WO2007063579A1 - カーボンナノチューブの製造方法および精製方法 - Google Patents

カーボンナノチューブの製造方法および精製方法 Download PDF

Info

Publication number
WO2007063579A1
WO2007063579A1 PCT/JP2005/021923 JP2005021923W WO2007063579A1 WO 2007063579 A1 WO2007063579 A1 WO 2007063579A1 JP 2005021923 W JP2005021923 W JP 2005021923W WO 2007063579 A1 WO2007063579 A1 WO 2007063579A1
Authority
WO
WIPO (PCT)
Prior art keywords
iron
carbonaceous material
carbon
carbon nanotubes
carbon nanotube
Prior art date
Application number
PCT/JP2005/021923
Other languages
English (en)
French (fr)
Inventor
Yoshinori Ando
Xinluo Zhao
Sakae Inoue
Original Assignee
Meijo University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meijo University filed Critical Meijo University
Priority to PCT/JP2005/021923 priority Critical patent/WO2007063579A1/ja
Priority to EP05811694.8A priority patent/EP1967492B1/en
Priority to US12/095,188 priority patent/US20090285745A1/en
Priority to JP2007547807A priority patent/JP4255033B2/ja
Priority to JP2006000678A priority patent/JP4900901B2/ja
Priority to JP2007031412A priority patent/JP4900946B2/ja
Publication of WO2007063579A1 publication Critical patent/WO2007063579A1/ja
Priority to US13/225,888 priority patent/US9067793B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/16Preparation
    • C01B32/162Preparation characterised by catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/168After-treatment
    • C01B32/17Purification
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • C01B2202/02Single-walled nanotubes

