WO2007015300A1 - 電子部品製造装置、電子部品製造装置の制御方法並びに制御プログラム - Google Patents

電子部品製造装置、電子部品製造装置の制御方法並びに制御プログラム Download PDF

Info

Publication number
WO2007015300A1
WO2007015300A1 PCT/JP2005/014277 JP2005014277W WO2007015300A1 WO 2007015300 A1 WO2007015300 A1 WO 2007015300A1 JP 2005014277 W JP2005014277 W JP 2005014277W WO 2007015300 A1 WO2007015300 A1 WO 2007015300A1
Authority
WO
WIPO (PCT)
Prior art keywords
electronic component
holding means
process processing
control
component holding
Prior art date
Application number
PCT/JP2005/014277
Other languages
English (en)
French (fr)
Inventor
Hideo Minami
Original Assignee
Ueno Seiki Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ueno Seiki Co., Ltd. filed Critical Ueno Seiki Co., Ltd.
Priority to PCT/JP2005/014277 priority Critical patent/WO2007015300A1/ja
Priority to JP2007529156A priority patent/JP4057643B2/ja
Priority to KR1020087005238A priority patent/KR100992655B1/ko
Priority to CN2005800514907A priority patent/CN101267912B/zh
Publication of WO2007015300A1 publication Critical patent/WO2007015300A1/ja
Priority to HK08113200.1A priority patent/HK1121714A1/xx

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P21/00Machines for assembling a multiplicity of different parts to compose units, with or without preceding or subsequent working of such parts, e.g. with programme control
    • B23P21/004Machines for assembling a multiplicity of different parts to compose units, with or without preceding or subsequent working of such parts, e.g. with programme control the units passing two or more work-stations whilst being composed
    • B23P21/006Machines for assembling a multiplicity of different parts to compose units, with or without preceding or subsequent working of such parts, e.g. with programme control the units passing two or more work-stations whilst being composed the conveying means comprising a rotating table

