WO2007026514A1 - 絶縁抵抗検出装置 - Google Patents

絶縁抵抗検出装置 Download PDF

Info

Publication number
WO2007026514A1
WO2007026514A1 PCT/JP2006/315715 JP2006315715W WO2007026514A1 WO 2007026514 A1 WO2007026514 A1 WO 2007026514A1 JP 2006315715 W JP2006315715 W JP 2006315715W WO 2007026514 A1 WO2007026514 A1 WO 2007026514A1
Authority
WO
WIPO (PCT)
Prior art keywords
insulation resistance
comparator
value
input
output
Prior art date
Application number
PCT/JP2006/315715
Other languages
English (en)
French (fr)
Inventor
Mitsunori Ishii
Original Assignee
Nec Corporation
Fuji Jukogyo Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nec Corporation, Fuji Jukogyo Kabushiki Kaisha filed Critical Nec Corporation
Priority to EP06782531.5A priority Critical patent/EP1930737B1/en
Priority to JP2007533152A priority patent/JP4742103B2/ja
Priority to US12/065,326 priority patent/US7863910B2/en
Publication of WO2007026514A1 publication Critical patent/WO2007026514A1/ja

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R27/00Arrangements for measuring resistance, reactance, impedance, or electric characteristics derived therefrom
    • G01R27/02Measuring real or complex resistance, reactance, impedance, or other two-pole characteristics derived therefrom, e.g. time constant
    • G01R27/20Measuring earth resistance; Measuring contact resistance, e.g. of earth connections, e.g. plates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R27/00Arrangements for measuring resistance, reactance, impedance, or electric characteristics derived therefrom
    • G01R27/02Measuring real or complex resistance, reactance, impedance, or other two-pole characteristics derived therefrom, e.g. time constant
    • G01R27/16Measuring impedance of element or network through which a current is passing from another source, e.g. cable, power line
    • G01R27/18Measuring resistance to earth, i.e. line to ground
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/50Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
    • G01R31/52Testing for short-circuits, leakage current or ground faults