Definitions

  • the present invention relates to a method for producing a high purity carbon nanotube by purifying an unpurified or low purity carbon nanotube. Furthermore, the present invention relates to a high-purity carbon nanotube obtained by the method. The present invention also relates to a material for purifying carbon nanotubes for purifying carbon nanotubes.
  • Carbon nanotubes have excellent properties such as electrical conductivity, thermal conductivity, and mechanical strength, they are a new material that attracts attention in many fields.
  • Carbon nanotubes are generally synthesized (manufactured) by placing carbon or a carbon raw material in a high-temperature condition in the presence of a catalyst as required.
  • Typical carbon nanotube production methods include arc discharge, laser evaporation, and chemical vapor deposition (ie, CVD).
  • the arc discharge method is superior in that carbon nanotubes with few defects and good quality can be obtained.
  • the yield of carbon nanotubes is lower in the arc discharge method than in the CVD method.
  • various methods capable of mass production have been proposed.
  • Japanese Patent Application Laid-Open No. 2003-277032 discloses a method for improving the carbon nanotube content in a product containing carbon nanotubes by containing an iron catalyst in an electrode to be used.
  • Yoshinori Ando et al. “Materials” (April 2001), No. 50, No. 4, pp. 357-360, manufacture of carbon nanotubes using electrodes containing nickel-yttrium catalyst. A method is described. Since the nickel-yttrium catalyst has high activity, carbon nanotubes can be obtained with higher yield.
  • Patent Document 1 Japanese Patent Laid-Open No. 2003-277032
  • Patent Document 2 Japanese Patent Laid-Open No. 2002-265209
  • Patent Document 3 Japanese Unexamined Patent Publication No. 2003-89510
  • Non-Patent Document 1 Yoshinori Ando et al., "Materials” (April 2001), 50th, No. 4, 357-360 [0003]
  • the carbon nanotubes (product) obtained by these methods include V, carbon components other than carbon nanotubes such as amorphous carbon (in other words, Do not constitute carbon nanotubes !, carbon components) and catalytic metals are mixed as impurities. For this reason, when a higher-purity carbon nanotube is desired, it is necessary to purify the obtained carbon nanotube.
  • the method for producing carbon nanotubes according to the present invention is a method for producing purified carbon nanotubes.
  • a carbonaceous material containing carbon nanotubes is prepared, and an iron material and hydrogen peroxide (H 2 O 2) are added to the carbonaceous material to add carbon nanotubes.
  • the “carbon nanotube” refers to a tubular carbon allotrope (typically a cylindrical structure having a graphitic structure), and is not limited to a specific form (length or diameter). So-called single-walled carbon nanotubes, multi-walled carbon nanotubes, or carbon nanohorns having a square tube tip are typical examples of carbon nanotubes.
  • the “carbonaceous material” is a material containing a carbon nanotube and mainly composed of a carbon (carbon) component, and does not exclude the inclusion of components other than carbon.
  • the carbon nanotube product (raw product) obtained by various methods is a typical example of “carbonaceous material”.
  • the present inventor separately (that is, externally) added to the carbonaceous material containing carbon nanotubes. ), Hydrogen peroxide (HO), and iron, the carbon contained in the carbonaceous material
  • the carbonaceous material does not substantially contain iron (Fe).
  • Fe iron
  • the method disclosed herein i.e., purification by adding an iron material and hydrogen peroxide to the carbonaceous material from the outside
  • the carbonaceous material is at least one selected from the group consisting of nickel (Ni), cobalt (Co), and platinum group elemental forces.
  • Ni nickel
  • Co cobalt
  • platinum group elemental forces By causing an arc discharge between at least a pair of electrodes having a metal or an alloy mainly containing the metal (typically rod-shaped) as an anode, and depositing the evaporant generated by the anode force Use what was obtained.
  • an arc discharge is caused between at least a pair of electrodes having a nickel or nickel-based alloy containing at least a positive electrode as a positive electrode to evaporate the positive force carbon and deposit a single bond.
  • the carbonaceous material obtained by the above is used.
  • the product obtained by the method is not purified (that is, after arc discharge).
  • the content of impurities carbon components (amorphous carbon, etc.) and catalytic metal particles other than carbon nanotubes was relatively high!
  • the impurity carbon component may be strongly bonded to the catalyst metal particles (for example, in a form covering the catalyst metal particles thickly), and removal of such impurities is particularly troublesome. According to the present invention, this is achieved by adding hydrogen peroxide (H 2 O 2) and iron (Fe) materials.
  • iron powder can be preferably used. According to such an embodiment using iron powder, a desired amount of iron (Fe) can be accurately added easily and inexpensively.
  • the average particle size of the iron particles constituting the iron powder may be 500 nm or less (typically 50 to 500 nm).
  • the use of iron powder having an average particle size of 300 nm or less (typically 50 to 300 nm) is more preferred. According to the iron particles having such a size, the effect of enhancing the oxidation removal efficiency of impurities contained in the carbonaceous material (substance to be purified) can be exhibited particularly well.
  • the iron powder is preferably used at a ratio of, for example, 0.5 to 20 parts by mass with respect to a total of 100 parts by mass of the carbonaceous material.
  • a ratio of, for example, 0.5 to 20 parts by mass with respect to a total of 100 parts by mass of the carbonaceous material By using iron powder at this addition ratio, carbon nanotubes can be purified more efficiently.
  • an iron-containing carbonaceous material obtained by causing an arc discharge between a pair of electrodes having at least an anode formed of a carbon-containing product containing iron and depositing an evaporant generated from the anode. Materials may be used.
  • an iron-containing carbonaceous material an appropriate amount of iron (Fe) can be supplied.
  • the carbon nanotubes contained in the iron-containing carbonaceous material can be purified at the same time.
  • the iron-containing carbonaceous material has an average particle size of lOOnm or less (typically 3 to: LOOnm, preferably 3 to 50 nm, more preferably 5 to 20 nm, such as 5 to: LOn m. ) Iron particles. According to the iron-containing carbonaceous material containing iron particles of such a size, the effect of increasing the oxidation removal efficiency of impurities contained in the carbonaceous material (substance to be purified) can be exhibited particularly well.
  • Purifying the carbon nanotube may further include adding an inorganic acid component. This can improve the ability to dissolve and remove metal components that can be included in the carbonaceous material to be treated. For this reason, carbon nanotubes can be purified more efficiently.
  • the inorganic acid component may be added after adding the hydrogen peroxide and iron material to the carbonaceous material and treating the carbonaceous material. In this case, it may remain after the treatment
  • the iron particles derived from the catalytic metal component and the added iron material can be efficiently dissolved and removed by adding the inorganic acid component.
  • the inorganic acid component may be added together with hydrogen peroxide and iron material. In this case, the amount of hydrogen peroxide added can be saved by adding the inorganic acid component, and in some cases, the ability to oxidize and remove the impurity carbon component can be improved.
  • the present invention provides a method for purifying carbon nanotubes.
  • This refinement method is characterized in that an iron material and hydrogen peroxide are added to a carbonaceous material containing carbon nanotubes to purify the carbon nanotubes.
  • the powerful purification method is applied to carbonaceous materials containing various impurities obtained by various acquisition methods, and carbon nanotubes as described above can be obtained by a simple method when iron material and hydrogen peroxide are added. Can be purified with high purity.
  • a carbon nanotube purification material used for purification of carbon nanotubes.
  • the purification material has a structure in which iron particles having an average particle size of lOOnm or less are dispersed in a carbonaceous material containing carbon nanotubes.
  • Such a material for purifying carbon nanotubes is suitable for use in obtaining a carbon nanotube purified by treating a carbon nanotube-containing carbonaceous material obtained by an arbitrary method.
  • the purification material is typically used by adding to the carbon nanotube-containing carbonaceous material together with a suitable oxidizing agent (particularly preferably hydrogen peroxide).
  • a suitable oxidizing agent particularly preferably hydrogen peroxide
  • the above-mentioned purification material can be preferably employed as the iron material used in any of the carbon nanotube production methods or carbon nanotube purification methods described above.
  • fine iron particles tend to agglomerate alone, but in the above-described material for purifying single-bonn nanotubes, the iron particles are dispersed in a carbonaceous material. This makes it possible to efficiently purify carbon nanotubes by effectively using the iron particles.
  • the carbonaceous material is dispersed as composite particles wrapped in the iron particle force amorphous carbon.
  • the iron particles are amorphous carbon.
  • the iron particles are protected from alteration (oxidation, etc.). Therefore, carbon nanotubes can be efficiently purified by effectively using the iron particles.
  • Another carbon nanotube refining material disclosed herein is a material used for refining carbon nanotubes, and is between a pair of electrodes having at least a carbon molding containing iron as an anode. It is a material obtained by causing an arc discharge to deposit the evaporant generated from the anode.
  • Such a material for purifying carbon nanotubes is suitable for use in obtaining a carbon nanotube purified by treating a carbon nanotube-containing carbonaceous material obtained by an arbitrary method.
  • the purification material is typically used by adding to the carbon nanotube-containing carbonaceous material together with a suitable oxidizing agent (particularly preferably hydrogen peroxide).
  • a suitable oxidizing agent particularly preferably hydrogen peroxide
  • the above-mentioned purification material can be preferably employed as the iron material used in any of the carbon nanotube production methods or carbon nanotube purification methods described above.
  • the material for purifying carbon nanotubes typically has a structure in which it is dispersed as composite particles wrapped in iron particle force amorphous carbon having an average particle diameter of 5 to: LO Onm (for example, 5 to 30 nm). This makes it possible to efficiently purify carbon nanotubes by effectively using the iron particles.
  • FIG. 1 is a schematic view showing a configuration of an apparatus used for producing single-walled carbon nanotubes according to one embodiment.
  • FIG. 2 is a TEM photograph of the carbonaceous material before purification used in Example 1.
  • FIG. 3 is a TEM photograph of single-walled carbon nanotubes after purification according to Example 1.
  • FIG. 4 is an SEM photograph of single-walled carbon nanotubes after purification according to Example 1.
  • FIG. 5 is a chart of Raman spectrum analysis of single-walled carbon nanotubes after purification according to Example 1.
  • FIG. 6 is a TEM photograph of a purified single-walled carbon nanotube according to a comparative example.
  • FIG. 7 is a TEM photograph of single-walled carbon nanotubes after purification according to Example 2.
  • FIG. 8 is a TEM photograph of single-walled carbon nanotubes after purification according to Example 1.
  • FIG. 9 is a TEM photograph of single-walled carbon nanotubes after purification according to Example 3.
  • FIG. 10 is a TGA chart of single-walled carbon nanotubes after purification according to a comparative example.
  • FIG. 11 is a TGA chart of single-walled carbon nanotubes after purification according to Example 2.
  • FIG. 12 is a TGA chart of single-walled carbon nanotubes after purification according to Example 1.
  • FIG. 13 is a TGA chart of single-walled carbon nanotubes after purification according to Example 3.
  • FIG. 14 (a) and (b) are TEM photographs of the carbon nanotube purification material used in Example 3.
  • the production method of the present invention is a method in which an iron material and hydrogen peroxide are added to an unpurified carbonaceous material containing carbon nanotubes (or further purification is required), and the carbon nanotubes can be extracted from the carbonaceous material with high purity.
  • an iron material and hydrogen peroxide are added to an unpurified carbonaceous material containing carbon nanotubes (or further purification is required), and the carbon nanotubes can be extracted from the carbonaceous material with high purity.
  • a variety of materials and configurations can be applied for that purpose.
  • the carbonaceous material prepared in the present invention is not particularly limited as long as it is any carbonaceous material including carbon nanotubes. Therefore, the carbonaceous material includes various unrefined raw materials synthesized by any known carbon nanotube synthesis method, for example, arc discharge method, laser evaporation method, chemical vapor deposition method (ie, CVD method). An adult product (recovered material) may be included.
  • the carbonaceous material prepared here may be a commercially available carbon nanotube (including impurities). In particular, a product obtained by the arc discharge method is preferable because it contains carbon nanotubes with few defects and good quality.
  • a carbonaceous material containing single-walled carbon nanotubes obtained by containing a catalytic metal in at least the anode can be mentioned.
  • a carbonaceous material containing carbon nanotubes can be obtained by, for example, an arc discharge method performed as follows.
  • a voltage is applied between an anode carbon molding (typically rod-shaped) containing a catalytic metal and a cathode carbon molding (typically rod-shaped) to supply a current. Due to the arc heat generated by the arc discharge generated thereby, the carbon of the anode carbon molded product is evaporated. The vaporized carbon forms a product containing single-walled carbon nanotubes in the gap between the electrodes by arc heat and catalytic action. The carbon nanotube thus obtained has a high yield and excellent quality.
  • the catalytic metal included in the anode carbon molding is nickel (Ni), cobalt (Co), and a platinum group element (Ru, Rh, Pd, Os, Ir, Pt) force group force selected at least A kind of metal or an alloy mainly composed of the metal is preferable.
  • nickel (Ni) or alloys based on nickel (Ni) is particularly preferred.
  • powerful catalysts include nickel catalysts, nickel Z yttrium (NiZY) catalysts, and nickel Z cobalt (NiZCo) catalysts.
  • Another specific example of the catalytic metal preferably used is a palladium Zrhodium (PdZRh) catalyst.
  • the carbon nanotube-containing carbonaceous material thus prepared (that is, the material to be purified) is preferably washed once before the iron material and hydrogen peroxide are added thereto.
  • impurities mixed between the materials for example, amorphous carbon or catalytic metal that can be easily washed and flowed from the carbonaceous material
  • Powerful cleaning treatment can be performed using an appropriate cleaning solution such as alcohol (for example, ethanol) or purified water.
  • the number of washings is not limited and can be washed once or repeatedly! ⁇ ⁇ . Ultrasonic vibration may be applied during the cleaning process. This can improve the cleaning effect.
  • the carbonaceous material (substance to be refined) is recovered and treated by adding an iron material and hydrogen peroxide thereto.
  • This treatment is preferably performed in a state where the carbonaceous material to be treated is highly dispersed in an appropriate solvent.
  • a means for dispersing the carbonaceous material in the solvent stirring by a stirring rod, dispersion by a mixer, ultrasonic dispersion, and the like can be adopted, but not limited thereto. From the viewpoint of efficiently dispersing the carbonaceous material, for example, ultrasonic dispersion is preferred. It can be adopted well.
  • water for example, purified water
  • the carbonaceous material may be dispersed directly in a hydrogen peroxide solution as a solvent.
  • the iron material used in the present invention may contain iron (Fe) in a misaligned form.
  • iron may be included as a simple substance (as metallic iron), or may be included as an iron-based alloy.
  • a compound containing an iron atom may be used as the iron material.
  • powerful iron compounds include oxides containing iron atoms (eg ferrous oxide, ferric oxide), inorganic salts containing iron atoms (eg iron nitrate, iron chloride, iron sulfate), etc.
  • preferred examples of the iron compound include salted iron. That is, the form of iron added to the carbonaceous material in the practice of the present invention may be in the form of particles or dissolved in a solvent (can be in various forms of ions).
  • the iron material may contain an element other than iron (for example, carbon) as long as it can serve as a source of iron (Fe).
  • an iron material including a carbonaceous material including carbon nanotubes and an iron component can be given.
  • the strong iron component may be in any form of metallic iron, iron alloy, and iron compound. An iron material in which the iron component (for example, metallic iron) is dispersed in the carbonaceous material in a particulate form is preferable.
  • iron powder powder (powdered metallic iron).
  • the acidity can be effectively enhanced. Therefore, the impurities contained in the carbon nanotube-containing carbonaceous material (substance to be purified) can be efficiently removed with acid.
  • iron powder is preferred because it is relatively inexpensive and economical.
  • an iron powder composed of iron particles having an average particle size of 500 nm or less (more preferably 300 nm or less). According to such iron powder, the effect of enhancing the oxidation removal efficiency of impurities contained in the carbonaceous material (substance to be refined) can be exhibited particularly well.
  • the lower limit of the average particle size of the iron particles constituting the iron powder is not particularly limited. Availability, price, handleability and dispersibility (e.g., disperse the iron powder together with carbonaceous material in a solvent) From the viewpoint of one or two or more of (dispersibility in the solvent in the treatment), usually, an iron powder having an average particle size of 50 nm or more is preferably used.
  • a carbonaceous material containing carbon nanotubes may have an average particle size of lOOnm or less (typically 3 to: LOOnm, preferably 3 to An iron-containing carbonaceous material in which iron particles of 50 nm, more preferably 5 to 20 nm, for example, 5 to: LOnm) are dispersed is mentioned.
  • Preferred Iron-Containing Carbonaceous Material In one embodiment, the iron particles are dispersed substantially uniformly in the carbonaceous material. In other words, the iron particles are well dispersed throughout the carbonaceous material.
  • Such fine iron particles are used in combination with an oxidizing agent such as hydrogen peroxide, and are excellent in the ability to efficiently oxidize and remove impurities contained in the carbon nanotube-containing carbonaceous material (substance to be purified).
  • the iron particles tend to agglomerate.
  • the iron particles in an agglomerated state cannot fully exhibit their original effects.
  • the carbon nanotubes can be efficiently purified by effectively using the fine iron particles.
  • Such an iron-containing carbonaceous material is obtained by purifying a carbon nanotube (hereinafter referred to as “purified carbon nanotube”) by purifying another carbonaceous material containing carbon nanotubes (typically, a carbonaceous material not containing iron). It can be grasped as a carbon nanotube refining material for obtaining “To!
  • the iron particles are dispersed as composite particles wrapped in amorphous carbon.
  • the iron particles are protected from alteration (oxidation, etc.) and are easy to handle.
  • an inert gas nitrogen gas, etc.
  • the contained iron particles can be easily maintained in the state of metallic iron (non-oxidized state).
  • the carbon nanotube purification material (iron material) having fine iron particles covered with amorphous carbon and an oxidizing agent such as hydrogen peroxide are used as the material to be purified (carbonaceous material including carbon nanotubes).
  • the amorphous carbon covering the iron particles is oxidized.
  • the iron particles typically, iron particles in the form of metallic iron
  • Carbon nanotubes can be efficiently purified by effectively using the iron particles.
  • the amorphous carbon covering the iron particles is relatively thin.
  • a carbon nanotube refining material (iron material) containing iron particles covered with an amorphous carbon layer having an average thickness of approximately 2 to 5 nm is suitable.
  • an iron material used in the method disclosed herein it was obtained by an arc discharge method using an anode containing iron as a catalyst metal in a conventionally known carbon nanotube manufacturing method.
  • the product can be preferably used.
  • the product (iron-containing carbonaceous material) obtained by the arc discharge method using the anode containing iron contains the iron component evaporated from the anode.
  • Powerful iron components can be preferably used as the iron source in the methods disclosed herein. Therefore, the iron-containing carbonaceous material obtained by the above arc discharge method is used to purify purified carbon nanotubes by purifying other carbonaceous materials containing carbon nanotubes (typically, carbonaceous materials not containing iron). It can be grasped as a material for purifying carbon nanotubes.
  • the iron component is included as particles.
  • the iron component is contained as metallic iron particles. It is preferable that the particles are well dispersed.
  • the average particle size of the particles can be, for example, lOOnm or less (typically 3 to: LOOnm, preferably 3 to 50 nm, more preferably 5 to 20 nm, for example 5 to: LOnm). According to the iron-containing carbonaceous material containing iron particles of such a size, the effect of enhancing the oxidation removal efficiency of impurities contained in the carbonaceous material (substance to be purified) can be exhibited particularly well.
  • the anode used in the arc discharge method may be obtained by molding a mixed material containing iron component powder (iron source powder) and carbon powder into a predetermined shape (typically a rod shape).
  • the molding method is not particularly limited, and for example, a general compacting method can be adopted.
  • iron powder can be preferably used as the iron source powder, it is not limited thereto. Any iron source powder that can form iron particles in the product (iron-containing carbonaceous material) by arc discharge is sufficient.
  • the mixing ratio of the iron source powder and the carbon powder may be such that the atomic ratio of iron to carbon (FeZ C) is, for example, 0.1 to: LOat% (more preferably 0.2 to 5 at%). it can .
  • Products produced by the arc discharge method using a powerful anode usually include iron and carbon (carbon and impurity carbon constituting carbon nanotubes) at a ratio similar to the atomic ratio of iron to carbon (FeZC) at the anode. ) Is included.
  • the carbon nanotube refining material or the iron-containing carbonaceous material (iron material) disclosed herein arc discharge is caused between at least a pair of electrodes having a carbon molded product containing iron as an anode, and the anode force is increased.
  • the product obtained by depositing the resulting evaporate can be used as it is (added to the carbonaceous material as the product to be purified). Further, like the carbonaceous material as the product to be purified, the product may be used after it is washed. Alternatively, it can be used after subjecting the product to an oxidation treatment if desired.
