610B2 (en) * 2016-04-15 2018-10-30 Robert Bosch Gmbh Regional adjustment for driver assistance functions
JP6715959B2 (ja) * 2017-02-03 2020-07-01 本田技研工業株式会社 車両制御システム、車両制御方法、および車両制御プログラム
DE102017004741A1 (de) * 2017-05-17 2018-11-22 Wabco Gmbh Steueranordnung zum Einstellen eines Abstandes zwischen zwei Fahrzeugen sowie Verfahren zum Einstellen eines Abstandes zwischen zwei Fahrzeugen mit einer derartigen Steueranordnung
EP3413082B1 (en) * 2017-06-09 2020-01-01 Veoneer Sweden AB A vehicle system for detection of oncoming vehicles
US10406917B2 (en) 2017-08-28 2019-09-10 Ford Global Technologies, Llc Systems and methods for vehicle cruise control smoothness adaptation
DE102017220329A1 (de) * 2017-11-15 2019-05-16 Robert Bosch Gmbh Verfahren für ein Lotsenfahrzeug
JP6601696B2 (ja) * 2018-01-19 2019-11-06 本田技研工業株式会社 予測装置、予測方法、およびプログラム
JP6648384B2 (ja) * 2018-02-26 2020-02-14 本田技研工業株式会社 車両制御装置、車両制御方法、およびプログラム
US10745007B2 (en) * 2018-06-08 2020-08-18 Denso International America, Inc. Collision avoidance systems and methods

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1025816B (de) 1956-09-12 1958-03-13 Erfurter Maelzerei Und Speiche Anordnung zum gleichzeitigen Weichen und Ankeimen von Malzgetreide
JPH08122432A (ja) * 1994-10-20 1996-05-17 Honda Motor Co Ltd 移動体の検出装置
JPH08216726A (ja) * 1995-02-17 1996-08-27 Mazda Motor Corp 自動車の走行制御装置
JPH10206532A (ja) * 1997-01-23 1998-08-07 Fujitsu Ten Ltd レーダ装置
JP2001270344A (ja) * 2000-01-20 2001-10-02 Nissan Motor Co Ltd 車両走行制御装置
JP2002248964A (ja) * 2001-02-21 2002-09-03 Nissan Motor Co Ltd 先行車両追従制御装置
JP2003039979A (ja) * 2001-07-31 2003-02-13 Nissan Motor Co Ltd 車間距離制御装置
EP1302747A1 (en) 2001-10-15 2003-04-16 Ford Global Technologies, Inc. System and method for controlling an object detection system of a vehicle
JP2004249891A (ja) * 2003-02-21 2004-09-09 Nissan Motor Co Ltd 車両用運転操作補助装置およびその装置を備える車両
JP2006044591A (ja) * 2004-08-06 2006-02-16 Toyota Motor Corp 車両の減速制御装置