Definitions

  • the present invention relates to a device having a DC power source, for example, a device for detecting an insulation resistance of a high voltage system mounted on an electric vehicle represented by an electric vehicle or a hybrid vehicle.
  • An electric vehicle such as an electric vehicle or a hybrid vehicle is equipped with a high voltage system exceeding DC 60V, for example.
  • the high voltage line is generally designed to be insulated from the chassis ground. If the insulation resistance between the high-voltage line and the chassis ground is less than the specified value, there is a possibility of damaging the human body depending on where the vehicle contacts the human body. Therefore, it is necessary to detect the insulation resistance between the high-voltage line and the chassis ground, and to take measures to warn the user and prompt appropriate maintenance if a decrease in insulation resistance is observed. There is.
  • the ground fault detection circuit includes a high-voltage DC power supply 100 including a battery group, a DCZAC conversion 101 including an inverter for converting the output of the high-voltage DC power supply 100 into AC, and this.
  • DCZAC transformation 101 is a circuit that detects a ground fault from the high-voltage DC power supply 100 to the vehicle body in an electric vehicle driving drive system consisting of an AC motor 102 to which the output of the DCZAC converter 101 is supplied.
  • a voltage level detection unit 104 to which the output of the oscillation circuit 103 is supplied via a detection resistor 107, and a connection point P between the oscillation circuit 103 and the voltage level detection unit 104.
  • the positive bus of the high-voltage DC power supply is connected by a coupling capacitor 105 so that the DC component is cut off.
  • a voltage value obtained by dividing the rectangular pulse from the oscillation circuit 103 by the insulation resistor 106 and the detection resistor 107 appears at the connection point P.
  • the value of the insulation resistance 106 can be regarded as infinite, so the voltage at the connection point P substantially matches the output level of the oscillation circuit 103.
  • an insulation fault can be determined by detecting a change in voltage at the connection point P.
  • Voltage level detection unit 104 determines that a ground fault has occurred between the negative bus of high-voltage DC power supply 100 and the vehicle body when the voltage value at connection point P falls below the reference voltage.
  • An object of the present invention is to solve the above-described problems and provide an insulation resistance detection device having a simple configuration capable of detecting an insulation resistance value accurately and in real time.
  • an insulation resistance detection device of the present invention is an insulation resistance detection device for detecting an insulation resistance between the DC power source and the ground of an external device including a DC power source.
  • a pulse generator that generates a square-wave pulse with a constant ratio; a reference voltage is supplied to one input; an output of the pulse generator is supplied to the other input; and the level of the other input is the reference voltage
  • a comparator that outputs a first level signal when the second level is exceeded, and a second level signal different from the first level when the level of the other input is lower than the reference voltage; Output line of the pulse generator One end connected to the first resistor inserted in series with the first resistor, the line connecting the first resistor and the other input of the comparator, and the other end connected to the output line of the DC power supply.
  • a capacitor having one end connected between the first resistor and the coupling capacitor of the ring capacitor and a line connected to the other input of the comparator and the other end connected to the ground;
  • the pulse width of the output waveform of the comparator is measured and the output wave
  • a pulse width measuring device for calculating the value of the insulation resistance.
  • a round of the signal waveform (input waveform) supplied to the other input of the comparator is generated by the circuit including the first resistor, the capacitor, the coupling capacitor, and the insulation resistance.
  • the potential at the other input of the comparator gradually rises and exceeds the reference voltage at a certain point in the period when the pulse waveform of the pulse generator is high, and then exceeds the reference voltage. It converges to a high level potential. Then, during the period when the pulse waveform signal from the pulse generator is low level, the potential at the other input of the comparator is lower than the reference voltage.
  • the duty ratio of the output waveform of the comparator corresponds to the change in the insulation resistance, and the value of the duty specific power insulation resistance can be calculated.
  • the duty ratio of the output waveform of the comparator can also accurately calculate the value of the insulation resistance in real time.
  • the insulation resistance of the external device can be measured accurately in real time, the occurrence of an insulation failure is predicted based on the measurement result. Can do.
  • FIG. 1 is a block diagram showing a configuration of a conventional ground fault detection circuit.
  • FIG. 2 is a block diagram showing a configuration of an insulation resistance detection device according to an embodiment of the present invention.
  • FIG. 3 is a block diagram showing a main part of the pulse width measuring device shown in FIG.
  • FIG. 4 is a diagram for explaining the operating principle of the insulation resistance detection device shown in FIG.
  • FIG. 5 is a flowchart showing a procedure for calculating an insulation resistance by the pulse width measuring instrument shown in FIG.
  • FIG. 6 is a diagram illustrating an example of a correspondence relationship between a duty ratio and an insulation resistance value.
  • FIG. 2 is a block diagram showing a configuration of an insulation resistance detection device according to an embodiment of the present invention.
  • this insulation resistance detection device detects the insulation resistance of a high-voltage system 20 mounted on an electric vehicle such as an electric vehicle or a hybrid vehicle, and includes a pulse generator 10, a comparator 11, It has a pulse width measuring instrument 12, resistors Rl and R2, diode D1, and capacitors Cl and C2.
  • the high-voltage system 20 includes a high-voltage DC power source 21 that also has a knottery group power, an inverter 22 that converts the output of the high-voltage DC power source 21 into AC, and a motor 23 that is supplied with the output of the inverter 22 It consists of.
  • the insulation resistance in the positive output line of the high-voltage DC power supply 21 is Ra, and the insulation resistance in the negative output line is Rb.
  • the pulse generator 10 generates a rectangular wave pulse having a constant period and duty ratio.
  • the pulse generator 10 may be constituted by a dedicated IC or a microcomputer.
  • a resistor R1 is provided in series on the output line of the pulse generator 10, and a circuit in which a diode D1 and a resistor R2 are connected in series is provided in parallel with the resistor R1.
  • a connection point between the output of diode D1 and the end of pulse generator 10 side of resistor R1 is A point.