  • a part of the amorphous carbon covering the iron particles may be removed by the acid / oxidation treatment to reduce the thickness of the amorphous carbon covering the iron particles.
  • iron material carbon nanotube refining material
  • amorphous carbon may be removed by the above oxidation treatment to such an extent that at least most of the iron particles are exposed.
  • the carbon nanotube refining material is a non-acidic atmosphere (preferably in order to prevent iron particles from being exposed (covered with amorphous carbon, V, etc.). It is preferable to handle in an inert gas atmosphere.
  • the amount of the iron material added is not particularly limited. For example, a ratio of about 0.5 to 20 parts by mass (preferably about 1 to 15 parts by mass, more preferably about 7 to 13 parts by mass) of iron (Fe) in terms of 100 parts by mass of the carbonaceous material Should be added.
  • iron powder is used as the iron material
  • the above addition ratio can be preferably adopted.
  • the total mass of the iron material is approximately 2 to 50 parts by mass (preferably with respect to 100 parts by mass of the carbonaceous material). Add 5-20 parts by mass)!
  • the peroxyhydrogen used in the present invention is not particularly limited and may be any peroxyhydrogen obtained by various conventionally known production methods.
  • aqueous solution usually 30% aqueous solution may be used as it is (for example, as it is).
  • the hydrogen peroxide solution in the solution is used.
  • the content of is not particularly limited, and can be processed at various contents.
  • the content rate of the hydrogen peroxide solution may be 5 to 50% by mass (preferably 10 to 30% by mass, more preferably 15 to 25% by mass) of the entire solution (treatment liquid) containing the carbonaceous material. It is preferred to add peroxy-hydrogen water to the carbonaceous material so that it has a strong content.
  • the total amount of liquid tends to decrease during the heating and refluxing. Good.
  • the carbonaceous material contains iron material and hydrogen peroxide.
  • the iron material and hydrogen peroxide are sequentially or simultaneously added to the solution in which the carbonaceous material is dispersed.
  • iron powder it is preferred to add the iron powder simultaneously with peroxy hydrogen, or to add iron powder prior to peroxy hydrogen.
  • both the carbonaceous material and the iron-containing carbonaceous material are previously dispersed in a solvent (as a method of dispersing the iron-containing carbonaceous material).
  • a solvent as a method of dispersing the iron-containing carbonaceous material.
  • Various dispersion methods similar to those for the carbonaceous material can be employed as appropriate.
  • hydrogen peroxide it is preferable to add hydrogen peroxide to the dispersion.
  • an iron-containing carbonaceous material as an iron material together with a carbonaceous material to be refined typically, a carbonaceous material not containing iron
  • Carbon nanotubes contained in the carbonaceous material can be purified efficiently.
  • the purification treatment is performed under heating and reflux conditions.
  • the heating conditions are not particularly limited!
  • the treatment product treatment solution
  • the treatment solution is heated until it can boil at atmospheric pressure (that is, heated until the boiling point of the treatment solution is reached).
  • hydrogen peroxide for iron materials, there is no need for additional supply Although it is not, it may be replenished sequentially as in the case of hydrogen peroxide.
  • an inorganic acid can be further added to treat the carbonaceous material.
  • the inorganic acid hydrochloric acid, nitric acid, sulfuric acid, sulfurous acid, nitrous acid and the like can be used without particular limitation. Of these, hydrochloric acid is exemplified as a preferred inorganic acid.
  • the concentration of the inorganic acid is not particularly limited.
  • the inorganic acid can be added after the addition of the iron material and hydrogen peroxide. In this case, it is preferable to carry out a heating reflux treatment for a predetermined time before adding the inorganic acid, then add the inorganic acid, and continue the heating reflux treatment after the addition.
  • the inorganic acid may be added simultaneously with the addition of the iron material and hydrogen peroxide. That is, the heating and refluxing treatment of the carbonaceous material can be started in the presence of iron, hydrogen peroxide, and inorganic acid.
  • the recovery means is not particularly limited.
  • the precipitate may be recovered by fractional filtration, or may be recovered by centrifugation, or may be recovered by suction filtration of the caloric heat-refluxed product. You may collect them by combining these methods.
  • the obtained recovered product is further washed with a washing liquid.
  • the cleaning liquid water or alcohol (for example, ethanol) with few impurities can be preferably used. During such cleaning, ultrasonic vibration may be applied to improve the cleaning effect.
  • This washing step may be performed only once or may be repeated a plurality of times.
  • the washed carbon nanotubes can be recovered, for example, by means such as suction filtration.
  • the yield of the refined carbon nanotubes depends on the production method of the carbonaceous material itself.For example, when the mass of the carbonaceous material before purification is 100%, its yield is 5 to 80%, preferably 10 to 50%. In particular, the yield may be a purified carbon nanotube having a mass corresponding to about 10 to 30%.
  • FIG. 1 shows a configuration example of the single-walled carbon nanotube production apparatus 1.
  • the apparatus 1 is roughly composed of a reaction vessel 3, a pair of electrodes 13 and 15 arranged in the reaction vessel 3, and a gas supply means 7 for supplying gas to the reaction vessel 3. .
  • the reaction vessel 3 is a pressure-resistant vessel that can be sealed, and is made of, for example, stainless steel.
  • An anode 13 and a cathode 15 are disposed in the reaction vessel 3. These electrodes 13 and 15 are all formed in a rod shape.
  • the anode 13 is disposed in the reaction vessel 3 with its central axis (long axis) oriented in a substantially vertical direction.
  • the cathode 15 is disposed at a position oblique to the central axis of the anode 13 (for example, approximately 20 to 50 °, particularly 30 °) with one end 16 facing the one end 14 of the anode 13. That is, the extension line of the central axis of the anode 13 and the extension line of the central axis of the cathode 15 are arranged so as to intersect at a predetermined angle.
  • each of the electrodes 13 and 15 is not limited to a stick shape, and it is only necessary that these electrodes have locations where the forces are directed to each other (for example, opposing surfaces). Thus, one or both of these electrodes may be in the form of a tablet, for example.
  • the size of the gap between the anode 13 and the cathode 15 is not particularly limited.
  • the generation efficiency of single-walled carbon nanotubes by arc discharge is high 0.1 to L0 mm, particularly about 0.5 to 5 mm.
  • FIG. 1 shows an example in which the anode 13 and the cathode 15 are arranged at an acute angle. The arrangement is not limited to that shown in FIG.
  • the anode 13 and the cathode 15 may be arranged in the horizontal direction and aligned with each other, or may be arranged in the vertical direction and aligned with each other! /.
  • the anode 13 is a heat-resistant conductive material having a diameter of about 6 mm and a length of about 75 mm, for example, and has a material force capable of evaporating carbon by arc discharge.
  • Various carbon materials can be used as such a material.
  • a carbon material containing graphite containing a catalyst for synthesizing single-walled carbon nanotubes can be preferably used.
  • Such a catalyst may be, for example, nickel or a nickel alloy (preferably nickel Z yttrium) or cobalt.
  • Such an anode 13 can be obtained, for example, by blending catalyst powder (for example, nickel Z yttrium powder) with graphite powder and compacting it.
  • a solenoid 22 is connected to an end portion (base portion) 19 opposite to the facing surface (tip portion) 14 of the cathode 15 in the anode 13.
  • the solenoid 22 moves the anode 13 (electrode holding portion) held by an electrode holding portion (not shown) in the vertical direction (that is, the facing surface (tip portion) 16 direction of the cathode 15, particularly downward in FIG. 1). It can be moved.
  • the solenoid 22 and moving the anode 13 as the anode 13 is consumed due to carbon evaporation, the gap between the electrodes 13 and 15 can be kept constant.
  • the cathode 15 is made of, for example, a heat-resistant conductive material having a diameter of about 10 mm and a length of about 100 mm.
  • a heat-resistant conductive material for example, various carbon materials, metal materials (for example, copper) and the like can be appropriately selected and used.
  • carbon for example, graphite
  • a catalyst for synthesizing single-walled carbon nanotubes as in the anode 13 is preferably used.
  • a motor 21 is connected to the cathode 15.
  • the motor 21 is installed so that the cathode 15 held by an electrode holding portion (not shown) can rotate around its long axis.
  • the gas supply means 7 for supplying the atmospheric gas into the reaction vessel 3 includes the atmospheric gas supply cylinders 27A and 27B. These cylinders 27A and 27B are connected to a gas supply port 31 provided in a part of the reaction vessel 3 (here, the bottom surface 30), and atmospheric gas can be introduced into the reaction vessel 3 from the gas supply port 31. is set up. Valves 28A and 28B are provided in the paths from the cylinders 27A and 27B to the gas supply port 31, respectively. By opening and closing the valves 28A and 28B, the supply amount and supply timing of the atmospheric gas from the cylinders 27A and Z or the cylinder 27B to the reaction vessel 3 can be controlled.
  • helium gas is used as the atmospheric gas.
  • the type of atmospheric gas is not limited to this.
  • an inert gas other than helium gas may be used as the atmospheric gas.
  • the inert gas include nitrogen gas, neon gas, argon gas, krypton gas, and xenon gas.
  • Two or more kinds of inert gases may be used at any ratio, and only one kind of these inert gases may be used.
  • a mixed gas of the above-described one kind or two or more kinds of inert gas and hydrogen gas may be used as the atmospheric gas. In this way, a mixed gas of multiple types of gases can be used as the atmospheric gas.
  • the cylinders 27A and 27B shown in FIG. 1 may supply the same kind of atmospheric gas (for example, helium gas).
  • the valve 28B is closed while the valve 28B is closed while supplying the atmospheric gas from the cylinder 27A into the reaction vessel 3 with the valve 28A opened (typically, The empty cylinder can be exchanged for a new one).
  • gas with different cylinder 27A and cylinder 27B forces may be supplied.
  • the gas supplied from the cylinder 27A for example, argon gas
  • the gas to which the cylinder 27B force is also supplied for example, hydrogen gas
  • the discharge unit 11 is attached so that the gas in the reaction vessel 3 can flow, and is connected to a part of the reaction vessel 3 (here, the bottom surface 30).
  • the gas in the reaction vessel 3 can be discharged from the discharge port 45 to the outside of the vessel.
  • the atmospheric gas pressure in the reaction vessel 3 can be adjusted by balancing the supply amount of the atmospheric gas from the gas supply means 7 and the discharge amount of the gas from the discharge section 11.
  • the DC power source 23, the motor 21 and the solenoid 22 are connected to an input / output circuit 55 to which a control command from a control mechanism 53 that operates based on a predetermined program or manual operation is input.
  • a control command from a control mechanism 53 that operates based on a predetermined program or manual operation is input.
  • the movement of the anode 13 and the rotation of the negative electrode 15 due to voltage application can be controlled. Therefore, the arc discharge state is calculated from the voltage applied between the anode 13 and the cathode 15 by the control mechanism 53, and the movement of the anode 13 and the cathode 15 according to the growth of the single-walled carbon nanotube-containing product generated by the arc discharge.
  • Outputs control signal to adjust motor rotation from I / O circuit 55 to motor 21 and solenoid 22 can do.
  • arc discharge can be performed under stable conditions, and a product containing single-walled carbon nanotubes (ie, a thin-walled film having a uniform and wide distribution if desired) having a uniform quality (that is, the present implementation). Carbonaceous material in the example) can be obtained.
  • Single-walled carbon nanotubes were synthesized using the manufacturing apparatus 1 having such a configuration.
  • the anode 13 and the cathode 15 as described above are prepared, and these electrodes 13 and 15 are respectively set in electrode holding portions (not shown) in the reaction vessel 3 so as to realize a predetermined interval. did.
  • the valve 44 of the discharge unit 11 provided in the reaction vessel 3 was opened, and the vacuum pump 49 connected to the discharge port 45 was operated to exhaust the gas in the reaction vessel 3.
  • the container 3 is. 13 to: L 3 X 10- 3 stop valve 44 if it is reduced to a high vacuum of about Pa, was introduced atmosphere gas from the gas supply means 7 into the reaction vessel 3.
  • helium gas was used as the atmospheric gas. Then, the gas pressure (atmospheric gas pressure) in the reaction vessel 3 is maintained by the vacuum pump 49 and the gas supply means 7 so that the pressure of the helium gas in the reaction vessel 3 is maintained at about 6.6 X 10 4 Pa. ) was adjusted.
  • a voltage was applied between the anode 13 and the cathode 15, and a current (typically 30 to 70A, for example, 60A) was supplied from the DC power source 23. Carbon was evaporated from the anode 13 by arc heat generated by the arc discharge generated as a result.
  • the voltage applied here can be appropriately selected according to the desired carbon evaporation rate. Here, the voltage was set to about 30 to 40V.
  • the arc discharge state is calculated by the control mechanism 53 from the applied voltage, and a control signal is sent from the input / output circuit 55 to the motor 21 and the solenoid 22 in accordance with carbon evaporation (that is, electrode consumption) due to arc discharge. Then, the anode 13 was moved and the cathode 15 was rotated.
  • a product 60 containing single-walled carbon nanotubes was formed in the gap between the electrodes by arc heat and catalytic action.
  • This product 60 spread in the reaction vessel 3 by the flow of the supplied atmospheric gas (see FIG. 1).
  • Such a synthesis time (voltage application time) of the single-bonn nanotube is not particularly limited, and may be, for example, 5 to 20 minutes, preferably 10 to 15 minutes, and particularly about 11 to 13 minutes. Here, the synthesis time was 13 minutes.
  • the obtained single-walled carbon nanotube-containing product that is, the carbonaceous material according to this example
  • the product (carbonaceous material) obtained as described above contained a catalyst (for example, nickel Z yttrium powder) and impurity carbon together with single-walled carbon nanotubes.
  • the product was subjected to a treatment for reducing the contents of these catalysts and impurity carbon, that is, a purification treatment of carbon nanotubes.
  • the procedure of the purification treatment is shown below. First, 200 mg of the obtained carbonaceous material and 50 ml of ethanol were placed in a 100 ml beaker and subjected to ultrasonic treatment (treatment for imparting ultrasonic vibration) for 30 minutes. This was suction filtered to remove the fluid, and the carbonaceous material was recovered.
  • This first purified product was treated under heating and reflux conditions. That is, the above first product to be purified is placed in a flask equipped with a reflux pipe, and iron fine particles 1011 ⁇ having an average particle diameter of about 0.2 111 and 20 ml of a commercially available hydrogen peroxide solution having a concentration of 30% are added. In addition it was heated. 20 minutes after the liquid in the flask had boiled, 40 ml of hydrogen peroxide solution was added. Over 20 minutes later 40 ml of acid / hydrogenated water was added, and after 20 minutes, 50 ml of hydrogen peroxide / hydrogenated water was added. After 300 minutes, the heating was stopped and the refluxing process was terminated. After cooling, the supernatant liquid was discharged to obtain a reflux treatment liquid.
  • the second refluxed product was subjected to the same reflux treatment to obtain a reflux treatment solution.
  • a combination of the reflux solution obtained from the first purified product and the second purified product was subjected to a centrifugal treatment for 30 minutes using a centrifuge (llOOOOrpm), and the precipitate was obtained. Was recovered. To the collected precipitate, 100 ml of hydrochloric acid (concentration: about 36%) was added, subjected to ultrasonic treatment for 5 minutes, and then left for 12 hours. After 12 hours, the supernatant was gently discarded and the fraction containing single-walled carbon nanotubes was collected.
  • Observation of the single-walled carbon nanotubes obtained in the purification step (3) above was conducted using a transmission electron microscope (TEM: Transmission Electron Microscope, manufactured by Hitachi, Ltd., model H7000) and a scanning electron microscope (SEM). Made by Topcon, model ABT-150F).
  • TEM Transmission Electron Microscope
  • SEM scanning electron microscope
  • Topcon model ABT-150F
  • TEM transmission electron microscope
  • the carbonaceous material before refining contains a large amount of nickel Z-yttrium nanoparticles, which are catalytic metals, on the surface of the carbon nanotube, and its purity is low. I understand. Carbon particles and graphite are also observed as impurities (impurity carbon). It was. The metal nanoparticles were thickly covered with impurity carbon.
  • the Raman spectrum of the purified carbon nanotubes obtained in this example was observed.
  • a Raman spectrometer model number “RAMANOR T64000” manufactured by Jobin Yvon Co., Ltd. was used. The results (chart) are shown in Fig. 5.
  • a sharp peak was observed around 1593 cm 1 .
  • a weak peak was observed near 1340 cm 1 and no force was observed. Therefore, it can be seen that the obtained carbon nanotubes have high purity and high crystallinity.
  • the carbon nanotube-containing carbonaceous material procured in (2) above was refined in the same manner as in Example 1 except that iron fine particles were not used in the purification step (3).
  • the hydrogen peroxide water was added to the carbonaceous material (substance to be purified), but the purification treatment was performed without adding the iron material.
  • iron particles having an average particle size of about 2 m were used in place of the iron particles having an average particle size of about 0.2 m in the purification step (3).
  • the carbon nanotube-containing carbonaceous material procured in (2) above was purified in the same manner as in Example 1. That is, in this example, the purification treatment was performed by adding hydrogen peroxide water and iron particles (iron material) having an average particle diameter of about 2 ⁇ m to the carbonaceous material (substance to be purified).
  • This production example is an example in which a carbonaceous material containing iron as an impurity (an iron-containing carbonaceous material) is used as an iron material and the carbonaceous material is purified.
  • a carbonaceous material containing iron as an impurity was prepared. This iron-containing carbonaceous material was produced by substantially the same procedure as that for producing the carbonaceous material shown in (2) above. The changes were that the anode 13 contained an iron catalyst instead of the nickel Z yttrium catalyst, and that the atmospheric gas was replaced with helium gas instead of helium gas with a total pressure of 2.6 X 10 4 Pa of argon gas and hydrogen gas. This is the use of a 1: 1 (volume ratio) gas mixture.
  • the first product to be purified was placed in the flask, and 20 ml of the above commercially available hydrogen peroxide solution was added to the flask. Then, the same reflux treatment as described in (3) above was performed. That is, after 20 minutes have passed since the liquid in the flask boiled, 40 ml of hydrogen peroxide water was added, and after another 20 minutes, 40 ml of hydrogen peroxide water was added. 5 Oml of hydrogen water was added. Thereafter, heating was stopped after 120 minutes, and the reflux treatment was terminated. After cooling, the contents of the flask were sonicated for 10 minutes. Thereafter, the mixture was left for 2 hours, and the supernatant liquid was discharged to obtain a reflux treatment liquid.
  • the second refluxed product was subjected to the same reflux treatment to obtain a reflux treatment solution.
  • a combination of the reflux solution obtained from the first purified product and the second purified product is subjected to a centrifugal treatment for 30 minutes using a centrifuge (IlOOOOrpm) to obtain a precipitate. Collected. To this precipitate, 100 ml of hydrochloric acid (concentration: about 36%) was added, subjected to ultrasonic treatment for 5 minutes, and then left for 12 hours. After 12 hours, the supernatant was gently discarded, and the fraction containing the single-walled carbon nanotube was collected.
  • FIGS. 6 to 9 show TEM photographs of the purified products obtained in the above Examples and Comparative Examples.
  • the correspondence between these TEM photographs and each example and comparative example is summarized in Table 1 along with an outline of the purification conditions.
  • “Yes” is shown in the column of peroxyhydrogen in the examples or comparative examples, indicating that purification was performed by adding peroxyhydrogen in the examples or comparative examples.
  • “one (hyphen)” force S is displayed in the column of the iron material !, indicating that the refining was performed without adding the iron material in the comparative example.
  • FIG. 8 is a TEM photograph of the purified product obtained in Example 1 observed at a different magnification from that in FIG. 3 in order to facilitate comparison with other examples and comparative examples.
  • Example 1 (Fig. 8) using iron particles with a small average particle size force S as an iron material is clearer than Example 2 (Fig. 7) using iron particles with a larger average particle size.
  • Example 3 in which an iron-containing carbonaceous material was used as the iron material, a remarkably high-quality (highly purified) purified product was obtained.
  • thermogravimetric analysis TGA: Thermo Gravimetric Analysis
  • TGA thermogravimetric analysis
  • a TGA measuring device model number “DTG-60M” manufactured by Shimadzu Corporation was used.
  • the measurement results are shown in Figs.
  • FIG. 10 shows the TGA measurement results for the purified product obtained in the comparative example
  • FIG. 11 shows the purified product obtained in Example 2
  • FIG. 12 shows the purified product obtained in Example 1
  • FIG. 13 shows the Example.
  • Table 1 also shows the correspondence between these TGA measurement results and the examples and comparative examples.
  • FIG. 14 (a) The iron-containing carbonaceous material used as the iron material in Example 3 was observed by TEM.
  • the TEM photographs are shown in Fig. 14 (a) and Fig. 14 (b).
  • Figure 14 (b) is an enlarged view of part of Figure 14 (a).
  • FIG. 14 (a) a large number of fine iron particles (black, appearing as dots) are dispersed and attached to the surface of the carbon nanotubes constituting the iron-containing carbonaceous material. It is shown. Those iron particles are well dispersed throughout the carbonaceous material and are arranged substantially uniformly. That is, they are scattered thinly without showing significant aggregation.
  • the average particle size of the iron particles is generally in the range of 5 to 10 nm.
  • FIG. 14 (b) shows a state in which the iron particles are thinly covered with amorphous carbon!
  • the average thickness of the amorphous carbon covering the iron particles is approximately 2-5n m.
  • Such a thin amorphous carbon layer can be easily removed by an oxidation process (for example, a process using hydrogen peroxide). This causes the internal iron particles to be exposed.
  • impurities in the product to be purified were efficiently removed by the strong iron particles and hydrogen peroxide, and highly purified carbon nanotubes (purified product) were obtained. Inferred.