Family Cites Families (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5983161A (en) * 1993-08-11 1999-11-09 Lemelson; Jerome H. GPS vehicle collision avoidance warning and control system and method
DE19514654B4 (de) * 1994-04-20 2009-07-09 Denso Corporation, Kariya Kollisionsalarmsystem für ein Kraftfahrzeug
US5689264A (en) * 1994-10-05 1997-11-18 Mazda Motor Corporation Obstacle detecting system for vehicles
US6768944B2 (en) * 2002-04-09 2004-07-27 Intelligent Technologies International, Inc. Method and system for controlling a vehicle
US6405132B1 (en) * 1997-10-22 2002-06-11 Intelligent Technologies International, Inc. Accident avoidance system
EP0760485B1 (de) 1995-08-30 2001-10-24 Volkswagen Aktiengesellschaft Verfahren zur Hinderniserkennung für eine Geschwindigkeits- und/oder Abstandsregelung eines Kraftfahrzeuges
JPH09178848A (ja) * 1995-12-25 1997-07-11 Denso Corp 車両用障害物認識装置
JP3331882B2 (ja) * 1995-12-27 2002-10-07 株式会社デンソー 車両用障害物検出装置の中心軸偏向量算出装置,中心軸偏向量補正装置,および車間制御装置
JPH11144185A (ja) * 1997-09-03 1999-05-28 Honda Motor Co Ltd 自動運転制御誘導システム
JP3402173B2 (ja) * 1998-01-08 2003-04-28 日産自動車株式会社 自動速度制御装置
JPH11249740A (ja) * 1998-03-02 1999-09-17 Komatsu Ltd 障害物検出装置付き自走車両
EP1053903B1 (en) * 1999-05-20 2004-12-08 Nissan Motor Company, Limited Vehicular velocity controlling apparatus and method to follow up a preceding vehicle.
US6415226B1 (en) * 1999-12-20 2002-07-02 Navigation Technologies Corp. Method and system for providing safe routes using a navigation system
JP2003141698A (ja) 2001-11-06 2003-05-16 Nissan Motor Co Ltd 障害物存在可能性検出装置及び障害物検出装置
JP3878008B2 (ja) * 2001-12-07 2007-02-07 株式会社日立製作所 車両用走行制御装置及び地図情報データ記録媒体
SE0104245D0 (sv) 2001-12-17 2001-12-17 Scania Cv Abp A method for a vehicle
JP2003231422A (ja) * 2002-02-08 2003-08-19 Hitachi Ltd 車間距離自動制御装置および自動車
JP3891011B2 (ja) * 2002-03-12 2007-03-07 株式会社デンソー クルーズ制御装置、プログラム
DE10218017A1 (de) * 2002-04-23 2003-11-06 Bosch Gmbh Robert Verfahren zur Geschwindigkeits- und Abstandsregelung bei Kraftfahrzeugen
US7124027B1 (en) * 2002-07-11 2006-10-17 Yazaki North America, Inc. Vehicular collision avoidance system
DE10251037A1 (de) * 2002-11-02 2004-05-19 Robert Bosch Gmbh Vorrichtung zur adaptiven Abstands- und Geschwindigkeitsregelung mit Rückbegrenzung
JP4389567B2 (ja) * 2003-12-03 2009-12-24 日産自動車株式会社 車線逸脱防止装置
DE10360777A1 (de) * 2003-12-23 2005-07-28 Robert Bosch Gmbh Geschwindigkeitsregler für Kraftfahrzeuge, mit automatischer Abschaltfunktion
JP2005186813A (ja) * 2003-12-25 2005-07-14 Fuji Heavy Ind Ltd 車両用運転支援装置
JP2006027457A (ja) * 2004-07-16 2006-02-02 Nissan Motor Co Ltd 車両用走行制御装置
JP4792248B2 (ja) * 2005-06-30 2011-10-12 日立オートモティブシステムズ株式会社 走行制御装置,走行制御システム及びその走行制御に用いる情報を格納したナビゲーション用情報記録媒体
JP4517972B2 (ja) * 2005-08-02 2010-08-04 日産自動車株式会社 障害物判断装置及び方法
US8164628B2 (en) * 2006-01-04 2012-04-24 Mobileye Technologies Ltd. Estimating distance to an object using a sequence of images recorded by a monocular camera
JP4890924B2 (ja) * 2006-04-27 2012-03-07 オムロンオートモーティブエレクトロニクス株式会社 レーダ装置
JP2008018923A (ja) * 2006-06-16 2008-01-31 Nissan Motor Co Ltd 車両用制動制御装置及び車両制動制御方法
JP4434179B2 (ja) * 2006-06-28 2010-03-17 日産自動車株式会社 車両用運転操作補助装置および車両用運転操作補助装置を備えた車両
JP2008056226A (ja) * 2006-08-01 2008-03-13 Nissan Motor Co Ltd 車両用走行制御装置および車両用走行制御方法
JP2008128673A (ja) * 2006-11-16 2008-06-05 Omron Corp 測定システムおよび方法、測定装置および方法、並びに、情報処理装置および方法
JP5157304B2 (ja) * 2007-08-03 2013-03-06 日産自動車株式会社 車両用走行制御装置
US8311720B2 (en) * 2009-01-09 2012-11-13 Robert Bosch Gmbh Lost target function for adaptive cruise control