  • the end of the resistor R1 opposite to the pulse generator 10 is connected to the input (negative input) of the comparator 11.
  • the line connecting resistor R1 and the input of comparator 11 is connected to chassis ground via capacitor C1, and the line from the connection point to capacitor C1 to the input of comparator 11 is connected to the high voltage system.
  • the output line (here, the positive output line) of the high-voltage direct current power source 21 constituting 20 is connected via a coupling capacitor C2.
  • the connection point between the input line of comparator 11 and coupling capacitor C2 is B point.
  • the other input (positive input) of the comparator 11 is supplied with a reference voltage V via a resistor R3.
  • Comparator 11 compares the potential level (input level) at point B with the reference voltage V. When the input level exceeds the reference voltage V, the comparator 11 outputs a low level.
  • the output of the comparator 11 is supplied to the pulse width measuring device 12.
  • the comparator 11 is a hysteresis circuit in which a part of the output is positively fed back to the input via the resistor R4, so-called hysteresis characteristics (when the input voltage changes from a low potential to a high potential) And the point that the output potential changes depending on whether the potential changes from a high potential to a low potential.
  • hysteresis characteristic chattering in the output line described later is prevented.
  • the connection point between the output line of comparator 11 and resistor R4 is C point.
  • the nors width measuring instrument 12 is composed of, for example, a microcomputer having an input capture counter function capable of measuring the pulse width, and the output signal waveform of the comparator 11 is measured.
  • the pulse width is measured to determine the duty ratio of the output signal waveform, and the insulation resistance of the high voltage system 20 (the combined resistance of the insulation resistance Ra and the insulation resistance Rb) is calculated from the obtained duty ratio.
  • FIG. 3 shows the main part of the pulse width measuring instrument 12.
  • pulse width measuring instrument 1 2 includes an arithmetic processing unit 50, an edge detection unit 51, a counter 52, and a storage unit 53.
  • the storage unit 53 includes a characteristic information storage unit 54 in which the correspondence relationship between the duty ratio and the insulation resistance of the high voltage system 20 is stored in advance, and an insulation resistance value storage unit 55 in which the calculation result of the insulation resistance value is stored.
  • the edge detection unit 51 detects the edges (rising and falling) of the output signal waveform of the comparator 11.
  • the arithmetic processing unit 50 controls the activation of the counter 52, acquires the counter value of the counter 52 based on the edge detection signal from the edge detection unit 51, and the acquired counter value is also the comparator 11
  • the pulse width of the output signal waveform is calculated, and the duty ratio is calculated from the calculated pulse width.
  • the arithmetic processing unit 50 calculates the insulation resistance of the high voltage system 20 from the calculated duty ratio with reference to the correspondence relationship between the duty ratio stored in the characteristic information storage unit 54 and the insulation resistance. This calculation result is stored in 55 pieces of insulation resistance value storage.
  • the insulation resistance value storage unit 55 stores the time series data of the insulation resistance value.
  • the arithmetic processing unit 50 estimates the insulation failure based on the time series data of the insulation resistance value stored in the insulation resistance value storage unit 55.
  • this insulation failure estimation for example, an insulation failure is estimated when the magnitude of the change in the insulation resistance value obtained by the time series data force exceeds a predetermined value.
  • the capacitor C1 and the coupling capacitor C2 are charged, and the potential level at point B is the reference voltage V
  • FIG. 4 shows potential changes (waveforms) at points A, B, and C in the above operation.
  • waveform A shows the change in potential level at point A
  • waveform B shows the change in potential level at point B
  • waveform C shows the change in potential level at point C.
  • the comparator threshold! /, Value is added to the reference voltage V by hysteresis.
  • FIG. 5 shows an example of the calculation procedure of the insulation resistance by the pulse width measuring device 12.
  • step 60 the rising edge of the output waveform of the comparator 11 is detected, an interrupt is generated at the detection timing, and the counter 52 is also started with zero force (step 60).
  • step 61 the falling edge of the output waveform of the comparator 11 is detected, and an interrupt is generated at the detection timing to obtain the counter value A of the counter 52 (step 61).
  • step 61 the rising edge of the output waveform of the comparator 11 is detected, an interrupt is generated at the detection timing, the counter value B of the counter 52 is acquired, and then the counter 52 is restarted with zero force.
  • the duty ratio D of the output waveform of the comparator 11 is calculated by the following equation (step 62).
  • the insulation resistance of the high voltage system 20 is calculated from the duty ratio D calculated in step 62. Calculate the value (step 64).
  • time series data of the insulation resistance value is stored in the insulation resistance value storage unit 55.
  • the arithmetic processing unit 50 estimates the change of the insulation resistance value from the time series data of the insulation resistance value stored in the insulation resistance value storage unit 55, and determines the occurrence of the insulation failure based on the estimation result! To do.
  • the circuit constant is set so that the rate of change of the duty ratio with respect to the change of the insulation resistance value in the vicinity of the threshold A is increased. More specifically, the rate of change of the duty ratio in the range of the insulation resistance value to be detected that can predict the occurrence of an insulation fault is set to be larger than that in other ranges. Thereby, the detection accuracy of the insulation resistance value can be improved.
  • the configuration of the embodiment described above is an example of the present invention, and the configuration and operation thereof can be changed as appropriate.
  • the diode D1 and the resistor R2 may be omitted.
  • the change in the potential level at point B does not have a steep fall, so it is necessary to set the duty ratio of the output signal waveform of the nors generator 10 in consideration of that point.
  • the positive feedback line of the comparator 11 may be deleted.
  • the device to which the present invention is applied is not limited to the high voltage system mounted on the electric vehicle such as the electric vehicle or the hybrid vehicle described above.
  • the present invention can be applied to any device provided with a DC power source and requiring insulation of the output line of the DC power source.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)
  • Measurement Of Resistance Or Impedance (AREA)

