JP2007089277A - 電気自動車のリーク検出装置 - Google Patents

電気自動車のリーク検出装置 Download PDF

Info

Publication number
JP2007089277A
JP2007089277A JP2005273503A JP2005273503A JP2007089277A JP 2007089277 A JP2007089277 A JP 2007089277A JP 2005273503 A JP2005273503 A JP 2005273503A JP 2005273503 A JP2005273503 A JP 2005273503A JP 2007089277 A JP2007089277 A JP 2007089277A
Authority
JP
Japan
Prior art keywords
capacitor
resistor
leak
output
operational amplifier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005273503A
Other languages
English (en)
Inventor
Akihiko Kudo
彰彦 工藤
Masaki Nagaoka
正樹 長岡
Kenichiro Tsuru
憲一朗 水流
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vehicle Energy Japan Inc
Original Assignee
Hitachi Vehicle Energy Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Vehicle Energy Ltd filed Critical Hitachi Vehicle Energy Ltd
Priority to JP2005273503A priority Critical patent/JP2007089277A/ja
Publication of JP2007089277A publication Critical patent/JP2007089277A/ja
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/50Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
    • G01R31/52Testing for short-circuits, leakage current or ground faults
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)
  • Measurement Of Resistance Or Impedance (AREA)
  • Measurement Of Current Or Voltage (AREA)

Abstract

【課題】、測定周波数やコンデンサの容量も上げることなく、低いリーク抵抗の検出が可能なリーク検出装置を提供する。
【解決手段】リーク検出装置20は、マイコン5の出力ポートから一定電圧振幅の矩形波を、コンデンサ3を介して電池群1とシャーシグラウンドとの間に引加し、コンデンサ3に流れる電流を測定することで、車体と電池群1との間のリークを検出する。コンデンサ3に流れる電流を測定するために、マイコン5の出力ポートからの出力が演算増幅器11の正相入力に接続されており、演算増幅器11の出力は電流検出用抵抗11を介してコンデンサ3に接続されており、かつ、コンデンサ3と電流検出用抵抗11との接続点が演算増幅器11の逆相入力に接続されており、更に、電流検出用抵抗11の両端の電圧を演算増幅器16及び抵抗12〜15で構成される差動増幅器の入力とし、該差動増幅器の出力電圧を検出する。
【選択図】図1