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1025816B (de) 1956-09-12 1958-03-13 Erfurter Maelzerei Und Speiche Anordnung zum gleichzeitigen Weichen und Ankeimen von Malzgetreide
JPH08122432A (ja) * 1994-10-20 1996-05-17 Honda Motor Co Ltd 移動体の検出装置
JPH08216726A (ja) * 1995-02-17 1996-08-27 Mazda Motor Corp 自動車の走行制御装置
JPH10206532A (ja) * 1997-01-23 1998-08-07 Fujitsu Ten Ltd レーダ装置
JP2001270344A (ja) * 2000-01-20 2001-10-02 Nissan Motor Co Ltd 車両走行制御装置
JP2002248964A (ja) * 2001-02-21 2002-09-03 Nissan Motor Co Ltd 先行車両追従制御装置
JP2003039979A (ja) * 2001-07-31 2003-02-13 Nissan Motor Co Ltd 車間距離制御装置
EP1302747A1 (en) 2001-10-15 2003-04-16 Ford Global Technologies, Inc. System and method for controlling an object detection system of a vehicle
JP2004249891A (ja) * 2003-02-21 2004-09-09 Nissan Motor Co Ltd 車両用運転操作補助装置およびその装置を備える車両
JP2006044591A (ja) * 2004-08-06 2006-02-16 Toyota Motor Corp 車両の減速制御装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1995705A4

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210001850A1 (en) * 2018-03-01 2021-01-07 Jaguar Land Rover Limited Vehicle control method and apparatus
US11958485B2 (en) * 2018-03-01 2024-04-16 Jaguar Land Rover Limited Vehicle control method and apparatus
CN112660125A (zh) * 2020-12-26 2021-04-16 江铃汽车股份有限公司 一种车辆巡航控制方法、装置、存储介质及车辆
CN112660125B (zh) * 2020-12-26 2023-04-07 江铃汽车股份有限公司 一种车辆巡航控制方法、装置、存储介质及车辆
CN113879304A (zh) * 2021-10-21 2022-01-04 中寰卫星导航通信有限公司 一种车辆控制方法、装置、设备及存储介质

Also Published As

Publication number Publication date
JP4862036B2 (ja) 2012-01-25
JPWO2007102228A1 (ja) 2009-07-23
DE602006015362D1 (de) 2010-08-19
EP1995705A1 (en) 2008-11-26
EP1995705B1 (en) 2010-07-07
US9008940B2 (en) 2015-04-14
US20090228184A1 (en) 2009-09-10
EP1995705A4 (en) 2009-03-04

Similar Documents

Publication Publication Date Title
WO2007102228A1 (ja) 自動車の制御装置及び制御方法
CN109760687B (zh) 车辆控制装置、车辆控制方法及存储介质
CN109484404B (zh) 车辆控制装置、车辆控制方法及存储介质
JP5160311B2 (ja) 自律移動装置及び自律移動装置の制御方法
JP2019160032A (ja) 車両制御装置、車両制御方法、およびプログラム
CN110271542B (zh) 车辆控制装置、车辆控制方法及存储介质
CN110949376B (zh) 车辆控制装置、车辆控制方法及存储介质
US20190283741A1 (en) Vehicle control device, vehicle control method, and storage medium
JP2019160031A (ja) 車両制御装置、車両制御方法、およびプログラム
JP2019156269A (ja) 車両制御装置、車両制御方法、及びプログラム
JP6609292B2 (ja) 車外環境認識装置
US20230398990A1 (en) Mobile body control device, mobile body control method, and storage medium
JP2022154836A (ja) 車両制御装置、車両制御方法、及びプログラム
US11273825B2 (en) Vehicle control device, vehicle control method, and storage medium
JP7444962B2 (ja) 車両制御装置、車両制御方法、およびプログラム
US20220315039A1 (en) Vehicle control device, vehicle control method, and storage medium
US20220315058A1 (en) Vehicle control device, vehicle control method, and storage medium
JP7431697B2 (ja) 車両の走行制御装置及び車両の走行制御システム
JP7308880B2 (ja) 車両制御装置、車両制御方法、およびプログラム
US20200307592A1 (en) Vehicle control device, vehicle control method, and storage medium
US20210300369A1 (en) Vehicle control device, vehicle control method, and storage medium
JP7275993B2 (ja) 車両制御装置および車両制御方法
US11654914B2 (en) Vehicle control device, vehicle control method, and storage medium
JP7483419B2 (ja) 走行支援方法及び走行支援装置
JP7075550B1 (ja) 車両制御装置、車両制御方法、およびプログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2008503723

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2006728932

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 12279943

Country of ref document: US