Abstract

 絶縁抵抗値を正確かつリアルタイムに検出する絶縁抵抗検出装置を提供する。パルス発生器10と、一方の入力に基準電圧VREFが供給され、他方の入力にパルス発生器10の出力が供給され、該他方の入力のレベルが基準電圧VREFを超えた場合にローレベルの信号を、該他方の入力のレベルが基準電圧VREFを下回った場合にハイレベルの信号を出力するコンパレータ11と、パルス発生器10の出力ラインに直列に挿入された抵抗R1と、コンパレータ11の他方の入力ラインに一端が接続され、高圧直流電源21の出力ラインに他端が接続されるカップリングコンデンサC2と、コンパレータ11の他方の入力ラインに一端が接続され、グランドに他端が接続されるコンデンサC1と、コンパレータ11の出力波形のデューティー比から高圧直流電源21の出力ラインにおける絶縁抵抗の値を算出するパルス幅計測器12とを有する。

Description

明 細 書
絶縁抵抗検出装置
技術分野
[0001] 本発明は、直流電源を備える装置、例えば電気自動車やハイブリッド自動車に代 表される電動車両に搭載される高電圧システムの絶縁抵抗を検出する装置に関する 背景技術
[0002] 電気自動車やハイブリッド自動車等の電動車両は、例えば DC60Vを超える高電 圧システムを搭載する。このような高電圧システムを搭載する電動車両にぉ ヽては、 一般に、高電圧ラインはシャシグランドから絶縁されるように設計される。高電圧ライ ンとシャシグランドの間の絶縁抵抗が所定値以下になると、車両と人体の接触する箇 所によっては、感電などのダメージを人体に与える可能性がある。よって、高電圧ライ ンとシャシグランドの間の絶縁抵抗を検出し、絶縁抵抗の低下が認められた場合に は、ユーザに対して警告をし、適切なメンテナンスを受けるように促す措置をとる必要 がある。
[0003] 高電圧ラインとシャシグランドの間の絶縁抵抗を検出する装置として、特開 2005— 114497号公報に記載された地絡検出回路がある。図 1に、この地絡検出回路の構 成を示す。
[0004] 図 1を参照すると、地絡検出回路は、バッテリー群からなる高圧直流電源 100と、こ の高圧直流電源 100の出力を交流に変換するためのインバータよりなる DCZAC変 翻 101と、この DCZAC変翻 101の出力が供給される交流モータ 102とからな る電気自動車の走行駆動回路系において、高圧直流電源 100から車体への地絡を 検出する回路であって、交流信号 (矩形パルス)を出力する発振回路 103と、この発 振回路 103の出力が検出抵抗 107を介して供給される電圧レベル検出部 104とを有 し、これら発振回路 103および電圧レベル検出部 104の接続点 Pと高圧直流電源の プラス母線とがカップリングコンデンサ 105で接続されて直流成分が遮断されるように 構成されている。 [0005] 上記の地絡検出回路では、接続点 Pにおいて、発振回路 103からの矩形パルスを 絶縁抵抗 106と検出抵抗 107とで分圧した電圧値が現われる。平常時は、絶縁抵抗 106の値を無限大とみなすことができるので、接続点 Pにおける電圧は発振回路 103 の出力レベルにほぼ一致する。絶縁障害が発生して絶縁抵抗 106が低下すると、接 続点 Pにおける電圧が大きく減少する。よって、この接続点 Pにおける電圧の変化を 検出することで、絶縁障害を判断することができる。電圧レベル検出部 104では、接 続点 Pにおける電圧値が基準電圧を下回った場合に、高圧直流電源 100のマイナス 母線と車体の間に地絡が発生したと判断される。
発明の開示
[0006] し力しながら、上述した従来の検出回路は、絶縁障害の発生を検知することはでき るものの、絶縁障害の発生を予測することはできない。このため、絶縁障害発生の通 知を受けた時点では、既に絶縁障害が発生した状態にあり、ユーザは、即座にメンテ ナンスを受ける必要がある。
[0007] ユーザにとっては、メンテナンスを行うための期間にある程度の余裕があることが望 ましい。メンテナンス期間に余裕を持たせるためには、絶縁障害の発生を予測する必 要がある。絶縁障害の発生を予測するためには、絶縁抵抗値の検出を正確かつリア ルタイムに行う必要があるが、接続点 Pにおける電圧 (絶縁抵抗と検出抵抗の分圧) を検出する従来の検出回路では、そのような絶縁抵抗値の検出を行うことはできない
[0008] 本発明の目的は、上記問題を解決し、絶縁抵抗値を正確かつリアルタイムに検出 することが可能な、簡易な構成の絶縁抵抗検出装置を提供することにある。
[0009] 上記目的を達成するため、本発明の絶縁抵抗検出装置は、直流電源を備える外部 装置の、前記直流電源とグランド間の絶縁抵抗を検出する絶縁抵抗検出装置であつ て、周期およびデューティー比が一定の矩形波パルスを発生するパルス発生器と、 一方の入力に基準電圧が供給され、他方の入力に前記パルス発生器の出力が供給 され、該他方の入力のレベルが前記基準電圧を超えた場合に、第 1のレベルの信号 を、該他方の入力のレベルが前記基準電圧を下回った場合に、前記第 1のレベルと は異なる第 2のレベルの信号を出力する比較器と、前記パルス発生器の出力ライン に直列に挿入された第 1の抵抗と、前記第 1の抵抗と前記比較器の他方の入力とを 接続するラインに一端が接続され、前記直流電源の出力ラインに他端が接続される カップリングコンデンサと、前記比較器の他方の入力に接続されたラインの、前記第 1 の抵抗と前記カップリングコンデンサとの間に一端が接続され、前記グランドに他端 が接続されるコンデンサと、前記比較器の出力波形のパルス幅を計測して該出力波
Figure imgf000005_0001
、て前記絶縁抵抗 の値を算出するパルス幅計測器とを有する。
[0010] 上記の構成によれば、第 1の抵抗、コンデンサ、カップリングコンデンサおよび絶縁 抵抗力 なる回路により、比較器の他方の入力に供給される信号波形 (入力波形)の なまりが発生する。平常時は、パルス発生器力ものノ ルス波形信号がハイレベルの 期間において、比較器の他方の入力における電位は、除々に上昇し、ある時点で基 準電圧を超え、その後、パルス波形信号のハイレベルの電位に収束する。そして、パ ルス発生器からのパルス波形信号がローレベルの期間において、比較器の他方の 入力における電位は基準電圧を下回る。比較器の過渡応答時間は、絶縁抵抗の大 きさによって変化することから、比較器の他方の入力における電位が基準電圧を超え るまでの時間 Tが、絶縁抵抗の変化に応じて変化する。したがって、比較器の出力波 形のデューティー比が絶縁抵抗の変化に対応することとなり、デューティー比力 絶 縁抵抗の値を算出することができる。このように、本発明では、比較器の出力波形の デューティー比力も絶縁抵抗の値をリアルタイムに、かつ、正確に算出することが可 能となっている。
[0011] なお、第 1の抵抗とカップリングコンデンサの間にコンデンサを設けていない場合は