Description

本発明は電気自動車のリーク検出装置に係り、特に、車体と電気的に絶縁された直流電源回路と車体に接地された車両電装回路とを有する電気自動車のリーク検出装置に関する。
従来、電気自動車(PEV)やハイブリッド電気自動車(HEV)等には、一般に、高電圧の電池群を直列に接続した直流電源回路と車体に接地された車両電装回路とが搭載されており、両者は絶縁されている。また、直流電源回路と車体との間に絶縁破壊が生じリーク電流が流れた場合にリークを検出するリーク検出装置が搭載されている。このような、リーク検出装置は、高電圧の直流電源端子にコンデンサと抵抗の直列回路を接続し、信号波を抵抗側に印加して、コンデンサと抵抗との接続点に発生する交流電圧成分の振幅からリークを検出するリーク検出回路を有している(例えば、特許文献1参照)。
図2は、上記リーク検出回路の基本構成を示したものである。高電圧の電池群1が負荷2に接続されており、電極群1の+端子はリーク検出用コンデンサ3を通じて抵抗4に接続されている。抵抗4はリーク検出を行うマイクロコンピュータ(以下、マイコンという。)5の出力ポートに接続されている。抵抗4とコンデンサ3との接続点から、抵抗6とコンデンサ7とのRCフィルタを通じてバッファ8の入力に接続されており、バッファ8の出力はマイコン5のAD入力に接続されている。リーク検出回路の動作電源(不図示)のグランドは車両の車体(シャーシグラウンド)に接続されており、電池群1及び負荷2とは絶縁されている。なお、抵抗6とコンデンサ7とのRCフィルタは車両で発生するノイズ成分を削減するためのものである。
リーク検出動作は、マイコン5の出力ポートから矩形波が出力され、AD入力で応答波形の振幅を測定することで行われる。リーク抵抗9が無限大であれば、コンデンサ3には交流電流成分が流れないので、矩形波は抵抗6とコンデンサ7のRCフィルタを通ってAD入力に入るだけである。その場合、振幅はRCフィルタで多少矩形波より減少するが大きいままである。一方、リーク抵抗9が小さくなれば、コンデンサ3を通じて交流電流が流れるため、抵抗4とコンデンサ3の接続点の振幅はマイコン5の出力ポートの波形よりも小さくなり、AD入力で測定される波形の振幅も小さくなる。リークは直流電源回路のどこで起こるかわからないが、電池のインピーダンスは非常に小さいため、電池群1の+端子側で発生しても、−端子側で発生しても、又は、中間の接続点で発生しても検出波形に与える影響は小さくリークの検出が可能である。
図3は、このリーク検出回路で、リーク抵抗9の抵抗値により、どのように出力波形が変化するかを計算した結果を示したものである。抵抗4の値は43kΩ、コンデンサ3の値は2.2μF、抵抗6の値は100kΩ、コンデンサ7の値は0.1μF、矩形波の振幅は5Vp-p、周波数は10Hzとした。図3に示すように、リーク抵抗が小さくなるほど振幅が小さくなり、リークが悪化したことが検出可能である。図4に、この場合のリーク抵抗と振幅との関係を示す。図4に示すように、リーク抵抗が小さいほど振幅は小さくなる。
特許2933490号
しかしながら、従来のリーク検出回路では、比較的小さいリーク抵抗の検出が困難である、という課題を有していた。例えば、ある車両のシステムではリーク抵抗が5kΩでシステムの動作を遮断するものもある。図4に示すように、リーク抵抗の値の低い5kΩの近傍では、リーク抵抗の変化に対する振幅の変化が小さく、この定数で精度よく検出することは困難である。
一方、定数を変更することでこの問題を解決することは可能である。しかし、その場合、コストアップ及び実現性の点で問題が生じる。図5は定数を変更して振幅の変化を計算した例を示したものである。この例では、計算を簡単にするために矩形波ではなく正弦波を印加して計算しているが、矩形波でも正弦波でも応答特性は本質的に変わるものではなく傾向は同一である。図5に示すように、コンデンサ3を10倍の22μFにした場合は低いリーク抵抗でもリーク抵抗の変化に対する振幅の変化は大きくなっている。しかしながら、コンデンサ3は高耐圧のものでなければならず、容量を大きくするのはコストアップ及び部品サイズの増大を招く。また、周波数を10倍の100Hzとして、コンデンサ7の容量を1/10とした場合でも同様の特性になっているが、マイクロコンピュータの処理速度を上げることになり、既存の車両制御用システムに組み込むことは困難となる。更に、コンデンサ7の容量を1/10倍としたことでカットオフ周波数が高くなり、ノイズに弱くなることも懸念される。
本発明は上記事案に鑑み、測定周波数やコンデンサの容量も上げることなく、低いリーク抵抗の検出が可能なリーク検出装置を提供することを課題とする。