Definitions

  • the present invention relates to an electronic component manufacturing apparatus that performs various process processes on an electronic component, a control method for an electronic component manufacturing apparatus, and a control program.
  • a plurality of handling mechanisms are arranged on the outer peripheral portion of a turntable that is intermittently driven by a direct drive motor, and these handling mechanisms are directly connected to drive the turntable. It was driven up and down simultaneously by a drive motor and a linear motor separately driven.
  • a plurality of process processing mechanisms are arranged around the turntable, and the handling mechanism descends at the position of each process processing mechanism and passes the electronic components to the process processing mechanism to align the electronic components, perform electrical characteristic inspection, Processing such as king, appearance inspection, sorting, taping, etc. is performed sequentially.
  • the time required for processing differs for each process processing arranged around the turntable. For example, in the alignment of electronic components (centering), the time required for the centering process is shorter than that for other process processes, while the time required for the electrical characteristic inspection (test contact) is relatively long. .
  • Patent Document 1 Japanese Patent No. 2620646
  • Patent Document 2 JP 2002-127064
  • the stop time in each process step is constant. Therefore, if all the processes of a plurality of handling mechanisms are not completed, the turn process must be completed.
  • the table will not be able to operate intermittently.
  • the transport position increases the productivity by shortening the movement time between the processing positions, and in the process that does not require time, the movement time is lengthened to prevent the occurrence of defects. Flexible processing is not possible. For this reason, the turntable stop time and movement time, that is, the index time, which is the time required for one cycle of intermittent rotation, was incurred, and productivity could not be improved.
  • the required load may differ depending on the process. For example, in the electrode cutting and processing processes of electronic components, a large load is required to fix the electronic components, but a large load is not necessary in the electrical characteristic measurement process. Also, almost no load is required for tape packaging, marking, visual inspection processes, and so on.
  • the handling mechanism holds the electronic component and is provided in the handling mechanism when clamping is performed by applying a constant load to the die. It was difficult to control the load suitable for the process on the suction nozzle and electronic components.
  • the processing mechanism is a process for inspecting electrical characteristics
  • the positioning stop position of the electronic component with respect to the measurement electrode is of course suitable for the process even with respect to the load applied to the electrode. I could't do a certain amount of control. For this reason, an excessive load was applied to the electronic parts, etc., damaging the electrodes themselves and the lead of the electronic parts, resulting in the generation of defective products and erroneous measurement.
  • an electronic component manufacturing device configured to sequentially transfer electronic components between multiple transport mechanisms
  • one electronic component is simultaneously held by multiple handling mechanisms, such as the process of transferring electronic components between transport mechanisms.
  • the electronic component was subjected to a greater impact than the normal process, and as a result, there was a high possibility that defective products would be generated.
  • the moving speed of the entire handling mechanisms is set to a constant moving speed that does not cause defective products in the transfer process between the transport mechanisms.
  • the processing speed of the entire device is limited, so there is a limit to improving productivity.
  • the processing mechanism unit has a step of bringing the electronic component into complete contact, for example, when the processing mechanism unit is a mold, the speed is reduced before reaching the position where contact starts, and the impact due to contact Since control such as suppressing or mitigating the load cannot be performed, electronic components were damaged by impact and caused defective products.
  • the positioning position of the electronic component is also affected by variations in the manufacturing dimensions of the movable holding portion.
  • the processing mechanism and the process for transferring the sub parts there is a force of variation in positioning, etc. Impact load is applied to the electronic parts, which may cause defective products, or cause inconveniences in the passing itself. It was supposed to be.
  • An object of the present invention is to provide a drive control pattern for independently driving the handling mechanism for each process, and to control the Z-axis control, that is, at the position of each process processing mechanism, the winding mechanism is lowered to move the electronic component.
  • Control method for electronic component manufacturing apparatus and electronic component manufacturing apparatus that can improve the processing efficiency and index time of the entire device by performing control passed to the process processing mechanism independently for each process processing And providing a control program.
  • the present invention sequentially moves a plurality of electronic component holding means each having a movable holding portion for holding an electronic component to a plurality of process processing mechanisms arranged sequentially, and
  • the plurality of electronic component holding means are sequentially transferred to the plurality of process processing mechanisms.
  • a transport mechanism that transports and stops at each stop position corresponding to each process processing mechanism, a transport drive source that drives the transport mechanism, and the plurality of electronic component holding means are independent of each other.
  • the electronic component holding means holds the electronic component.
  • the plurality of electronic component holding means are driven and controlled independently of each other.
  • the relationship between the height position of the electronic component, the moving time, and the processing time with respect to each process processing mechanism is set in advance as a control pattern, and this control pattern is stored in the control pattern.
  • the electronic component holding means drive control that is, the electronic component delivery process to each process processing mechanism is performed independently for each process processing. Direct control of the component holding means can be performed, and the accurate position of the electronic component can be grasped. Therefore, compared to indirect control using conventional sensors, it is possible to improve the processing speed and prevent troubles due to erroneous detection.
  • the electronic component holding means must move greatly with respect to the process processing mechanism! /, For example, to the left / right reversing processing mechanism!
  • acceleration / deceleration control can be performed so as to gradually decelerate and mitigate the impact on the electronic components.
  • the electronic component holding means only needs to move with respect to the process processing mechanism.
  • V, test contact, etc. the weight is light and the object can maximize acceleration / deceleration. You can make time faster. In this way, optimal acceleration / deceleration control can be performed for each process.
  • control unit is configured to set the electronic component holding unit preset for each process processing mechanism when the electronic component is delivered from the electronic component holding unit to the process processing mechanism.
  • Means for reading the control pattern means for starting the driving of the holding means driving source, means for sequentially detecting the position of the electronic component held by the electronic component holding means from driving information of the holding means driving source, Means for comparing the preset control pattern with the positions of the electronic components detected sequentially, and means for controlling acceleration / deceleration of a plurality of electronic component holding means based on the comparison result.
  • the relationship between the height position of each electronic component from each process processing unit and time is preliminarily determined, and based on the information, the electronic component holding means is connected to the process processor.
  • the amount of movement with respect to the structure is analyzed by the encoder, and the difference between the set information and the actual information is compared. By comparing and feeding back, accurate positioning information at the machining point can be guaranteed.
  • optimum torque control can be performed for each process mechanism based on a preset control pattern.
  • load control for eliminating unnecessary loads on the electronic components by applying torque restriction to the motor that is the electronic component holding drive source in accordance with the acceleration / deceleration timing of the holding means. It can be performed.
  • the present invention can be grasped not only as an electronic component manufacturing apparatus but also as a control program for controlling an electronic component control apparatus using a method or a computer for controlling the electronic component manufacturing apparatus.
  • a drive control pattern for independently driving the handling mechanism for each process is provided, and the handling mechanism is lowered at the position of each process processing mechanism.
  • the processing efficiency and index time of the entire device can be improved.
  • FIG. 1 is a plan view (a) and a side view (b) showing an overall configuration of an electronic component manufacturing apparatus according to an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view (a) and a side view (b) showing a configuration of a drive unit of an electronic component manufacturing apparatus according to an embodiment of the present invention.
  • FIG. 3 is a diagram showing an example of a difference in Z-axis movement amount and processing time for each process of the electronic component manufacturing apparatus according to the embodiment of the present invention.
  • FIG. 4 is a process timing chart of the electronic component manufacturing apparatus according to the embodiment of the present invention.
  • FIG. 5 is a process timing chart of the electronic component manufacturing apparatus according to the embodiment of the present invention.
  • FIG. 6 is a flowchart showing a control process of a control device in the electronic component manufacturing apparatus according to the embodiment of the present invention.
  • FIG. 7 is a view showing a conventional electronic component position detection method.
  • FIG. 8 is a process timing chart of a conventional electronic component manufacturing apparatus. Explanation of symbols
  • An electronic component manufacturing apparatus 1 shown in FIG. 1 is an apparatus for sequentially transporting a plurality of electronic components S to a plurality of process processing units (process processing mechanisms) 2 that are sequentially arranged in an arc shape at equal intervals. is there.
  • the electronic component manufacturing apparatus 1 first has a plurality of handling units (electronic component holding means) 3 each having a movable suction nozzle (movable holding portion) 3b for holding the electronic component S.
  • a turntable (conveying mechanism) 4 for conveying the handling unit 3 to the process processing unit 2 is provided.
  • the electronic component manufacturing apparatus 1 also includes a direct drive motor (conveying drive source) 5 that drives the turntable 4, and a plurality of drives provided independently of each other so as to individually drive the handling unit 3.
  • a unit (holding means driving mechanism) 6 is provided. Details of each part are as follows.
  • the turntable 4 is horizontally disposed above the plurality of process processing units 2 arranged in an arc shape, spaced apart from the process processing unit 2, and a plurality of turntables 4 are disposed on the outer periphery of the turntable 4. These handling units 3 are arranged at the same intervals as the plurality of process processing units 2.
  • the nodling unit 3 includes a suction nozzle 3b and a support portion 3a that movably supports the suction nozzle 3b in the vertical direction.
  • the support portion 3a Is provided above the turntable 4.
  • the other handling units 3 3 when a plurality of handling units 3 overlap one process processing position P of one process processing unit 2, the other handling units 3 3 is also arranged on the outer periphery of the turntable 4 so as to overlap each of the process processing positions P. That is, the plurality of process processing units 2 are provided with a process processing position P for performing processing on the electronic component S, and the central force on the horizontal surface of the process processing position P is on one circle coaxial with the turntable 4. To be positioned at regular intervals Has been placed. The plurality of handling units 3 are arranged such that the center of the nozzle tip 3c of the suction nozzle 3b on the horizontal plane is positioned at the center of the process processing position P on the horizontal plane.