、比較器の他方の入力における電位の上昇が急峻になり、絶縁抵抗の変化に対する 上記時間 τの変化が小さくなつて、絶縁抵抗の値を正確に検出することができなくな る。
[0012] 以上説明したように、本発明によれば、外部装置の絶縁抵抗をリアルタイムに、力 つ、正確に測定することができるので、その測定結果に基づいて絶縁障害の発生を 予 することができる。
図面の簡単な説明 [0013] [図 1]従来の地絡検出回路の構成を示すブロック図である。
[図 2]本発明の一実施形態である絶縁抵抗検出装置の構成を示すブロック図である
[図 3]図 2に示すパルス幅計測器の主要部を示すブロック図である。
[図 4]図 2に示す絶縁抵抗検出装置の動作原理を説明するための図である。
[図 5]図 2に示すパルス幅計測器による絶縁抵抗の算出手順を示すフローチャート図 である。
[図 6]デューティー比と絶縁抵抗値の対応関係の一例を示す図である。
符号の説明
[0014] 10 パルス発生器
11 コンノ レータ
12 パルス幅計測器
20 高電圧システム
21 高圧直流電源
22 インバータ
23 モータ
発明を実施するための最良の形態
[0015] 次に、本発明の実施形態について図面を参照して説明する。
[0016] 図 2は、本発明の一実施形態である絶縁抵抗検出装置の構成を示すブロック図で ある。図 2を参照すると、この絶縁抵抗検出装置は、電気自動車やハイブリッド自動 車等の電動車両に搭載される高電圧システム 20の絶縁抵抗を検出するものであつ て、パルス発生器 10、コンパレータ 11、パルス幅計測器 12、抵抗 Rl、 R2、ダイォー ド D1およびコンデンサ Cl、 C2を有する。
[0017] 高電圧システム 20は、ノ ッテリー群力もなる高圧直流電源 21と、この高圧直流電 源 21の出力を交流に変換するためのインバータ 22と、このインバータ 22の出力が供 給されるモータ 23とからなる。高圧直流電源 21の正側出力ラインにおける絶縁抵抗 を Ra、負側出力ラインにおける絶縁抵抗を Rbとする。
[0018] パルス発生器 10は、周期およびデューティー比が一定の矩形波パルスを発生する 。パルス発生器 10は、専用 ICやマイクロコンピュータで構成してもよい。パルス発生 器 10の出力ラインには、抵抗 R1が直列に設けられており、さらにこの抵抗 R1に並列 に、ダイオード D1および抵抗 R2が直列に接続された回路が設けられている。ダイォ ード D1の出力と抵抗 R1のパルス発生器 10側の端部との接続点を A点とする。
[0019] 抵抗 R1のパルス発生器 10側とは反対側の端部は、コンパレータ 11の入力(負側 入力)に接続されている。抵抗 R1とコンパレータ 11の入力とを接続するラインは、コ ンデンサ C 1を介してシャシグランドに接続されており、さらにコンデンサ C 1との接続 点からコンパレータ 11の入力までのラインに、高電圧システム 20を構成する高圧直 流電源 21の出力ライン (ここでは、正側出力ライン)がカップリングコンデンサ C2を介 して接続されている。コンパレータ 11の入力ラインとカップリングコンデンサ C2との接 続点を B点とする。
[0020] コンパレータ 11のもう一方の入力(正側入力)には、基準電圧 V が抵抗 R3を介し
REF
て供給されている。コンパレータ 11は、 B点における電位レベル (入力レベル)と基準 電圧 V とを比較し、入力レベルが基準電圧 V を超えた場合に、ローレベルの出
REF EF
力信号を、入力レベルが基準電圧 V 以下の場合に、ハイレベルの出力信号を出
EF
力する。コンパレータ 11の出力は、パルス幅計測器 12に供給されている。
[0021] なお、コンパレータ 11は、その出力の一部が抵抗 R4を介して入力へ正帰還された ヒステリシス回路とされており、いわゆるヒステリシス特性 (入力電圧が、低電位から高 電位に変化する場合と、高電位から低電位に変化する場合とで、出力電位の変化す る点が異なる、という特性)を有する。このヒステリシス特性を利用することで、後述の 出力ラインにおけるチャタリングを防止する。コンパレータ 11の出力ラインの、抵抗 R 4との接続点を C点とする。
[0022] ノルス幅計測器 12は、例えば、パルスの幅を測定することが可能なインプットキヤ プチヤカウンタ機能を備えたマイクロコンピュータより構成されるものであって、コンパ レータ 11の出力信号波形のパルス幅を測定してその出力信号波形のデューティー 比を求め、その求めたデューティー比カゝら高電圧システム 20の絶縁抵抗 (絶縁抵抗 Raと絶縁抵抗 Rbの合成抵抗)を演算する。
[0023] 図 3に、パルス幅計測器 12の主要部を示す。図 3を参照すると、パルス幅計測器 1 2は、演算処理部 50、エッジ検出部 51、カウンタ 52および記憶部 53からなる。記憶 部 53は、デューティー比と高電圧システム 20の絶縁抵抗との対応関係が予め格納さ れた特性情報格納部 54および絶縁抵抗値の演算結果が格納される絶縁抵抗値格 納部 55を有する。エッジ検出部 51は、コンパレータ 11の出力信号波形のエッジ(立 ち上がりおよび立ち下り)を検出する。
[0024] 演算処理部 50は、カウンタ 52の起動を制御するとともに、エッジ検出部 51からのェ ッジ検出信号に基づいて、カウンタ 52のカウンタ値を取得し、該取得したカウンタ値 力もコンパレータ 11の出力信号波形のパルス幅を求め、その求めたパルス幅からデ ユーティー比を算出する。また、演算処理部 50は、算出したデューティー比から、特 性情報格納部 54に格納されたデューティー比と絶縁抵抗の対応関係を参照して高 電圧システム 20の絶縁抵抗を算出する。この算出結果は、絶縁抵抗値格納部 55〖こ 格納される。パルス幅計測器 12では、パルス幅測定、デューティー比の算出、絶縁 抵抗の算出の一連の処理が一定の時間間隔で繰り返され、絶縁抵抗値格納部 55に 絶縁抵抗値の時系列データが格納されるようになっており、演算処理部 50は、その 絶縁抵抗値格納部 55に格納された絶縁抵抗値の時系列データに基づ ヽて絶縁障 害を推定する。この絶縁障害の推定では、例えば、時系列データ力 得られる絶縁 抵抗値の変化の大きさが所定の値を超えた場合に絶縁障害と推定する。
[0025] 次に、本実施形態の絶縁抵抗検出装置の動作について説明する。
[0026] まず、高電圧システム 20の絶縁抵抗 Raと絶縁抵抗 Rbの合成抵抗である絶縁抵抗 の値を検出する原理について説明する。
[0027] パルス発生器 10の出力信号 (A点における電位)がローレべルカもハイレベルに遷 移すると、抵抗 R1を通じてコンデンサ C1の充電が開始される力 絶縁抵抗 Raと絶縁 抵抗 Rbが存在するため、カップリングコンデンサ C2にも電流が流れる。 B点における 電位は、パルス発生器 10の出力信号のハイレベルの電位に収束する力 コンパレー タ 11の過渡応答時間は高電圧システム 20の絶縁抵抗の大きさによって変化する。
