WO2007034669A1 - ジアルキルカーボネートとジオールの製造方法 - Google Patents

ジアルキルカーボネートとジオールの製造方法 Download PDF

Info

Publication number
WO2007034669A1
WO2007034669A1 PCT/JP2006/317492 JP2006317492W WO2007034669A1 WO 2007034669 A1 WO2007034669 A1 WO 2007034669A1 JP 2006317492 W JP2006317492 W JP 2006317492W WO 2007034669 A1 WO2007034669 A1 WO 2007034669A1
Authority
WO
WIPO (PCT)
Prior art keywords
diol
reaction
distillation column
catalyst
carbonate
Prior art date
Application number
PCT/JP2006/317492
Other languages
English (en)
French (fr)
Inventor
Hironori Miyaji
Shinsuke Fukuoka
Hiroshi Hachiya
Original Assignee
Asahi Kasei Chemicals Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Chemicals Corporation filed Critical Asahi Kasei Chemicals Corporation
Priority to JP2007536438A priority Critical patent/JP4272686B2/ja
Priority to EA200800635A priority patent/EA013128B1/ru
Priority to US11/990,913 priority patent/US7799939B2/en
Priority to BRPI0616303A priority patent/BRPI0616303B1/pt
Priority to EP06783181A priority patent/EP1927583B1/en
Priority to CN2006800346304A priority patent/CN101268030B/zh
Publication of WO2007034669A1 publication Critical patent/WO2007034669A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C68/00Preparation of esters of carbonic or haloformic acids
    • C07C68/06Preparation of esters of carbonic or haloformic acids from organic carbonates
    • C07C68/065Preparation of esters of carbonic or haloformic acids from organic carbonates from alkylene carbonates
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C27/00Processes involving the simultaneous production of more than one class of oxygen-containing compounds
    • C07C27/26Purification; Separation; Stabilisation
    • C07C27/28Purification; Separation; Stabilisation by distillation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/74Separation; Purification; Use of additives, e.g. for stabilisation
    • C07C29/76Separation; Purification; Use of additives, e.g. for stabilisation by physical treatment
    • C07C29/80Separation; Purification; Use of additives, e.g. for stabilisation by physical treatment by distillation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C31/00Saturated compounds having hydroxy or O-metal groups bound to acyclic carbon atoms
    • C07C31/18Polyhydroxylic acyclic alcohols
    • C07C31/20Dihydroxylic alcohols