  • the process processing unit 2 includes an escape process 2A in which the electronic parts aligned and conveyed from the ball feeder and the linear feeder also deliver the escape force to the handling unit 3, and a polarity determination process for determining the polarity of the electronic parts.
  • 2B based on this polarity discrimination, the left / right reversal process 2C for rotating the electronic component to change the polarity, the test contact process 2D for inspecting the electrical characteristics of the electronic component, the marking process 2E, and the appearance inspection process 2F
  • the sorting process 2G removes electronic components determined to be defective in the process, the taping process 2H, and the defective product removal process 21 that removes residual parts. It is held by the suction nozzle and rotated and conveyed in the order of the above steps 2A to 2I.
  • the plurality of drive units 6 are provided corresponding to each of the plurality of process processing units 2, and are provided at the upper end of the suction nozzle 3b of the handling unit 3.
  • An operating rod 6a for contacting and pushing down the suction nozzle 3b downward is provided, and a drive unit 6b for driving it.
  • the plurality of drive units 6 are also separated above the turntable 4 by the conveying path force of the handling unit 3 and overlap each other above the corresponding process processing unit 2 via the turntable 4.
  • each drive unit 6 is arranged so as to overlap with the center of the process processing position P of each process processing unit 2 corresponding to the center force of the operation rod 6a on the horizontal plane.
  • the plurality of drive units 6 moves the operation rod 6a up and down by the drive unit 6b under the control of the control device 7, thereby moving the suction nozzle 3b to the upper position and the lower position.
  • the electronic component S held by the nozzle tip 3c of the suction nozzle 3b is moved between the transport position on the transport path and the process processing position P of the process processing unit 2. Yes.
  • Drive control patterns such as speed, movement timing, and load are set individually for each process based on the relationship between the movement time and processing time between the height position of the electronic component in each process processing unit 2 and the upper position and lower position. Has been.
  • the control device 7 is an electronic device that is determined from the rotation angle (see FIG. 5 (c)) of the encoder 6d that rotates in accordance with the rotation of the motor 6c that is the drive source.
  • the control device 7 By comparing and analyzing the position information in the Z-axis direction of the part and the elapsed time of the rotation starting force of the motor with the preset position information based on the rotation angle of the encoder 6d and the control pattern of the elapsed time. It is set to perform optimal position control (see Fig. 5 (a)), speed control (see (d)) 'torque control (see (e)).
  • FIG. 7 shows the position control of the suction nozzle using a conventional sensor.
  • This method is controlled via a sensor in the middle, and the processing speed is slow, the position detection accuracy is insufficient, and it causes troubles due to erroneous detection. For example, if there is dust in the process processing section, it may not be recognized depending on the size and shape of the dust, and there are problems such as being unable to keep up with the processing speed of a turntable that rotates at high speed. It was.
  • This conventional problem is solved by controlling the movement time, movement amount, movement speed, movement timing, load, etc. of the (Z-axis) with its own drive control pattern.
  • the turntable 4 By rotating the turntable 4 by driving the direct drive motor 5 while holding the plurality of electronic components S by the suction nozzles 3b of the plurality of handling units 3, the plurality of electronic components S can be moved to the plurality of process processing units 2 Sequentially.
  • the turntable 4 is stopped.
  • each suction nozzle 3b of each handling unit 3 at each stop position corresponding to each process unit 2 is the center on the horizontal plane of the process unit 2 and its process. Operation of drive unit 6 corresponding to processing unit 2 It overlaps the center of the construction rod 6a on the horizontal plane. In other words, each suction nozzle 3 b at each stop position can be driven by the operation rod 6 a of each drive unit 6.
  • each drive unit 6 the operating rod 6 a is moved up and down, so that the electronic component S can be moved between the transfer position on the transfer path by the turntable 4 and the process unit 2. Move to / from process processing position P.
  • each electronic component S is held by the suction nozzle 3b of each handling unit 3 and each drive boot 6 Then, the suction nozzle 3b is pushed up from the lower position to the upper position by raising the operating rod 6a by the drive unit 6b.
  • the electronic component S is sequentially transferred to each process 2 and subjected to various processes.
  • FIG. 3 is a diagram comparing the amount of movement between the upper and lower positions of the suction nozzle 3b, that is, the amount of Z-axis movement, in the left-right reversing step 2C and the test contact step 2D.
  • the amount of electronic component movement in the Z-axis direction is large, and the processing time is short.
  • the test contact process 2D the amount of electronic component movement in the Z-axis direction is small, and the processing time is long.
  • the sum of the index time of the electronic component manufacturing apparatus 1 as a whole, that is, the stop time of the turntable 4 (including the process processing time) and the movement time by intermittent rotation is the most time required for the process processing. It is limited to the process that takes time and the process that takes the longest time to move the Z-axis. That is, conventionally, the sum of the time of the process requiring the maximum process processing time and the process requiring the maximum movement time among the process processing units equally arranged on the turntable 4 is the stop time. Therefore, in this embodiment, the time of the entire apparatus is regulated to the maximum values of the processing time and the movement time by controlling the Z-axis control of each processing process by a control pattern unique to each process. In each process, the processing time and movement time are determined independently, and the sum of these times is determined by the stop time.
  • each process is conventionally controlled uniformly, so that each moving time and processing time is set in the process as shown by the two-dot chain line in the figure. It was tailored to the one that took the most time. As a result, the index time has been poor in the past.
  • each process process is configured to be controlled by a unique control pattern, so that it is not constrained by each other's movement time or stop time. Since the timing of the inversion process can be adjusted to increase or decrease the overall processing efficiency by adjusting the timing of the inversion process, the overall index time is shortened and efficient process processing can be performed.
  • Fig. 4 (d) as another example, the force taking up the escape process 2A. According to this, the escape process 2A has a relatively large Z-axis movement amount and a short processing time. In the index, it can be seen that the control can be arbitrarily performed by increasing or decreasing the timing of the processing time for transferring the electronic component S to the Nording unit 3.
  • Fig. 5 (b) the Z-axis acceleration / deceleration is not uniform in a process with a large Z-axis movement, as shown in Fig. 2 (a).
  • the control pattern is set so that the acceleration / deceleration is gradually changed in the initial stage (X), middle stage (Y), and final stage (Z), and the impact on the electronic components, holding mechanism and processing mechanism is minimized. .
  • the suction nozzle 3b is lowered at a constant speed with respect to the process processing position P, brought into contact, and processing is performed.
  • the suction nozzle 3b performs the process process.
  • the operating rod 6a is sufficiently decelerated, and then the electronic component S is brought into contact with the process processing position P so that the impact load is reduced.
  • an impact load has been generated by the suction nozzle 3b force, for example, when the process position P is in contact with a mold or the like. In the form, the impact load due to the contact can be suppressed or alleviated.
  • the suction nozzle 3b is raised, that is, when the electronic component is separated from the process processing position P, in the conventional technique, the suction nozzle 3b is fixed as shown in FIG.
  • the control pattern is set so that acceleration, deceleration, and acceleration are performed alternately.
  • the drive unit 6b is controlled so that the operating rod 6a is sufficiently decelerated and no positional deviation occurs. It is controlled so that there is no.
  • the electronic component S held at the nozzle tip 3c of the suction nozzle 3b is returned to the transport position on the transport path by the turntable 4 as well as the process processing position of the process processing unit 2.
  • FIG. 5 (e) shows the Z-axis torque control.
  • the torque limit is uniformly set to Max (+) and Max (-).
  • there were problems such as damage to the electronic components, damage to the holding mechanism, and the process processing mechanism.
  • FIG. 6 The flowchart of Fig. 6 is used to describe the optimal index time setting, position control, acceleration / deceleration control, load control, and torque control processing flow in the control device as described above. I will explain.
  • the control device 7 optimizes each process process set in advance based on the movement time between the height position of the electronic component and the upper position and the lower position and the process time.
  • a correct control pattern is read (S601). More specifically, as shown in FIG. 4, the difference between the moving time and the processing time in each process, a control pattern that can form the preset index time in the shortest time, and the acceleration / deceleration shown in FIG.
  • Each control pattern set as an optimum value in each processing step is read out as load control and torque control.
  • the electronic component S held by the suction nozzle 3b of the handling unit 3 starts to move down by the rotation of the motor 6c.
  • the control device 7 starts rotating for each process unit 2.
  • the position information of the electronic component S set in advance based on the encoder rotation angle over the elapsed time of the force is compared with the actual encoder rotation angle to compare whether the force has reached the torque control start position ( If there is no difference between the set information and the actual information (YES in S604), torque control by the motor is performed (S605), and the process returns to S604.
  • the electronic component manufacturing apparatus 1 that operates as described above has the following effects.
  • the relationship between the height position of the electronic component S from each process processing unit 2, the moving time, and the processing time is stored in the control device 7 in advance, and drive control in the Z direction in each process processing unit is performed for each process process.
  • the direct control based on the position of the electronic component S can be performed, and the exact position of the suction nozzle holding the electronic component S can be grasped. Therefore, compared to indirect control using conventional sensors, it is possible to improve processing speed and prevent troubles due to erroneous detection.
  • the relationship between the height position of the electronic component S for each process processing unit 2 and the movement time and the processing time is preliminarily patterned, and based on the information, the handling unit 3 in the direction of the force axis.
  • the amount of movement is analyzed by the encoder 6d of the drive unit 6, and the difference between the set information and the actual information is compared and fed back, so that accurate positioning information at the machining point can be obtained.
  • optimal acceleration / deceleration control can be performed for each process.
  • handling unit 3 is large in the Z-axis direction.
  • acceleration / deceleration is performed so as to gradually decelerate and reduce the impact applied to the electronic component s. You will be able to control.
  • the handling unit does not need to be forced to move in the direction of the Z-axis! In the case of a test contact, the weight is light! Can be shortened. In this way, optimal acceleration / deceleration control can be performed for each process.
  • optimal torque control can be further performed for each process.
  • load control is performed to eliminate unnecessary loads on the electronic components by applying torque limit to the motor that is the electronic component holding drive source in accordance with the acceleration / deceleration timing of the holding means. It can be performed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Supply And Installment Of Electrical Components (AREA)
  • Testing Of Individual Semiconductor Devices (AREA)
  • Multi-Process Working Machines And Systems (AREA)