[0028] コンパレータ 11では、 B点の電位レベルと基準電圧 V とが比較される。コンデン
REF
サ C1およびカップリングコンデンサ C2が充電され、 B点の電位レベルが基準電圧 V
R
より高くなると、コンパレータ 11の出力信号 (C点における電位)がハイレベル力 口 一レベルに遷移する。このときの出力信号のチャタリングを上述したヒステリシス回路 により防止する。
[0029] パルス発生器 10の出力信号 (A点における電位)がローレべルカもハイレベルに遷 移すると、コンデンサ C1およびカップリングコンデンサ C2に蓄えられていた電荷が、 抵抗 R1とダイオード D1および抵抗 R2とを通じて放電される。ここでは、抵抗 R2の値 を抵抗 R1の値より十分に小さくしており、これにより、十分に短い時間で放電が完了 するようになつている。コンデンサ C1およびカップリングコンデンサ C2に蓄えられて いた電荷が放電されると、 B点における電位はローレベルに遷移する。この結果、コ ンパレータ 11の出力信号(C点における電位)がローレべルカ ハイレベルに遷移す る。
[0030] 図 4に、上記の動作における A点、 B点、 C点における電位の変化 (波形)を示す。
図 4中、波形 Aは、 A点における電位レベルの変化、波形 Bは、 B点における電位レ ベルの変化、波形 Cは、 C点における電位レベルの変化をそれぞれ示す。コンパレ ータのしき!/、値 (スレッシュホールドレベル)は、基準電圧 V にヒステリシス分を加え
REF
た値である。
[0031] 図 4を参照すると、高電圧システム 20の絶縁抵抗が大きい場合は、 A点における電 位レベルがローレベルからハイレベルに遷移すると、 B点における電位レベルは、除 々に上昇し、ある時点でコンパレータ 11のしきい値を超え、その後、 A点における電 位レベル(ノヽィレベル)に収束する。 B点における電位レベルがコンパレータ 11のしき い値を超えると、 C点における電位レベル力 ハイレベルからローレベルに遷移する 。 A点における電位レベルがローレベルからハイレベルに遷移すると、 B点における 電位レベルは、直ちにローレベルになる。 B点における電位レベルがローレベルにな ると、 C点における電位レベルは、ハイレベルからローレベルに遷移する。
[0032] 高電圧システム 20の絶縁抵抗が小さい場合も、 A点における電位レベルがローレ ベル力 ハイレベルに遷移すると、 B点における電位レベルは、除々に上昇するが、 その変化は、高電圧システム 20の絶縁抵抗が大きい場合に比べて小さい。このため 、 B点における電位レベルがコンパレータ 11のしきい値を超えるまでに要する時間は 、高電圧システム 20の絶縁抵抗が大きい場合よりも長くなる。この結果、高電圧シス テム 20の絶縁抵抗が小さ 、場合の波形 Cのデューティー比は、高電圧システム 20の 絶縁抵抗が大き!/、場合よりも大きくなる。
[0033] 上述した動作力も分力るように、高電圧システム 20の絶縁抵抗が大きければ、コン パレータ 11の出力波形 (波形 C)のデューティー比は小さくなり、高電圧システム 20 の絶縁抵抗が小さければ、コンパレータ 11の出力波形 (波形 C)のデューティー比は 大きくなる。したがって、コンパレータ 11の出力波形のデューティー比の変化を検出 することで、高電圧システム 20の絶縁抵抗の値を知ることができる。
[0034] 次に、高電圧システム 20の絶縁抵抗 (絶縁抵抗 Raと絶縁抵抗 Rbの合成抵抗)の 値をリアルタイムに測定する動作について説明する。図 5に、パルス幅計測器 12によ る絶縁抵抗の算出手順の一例を示す。
[0035] まず、コンパレータ 11の出力波形の立ち上がりエッジを検出し、その検出タイミング で割り込みを発生させてカウンタ 52をゼロ力もスタートさせる(ステップ 60)。次に、コ ンパレータ 11の出力波形の立ち下がりエッジを検出し、その検出タイミングで割り込 みを発生させてカウンタ 52のカウンタ値 Aを取得する(ステップ 61)。次に、コンパレ ータ 11の出力波形の立ち上がりエッジを検出し、その検出タイミングで割り込みを発 生させてカウンタ 52のカウンタ値 Bを取得した後、カウンタ 52をゼロ力も再スタートす る。次に、ステップ 61、 62で取得したカウンタ値 A、 Bに基づいて、コンパレータ 11の 出力波形のデューティー比 Dを以下の式によりを算出する (ステップ 62)。
[0036] D= (A÷B) X 100 (%)
次に、特性情報格納部 64に格納されたデューティー比と高電圧システム 20の絶縁 抵抗値との対応関係を参照して、ステップ 62で算出したデューティー比 Dから高電 圧システム 20の絶縁抵抗の値を算出する (ステップ 64)。
[0037] 上記のステップ 61〜64の処理を繰り返すことで、絶縁抵抗値格納部 55に絶縁抵 抗値の時系列データが格納される。演算処理部 50は、絶縁抵抗値格納部 55に格納 された絶縁抵抗値の時系列データカゝら絶縁抵抗値の変化を推定し、その推定結果 に基づ!/、て絶縁障害の発生を判定する。
[0038] デューティー比と絶縁抵抗値の対応関係は、回路定数に依存する。図 6に、デュー ティー比と絶縁抵抗値の対応関係の一例を示す。図 6中、縦軸は絶縁抵抗値(Ω )、 横軸はデューティー比(%)である。
Figure imgf000011_0001
、値を
Aとするとき、このしきい値 A近傍における絶縁抵抗値の変化に対するデューティー 比の変化率が大きくなるように回路定数を設定する。より具体的には、絶縁障害の発 生を予測することが可能な検出すべき絶縁抵抗の値の範囲におけるデューティー比 の変化率を他の範囲より大きくする。これにより、絶縁抵抗値の検出精度を向上する ことができる。
[0039] 以上説明した実施形態の構成は、本発明の一例であり、その構成および動作は適 宜変更することができる。例えば図 2に示した構成において、ダイオード D1および抵 抗 R2を削除してもよい。ただし、この場合は、 B点における電位レベルの変化は、そ の立ち下りが急峻ではなくなるため、その点を考慮してノルス発生器 10の出力信号 波形のデューティー比を設定する必要がある。
[0040] また、図 2に示した構成において、コンパレータ 11の正帰還ラインを削除してもよい
[0041] 本発明が適用される装置は、上述した電気自動車やハイブリッド自動車等の電動 車両に搭載される高電圧システムに限定されるものではない。本発明は、直流電源 を備え、この直流電源の出力ラインについて絶縁性が要求される装置であれば、ど のような装置にも適用することができる。