Definitions

  • the present invention relates to a method for producing dialkyl carbonate and diol obtained by reacting cyclic carbonate and aliphatic monohydric alcohol.
  • the first method is a complete batch reaction method in which ethylene carbonate, methanol and a catalyst are charged into an autoclave, which is a batch reaction vessel, and then reacted (for example, Patent Document 1: US Patent).
  • Patent Document 2 JP-A-54-48715 (U.S. Pat. No. 4,181,676)
  • Patent Document 5 JP-A-54-63023
  • Patent Document 6 JP-A-54 — See Japanese Patent No. 148726
  • Patent Document 7 Japanese Unexamined Patent Publication No. 55-6 4550, Japanese Patent Application Publication No. 55-64551, Japanese Patent Publication No. 55-10144, Japanese Patent Application Publication No. 56-10144.
  • the second method uses an apparatus in which a distillation column is provided in the upper part of the reaction kettle.
  • the reaction is carried out by charging ethylene carbonate, methanol and a catalyst into a reaction vessel and heating to a predetermined temperature.
  • It is a batch type reaction system equipped with a distillation column (for example, Patent Document 3: Japanese Patent Laid-Open No. 51-122025 (US Pat. No. 4062884), Patent Document 4: Japanese Patent Laid-Open No. 54-48716) Gazette (U.S. Pat. No. 4307032), Patent Document 14: U.S. Pat. No. 3,803,201).
  • a mixed solution of ethylene carbonate and methanol is continuously supplied to a tubular reactor maintained at a predetermined reaction temperature, and unreacted ethylene carbonate, methanol, and product are supplied from the other outlet.
  • Some dimethyl carbonate and ethylene glycol A continuous flow reaction system in which the reaction mixture is continuously extracted in liquid form (for example, Patent Document 10: Japanese Patent Laid-Open No. 63-41432 (US Pat. No. 4,661,609)), Patent Document 11: Japanese Patent 63-238043, Patent Document 12: Japanese Unexamined Patent Publication No. 64-31737 (US Pat. No. 4691041), Patent Document 13: US Pat. No. 4,734,518
  • the fourth method is a reactive distillation method, that is, ethylene carbonate and methanol are continuously fed into a multistage distillation column, and the reaction is performed in the presence of a catalyst in a plurality of stages of the distillation column.
  • This is a continuous production method in which the produced dimethyl carbonate and ethylene glycol are separated in the same distillation column (for example, Patent Document 15: JP-A-4-198141, Patent Document 16: JP-A-4-230243).
  • Patent Document 17 Japanese Patent Laid-Open No. 5-21 3830 (German Patent No. 4129316)
  • Patent Document 18 Japanese Patent Laid-Open No. 6-9507 (German Patent No. 4216121)).
  • Example 1 of Patent Document 16 the conversion rate of ethylene force-bonate is 100%, and the reaction yield and selectivity of ethylene glycol are 99. 4%. Thus, the (4) reactive distillation system shows a high conversion rate 'selectivity. Furthermore, as a countermeasure when a small amount of unreacted cyclic carbonate remains in the generated diol, a method of hydrolyzing the unreacted cyclic carbonate (see, for example, Patent Document 19: International Publication No. 97Z23445 pamphlet) or reaction with diol There has also been proposed a method of ether conversion by the method (for example, see Patent Document 20: International Publication No. 00Z51954 pamphlet).
  • Cyclic carbonate and aliphatic monohydric alcohol power When producing dialkyl carbonate and diol, the conversion rate of cyclic carbonate is high, the selectivity of dialkyl carbonate and diol to be produced is high, and diol distillation purification. No method has been proposed so far that has both high UV transmittance without complicated processes such as supplying water to the process, and at the same time satisfying low purity of aldehyde and low purity diol.
  • the conversion rate of cyclic carbonate is high, and the selectivity of the generated dialkyl carbonate and diol is high.
  • the aim is to provide a method that satisfies the requirements of simultaneously obtaining high-purity diols having a high aldehyde content and a low ultraviolet content without requiring complicated processing such as supplying water to the diol distillation purification process. It is intended.
  • the present inventors focused on the reaction mechanism of aldehyde and other substances that reduce the ultraviolet transmittance of the diol, and as a result of intensive studies, the ester exchange, which is a plate-type continuous multi-stage distillation column, was conducted. Finding that the reaction conditions (residence time, temperature) in the reactor have a significant effect on the production reaction of the UV-transmitting substance, and that the effect differs between the shelf and the bottom of the tower, completing the present invention. It came to.
  • a first raw material mainly composed of a cyclic carbonate and a second raw material mainly composed of an aliphatic monohydric alcohol are continuously supplied to a continuous multi-stage distillation column and are present in the distillation column.
  • the reaction is carried out at the tray and the bottom of the column, and at the same time, the low-boiling components including the dialkyl carbonate to be generated are continuously extracted from the upper force of the distillation column, and the resulting diol is contained.
  • a continuous production method of dialkyl carbonate and diol characterized by satisfying
  • cyclic carbonate, aliphatic monohydric alcohol power, dialkyl power, -bonate and diol are produced, the conversion rate of cyclic carbonate is high, and the selectivity of dialkyl carbonate and diol to be produced is high.
  • a high purity diol having a low aldehyde content can be simultaneously filled with a high UV transmittance that is high and does not require complicated treatment such as supplying water to the diol distillation purification process.
  • the reaction of the present invention is a reversible represented by the following general formula (I), wherein a dialkyl carbonate (C) and a diol (D) are produced from a cyclic carbonate (A) and an aliphatic monohydric alcohol (B). It is an equilibrium transesterification reaction.
  • R 1 is a divalent group — (CH 2) 1 (m is 2
  • R 2 represents a monovalent aliphatic group having 1 to 12 carbon atoms, and one or more hydrogens thereof may be substituted with an alkyl group having 1 to 10 carbon atoms or an aryl group.
  • a substance that lowers the ultraviolet transmittance of a diol is a trace component and has not been completely identified, but from the diols (D), the following general formula ( ⁇ ) Not represented by It is thought that aldehydes (E) are produced by the reverse dehydration reaction.
  • Hydrogen may be substituted by an alkyl group having 1 to 10 carbon atoms or a aryl group. ] It is considered that these aldehydes (E) and aldehydes (E) are substances produced by further reaction and are substances with reduced ultraviolet transmittance.
  • a complex treatment such as high conversion of cyclic carbonate, high selectivity of dialkyl strength-bonate and diol, and supply of water to the diol distillation purification process, etc.
  • the reason why the high purity diol having a high UV transmittance and a low aldehyde content can be satisfied at the same time has not yet become clear, but the following reasons are conceivable.
  • the above reaction formula ( ⁇ ) is a primary dehydration reaction of a diol, and the residence time and temperature greatly affect the reaction, and it is considered that the reaction proceeds more if both the residence time and temperature increase.
  • the reason why the temperature order is larger than the residence time in ⁇ and j8 in the formula (1) of the present invention is considered to be because the temperature dependence of the above reaction formula ( ⁇ ) is large.
  • the transesterification reactor which is a continuous multi-stage distillation column, a high boiling point component, diol, is extracted from the bottom of the column, so the diol concentration is higher at the bottom of the column than at the tray.
  • the coefficient acting on j8 is considered to be large.
  • the diol produced has a low ultraviolet transmittance and a high aldehyde content, resulting in a low purity diol. If the value of ⁇ + 1. 24 ⁇ ⁇ is smaller than 780, reaction (I) will not proceed, and the conversion rate of cyclic carbonate and the selectivity of dialkyl carbonate and diol will decrease. Therefore, the reaction condition of 780 ⁇ ⁇ + 1.24 24 ⁇ 5150 is selected as the range of equation (1). Preferably, 1200 ⁇ + 1.24 ⁇ 4300, more preferably 1600 ⁇ + 1.24 ⁇ 3700.
  • reaction ( ⁇ ) proceeds and aldehydes are generated, which is too short.
  • reaction (I) does not proceed, and the conversion rate of cyclic carbonate and the selectivity of dialkyl carbonate and diol decrease, so that it is usually 0.3 to 20 hours, preferably 0.5 to 10 hours, more preferably.
  • the preferred time is 0.8 to 6 hours. Note that the reaction (I) does not proceed at the shelf where no catalyst is present, and therefore the reaction (II) at a very low diol concentration does not proceed.
  • the average residence time ⁇ 2 (hour) of the reaction liquid at the bottom of the column is usually 0.3 to 25 hours, preferably 0.5 to 16 hours, and more preferably 1.0 to L: 1 hour.
  • the total number of shelves in which the catalyst exists is ⁇ ⁇ ⁇ ⁇ 2nd stage (when ⁇ is odd ( ⁇
  • the temperature Tl (° C) of the second stage) and the temperature T2 (° C) at the bottom of the column are different depending on the type of raw materials used and the reaction pressure. — 20 to 350 ° C, preferably 0 to 200 ° C, more preferably 30 to 170 ° C. Regarding T2, it is usually ⁇ 20 to 350 ° C., preferably 10 ° C. to 250 ° C., more preferably 50 to 220 ° C. If these temperatures are too high, the reaction ( ⁇ ) proceeds to produce aldehydes, and if it is too low, the reaction (I) does not proceed and the conversion rate of cyclic carbonate and the selectivity for dialkyl carbonate and diol decrease. Resulting in.
  • the operation pressure of the distillation column is expressed by absolute pressure which may be any of reduced pressure, normal pressure, and increased pressure, and is usually 1 Pa to 2 X 10 6 Pa, preferably 1 X 10 3 to 1 ⁇ 10 6 Pa, more preferably 1 ⁇ 10 4 to 5 ⁇ 10 5 Pa.
  • the operating pressure is determined from the composition in the distillation column so that the reaction temperatures T1 and T2 of the distillation column are appropriate.
  • the transesterification reactor used in the present invention is a plate column type continuous multistage distillation column.
  • a continuous multi-stage distillation column is a distillation column having a plurality of distillation stages with two or more distillation stages and capable of continuous distillation.
  • the level referred to in the present invention is the actual number of shelf levels.
  • a column tower type continuous multi-stage distillation column for example, one using a tray such as a bubble bell tray, a perforated plate tray, a valve tray, a countercurrent tray, etc. Any type can be used as long as it is used as a multistage distillation column.
  • a continuous column type multi-stage distillation column in which the solid catalyst is fixed to the plate and the bottom of the column can also be used.
  • the continuous multi-stage distillation column used in the present invention may be the above-mentioned distillation column alone or may be used in combination by connecting a plurality of the distillation columns in series or in parallel.
  • the cyclic carbonate used as a raw material in the present invention is a compound represented by (A) in the reaction formula (I), and includes, for example, alkylene carbonates such as ethylene carbonate and propylene carbonate, 1, 3 Kisa 2-one to Jiokisashikuro, 1, 3 over-di O hexa cycloheptanone-2-on and the like are preferably used, ethylene carbonate Contact and propylene carbonate are more is preferably used in view of easy availability, E styrene Carbonate is particularly preferably used.
  • alkylene carbonates such as ethylene carbonate and propylene carbonate
  • 1, 3 Kisa 2-one to Jiokisashikuro 1, 3 over-di O hexa cycloheptanone-2-on and the like
  • ethylene carbonate Contact and propylene carbonate are more is preferably used in view of easy availability
  • E styrene Carbonate is particularly preferably used.
  • a compound represented by (B) having a lower boiling point than the diol produced is used. Therefore, forces that can vary depending on the type of cyclic carbonate used. For example, methanol, ethanol, propanol (each isomer), allyl alcohol, butanol (each isomer), 3 butene 1 ol, amyl alcohol ( Isomers), hexyl alcohol (each isomer), heptyl alcohol (each isomer), octyl alcohol (each isomer), nonyl alcohol (each isomer), decyl alcohol (each isomer), undecyl alcohol ( (Each isomer), dodecyl alcohol (each isomer), cyclopentanol, cyclohexanol, cycloheptanol, cyclooctanol, methylcyclopentanol (each isomer), ethylcyclopentanol (each isomer)
  • alcohols having 1 to 6 carbon atoms are preferably used, and more preferably methanol, ethanol, propanol (each of which is different from each other).
  • Butanol (each isomer) is an alcohol having 1 to 4 carbon atoms.
  • ethylene carbonate or propylene carbonate is used as the cyclic carbonate, methanol and ethanol are preferable, and methanol is particularly preferable.
  • a catalyst is present in the transesterification reactor. Any method may be used for the catalyst to exist.
  • the catalyst in the case of a homogeneous catalyst that dissolves in the reaction solution under the reaction conditions, the catalyst is continuously supplied into the transesterification reactor. Therefore, the catalyst can be present in the liquid phase in the transesterification reactor, or it does not dissolve in the reaction solution under the reaction conditions!
  • the catalyst By disposing a solid catalyst in the catalyst, the catalyst can be present in the reaction system, or a method using these in combination may be used.
  • the homogeneous catalyst When the homogeneous catalyst is continuously fed into a multistage distillation column as a transesterification reactor, it may be fed simultaneously with the cyclic carbonate and Z or aliphatic monohydric alcohol, and is different from the raw material.
  • the bottom force that can be supplied to the position The transesterification catalyst may be supplied to any position as long as the position has at least one stage. However, since the reaction actually proceeds in the distillation column in a region below the catalyst supply position, it is preferable to supply the catalyst to a region between the top of the column and the raw material supply position.
  • the catalyst can be installed in a required amount at an arbitrary position in the reactor, provided that the number of stages in which the catalyst exists is at least one or more. More preferably, two or more steps are sufficient.
  • Alkali metals and alkaline earth metals such as lithium, sodium, potassium, rubidium, cesium, magnesium, calcium, strontium, norlium;
  • Basic compounds such as aryl oxydides and amido compounds
  • Basic compounds such as alkali metal and alkaline earth metal carbonates, bicarbonates, organic acid salts
  • Cyclic amidines such as diazabicycloundecene (DBU) and diazabicyclononene (DBN);
  • Thallium compounds such as acid thallium, halogen thallium, hydroxide thallium, thallium carbonate, thallium nitrate, thallium sulfate, organic acid salts of thallium;
  • tributylmethoxytin tributylethoxytin, dibutyldimethoxytin, jetylmethoxytin, dibutylmethoxytin, dibutylphenoxytin, diphenylmethoxytin, dibutyltin acetate, tributyltin chloride, tin 2-ethylhexanoate, etc.
  • Tin compounds tributylmethoxytin, tributylethoxytin, dibutyldimethoxytin, jetylmethoxytin, dibutylmethoxytin, dibutylphenoxytin, diphenylmethoxytin, dibutyltin acetate, tributyltin chloride, tin 2-ethylhexanoate, etc.
  • Tin compounds tributylmethoxytin, tributylethoxytin, dibutyldimethoxytin, jetyl
  • Aluminum compounds such as aluminum trimethoxide, aluminum triisopropoxide, aluminum tributoxide;
  • Titanium compounds such as tetramethoxytitanium, tetraethoxytitanium, tetrabutoxytitanium, dichlorodimethoxytitanium, tetraisopropoxytitanium, titanium acetate, titanium acetylethyltonate;
  • Phosphorus compounds such as trimethylphosphine, triethylphosphine, tributylphosphine, triphenylphosphine, tributylmethylphosphonium halide, trioctylbutylphosphonium halide, trimethylmethylphosphonium halide, etc .;
  • Zirconium halide zirconium acetyl cetate, zirconium alkoxide Zirconium compounds such as side and zirconium acetate;
  • Lead and lead-containing compounds for example, acid lead such as PbO, PbO, PbO; Pb
  • Lead sulfides such as S, Pb S, PbS; Pb (OH), Pb O (OH), Pb [PbO (OH)], P
  • Lead salts such as O and CaPbO; lead carbonates such as PbCO and 2PbCO 2 -Pb (OH)
  • alkoxy such as Pb (OCH 3), (CH 2 O) Pb (OPh), Pb (OPh)
  • Organic lead such as Bu PbCl, Ph PbBr, Ph Pb (or Ph Pb), Bu PbOH, Ph PbO
  • Anion exchange resin having a tertiary amino group ion exchange resin having an amide group, ion exchange resin having at least one exchange group of sulfonic acid group, carboxylic acid group, and phosphoric acid group, No. 4 Ion exchangers such as solid strongly basic ion exchangers having a secondary ammonium group as an exchange group;
  • Solid inorganic compounds such as silica, silica alumina, silica-magnesia, aluminosilicate, gallium silicate, various zeolites, various metal exchange zeolites, and amorphous exchange zeolites;
  • a solid strong basic ion exchanger having a quaternary ammonia group as an exchange group is particularly preferably used.
  • a solid catalyst include a quaternary ammonia.
  • An inorganic carrier-supporting strong basic anion exchanger having a group can be mentioned.
  • the strongly basic ion exchange resin having a quaternary ammonium group as an exchange group for example, a styrenic strong basic anion exchange resin is preferably used.
  • Sti Len-based strongly basic ion exchange resins are based on a copolymer of styrene and dibutenebenzene and have a quaternary ammonia (type I or type II) as the exchange group.
  • Char-on exchange resin for example, schematically shown by the following formula ( ⁇ ).
  • X represents a key-on, and X is usually F-, Cl-, Br-, ⁇ , HCO-, CO
  • Yuon is used.
  • gel type gel type, macroreticular type (MR type) V, and misalignment can be used, but organic solvent resistance is high and point type MR type is particularly preferred.
  • MR type macroreticular type
  • the cellulose strongly basic ion exchanger having a quaternary ammonium group as an exchange group can be obtained by, for example, trialkylaminoethylation of a part or all of —OH group of cellulose.
  • -OCH CH NR X includes cellulose having an exchange group
  • the inorganic carrier-supporting strong basic ion exchanger having a quaternary ammonium group as an exchange group that can be used in the present invention is a part or a part of the surface hydroxyl group OH of the inorganic carrier. Introducing quaternary ammonia group 0 (CH) NR X by modifying all
  • silica, alumina, silica alumina, titer, zeolite and the like can be used, preferably silica, alumina and silica alumina are used, and silica is particularly preferably used.
  • any method for modifying the surface hydroxyl group of the inorganic carrier any method can be used.
  • the solid strongly basic ion exchanger having a quaternary ammonium group as an exchange group a commercially available one can be used. In that case, it can be used as a transesterification catalyst after performing ion exchange with a desired cation species in advance as a pretreatment.
  • a heterocyclic group containing at least one nitrogen atom is bonded !, a macroreticular and gel-type organic polymer, or an inorganic group bonded with a heterocyclic group containing at least one nitrogen atom.
  • a solid catalyst comprising a support is also preferably used as the transesterification catalyst.
  • solid catalysts in which some or all of these nitrogen-containing heterocyclic groups are quaternized are also used.
  • the amount of the catalyst used in the present invention varies depending on the type of catalyst used, but in the case of continuously supplying a homogeneous catalyst that dissolves in the reaction solution under the reaction conditions, and Table Wa as a percentage of the total weight of a cyclic carbonate and an aliphatic monohydric alcohol, usually, 0.0001 to 50 weight 0/0, preferably from 0.001 to 25 weight 0/0, more preferably Used at 0.005 to 10% by weight.
  • a solid catalyst is used in the distillation column, it is preferably 0.01 to 75% by volume, more preferably 0.05 to 50%, based on the empty volume of the distillation column. volume 0/0, further ⁇ this preferably a catalytic amount of 0.1 to 25 volume 0/0 is used.
  • the method of continuously supplying the cyclic carbonate and the aliphatic monohydric alcohol to the continuous multistage distillation column which is a transesterification reactor there is no particular limitation, and these include at least one or more stages of the distillation column, Any method may be used as long as it can be brought into contact with the catalyst in the region of two or more stages. That is, the cyclic carbonate and the aliphatic monohydric alcohol can be continuously supplied as many introduction loci as necessary for the stage satisfying the above conditions of the continuous multistage distillation column. Further, the cyclic force carbonate and the aliphatic monohydric alcohol may be introduced into the same stage of the distillation column, or may be introduced into different stages, respectively.
  • the raw material is continuously supplied to the distillation column as a liquid, a gas, or a mixture of a liquid and a gas.
  • a gaseous raw material intermittently or continuously in the lower force of the distillation column.
  • cyclic carbonate is continuously supplied to the distillation column in a liquid or gas-liquid mixed state in the upper stage from the stage where the catalyst is present, and the aliphatic monohydric alcohol is in the gaseous state and Z at the lower part of the distillation tower.
  • a liquid continuous supply method is also a preferable method. In this case, it goes without saying that an aliphatic monohydric alcohol is contained in the cyclic carbonate.
  • the feedstock may contain a small amount of the product diol.