Abstract

 ハンドリング機構を各工程処理ごとに独立駆動させる駆動制御パターンを設け、Z軸制御、すなわち各工程処理機構の位置でハンドリング機構が下降して電子部品を工程処理機構に受け渡す制御を、各工程処理ごとに独立に行うことにより、装置全体としての処理効率、インデックスタイムの向上を図ることのできる電子部品製造装置、電子部品製造装置の制御方法並びに制御プログラムを提供する。  電子部品製造装置1は、円弧状に等間隔で順次配置された複数の工程処理ユニット2に対して、複数の電子部品Sを順次搬送するための装置であり、電子部品Sを保持する可動の吸着ノズル3bをそれぞれ有する複数のハンドリングユニット3と、ハンドリングユニット3を工程処理ユニット2に搬送するターンテーブル4を備える。また、電子部品製造装置1は、駆動ユニット6により、各ハンドリングユニット3を各工程処理に合致した独自の駆動制御パターンで独立制御されている。

Description

電子部品製造装置、電子部品製造装置の制御方法並びに制御プログラ ム
技術分野
[0001] 本発明は、電子部品に対して各種の工程処理を施す電子部品製造装置、電子部 品製造装置の制御方法並びに制御プログラムに関する。
背景技術
[0002] 従来の電子部品製造装置においては、ダイレクトドライブモータによって間欠的に 駆動されるターンテーブルの外周部分に、複数のハンドリング機構が配置され、これ らのハンドリング機構は、ターンテーブルを駆動するダイレクトドライブモータと別駆動 のリニアモータによって同時に上下に駆動されていた。ターンテーブルの周囲には 複数の工程処理機構が配置され、ハンドリング機構は、各工程処理機構の位置で下 降して電子部品を工程処理機構に渡し、電子部品位置合わせ、電気特性検査、マ 一キング、外観検査、ソート、テーピング等の処理が順次行われる。
[0003] このような電子部品製造装置では、ターンテーブルの周囲に配設された各工程処 理ごとに処理に要する時間が異なる。例えば、電子部品位置合わせ (センタリング) においては、センタリング処理に要する時間は他の工程処理に比べ短時間で終わる のに対し、電気特性検査 (テストコンタクト)に要する時間は相対的に長くかかってい た。
特許文献 1:特許第 2620646号公報
特許文献 2:特開 2002— 127064公報
発明の開示
発明が解決しょうとする課題
[0004] [工程処理時間における課題]
し力しながら、これらの各工程処理をターンテーブルの同一円周上に配置している 以上、各工程処理における停止時間は一定となるので、複数のハンドリング機構の すべての処理が終了しないとターンテーブルは間欠動作できないことになり、複数の 工程のうち、時間を要する工程においては搬送位置 処理位置間の移動時間を短 くして生産性を上げ、時間を要しない工程では移動時間を長くして欠陥発生を防止 する、などの工程ごとの柔軟な処理ができない。このため、ターンテーブルの停止時 間と移動時間、すなわち間欠回転の 1サイクルに要する時間であるインデックスタイム の悪ィ匕を招き、生産性の向上を図ることができなかった。
[0005] [荷重制御における課題]
一方、複数の工程処理を順次行う場合、工程によって要求される荷重が異なること もある。例えば、電子部品の電極切断、加工工程においては、電子部品を固定する ために大きな荷重が必要であるが、電気特性測定工程にはそれほど大きな荷重は必 要ない。また、テープ梱包、マーキング、外観検査工程などでは荷重はほとんど必要 ない。
[0006] し力しながら、上記のような従来の装置では、ハンドリング機構により電子部品を固 定するための荷重は、複数の工程にわたって一定であるため、工程ごとに電子部品 固定用の荷重を制御して、大きな荷重が必要な 、工程では小さな荷重で処理するこ とにより不良品発生を防止する、等の柔軟な処理が行えな力つた。
[0007] 具体的には、処理機構が電子部品のリード切断などを行う工程である場合、ハンド リング機構が電子部品を保持し、ダイに一定荷重を加えクランプを行う際、ハンドリン グ機構に設けられた吸着ノズルや電子部品に対して、その工程に適した荷重を制御 することができな力つた。
[0008] また、処理機構が電気特性検査を行う工程である場合は、測定用の電極に対する 電子部品の位置決め停止位置は、もちろんのこと、その電極に加わる荷重に対して も、その工程に適した一定の制御を行うことができな力つた。このため、電子部品等に 必要以上に荷重が加わり、電極自身及び電子部品のリードに損傷を与え、不良品の 発生及び誤測定の要因となって 、た。
[0009] さらに、処理機構部に電子部品を位置決め停止させる動作過程においても、荷重 が必要以上に加わらないようにする必要性があった。例えば、電子部品の位置合わ せをガイドにより行う処理工程の場合は、電子部品が Θ方向等に位置ずれしていると 、強制的にガイド内に電子部品を押し込んでしまい、電子部品の不良を発生させて いた。また、電子部品に、荷重が加わり不良品の可能性があるにも関わらず、その検 出ができず次の処理に工程が進み、最終的には、不良品の流出につながる可能性 を含んでいた。
[0010] [衝撃荷重 速度における課題]
電子部品を複数の搬送機構間で順次受け渡すように構成された電子部品製造装 置において、搬送機構間で電子部品を受け渡す工程等、 1つの電子部品が複数の ハンドリング機構により同時に保持されるような工程では、電子部品には通常の工程 より大きな衝撃が加わり、その結果、不良品が発生する可能性が高力つた。このため 、このような複数の搬送機構を設けた電子部品製造装置では、複数のハンドリング機 構全体の移動速度を、搬送機構間の受け渡し工程において不良品を発生させない 範囲の一定の移動速度に設定せざるを得ず、装置全体の処理速度が制限されるた め、生産性の向上に限界があった。
[0011] また、従来の電子部品製造装置においては、上記のように、複数のハンドリング機 構全体の移動時間が一定であるため、電子部品の厚みや電極形状等の変更に伴う 移動量、移動速度の変更は容易ではな力つた。このため、多品種生産に対応できな いという問題があった。
[0012] さらに、処理機構部に電子部品を完全に接触させる工程を有する場合、例えば処 理機構部が金型である場合等、接触し始める位置に到達する前に速度を低下させ 接触による衝撃荷重を抑制または緩和させる等の制御ができないため、電子部品に 衝撃によるダメージ与え、不良品を発生させる要因となっていた。
[0013] [位置決めにおける課題]
近年、電子部品の小型化が急速に加速している状況においては、搬送や位置決 めに対するよりいつそうの精密さを要求されるようになった。し力しながら、製作上、可 動保持部を厳密に同一寸法に製作することは困難であり、また、摩耗に起因する位 置精度のバラツキにより一つの処理機構に対して全ての可動保持部を一定の位置 に位置決めすることができな 、。
[0014] そのため、従来の電子部品製造装置においては、電子部品の位置決め位置も可 動保持部の製作寸法のバラツキに左右されることとなっていた。その結果、例えば電 子部品の受け渡しを行う処理機構及びその工程では、位置決めのバラツキ等力 電 子部品に衝撃荷重が加わり、不良品発生の要因となったり、受け渡しそのものが支 障をきたすノ、ンドリングミスを誘発することとなっていた。
[0015] また、従来の電子部品製造装置においては、電子部品の位置決め完了を検出でき ないことから、電子部品の位置決め不良が判定できない状態で処理機構等の動作を 行ってしまい、結果として不良品を発生させてしまったり、処理機構の動作開始タイミ ングを必要以上に遅延させてしまい、生産性を低下させる要因となっていた。
[0016] 一方で、他のセンサを用いて、電子部品の位置決め完了を検出することは非常に コストがかかるため困難であり、同時に誤検出となる可能性が高いという問題があった 。したがって、ターンテーブルの停止位置に、複数の処理機構及びその工程を設け 、位置決め数を複数設け処理する事はできな力つた。
[0017] 本発明の目的は、ハンドリング機構を各工程処理ごとに独立駆動させる駆動制御 パターンを設け、 Z軸制御、すなわち各工程処理機構の位置でノ、ンドリング機構が下 降して電子部品を工程処理機構に受け渡す制御を、各工程処理ごとに独立に行うこ とにより、装置全体としての処理効率、インデックスタイムの向上を図ることのできる電 子部品製造装置、電子部品製造装置の制御方法並びに制御プログラムを提供する ことにある。
課題を解決するための手段
[0018] 上記目的を達成するため、本発明は、電子部品を保持する可動保持部を備えた複 数の電子部品保持手段を順次配置された複数の工程処理機構に順次移動させると ともに、前記電子部品保持手段から前記各工程処理機構へ前記電子部品を受け渡 して前記電子部品に各種工程処理を施す電子部品製造装置において、前記複数の 電子部品保持手段を前記複数の工程処理機構に順次搬送して各工程処理機構に 対応する各停止位置で停止させる搬送機構と、前記搬送機構を駆動する搬送用の 駆動源と、前記複数の電子部品保持手段を個別に駆動するように互いに独立して設 けられた複数の保持手段駆動源と、前記搬送用駆動源と前記保持手段駆動源とを 統合的に制御する制御部とを備え、前記制御部は、前記電子部品保持手段から前 記各工程処理機構へ前記電子部品を受け渡す際に、前記電子部品保持手段に保 持された電子部品の各工程処理機構に対する位置と当該工程処理における受渡し 移動時間及び処理時間との関係力 各工程処理機構ごとに予め設定された前記電 子部品保持手段の制御パターンに基づいて、前記複数の電子部品保持手段を互い に独立して駆動制御することを特徴とする。
[0019] 以上のような本発明によれば、各工程処理機構に対する電子部品の高さ位置と移 動時間及び処理時間との関係を、制御パターンとして予め設定しておき、この制御パ ターンに基づいて、電子部品保持手段の駆動制御、すなわち各工程処理機構に対 する電子部品の受渡し処理を、各工程処理ごとに個別に独立して行うことにより、電 子部品の位置を基準とした電子部品保持手段の直接制御を行うことができ、電子部 品の正確な位置が把握できる。そのため、従来のセンサ等を利用した間接制御に比 ベ、処理速度の向上、誤検によるトラブルの防止を図ることができるようになる。
[0020] また、例えば、電子部品保持手段が工程処理機構に対して大きく移動しなければ ならな!/、左右反転処理機構等にお!、ては、電子部品を左右反転処理機構に移載す る際、徐々に減速し電子部品に掛カる衝撃を緩和するように加減速制御ができるよう になる。また、電子部品保持手段が工程処理機構に対してわず力しか移動しなくてよ V、テストコンタクトのような場合には、質量の軽 、物は加減速を最大にすることができ 、処理時間を速くすることができる。このように、各工程処理ごとに最適な加減速制御 を行うことが可能となる。
[0021] 好ま 、態様では、前記制御部は、前記電子部品保持手段から前記各工程処理 機構へ前記電子部品を受け渡す際に、前記各工程処理機構ごとに予め設定された 前記電子部品保持手段の制御パターンを読み出す手段と、前記保持手段駆動源の 駆動を開始させる手段と、前記保持手段駆動源の駆動情報から前記電子部品保持 手段に保持された電子部品の位置を逐次検出する手段と、前記予め設定された制 御パターンと逐次検出される前記電子部品の位置とを比較する手段と、前記比較結 果に基づいて、複数の電子部品保持手段の加減速を制御する手段と、を備える。
[0022] このような態様では、各工程処理部からの電子部品の高さ位置と時間との関係を予 め数種類パターンィ匕しておき、その情報を基に、電子部品保持手段が工程処理機 構に対して移動した量をエンコーダで解析し、設定した情報と実際の情報との差を比 較及びフィードバックすることにより、加工点への正確な位置決め情報を保証すること ができる。
[0023] 本発明ではまた、予め設定された制御パターンに基づいて各工程処理機構ごとに 最適なトルク制御を行うことができるようになる。また、前記加減速制御に加え、前記 保持手段の加減速のタイミングに合わせ、電子部品保持駆動源であるモータにトル ク制限を掛けることにより電子部品にかかる不要な荷重を排除するための荷重制御 を行うことができる。