Abstract

【課題】純度の高いカーボンナノチューブを製造する方法、および未精製または純度の低いカーボンナノチューブを精製する方法を提供する。 【解決手段】本発明のカーボンナノチューブの製造方法は、カーボンナノチューブを含む炭素質材料を用意する工程、および前記炭素質材料に、鉄材と過酸化水素とを添加して、カーボンナノチューブを精製する工程を含む。前記鉄材として、鉄粉末を用いることが好ましい。鉄粉末は、炭素質材料の合計100質量部に対して、0.5~20質量部の割合で用いられることが好ましい。

Description

カーボンナノチューブの製造方法および精製方法
技術分野
[0001] 本発明は、未精製のまたは純度の低!、カーボンナノチューブを精製して高純度の カーボンナノチューブを製造する方法に関する。さらには、該方法によって得られた 高純度のカーボンナノチューブに関する。また本発明は、カーボンナノチューブを精 製するためのカーボンナノチューブ精製用材料に関する。
背景技術
[0002] カーボンナノチューブは、導電性、熱伝導性、機械的強度等の優れた特性を持つ ことから、多くの分野力も注目を集めている新素材である。カーボンナノチューブは、 一般に、炭素または炭素原料を必要に応じて触媒の存在下で高温条件に置くことに より合成 (製造)される。代表的なカーボンナノチューブ製造方法として、アーク放電 法、レーザ蒸発法、およびィ匕学気相成長法 (すなわち CVD法)が挙げられる。
アーク放電法は、欠陥が少なく品質の良いカーボンナノチューブが得られる点で優 れている。しかしながら、アーク放電法は CVD法に比べてカーボンナノチューブの収 率が低い。このため量産可能な方法が種々提案されている。例えば、特開 2003— 2 77032号公報には、使用する電極に鉄触媒を含有させることにより、カーボンナノチ ユーブを含有する生成物におけるカーボンナノチューブ含有率を向上させる方法が 開示されている。また、安藤義則ら著、「材料」(2001年 4月)、第 50卷、第 4号、第 3 57〜360頁には、ニッケル—イットリウム触媒を含有する電極を用いたカーボンナノ チューブの製造方法が記載されている。ニッケル—イットリウム触媒は活性が高いた め、より高い収率でカーボンナノチューブを得ることができる。
特許文献 1:特開 2003 - 277032号公報
特許文献 2:特開 2002— 265209号公報
特許文献 3:特開 2003— 89510号公報
非特許文献 1 :安藤義則ら著、「材料」(2001年 4月)、第 50卷、第 4号、第 357〜36 0頁 [0003] これら方法によって得られたカーボンナノチューブ(生成物)には、 V、ずれの方法に よって得られたものであっても、アモルファスカーボンのようなカーボンナノチューブ 以外の炭素成分 (換言すれば、カーボンナノチューブを構成しな!、炭素成分)や触 媒金属が不純物として混入している。このため、より高純度のカーボンナノチューブを 所望する場合には、得られたカーボンナノチューブを精製する必要があった。
[0004] カーボンナノチューブの精製に関し、例えば、特開 2002— 265209号公報および 特開 2003— 89510号公報に記載されるような方法が従来用いられている。しかし、 より効率よくカーボンナノチューブを精製して高純度のカーボンナノチューブを製造 することが求められている。
そこで本発明は、従来とは異なる手法によって、純度の高いカーボンナノチューブ を製造する方法を提供することを目的とする。また、別の観点カゝらは、未精製または 純度の低 、カーボンナノチューブを精製する方法を提供することを目的とする。また 、カーボンナノチューブの精製に用いられるカーボンナノチューブ精製用材料を提 供することを目的とする。
発明の開示
[0005] 本発明に係るカーボンナノチューブの製造方法は、精製されたカーボンナノチュー ブを製造する方法である。この方法は、カーボンナノチューブを含む炭素質材料を用 意することと、該炭素質材料に鉄材と過酸化水素 (H O )とを添加してカーボンナノ
2 2
チューブを精製することとを含む。
ここで「カーボンナノチューブ」とは、チューブ状の炭素同素体 (典型的にはグラファ イト構造の円筒構造物)をいい、特定の形態 (長さや直径)に限定されない。いわゆる 単層カーボンナノチューブ、多層カーボンナノチューブ、あるいはチューブ先端が角 状のカーボンナノホーンは、ここでいうカーボンナノチューブに包含される典型例で ある。また、ここで「炭素質材料」とは、カーボンナノチューブを含む材料であって炭 素 (カーボン)成分を主体とする材料を! 、、炭素以外の成分の含有を排除するもの ではない。例えば、種々の方法によって得られたカーボンナノチューブ生成物(未精 製物)は、ここで 、う「炭素質材料」の典型例である。
本発明者は、カーボンナノチューブを含む炭素質材料に、別途 (すなわち外部から )、過酸化水素 (H O )と鉄材とを添加することにより、炭素質材料に含まれるカーボ
2 2
ンナノチューブ以外の炭素成分 (不純物であるスス等)や触媒金属等を酸化させる能 力が著しく高められることを見出した。すなわち、力かる方法によると、カーボンナノチ ユーブ以外の炭素成分 (不純物)を効率よく酸ィ匕除去することができる。これにより、 任意の方法で得られたカーボンナノチューブ含有炭素質材料 (種々の不純物を含み 得る。 )から高純度のカーボンナノチューブを容易に得ることができる。
[0006] ここに開示されるカーボンナノチューブ製造方法の好適な一態様では、前記炭素 質材料が実質的に鉄 (Fe)を含まない。このように、それ自体が鉄を含まない炭素質 材料を用いる態様においては、ここに開示される方法 (すなわち、該炭素質材料に外 部から鉄材および過酸ィ匕水素を添加して精製することを包含する方法)を適用するこ とによって、より大きなメリットが得られる。
[0007] また、ここに開示されるカーボンナノチューブ製造方法の好適な一態様では、前記 炭素質材料として、ニッケル (Ni) ,コバルト(Co)、および白金族元素力 なる群から 選ばれる少なくとも一種の金属または該金属を主体とする合金を含有する炭素成形 物 (典型的には棒状)を少なくとも陽極とする一対の電極間にアーク放電を起こさせ て該陽極力 生じた蒸発物を堆積させることにより得られたものを用いる。例えば、二 ッケルまたはニッケルを主体とする合金を含有する炭素成形物を少なくとも陽極とす る一対の電極間にアーク放電を起こさせて該陽極力 カーボンを蒸発させ、その力 一ボンを堆積させることにより得られた炭素質材料を用いる。
これら鉄以外の触媒金属を含有させた電極を用いるアーク放電法は、カーボンナノ チューブの収率自体は高い点で好適であるものの、該方法による生成物は、未精製 の段階 (すなわちアーク放電後の回収物)ではカーボンナノチューブ以外の不純物 炭素成分 (アモルファスカーボン等)や触媒金属粒子の含有率が比較的高!、もので あった。また、不純物炭素成分は触媒金属粒子に強く結合して (例えば、触媒金属 粒子を厚く覆う形態で)存在する場合があり、そのような不純物の除去は特に煩雑で あった。本発明によれば、過酸化水素(H O )および鉄 (Fe)材の添カ卩によって、この
2 2
ように触媒金属粒子と不純物炭素成分とが強く結合した不純物であっても容易に酸 化除去することができる。したがって、上記アーク放電法による生成物に力かる精製 処理を適用することによって、高純度なカーボンナノチューブを効率よく得ることがで きる。
[0008] 上記鉄材としては、例えば鉄粉末を好ましく用いることができる。このような鉄粉末を 用いる態様によると、容易かつ安価に所望する量の鉄 (Fe)を正確に添加することが できる。
[0009] 該鉄粉末を構成する鉄粒子の平均粒径は 500nm以下(典型的には 50〜500nm )であり得る。該平均粒径が 300nm以下(典型的には 50〜300nm)である鉄粉末の 使用がより好ましい。このようなサイズの鉄粒子によると、上記炭素質材料 (被精製物 )に含まれる不純物の酸化除去効率を高める効果が特によく発揮され得る。
[0010] 該鉄粉末は、炭素質材料の合計 100質量部に対して、例えば 0. 5〜20質量部の 割合で用いることが好ましい。この添加割合で鉄粉末を用いることによって、より効率 よくカーボンナノチューブを精製することができる。
[0011] また、上記鉄材として、鉄を含む炭素成形物を少なくとも陽極とする一対の電極間 にアーク放電を起こさせて該陽極から生じた蒸発物を堆積させることにより得られた 鉄含有炭素質材料を用いてもよい。このような鉄含有炭素質材料を用いることによつ ても適当量の鉄 (Fe)を供給することができる。さらに、この方法によると、上記鉄含有 炭素質材料に含まれているカーボンナノチューブを同時に精製することができる。
[0012] 好ましい一つの態様では、上記鉄含有炭素質材料が平均粒径 lOOnm以下 (典型 的には 3〜: LOOnm、好ましくは 3〜50nm、より好ましくは 5〜20nm、例えば 5〜: LOn m)の鉄粒子を含む。このようなサイズの鉄粒子を含む鉄含有炭素質材料によると、 上記炭素質材料 (被精製物)に含まれる不純物の酸化除去効率を高める効果が特 によく発揮され得る。
[0013] 前記カーボンナノチューブを精製することは、さらに無機酸成分を添加することを含 み得る。このことによって、処理対象たる炭素質材料に含まれ得る金属成分を溶解除 去する能力を向上させることができる。このため、カーボンナノチューブの精製をより 効率的に行うことができる。
上記無機酸成分は、炭素質材料に過酸ィ匕水素および鉄材を添加して該炭素質材 料をいつたん処理した後に添加してもよい。この場合には、当該処理後に残留し得る 触媒金属成分や添加した鉄材に由来する鉄粒子を、上記無機酸成分の添加によつ て、効率よく溶解除去することができる。あるいは、過酸ィ匕水素および鉄材とともに上 記無機酸成分を添加してもよい。この場合には、上記無機酸成分の添加によって過 酸化水素の添加量を節約し得、ある ヽは不純物炭素成分を酸化除去する能力を向 上させることができる。
[0014] 本発明は、他の側面として、カーボンナノチューブの精製方法を提供する。この精 製方法は、カーボンナノチューブを含む炭素質材料に鉄材と過酸ィ匕水素とを添加し て該カーボンナノチューブを精製することを特徴とする。
力かる精製方法は、種々の入手方法によって得られた種々の不純物を含む炭素質 材料に適用されて、鉄材および過酸ィ匕水素を添加するといつた簡単な方法により上 述のようにカーボンナノチューブを高純度に精製することができる。
[0015] 本発明によると、また、カーボンナノチューブの精製に使用されるカーボンナノチュ ーブ精製用材料が提供される。該精製用材料は、カーボンナノチューブを含む炭素 質材料に平均粒径 lOOnm以下の鉄粒子が分散した構成を有する。
このようなカーボンナノチューブ精製用材料は、任意の方法により得られたカーボ ンナノチューブ含有炭素質材料を処理して精製されたカーボンナノチューブを得る 用途に好適である。該精製用材料は、典型的には、適当な酸化剤 (特に好ましくは 過酸ィ匕水素)とともに上記カーボンナノチューブ含有炭素質材料に添加して使用さ れる。例えば、上述したいずれかのカーボンナノチューブ製造方法またはカーボンナ ノチューブ精製方法に使用される鉄材として、上記精製用材料を好ましく採用するこ とができる。上記のように微細な鉄粒子は単独では凝集しがちであるところ、上記力 一ボンナノチューブ精製用材料では該鉄粒子が炭素質材料に分散して配置されて いる。このことによって、該鉄粒子を効果的に利用してカーボンナノチューブを効率よ く精製することがでさる。
[0016] ここに開示されるカーボンナノチューブ精製用材料の好ましい一つの態様では、前 記鉄粒子力 アモルファスカーボンに包まれた複合粒子として前記炭素質材料に分 散している。
力かる態様のカーボンナノチューブ精製用材料では、鉄粒子がアモルファスカーボ ンに包まれていることにより、該鉄粒子が変質 (酸化等)から保護されている。したがつ て、該鉄粒子を効果的に利用してカーボンナノチューブを効率よく精製することがで きる。
[0017] ここに開示される他の一つのカーボンナノチューブ精製用材料は、カーボンナノチ ユーブの精製に使用される材料であって、鉄を含む炭素成形物を少なくとも陽極とす る一対の電極間にアーク放電を起こさせて該陽極から生じた蒸発物を堆積させること により得られた材料である。
このようなカーボンナノチューブ精製用材料は、任意の方法により得られたカーボ ンナノチューブ含有炭素質材料を処理して精製されたカーボンナノチューブを得る 用途に好適である。該精製用材料は、典型的には、適当な酸化剤 (特に好ましくは 過酸ィ匕水素)とともに上記カーボンナノチューブ含有炭素質材料に添加して使用さ れる。例えば、上述したいずれかのカーボンナノチューブ製造方法またはカーボンナ ノチューブ精製方法に使用される鉄材として、上記精製用材料を好ましく採用するこ とができる。上記カーボンナノチューブ精製用材料は、典型的には、平均粒径 5〜: LO Onm (例えば 5〜30nm)の鉄粒子力 アモルファスカーボンに包まれた複合粒子とし て分散した構成を有する。このこと〖こよって、該鉄粒子を効果的に利用してカーボン ナノチューブを効率よく精製することができる。 図面の簡単な説明
[0018] [図 1]一実施形態に係る単層カーボンナノチューブ製造に用いられる装置の構成を 示す模式図である。
[図 2]実施例 1で用いた精製前の炭素質材料の TEM写真である。
[図 3]実施例 1による精製後の単層カーボンナノチューブの TEM写真である。
[図 4]実施例 1による精製後の単層カーボンナノチューブの SEM写真である。
[図 5]実施例 1による精製後の単層カーボンナノチューブのラマンスペクトル分析チヤ ートである。
[図 6]比較例による精製後の単層カーボンナノチューブの TEM写真である。
[図 7]実施例 2による精製後の単層カーボンナノチューブの TEM写真である。
[図 8]実施例 1による精製後の単層カーボンナノチューブの TEM写真である。 [図 9]実施例 3による精製後の単層カーボンナノチューブの TEM写真である。
[図 10]比較例による精製後の単層カーボンナノチューブの TGAチャートである。
[図 11]実施例 2による精製後の単層カーボンナノチューブの TGAチャートである。
[図 12]実施例 1による精製後の単層カーボンナノチューブの TGAチャートである。