  • the dialkyl carbonate contained in the aliphatic monohydric alcohol is usually represented by 0 to 40% by weight, preferably 0.1 to 30% by weight in terms of the weight of the dialkyl carbonate in the aliphatic monohydric alcohol z dialkyl carbonate mixture. %, More preferably 1 to 20% by weight.
  • the amount ratio of the cyclic carbonate to be supplied to the transesterification reactor and the aliphatic monohydric alcohol varies depending on the type and amount of the transesterification catalyst and the reaction conditions.
  • the aliphatic monohydric alcohols can be supplied in a molar ratio of 0.01 to 1000 times.
  • supply an excess of aliphatic monohydric alcohols in excess of 2 moles to cyclic carbonate In order to increase the conversion rate of cyclic carbonate, supply an excess of aliphatic monohydric alcohols in excess of 2 moles to cyclic carbonate. However, it is necessary to enlarge the apparatus if it is used too much. In this sense, the case where 2 to 20 times the amount of aliphatic monohydric alcohol is used relative to the cyclic carbonate is particularly preferred.
  • 500 ppm or less preferably 200 ppm or less, more preferably 10 ppm or less.
  • the conversion rate of the cyclic carbonate in the transesterification reaction is made close to 100%, the residence time becomes long, and as described above, a high-purity diol cannot be obtained or is necessary. The amount of fatty monohydric alcohol becomes excessive.
  • the conversion rate of the cyclic carbonate in the transesterification reaction is usually 95 to 99.999%, preferably 98 to 99.99%, more preferably 99 to 99.99%.
  • one of the products is extracted from the transesterification reaction force, and is usually extracted from the upper force of the reactor as a gaseous low boiling point component.
  • the low-boiling components extracted from the upper column of the reactor may be dialkyl carbonate alone or a mixture of aliphatic monohydric alcohols and dialkyl carbonate, and contain a small amount of high-boiling products. But, okay.
  • the outlet for extracting low-boiling components including dialkyl carbonate from the multistage distillation column is in the form of gas supply between the raw material supply position and the top of the column. It is more preferable to provide a substance outlet at the top of the column.
  • a so-called reflux operation may be performed in which a part of the low-boiling components extracted in this manner is returned to the upper part of the distillation column.
  • the reflux ratio is usually 0 to 10, preferably 0 to 5, and more preferably 0 to 3.
  • a dialkyl carbonate can be obtained by feeding the low-boiling mixture withdrawn from the upper part of the transesterification reactor to a dialkyl carbonate separator and extracting the dialkyl carbonate with the dialkyl carbonate.
  • a dialkyl carbonate separation device a distillation separation device, an extraction separation device, a liquid-liquid extraction separation device, a crystallization separation device, an adsorption separation device, a membrane separation device, or the like can be used.
  • Each of these separation devices may be configured with a plurality of device forces of the same type, or a combination of a plurality of types of separation devices may be used.
  • a distillation separation device is particularly preferably used as the separation device.
  • a distillation separation apparatus When a distillation separation apparatus is used as the dialkyl carbonate separation apparatus, a low boiling point mixture from which the upper force of the ester exchange reactor is also drawn is led to the distillation separation apparatus, and the dialkyl contained in the reaction liquid or the mixture Each component such as carbonate and aliphatic monohydric alcohol can be separated as a single component or a fraction consisting of a mixture of these components or a bottom liquid. Depending on the type of raw material, an azeotrope may be obtained as a fraction or bottom liquid. In this way, the distillation apparatus is used to separate the low-boiling mixture extracted from the reaction solution or the upper column of the transesterification reactor into each fraction and the bottom liquid, and then contain an aliphatic monohydric alcohol. The fraction or bottoms can be fed to the transesterification reactor.
  • a multistage distillation tower similar to a multistage distillation tower that can be used as a transesterification reactor may be used, or a packed tower distillation tower filled with various packing materials. Can be used alone or in combination.
  • aliphatic monohydric alcohol and dialkyl carbonate form a combination that forms the lowest boiling azeotrope
  • dimethyl carbonate is produced using methanol as the aliphatic monohydric alcohol
  • the low boiling point mixture extracted from the upper part of the transesterification reactor containing methanol and dimethyl carbonate is converted into dimethyl carbonate.
  • a low boiling point component including the lowest boiling azeotrope of methanol and dimethyl carbonate is continuously withdrawn from the upper part of the dimethyl carbonate separation tower, and dimethyl carbonate is removed from the lower part of the dimethyl carbonate separation tower.
  • Dimethyl carbonate can be obtained by continuously extracting carbonate.
  • the operation pressure of the dimethyl carbonate separation column is usually operated under reduced pressure or increased pressure in terms of absolute pressure of 0.5 X 10 5 to 50 X 10 5 Pa (0.51 to 51 kgZcm 2 ). Since the composition of the methanol Z dimethyl carbonate lowest boiling point azeotrope varies depending on the operating pressure, the operating pressure at which the dimethyl carbonate separation tower can be obtained from the lower part of the tower is selected as the operating pressure of the dimethyl carbonate separation tower. That is, a pressure higher than the pressure corresponding to the methanol Z dimethyl carbonate ratio in the extract from the upper part of the transesterification reactor is selected.
  • a low boiling point component containing the lowest boiling azeotrope of methanol and dimethyl carbonate extracted from the upper column of the dimethyl carbonate separation tower is supplied to the ester exchange reactor as a raw material of the method of the present invention. Can do.
  • the upper part of the continuous multistage distillation column refers to a range from the top of the distillation column to a position at a height of about 1Z2 of the column height, including the top of the column.
  • the lower part of the continuous multistage distillation column refers to the range up to the position of about 1Z2 of the tower bottom force of the distillation tower, including the tower bottom.
  • the diol produced in the transesterification reactor is withdrawn from the lower part of the reactor as a liquid high-boiling component.
  • the high-boiling mixture contains a diol to be formed and an unreacted cyclic carbonate, and includes an aliphatic monohydric alcohol or an aliphatic monohydric alcohol and a dialkyl. .
  • the liquid high-boiling mixture containing the produced diol is withdrawn from the transesterification reactor, and an outlet is provided at the bottom of the reactor.
  • the reaction mixture thus extracted can be returned to the lower part of the reactor in a gaseous or gas-liquid mixture state by heating a part thereof with a reboiler.
  • liquid speed and gas speed in the distillation tower differ depending on the type of the plate used, but are usually It is carried out in the range without causing bing.
  • the high-boiling mixture containing the diol thus obtained is separated in the diol purification step, usually (1) when a low-boiling component such as an aliphatic monohydric alcohol as a raw material is contained. It is preferable to separate the aliphatic monohydric alcohol etc. in advance using a separation apparatus such as distillation and recycle it to the transesterification reactor. (2) Unreacted cyclic carbonate contained in the high boiling point mixture It is preferably supplied to the purification step after separation in advance.
  • the separation method of unreacted cyclic carbonate contained in the high boiling point mixture includes (i) distillation separation, (ii) conversion to diol by hydrolysis, and (iii) cyclic force- A method for eliminating the reactive cyclic carbonate can be used. Particularly preferably, an ether production reaction is used.
  • the liquid high-boiling mixture Before supplying the liquid high-boiling mixture extracted from the transesterification reactor to the diol purification process, the liquid high-boiling mixture is mixed with a low-boiling point consisting of a continuous multistage distillation column with a side cut outlet provided at the bottom.
  • a low-boiling component containing aliphatic monohydric alcohol and dialkyl carbonate remaining in the high-boiling mixture is continuously supplied to the component separation tower, and the upper force of the low-boiling component separation tower is continuously withdrawn.
  • a fraction containing the cyclic carbonate is also extracted from the side cut locuser and circulated by supplying the low boiling point component extracted from the upper part of the low boiling point component separation tower to the transesterification reactor, while the low boiling point component separation is performed.
  • a multistage steam which can be used as a transesterification reactor.
  • a plate type multi-stage distillation column similar to the distillation column may be used, or a packed column type distillation column filled with various packing materials may be used.
  • the liquid high-boiling mixture is continuously supplied to a low-boiling component separation column comprising a multistage distillation column, A low-boiling component containing aliphatic monovalent alcohol and dialkyl carbonate remaining in the high-boiling mixture is continuously withdrawn from the upper force of the low-boiling component separation tower and contains diol and cyclic carbonate.
  • the high-boiling component is extracted from the lower part of the low-boiling component separation tower, and at that time, the ether-forming reaction is performed in the lower part of the low-boiling component separation tower, and the low-boiling component extracted from the upper part of the low-boiling component separation tower.
  • the ether production reaction method described in Patent Document 20 International Publication OOZ5 1954 pamphlet
  • the produced diol and an unreacted cyclic carbonate are included.
  • the mixture is supplied to an ether production reactor, and an unreacted cyclic carbonate is allowed to undergo an ether production reaction with a part of the produced diol.
  • a method of reducing the unreacted cyclic carbonate by converting to a linear ether represented by the following formula can be used.
  • the reaction conditions of the ether production reactor vary depending on the presence or absence of a catalyst and the type and amount of the catalyst when a catalyst is used.
  • the reaction temperature is usually 50 to 350 ° C, preferably 80 to 300.
  • the reaction time is expressed in terms of the average residence time, although it varies depending on the presence or absence of a catalyst, the type and amount of the catalyst, and the reaction temperature when a catalyst is used, more preferably 100 to 250 ° C.
  • the time is usually from 0.001 to 50 hours, preferably from 0.01 to 10 hours, and more preferably from 0.02 to 5 hours.
  • the reaction pressure varies depending on the reaction temperature to be used, it is usually expressed as an absolute pressure and is usually 1 ⁇ 10 3 to 2 ⁇ 10 7 Pa, preferably 1 ⁇ 10 4 to 1 ⁇ 10 7 Pa. Is done.
  • the conversion rate of the cyclic carbonate in the ether production reaction is usually 90 to 100%, preferably 95 to 100%, more preferably 98 to 100%.
  • a solvent it is not always necessary to use a solvent, but (1) to facilitate the reaction operation, and (2) to perform diazeotropic distillation or extractive distillation to efficiently dialkyl carbonate or diol.
  • ethers aliphatic hydrocarbons, aromatic hydrocarbons, halogenated aliphatic hydrocarbons, halogenated aromatic hydrocarbons, etc. It can be used as a solvent.
  • an inert gas such as nitrogen, helium, or argon which is an inert substance for the reaction may coexist in the reaction system, or continuous multistage for the purpose of accelerating the distillation of the low-boiling product to be generated. From the lower part of the distillation column, the inert gas or the low-boiling organic compound inert to the reaction may be introduced in the form of a gas.
  • the selectivity of ethylene glycol and dimethyl carbonate is a value based on the consumed ethylene carbonate
  • the yield of ethylene glycol and dimethyl carbonate is a value based on the charged ethylene carbonate.
  • the position of each stage in the distillation column is expressed as the number of stages in the column, counting from the top of the column as one stage.
  • Aldehyde concentration is a colorimetric method [(1) In 50 ml of distilled water, an appropriate amount of sample and 0.2 wt% salty ferric iron (FeCl -6H O) —0.32 wt% Add 5 ml of sulfamic acid aqueous solution and mix uniformly, and let stand for 1 hour. (2) Add 0.2 ml of 0.2 wt% ferric chloride (FeCl-6H O) —0.32 wt 0 / 0 % sulfamic acid aqueous solution 25 ml, More steaming
  • dimethyl carbonate (DMC) and ethylene glycol (EG) were continuously produced from ethylene carbonate (EC) and methanol (MeOH).
  • EC is continuously supplied in liquid form from conduit 2 through preheater 3 to the third stage of continuous multi-stage distillation column 1 with an inner diameter of 4 cm and 40-stage Oldershaw distillation column with the power of 200 gZh.
  • a powerful mixture was continuously fed in liquid form from conduit 5 via preheater 6 to the 20th stage of continuous multistage distillation column 1 at a flow rate of 636. 4 gZh.
  • the top pressure of continuous multi-stage distillation column 1 was atmospheric pressure, and the top temperature was 63.8 ° C.
  • Temperature T1 80.5 ° C at the 21st stage (the total number of shelves where the catalyst is present is 38 stages from the top of the 38th stage)
  • T2 98 ° C
  • T2 98 ° C
  • the gaseous low-boiling mixture distilled from the top 4 of the tower is condensed in the condenser 7, partly refluxed to the top of the tower via the conduit 8 (reflux ratio is 0.4), and the rest is 695.
  • a part of the bottom liquid extracted from the bottom 10 via the conduit 11 is heated by the reboiler 12 to supply energy necessary for distillation, and the remaining bottom liquid is a liquid high-boiling mixture [ the EG 70. 65 weight 0/0, MeOH and 29.16 weight 0/0, EC to 0.08 weight 0/0, DMC and 0.02 by weight.
  • the DMC separation column 71 was operated at a column top pressure of 1.4 X 10 6 Pa and a column bottom temperature of 205 ° C.
  • the gaseous low-boiling mixture distilled from the top 72 is condensed in the condenser 75, a part is refluxed to the top of the tower via the conduit 77 (reflux ratio 2), and the rest is joined to the conduit 5 via the conduit 78. It was supplied to the continuous multistage distillation column 1 via the preheater 6. In order to keep the composition fed to the continuous multistage distillation column 1 constant, the composition of the liquid fed from the conduit 5 was gradually changed to only MeOH from the original MeOHZDMC mixture force.
  • a part of the bottom liquid extracted from the bottom 73 of the DMC separation tower 71 via the conduit 79 is heated with a reboiler 80 to supply energy necessary for distillation, and the remaining bottom liquid is It was withdrawn via conduit 8 2 at a flow rate of 204.3 gZh.
  • the bottom liquid was DMC 99.9% by weight.
  • the low boiling point component separation tower 17 is operated at a tower top pressure and atmospheric pressure and a tower bottom temperature of 201 ° C, and an ether production reaction of ethylene carbonate and ethylene glycol is performed at the bottom of the low boiling point component separation tower 17. And converted to diethylene glycol (DEG).
  • the residence time at the bottom 26 of the low boiling point component separation tower 17 was 1.5 hours.
  • the gaseous component distilled from the top of the column was condensed in a condenser 19, a part of which was refluxed via a conduit 20, and the rest was introduced via a conduit 21 into the upper part of the deoxidized carbon column 22.
  • the reflux ratio was 1. Nitrogen gas was introduced from a conduit 23 provided at the bottom of the column 22 for publishing.
  • Nitrogen gas containing carbon dioxide was discharged from a conduit 24 provided at the top of the column 22. From the conduit 23 provided at the lower part of the column 22, the carbon dioxide-free solution was circulated to the 20th stage of the continuous multistage distillation column 1 at a flow rate of 58.3 gZh.
  • the bottom liquid of the low-boiling component separation tower 17 is heated with a reboiler 28, and the ether-forming reaction mixture is converted into a bottom liquid from a conduit 30 [99.74% by weight of EG, DEG and other high-boiling impurities are 0 14% by weight, EC was not detected. ]
  • the ether-forming reaction mixture was passed through a conduit 30 and filled with Dixon packing (3 ⁇ ) as a packing, and the top of the EG purification column 41 consisting of a packed column type distillation column having an inner diameter of 2.5 cm and a packing height of 120 cm. To 90 cm.
  • the EG purification tower 41 was operated at a tower top pressure of 4000 Pa (30 torr) and a tower bottom temperature of 123.5 ° C.
  • the top force of the EG purification tower 41 was also obtained as a side fraction from a conduit 56 provided at a position of 50 cm at a flow rate of 139.6 gZh.
  • a part of the top fraction of the EG purification tower 41 was refluxed to the top 42 via the condenser 45 and the conduit 47, and the rest was extracted from the conduit 48.
  • the reflux ratio was 2.
  • the bottom liquid (containing 45.2% by weight of EG) is withdrawn from the bottom 43 of the EG purification tower 41, a part is returned to the bottom 43 through the reboiler 50 and the conduit 51, and the rest is 0.7 gZh through the conduit 52. Extracted.
  • an anion exchange resin having a quaternary ammonium group as an exchange group (DowexMSA-1, type C1 is replaced with 2N-Na CO After ion exchange with an aqueous solution, washing with pure water is repeated, and then dry methanol
  • DMC and EG were produced in the same manner as in Example 1 except that the one fixed so as not to flow out to the bottom of the column (about 10 vol% of the liquid retention portion) was used.
  • T2 98 ° C
  • ⁇ 2 3.8 hours
  • total 6 It was 0 hours. From these values, ⁇ + 1.24 j8 2460.
  • the ester conversion reaction EC conversion is 99.9%
  • DMC selectivity is 99.8%
  • EG selectivity is 99.8%. %Met.
  • the continuous multi-stage distillation column 1 is an Oldershaw distillation column with an inner diameter of 2.5 cm and 10 stages, the EC and catalyst supply stage is the first stage, and the MeOH and DMC mixture supply stage is the fifth stage.
  • Others produced DMC and EG in the same manner as in Example 1.
  • T1 (5th stage) 79.2 ° C
  • T2 95 ° C
  • the EC conversion in the transesterification reaction was 91%
  • the DMC selectivity was 85%
  • the EG selectivity was 83%.
  • the continuous multi-stage distillation column 1 is an Oldshaw distillation column with an inner diameter of 6 cm and 80 plates, the EC and catalyst supply stage is changed to the fifth stage, and the MeOH and DMC mixture supply stage is changed to the 40th stage.
  • DMC and EG were produced in the same manner as in Example 1.
  • T2 97.5 ° C
  • the EC conversion of the transesterification reaction was 99.96%
  • the DMC selectivity was 99.1%
  • the EG selectivity was 99.2%.
  • the other organic components of the EG purification column side extract EG by gas chromatography were 20 ppm, the aldehyde concentration by colorimetry was 18 ppm, and the ultraviolet transmittance at 220 nm was 62%.
  • This result shows that a large amount of aldehydes were produced because the residence time of the reaction liquid in the continuous multistage distillation column 1 was too long.
  • the continuous multi-stage distillation column 1 is an Oldshaw distillation column with an inner diameter of 4 cm and 80 stages, the EC and catalyst supply stage is changed to the fifth stage, and the MeOH and DMC mixture supply stage is changed to the 40th stage.
  • DMC and EG were produced in the same manner as in Example 1.
  • T2 98 ° C
  • the EC conversion of the transesterification reaction was 99.95%
  • the DMC selectivity was 99.8%
  • the EG selectivity was 99.8%.
  • the other organic components of the EG purification tower side extract liquid by gas chromatography were 2 ppm, the aldehyde concentration by colorimetry was 1.6 ppm, and the ultraviolet transmittance at 220 nm was 87.5%. It was.
  • the DMC yield of the entire system was 99.7%, and the EG yield was 99.1%.
  • DMC and EG were produced in the same manner as in Example 3 except that the continuous multistage distillation column 1 was a pressurized column and the top pressure was 6.4 ⁇ 10 5 Pa.
  • the tower top temperature is 10.8 ° C
  • T2 152 ° C
  • the EC conversion of the transesterification reaction was 99.97%
  • the DMC selectivity was 99.2%
  • the EG selectivity was 99.1%.
  • the other organic components of the EG purification tower side extract EG by gas chromatography were 16 ppm, the aldehyde concentration by colorimetry was 14 ppm, and the ultraviolet transmittance at 220 nm was 65%.
  • the continuous multi-stage distillation column 1 is an Oldshaw distillation column with an inner diameter of 2.5 cm and 30 stages, the EC and catalyst supply stage to the second stage, and the MeOH and DMC mixture supply stage to the 15th stage.
  • Others produced DMC and EG in the same manner as in Example 1.
  • the EC conversion of the transesterification reaction was 99.4%
  • the DMC selectivity was 99.3%
  • the EG selectivity was 99.2%.
  • the present invention can be suitably used as a method capable of producing a dialkyl carbonate and a diol stably and simply, and producing a high-purity diol with high conversion and selectivity.
  • FIG. 1 is a schematic diagram of an apparatus used in Examples and Comparative Examples according to the present invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