[0024] なお、本発明は、電子部品製造装置としてのみならず、電子部品製造装置を制御 する方法やコンピュータを用いて電子部品制御装置を制御する制御プログラムとして も把握可能である。
発明の効果
[0025] 以上説明したように、本発明によれば、ハンドリング機構を各工程処理ごとに独立 駆動させる駆動制御パターンを設け、 Z軸制御、すなわち各工程処理機構の位置で ハンドリング機構が下降して電子部品を工程処理機構に受け渡す制御を、各工程処 理ごとに独立に行うことにより、装置全体としての処理効率、インデックスタイムの向上 を図ることのできる電子部品製造装置、電子部品製造装置の制御方法並びに制御 プログラムを提供することができる。 図面の簡単な説明
[0026] [図 1]本発明の実施形態に係る電子部品製造装置の全体構成を示す平面図 (a)及 び側面図(b)。
[図 2]本発明の実施形態に係る電子部品製造装置の駆動ユニットの構成を示す断面 図(a)及び側面図(b)。
[図 3]本発明の実施形態における電子部品製造装置の工程処理ごとの Z軸移動量並 びに処理時間の相違の一例を示す図。
[図 4]本発明の実施形態に係る電子部品製造装置の工程処理のタイミングチャート。
[図 5]本発明の実施形態に係る電子部品製造装置の工程処理のタイミングチャート。
[図 6]本発明の実施形態に係る電子部品製造装置における制御装置の制御処理を 示すフローチャート。 [図 7]従来の電子部品の位置検出手法を示す図。
[図 8]従来の電子部品製造装置の工程処理のタイミングチャート。 符号の説明
1…電子部品製造装置
2…工程処理ユニット
2A…エスケープ工程
2Β· ··極性判別工程
2C…左右反転工程
2D…テストコンタクト工程
2E…マーキング工程
2F…外観検査工程
2G…ソート工程
2Η· ··テーピング工程
21…不良品除去工程
2H…各処理工程
3…ハンドリングユニット
3a…支持部
3b…吸着ノズル
3c…ノズル先端部
4· ··ターンテープノレ
5…ダイレクトドライブモータ
6…駆動ユニット
6a…操作ロッド
6b…駆動部
6c…モ1 ~~タ
6d…エンコーダ
7…制御装置
発明を実施するための最良の形態 [0028] 次に、本発明の電子部品製造装置、、電子部品製造装置の制御方法並びに制御 プログラムを実施するための最良の実施形態(以下「本実施形態」と呼ぶ)について 図を参照して説明する。なお、背景技術や課題で既に説明した内容と共通の前提事 項は繰り返さない。
[0029] (1)実施形態の構成
(1— 1)全体構成
図 1に示す電子部品製造装置 1は、円弧状に等間隔で順次配置された複数のェ 程処理ユニット(工程処理機構) 2に対して、複数の電子部品 Sを順次搬送するため の装置である。ここで、電子部品製造装置 1は、図 1に示すように、まず、電子部品 S を保持する可動の吸着ノズル (可動保持部) 3bをそれぞれ有する複数のハンドリング ユニット (電子部品保持手段) 3と、ハンドリングユニット 3を工程処理ユニット 2に搬送 するターンテーブル (搬送機構) 4を備えて 、る。
[0030] 電子部品製造装置 1はまた、ターンテーブル 4を駆動するダイレクトドライブモータ( 搬送用の駆動源) 5と、ハンドリングユニット 3を個別に駆動するように互いに独立して 設けられた複数の駆動ユニット (保持手段駆動機構) 6、等を備えている。各部の詳 細は次の通りである。
[0031] ターンテーブル 4は、円弧状に配置された複数の工程処理ユニット 2の上方に、ェ 程処理ユニット 2と離間して水平配置されており、ターンテーブル 4の外周部には、複 数のハンドリングユニット 3が複数の工程処理ユニット 2と同間隔で配置されている。
[0032] また、ノ、ンドリングユニット 3は、図 1に示すように、吸着ノズル 3bと、この吸着ノズル 3bを上下方向に可動に支持する支持部 3aとから構成されており、この支持部 3aは、 ターンテーブル 4の上方に設けられている。
[0033] ここで、複数のハンドリングユニット 3は、図 1 (a)に示すように、 1つのハンドリングュ ニット 3が 1つの工程処理ユニット 2の工程処理位置 Pと重なる場合に、他のハンドリン グユニット 3も、いずれかの工程処理位置 Pとそれぞれ重なるようにして、ターンテー ブル 4の外周部に配置されている。すなわち、複数の工程処理ユニット 2は、電子部 品 Sに工程処理を施す工程処理位置 Pを備えており、工程処理位置 Pの水平面上に おける中心力 ターンテーブル 4と同軸の 1つの円上に等間隔で位置するようにして 配置されている。そして、複数のハンドリングユニット 3は、その吸着ノズル 3bのノズル 先端部 3cの水平面上における中心が、工程処理位置 Pの水平面上における中心に 位置するようにして配置されて 、る。
[0034] また、この工程処理ユニット 2は、ボールフィーダ並びにリニアフィーダから整列搬 送されてくる電子部品はエスケープ力もハンドリングユニット 3に受け渡すエスケープ 工程 2Aと、電子部品の極性を判別する極性判別工程 2Bと、この極性判別に基づい て、電子部品を極性を入れ替えるように回転させる左右反転工程 2Cと、電子部品の 電気特性を検査するテストコンタクト工程 2Dと、マーキング工程 2Eと、外観検査工程 2Fと、前記工程において不良品と判定された電子部品を取り除くソート工程 2Gと、 テーピング工程 2Hと、残留部品を取り除く不良品除去工程 21とから構成される。吸 着ノズルに保持されて、上記工程 2A〜2Iの順で回転搬送されるようになって ヽる。
[0035] (1 2)制御装置及び駆動ユニットの構成
一方、複数の駆動ユニット 6は、図 1及び図 2に示すように、複数の工程処理ュ-ッ ト 2の各々に対応して設けられており、ハンドリングユニット 3の吸着ノズル 3bの上端 部に当接して吸着ノズル 3bを下方に押し下げるための操作ロッド 6aとそれを駆動す る駆動部 6bを備えている。複数の駆動ユニット 6は、また、ターンテーブル 4の上方に 、ハンドリングユニット 3の搬送経路力も離間し、かつ、このターンテーブル 4を介して 、対応する工程処理ユニット 2の上方にそれぞれ重なるようにして配置されている。ま た、各駆動ユニット 6は、その操作ロッド 6aの水平面上における中心力 対応する各 工程処理ユニット 2の工程処理位置 Pの水平面上における中心と重なるようにして配 置されている。
[0036] この複数の駆動ユニット 6は、図 2に示すように、制御装置 7の制御により、駆動部 6 bによって操作ロッド 6aを上下動させることにより、吸着ノズル 3bを上方位置と下方位 置との間で昇降させ、吸着ノズル 3bのノズル先端部 3cに保持した電子部品 Sを、搬 送経路上の搬送位置と工程処理ユニット 2の工程処理位置 Pとの間で移動させるよう になっている。
[0037] 制御装置 7による複数の駆動ユニット 6の駆動制御パターン、すなわち、操作ロッド 6aの動作による吸着ノズル 3bの上方位置 下方位置間の移動時間、移動量、移動 速度、移動タイミング、荷重等の駆動制御パターンは、各工程処理ユニット 2における 電子部品の高さ位置と上方位置 下方位置間の移動時間及び処理時間との関係に 基づいて、工程ごとに個別に設定されている。
[0038] より具体的には、制御装置 7が、図 5に示すように、駆動源であるモータ 6cの回転に 合わせて回転するエンコーダ 6dの回転角度(図 5 (c)参照)から定まる電子部品の Z 軸方向の位置情報及びモータの回転始動力 の経過時間と、予め設定されたェンコ ーダ 6dの回転角度に基づく位置情報及び経過時間の制御パターンとを比較し、解 析することにより最適な位置制御(図 5 (a)参照),速度制御(同(d)参照)'トルク制御 (同 (e)参照)を行うように設定されて!ヽる。
[0039] ここで、図 7は、従来のセンサを利用した吸着ノズルの位置制御を表したものである 。この方式は、中間にセンサを介して制御するものであり、処理速度が遅ぐ位置検 出精度が不十分で、また、誤検によるトラブル発生の原因になっていた。例えば、ェ 程処理部にゴミ等があった場合、ゴミのサイズや形状によっては認識することができ ない場合があり、また、高速で回転するターンテーブルの処理速度に追いつかない 等の問題があった。
[0040] 本実施形態の電子部品製造装置 1では、吸着ノズル 3bの上方位置 下方位置間
(Z軸)の移動時間、移動量、移動速度、移動タイミング、荷重等を独自の駆動制御パ ターンにより制御することにより、このような従来の問題点を解消している。
[0041] (2)作用効果
(2— 1)全体の作用
複数のハンドリングユニット 3の吸着ノズル 3bにより複数の電子部品 Sを保持した状 態で、ターンテーブル 4をダイレクトドライブモータ 5の駆動により回転させることにより 、複数の電子部品 Sを複数の工程処理ユニット 2に順次搬送する。電子部品 Sを保持 した各ハンドリングユニット 3が個々の工程処理ユニット 2に対応する各停止位置に達 した時点で、ターンテーブル 4を停止させる。
[0042] この場合、個々の工程処理ユニット 2に対応する各停止位置にある各ハンドリング ユニット 3の吸着ノズル 3bの水平面上における中心は、当該工程処理ユニット 2の水 平面上における中心、およびその工程処理ユニット 2に対応する駆動ユニット 6の操 作ロッド 6aの水平面上における中心と重なる。すなわち、各停止位置にある各吸着ノ ズル 3bを、各駆動ユニット 6の操作ロッド 6aによって駆動できる状態となる。
[0043] したがって、このような状態から、各駆動ユニット 6において、操作ロッド 6aを上下動 させること〖こより、電子部品 Sを、ターンテーブル 4による搬送経路上の搬送位置とェ 程処理ユニット 2の工程処理位置 Pとの間で移動させる。
[0044] そして、各工程処理ユニット 2により各電子部品 Sに工程処理を施した後、各ハンド リングユニット 3の吸着ノズル 3bにより各電子部品 Sを保持した状態で、各駆動ュ-ッ ト 6において、駆動部 6bにより操作ロッド 6aを上昇させることにより、吸着ノズル 3bを 下方位置から上方位置に押し上げる。
以上のような作用により、電子部品 Sを各工程処理 2に対して順次搬送し、各種ェ 程処理を施す。
[0045] (2— 2) Z軸の駆動制御パターンの作用
[インデックスタイムの短縮]
次に、本実施形態の吸着ノズル 3bの上方位置-下方位置間(Z軸)の駆動制御パ ターンの作用について具体的に説明する。ここでは、本実施形態の電子部品製造装 置 1における代表的な工程処理である、左右反転工程 2Cとテストコンタクト工程 2Dと を f列にとって、これらを it較することによって説明する。
[0046] 図 3は、左右反転工程 2Cとテストコンタクト工程 2Dにおける吸着ノズル 3bの上方位 置 下方位置間の移動量、すなわち、 Z軸移動量を比較をした図である。左右反転 工程 2Cにおいては、 Z軸方向への電子部品移動量は大であり、その処理時間は短 い。一方、テストコンタクト工程 2Dにおいては、 Z軸方向への電子部品移動量は小で あり、その処理時間は長い。
[0047] ここで、電子部品製造装置 1全体としてのインデックスタイム、すなわち、ターンテー ブル 4の停止時間(工程処理時間を含む。)と間欠回転による移動時間の和は、工程 処理に要する時間が最も掛かる工程と、 Z軸移動に要する時間が最も掛かる工程に 律速されること〖こなる。つまり、従来は、ターンテーブル 4に均等配置された工程処理 ユニットのうち最大の工程処理時間要する工程と、最大移動時間を要する工程との 時間の和が前記停止時間となって 、た。 [0048] そこで、本実施形態では、これら各処理工程の Z軸制御を各工程独自の制御パタ ーンによって制御することにより、処理時間と移動時間のそれぞれの最大値に装置 全体の時間を律するのではなぐ各工程処理においてそれぞれ独自に処理時間と 移動時間を決定し、これらの和である停止時間で律するようにした。