[図 13]実施例 3による精製後の単層カーボンナノチューブの TGAチャートである。
[図 14] (a)および (b)は、実施例 3で用いたカーボンナノチューブ精製用材料の TE M写真である。
発明を実施するための最良の形態
[0019] 以下、本発明の好適な実施形態を説明する。なお、本明細書において特に言及し ている事項 (例えば、使用する炭素質材料、鉄材、無機酸成分等の組成、鉄材およ び過酸化水素の添加方法や添加量等)以外の事柄であって本発明の実施に必要な 事柄(例えば、カーボンナノチューブの合成法、カーボンナノチューブの回収方法) は、当該分野における従来技術に基づく当業者の設計事項として把握され得る。本 発明は、本明細書に開示されている内容と当該分野における技術常識とに基づいて 実施することができる。
本発明の製造方法は、カーボンナノチューブを含む未精製の(あるいは、さらなる 精製を要する)炭素質材料に鉄材および過酸化水素を添加して該炭素質材料から カーボンナノチューブを高純度に取り出し得るものであればよぐ種々の材料および 構成をその目的のために適用することができる。
[0020] 本発明において用意される炭素質材料は、カーボンナノチューブを含むいずれの 炭素質材料であってもよぐ特に限定されない。したがって該炭素質材料には、従来 公知のいずれかのカーボンナノチューブの合成方法、例えば、アーク放電法、レー ザ蒸発法、化学気相成長法 (すなわち CVD法)によって合成された種々の未精製生 成物(回収物)が含まれ得る。また、ここで用意する炭素質材料は、市販のカーボン ナノチューブ (不純物を含む。)であってもよい。特に、アーク放電法によって得られ た生成物は、欠陥が少なく品質の良いカーボンナノチューブを含むため好ましい。こ こで用意する炭素質材料の好適例として、少なくとも陽極に触媒金属を含有させて得 られた単層カーボンナノチューブを含む炭素質材料が挙げられる。 [0021] 具体的には、例えば以下のようにして実施されるアーク放電法によって、カーボン ナノチューブを含む炭素質材料を得ることができる。
すなわち、触媒金属を含む陽極炭素成形物 (典型的には棒状)と陰極炭素成形物 (典型的には棒状)との間に電圧を印加し、電流を供給する。これにより発生したァー ク放電に伴うアーク熱によって、上記陽極炭素成形物力もカーボン等が蒸発する。蒸 発したカーボンは、電極間の隙間において、アーク熱と触媒作用によって、単層カー ボンナノチューブを含む生成物を形成する。このようにして得られたカーボンナノチュ ーブは、収率が高ぐかつ品質に優れる。
[0022] 陽極炭素成形物に含ませる触媒金属としては、ニッケル (Ni)、コバルト(Co)およ び白金族元素 (Ru, Rh, Pd, Os, Ir, Pt)力 なる群力 選ばれる少なくとも一種の 金属または該金属を主体とする合金が好ましい。これらのうち、ニッケル (Ni)または ニッケル (Ni)を主体とする合金を含む触媒金属の使用が特に好ま 、。力かる触媒 金属の具体例としては、ニッケル触媒、ニッケル Zイットリウム (NiZY)触媒、および ニッケル Zコバルト (NiZCo)触媒が挙げられる。好ましく使用される触媒金属の他 の具体例としては、パラジウム Zロジウム (PdZRh)触媒が挙げられる。
[0023] このようにして用意されたカーボンナノチューブ含有炭素質材料 (すなわち被精製 物)は、これに鉄材および過酸ィ匕水素を添加する前に、いったん洗浄することが好ま しい。この洗浄処理によって、材料間に混在する不純物(例えば、当該炭素質材料 から容易に洗 、流すことのできるアモルファスカーボンや触媒金属等)を除去するこ とができる。力かる洗浄処理は、例えば、アルコール(例えばエタノール)、浄水等の 適当な洗浄液を用いて実施することができる。洗浄回数は限定されず、一回のみの 洗浄でもよく繰り返して洗浄してもよ!ヽ。該洗浄処理に際して超音波振動を付与して もよ 、。このことによって洗浄効果を向上させることができる。
[0024] 次 ヽで、炭素質材料 (被精製物)を回収し、これに鉄材および過酸化水素を添加し て処理する。この処理は、処理対象たる炭素質材料を適当な溶媒中に高度に分散さ せた状態で行うことが好ましい。炭素質材料を溶媒に分散させる手段としては、攪拌 棒による攪拌、ミキサーによる分散、超音波分散等を採用し得るが、これらに限定さ れない。効率よく炭素質材料を分散させ得るという観点から、例えば超音波分散を好 ましく採用することができる。また、炭素質材料を分散させる溶媒としては、酸化処理 に与える影響が少ないことから、水(例えば浄水)を好ましく使用することができる。あ るいは、直接過酸化水素水を溶媒として、これに炭素質材料を分散させてもよい。
[0025] 本発明にお 、て用いられる鉄材は、 、ずれの形態で鉄 (Fe)を含むものであっても よい。例えば、鉄が単体として (金属鉄として)含まれるものであってもよぐ鉄を主体 とする合金として含まれるものであってもよい。あるいは、鉄原子を含む化合物 (鉄化 合物)を鉄材として使用してもよい。力かる鉄化合物としては、鉄原子を含む酸化物( 例えば酸化第一鉄、酸化第二鉄)、鉄原子を含む無機塩 (例えば硝酸鉄、塩化鉄、 硫酸鉄)等を例示することができる。これらのうち好ましい鉄化合物の例として塩ィ匕鉄 が挙げられる。すなわち、本発明の実施に当たり炭素質材料に添加される鉄の形態 は、粒子の状態であってもよぐ溶媒に溶解した状態 (種々の形態のイオンであり得る 。)であってもよい。
[0026] 上記鉄材は、鉄 (Fe)の供給源となり得るものであればよぐ鉄以外の元素(例えば 炭素)を含むものであり得る。このように鉄以外の元素をも含む鉄材の典型例として、 カーボンナノチューブを含む炭素質材料と鉄成分とを包含する鉄材を挙げることがで きる。力かる鉄成分は、金属鉄、鉄合金、鉄化合物のいずれの形態であってもよい。 該鉄成分 (例えば金属鉄)が粒子状の形態で前記炭素質材料に分散して!/、る鉄材 が好ましい。
[0027] ここに開示される方法に使用される鉄材の一好適例として鉄粉末 (粉末状の金属鉄 )が挙げられる。力かる鉄粉末を使用することにより、酸ィ匕能力が効果的に高められ 得る。したがって、カーボンナノチューブ含有炭素質材料 (被精製物)に含まれる不 純物を効率よく酸ィ匕除去することができる。また、一般に鉄粉末は価格が比較的安く 経済的であるので好まし 、。
[0028] なかでも、平均粒径 500nm以下(より好ましくは 300nm以下)の鉄粒子により構成 された鉄粉末の使用が好ましい。このような鉄粉末によると、上記炭素質材料 (被精 製物)に含まれる不純物の酸化除去効率を高める効果が特によく発揮され得る。該 鉄粉末を構成する鉄粒子の平均粒径の下限は特に限定されない。入手容易性、価 格、取扱性および分散性 (例えば、該鉄粉末を炭素質材料とともに溶媒に分散させ て処理する場合における該溶媒への分散性)のうち一または二以上の観点から、通 常は上記平均粒径が 50nm以上である鉄粉末が好ましく使用される。
[0029] ここに開示される方法に使用される鉄材の他の好適例として、カーボンナノチュー ブを含む炭素質材料に平均粒径 lOOnm以下(典型的には 3〜: LOOnm、好ましくは 3〜50nm、より好ましくは 5〜20nm、例えば 5〜: LOnm)の鉄粒子が分散した鉄含 有炭素質材料が挙げられる。カゝかる鉄含有炭素質材料の好ま ヽ一つの態様では、 上記炭素質材料に該鉄粒子が略均一に分散している。換言すれば、上記炭素質材 料の全体によく散らばって該鉄粒子が存在している。このように微細な鉄粒子は、過 酸化水素等の酸化剤とともに用いられてカーボンナノチューブ含有炭素質材料 (被 精製物)に含まれる不純物を効率よく酸化除去する性能に優れる一方、単独の状態 では該鉄粒子が凝集しがちである。凝集した状態にある鉄粒子は本来の効果を十分 に発揮することができな ヽ。上記サイズの鉄粒子が炭素質材料に分散した鉄含有炭 素質材料によると、微細な鉄粒子を効果的に利用してカーボンナノチューブを効率よ く精製することがでさる。
このような鉄含有炭素質材料は、カーボンナノチューブを含む他の炭素質材料 (典 型的には、鉄を含まない炭素質材料)を精製して、精製されたカーボンナノチューブ (以下「精製カーボンナノチューブ」とも!、う。 )を得るためのカーボンナノチューブ精 製用材料として把握され得る。
[0030] 上記カーボンナノチューブ精製用材料 (または、鉄材としての鉄含有炭素質材料) の好ましい一つの態様では、上記鉄粒子が、アモルファスカーボンに包まれた複合 粒子として分散して ヽる。これにより該鉄粒子が変質 (酸化等)から保護されて!ヽるの で取り扱いが容易である。例えば、上記精製用材料の使用や保存を常に不活性ガス (窒素ガス等)雰囲気下で行う等の特別な措置をとらなくても(例えば空気中で取り扱 つても)、該精製用材料に含まれる鉄粒子を金属鉄の状態 (未酸化の状態)に容易に 維持することができる。
このようにアモルファスカーボンで覆われた微細な鉄粒子を有するカーボンナノチ ユーブ精製用材料 (鉄材)と過酸化水素等の酸化剤とを被精製物 (カーボンナノチュ ーブを含む炭素質材料)に添加すると、該鉄粒子を覆うアモルファスカーボンが酸ィ匕 除去されて、該鉄粒子 (典型的には、金属鉄の状態にある鉄粒子)が剥き出しとなる 。この鉄粒子を効果的に利用してカーボンナノチューブを効率よく精製することがで きる。かかる観点から、上記鉄粒子を覆うアモルファスカーボンの厚みは比較的薄い ことが好ましい。例えば、平均厚さが概ね 2〜5nmのアモルファスカーボン層で覆わ れた鉄粒子を含むカーボンナノチューブ精製用材料 (鉄材)が好適である。
[0031] また、ここに開示される方法に使用される鉄材として、従来公知のカーボンナノチュ ーブの製造方法において、触媒金属としての鉄を含む陽極を用いたアーク放電法に よって得られた生成物を好ましく使用することができる。このように鉄を含む陽極を用 いたアーク放電法による生成物 (鉄含有炭素質材料)には陽極から蒸発した鉄成分 が含有されている。力かる鉄成分を、ここに開示される方法における鉄供給源として 好ましく使用することができる。したがって、上記アーク放電法により得られた鉄含有 炭素質材料は、カーボンナノチューブを含有する他の炭素質材料 (典型的には、鉄 を含まな ヽ炭素質材料)を精製して精製カーボンナノチューブを得るためのカーボン ナノチューブ精製用材料として把握され得る。
カゝかる鉄含有炭素質材料の典型的な態様では、上記鉄成分が粒子状として含まれ ている。好ましくは、上記鉄成分が金属鉄の粒子として含まれている。該粒子がよく 分散していることが好ましい。その粒子の平均粒径は、例えば lOOnm以下(典型的 には 3〜: LOOnm、好ましくは 3〜50nm、より好ましくは 5〜20nm、例えば 5〜: LOnm )であり得る。このようなサイズの鉄粒子を含む鉄含有炭素質材料によると、上記炭素 質材料 (被精製物)に含まれる不純物の酸化除去効率を高める効果が特によく発揮 され得る。
[0032] 上記アーク放電法に使用する陽極は、鉄成分の粉末 (鉄源粉末)と炭素粉末とを含 む混合材料を所定の形状 (典型的には棒状)に成形したものであり得る。その成形方 法は特に限定されず、例えば一般的な圧粉成形法を採用することができる。鉄源粉 末としては鉄粉末を好ましく使用することができるが、これに限定されない。少なくとも アーク放電による生成物 (鉄含有炭素質材料)にお ヽて鉄粒子を構成し得る鉄源粉 末であればよい。鉄源粉末と炭素粉末との混合割合は、鉄と炭素との原子比 (FeZ C)が例えば 0. 1〜: LOat% (より好ましくは 0. 2〜5at%)となる割合とすることができる 。力かる陽極を用いたアーク放電法による生成物には、通常、陽極における鉄と炭素 との原子比 (FeZC)と同程度の比率で鉄および炭素 (カーボンナノチューブを構成 している炭素および不純物炭素を包含する。 )が含まれている。
[0033] ここに開示されるカーボンナノチューブ精製用材料または鉄含有炭素質材料 (鉄材 )としては、鉄を含む炭素成形物を少なくとも陽極とする一対の電極間にアーク放電 を起こさせて該陽極力 生じた蒸発物を堆積させることにより得られた生成物をその まま使用する (被精製物としての炭素質材料に添加する)ことができる。また、被精製 物としての炭素質材料と同様に、該生成物をいつたん洗浄した後に使用してもよい。 あるいは、所望により該生成物に酸化処理を施した上で使用することもできる。例え ば、該酸ィ匕処理によって鉄粒子を覆うアモルファスカーボンの一部を除去し、該鉄粒 子を覆うアモルファスカーボンの厚みを小さくするとよい。このことによって、このカー ボンナノチューブ精製用材料 (鉄材)の使用時にお!、て、鉄粒子を覆うアモルファス カーボンをより容易に除去することができる。その結果、より効率よくカーボンナノチュ ーブを精製することができる。あるいは、上記酸化処理によって、鉄粒子の少なくとも 大部分が剥き出しになる程度にアモルファスカーボンを除去してもよい。このような力 一ボンナノチューブ精製用材料 (鉄材)によると、より効率よくカーボンナノチューブを 精製することができる。ただし、剥き出しになった (アモルファスカーボンで覆われて V、な 、)鉄粒子の酸ィ匕等を防止するため、該カーボンナノチューブ精製用材料 (鉄 材)は非酸ィ匕性雰囲気 (好ましくは不活性ガス雰囲気)中で取り扱うことが好ましい。
[0034] このような鉄材の添加量は特に限定されない。例えば、炭素質材料 100質量部に 対し、該鉄材を鉄 (Fe)換算として凡そ 0. 5〜20質量部 (好ましくは凡そ 1〜15質量 部、より好ましくは凡そ 7〜13質量部)の割合で添加するとよい。鉄材として例えば鉄 粉末を使用する場合には、上記添加割合を好ましく採用することができる。また、鉄 材として鉄含有炭素質材料を使用する場合には、炭素質材料 100質量部に対し、該 鉄材全体の質量 (すなわち炭素質材料を含む。)が凡そ 2〜50質量部 (好ましくは 5 〜20質量部)となる割合で添加するとよ!/、。
[0035] 本発明にお 、て用いられる過酸ィ匕水素は、従来公知の種々の製造方法によって 得られたいずれの過酸ィ匕水素であってもよぐ特に制限されない。例えば、硫酸 (H SO )とアンモニア(NH )とから得た硫酸水素アンモ-ゥム(NH HSO )の水溶液を
4 3 4 4 電解酸ィ匕して得られた過酸ィ匕水素を用いることができる。また、市販の過酸化水素水