 本発明が解決しようとする課題は、環状カーボネートと脂肪族1価アルコールからジアルキルカーボネートとジオールを製造する際に、環状カーボネートの転化率が高く、かつ生成するジアルキルカーボネートとジオールの選択率が高く、かつジオール蒸留精製工程に水を供給する等の複雑な処理をすることなく高紫外線透過率を有すると同時にアルデヒド含量の低い高純度のジオールを得ることを同時に満たす方法を提供する。本発明は、環状カーボネートと脂肪族1価アルコールとを触媒の存在下に棚段式連続多段蒸留塔からなるエステル交換反応器内で反応させてジアルキルカーボネートとジオールを生成するに当たり、該蒸留塔内での反応条件(滞留時間、温度)を一定の条件下に制御するジアルキルカーボネートとジオールの製造方法を開示する。

Description

明 細 書
ジアルキルカーボネートとジオールの製造方法
技術分野
[0001] 本発明は、環状カーボネートと脂肪族 1価アルコールとを反応させてなるジアルキ ルカーボネートとジオールの製造方法に関する。
背景技術
[0002] 環状カーボネートと脂肪族 1価アルコール類の反応からジアルキルカーボネートと ジオール類を製造する方法については、いくつかの提案がなされている力 反応方 式としてはこれまで 4つの方式が提案されている。これら 4つの反応方式は、最も代表 的な反応例であるエチレンカーボネートとメタノールからのジメチルカーボネートとェ チレングリコールの製造方法にぉ 、て用いられて 、る。
[0003] すなわち、第 1の方式は、エチレンカーボネート、メタノールおよび触媒をバッチ式 反応容器であるオートクレープに仕込んだ後反応させる、完全なバッチ式反応方式 である (たとえば、特許文献 1 :米国特許第 3642858号明細書、特許文献 2 :特開昭 54— 48715号公報 (米国特許第 4181676号明細書)、特許文献 5 :特開昭 54— 6 3023号公報、特許文献 6 :特開昭 54— 148726号公報、特許文献 7 :特開昭 55— 6 4550号公報、特許文献 8 :特開昭 55— 64551号公報、特許文献 9 :特開昭 56— 10 144号公報参照)。
[0004] 第 2の方式は、反応釜の上部に蒸留塔を設けた装置を用いるものであって、ェチレ ンカーボネート、メタノールおよび触媒を反応容器に仕込み、所定の温度に加熱する ことによって反応を進行させる、蒸留塔を備えたバッチ式反応方式である(たとえば、 特許文献 3:特開昭 51— 122025号公報 (米国特許第 4062884号明細書)、特許 文献 4 :特開昭 54— 48716号公報 (米国特許第 4307032号明細書)、特許文献 14 :米国特許第 3803201号明細書参照)。
[0005] 第 3の方式は、所定の反応温度に保たれた管状リアクターにエチレンカーボネート とメタノールの混合溶液を連続的に供給し、他方の出口より未反応のエチレンカーボ ネートとメタノールと生成物であるジメチルカーボネートおよびエチレングリコールとを 含む反応混合物を液状で連続的に抜き出す連続流通反応方式である(たとえば、特 許文献 10 :特開昭 63— 41432号公報 (米国特許第 4661609号明細書)、特許文 献 11:特開昭 63— 238043号公報、特許文献 12:特開昭 64— 31737号公報 (米 国特許第 4691041号明細書)、特許文献 13 :米国特許第 4734518号明細書参照
) o
[0006] 第 4の方式は、反応蒸留方式、すなわち、多段蒸留塔内にエチレンカーボネートと メタノールをそれぞれ連続的に供給し、該蒸留塔の複数段で触媒の存在下に反応を 行なうと同時に、生成したジメチルカーボネートとエチレングリコールの分離が同じ蒸 留塔内で行われる、連続的製造方法である (たとえば、特許文献 15 :特開平 4— 198 141号公報、特許文献 16 :特開平 4— 230243号公報、特許文献 17 :特開平 5— 21 3830号公報 (ドイツ特許第 4129316号明細書)、特許文献 18 :特開平 6— 9507号 公報 (ドイツ特許第 4216121号明細書)参照)。
[0007] このように、環状カーボネートと脂肪族 1価アルコール力 ジアルキルカーボネート とジオール類を製造するこれまでに提案された方法は、
(1)完全なバッチ反応方式;
(2)蒸留塔を上部に設けた反応釜を用いるバッチ反応方式;
(3)管式リアクターを用いる液状流通反応方式;
(4)反応蒸留方式;
の 4方式であるが、それぞれ、以下に述べるような問題点が指摘されている。
[0008] すなわち、この反応は小さい平衡定数を持つ平衡反応であるため、(1)、(3)の場 合には、環状カーボネートの転ィ匕率の上限は仕込み組成と温度力 決まり、反応を 完全に終結させることはできず、転化率が低い。また、(2)の場合には環状カーボネ 一トの転ィ匕率を高めるためには、極めて大量の脂肪族 1価アルコールを使用しなけ ればならない。(4)の場合には、(1)、(2)、(3)と比較して、高い転化率で反応を進 行させることが可能であり、もっとも優れた反応である。たとえば、特許文献 15の実施 例 1では、エチレンカーボネートの転化率は 100%であり、エチレングリコールの反応 収率および選択率は 99. 5%である。また、特許文献 16の実施例 1では、エチレン力 ーボネートの転ィ匕率は 100%であり、エチレングリコールの反応収率および選択率は 99. 4%である。このように、(4)反応蒸留方式では、高い転化率'選択率を示してい る。さらに、微量の未反応環状カーボネートが生成ジオール中に残存した場合の対 応として、未反応環状カーボネートを加水分解させる方法 (たとえば、特許文献 19 : 国際公開 97Z23445号パンフレット参照)や、ジオールとの反応によるエーテル転 ィ匕させる方法 (たとえば、特許文献 20 :国際公開 00Z51954号パンフレット参照)も 提案されている。
[0009] し力しながら、これまで提案されて 、る反応蒸留方式での検討を進める過程で、製 造されたジオールについて、特定の波長の紫外線透過率が低いことや、アルデヒド 系化合物を含有するという新たな問題点が発見された。この問題点については、ジ オールの蒸留精製工程に特定の水を供給することで、高 ヽ紫外線透過率を保持しァ ルデヒド含量の低い高純度のジオールを得る方法が提案されている(たとえば、特許 文献 21 :特開 2002— 308804号公報、特許文献 22 :特開 2004— 131394号公報 、参照)。し力しながら、この方式はジオール蒸留精製工程に水を供給するものであり 、プロセスが複雑になるという課題があり、更なる改善が求められている。
[0010] 環状カーボネートと脂肪族 1価アルコール力 ジアルキルカーボネートとジオール を製造する際に、環状カーボネートの転化率が高ぐかつ、生成するジアルキルカー ボネートとジオールの選択率が高ぐかつ、ジオール蒸留精製工程に水を供給する 等の複雑な処理をすることなぐ高紫外線透過率を有すると同時にアルデヒド含量の 低 、高純度のジオールを得ることを同時に満たす方法は、これまで全く提案されて ヽ ない。
発明の開示
発明が解決しょうとする課題
[0011] 本発明は、環状カーボネートと脂肪族 1価アルコール力 ジアルキルカーボネートと ジオールを製造する際に、環状カーボネートの転化率が高ぐかつ、生成するジアル キルカーボネートとジオールの選択率が高ぐかつ、ジオール蒸留精製工程に水を 供給する等の複雑な処理をすることなぐ高紫外線透過率を有すると同時にアルデヒ ド含量の低 、高純度のジオールを得ることを同時に満たす方法を提供することを目 的とするものである。 課題を解決するための手段
[0012] 本発明者らは、ジオールの紫外線透過率を低減させるアルデヒドなどの物質の生 成反応機構に着目し、鋭意検討を重ねた結果、棚段塔式連続多段蒸留塔であるェ ステル交換反応器内での反応条件 (滞留時間、温度)が紫外線透過率低減物質の 生成反応に大きく影響すること、さらにその影響が棚段部と塔底部で異なることを見 出し、本発明を完成するに至った。
[0013] すなわち、本発明は、
1.環状カーボネートを主成分とする第一原料と脂肪族 1価アルコールを主成分とす る第二原料を、棚段塔式連続多段蒸留塔に連続的に供給し、該蒸留塔内に存在さ せた触媒と接触させることによって、棚段部および塔底部で反応を行わせると同時に 、生成するジアルキルカーボネートを含む低沸点成分を該蒸留塔の上部力 連続的 に抜き出し、生成するジオールを含む高沸点成分を塔下部より連続的に抜き出すこ とにより、連続的にジアルキルカーボネートとジオールを製造するに際し、下記式(1)
780 ≤ α + 1. 24 Χ β ≤ 5150 式(1)
式中
a = θ 1°·52 Χ (ΤΙ + 120) 1·2
β = θ 2°·52 Χ (Τ2 + 120) 1 2
Θ ΚΗΓ):該蒸留塔の触媒が存在する棚段部における反応液の平均滞留時間 T1 (°C):触媒が存在する棚段部の全段数 n段に対し上力 nZ2段目(nが奇 数の場合は (n+ 1) Z2段目)の温度
Θ 2 (Hr):塔底部における反応液の平均滞留時間
T2 (°C) :塔底部の温度
を満足することを特徴とする、ジアルキルカーボネートとジオールの連続的製造方 法、
2.触媒が均一系触媒であることを特徴とする、前項 1記載のジアルキルカーボネート とジオールの連続的製造方法、
3. θ 1力 ^0. 3〜20時間、 Θ 2力 ^0. 3〜25時間であることを特徴とする、前項 1または 2記載のジアルキルカーボネートとジオールの連続的製造方法、
4. T1および T2がそれぞれ— 20°C〜350°Cの範囲であることを特徴とする、前項 1 ないし 3のうち何れか一項に記載のジアルキルカーボネートとジオールの連続的製 造方法、
を提供する。
発明の効果
[0014] 本発明の方法により、環状カーボネートと脂肪族 1価アルコール力 ジアルキル力 ーボネートとジオールを製造する際に、環状カーボネートの転化率が高ぐかつ、生 成するジアルキルカーボネートとジオールの選択率が高ぐかつ、ジオール蒸留精製 工程に水を供給する等の複雑な処理をすることなぐ高紫外線透過率を有すると同 時にアルデヒド含量の低い高純度のジオールを同時に満たすことができる。
発明を実施するための最良の形態
[0015] 以下、本発明について具体的に説明する。
本発明の反応は、環状カーボネート (A)と脂肪族 1価アルコール類 (B)から、ジァ ルキルカーボネート (C)とジオール類 (D)が生成する、下記一般式 (I)で表わされる 可逆平衡なエステル交換反応である。
[化 1]
NOH ( I )
Figure imgf000007_0001
(A> (B) (C) (D)
[式中、 R1は 2価の基—(CH ) 一(mは 2
2 m 〜6の整数)を表し、その 1個以上の水素は 炭素数 1〜10のアルキル基ゃァリール基によって置換されていてもよい。また、 R2は 炭素数 1〜12の 1価の脂肪族基を表し、その 1個以上の水素は炭素数 1〜10のアル キル基ゃァリール基によって置換されていてもよい。 ]
[0016] 本発明にお 、て、ジオールの紫外線透過率低下物質につ!ヽては、微量成分であり 完全には同定されていないが、ジオール類 (D)より、下記一般式 (Π)で表される不可 逆脱水反応によってアルデヒド類 (E)が生成すると考えられる。
[化 2]
/ R \ R3— CHO + H20 ( I I )
HO OH
(D) (E) [式中、 R3は 1価の基 CH - (CH ) - (mは 2〜6の整数)を表し、その 1個以上の
3 2 m-2
水素は炭素数 1〜10のアルキル基ゃァリール基によって置換されていてもよい。 ] このアルデヒド類 (E)およびアルデヒド類 (E)がさらに反応して生成した物質力 紫 外線透過率低下物質であると考えられる。
[0017] 本発明において、環状カーボネートの転化率が高ぐかつ、生成するジアルキル力 ーボネートとジオールの選択率が高ぐかつ、ジオール蒸留精製工程に水を供給す る等の複雑な処理をすることなぐ高紫外線透過率を有すると同時にアルデヒド含量 の低い高純度のジオールを得ることを同時に満たすことができる理由は明ら力となつ ていないが、次のような理由が考えられる。
[0018] 上記反応式 (Π)はジオールの一次脱水反応であり、滞留時間および温度が反応に 大きく影響し、滞留時間と温度がともに大きくなれば、反応はより進行すると考えられ る。特に、本発明の式(1)中の αおよび j8において滞留時間に比べて温度の次数が 大きいのは、上記反応式 (Π)の温度依存が大きいためであると考えられる。また、棚 段塔式連続多段蒸留塔であるエステル交換反応器では、高沸点成分であるジォー ルは塔下部より抜き出されることより、塔底部は棚段部に比べてジオール濃度が高い ため、上記反応 (Π)の反応機構からアルデヒド生成に対する寄与が大きぐ本発明の 式(1)において、 j8に力かる係数が大きくなつていると考えられる。
[0019] 本発明の式(1)において、 24 X j8の値が 5150よりも大きくなると生成する ジオールの紫外線透過率が低くアルデヒド含量が高 、、低純度のジオールとなって しまう。 α + 1. 24 Χ βの値が 780よりも小さくなると、反応 (I)が進行せず、環状カー ボネートの転化率およびジアルキルカーボネートとジオールの選択率が低下してしま う。このため、式(1)の範囲としては、 780≤ α + 1. 24 Χ β≤ 5150の反応条件が選 択され、好ましくは 1200≤ α + 1. 24 Χ β≤4300、より好ましくは 1600≤ α + 1. 2 4 Χ β≤ 3700となる。
[0020] 該蒸留塔の触媒が存在する棚段部における反応液の平均滞留時間 θ 1 (時間)と しては、長すぎると反応 (Π)が進行してアルデヒド類が生成し、短すぎると反応 (I)が 進行せず環状カーボネートの転化率およびジアルキルカーボネートとジオールの選 択率が低下してしまうため、通常、 0. 3〜20時間、好ましくは 0. 5〜10時間、より好 ましくは 0. 8〜6時間である。なお、触媒が存在しない棚段部では、反応 (I)が進行し ないため、ジオール濃度が極めて低ぐ反応 (II)も進行しない。
[0021] 塔底部における反応液の平均滞留時間 Θ 2 (時間)も同様の理由より、通常、 0. 3 〜25時間、好ましくは 0. 5〜16時間、より好ましくは 1. 0〜: L 1時間である。
[0022] 触媒が存在する棚段部の全段数 η段に対し上カゝら ηΖ2段目(ηが奇数の場合は (η
+ 1) Ζ2段目)の温度 Tl (°C)、塔底部の温度 T2 (°C)につ 、ては用いる原料ィ匕合 物の種類、反応圧力によっても異なる力 T1に関しては、通常、— 20〜350°C、好 ましくは 0〜200°C、より好ましくは 30〜170°Cである。 T2に関しては、通常、— 20〜 350°C、好ましくは 10°C〜250°C、より好ましくは 50〜220°Cである。これらの温度が 高すぎる場合には反応 (Π)が進行してアルデヒド類が生成し、低すぎると反応 (I)が 進行せず環状カーボネートの転化率およびジアルキルカーボネートとジオールの選 択率が低下してしまう。
[0023] また、該蒸留塔の操作圧力は、減圧、常圧、加圧いずれであってもよぐ絶対圧力 で表して、通常、 lPa〜2 X 106Pa、好ましくは 1 X 103〜1 X 106Pa、さらに好ましくは 1 X 104〜5 X 105Paである。通常、操作圧力は、該蒸留塔の反応温度 T1と T2が適 切な温度となるように、該蒸留塔内組成から決定される。