上記課題を解決するために、本発明は、車体と電気的に絶縁された直流電源回路と前記車体に接地された車両電装回路とを有する電気自動車のリーク検出装置において、一定電圧振幅の矩形波を発生させる矩形波発生回路の出力を、コンデンサを介して前記直流電源と車体グラウンドとの間に引加し、前記コンデンサに流れる電流を測定することで前記車体と前記直流電源との間のリークを検出することを特徴とする。
本発明では、コンデンサに一定電圧振幅の矩形波を印加し、流れる電流を測定するので、低いリーク抵抗の検出が可能となる。図6にその計算例を示す。簡略化のため、正弦波の通電として流れる電流の変化を計算した。通電周波数は10Hzでコンデンサは背景技術欄で説明した従来のリーク検出回路と同じ2.2μF、交流印加電圧は5Vrmsとした。図6に示すように、リーク抵抗が小さくなるほど通電電流は大きくなり、リーク抵抗が5kΩ程度でも、リーク抵抗の変化に対する振幅の変化は大きくなっている。リーク抵抗が10kΩから5kΩまで変化した場合の振幅の変化を、従来のリーク検出装置と本発明のリーク検出装置とで比較してみると、従来のリーク検出装置では10kΩの場合の80%に変化したのに対し、本発明のリーク検出装置では142%に変化しており、本発明のリーク検出装置の方が低リーク抵抗の検出がしやすくなる。このため、本発明によれば、従来、測定周波数を高くするかコンデンサの容量を大きくするしか検出することができなかった低いリーク抵抗の検出が可能となる。
上述したように、本発明では一定電圧振幅の矩形波を発生させる矩形波発生回路の出力をコンデンサに通電し、かつ、コンデンサに流れる電流を検出する必要があるが、電流検出抵抗と演算増幅器を用いてフィードバックループを形成すれば、一定電圧振幅の矩形波をコンデンサに印加でき、かつ、電流検出用抵抗に発生する電圧を増幅して電圧出力として検出することが可能となる。
本発明によれば、一定電圧振幅の矩形波を発生させる矩形波発生回路の出力を、コンデンサを介して直流電源と車体グラウンドとの間に引加し、コンデンサに流れる電流を測定するため、測定周波数やコンデンサの容量も上げることなく、低いリーク抵抗の検出できる、という効果を得ることができる。
以下、本発明に係る電気自動車のリーク検出装置の実施の形態について説明する。
電気自動車は、車体と電気的に絶縁された直流電源回路と、車体(シャーシグラウンド)に接地された図示しない車両電装回路を搭載している。図1に示すように、直流電源回路を構成し、複数の単電池を直列接続した高電圧の電池群1が、図示しないスイッチを介して負荷2に接続されている。負荷2には、電池群1により駆動される交流回路が含まれている。本実施形態のリーク検出装置20はリーク検出回路を有しており、電池群1の+端子側はリーク検出用コンデンサ3を介してリーク検出回路部に接続される。
リーク検出回路部は、マイコン5及び増幅器で構成されている。すなわち、マイコン5は一定電圧振幅の矩形波を出力する出力ポートを有しており、この出力ポートが演算増幅器11の正相入力端子に接続されている。演算増幅器11の出力端子は電流検出用抵抗10の一端に接続されており、抵抗10の他端は、他端が電池群1の+端子側に接続されるコンデンサ3の一端に接続されていると共に、演算増幅器11の逆相入力端子に接続されている。この演算増幅器11は、正相入力端子と逆相入力端子との電圧が等しくなる動作をするため、コンデンサ3と抵抗10との接続点には、マイコン5の出力ポートから出力された矩形波電圧と同一電圧が引加される。
抵抗10は電流検出用の抵抗で、両端の電圧は抵抗12〜15と演算増幅器16で構成される差動増幅器の入力に接続されている。すなわち、抵抗10の一端には抵抗13の一端が接続されており、抵抗13の他端は、他端がシャーシグラウンドに接続された抵抗14の一端に接続されており、抵抗13の他端と抵抗14の一端との接続点が演算増幅器16の正相入力端子に接続されている。また、抵抗10の他端には抵抗12の一端が接続されており、抵抗12の他端は、演算増幅器16の逆相入力端子に接続されている。演算増幅器16の出力端子、逆相入力端子間には抵抗15が挿入されている。更に、演算増幅器16の出力端子は、マイコン5のAD入力に接続されている。なお、マイコン5はシャーシグラウンドに接続されている。
本実施形態のリーク検出装置20では、マイコン5の出力ポートから一定電圧振幅の矩形波を演算増幅器11の正相入力端子とシャーシグラウンドとの間に出力し、演算増幅器16及び抵抗12〜15で構成される差動増幅器で抵抗10の両端電圧を測定することで、コンデンサ3に流れる電流を測定する。より具体的には、マイコン5は、ADコンバータ(このADコンバータの入力が上述したAD入力である。)を内蔵しており、マイコン5はデジタル値として抵抗10の両端電圧(応答波形)、すなわち、コンデンサ3に流れる電流を取り込み、取り込んだ抵抗10の両端電圧の振幅を測定することでリーク検出を行う。