(通常 30%水溶液)をそのままの状態 (例えば、そのままの濃度)で用いてもよい。 市販の過酸化水素水を使用して、該過酸ィ匕水素水を含む溶液 (例えば水溶液)に 炭素質材料および鉄材を浸潰した状態で精製処理を行う場合、該溶液における過 酸化水素水の含有率は特に限定されず、種々の含有率にお!、て処理することができ る。例えば、過酸化水素水の含有率を、炭素質材料を含む溶液 (処理液)全体の 5〜 50質量% (好ましくは 10〜30質量%、より好ましくは 15〜25質量%)とするとよい。 力かる含有率となるように炭素質材料に過酸ィ匕水素水を添加することが好ま U、。な お、後述するような加熱還流条件で精製を行う場合には、該加熱還流中に全液量( 処理液の量)が減少しがちであるので、適宜過酸ィ匕水素水を追加するとよい。
[0036] これら鉄材および過酸ィ匕水素を炭素質材料に添加する態様は、これらと該炭素質 材料とを共存させる (典型的には、該炭素質材料に鉄材および過酸化水素を含ませ る)ことができればよぐ特に限定されない。好ましくは、炭素質材料を分散させた溶 液中に、鉄材および過酸ィ匕水素を順次にあるいは同時に添加する。鉄材として鉄粉 末を用いる場合には、該鉄粉末を過酸ィ匕水素と同時に添加する力、または過酸ィ匕水 素よりも先に鉄粉末を添加することが好まし 、。
また、鉄材として上述のような鉄含有炭素質材料を使用する場合には、炭素質材料 ともに鉄含有炭素質材料をあらかじめ溶媒中に分散させておき (鉄含有炭素質材料 を分散させる方法としては、炭素質材料と同様の各種分散方法を適宜採用すること ができる。)、この分散液に過酸ィ匕水素を添加することが好ましい。このように、鉄材と しての鉄含有炭素質材料を被精製物たる炭素質材料 (典型的には、鉄を含まない炭 素質材料)とともに溶媒に分散させておくことで、これら二種の炭素質材料に含まれる カーボンナノチューブを効率よく精製することができる。
[0037] 好ま 、一つの態様では、上記精製処理を加熱還流条件下で行う。加熱条件は特 に限定されな!ヽが、好ましくは処理物 (処理液)が大気圧中で沸騰し得るまで加熱す る(すなわち、処理液の沸点に達するまで加熱する)。このとき、過酸化水素を逐次追 加補給しながら還流を行うことが好ましい。なお、鉄材については追加補給の必要は ないが、過酸化水素と同様に逐次追加補給してもよい。かかる加熱還流条件下にお いて精製処理を行うことによって、カーボンナノチューブ精製効率をより高めることが できる。
所望により、さらに無機酸を添加して炭素質材料を処理することができる。無機酸と しては、塩酸、硝酸、硫酸、亜硫酸、亜硝酸等を特に制限なく用いることができる。こ のうち好ましい無機酸として塩酸が例示される。無機酸の濃度は特に限定されない。 無機酸の添カ卩は、鉄材および過酸ィ匕水素の添加の後に行うことができる。この場合 は、無機酸を添加する前に所定時間の加熱還流処理を行った後、無機酸を添加し、 その添加後さらに加熱還流処理を継続するとよい。あるいは、鉄材および過酸化水 素の添加と同時に無機酸を添加してもよい。すなわち、鉄、過酸化水素および無機 酸の存在下で炭素質材料の加熱還流処理を開始することができる。
[0038] 上述のような加熱還流処理終了後、精製されたカーボンナノチューブを回収する。
その回収手段は特に限定されない。例えば、加熱還流処理物を静置した後に沈殿 物を分画濾過することによって回収してもよぐ遠心分離によって回収してもよぐカロ 熱還流処理物を吸引濾過することにより回収してもよぐこれらの方法を組み合わせ て回収してもよい。得られた回収物は、さらに洗浄液によって洗浄することが好ましい 。この洗浄処理によって、酸化または溶解された不純物を、回収されたカーボンナノ チューブ力も分離する(洗い流す)ことができる。洗浄液としては、不純物の少ない水 またはアルコール (例えばエタノール)を好ましく使用することができる。かかる洗浄の 際、洗浄効果を向上するために超音波振動を付与してもよい。この洗浄工程は、一 回のみ行ってもよぐ複数回繰り返して行ってもよい。
洗浄後のカーボンナノチューブは、例えば、吸引濾過等の手段によって回収するこ とができる。精製されたカーボンナノチューブの収率は、炭素質材料自体の製造手 段にもよるが、例えば、精製前の炭素質材料の質量を 100%として、その 5〜80%、 好ましくは 10〜50%、特に 10〜30%程度に相当する質量の精製カーボンナノチュ ーブが得られる収率であり得る。
[0039] 以下、本発明に関するいくつかの実施例を説明するが、本発明をかかる実施例に 示すものに限定することを意図したものではない。 [0040] <実施例 1 >
精製されたカーボンナノチューブの具体的な製造例について説明する。まず、使用 した単層カーボンナノチューブの製造装置について、その一例を図面を参照して説 明する。
[0041] (1)製造装置;
図 1に単層カーボンナノチューブ製造装置 1の一構成例を示す。この装置 1は、大 まかに言って、反応容器 3と、反応容器 3内に配置された一対の電極 13, 15と、反応 容器 3にガスを供給するガス供給手段 7とから構成される。
[0042] 反応容器 3は密閉可能な耐圧容器であり、例えばステンレス鋼により構成されてい る。
その反応容器 3内に陽極 13および陰極 15が配置されている。これらの電極 13, 1 5はいずれも棒状に形成されている。陽極 13は、反応容器 3内においてその中心軸( 長軸)を略垂直方向に向けて配置されている。一方、陰極 15は、陽極 13の中心軸に 対して斜め(例えば略 20〜50° 、特に 30° )の角度をもって、その一端 16が陽極 1 3の一端 14に向かい合う位置に配置されている。すなわち、陽極 13の中心軸の延長 線と陰極 15の中心軸の延長線とが所定の角度で交差するように配置されている。な お、各電極 13, 15の形状はスティック状に限られず、これらの電極が互いに向力 ヽ 合う箇所 (例えば、対向する面)があればよい。したがって、これらの電極の一方また は両方が例えばタブレット状であつてもよい。陽極 13と陰極 15との隙間のサイズは特 に限定されない。例えば、アーク放電による単層カーボンナノチューブ発生効率が高 い 0. 1〜: L0mm、特に 0. 5〜5mm程度が好適である。なお、図 1では陽極 13と陰 極 15とが鋭角で配置された例を示している力 陽極 13と陰極 15との一端が互いに 向かい合っていればよぐ図 1に示す配置に限定されない。例えば、陽極 13と陰極 1 5とが互いに水平方向に向力 、合って配置されて 、てもよく、ある 、は垂直方向に向 カ^、合って配置されて 、てもよ!/、。
陽極 13および陰極 15には、陽極 13と陰極 15の間にアーク放電を発生し得る電圧 を印加可能な直流電源 23が接続されている。なお、ここでは直流電源を用いた例を 示している力 交流電源を用いることもできる。 [0043] 陽極 13は、例えば、直径約 6mm、長さ約 75mmのサイズの耐熱性導電材料であ つてアーク放電によりカーボンを蒸発可能な材料力も構成されて 、る。そのような材 料として種々の炭素材料を用いることができる。例えば、グラフアイトに単層カーボン ナノチューブ合成用触媒を含有させた炭素材料が好ましく使用され得る。かかる触媒 は、例えば、ニッケルもしくはニッケル合金 (好ましくはニッケル Zイットリウム)、または コバルト等であり得る。このような陽極 13は、例えば、グラフアイト粉末に触媒粉末 (例 えばニッケル Zイットリウム粉末)を配合して圧粉成形することにより得ることができる。 陽極 13における陰極 15の対向面 (先端部) 14とは反対側の端部(基部) 19には、 ソレノイド 22が接続されている。このソレノイド 22は、図示しない電極保持部に保持さ れた陽極 13 (電極保持部)を垂直方向(すなわち、陰極 15の対向面 (先端部) 16方 向、特に図 1においては下方向)に移動可能としている。このソレノイド 22を利用して 、カーボン蒸発による陽極 13の消耗にともなって陽極 13を移動させることにより、両 電極 13, 15間の隙間を一定に保持することができる。
[0044] 陰極 15は、例えば、直径約 10mm、長さ約 100mmのサイズの耐熱性導電材料か ら構成されている。該耐熱性導電材料としては、例えば、種々の炭素材料、金属材 料 (例えば銅)等を適宜選択して用いることができる。なお、電源として交流電源を用 いる構成では、陰極 15として、陽極 13と同様に炭素(例えばグラフアイト)に単層カー ボンナノチューブ合成用触媒を含有させたものが好ましく使用される。
この陰極 15にはモータ 21が接続されている。モータ 21は、図示しない電極保持部 に保持された陰極 15を、その長軸を中心として回転可能に設置されている。
[0045] 反応容器 3内に雰囲気ガスを供給するガス供給手段 7は、雰囲気ガス供給用のボ ンべ 27A, 27Bを有する。これらのボンべ 27A, 27Bは、反応容器 3の一部(ここでは 底面 30)に設けられたガス供給口 31に接続され、そのガス供給口 31から反応容器 3 内に雰囲気ガスを導入可能に設置されている。ボンべ 27A, 27Bカゝらガス供給口 31 に至る経路にはそれぞれバルブ 28A、 28Bが設けられている。このバルブ 28A, 28 Bの開閉によって、ボンべ 27Aおよび Zまたはボンべ 27Bから反応容器 3への雰囲 気ガス供給量および供給タイミングを制御することができる。
[0046] なお、後述するカーボンナノチューブ調達工程では雰囲気ガスとしてヘリウムガス を用いているが、雰囲気ガスの種類はこれに限定されない。例えば、雰囲気ガスとし てヘリウムガス以外の不活性ガスを用いてもよい。該不活性ガスとしては、窒素ガス、 ネオンガス、アルゴンガス、クリプトンガス、キセノンガス等を例示することができる。こ れら不活性ガスのうち一種類のみを用いてもよぐ二種以上の不活性ガスを任意の 割合で使用してもよい。あるいは、雰囲気ガスとして、上述した一種または二種以上 の不活性ガスと水素ガスとの混合ガスを用いてもよい。このように、雰囲気ガスとして 複数種類のガスの混合気体を用いてもょ 、。
[0047] 図 1に示すボンべ 27A, 27Bは、同じ種類の雰囲気ガス(例えばヘリウムガス)を供 給するものであり得る。力かる構成によると、例えば、ノ レブ 28Aを開状態としてボン ベ 27Aから反応容器 3内に雰囲気ガスを供給しつつ、バルブ 28Bを閉状態としてボ ンべ 27Bを交換する(典型的には、空になったボンべを新しいものと交換する)ことが できる。また、ボンべ 27Aおよびボンべ 27B力も異なるガスを供給してもよい。この場 合には、例えばバルブ 28A, 28Bの開度を調節することにより、ボンべ 27Aから供給 されるガス(例えばアルゴンガス)とボンべ 27B力も供給されるガス(例えば水素ガス) との混合比を調整することができる。
[0048] 排出部 11は、反応容器 3内のガスを流通可能に附設されており、反応容器 3の一 部(ここでは底面 30)に接続されている。排出部 11に備えられる真空ポンプ 49によつ て反応容器 3内のガスを吸引することによって、反応容器 3内のガスを排出口 45から 容器外に排出することができる。また、ガス供給手段 7からの雰囲気ガス供給量と排 出部 11からのガス排出量との兼ね合いによって、反応容器 3内の雰囲気ガス圧力を 調整することができる。
[0049] 直流電源 23ならびにモータ 21およびソレノイド 22は、所定のプログラムまたはマ- ュアル操作に基づいて動作する制御機構 53からの制御指令が入力される入出力回 路 55に接続されている。このこと〖こよって、電圧印加による陽極 13の移動および陰 極 15の回転を制御可能に構成されている。したがって、陽極 13および陰極 15間に 印加された電圧からアーク放電状態を制御機構 53で演算し、アーク放電で発生した 単層カーボンナノチューブ含有生成物の成長に応じて、陽極 13の移動、陰極 15の 回転を調整する制御信号を入出力回路 55からモータ 21およびソレノイド 22に出力 することができる。このような態様によると、安定した条件下でアーク放電させることが 可能となり、品質の揃った (および所望により均一に広く分散した薄層の)単層カーボ ンナノチューブ含有生成物 (すなわち、本実施例における炭素質材料)を得ることが できる。
[0050] (2)カーボンナノチューブを含む炭素質材料の調達;
このような構成の製造装置 1を用いて単層カーボンナノチューブを合成した。まず、 上述したような陽極 13および陰極 15を用意し、あら力じめ設定した所定間隔が実現 されるように、これらの電極 13, 15をそれぞれ反応容器 3内の図示しない電極保持 部にセットした。そして、反応容器 3に設けられた排出部 11のバルブ 44を開け、当該 排出口 45に接続する真空ポンプ 49を作動させて反応容器 3内のガスを排気した。こ れにより反応容器 3内の圧力を減少させた。容器 3内が 13〜: L 3 X 10— 3Pa程度の高 真空に減圧されたらバルブ 44を絞り、ガス供給手段 7から反応容器 3内に雰囲気ガ スを導入した。ここでは雰囲気ガスとしてヘリウムガスを使用した。そして、真空ポンプ 49とガス供給手段 7とによって、反応容器 3内におけるヘリウムガスの圧力が 6. 6 X 1 04Pa程度に維持されるように、反応容器 3内のガス圧 (雰囲気ガス圧力)を調整した。
[0051] そして、陽極 13と陰極 15との間に電圧を印加し、直流電源 23から電流 (典型的に は、 30〜70A、例えば 60A)を供給した。この結果発生したアーク放電によるアーク 熱で陽極 13からカーボンを蒸発させた。ここで印加する電圧は、所望するカーボン 蒸発速度に応じて適宜選択し得る。ここでは該電圧を 30〜40V程度に設定した。ま た、印加された電圧から、アーク放電状態を制御機構 53で演算し、アーク放電による カーボンの蒸発 (すなわち電極の消耗)に応じて制御信号を入出力回路 55からモー タ 21およびソレノイド 22に出力し、陽極 13の移動および陰極 15の回転を行った。