[0024] 本発明で用いられるエステル交換反応器の形式は、棚段塔式連続多段蒸留塔で ある。連続多段蒸留塔とは、蒸留の段数が 2段以上の複数段を有する蒸留塔であつ て、連続蒸留が可能なものを指す。本発明でいう段とは、棚段の実段数である。
[0025] このような棚段塔式連続多段蒸留塔としては、たとえば、泡鐘トレイ、多孔板トレイ、 バルブトレイ、向流トレイ等のトレィを使用したものなど、通常、連続式の棚段塔式多 段蒸留塔として用いられるものならばどのようなものでも使用することができる。また、 固体触媒を用いる場合、この固体触媒を棚段および塔底部に固定した棚段塔式連 続多段蒸留塔を用いることもできる。また、本発明で用いられる連続多段蒸留塔は、 上記の蒸留塔を単独で用いてもよいし、複数の該蒸留塔を直列または並列に接続 することで複数組み合わせて用いることもできる。
[0026] 本発明で原料として用いられる環状カーボネートとは、前記反応式 (I)において (A )で表わされる化合物であって、たとえば、エチレンカーボネート、プロピレンカーボネ ート等のアルキレンカーボネート類や、 1, 3ージォキサシクロへキサー2 オン、 1, 3 ージォキサシクロヘプター 2—オンなどが好ましく用いられ、エチレンカーボネートお よびプロピレンカーボネートが入手の容易さなどの点からさらに好ましく使用され、ェ チレンカーボネートが特に好ましく使用される。
[0027] また、もう一方の原料である脂肪族 1価アルコール類とは、前記反応式 (I)において
(B)で表わされる化合物であって、生成するジオールより沸点が低いものが用いられ る。したがって、使用する環状カーボネートの種類にもよつても変わり得る力 たとえ ば、メタノール、エタノール、プロパノール(各異性体)、ァリルアルコール、ブタノール (各異性体)、 3 ブテン 1 オール、ァミルアルコール(各異性体)、へキシルアル コール(各異性体)、ヘプチルアルコール(各異性体)、ォクチルアルコール(各異性 体)、ノニルアルコール(各異性体)、デシルアルコール(各異性体)、ゥンデシルアル コール(各異性体)、ドデシルアルコール(各異性体)、シクロペンタノール、シクロへ キサノール、シクロへプタノール、シクロォクタノール、メチルシクロペンタノール(各異 性体)、ェチルシクロペンタノール(各異性体)、メチルシクロへキサノール(各異性体 )、ェチルシクロへキサノール(各異性体)、ジメチルシクロへキサノール(各異性体)、 ジェチルシクロへキサノール(各異性体)、フエニルシクロへキサノール(各異性体)、 ベンジルアルコール、フエネチルアルコール(各異性体)、フエ-ルプロパノール(各 異性体)などが挙げられ、さらに、これらの脂肪族 1価アルコール類において、ハロゲ ン、低級アルコキシ基、シァノ基、アルコキシカルボ-ル基、ァリーロキシカルボ-ル 基、ァシロキシ基、ニトロ基等の置換基によって置換されていてもよい。
[0028] このような脂肪族 1価アルコール類の中で、好ましく用いられるのは炭素数 1〜6の アルコール類であり、さらに好ましいのはメタノール、エタノール、プロパノール(各異 性体)、ブタノール (各異性体)の炭素数 1〜4のアルコール類である。環状カーボネ ートとしてエチレンカーボネートやプロピレンカーボネートを使用する場合に、好まし いのはメタノール、エタノールであり、特に好ましいのはメタノールである。
[0029] 本発明の方法においては、エステル交換反応器内に触媒を存在させる。触媒を存 在させる方法はどのような方法であってもよいが、たとえば、反応条件下で反応液に 溶解するような均一系触媒の場合、エステル交換反応器内に連続的に触媒を供給 することにより、エステル交換反応器内の液相に触媒を存在させることもできるし、あ るいは反応条件下で反応液に溶解しな!ヽような不均一系触媒の場合、エステル交換 反応器内に固体触媒を配置することにより、反応系に触媒を存在させることもできるし 、これらを併用した方法であってもよい。
[0030] 均一系触媒をエステル交換反応器である多段蒸留塔内に連続的に供給する場合 には、環状カーボネートおよび Zまたは脂肪族 1価アルコールと同時に供給してもよ いし、原料とは異なる位置に供給してもよぐ塔底力 少なくとも 1段以上の段数を有 する位置であればどの位置にエステル交換触媒を供給してもよい。しかし、該蒸留塔 内で実際に反応が進行するのは触媒供給位置から下の領域であることから、塔頂か ら原料供給位置までの間の領域に該触媒を供給することが好ましい。
[0031] また、不均一系の固体触媒を用いる場合、該触媒は該反応器の任意の位置に必 要量設置することができ、該触媒の存在する段の段数が少なくとも 1段以上あればよ ぐ好ましくは 2段以上あればよい。
[0032] 不均一系の固体触媒を用いる場合、長期連続運転下では、触媒の劣化'変性が起 こる可能性があり、このような場合は固体触媒を入れ替える必要がある。このため、均 一系触媒を用いる方が、より好ましい。
[0033] 本発明において用いられる触媒としては、これまでに知られている種々のものを使 用することができる。たとえば、
リチウム、ナトリウム、カリウム、ルビジウム、セシウム、マグネシウム、カルシウム、スト ロンチウム、ノリウム等のアルカリ金属およびアルカリ土類金属類;
アルカリ金属およびアルカリ土類金属の水素化物、水酸化物、アルコキシド化物類
、ァリ一口キシド化物類、アミドィ匕物類等の塩基性ィ匕合物類; アルカリ金属およびアルカリ土類金属の炭酸塩類、重炭酸塩類、有機酸塩類等の 塩基性化合物類;
トリエチルァミン、トリブチルァミン、トリへキシルァミン、ベンジルジェチルァミン等の
3級ァミン類;
N—アルキルピロール、 N—アルキルインドール、ォキサゾール、 N—アルキルイミ ダゾール、 N—アルキルピラゾール、ォキサジァゾール、ピリジン、アルキルピリジン、 キノリン、アルキルキノリン、イソキノリン、アルキルイソキノリン、アタリジン、アルキルァ クリジン、フエナント口リン、アルキルフエナント口リン、ピリミジン、アルキルピリミジン、 ピラジン、アルキルビラジン、トリアジン、アルキルトリァジン等の含窒素複素芳香族化 合物類;
ジァザビシクロウンデセン(DBU)、ジァザビシクロノネン(DBN)等の環状アミジン 類;
酸ィ匕タリウム、ハロゲンィ匕タリウム、水酸ィ匕タリウム、炭酸タリウム、硝酸タリウム、硫酸 タリウム、タリウムの有機酸塩類等のタリウム化合物類;
トリブチルメトキシ錫、トリブチルエトキシ錫、ジブチルジメトキシ錫、ジェチルジェト キシ錫、ジブチルジェトキシ錫、ジブチルフエノキシ錫、ジフエ-ルメトキシ錫、酢酸ジ ブチル錫、塩化トリブチル錫、 2—ェチルへキサン酸錫等の錫化合物類;
ジメトキシ亜 ジエトキシ亜 エチレンジォキシ亜鈴、ジブトキシ亜鈴等の亜鈴 化合物類;
アルミニウムトリメトキシド、アルミニウムトリイソプロポキシド、アルミニウムトリブトキシ ド等のアルミニウム化合物類;
テトラメトキシチタン、テトラエトキシチタン、テトラブトキシチタン、ジクロロジメトキシ チタン、テトライソプロポキシチタン、酢酸チタン、チタンァセチルァセトナート等のチ タン化合物類;
トリメチルホスフィン、トリェチルホスフィン、トリブチルホスフィン、トリフエニルホスフィ ン、トリブチルメチルホスホニゥムハライド、トリオクチルブチルホスホニゥムハライド、ト リフエ-ルメチルホスホ-ゥムハライド等のリンィ匕合物類;
ハロゲン化ジルコニウム、ジルコニウムァセチルァセトナート、ジルコニウムアルコキ シド、酢酸ジルコニウム等のジルコニウム化合物類;
鉛および鉛を含む化合物類、たとえば、 PbO、 PbO、 Pb O などの酸ィ匕鉛類; Pb
2 3 2
S、 Pb S、 PbSなどの硫化鉛類; Pb (OH)、 Pb O (OH)、 Pb [PbO (OH) ]、 P
2 3 2 2 3 2 2 2 2 2 b O (OH)などの水酸化鉛類; Na PbO、 K PbO、 NaHPbO、 KHPbOなどの亜
2 2 2 2 2 2 2 2 ナマリ酸塩類; Na PbO、 Na H PbO、 K PbO、 K [Pb (OH) ]、 K PbO、 Ca Pb
2 3 2 2 4 2 3 2 6 4 4 2
O、 CaPbOなどの鉛酸塩類; PbCO、 2PbCO -Pb (OH)などの鉛の炭酸塩およ
4 3 3 3 2
びその塩基性塩類; Pb (OCH )、(CH O) Pb (OPh)、Pb (OPh)などのアルコキシ
3 2 3 2
鉛類、ァリールォキシ鉛類; Pb (OCOCH )、 Pb (OCOCH )、 Pb (OCOCH ) ·Ρ
3 2 3 4 3 2 bO - 3H Oなどの有機酸の鉛塩およびその炭酸塩や塩基性塩類; Bu Pb、 Ph Pb、
2 4 4
Bu PbCl、 Ph PbBr、 Ph Pb (または Ph Pb ) , Bu PbOH、 Ph PbOなどの有機鉛
3 3 3 6 2 3 2
化合物類(Buはブチル基、 Phはフエ-ル基を示す); Pb— Na、 Pb— Ca、 Pb— Ba、 Pb— Sn、 Pb— Sbなどの鉛の合金類;ホウェン鉱、センァェン鉱などの鉛鉱物類、お よびこれらの鉛化合物の水和物類;
3級アミノ基を有する陰イオン交換榭脂、アミド基を有するイオン交換榭脂、スルホ ン酸基、カルボン酸基、リン酸基のうちの少なくとも一つの交換基を有するイオン交換 榭脂、第 4級アンモ-ゥム基を交換基として有する固体強塩基性ァ-オン交換体等 のイオン交換体類;
シリカ、シリカ アルミナ、シリカ一マグネシア、アルミノシリケート、ガリウムシリケート 、各種ゼォライト類、各種金属交換ゼォライト類、アンモ-ゥム交換ゼォライト類など の固体の無機化合物類;
等が用いられる。
固体触媒として、特に好ましく用いられるのは第 4級アンモ-ゥム基を交換基として 有する固体強塩基性ァ-オン交換体であり、このようなものとしては、たとえば、第 4 級アンモ-ゥム基を交換基として有する強塩基性ァ-オン交換榭脂、第 4級アンモ- ゥム基を交換基として有するセルロース強塩基性ァ-オン交換体、第 4級アンモ-ゥ ム基を交換基として有する無機質担体担持型強塩基性ァニオン交換体などが挙げら れる。第 4級アンモ-ゥム基を交換基として有する強塩基性ァ-オン交換榭脂として は、たとえば、スチレン系強塩基性ァニオン交換榭脂などが好ましく用いられる。スチ レン系強塩基性ァ-オン交換榭脂は、スチレンとジビュルベンゼンの共重合体を母 体として、交換基に第 4級アンモ-ゥム (I型、或いは II型)を有する強塩基性ァ-オン 交換榭脂であり、たとえば、次の式 (ΠΙ)で模式的に示される。
[化 3]
Figure imgf000014_0001
Figure imgf000014_0002
2- 上記式中、 Xはァ-オンを示し、通常、 Xとしては、 F―、 Cl—、 Br―、 Γ、 HCO―、 CO
, CH CO , HCO 、IO , BrO 、 CIO の中力ら選ばれた少なくとも 1種のァ-オン が使用され、好ましくは Cl—、 Br―、 HCO―、 CO の中力 選ばれた少なくとも 1種のァ
3 3
ユオンが使用される。また、榭脂母体の構造としては、ゲル型、マクロレティキュラー 型 (MR型) V、ずれも使用できるが、耐有機溶媒性が高 、点カゝら MR型が特に好まし い。
第 4級アンモ-ゥム基を交換基として有するセルロース強塩基性ァ-オン交換体と しては、たとえば、セルロースの— OH基の一部または全部をトリアルキルアミノエチ ル化して得られる、 -OCH CH NR Xなる交換基を有するセルロースが挙げられる
2 2 3
。ただし、 Rはアルキル基を示し、通常、メチル、ェチル、プロピル、ブチルなどが用い られ、好ましくはメチル、ェチルが使用される。また、 Xは前述のとおりである。 [0036] 本発明において使用できる、第 4級アンモ-ゥム基を交換基として有する無機質担 体担持型強塩基性ァ-オン交換体とは、無機質担体の表面水酸基 OHの一部ま たは全部を修飾することにより、 4級アンモ-ゥム基一 0 (CH ) NR Xを導入したもの
2 n 3
を意味する。ただし、 R、 Xは前述のとおりであり、 nは通常 1〜6の整数であり、好まし くは n= 2である。無機質担体としては、シリカ、アルミナ、シリカアルミナ、チタ-ァ、 ゼォライトなどを使用することができ、好ましくはシリカ、アルミナ、シリカアルミナが用 いられ、特に好ましくはシリカが使用される。
[0037] 無機質担体の表面水酸基の修飾方法としては、任意の方法を用いることができる。
たとえば、無機質担体とァミノアルコール HO (CH ) NRを塩基触媒存在下に脱水
2 n 2
反応を進行させることによりアミノアルコキシィ匕した後に、ハロゲン化アルキル RX^ ( Χ' はハロゲンを示し、通常は Cl、 Br、 Iなどが使用される。)と反応させて— 0 (CH )
2
NR Ύΐ 基とする。さらに、ァ-オン交換を行なうことにより、所望のァ-オン Xを有す η 3
る 4級アンモ-ゥム基— 0 (CH ) NR Xとする。また、 n= 2の場合には、無機質担体
2 n 3
を N、 N ジアルキルアジリジンで処理することにより、 N、 N ジアルキルアミノエトキ シ化して— OCH CH NR基とした後に、上述の方法により— 0 (CH ) NR X基とす
2 2 2 2 n 3 る。
[0038] 第 4級アンモ-ゥム基を交換基として有する固体強塩基性ァ-オン交換体は、市販 のものを使用することもできる。その場合には、前処理として予め所望のァ-オン種 でイオン交換を行なった後に、エステル交換触媒として使用することもできる。また、 少くとも 1個の窒素原子を含む複素環基が結合して!、る巨大網状およびゲルタイプ の有機ポリマー、または少くとも 1個の窒素原子を含む複素環基が結合している無機 質担体から成る固体触媒もエステル交換触媒として好ましく用いられる。さら〖こ、これ らの含窒素複素環基の一部または全部が 4級塩化された固体触媒も同様に用いら れる。
[0039] 本発明で用いられる触媒の量は、使用する触媒の種類によっても異なるが、反応 条件下で反応液に溶解するような均一系触媒を連続的に供給する場合には、供給 原料である環状カーボネートと脂肪族 1価アルコールの合計重量に対する割合で表 わして、通常、 0. 0001〜50重量0 /0、好ましくは 0. 001〜25重量0 /0、より好ましくは 0. 005〜10重量%で使用される。また、固体触媒を該蒸留塔内に設置して使用す る場合には、該蒸留塔の空塔容積に対して、好ましくは 0. 01〜75体積%、より好ま しくは 0. 05〜50体積0 /0、さら〖こ好ましくは 0. 1〜25体積0 /0の触媒量が用いられる。
[0040] エステル交換反応器である連続多段蒸留塔に対し、環状カーボネートおよび脂肪 族 1価アルコールを連続的に供給する方法については、特別な限定はなぐそれら が該蒸留塔の少なくとも 1段以上、好ましくは 2段以上の領域において触媒と接触さ せることができるような供給方法であれば、どのような方法であってもよい。すなわち、 該環状カーボネートと該脂肪族 1価アルコールは、連続多段蒸留塔の上記の条件を 満たす段に必要な数の導入ロカ 連続的に供給することができる。また、該環状力 ーボネートと該脂肪族 1価アルコールは該蒸留塔の同じ段に導入されてもよいし、そ れぞれ別の段に導入されてもよい。