次に、本実施形態のリーク検出装置20に従って作製した実施例のリーク検出回路について説明する。比較のために背景技術欄で説明した図2のリーク検出回路(比較例)についても併記する。
図7に、実施例のリーク検出回路について、実際にリーク抵抗9を接続しながらAD入力波形の測定を行った結果を示す。矩形波の出力周波数を10Hz、振幅を5Vp-p、コンデンサ3の容量を2.2μF、抵抗10の値を4.7kΩとした。図7に示すように、リーク抵抗が1MΩ、100kΩでは振幅の変化が小さいが、10kΩ程度から振幅が大きくなり、1kΩでは5V以上の振幅が得られている。図8にリーク抵抗と振幅の関係を示す。図8に示すようにリーク抵抗が小さいほど振幅が大きいのが実施例(実施形態)のリーク検出回路の特徴である。また、図8には電流検出抵抗が47kΩの場合の特性線も示している。電流検出抵抗値を大きくすることで、より高いリーク抵抗で振幅の変化が大きくなることも実施例(実施形態)のリーク検出回路の特徴であり、コンデンサの値及び矩形波の周波数を変更せずに、希望するリーク抵抗検出値に合わせた設計を行うことができる。
図9は、比較例(従来方式)のリーク検出回路と実施例のリーク検出回路とを比較した特性線図である。リーク抵抗の変化に伴う振幅の変化を比較するために、縦軸は振幅の変化率で示している。比較例のリーク検出回路では、リーク抵抗が1MΩの場合を1、実施例のリーク検出回路では電流検出抵抗が4.7KΩの場合がリーク抵抗1kΩで1、抵抗10が47kΩの場合がリーク抵抗10kΩの場合に1としている。図9に示すように、実施例のリーク検出回路ではリーク抵抗が小さい場合に振幅の変化が大きく、かつ、抵抗10の値を変更するだけで望みのリーク抵抗を検出しやすくすることが可能である。
以上のように、本実施形態のリーク検出装置20では、マイコン5の出力ポートから一定電圧振幅の矩形波を、コンデンサ3を介して電池群1に接続し、コンデンサ3に流れる電流を測定する。コンデンサ3に流れる電流を測定するために、マイコン5の出力ポートからの出力が演算増幅器11の正相入力に接続されており、演算増幅器11の出力は電流検出用抵抗11を介してコンデンサ3に接続されており、かつ、コンデンサ3と電流検出用抵抗11との接続点が演算増幅器11の逆相入力に接続されており、更に、電流検出用抵抗11の両端の電圧を演算増幅器16及び抵抗12〜15で構成される差動増幅器の入力とし、該差動増幅器の出力電圧を検出する構成を採っている。このため、一定振幅の矩形波電圧をコンデンサ3に印加でき、かつ、電流検出用抵抗11に発生する電圧を増幅して電圧出力として検出が可能となり、測定周波数やコンデンサ3の容量も上げることなく、低いリーク抵抗の検出できる。しかも、容量の小さいコンデンサ、演算増幅器、抵抗の比較的簡単な回路でリーク検出装置が構成できる点で工業的価値が大きい。
なお、本実施形態では、矩形波発生回路をマイコン5内に内蔵し、マイコン5の出力ポートから演算増幅器11の正相入力端子とシャーシグラウンドとの間に引加する例を示したが、本発明はこれに制限されず、マイコン5の外に矩形波発生回路を設けるようにしてもよい。
本発明は測定周波数やコンデンサの容量も上げることなく、低いリーク抵抗の検出が可能なリーク検出装置を提供することを目的とするため、リーク検出装置の製造、販売に寄与するので、産業上の利用可能性を有する。
本発明が適用可能な実施形態のリーク検出装置のリーク検出回路の回路図である。 従来のリーク検出装置のリーク検出回路の回路図である。 従来のリーク検出回路での電圧応答波形を示す特性線図である。 従来のリーク検出回路でのリーク抵抗と応答波形の振幅の関係を示す特性線図である。 従来のリーク検出回路で、定数を変えた場合のリーク抵抗と応答波形の振幅の関係を示す特性線図である。 実施形態のリーク検出回路でのリーク抵抗とコンデンサの通電電流の関係を示す特性線図である。 実施形態のリーク検出回路でのリーク抵抗を変えた場合の応答波形を示す特性線図である。 実施形態のリーク検出回路でのリーク抵抗と応答波形の振幅の関係を示す特性線図である。 実施例のリーク検出回路と比較例のリーク検出回路での、リーク抵抗と応答波形の振幅の変化を示す特性線図である。
符号の説明
1 電池群(直流電源回路)
3 リーク検出用コンデンサ(コンデンサ)
5 マイコン(矩形波発生回路)
10 電流検出用抵抗
11 演算増幅器
16 演算増幅器(差動増幅器の一部)
20 リーク検出装置