[0049] このことを図 4のタイミングチャートにより説明する。同図に示すように、 Z軸移動量が 最長で処理時間が最短の左右反転工程 2Cと、 Z軸移動量が最短で処理時間が最 長のテストコンタクト工程 2Dのように、相反する性質を持つ工程処理を複数有する電 子部品製造装置 1においては、従来は各工程処理が一律制御であるため、図中 2点 鎖線に示すように、それぞれの移動時間及び処理時間を工程処理の中で最も時間 を要するものに合わせていた。これにより従来は、インデックスタイムが悪ィ匕していた。
[0050] 一方、本実施形態では、各工程処理ごとに独自の制御パターンにより制御するよう に構成しているため、互いの移動時間又は停止時間に拘束されることなぐ例えば、 処理時間の短い左右反転処理のタイミングを早めたり遅くしたり調整して装置全体の 処理効率を高めるように設定することができるから、全体としてインデックスタイムの短 縮につながり、効率よい工程処理を行うできるようになる。図 4 (d)では、他の例として 、エスケープ工程 2Aを取り上げている力 これによれば、エスケープ工程 2Aは、相 対的に Z軸移動量も大きくなぐまた処理時間も短いため、 2回のインデックス内にお いて、電子部品 Sをノヽンドリングユニット 3に受け渡す処理時間のタイミングを早めたり 遅くしたりと、任意に制御可能であることがわかる。
[0051] [Z軸の加減速制御'荷重制御]
次に Z軸の加減速制御及び荷重制御にっ 、て説明する。図 2 (a)として示した左右 反転処理のように、 Z軸移動量が大きな処理工程においては、 Z軸の加減速を一律 にするのではなく、図 5 (b)に示すように、その初期 (X)と中期 (Y)、終期(Z)におい て加減速を徐々に変化させ、電子部品、保持機構及び処理機構への衝撃を最小限 に抑えるように、制御パターンを設定している。
[0052] この点、従来の技術では図 8の(a)又は (b)に示すように、吸着ノズル 3bを工程処 理位置 Pに対して一定の速度で下降させ、接触させ、処理を行っていたが、本実施 形態では、図 5 (a)、(b)、及び (d)の拡大図に示すように、吸着ノズル 3bが工程処理 位置 Pに接近するに従って、操作ロッド 6aを充分に減速させ、その上で電子部品 Sを 工程処理位置 Pに接触させることにより、衝撃荷重は緩和するように制御パターンを 設定している。これにより、従来は、図 8 (b)に示すように、吸着ノズル 3b力 例えばェ 程処理位置 Pが金型の場合等で接触したりすることによって衝撃荷重が発生してい たが、本実施形態では、接触による衝撃荷重を抑制又は緩和することができる。
[0053] 一方、吸着ノズル 3bの上昇時、すなわち、電子部品を工程処理位置 Pから切り離 す際には、従来技術では上記同様図 8 (a)に示すように、吸着ノズル 3bを一定の速 度で上昇させているが、本実施形態では、図 5 (a)に示すように、加速、減速、加速を 交互に行うように制御パターンを設定している。このように、吸着ノズル 3bの Z軸移動 では、操作ロッド 6aを充分に減速させ位置ずれが発生しないように駆動部 6bが制御 され、その後、再加速を行ってターンテーブルの駆動タイミングが極力遅れないよう 制御している。
[0054] 以上のようにして、吸着ノズル 3bのノズル先端部 3cに保持した電子部品 Sを、工程 処理ユニット 2の工程処理位置カゝらターンテーブル 4による搬送経路上の搬送位置 に復帰させる。
[0055] [Z軸のトルク制御]
また、図 5 (e)には、 Z軸のトルク制御について示したものである。ここで、従来のトル ク制御においては、図 8 (d)に示すように、一律にトルクリミットを Max ( + )、 Max (—) としていたため、異常が発生した場合には、そのままのトルクが力かり電子部品の破 損、保持機構、工程処理機構へのダメージを与える等の問題があった。
[0056] そこで、本実施形態では、同図(c)に示される加減速のタイミングに従い、例えば、 電子部品を工程処理部へ移載する際には必要以上のトルクは不要となるので、トル クリミット Max ( + )に制限をかけ、それ以上トルクが力からないように荷重制御してい る。このように、トルク制御をすることにより、高感度な電子パネを利用した荷重制御が でさるよう〖こなる。
[0057] [各処理の流れ]
以上のような制御装置における最適なインデックスタイムの設定、位置制御、加減 速制御、荷重制御、トルク制御の処理の流れについて、図 6のフローチャートを用い て説明する。
[0058] まず、制御装置 7は、各工程処理ユニット 2ごとに、電子部品の高さ位置と上方位置 下方位置間の移動時間と処理時間との基づいて予め設定された各工程処理ごと の最適な制御パターンを読み出す (S601)。より具体的には、図 4に示したように、各 工程処理における移動時間及び処理時間の相違力 予め設定されたインデックスタ ィムを最短に構成できる制御パターンと、図 5に示した加減速、荷重制御、トルク制御 として各処理工程において最適な値として設定された各制御パターンを読み出す。
[0059] 次に、駆動源であるモータ 6cの回転を始動し(S602)、これに合わせて、ェンコ一 ダ 6dによるモータの回転角度の読み込み及びモータ電流の読み込みによって、電 子部品 Sの位置、正確には吸着ノズル先端 3cの位置を検出する(S603)。
[0060] モータ 6cの回転により、ハンドリングユニット 3の吸着ノズル 3bに保持された電子部 品 Sは下降動作を開始するが、制御装置 7は、このとき、各工程処理ユニット 2ごとの 、回転開始力 の経過時間におけるエンコーダの回転角度に基づいて予め設定され た電子部品 Sの位置情報と、実際のエンコーダ回転角度とを比較し、トルク制御の開 始位置に達した力否かを比較し (S604)、設定した情報と実際の情報との間に差が なければ(S604の YES)、モータによるトルク制御を行い(S605)、 S604へ処理を 返す。
[0061] 一方、電子部品 Sがトルク制御開始位置に達して 、な 、あるいはその位置を過ぎた と判断した場合は(S604の NO)、速度制御の開始位置か否かを判定する(S605)。 この処理についても、図 5 (c)に示すエンコーダの回転角度を解析し、これと図 5 (a) に示すような加減速制御のタイミングチャートとに基づいて判定する。そして、電子部 品 Sが速度制御開始位置にあると判定した場合には(S606の YES)、モータによる 速度制御を実行し (S607)、 S604に処理を返す。一方、電子部品 Sが速度制御開 始位置に達して 、な 、あるいはその位置を過ぎたと判断した場合には(S606の NO )、その位置が吸着破壊位置、すなわち、工程処理位置 Pにあるカゝ否かを判断する( S608)。
[0062] 電子部品 Sが吸着破壊位置にあると判断した場合には(S608の YES)、吸着破壊 、すなわち工程処理ユニット 2への受渡しを行い(S609)、 S604へ処理を返す。一 方、電子部品 sが吸着破壊位置に達して 、な 、あるいはその位置を過ぎたと判断し た場合には(S608の NO)、電子部品 Sが位置制御開始位置にあるか否かを判断す る(S610)。電子部品 Sが位置制御開始位置にあると判断した場合には(S610の Y ES)、モータによる位置制御を実行し (S611)、さらに、駆動制御が終了したか否か を判断する(S612)。駆動制御が終了したと判断した場合には(S612の YES)、処 理を終了し (END)、終了していないと判断した場合には(S612の NO)、アラームを 発した後(S613)、処理を終了する(END)。
[0063] 一方、 S610で、電子部品 Sが位置制御開始位置に達していないあるいはその位 置を過ぎたと判断した場合には (NO)、すでにタイムアウト、すなわち当該工程処理 におけるインデックスタイムを超過しているか否かを判断し(S614)、タイムアウトであ ると判断した場合には (YES)、位置未到達によるアラームを発した後(S615)、処理 を終了する(END)。タイムアウトでないと判断した場合には(S614の NO)、 S604に 処理を返し、上記処理を繰り返す。
[0064] [効果]
以上のように作用する本実施形態の電子部品製造装置 1は、次のような効果を奏 する。 各工程処理ユニット 2からの電子部品 Sの高さ位置と移動時間及び処理時間 との関係を、予め制御装置 7に記憶させておき、各工程処理ユニットにおける Z方向 の駆動制御を各工程処理ごとに個別に独立して行うようにすることにより、電子部品 S の位置を基にした直接制御を行うことができ、電子部品 Sを保持した吸着ノズルの正 確な位置が把握できる。そのため、従来のセンサ等を利用した間接制御に比べ、処 理速度の向上、誤検によるトラブルの防止を図ることができるようになる。
[0065] また、各工程処理ユニット 2ごとの電子部品 Sの高さ位置と移動時間及び処理時間 との関係を予め数種類パターンィ匕しておき、その情報を基に、ハンドリングユニット 3 力 軸方向に移動した量を駆動ユニット 6のエンコーダ 6dで解析し、設定した情報と 実際の情報との差を比較するとともに、フィードバックすることにより、加工点への正確 な位置決め情報を得ることができる。
[0066] また、本実施形態の電子部品製造装置 1によれば、各工程処理ごとに最適な加減 速制御を行うことができるようになる。例えば、ハンドリングユニット 3が Z軸方向に大き く移動しなければならな 、左右反転処理等にぉ 、ては、電子部品を左右反転処理 工程に移載する際、徐々に減速し電子部品 sに掛力る衝撃を緩和するように加減速 制御ができるようになる。また、ハンドリングユニットが Z軸方向にわず力し力移動しな くてよ!、テストコンタクトのような場合には、質量の軽!、物は加減速を最大にすること ができ、処理時間を短縮することができる。このように、各工程処理ごとに最適な加減 速制御を行うことが可能となる。
[0067] 本実施形態の電子部品製造装置 1によれば、さらに、各工程処理ごとに最適なトル ク制御を行うことができるようになる。また、前記加減速制御に加え、前記保持手段の 加減速のタイミングに合わせ、電子部品保持駆動源であるモータにトルク制限を掛け ることにより電子部品にかかる不要な荷重を排除するために荷重制御を行うことがで きる。
[0068] これにより、従来のセンサ等を利用した間接制御においては得られな力つた、より高 感度な電子パネ機能を有する荷重制御が可能となる。例えば、工程処理部にゴミゃ 異物があった場合には、電子部品 Sに掛力る不要な荷重が原因で電子部品を変形 や破損させたり、又は吸着ノズル 3b先端部の破損、吸着保持機構への不要なダメー ジを防止することができるようになる。
[0069] 従来は工程ごとに独立してハンドリングユニット 3の最適な駆動制御ができな力つた ため、ある工程処理において処理時間が長く掛カつていた。本実施形態では、他の 工程処理では待ち状態となって!/ヽるような場合、ターンテーブル 4の間欠搬送 1サイ クル内における他の工程処理の処理開始のタイミングを早めたり、遅くしたりして全体 の工程処理時間が速くなるように調整することができる。これにより、装置全体の処理 効率の向上、インデックス向上が図れるようになる。
[0070] 本発明による吸着ノズル先端の位置を予め設定された制御パターンとエンコーダか ら得られる情報との差を比較解析することにより制御するモニタリング機能により、従 来は、センサ等を利用した間接制御で行っていたものを、直接制御で行うことにより、 より正確でより速く処理をすることができるようになる。また、品種切替えに伴う段取り 替えをする場合、数種類の加減速制御パターンの中から読み出し設定し直すこと〖こ より、容易に Z軸方向の最適な駆動制御をすることができるようになる。特に保持手段 の先端部である吸着ノズル先端の磨耗により、 z軸高さ関係が変わることに対する調 整も容易で、品種切替,段取り換え時の手間が省けて、短時間に作業が行えるように なる。