[0052] このようなアーク放電法により、電極間の隙間において、アーク熱と触媒作用によつ て単層カーボンナノチューブを含む生成物 60が形成された。この生成物 60は、供給 された雰囲気ガスの気流によって反応容器 3内に広がって 、た(図 1参照)。かかる力 一ボンナノチューブの合成時間(電圧を印加する時間)は特に限定されないが、例え ば、 5〜20分、好ましくは 10〜15分、特に 11〜13分程度であり得る。ここでは合成 時間を 13分とした。 [0053] 本装置を作動して単層カーボンナノチューブを所定量堆積させた後、得られた単 層カーボンナノチューブ含有生成物 (すなわち、本実施例に係る炭素質材料) 60を 反応容器 3から取り出した。ここでは、反応容器 3前面に開閉可能に設けられた図示 しない蓋部を開き、炭素質材料 60を例えばピンセット等で容器 3内から剥離して取り 出した。本装置により生成した炭素質材料 60は、反応容器 3の全面に広く均一に分 散して 、るため、このようにピンセット等で摘まんで取り出す態様によっても容易に反 応容器 3から取り出すことができる。また、陽極 13が垂直方向に配置されるとともに、 陰極 15が陽極 13に対して鋭角に配置されるため、アーク放電が斜め方向に起こり、 単層カーボンナノチューブを含まな 、陰極堆積物を少なくすることができた。このた め、カーボンナノチューブの生成速度が向上した。すなわち、本実施例では、約 lg Z分以上の生成速度を実現した。
[0054] (3)カーボンナノチューブの精製;
上記のようにして得られた生成物 (炭素質材料)には、単層カーボンナノチューブと ともに、触媒 (例えばニッケル Zイットリウム粉末)および不純物炭素が含まれていた。 かかる生成物に対し、これら触媒および不純物炭素の含有量を低減する処理、すな わちカーボンナノチューブの精製処理を施した。その精製処理の手順を以下に示す まず、得られた炭素質材料 200mgとエタノール 50mlとを 100mlビーカーに入れ、 30分間の超音波処理 (超音波振動を付与する処理)を施した。これを吸引濾過して 流体を除去し、炭素質材料を回収した。
その回収された炭素質材料に蒸留水 200mlを加え、 4分間ミキサーにかけた。より 具体的には、まず 2分間ミキサーにかけ、 1分間休憩し、再び 2分間ミキサーにかけた 。このようにして得られた炭素質材料分散液を 100mlづつに分け、第一被精製物お よび第二被精製物とした。
[0055] この第一被精製物を加熱還流条件で処理した。すなわち、還流用パイプを備えた フラスコに上記第一被精製物を入れ、平均粒径約 0. 2 111の鉄微粒子1011^と、濃 度 30%の市販の過酸ィ匕水素水 20mlとを加えて加熱した。フラスコ内の液が沸騰し てから 20分間経過後に過酸ィ匕水素水 40mlを追加した。さらに 20分間経過後に過 酸ィ匕水素水 40mlを追加し、さらに 20分間経過後に過酸ィ匕水素水 50mlを追加した 。それから 300分経過後に加熱を止め、還流処理を終了させた。冷却後、上澄み液 を排出させて還流処理液を得た。
第二被精製物についても同様の還流処理を行って還流処理液を得た。
[0056] これら第一被精製物および第二被精製物から得られた還流処理液を合わせたもの に、遠心分離機(l lOOOrpm)を用いて 30分間の遠心分離処理を施し、その沈殿物 を回収した。回収した沈殿物に塩酸 (濃度:約 36%) 100mlを加え、 5分間の超音波 処理を行った後、 12時間放置した。 12時間経過後、静か〖こ上澄み液を捨て、単層 カーボンナノチューブを含む画分を回収した。
その回収画分に蒸留水 200mlをカ卩えて 10分間の超音波処理を行い、 2時間ほど 静置した後に上澄み液を捨て、再度蒸留水 200mlを加えて 10分間の超音波処理を 行った。同様に 2時間ほど放置した後に上澄み液を捨て、再び蒸留水 200mlをカロえ て 10分間の超音波処理を行った。これを 2時間ほど放置した後、上澄み液を捨て、 今度はエタノールをカ卩えて 10分間の超音波処理を行った。その後、吸引濾過するこ とにより、精製した単層カーボンナノチューブを得た。得られた精製物の質量は、精 密天秤で秤量したところ、 28mgであった。収率は 14%であった。
[0057] (4)得られたカーボンナノチューブの性状観察;
上記(3)の精製工程によって得られた単層カーボンナノチューブの観察を透過電 子顕微鏡(TEM : Transmission Electron Microscope,日立株式会社製、型式 H700 0)および走査電子顕微鏡(SEM : Scanning Electron Microscope,株式会社トプコン 製、型式 ABT— 150F)によって行った。また、精製効果を比較評価するために、上 記(2)の製造工程にお ヽて得られた精製前の炭素質材料を透過電子顕微鏡 (TEM )にて観察した。それらの写真を図 2〜4に示す。図 2は精製前の炭素質材料の TEM 写真、図 3は精製後の単層カーボンナノチューブの TEM写真、図 4は精製後の単層 カーボンナノチューブの SEM写真である。
[0058] 図 2に示されるように、精製前の炭素質材料には触媒金属であるニッケル Zイツトリ ゥムのナノ粒子がカーボンナノチューブの表面に多量に混在しており、その純度が低 いことが判る。また、カーボン粒子やグラフアイトが不純物(不純物炭素)として観察さ れた。そして、上記金属ナノ粒子は不純物炭素によって厚く覆われていた。
これに対して、本実施例により精製されたカーボンナノチューブ(図 3, 4)では、これ ら触媒金属粒子や炭素質の不純物がほとんど観察されず、その表面が清浄でカー ボンナノチューブの純度が高いことが判る。また、精製の前後でカーボンナノチュー ブの構造に変化は観察されず、この精製処理によってカーボンナノチューブにダメ ージが与えられることはなかったことが判る。
[0059] また、本実施例により得られた精製後のカーボンナノチューブのラマンスペクトルを 観察した。ラマンスペクトルの観察には、 Jobin Yvon株式会社製のラマン分光測定 装置 (型番「RAMANOR T64000」)を使用した。その結果 (チャート)を図 5に示 す。この精製されたカーボンナノチューブのラマンスペクトルには、 1593cm 1付近に シャープなピークが観察された。また、 1340cm 1付近には弱いピークし力観察され なかった。したがって、得られたカーボンナノチューブは、高純度であって、かつ高い 結晶性を示すことが判る。
[0060] <比較例 >
上記(3)の精製工程において鉄微粒子を使用しな力つた点以外は実施例 1と同様 にして、上記 (2)で調達したカーボンナノチューブ含有炭素質材料の精製を行った。 すなわち本比較例では、上記炭素質材料 (被精製物)に過酸ィ匕水素水を添加したが 、鉄材を添加することなく精製処理を行った。
[0061] <実施例 2>
本実施例では、上記(3)の精製工程において、平均粒径約 0. 2 mの鉄粒子に代 えて平均粒径約 2 mの鉄粒子を使用した。その他の点については実施例 1と同様 にして、上記 (2)で調達したカーボンナノチューブ含有炭素質材料の精製を行った。 すなわち本実施例では、上記炭素質材料 (被精製物)に過酸化水素水と平均粒径 約 2 μ mの鉄粒子 (鉄材)とを添加して精製処理を行った。
[0062] <実施例 3 >
次に、上記(2)において得られたカーボンナノチューブ含有炭素質材料の他の精 製例を説明する。この製造例は、鉄を不純物として含む炭素質材料 (鉄含有炭素質 材料)を鉄材に用いて上記炭素質材料を精製した例である。 [0063] まず、鉄を不純物として含む炭素質材料を用意した。この鉄含有炭素質材料は、上 記 (2)に示した炭素質材料の製造手順と実質同じ手順で作製した。変更点は、陽極 13においてニッケル Zイットリウム触媒に代えて鉄触媒を含有させた点、および、雰 囲気ガスとしてヘリウムガスに代えて全圧 2. 6 X 104Paのアルゴンガスと水素ガスとの 1: 1 (体積比)の混合ガスを採用した点である。
[0064] そして、上記 (2)により得られた炭素質材料 180mgと上記鉄含有炭素質材料 (鉄 材) 20mgとエタノール 50mlとを 100mlビーカーに入れて 30分間の超音波処理を施 した後、これら炭素質材料 (以下、「混合炭素質材料」という)を吸引濾過により回収し た。
その回収した混合炭素質材料に蒸留水 200mlを加え、 4分間ミキサーにかけた。よ り具体的には、まず 2分間ミキサーにかけ、 1分間休憩し、再び 2分間ミキサーにかけ た。このようにして得られた混合炭素質材料分散液を 100mlづつに分け、第一被精 製物および第二被精製物とした。
[0065] この第一被精製物を上記フラスコに入れ、ここに上記市販の過酸ィ匕水素水 20ml を加えた。そして、上記(3)で説明したのと同様の還流処理を行った。すなわち、フラ スコ内の液が沸騰してから 20分間経過後に過酸ィ匕水素水 40mlを追加し、さらに 20 分間経過後に過酸ィ匕水素水 40mlを追加し、さらに 20分間経過後に過酸ィ匕水素水 5 Omlを追加した。それから 120分経過後に加熱を止め、還流処理を終了させた。冷 却後、フラスコの内容物に 10分間の超音波処理を施した。その後 2時間放置し、上 澄み液を排出させて還流処理液を得た。
第二被精製物についても同様の還流処理を行って還流処理液を得た。
[0066] これら第一被精製物および第二被精製物から得られた還流処理液を合わせたもの に、遠心分離機(l lOOOrpm)を用いて 30分間の遠心分離処理を施して沈殿物を回 収した。この沈殿物に塩酸 (濃度:約 36%) 100mlを加え、 5分間の超音波処理を行 つた後、 12時間放置した。 12時間経過後、静かに上澄み液を捨て、単層カーボンナ ノチューブを含む画分を回収した。
その回収画分に蒸留水 200mlをカ卩えて 10分間の超音波処理を行い、 2時間ほど 放置した後に上澄み液を捨て、再度蒸留水 200mlを加えて 10分間の超音波処理を 行った。同様に 2時間ほど放置した後に上澄み液を捨て、再び蒸留水 200mlをカロえ て 10分間の超音波処理を行った。これを 2時間ほど放置した後、上澄み液を捨て、 今度はエタノールをカ卩えて 10分間の超音波処理を行った、その後、吸引濾過するこ とにより、精製した単層カーボンナノチューブを得た。得られた精製物の質量は、精 密天秤で秤量したところ、 42mgであった。収率は 21%であった。
[0067] く精製した単層ナノチューブの性状観察 >
以上の実施例および比較例により得られた精製物の TEM写真を図 6〜図 9に示す 。これらの TEM写真と各実施例および比較例との対応関係を、その精製条件の概 略とともに表 1にまとめた。表中、実施例または比較例において過酸ィ匕水素の欄に「 有」と示されているのは、当該実施例または比較例において過酸ィ匕水素を添加して 精製を行ったことを表している。また、比較例において鉄材の欄に「一(ハイフン)」力 S 表示されて!、るのは、該比較例にぉ 、て鉄材を添加することなく精製を行ったことを 表している。なお、図 8は、他の実施例および比較例との対比を容易にするために、 実施例 1により得られた精製物を図 3とは倍率を変えて観察した TEM写真である。
[0068] [表 1]
表 1
Figure imgf000025_0001
これら図 6〜図 9の比較からわ力るように、過酸化水素のみを使用した比較例(図 6) に比べて、過酸ィ匕水素と鉄材とを添加した実施例 1〜3 (図 8,図 7および図 9)による と、該比較例による精製物よりも明らかに高度に精製された精製物 (精製カーボンナ ノチューブ)が得られた。なかでも、鉄材として平均粒径力 S小さい鉄粒子を用いた実 施例 1 (図 8)では、より平均粒径が大きな鉄粒子を用いた実施例 2 (図 7)に比べて明 らかに高品質の精製物が得られた。そして、鉄材として鉄含有炭素質材料を用いた 実施例 3では、さらに顕著に高品質の(高度に精製された)精製物が得られた。 [0070] <精製した単層ナノチューブの TGA測定 >
以上の実施例および比較例により得られた精製物につき、熱重量測定 (TGA: The rmo Gravimetric Analysis)を行った。この TGA測定には、島津製作所社製の TGA 測定装置 (型番「DTG - 60M」)を使用した。それらの測定結果 (チャート)を図 10〜 図 13に示す。図 10は比較例により得られた精製物についての TGA測定結果であり 、図 11は実施例 2により得られた精製物、図 12は実施例 1により得られた精製物、図 13は実施例 3により得られた精製物につ 、ての TGA測定結果である。これらの TG A測定結果と各実施例および比較例との対応関係を表 1に併せて示した。
[0071] これらの TGA測定結果にぉ ヽて主ピークよりも低温側(470°C前後)に表れて!/、る ピークは、精製物中に残留するアモルファスカーボンの分解に起因するものと考えら れる。この低温側のピークは比較例による精製物(図 10)の TGAチャートではかなり 大きぐそれよりは小さいものの実施例 2による精製物(図 11)の TGAチャートにもは つきりと表れている。一方、実施例 1による精製物の TGAチャートでは上記低温側の ピークは痕跡程度にまで減少している。そして、実施例 3による精製物の TGAチヤ一 トでは上記低温側のピークは該チャートに表れな 、程度にまで減少して 、る。このよ うに、各実施例および比較例により得られた精製物についての TGA測定結果は、そ れらの精製物の TEMによる観察結果とよく一致するものであった。
[0072] <鉄含有炭素質材料の性状観察 >
実施例 3において鉄材として使用した鉄含有炭素質材料を TEMにより観察した。 その TEM写真を図 14 (a)および図 14 (b)に示す。図 14 (b)は、図 14 (a)の一部を 拡大して観察したものである。
図 14 (a)には、この鉄含有炭素質材料を構成するカーボンナノチューブの表面に 多数の微細な鉄粒子 (黒 、点として表れて 、る。)が分散して付着して 、る様子が示 されている。それらの鉄粒子は、該炭素質材料の全体によく散らばって、略均一に配 置されている。すなわち、著しい凝集を示すことなく薄く散らばつている。該鉄粒子の 平均粒径は概ね 5〜 10nmの範囲にある。
[0073] また、図 14 (b)には、上記鉄粒子がアモルファスカーボンによって薄く覆われた様 子が示されて!/、る。該鉄粒子を覆うアモルファスカーボンの平均厚みは概ね 2〜5n mである。このように薄いアモルファスカーボン層は、酸化処理 (例えば過酸化水素を 用いた処理)によって容易に除去され得る。このことによって内部の鉄粒子が剥き出 しとなる。上記実施例 3によると、力かる鉄粒子と過酸ィ匕水素とによって被精製物中の 不純物が効率よく酸ィヒ除去されて、高度に精製されたカーボンナノチューブ (精製物 )が得られたものと推察される。