[0041] 原料は、液状、ガス状または液とガスとの混合物として該蒸留塔に連続的に供給さ れる。このようにして原料を該蒸留塔に供給する以外に、付加的にガス状の原料を該 蒸留塔の下部力 断続的または連続的に供給することも好ましい方法である。また、 環状カーボネートを触媒の存在する段よりも上部の段に液状または気液混合状態で 該蒸留塔に連続的に供給し、該蒸留塔の下部に該脂肪族 1価アルコールをガス状 および Zまたは液状で連続的に供給する方法も好ましい方法である。この場合、環 状カーボネート中に、脂肪族 1価アルコールが含まれていても、もちろん構わない。
[0042] 本発明にお 、て、供給原料中に、生成物であるジオール類が少量含まれて 、ても よい。また、脂肪族 1価アルコールに含まれるジアルキルカーボネートは、脂肪族 1価 アルコール zジアルキルカーボネート混合物中のジアルキルカーボネートの重量% で表わして、通常、 0〜40重量%、好ましくは 0. 1〜30重量%、さらに好ましくは 1〜 20重量%で用いられる。
[0043] エステル交換反応器に供給する環状カーボネートと脂肪族 1価アルコール類との 量比は、エステル交換触媒の種類や量および反応条件によっても異なるが、通常、 供給される環状カーボネートに対して、脂肪族 1価アルコール類はモル比で 0. 01〜 1000倍の範囲で供給することができる。環状カーボネートの転ィ匕率を上げるために は脂肪族 1価アルコール類を環状カーボネートに対し 2倍モル以上の過剰量供給す ることが好ましいが、あまり大過剰に用いると装置を大きくする必要がある。このような 意味において、特に好ましいのは、環状カーボネートに対し 2〜20倍モル量の脂肪 族 1価アルコール類が使用される場合である。
[0044] 本発明のエステル交換反応器中に炭酸ガスが高濃度で存在すると、エステル交換 反応の反応速度が低下してしまう。したがって、反応液中の CO濃度で表して、通常
2
、 500ppm以下、好ましくは 200ppm以下、さらに好ましくは lOOppm以下で行われ る。
[0045] また、本発明のエステル交換反応器中内の反応液に水が高濃度で存在すると、ェ ステル交換反応と同時に環状カーボネートの加水分解反応も進行するためにジアル キルカーボネート選択率が低下してしまう。したがって、反応液中の H O濃度で表し
2
て通常、 200ppm以下、好ましくは lOOppm以下で行われる。
[0046] 本発明において、エステル交換反応における環状カーボネートの転ィ匕率を 100% に近づけようとすると、滞留時間が大きくなり前述のように高純度のジオールを得るこ とができなくなったり、必要な脂肪族 1価アルコールの量が過大となってしまう。また、 転ィ匕率が低すぎる場合には、未反応環状カーボネートの分離回収装置が大きくなり 好ましくない。したがって、エステル交換反応における環状カーボネートの転ィ匕率は 、通常、 95~99. 999%,好ましくは 98〜99. 99%,さらに好ましくは 99〜99. 99 %で行われる。
[0047] 本発明にお 、て、生成物の一つであるジアルキルカーボネートは、エステル交換反 応器力 抜き出され、通常はガス状の低沸点成分として該反応器の上部力 抜き出 される。反応器の上部カゝら抜き出される低沸点成分はジアルキルカーボネート単独 でもよ 、し、脂肪族 1価アルコール類とジアルキルカーボネートとの混合物であっても ょ 、し、また高沸点生成物を少量含んで 、てもよ 、。
[0048] エステル交換反応器である連続多段蒸留塔に対し、該多段蒸留塔からジアルキル カーボネートを含む低沸点成分を抜き出す抜出口は、原料供給位置力 塔頂の間ま たは塔頂部にガス状物質の抜出口を設けることが好ましぐ塔頂部に設けることがさ らに好ましい。このようにして抜き出された低沸点成分の一部を該蒸留塔の上部に戻 す、いわゆる還流操作を行ってもよい。この還流操作によって還流比を増加させると 、低沸点生成物の蒸気相への蒸留効率が高くなるため、抜き出すガス成分中の低沸 点生成物濃度を増加させることができる。しかしながら、あまりに還流比を増加させる と必要な熱エネルギーが大きくなるので好ましくない。したがって、還流比は、通常 0 〜10が用いられ、好ましくは 0〜5が、さらに好ましくは 0〜3が用いられる。
[0049] エステル交換反応器の上部から抜き出される低沸点混合物をジアルキルカーボネ ート分離装置に供給し、該ジアルキルカーボネート分離装置力 ジアルキルカーボ ネートを抜き出すことによって、ジアルキルカーボネートを得ることができる。該ジアル キルカーボネート分離装置としては、蒸留分離装置、抽出分離装置、液液抽出分離 装置、晶析分離装置、吸着分離装置、膜分離装置などを用いることができる。これら の分離装置はそれぞれが同一種類の複数の装置力 構成されていてもよいし、複数 の種類の分離装置の組合せを用いることもできる。これらの分離装置の中で特に好 ま 、分離装置として蒸留分離装置が用いられる。
[0050] 該ジアルキルカーボネート分離装置として蒸留分離装置を用いる場合には、エステ ル交換反応器の上部力も抜き出される低沸点混合物を蒸留分離装置に導き、該反 応液または該混合物に含まれるジアルキルカーボネートや脂肪族 1価アルコールな どの各成分を、それぞれ単一成分またはこれらの成分の混合物力 成る留分または 塔底液として分離することができる。原料の種類によっては共沸混合物が留分または 塔底液として得られる場合もある。このようにして蒸留分離装置を用いて、反応液また はエステル交換反応器の上部カゝら抜き出される低沸点混合物を各留分および塔底 液に分離した後に、脂肪族 1価アルコールを含む留分または塔底液をエステル交換 反応器へ供給することができる。
[0051] 該蒸留分離装置としては、エステル交換反応器として用いることのできる多段蒸留 塔と同様の棚段式多段蒸留塔を用いてもよいし、各種充填物を充填した充填塔式蒸 留塔を用いてもよぐ単独でまたは複数組み合わせて用いることができる。ここで、脂 肪族 1価アルコールとジアルキルカーボネートが最低沸点共沸混合物を形成する組 合せである場合を、脂肪族 1価アルコールとしてメタノールを使用してジメチルカーボ ネートが生成する場合について次に例示する。メタノールとジメチルカーボネートを 含有するエステル交換反応器上部から抜き出される低沸点混合物をジメチルカーボ ネート分離塔に連続的に供給し、該ジメチルカーボネート分離塔の上部からメタノー ルとジメチルカーボネートの最低沸点共沸混合物を含む低沸点成分を連続的に抜き 出し、該ジメチルカーボネート分離塔の下部からジメチルカーボネートを連続的に抜 き出すことにより、ジメチルカーボネートを得ることができる。
[0052] 該ジメチルカーボネート分離塔の操作圧力は、通常、絶対圧力で表して 0. 5 X 105 〜50 X 105Pa (0. 51〜51kgZcm2)の減圧または加圧下で操作される。メタノール Zジメチルカーボネート最低沸点共沸混合物の組成は操作圧力により変わるので、 該ジメチルカーボネート分離塔の操作圧力は、塔下部からジメチルカーボネートを得 ることができる操作圧力が選ばれる。すなわち、エステル交換反応器の塔上部抜き出 し物中のメタノール Zジメチルカーボネート比に対応した圧力よりも高い圧力が選ば れる。
[0053] 前記ジメチルカーボネート分離塔の上部カゝら抜き出したメタノールとジメチルカーボ ネートの最低沸点共沸混合物を含む低沸点成分を、本発明の方法の原料として、ェ ステル交換反応器に供給することができる。
[0054] 本発明において連続多段蒸留塔の上部とは、該蒸留塔の塔頂から塔高の約 1Z2 の高さの位置までの範囲を指し、塔頂も含まれる。また連続多段蒸留塔の下部とは、 該蒸留塔の塔底力 塔高の約 1Z2の高さの位置までの範囲を指し、塔底も含まれる
[0055] エステル交換反応器で生成するジオールは、液状高沸点成分として該反応器の下 部から抜き出される。該高沸点混合物は、生成するジオールと未反応の環状カーボ ネートとを含んでおり、脂肪族 1価アルコールまたは脂肪族 1価アルコールとジアルキ
Figure imgf000019_0001
、てもよ 、。
[0056] 生成したジオールを含む液状高沸点混合物をエステル交換反応器カゝら抜き出す 抜出口は、該反応器の下部に設けられる。このようにして抜き出された反応混合物は 、その一部をリボイラーで加熱することによって、ガス状または気液混合物の状態で 該反応器の下部に戻してもょ 、。
[0057] エステル交換反応器である連続多段蒸留塔に対し、該蒸留塔内の液速度および ガス速度は、使用する棚段の種類により異なるが、通常、フラッデイングおよびウイ一 ビングを起こさな 、範囲で実施される。
[0058] エステル交換反応器の下部から抜き出した液状高沸点混合物の一部を該エステル 交換反応器へ供給することで未反応環状カーボネートおよび Zまたは未反応脂肪 族 1価アルコールを該エステル交換反応器へ循環させることもできる。
[0059] このようにして得られたジオールを含む高沸点混合物をジオール精製工程で分離 するに際しては、通常、(1)原料である脂肪族 1価アルコール等の低沸点成分が含ま れる場合には、蒸留等の分離装置を用いて予め該脂肪族 1価アルコール等を分離し 、エステル交換反応器へリサイクルすることが好ましぐまた、(2)該高沸点混合物に 含まれる未反応環状カーボネートを予め分離した後に該精製工程へ供給されること が好ましい。該高沸点混合物に含まれる未反応環状カーボネートの分離方法として は、(i)蒸留分離、(ii)加水分解反応によりジオールへ転化させる方法、(iii)環状力 ーボネートとジオールのエーテル生成反応により未反応環状カーボネートを消失さ せる方法などを用いることができる。特に好ましくは、エーテル生成反応が用いられる
[0060] すなわち、エステル交換反応器カゝら抜き出される高沸点混合物をジオール精製ェ 程へ供給する前に行う好ましい分離方法として、以下に示す 2つの方法を用いること ができる。
1.エステル交換反応器カゝら抜き出される液状高沸点混合物をジオール精製工程に 供給する前に、該液状高沸点混合物を、サイドカット抜き出し口を下部に設けた連続 多段蒸留塔からなる低沸点成分分離塔に連続的に供給し、該高沸点混合物中に残 存している脂肪族 1価アルコールとジアルキルカーボネートを含む低沸点成分を低 沸点成分分離塔の上部力 連続的に抜き出すと共に、ジオールおよび環状カーボ ネートを含む留分をサイドカットロカも抜き出し、低沸点成分分離塔の上部から抜き 出した該低沸点成分をエステル交換反応器へ供給することによって循環させ、一方 、該低沸点成分分離塔のサイドカット口から抜き出した留分をエーテル生成反応装 置へ供給してエーテル生成反応を行わせた後に、ジオール精製工程へ供給する方 法が挙げられる。
低沸点成分分離塔としては、エステル交換反応器として用いることのできる多段蒸 留塔と同様の棚段式多段蒸留塔を用いてもよいし、各種充填物を充填した充填塔式 蒸留塔を用いてもよい。
2.エステル交換反応器カゝら抜き出される液状高沸点混合物をジオール精製工程へ 供給する前に、該液状高沸点混合物を多段蒸留塔からなる低沸点成分分離塔に連 続的に供給し、該高沸点混合物中に残存して 、る脂肪族 1価アルコ一ルとジアルキ ルカーボネートを含む低沸点成分を低沸点成分分離塔の上部力 連続的に抜き出 すとともに、ジオールおよび環状カーボネートを含む高沸点成分を該低沸点成分分 離塔の下部から抜き出し、その際に該低沸点成分分離塔の下部でエーテル生成反 応を行わせ、低沸点成分分離塔の上部から抜き出した該低沸点成分をエステル交 換反応器に連続的に供給することによって循環させ、一方、該低沸点成分分離塔の 下部から抜き出したジオールおよび生成したエーテルを含む高沸点成分をジオール 精製工程に供給する方法が挙げられる。
[0061] 上記のエーテル生成反応を実施するに当たっては、特許文献 20 (国際公開 OOZ5 1954号パンフレット)に記載のエーテル生成反応の方法、すなわち、生成したジォ 一ルと未反応の環状カーボネートを含む混合物をエーテル生成反応装置に供給し、 未反応環状カーボネートを生成ジオールの一部とエーテル生成反応を行なわせて、 次式
HO (^O) H
[式中、 R1は前記の通り。 ]
で表される直鎖エーテルに転ィ匕させることにより、該未反応環状カーボネートを減少 せしめる方法を用いることができる。
[0062] エーテル生成反応装置の反応条件は、触媒の有無や触媒を用いる場合には該触 媒の種類および量によっても異なる力 反応温度は、通常、 50〜350°C、好ましくは 80〜300°C、より好ましくは 100〜250°Cで行なわれ、反応時間は、触媒の有無や 触媒を用いる場合には該触媒の種類および量や、反応温度によっても異なるが、平 均滞留時間で表現して、通常、 0. 001〜50時間、好ましくは 0. 01〜10時間、さら に好ましくは 0. 02〜5時間である。反応圧力は、用いる反応温度によっても異なるが 、絶対圧力で表わして、通常、 1 X 103〜2 X 107Pa、好ましくは 1 X 104〜1 X 107Pa で行なわれる。
[0063] エーテル生成反応における環状カーボネートの転ィ匕率は、通常、 90〜100%、好 ましくは 95〜100%、さらに好ましくは 98〜100%で行われる。
[0064] また、二酸化炭素がエステル交換反応器へ導入されると、エステル交換反応が阻 害され、反応速度が低下する。したがって、エーテル生成装置力 抜き出される二酸 化炭素を分離することは、好ましい方法である。
[0065] さらに、特許文献 21 (特開 2002— 308804号公報)及び特許文献 22 (特開 2004 — 131394号公報)に記載されている、ジオールを含む反応液を蒸留分離工程で分 離するに際して、該蒸留分離工程に水を供給する方法を用いなくても高紫外線透過 率を有すると同時にアルデヒド含量の低 、高純度のジオールを得ることができるが、 もちろんこの方法を同時に用いてもよ!、。
[0066] 本発明においては、必ずしも溶媒を使用する必要はないが、(1)反応操作を容易 にするためや、(2)共沸蒸留や抽出蒸留を行ってジアルキルカーボネートやジォー ルを効率的に取得するため、等の目的で適当な不活性溶媒、たとえば、エーテル類 、脂肪族炭化水素類、芳香族炭化水素類、ハロゲン化脂肪族炭化水素類、ハロゲン 化芳香族炭化水素類等を反応溶媒として用いることができる。
[0067] また、反応に不活性な物質である窒素、ヘリウム、アルゴン等の不活性ガスを反応 系に共存させてもよいし、生成する低沸点生成物の留去を加速する目的で連続多段 蒸留塔の下部より、前記の不活性ガスや反応に不活性な低沸点有機化合物をガス 状で導入してもよい。
実施例
[0068] 以下に、この発明の実施例を具体的に説明するが、本発明は以下の実施例に限 定されるものではない。
下記各例中、エチレングリコールとジメチルカーボネートの選択率は消費されたェ チレンカーボネート基準の数値であり、エチレングリコールとジメチルカーボネートの 収率は仕込みのエチレンカーボネート基準の数値である。蒸留塔の各段の位置は、 塔頂を 1段として数えた当該段の段数で表す。アルデヒド濃度は比色法 [ (1) 50mlの 蒸留水に、適量の試料と 0. 2重量% 塩ィ匕第二鉄 (FeCl -6H O)—0. 32重量% スルファミン酸水溶液 5mlを加えて均一混合後 1時間静置し、 (2) 0. 2重量%塩化第 二鉄(FeCl - 6H O)—0. 32重量0 /0%スルファミン酸水溶液 25mlを加え、さらに蒸