Claims

請求の範囲
[1] 直流電源を備える外部装置の、前記直流電源とグランド間の絶縁抵抗を検出する 絶縁抵抗検出装置であって、
周期およびデューティー比が一定の矩形波パルスを発生するパルス発生器と、 一方の入力に基準電圧が供給され、他方の入力に前記パルス発生器の出力が供 給され、該他方の入力のレベルが前記基準電圧を超えた場合に、第 1のレベルの信 号を、該他方の入力のレベルが前記基準電圧を下回った場合に、前記第 1のレベル とは異なる第 2のレベルの信号を出力する比較器と、
前記パルス発生器の出力ラインに直列に挿入された第 1の抵抗と、
前記第 1の抵抗と前記比較器の他方の入力とを接続するラインに一端が接続され、 前記直流電源の出力ラインに他端が接続されるカップリングコンデンサと、
前記比較器の他方の入力に接続されたラインの、前記第 1の抵抗と前記カップリン グコンデンサとの間に一端が接続され、前記グランドに他端が接続されるコンデンサ と、
前記比較器の出力波形のパルス幅を計測して該出力波形のデューティー比を算 出し、該算出したデューティー比に基づ!/、て前記絶縁抵抗の値を算出するパルス幅 計測器とを有する絶縁抵抗検出装置。
[2] ダイオードおよび第 2の抵抗が直列に接続された回路が、前記パルス発生器の出 カラインに前記第 1の抵抗と並列に設けられている、請求項 1に記載の絶縁抵抗検 出装置。
[3] 前記第 2の抵抗の値が前記第 1の抵抗の値より小さい、請求項 2に記載の絶縁抵 抗検出装置。
[4] 前記比較器は、当該比較器の出力の一部が当該比較器の他方の入力へ正帰還さ れたヒステリシス回路である、請求項 1に記載の絶縁抵抗検出装置。
[5] 前記パルス幅計測器は、
カウンタと、
前記比較器の出力波形の立ち上がりエッジおよび立下りエッジをそれぞれ検出す るエッジ検出部と、 前記比較器の出力波形のデューティー比と前記絶縁抵抗の値との対応関係を示 すデータが予め格納された第 1の記憶部と、
前記エッジ検出部によるエッジ検出タイミングで前記カウンタを制御して該カウンタ のカウンタ値に基づいて前記比較器の出力波形のパルス幅を求め、該求めたパルス 幅力 算出したデューティー比から、前記第 1の記憶部に格納された対応関係を示 すデータを参照して前記絶縁抵抗の値を取得する演算処理部とを有する、請求項 1 乃至 4のいずれか 1項に記載の絶縁抵抗検出装置。
[6] 前記演算処理部にて算出した絶縁抵抗値が時系列に格納される第 2の記憶部を 有し、
前記演算処理部は、前記第 2の記憶部に格納された絶縁抵抗値の時系列データ における該絶縁抵抗値の変化が所定の値を超えた場合に絶縁障害と判定する、請 求項 5に記載の絶縁抵抗検出装置。
[7] 前記第 1の記憶部に格納された対応関係データは、所定の絶縁抵抗値の範囲に おけるデューティー比の変化率が前記所定の絶縁抵抗値の範囲外におけるデュー ティー比の変化率より大き!ヽ、請求項 5に記載の絶縁抵抗検出装置。
PCT/JP2006/315715 2005-08-29 2006-08-09 絶縁抵抗検出装置 WO2007026514A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP06782531.5A EP1930737B1 (en) 2005-08-29 2006-08-09 Insulating resistance detection apparatus
JP2007533152A JP4742103B2 (ja) 2005-08-29 2006-08-09 絶縁抵抗検出装置
US12/065,326 US7863910B2 (en) 2005-08-29 2006-08-09 Insulation resistance detecting apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-247300 2005-08-29
JP2005247300 2005-08-29

Publications (1)

Publication Number Publication Date
WO2007026514A1 true WO2007026514A1 (ja) 2007-03-08

Family

ID=37808616

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/315715 WO2007026514A1 (ja) 2005-08-29 2006-08-09 絶縁抵抗検出装置

Country Status (5)

Country Link
US (1) US7863910B2 (ja)
EP (1) EP1930737B1 (ja)
JP (1) JP4742103B2 (ja)
KR (1) KR101013696B1 (ja)
WO (1) WO2007026514A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100244850A1 (en) * 2009-03-31 2010-09-30 Honda Motor Co., Ltd. Electric vehicle with ground fault detecting system
JP2012168071A (ja) * 2011-02-16 2012-09-06 Omron Automotive Electronics Co Ltd 漏電検知装置
JP2012168072A (ja) * 2011-02-16 2012-09-06 Omron Automotive Electronics Co Ltd 漏電検知装置
WO2021199490A1 (ja) * 2020-03-30 2021-10-07 三洋電機株式会社 漏電検出装置、車両用電源システム