Claims

請求の範囲
[1] 電子部品を保持する可動保持部を備えた複数の電子部品保持手段を順次配置さ れた複数の工程処理機構に順次移動させるとともに、前記電子部品保持手段力 前 記各工程処理機構へ前記電子部品を受け渡して前記電子部品に各種工程処理を 施す電子部品製造装置において、
前記複数の電子部品保持手段を前記複数の工程処理機構に順次搬送して各ェ 程処理機構に対応する各停止位置で停止させる搬送機構と、
前記搬送機構を駆動する搬送用の駆動源と、
前記複数の電子部品保持手段を個別に駆動するように互いに独立して設けられた 複数の保持手段駆動源と、
前記搬送用駆動源と前記保持手段駆動源とを統合的に制御する制御部とを備え、 前記制御部は、前記電子部品保持手段から前記各工程処理機構へ前記電子部 品を受け渡す際に、前記電子部品保持手段に保持された電子部品の各工程処理機 構に対する位置と当該工程処理における受渡し移動時間及び処理時間との関係か ら各工程処理機構ごとに予め設定された前記電子部品保持手段の制御パターンに 基づ 、て、前記複数の電子部品保持手段を互いに独立して駆動制御することを特 徴とする電子部品製造装置。
[2] 前記制御部は、前記電子部品保持手段から前記各工程処理機構へ前記電子部 品を受け渡す際に、
前記各工程処理機構ごとに予め設定された前記電子部品保持手段の制御パター ンを読み出す手段と、
前記保持手段駆動源の駆動を開始させる手段と、
前記保持手段駆動源の駆動情報から前記電子部品保持手段に保持された電子部 品の位置を逐次検出する手段と、
前記予め設定された制御パターンと逐次検出される前記電子部品の位置とを比較 する手段と、
前記比較結果に基づ!、て、複数の電子部品保持手段の加減速を制御する手段と 、を備えたことを特徴とする請求項 1記載の電子部品製造装置。
[3] 前記制御部は、前記電子部品保持手段の加減速の制御に合わせて、モータのトル ク制限を行うことにより前記電子部品にかかる荷重制御を行うことを特徴とする請求項 1記載の電子部品製造装置。
[4] コンピュータ又は電子回路が、電子部品を保持する可動保持部を備えた複数の電 子部品保持手段を順次配置された複数の工程処理機構に順次移動させるとともに、 前記電子部品保持手段から前記各工程処理機構へ前記電子部品を受け渡して前 記電子部品に各種工程処理を施す電子部品製造装置の制御方法において、 前記コンピュータ又は電子回路は、
前記複数の電子部品保持手段を前記複数の工程処理機構に順次搬送して各ェ 程処理機構に対応する各停止位置で停止させる搬送処理と、
前記搬送機構を駆動する搬送用の駆動処理と、
前記複数の電子部品保持手段を個別に駆動する複数の保持手段駆動処理と、 前記電子部品保持手段から前記各工程処理機構へ前記電子部品を受け渡す際 に、前記電子部品保持手段に保持された電子部品の各工程処理機構に対する位置 と当該工程処理における受渡し移動時間及び処理時間との関係力 各工程処理機 構ごとに予め設定された前記電子部品保持手段の制御パターンに基づいて、前記 複数の電子部品保持手段を互いに独立して駆動制御する処理とを実行することを特 徴とする電子部品製造装置の制御方法。
[5] 前記コンピュータ又は電子回路が、前記電子部品保持手段から前記各工程処理 機構へ前記電子部品を受け渡す際に、
前記各工程処理機構ごとに予め設定された前記電子部品保持手段の制御パター ンを読み出す処理と、
前記保持手段駆動源の駆動を開始させる処理と、
前記保持手段駆動源の駆動情報から前記電子部品保持手段に保持された電子部 品の位置を逐次検出する処理と、
前記予め設定された制御パターンと逐次検出される前記電子部品の位置とを比較 する処理と、
前記比較結果に基づ!、て、複数の電子部品保持手段の加減速を制御する処理と 、を実行することを特徴とする請求項 4記載の電子部品製造装置の制御方法。
[6] 前記コンピュータ又は電子回路は、前記電子部品保持手段の加減速の制御に合 わせて、モータのトルク制限を行うことにより前記電子部品に力かる荷重制御処理を 実行することを特徴とする請求項 4記載の電子部品製造装置。
[7] コンピュータを用いて、電子部品を保持する可動保持部を備えた複数の電子部品 保持手段を順次配置された複数の工程処理機構に順次移動させるとともに、前記電 子部品保持手段から前記各工程処理機構へ前記電子部品を受け渡して前記電子 部品に各種工程処理を施す電子部品製造装置の制御プログラムにおいて、 前記プログラムは、前記コンピュータに、
前記複数の電子部品保持手段を前記複数の工程処理機構に順次搬送して各ェ 程処理機構に対応する各停止位置で停止させ、
前記搬送機構を駆動させ、
前記複数の電子部品保持手段を個別に駆動させ、
前記電子部品保持手段から前記各工程処理機構へ前記電子部品を受け渡す際 に、前記電子部品保持手段に保持された電子部品の各工程処理機構に対する位置 と当該工程処理における受渡し移動時間及び処理時間との関係力 各工程処理機 構ごとに予め設定された前記電子部品保持手段の制御パターンに基づいて、前記 複数の電子部品保持手段を互いに独立して駆動制御させることを特徴とする電子部 品製造装置の制御プログラム。
[8] 前記プログラムは、前記コンピュータに、
前記電子部品保持手段から前記各工程処理機構へ前記電子部品を受け渡す際 に、
前記各工程処理機構ごとに予め設定された前記電子部品保持手段の制御パター ンを読み出させ、
前記保持手段駆動源の駆動を開始させ、
前記保持手段駆動源の駆動情報から前記電子部品保持手段に保持された電子部 品の位置を逐次検出させ、
前記予め設定された制御パターンと逐次検出される前記電子部品の位置とを比較 させ、
前記比較結果に基づいて、複数の電子部品保持手段の加減速を制御させることを 特徴とする請求項 7記載の電子部品製造装置の制御プログラム。
前記プログラムは、前記コンピュータに、
前記電子部品保持手段の加減速の制御に合わせて、モータのトルク制限を行うこと により前記電子部品にかかる荷重を制御させることを特徴とする請求項 7記載の電子 部品製造装置の制御プログラム。
PCT/JP2005/014277 2005-08-04 2005-08-04 電子部品製造装置、電子部品製造装置の制御方法並びに制御プログラム WO2007015300A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/JP2005/014277 WO2007015300A1 (ja) 2005-08-04 2005-08-04 電子部品製造装置、電子部品製造装置の制御方法並びに制御プログラム
JP2007529156A JP4057643B2 (ja) 2005-08-04 2005-08-04 電子部品製造装置、電子部品製造装置の制御方法並びに制御プログラム
KR1020087005238A KR100992655B1 (ko) 2005-08-04 2005-08-04 전자 부품 제조 장치, 전자 부품 제조 장치의 제어 방법 및 제어 프로그램을 기록한 컴퓨터로 판독가능한 기록 매체
CN2005800514907A CN101267912B (zh) 2005-08-04 2005-08-04 电子零件制造装置及该装置的控制方法
HK08113200.1A HK1121714A1 (en) 2005-08-04 2008-12-04 Equipment for manufacturing electronic component, and method for ; controlling equipment for manufacturing electronic component