3 2
留水をカ卩えて 100mlとし、(3)波長 635nmでの吸光度を測定し、ァセトアルデヒドを 標準物質として作成した検量線を用いて、該試料に含まれるアルデヒド類の濃度をァ セトアルデヒド重量濃度換算値として求める。 ]により測定した。
[0069] [実施例 1]
図 1に示される装置を用いてエチレンカーボネート(EC)とメタノール (MeOH)から 、ジメチルカーボネート (DMC)とエチレングリコール (EG)を連続的に製造した。内 径 4cm、段数 40段のオールダーショー蒸留塔力 なる連続多段蒸留塔 1の第 3段へ 、 ECを流速 200gZhで導管 2から予熱器 3を経て液状で連続的に供給し、同じく第 3段へ水酸ィ匕カリウム (KOH)の 18重量0 /0エチレングリコール溶液 (均一系触媒)を 流速 0. 95gZhで導管 ^ を経て液状で連続的に供給し、 MeOHと DMC (重量比: MeOHZDMC = 97Z3)力 なる混合物を 636. 4gZhの流速で、導管 5から予熱 器 6を経て、連続多段蒸留塔 1の第 20段へ液状で連続的に供給した。連続多段蒸 留塔 1の塔頂圧力は大気圧で、塔頂温度は 63. 8°Cであった。第 21段 (触媒が存在 する棚段部の全段数 38段に対し上から 19段目)の温度 T1 = 80. 5°C、塔底部の温 度 T2 = 98°Cであり、反応液の平均滞留時間は、触媒が存在する棚段部 0 1 = 2. 4 時間、塔底部 Θ 2 =4. 3時間、合計 6. 7時間であった。これらの値より、 α + 1. 24 β = 2607となる。
[0070] 塔頂 4から留出するガス状低沸点混合物は凝縮器 7で凝縮され、一部は導管 8経 由で塔頂部に還流 (還流比は 0. 4)され、残りは流速 695. 4gZhで塔頂抜き出し液 (MeOHを 67. 9重量%、 DMCを 32. 1重量%含む)として導管 9を経て、充填物と してディクソンパッキング(3 φ )を充填した、内径 2. 5cm、充填高 160cmの充填塔 型蒸留塔からなる DMC分離塔 71の塔頂から 80cmの位置へ供給された。
[0071] 塔底 10から導管 11を経て抜き出された塔底液の一部をリボイラー 12で加熱するこ とにより蒸留に必要なエネルギーを供給し、残りの塔底液は液状高沸点混合物 [EG を 70. 65重量0 /0、 MeOHを 29. 16重量0 /0、 ECを 0. 08重量0 /0、 DMCを 0. 02重 量。 /0、ジエチレングリコール(DEG)およびその他の高沸点不純物を 0. 01重量0 /0、 KOHを 0. 08重量%含む]は導管 14を経て、充填物としてディクソンパッキング(3 φ )を充填した、内径 2. 5cm,充填高 160cmの充填塔型蒸留塔からなる低沸点成分 分離塔 17の塔頂から 100cmの位置へ流速 200. 2gZhで供給された。エステル交 換反応の EC転化率は 99. 92%、 DMC選択率は 99. 9%、 EG選択率は 99. 9%で めつに。
[0072] DMC分離塔 71は塔頂圧力 1. 4 X 106Pa、塔底温度 205°Cで運転された。塔頂 7 2から留出するガス状低沸点混合物は凝縮器 75で凝縮され、一部は導管 77経由で 塔頂部に還流 (還流比 2)され、残りは導管 78を経て導管 5と合流し予熱器 6を経て 連続多段蒸留塔 1へ供給された。連続多段蒸留塔 1へ供給される組成が一定に保た れるように、導管 5から供給する液の組成は当初の MeOHZDMC混合物力ら徐々 に MeOHのみへと変更された。
[0073] DMC分離塔 71の塔底 73から導管 79を経て抜き出された塔底液の一部をリボイラ 一 80で加熱することにより蒸留に必要なエネルギーを供給し、残りの塔底液は導管 8 2を経て流速 204. 3gZhで抜き出された。塔底液は、 DMC99. 9重量%であった。
[0074] 低沸点成分分離塔 17は塔頂圧力大気圧、塔底温度 201°Cで運転され、低沸点成 分分離塔 17の塔底部でエチレンカーボネートとエチレングリコールとのエーテル生 成反応を行わせ、ジエチレングリコール (DEG)へ転化させた。低沸点成分分離塔 1 7の塔底部 26での滞留時間は 1. 5時間であった。この塔頂から留出するガス状成分 は凝縮器 19で凝縮され、その一部を導管 20を経て還流させ、残りは導管 21を経て 脱二酸ィ匕炭素カラム 22の上部へ導入した。還流比は 1であった。該カラム 22の底部 に設けた導管 23から窒素ガスを導入し、パブリングさせた。該カラム 22の上部に設け た導管 24から二酸ィ匕炭素を含む窒素ガスが排出された。該カラム 22の下部に設け られた導管 23から、脱二酸化炭素された液を、連続多段蒸留塔 1の第 20段へ流速 5 8. 3gZhで循環した。
[0075] 低沸点成分分離塔 17の塔底液をリボイラー 28で加熱し、導管 30から塔底液として エーテル生成反応混合物 [EGを 99. 74重量%、 DEGおよびその他の高沸点不純 物を 0. 14重量%含み、 ECは検出されな力つた。]を流速 141. 7gZhで抜き出した [0076] 該エーテル生成反応混合物は導管 30を経て、充填物としてディクソンパッキング( 3 φ )を充填した、内径 2. 5cm,充填高 120cmの充填塔型蒸留塔からなる EG精製 塔 41の塔頂から 90cmの位置へ供給された。
[0077] EG精製塔 41は塔頂圧力 4000Pa (30torr)、塔底温度 123. 5°Cで運転された。 E G精製塔 41の塔頂力も 50cmの位置に設けられた導管 56から液状留分をサイド抜 出液として流速 139. 6gZhで得た。また、 EG精製塔 41の塔頂留分の一部を凝縮 器 45、導管 47を経由して塔頂 42へ還流させ、残りを導管 48から抜き出した。還流比 は 2であった。 EG精製塔 41の塔底 43から塔底液 (EGを 45. 2重量%含む。)を抜き 出し、一部をリボイラー 50、導管 51を通して塔底 43へ戻し、残りを導管 52を通して 0 . 7gZh抜き出した。
[0078] EG精製塔のサイド抜き出し液 EGは、ガスクロマトグラフ法ではその他の有機成分 は検出限界 (各成分 lppm)以下であり、アルデヒド濃度を比色法により測定したとこ ろ、 0. 6ppmであった。また、このサイド抜き出し液の 220nmでの紫外線透過率は 8 9%であった。この EGとテレフタル酸ジメチルを原料とし、触媒としてアンチモンを用 いて、ポリエステルを製造した。得られたポリエステルは紫外 ·可視領域において、高 い光透過率を有していた。以上の結果は、系全体で DMC収率が 99. 8%、極めて 純度の高い EGが収率 99. 1%で得られたことを示す。
[0079] [実施例 2]
触媒として、均一系触媒である水酸ィ匕カリウムのエチレングリコール溶液ではなぐ 第 4級アンモ-ゥム基を交換基とする陰イオン交換榭脂 (DowexMSA— 1、 C1型を、 2N-Na CO水溶液でイオン交換した後、純水で洗浄を繰り返し、次いで乾燥メタノ
2 3
ールで繰り返し洗浄することによって、脱水'乾燥したもので、 C1—イオンの約 50%が CO 2イオンに交換したもの)を棚段部の第 3段から第 40段 (それぞれ液滞留部の約
3
5vol%)と塔底部 (液滞留部の約 10vol%)に流出しないように固定したものを用いた 他は、実施例 1と同様の方法で DMCと EGを製造した。このとき、塔内温度は、 Tl = 80. 4°C、T2 = 98°Cであり、反応液の平均滞留時間は、 Θ 1 = 2. 2時間、 Θ 2 = 3. 8時間、合計 6. 0時間であった。これらの値より、 α + 1. 24 j8 = 2460となる。エステ ル交換反応の EC転化率は 99. 9%、 DMC選択率は 99. 8%、 EG選択率は 99. 8 %であった。
[0080] また、 EG精製塔サイド抜き出し液 EGのガスクロマトグラフ法によるその他の有機成 分は検出限界(lppm)以下、比色法によるアルデヒド濃度は 0. 8ppmであり、 220η mの紫外線透過率は 88. 5%であった。系全体の DMC収率は 99. 7%、 EG収率は 99. 0%であった。
[0081] [比較例 1]
連続多段蒸留塔 1を、内径 2. 5cm,段数 10段のオールダーショー蒸留塔とし、 EC と触媒の供給段を第 1段へ、 MeOHと DMC混合物の供給段を第 5段としたことの他 は、実施例 1と同様の方法で DMCと EGを製造した。このとき、塔内温度は、 T1 (第 5 段) = 79. 2°C、T2 = 95°Cであり、反応液の平均滞留時間は、 0 1 = 0. 18時間、 Θ 2 = 0. 25時間、合計 0. 43時間であった。これらの値より、 α + 1. 24 j8 =615となる 。エステル交換反応の EC転ィ匕率は 91%、 DMC選択率は 85%、 EG選択率は 83% であった。
[0082] また、 EG精製塔サイド抜き出し液 EGのガスクロマトグラフ法分析結果では、その他 の有機成分 (主に EC)が 1. 8%検出された。
[0083] この結果は、連続多段蒸留塔 1の滞留時間が不足していたため、エステル交換反 応成績が悪ィ匕したことを示して 、る。
[0084] [比較例 2]
連続多段蒸留塔 1を、内径 6cm、段数 80段のオールダーショー蒸留塔とし、 ECと 触媒の供給段を第 5段へ、 MeOHと DMC混合物の供給段を第 40段としたことの他 は、実施例 1と同様の方法で DMCと EGを製造した。このとき、塔内温度は、 T1 (第 4 2段) =80. 8°C、T2 = 97. 5°Cであり、反応液の平均滞留時間は、 Θ 1 = 10. 8時 間、 Θ 2 = 21時間、合計 31. 8時間であった。これらの値より、 α + 1. 24 j8 = 5853 となる。エステル交換反応の EC転化率は 99. 96%、 DMC選択率は 99. 1%、 EG 選択率は 99. 2%であった。
[0085] また、 EG精製塔サイド抜き出し液 EGのガスクロマトグラフ法によるその他の有機成 分は 20ppm、比色法によるアルデヒド濃度は 18ppmであり、 220nmの紫外線透過 率は 62%であった。 [0086] この結果は、連続多段蒸留塔 1における反応液の滞留時間が長すぎたため、アル デヒド類が大量に生成したことを示して 、る。
[0087] [実施例 3]
連続多段蒸留塔 1を、内径 4cm、段数 80段のオールダーショー蒸留塔とし、 ECと 触媒の供給段を第 5段へ、 MeOHと DMC混合物の供給段を第 40段としたことの他 は、実施例 1と同様の方法で DMCと EGを製造した。このとき、塔内温度は、 T1 (第 4 2段) =80. 8°C、T2 = 98°Cであり、反応液の平均滞留時間は、 Θ 1 = 5. 0時間、 Θ 2= 11. 2時間、合計 16. 2時間であった。これらの値より、 α + 1. 24 j8 =4126とな る。エステル交換反応の EC転化率は 99. 95%、 DMC選択率は 99. 8%、 EG選択 率は 99. 8%であった。
[0088] また、 EG精製塔サイド抜き出し液 EGのガスクロマトグラフ法によるその他の有機成 分は 2ppm、比色法によるアルデヒド濃度は 1. 6ppmであり、 220nmの紫外線透過 率は 87. 5%であった。系全体の DMC収率は 99. 7%、 EG収率は 99. 1%であつ た。
[0089] [比較例 3]
連続多段蒸留塔 1を加圧塔とし、 6. 4 X 105Paの塔頂圧力としたことの他は、実施 例 3と同様の方法で DMCと EGを製造した。このとき塔頂温度は 120. 8°Cであり、塔 内温度は、 T1 (第 42段) = 132°C、 T2 = 152°Cであり、反応液の平均滞留時間は、 Θ 1 = 5. 1時間、 Θ 2= 11. 4時間、合計 16. 5時間であった。これらの値より、 α + 1 . 24 j8 = 5445となる。エステル交換反応の EC転化率は 99. 97%、 DMC選択率は 99. 2%、 EG選択率は 99. 1%であった。
[0090] また、 EG精製塔サイド抜き出し液 EGのガスクロマトグラフ法によるその他の有機成 分は 16ppm、比色法によるアルデヒド濃度は 14ppmであり、 220nmの紫外線透過 率は 65%であった。
[0091] [実施例 4]
連続多段蒸留塔 1を、内径 2. 5cm,段数 30段のオールダ—ショー蒸留塔とし、 EC と触媒の供給段を第 2段へ、 MeOHと DMC混合物の供給段を第 15段としたことの 他は、実施例 1と同様の方法で DMCと EGを製造した。このとき、塔内温度は、 T1 ( 第 16段) =80. 4°C、 T2 = 98°Cであり、反応液の平均滞留時間は、 Θ 1 = 0. 5時間 、 Θ 2 = 0. 62時間、合計 1. 12時間であった。これらの値より、 α + 1. 24 j8 = 1022 となる。エステル交換反応の EC転化率は 99. 4%、 DMC選択率は 99. 3%、 EG選 択率は 99. 2%であった。
[0092] また、 EG精製塔サイド抜き出し液 EGのガスクロマトグラフ法によるその他の有機成 分は検出限界(lppm)以下、比色法によるアルデヒド濃度は 0. 5ppmであり、 220η mの紫外線透過率は 89%であった。系全体の DMC収率は 98. 7%、 EG収率は 97 . 9%であった。
[0093] [比較例 4]
連続多段蒸留塔 1を減圧塔とし、 20000Pa ( 150torr)の塔頂圧力としたことの他 は、実施例 4と同様の方法で DMCと EGを製造した。このとき塔頂温度は 26. 8°Cで あり、塔内温度は、 T1 (第 16段) = 37. 1°C、 T2=49. 8°Cであり、反応液の平均滞 留時間は、 Θ 1 = 0. 49時間、 Θ 2 = 0. 6時間、合計 1. 09時間であった。これらの値 より、 α + 1. 24 j8 = 749となる。エステル交換反応の EC転化率は 92%、 DMC選 択率は 86%、 EG選択率は 85%であった。
[0094] また、 EG精製塔サイド抜き出し液 EGのガスクロマトグラフ法分析結果では、その他 の有機成分 (主に EC)が 1. 6%検出された。
産業上の利用可能性
[0095] 本発明は、ジアルキルカーボネートとジオールを安定的かつ簡便に製造し、転ィ匕率 •選択率ともに高ぐかつ高純度のジオールを生産できる方法として、好適に利用で きる。
図面の簡単な説明
[0096] [図 1]本発明による実施例および比較例で用いた装置の模式図である。
符号の説明
[0097] 1 :連続多段蒸留塔; 3、 6 :予熱器; 4、 18、 42、 72 :塔頂; 7、 19、 45、 75 :凝縮器; 1 0、 26、 43、 73 :塔底; 12、 28、 50、 80 :リボイラー; 17 :低沸点成分分離塔; 22 :脱 二酸ィ匕炭素カラム; 41 : EG精製塔; 71 : DMC分離塔; 2、 2' 、 5、 8、 9、 11、 13、 1 4、 16、 20、 21、 23、 24、 25、 27、 29、 30、 46、 47、 48、 49、 51、 52、 56、 76、 77 78、 79、 81、 82:導管