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4937294B2 (ja) * 2009-03-31 2012-05-23 本田技研工業株式会社 地絡検知システムを備える電気自動車
JP5385688B2 (ja) * 2009-06-10 2014-01-08 矢崎総業株式会社 絶縁抵抗検出装置
CN102116801B (zh) * 2010-12-30 2013-04-10 优利德科技(中国)有限公司 一种保护导体测量电路和测量装置
JP5899516B2 (ja) * 2011-07-29 2016-04-06 パナソニックIpマネジメント株式会社 モータ駆動回路、モータ装置、および移動体
JP5414757B2 (ja) * 2011-09-12 2014-02-12 オムロンオートモーティブエレクトロニクス株式会社 漏電検知装置
DE102011084219B4 (de) * 2011-10-10 2013-07-04 Bender Gmbh & Co. Kg Verfahren und Vorrichtung zur Ermittlung eines tatsächlichen Isolationswiderstands in IT-Systemen mit einem funktionalen Erdungswiderstand
FR2986073B1 (fr) * 2012-01-24 2014-03-14 Octe Module pour le controle auditif d'appel d'un ascenseur et procede de controle correspondant
FR2987133B1 (fr) * 2012-02-22 2014-02-07 Renault Sas Procede d'estimation de la resistance d'isolement entre une batterie et une masse electrique
DE102012208111C5 (de) * 2012-05-15 2016-05-12 Bender Gmbh & Co. Kg Pulsgenerator-Schaltungsanordnung und Verfahren zur Erzeugung von Pulssignalen für die Isolationsfehlersuche in IT-Netzen
WO2014086381A1 (en) 2012-12-04 2014-06-12 Volvo Truck Corporation Method for isolation monitoring
DE102014204038A1 (de) 2014-03-05 2015-09-10 Bender Gmbh & Co. Kg Verfahren und Vorrichtungen zur selektiven Isolationsüberwachung in ungeerdeten IT-Stromversorgungssystemen
US10371758B2 (en) * 2015-09-15 2019-08-06 Lg Chem, Ltd. Test system and method for testing a battery pack
CN106707032A (zh) * 2017-01-19 2017-05-24 厦门昰能机电科技有限公司 一种地线电阻阻值检测电路
DE102017001849A1 (de) * 2017-02-25 2018-08-30 Man Truck & Bus Ag Technik zur Isolationsüberwachung in Fahrzeugen
JP6986004B2 (ja) * 2018-12-03 2021-12-22 株式会社デンソー 絶縁抵抗検出装置
CN109738826A (zh) * 2018-12-04 2019-05-10 深圳先进技术研究院 一种电池组绝缘检测方法、***、电子装置及存储介质
CN109951176B (zh) * 2019-03-22 2023-03-28 晶晨半导体(上海)股份有限公司 一种用于检测波形采集装置的采集能力的***及方法
EP3933414B8 (en) * 2020-06-30 2024-01-24 Rimac Technology LLC Determining resistance in an electrical circuit
CN112083299B (zh) * 2020-09-11 2023-05-26 国网重庆市电力公司北碚供电分公司 一种基于卡尔曼滤波的直流***绝缘故障预测方法
CN112130029B (zh) * 2020-10-10 2024-03-01 中车青岛四方机车车辆股份有限公司 一种列车网络故障检测工装及检测方法
US11703536B2 (en) 2021-06-25 2023-07-18 Rolls-Royce Corporation Insulation and fault monitoring for enhanced fault detection
US11703535B2 (en) * 2021-06-25 2023-07-18 Rolls-Royce Corporation Insulation and fault monitoring for enhanced fault detection
DE102022107832A1 (de) * 2022-04-01 2023-10-05 Illinois Tool Works Inc. Aktives erdungsysstem mit vorausschauender überwachung
CN117310555B (zh) * 2023-11-30 2024-04-09 上海海栎创科技股份有限公司 一种片上集成短路检测电路及检测方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5219581A (en) * 1975-08-06 1977-02-14 Toshiba Corp Capacitance/inductance measurement system
JPH0870503A (ja) * 1994-08-30 1996-03-12 Nippondenso Co Ltd 電気自動車の地絡検出回路
JPH11264853A (ja) * 1998-03-19 1999-09-28 Advantest Corp コンタクト試験装置及び半導体試験装置
JP2002209331A (ja) * 2001-01-11 2002-07-26 Nissan Motor Co Ltd 電気車両の地絡検出装置
JP2003250201A (ja) * 2002-02-26 2003-09-05 Nissan Motor Co Ltd 車両用地絡検出装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MY121524A (en) * 1999-09-22 2006-01-28 Murata Manufacturing Co Insulation resistance measuring apparatus for capacitive electronic parts
JP4039156B2 (ja) * 2002-07-18 2008-01-30 日産自動車株式会社 地絡検知回路の故障診断装置
JP4061168B2 (ja) * 2002-10-16 2008-03-12 矢崎総業株式会社 地絡検知装置および絶縁抵抗計測装置
JP4198019B2 (ja) 2003-10-07 2008-12-17 矢崎総業株式会社 状態検出方法及び絶縁抵抗低下検出器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5219581A (en) * 1975-08-06 1977-02-14 Toshiba Corp Capacitance/inductance measurement system
JPH0870503A (ja) * 1994-08-30 1996-03-12 Nippondenso Co Ltd 電気自動車の地絡検出回路
JPH11264853A (ja) * 1998-03-19 1999-09-28 Advantest Corp コンタクト試験装置及び半導体試験装置
JP2002209331A (ja) * 2001-01-11 2002-07-26 Nissan Motor Co Ltd 電気車両の地絡検出装置
JP2003250201A (ja) * 2002-02-26 2003-09-05 Nissan Motor Co Ltd 車両用地絡検出装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1930737A4 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100244850A1 (en) * 2009-03-31 2010-09-30 Honda Motor Co., Ltd. Electric vehicle with ground fault detecting system
JP2012168071A (ja) * 2011-02-16 2012-09-06 Omron Automotive Electronics Co Ltd 漏電検知装置
JP2012168072A (ja) * 2011-02-16 2012-09-06 Omron Automotive Electronics Co Ltd 漏電検知装置
WO2021199490A1 (ja) * 2020-03-30 2021-10-07 三洋電機株式会社 漏電検出装置、車両用電源システム
EP4130761B1 (en) * 2020-03-30 2024-05-29 SANYO Electric Co., Ltd. Electricity leakage detection device and vehicle power supply system

Also Published As

Publication number Publication date
EP1930737B1 (en) 2013-07-31
EP1930737A4 (en) 2011-10-05
US20090153156A1 (en) 2009-06-18
US7863910B2 (en) 2011-01-04
EP1930737A1 (en) 2008-06-11
KR101013696B1 (ko) 2011-02-10
JP4742103B2 (ja) 2011-08-10
KR20080034200A (ko) 2008-04-18
JPWO2007026514A1 (ja) 2009-03-05

Similar Documents

Publication Publication Date Title
JP4742103B2 (ja) 絶縁抵抗検出装置
CN108535637B (zh) 用于检测逆变器的功率继电器的故障的设备
US7554333B2 (en) Grounding detector
JP3678151B2 (ja) 電気車両の地絡検出装置
US9255957B2 (en) Earth fault detection circuit and power source device
JP2933490B2 (ja) 電気自動車の地絡検出回路
US9060218B2 (en) Failure detection device for vehicle speaker
JP2019036539A (ja) バッテリ管理システムのための障害検出
JP2005114496A (ja) 状態検出方法及び絶縁抵抗低下検出器
JP2004527076A (ja) バッテリのバッファー作用を決定する方法およびシステム
JP4198019B2 (ja) 状態検出方法及び絶縁抵抗低下検出器
JP6247154B2 (ja) 車両用地絡検出装置
JP5385688B2 (ja) 絶縁抵抗検出装置
JP2007163141A (ja) 状態検出方法及び絶縁抵抗低下検出器
JP7438213B2 (ja) 漏電検出装置、車両用電源システム
JP2004208342A (ja) 車両用発電制御装置
JP2008109822A (ja) 車両用交流発電機の制御装置
JP2007240426A (ja) 絶縁検出方法および絶縁検出装置
JP2004286523A (ja) 漏電判定装置、漏電判定プログラムおよび絶縁抵抗計測装置
JP4875257B2 (ja) 漏電検出装置
JP5018081B2 (ja) リレー故障診断装置
JP2009060722A (ja) 突入電流防止回路および電源装置
US11293984B2 (en) Detection circuit, detection method and uninterruptible power system using same
JP2007089277A (ja) 電気自動車のリーク検出装置
EP2361819A2 (en) Relay welding detecting device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2007533152

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 12065326

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1020087005796

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2006782531

Country of ref document: EP