Claims (3)

  1. 車体と電気的に絶縁された直流電源回路と前記車体に接地された車両電装回路とを有する電気自動車のリーク検出装置において、一定電圧振幅の矩形波を発生させる矩形波発生回路の出力を、コンデンサを介して前記直流電源と車体グラウンドとの間に引加し、前記コンデンサに流れる電流を測定することで前記車体と前記直流電源との間のリークを検出することを特徴とする電気自動車のリーク検出装置。
  2. 前記矩形波発生回路の出力が演算増幅器の正相入力に接続されており、前記演算増幅器の出力は電流検出用抵抗を介して前記コンデンサに接続されており、かつ、前記コンデンサと前記電流検出用抵抗との接続点が前記演算増幅器の逆相入力に接続されており、前記電流検出用抵抗の両端電圧を検出することで前記コンデンサに流れる電流を測定することを特徴とする請求項1に記載の電気自動車のリーク検出装置。
  3. 前記電流検出用抵抗の両端の電圧を差動増幅器の入力とし、該差動増幅器の出力電圧を検出することで前記コンデンサに流れる電流を測定することを特徴とする請求項2に記載の電気自動車のリーク検出装置。
JP2005273503A 2005-09-21 2005-09-21 電気自動車のリーク検出装置 Withdrawn JP2007089277A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005273503A JP2007089277A (ja) 2005-09-21 2005-09-21 電気自動車のリーク検出装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005273503A JP2007089277A (ja) 2005-09-21 2005-09-21 電気自動車のリーク検出装置

Publications (1)

Publication Number Publication Date
JP2007089277A true JP2007089277A (ja) 2007-04-05

Family

ID=37975684

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005273503A Withdrawn JP2007089277A (ja) 2005-09-21 2005-09-21 電気自動車のリーク検出装置

Country Status (1)

Country Link
JP (1) JP2007089277A (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011154028A (ja) * 2010-01-26 2011-08-11 Maxim Integrated Products Inc エミュレートされた可変インダクタンスを利用した絶縁性監視システム及び方法
CN110703048A (zh) * 2019-09-05 2020-01-17 安徽力高新能源技术有限公司 一种电动汽车绝缘监测时间自适应方法
RU213458U1 (ru) * 2022-02-28 2022-09-13 Дериземля Дмитрий Анатольевич Блок высоковольтной тяговой батареи
US20220357408A1 (en) * 2019-06-28 2022-11-10 Sanyo Electric Co., Ltd. Leakage detection device and power system for vehicle

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011154028A (ja) * 2010-01-26 2011-08-11 Maxim Integrated Products Inc エミュレートされた可変インダクタンスを利用した絶縁性監視システム及び方法
US20220357408A1 (en) * 2019-06-28 2022-11-10 Sanyo Electric Co., Ltd. Leakage detection device and power system for vehicle
CN110703048A (zh) * 2019-09-05 2020-01-17 安徽力高新能源技术有限公司 一种电动汽车绝缘监测时间自适应方法
RU213458U1 (ru) * 2022-02-28 2022-09-13 Дериземля Дмитрий Анатольевич Блок высоковольтной тяговой батареи

Similar Documents

Publication Publication Date Title
JP5423748B2 (ja) 車両運行通知音発生用スピーカ回路の異常検出装置
JP4241787B2 (ja) 組電池総電圧検出およびリーク検出装置
KR101013696B1 (ko) 절연 저항 검출 장치
JP5500147B2 (ja) 車両運行通知音発生用スピーカ回路の異常検出装置
US9255957B2 (en) Earth fault detection circuit and power source device
US7554333B2 (en) Grounding detector
US8598897B2 (en) Isolation monitoring system and method utilizing a variable emulated inductance
JP2009042080A (ja) 電圧検出装置
JP6414520B2 (ja) 検査システム
TWI453432B (zh) 絕緣偵測電路及其方法
KR20120068904A (ko) 차량용 절연 저항 검출 장치
JP6247154B2 (ja) 車両用地絡検出装置
JP2007068249A (ja) 電気自動車用リーク検出装置
JP2007089277A (ja) 電気自動車のリーク検出装置
JP2015087217A (ja) 漏電検出装置
EP4068545A1 (en) Earth leakage detecting device, and vehicular power supply system
JP2017083388A (ja) 漏電検出装置および漏電検出方法
JP2016118522A (ja) 絶縁検出装置
JP2016080526A (ja) 絶縁性能診断装置および擬似キャパシタの容量値の設定方法
JP2013113641A (ja) 短絡検出装置
JP2008064522A (ja) リーク検出装置
JP2006078449A (ja) 漏電検出装置
JP2014010028A (ja) 電池のインピーダンス測定装置およびその測定方法
JP5950084B2 (ja) 状態監視装置
JP6315273B2 (ja) 絶縁状態測定装置

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20081202