Claims

請求の範囲
[1] 環状カーボネートを主成分とする第一原料と脂肪族 1価アルコールを主成分とする 第二原料を、棚段塔式連続多段蒸留塔に連続的に供給し、該蒸留塔内に存在させ た触媒と接触させることによって、棚段部および塔底部で反応を行わせると同時に、 生成するジアルキルカーボネートを含む低沸点成分を該蒸留塔の上部力 連続的 に抜き出し、生成するジオールを含む高沸点成分を塔下部より連続的に抜き出すこ とにより、連続的にジアルキルカーボネートとジオールを製造するに際し、下記式(1)
780 ≤ α + 1. 24 Χ β ≤ 5150 式(1)
式中
a = θ 1°·52 Χ (ΤΙ + 120) 1·2
β = θ 2°·52 Χ (Τ2+ 120) 1 2
θ 1 (時間):該蒸留塔の触媒が存在する棚段部における反応液の平均滞留時間 T1 (°C):触媒が存在する棚段部の全段数 n段に対し上力 nZ2段目(nが奇 数の場合は (n+ 1) Z2段目)の温度
Θ 2 (時間):塔底部における反応液の平均滞留時間
T2 (°C) :塔底部の温度
を満足することを特徴とする、ジアルキルカーボネートとジオールの連続的製造方 法。
[2] 触媒が均一系触媒であることを特徴とする、請求項 1記載のジアルキルカーボネー トとジオールの連続的製造方法。
[3] θ 1が 0. 3〜20時間、 Θ 2力 . 3〜25時間であることを特徴とする、請求項 1また は 2記載のジアルキルカーボネートとジオールの連続的製造方法。
[4] T1および T2がそれぞれ— 20°C〜350°Cの範囲であることを特徴とする、請求項 1 ないし 3のうち何れか一項に記載のジアルキルカーボネートとジオールの連続的製 造方法。
PCT/JP2006/317492 2005-09-20 2006-09-05 ジアルキルカーボネートとジオールの製造方法 WO2007034669A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2007536438A JP4272686B2 (ja) 2005-09-20 2006-09-05 ジアルキルカーボネートとジオールの製造方法
EA200800635A EA013128B1 (ru) 2005-09-20 2006-09-05 Способ производства диалкилкарбоната и диола
US11/990,913 US7799939B2 (en) 2005-09-20 2006-09-05 Process for production of dialkyl carbonate and diol
BRPI0616303A BRPI0616303B1 (pt) 2005-09-20 2006-09-05 processo para a produção contínua de um carbonato de dialquila e de um diol
EP06783181A EP1927583B1 (en) 2005-09-20 2006-09-05 Process for production of dialkyl carbonate and diol
CN2006800346304A CN101268030B (zh) 2005-09-20 2006-09-05 碳酸二烷基酯和二醇的制备方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005272557 2005-09-20
JP2005-272557 2005-09-20

Publications (1)

Publication Number Publication Date
WO2007034669A1 true WO2007034669A1 (ja) 2007-03-29

Family

ID=37888722

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/317492 WO2007034669A1 (ja) 2005-09-20 2006-09-05 ジアルキルカーボネートとジオールの製造方法

Country Status (9)

Country Link
US (1) US7799939B2 (ja)
EP (1) EP1927583B1 (ja)
JP (1) JP4272686B2 (ja)
KR (1) KR100895602B1 (ja)
CN (1) CN101268030B (ja)
BR (1) BRPI0616303B1 (ja)
EA (1) EA013128B1 (ja)
TW (1) TWI311987B (ja)
WO (1) WO2007034669A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011157361A (ja) * 2010-02-03 2011-08-18 Bayer Materialscience Ag ジアルキルカーボネートの製造方法
CN111116330A (zh) * 2019-12-30 2020-05-08 山西中科惠安化工有限公司 一种酯交换生产碳酸酯过程中碳化工艺过滤后滤液的分离装置和方法
WO2023058681A1 (ja) 2021-10-05 2023-04-13 旭化成株式会社 高純度ジアリールカーボネートの製造方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102304050A (zh) * 2011-07-25 2012-01-04 屈强好 连续精馏碳酸二甲酯和1,2-丙二醇的方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999064382A1 (fr) * 1998-06-10 1999-12-16 Asahi Kasei Kogyo Kabushiki Kaisha Procede de production continue de diol et de carbonate dialcoyle
WO2000051954A1 (fr) * 1999-03-03 2000-09-08 Asahi Kasei Kabushiki Kaisha Procede d'elaboration continue de carbonate dialcoyle et de diol
JP2002371037A (ja) * 2001-06-12 2002-12-26 Mitsubishi Chemicals Corp 高純度ジメチルカーボネートの製造方法

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3642858A (en) 1969-02-12 1972-02-15 Dow Chemical Co Carbonate synthesis from alkylene carbonates
US3803201A (en) 1971-02-22 1974-04-09 Dow Chemical Co Synthesis of dimethyl carbonate
IT1034961B (it) 1975-04-09 1979-10-10 Snam Progetti Procedimento per la preparazione di dialchilcarbonati
DE2740243A1 (de) 1977-09-07 1979-03-15 Bayer Ag Verfahren zur herstellung von dialkylcarbonaten
DE2740251A1 (de) 1977-09-07 1979-03-22 Bayer Ag Verfahren zur herstellung von dialkylcarbonaten
JPS5463023A (en) 1977-10-26 1979-05-21 Mitsubishi Chem Ind Ltd Ester exchange of carbonate
JPS6022697B2 (ja) 1978-05-16 1985-06-03 日曹油化工業株式会社 ジアルキル炭酸エステルの製造法
JPS6022698B2 (ja) 1978-11-08 1985-06-03 日曹油化工業株式会社 ジアルキル炭酸エステルの製法
JPS5564551A (en) 1978-11-08 1980-05-15 Nisso Yuka Kogyo Kk Preparation of dialkyl carbonate
JPS5610144A (en) 1979-07-05 1981-02-02 Showa Denko Kk Preparation of dialkyl carbonate
US4691041A (en) 1986-01-03 1987-09-01 Texaco Inc. Process for production of ethylene glycol and dimethyl carbonate
US4661609A (en) 1986-07-31 1987-04-28 Texaco Inc. Process for cosynthesis of ethylene glycol and dimethyl carbonate
US4734518A (en) 1987-01-12 1988-03-29 Texaco Inc. Process for cosynthesis of ethylene glycol and dimethyl carbonate
JPH0737422B2 (ja) 1987-03-26 1995-04-26 旭化成工業株式会社 ジアルキルカ−ボネ−トの製造方法
JPS6431737U (ja) 1987-08-20 1989-02-27
DE4129316A1 (de) 1991-09-03 1993-03-04 Bayer Ag Verfahren zur kontinuierlichen herstellung von dialkylcarbonaten
DE4216121A1 (de) 1992-05-15 1993-11-18 Bayer Ag Verfahren zur kontinuierlichen Herstellung von Dialkylcarbonaten
JP3686086B2 (ja) 1995-12-22 2005-08-24 旭化成ケミカルズ株式会社 ジアルキルカ−ボネ−トとジオ−ルを連続的に製造する方法
JP4467204B2 (ja) 2001-04-13 2010-05-26 旭化成ケミカルズ株式会社 ジアルキルカーボネートおよびジオールの製造方法
JP4424898B2 (ja) 2002-10-08 2010-03-03 旭化成ケミカルズ株式会社 ジアルキルカーボネートおよびジオールを製造する方法
JP4192587B2 (ja) 2002-12-16 2008-12-10 東ソー株式会社 光透過性容器の中の液体の有無を検知する装置
JP3853295B2 (ja) 2003-01-29 2006-12-06 電気化学工業株式会社 噴霧方法及び装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999064382A1 (fr) * 1998-06-10 1999-12-16 Asahi Kasei Kogyo Kabushiki Kaisha Procede de production continue de diol et de carbonate dialcoyle
WO2000051954A1 (fr) * 1999-03-03 2000-09-08 Asahi Kasei Kabushiki Kaisha Procede d'elaboration continue de carbonate dialcoyle et de diol
JP2002371037A (ja) * 2001-06-12 2002-12-26 Mitsubishi Chemicals Corp 高純度ジメチルカーボネートの製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1927583A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011157361A (ja) * 2010-02-03 2011-08-18 Bayer Materialscience Ag ジアルキルカーボネートの製造方法
CN111116330A (zh) * 2019-12-30 2020-05-08 山西中科惠安化工有限公司 一种酯交换生产碳酸酯过程中碳化工艺过滤后滤液的分离装置和方法
WO2023058681A1 (ja) 2021-10-05 2023-04-13 旭化成株式会社 高純度ジアリールカーボネートの製造方法

Also Published As

Publication number Publication date
EP1927583A1 (en) 2008-06-04
TW200726740A (en) 2007-07-16
EP1927583A4 (en) 2010-09-08
EP1927583B1 (en) 2012-05-02
JPWO2007034669A1 (ja) 2009-03-19
TWI311987B (en) 2009-07-11
KR100895602B1 (ko) 2009-05-06
US20090149669A1 (en) 2009-06-11
JP4272686B2 (ja) 2009-06-03
US7799939B2 (en) 2010-09-21
EA013128B1 (ru) 2010-02-26
BRPI0616303A2 (pt) 2012-05-22
BRPI0616303B1 (pt) 2015-12-01
EA200800635A1 (ru) 2008-06-30
CN101268030B (zh) 2011-05-11
CN101268030A (zh) 2008-09-17
KR20080037727A (ko) 2008-04-30

Similar Documents

Publication Publication Date Title
JP3674687B2 (ja) ジアルキルカーボネートとジオールを連続的に製造する方法
JP4818103B2 (ja) ジアルキルカーボネートとジオールの製造方法
JP3686086B2 (ja) ジアルキルカ−ボネ−トとジオ−ルを連続的に製造する方法
WO1999064382A1 (fr) Procede de production continue de diol et de carbonate dialcoyle
JPWO2007088782A1 (ja) 高純度ジオールを工業的に製造する方法
JP4937140B2 (ja) ジアルキルカーボネートとジオール類の工業的製造方法
JP3652035B2 (ja) ジアルキルカーボネートおよびジオールの連続的製造法
JP4424898B2 (ja) ジアルキルカーボネートおよびジオールを製造する方法
JP5074213B2 (ja) ジオールの工業的製造方法
JP4936556B2 (ja) 芳香族カーボネートの工業的製造法
JP4986866B2 (ja) 高純度ジオールの工業的製造法
WO2007034669A1 (ja) ジアルキルカーボネートとジオールの製造方法
JP4467204B2 (ja) ジアルキルカーボネートおよびジオールの製造方法
JP4236275B2 (ja) ジアルキルカーボネートとジオール類の工業的製造方法
JPH09176061A (ja) ジアルキルカーボネートとジオールの連続的製造法
JP4093607B2 (ja) ジアルキルカーボネートおよびジオールの連続的製造方法
JPH0768180B2 (ja) ジアルキルカーボネートとジオール類の連続的製法
JP5088954B2 (ja) 高純度ジオールの工業的製造方法
KR20170129909A (ko) 아릴 카보네이트의 제조를 위한 통합된 방법 및 장치

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680034630.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006783181

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2007536438

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 877/KOLNP/2008

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 200800635

Country of ref document: EA

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 11990913

Country of ref document: US

ENP Entry into the national phase

Ref document number: PI0616303

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20080318