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2005/014277 WO2007015300A1 (ja) 2005-08-04 2005-08-04 電子部品製造装置、電子部品製造装置の制御方法並びに制御プログラム

Publications (1)

Publication Number Publication Date
WO2007015300A1 true WO2007015300A1 (ja) 2007-02-08

Family

ID=37708583

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/014277 WO2007015300A1 (ja) 2005-08-04 2005-08-04 電子部品製造装置、電子部品製造装置の制御方法並びに制御プログラム

Country Status (5)

Country Link
JP (1) JP4057643B2 (ja)
KR (1) KR100992655B1 (ja)
CN (1) CN101267912B (ja)
HK (1) HK1121714A1 (ja)
WO (1) WO2007015300A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009136951A (ja) * 2007-12-04 2009-06-25 Ueno Seiki Kk 保持手段駆動装置、その制御方法及び制御プログラム
JP2010132378A (ja) * 2008-12-02 2010-06-17 Ueno Seiki Kk 保持手段駆動装置、その制御方法、及び制御プログラム
JP2011014582A (ja) * 2009-06-30 2011-01-20 Tesetsuku:Kk 電子部品用搬送装置
CN102873993A (zh) * 2012-10-22 2013-01-16 江阴格朗瑞科技有限公司 一种转盘式测试打印编带一体机
CN103339031A (zh) * 2011-02-09 2013-10-02 上野精机株式会社 电子零件搬送装置及包带单元
JP2014207463A (ja) * 2014-06-04 2014-10-30 上野精機株式会社 電子部品の工程処理装置及び工程処理方法並びに工程処理用プログラム
WO2016045552A1 (zh) * 2014-09-26 2016-03-31 黄国峰 一种机电设备的高精制控方法
TWI602759B (zh) * 2015-12-11 2017-10-21 Ueno Seiki Co Ltd Processing unit and electronic parts conveying device

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010162653A (ja) * 2009-01-16 2010-07-29 Tesetsuku:Kk ハンドリング装置および電子部品検査システム
JP2011014583A (ja) * 2009-06-30 2011-01-20 Tesetsuku:Kk 電子部品用搬送装置
CN102303207A (zh) * 2011-08-18 2012-01-04 苏州安捷伦精密机械有限公司 一种减震器后制程处理设备
CN103707061B (zh) * 2013-12-19 2017-06-06 周俊雄 调节器的电磁线圈总成的自动组装机
CN103707064B (zh) * 2014-01-02 2016-01-20 上海理工大学 圆柱形组件自动组装流水线机构装置
CN106455474A (zh) * 2016-08-23 2017-02-22 中国电子科技集团公司第二研究所 激光器件全自动共晶贴片机更换吸嘴定位治具
CN106670803B (zh) * 2017-02-27 2018-07-27 常熟市天银机电股份有限公司 具有保护器基座提取释放功能的保护器自动化装配装置
CN112222825B (zh) * 2020-10-16 2022-06-24 浙江金麦特自动化***有限公司 一种汽车方向盘用左排挡杆手柄组装加工线及组装工艺

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004182388A (ja) * 2002-12-03 2004-07-02 Ueno Seiki Kk 電子部品保持手段の駆動制御装置とその方法、およびそのためのプログラム
JP2005203711A (ja) * 2004-01-19 2005-07-28 Ueno Seiki Kk 半導体素子製造装置および製造方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0797019B2 (ja) * 1986-06-12 1995-10-18 松下電器産業株式会社 部品認識用照明方法及びその装置
CN1086328C (zh) * 1996-06-13 2002-06-19 丰田自动车株式会社 零件组装设备及组装方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004182388A (ja) * 2002-12-03 2004-07-02 Ueno Seiki Kk 電子部品保持手段の駆動制御装置とその方法、およびそのためのプログラム
JP2005203711A (ja) * 2004-01-19 2005-07-28 Ueno Seiki Kk 半導体素子製造装置および製造方法

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009136951A (ja) * 2007-12-04 2009-06-25 Ueno Seiki Kk 保持手段駆動装置、その制御方法及び制御プログラム
JP2010132378A (ja) * 2008-12-02 2010-06-17 Ueno Seiki Kk 保持手段駆動装置、その制御方法、及び制御プログラム
JP2011014582A (ja) * 2009-06-30 2011-01-20 Tesetsuku:Kk 電子部品用搬送装置
CN103339031A (zh) * 2011-02-09 2013-10-02 上野精机株式会社 电子零件搬送装置及包带单元
CN102873993A (zh) * 2012-10-22 2013-01-16 江阴格朗瑞科技有限公司 一种转盘式测试打印编带一体机
JP2014207463A (ja) * 2014-06-04 2014-10-30 上野精機株式会社 電子部品の工程処理装置及び工程処理方法並びに工程処理用プログラム
WO2016045552A1 (zh) * 2014-09-26 2016-03-31 黄国峰 一种机电设备的高精制控方法
CN106660182A (zh) * 2014-09-26 2017-05-10 黄国峰 一种机电设备的高精制控方法
TWI602759B (zh) * 2015-12-11 2017-10-21 Ueno Seiki Co Ltd Processing unit and electronic parts conveying device

Also Published As

Publication number Publication date
JP4057643B2 (ja) 2008-03-05
JPWO2007015300A1 (ja) 2009-02-19
CN101267912B (zh) 2010-05-12
HK1121714A1 (en) 2009-04-30
CN101267912A (zh) 2008-09-17
KR20080037067A (ko) 2008-04-29
KR100992655B1 (ko) 2010-11-05

Similar Documents

Publication Publication Date Title
JP4057643B2 (ja) 電子部品製造装置、電子部品製造装置の制御方法並びに制御プログラム
JP4677275B2 (ja) 電子部品用のエキスパンド装置
WO2015083414A1 (ja) 電子部品搬送装置
JP5510923B2 (ja) 位置補正装置及びそれを備えたハンドラ
WO2013084298A1 (ja) 位置決め装置、及びこれを備えた電子部品搬送装置
JPWO2018225154A1 (ja) タイヤ保持装置、これを備えるタイヤ試験システム、及びタイヤ保持装置の制御方法
WO2007083360A1 (ja) 半導体製造装置及び製造方法
JP2011028678A (ja) 生産装置及び生産方法
JP7465199B2 (ja) 実装装置
JP5083733B2 (ja) 保持手段駆動装置、その制御方法、及び制御プログラム
JP2010131680A (ja) 保持手段駆動装置
JP5261125B2 (ja) チャックテーブルの原点高さ位置検出方法
JP5051714B2 (ja) 保持手段駆動装置、その制御方法及び制御プログラム
KR101066140B1 (ko) 스크라이빙 장치 및 방법
KR101976997B1 (ko) 프로브핀 제조장치 및 제조방법
JP2010135398A (ja) 工程処理装置及び工程処理方法並びに工程処理用プログラム
JP2010201847A (ja) 成形装置および搬送装置
JP2011014583A (ja) 電子部品用搬送装置
JP5534294B2 (ja) 保持手段駆動装置、その制御方法、及び制御プログラム
JPH0954134A (ja) 電子部品の特性測定方法及び装置
JP6590645B2 (ja) リード端子挿入不良検知装置および部品実装装置
TWI327092B (ja)
WO2005102615A1 (ja) 電子部品保持手段の駆動制御装置とその方法、及びそのためのプログラム
CN213515367U (zh) 一种螺纹检测装置
JP4298416B2 (ja) レンズの搬送装置及び搬送方法

Legal Events

Date Code Title Description
DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2007529156

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1020087005238

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 200580051490.7

Country of ref document: CN

122 Ep: pct application non-entry in european phase

Ref document number: 05768686

Country of ref document: EP

Kind code of ref document: A1