Claims

請求の範囲
[I] 精製されたカーボンナノチューブを製造する方法であって、
カーボンナノチューブを含む炭素質材料を用意すること;および
前記炭素質材料に鉄材と過酸ィ匕水素とを添加してカーボンナノチューブを精製す ること;
を包含する、方法。
[2] 前記炭素質材料が実質的に鉄 (Fe)を含まない、請求項 1に記載の方法。
[3] 前記炭素質材料として、ニッケル (Ni) ,コバルト (Co)および白金族元素力もなる群 から選ばれる少なくとも一種の金属または該金属を主体とする合金を含有する炭素 成形物を少なくとも陽極とする一対の電極間にアーク放電を起こさせて該陽極から生 じた蒸発物を堆積させることにより得られたものを用いる、請求項 2に記載の方法。
[4] 前記鉄材として鉄粉末を用いる、請求項 1から 3のいずれか一項に記載の方法。
[5] 前記鉄粉末を構成する鉄粒子の平均粒径が 500nm以下である、請求項 4に記載 の方法。
[6] 前記鉄粉末は、前記炭素質材料 100質量部に対して 0. 5〜20質量部の割合で用 いられる、請求項 4または 5に記載の方法。
[7] 前記鉄材として、鉄を含む炭素成形物を少なくとも陽極とする一対の電極間にァー ク放電を起こさせて該陽極力 生じた蒸発物を堆積させることにより得られた鉄含有 炭素質材料を用いる、請求項 1から 3のいずれか一項に記載の方法。
[8] 前記鉄含有炭素質材料は平均粒径 lOOnm以下の鉄粒子を含む、請求項 7に記 載の方法。
[9] 前記カーボンナノチューブを精製することは、さらに無機酸成分を添加することを包 含する、請求項 1から 8のいずれか一項に記載の方法。
[10] カーボンナノチューブの精製方法であって、
カーボンナノチューブを含む炭素質材料に鉄材と過酸ィ匕水素とを添加して該カー ボンナノチューブを精製することを特徴とする、方法。
[II] カーボンナノチューブの精製に使用されるカーボンナノチューブ精製用材料であつ て、 カーボンナノチューブを含む炭素質材料に平均粒径 lOOnm以下の鉄粒子が分散 している、材料。
[12] 前記鉄粒子は、アモルファスカーボンに包まれた複合粒子として分散している、請 求項 11に記載の材料。
[13] カーボンナノチューブの精製に使用されるカーボンナノチューブ精製用材料であつ て、
鉄を含む炭素成形物を少なくとも陽極とする一対の電極間にアーク放電を起こさせ て該陽極カゝら生じた蒸発物を堆積させることにより得られた、材料。
PCT/JP2005/021923 2005-11-29 2005-11-29 カーボンナノチューブの製造方法および精製方法 WO2007063579A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
PCT/JP2005/021923 WO2007063579A1 (ja) 2005-11-29 2005-11-29 カーボンナノチューブの製造方法および精製方法
EP05811694.8A EP1967492B1 (en) 2005-11-29 2005-11-29 Method for producing purified carbon nanotubes
US12/095,188 US20090285745A1 (en) 2005-11-29 2005-11-29 Method for Production of Carbon Nanotube and Method for Purification of the Same
JP2007547807A JP4255033B2 (ja) 2005-11-29 2005-11-29 カーボンナノチューブの製造方法および精製方法
JP2006000678A JP4900901B2 (ja) 2005-11-29 2006-01-05 カーボンナノチューブの製造方法および精製方法
JP2007031412A JP4900946B2 (ja) 2005-11-29 2007-02-12 カーボンナノチューブの製造方法および精製方法
US13/225,888 US9067793B2 (en) 2005-11-29 2011-09-06 Method for production of carbon nanotube and method for purification of the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2005/021923 WO2007063579A1 (ja) 2005-11-29 2005-11-29 カーボンナノチューブの製造方法および精製方法

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US11/095,188 A-371-Of-International US7283803B2 (en) 2004-04-16 2005-03-30 Location-aware application based quality of service (QOS) via a broadband access gateway
US13/225,888 Division US9067793B2 (en) 2005-11-29 2011-09-06 Method for production of carbon nanotube and method for purification of the same

Publications (1)

Publication Number Publication Date
WO2007063579A1 true WO2007063579A1 (ja) 2007-06-07

Family

ID=38091920

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/021923 WO2007063579A1 (ja) 2005-11-29 2005-11-29 カーボンナノチューブの製造方法および精製方法

Country Status (4)

Country Link
US (2) US20090285745A1 (ja)
EP (1) EP1967492B1 (ja)
JP (1) JP4255033B2 (ja)
WO (1) WO2007063579A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017112319A (ja) * 2015-12-18 2017-06-22 富士フイルム株式会社 分散組成物の製造方法および熱電変換層の製造方法
JP2020132504A (ja) * 2019-02-26 2020-08-31 学校法人早稲田大学 カーボンナノチューブの精製方法および精製装置

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4900901B2 (ja) * 2005-11-29 2012-03-21 学校法人 名城大学 カーボンナノチューブの製造方法および精製方法
US8449858B2 (en) * 2009-06-10 2013-05-28 Carbon Solutions, Inc. Continuous extraction technique for the purification of carbon nanomaterials
US8454923B2 (en) * 2009-06-10 2013-06-04 Carbon Solutions, Inc. Continuous extraction technique for the purification of carbon nanomaterials
US8784937B2 (en) * 2010-09-14 2014-07-22 Applied Nanostructured Solutions, Llc Glass substrates having carbon nanotubes grown thereon and methods for production thereof
US9156698B2 (en) 2012-02-29 2015-10-13 Yazaki Corporation Method of purifying carbon nanotubes and applications thereof
EP2969941A4 (en) * 2013-03-15 2016-04-06 Luna Innovations Inc METHOD AND DEVICES FOR SYNTHESIS OF METALLOFULLERENES
CN111943173B (zh) * 2020-08-24 2021-03-02 江苏清大际光新材料有限公司 一种电弧法制备碳纳米角的设备及制备碳纳米角的方法
CN113479864A (zh) * 2021-08-04 2021-10-08 岳阳振兴中顺新材料科技有限公司 一种基于双氧水废水处理的煤基碳基碳纳米管的制备方法
CN116425141A (zh) * 2023-03-09 2023-07-14 中国人民解放军军事科学院防化研究院 一种锂离子电池用碳材料的深度净化方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002265209A (ja) * 2001-03-12 2002-09-18 Kazuyuki Taji カーボンナノチューブの精製方法
JP2003089510A (ja) * 2001-09-11 2003-03-28 Denso Corp カーボンナノチューブの精製方法

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05123683A (ja) 1991-11-08 1993-05-21 Mitsubishi Gas Chem Co Inc 第四級アンモニウム塩類含有廃液の処理法
JPH05123684A (ja) 1991-11-08 1993-05-21 Mitsubishi Gas Chem Co Inc 硫黄化合物含有廃液の処理方法
JP2616699B2 (ja) 1993-06-03 1997-06-04 日本電気株式会社 カーボン・ナノチューブの精製法
US5641466A (en) * 1993-06-03 1997-06-24 Nec Corporation Method of purifying carbon nanotubes
JPH0775772A (ja) 1993-06-18 1995-03-20 Kankyo Eng Kk 土壌の修復方法
JP2699852B2 (ja) 1993-12-28 1998-01-19 日本電気株式会社 単層カーボンナノチューブの製造法
JP2682486B2 (ja) 1995-01-18 1997-11-26 日本電気株式会社 カーボンナノチューブの精製方法
JP2000203820A (ja) 1999-01-14 2000-07-25 Ise Electronics Corp カ―ボンナノチュ―ブの製造方法および製造装置
JP2003081616A (ja) 2001-07-05 2003-03-19 Honda Motor Co Ltd 単層カーボンナノチューブの精製方法
JP4306990B2 (ja) * 2001-10-18 2009-08-05 独立行政法人産業技術総合研究所 非線形光学素子
US6735046B2 (en) * 2001-11-21 2004-05-11 Yoshikazu Nakayama Nano-magnetic head and nano-magnetic head device using the same
JP3650076B2 (ja) 2002-03-22 2005-05-18 独立行政法人科学技術振興機構 単層カーボンナノチューブの製造法
JP3657574B2 (ja) 2002-05-31 2005-06-08 独立行政法人科学技術振興機構 カーボンナノワイヤの製造法
US7108773B2 (en) * 2002-09-11 2006-09-19 The Board Of Trustees Of The University Of Illinois Solids supporting mass transfer for fuel cells and other applications and solutions and methods for forming
JP3810756B2 (ja) * 2003-05-12 2006-08-16 独立行政法人科学技術振興機構 単層カーボンナノチューブの製造方法及び装置
JP4599046B2 (ja) 2003-09-24 2010-12-15 学校法人 名城大学 カーボンナノチューブ製フィラメントおよびその利用
JP3956230B2 (ja) 2004-01-06 2007-08-08 学校法人 名城大学 カーボンナノチューブの製造装置及びその製造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002265209A (ja) * 2001-03-12 2002-09-18 Kazuyuki Taji カーボンナノチューブの精製方法
JP2003089510A (ja) * 2001-09-11 2003-03-28 Denso Corp カーボンナノチューブの精製方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1967492A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017112319A (ja) * 2015-12-18 2017-06-22 富士フイルム株式会社 分散組成物の製造方法および熱電変換層の製造方法
JP2020132504A (ja) * 2019-02-26 2020-08-31 学校法人早稲田大学 カーボンナノチューブの精製方法および精製装置
WO2020175450A1 (ja) * 2019-02-26 2020-09-03 学校法人早稲田大学 カーボンナノチューブの精製方法および精製装置
JP7278539B2 (ja) 2019-02-26 2023-05-22 学校法人早稲田大学 カーボンナノチューブの精製方法および精製装置

Also Published As

Publication number Publication date
EP1967492A1 (en) 2008-09-10
US20120082613A1 (en) 2012-04-05
US9067793B2 (en) 2015-06-30
EP1967492B1 (en) 2013-10-23
JP4255033B2 (ja) 2009-04-15
JPWO2007063579A1 (ja) 2009-05-07
EP1967492A4 (en) 2010-07-07
US20090285745A1 (en) 2009-11-19

Similar Documents

Publication Publication Date Title
JP4255033B2 (ja) カーボンナノチューブの製造方法および精製方法
Nasibulin et al. Carbon nanotubes and onions from carbon monoxide using Ni (acac) 2 and Cu (acac) 2 as catalyst precursors
Kumar et al. Chemical vapor deposition of carbon nanotubes: a review on growth mechanism and mass production
JP4747295B2 (ja) 同軸カーボンナノチューブシートの製造方法
JP4031397B2 (ja) 炭素ナノチューブで強化されたセラミック系ナノ複合粉末及びその製造方法
Tarasov et al. Synthesis of carbon nanostructures by arc evaporation of graphite rods with Co–Ni and YNi2 catalysts
Zhao et al. Soft synthesis of single-crystal copper nanowires of various scales
CN102002652B (zh) 碳纳米管增强金属基复合材料及其原位制备方法
Liu et al. A simple method for coating carbon nanotubes with Co–B amorphous alloy
Sridhar et al. Direct growth of carbon nanofiber forest on nickel foam without any external catalyst
CN112452315A (zh) 一种高温抗烧结催化剂的应用
JP2007254271A (ja) 炭素材料の製造方法、炭素材料および電子素子の製造方法
KR20070082141A (ko) 탄소나노튜브 합성용 촉매의 제조방법
RU2426709C2 (ru) Способ получения пористого углеродного материала на основе терморасширенного оксида графита и материал
JP4696598B2 (ja) カーボンナノチューブ
Yoshihara et al. Growth mechanism of carbon nanotubes over gold-supported catalysts
Gergeroglu et al. Investigation of the effect of catalyst type, concentration, and growth time on carbon nanotube morphology and structure
Liu et al. Microwave-assisted synthesis of Pt nanocrystals and deposition on carbon nanotubes in ionic liquids
JP2003300715A (ja) 多層カーボンナノチューブ、分散液、溶液および組成物、これらの製造方法、ならびに粉末状カーボンナノチューブ
Zhao et al. Direct growth of carbon nanotubes on metal supports by chemical vapor deposition
JP4900946B2 (ja) カーボンナノチューブの製造方法および精製方法
JP4900901B2 (ja) カーボンナノチューブの製造方法および精製方法
JP3952476B2 (ja) 単層カーボンナノチューブ及びその製造方法
JP3952479B2 (ja) カーボンナノチューブの製造方法
Adamska et al. Purification of Carbon Nanotubes—A Review of Methodology

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2007547807

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 12095188

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2005811694

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2005811694

Country of ref document: EP