WO2006126279A1 - プローブ組立体、その製造方法および電気的接続装置 - Google Patents

プローブ組立体、その製造方法および電気的接続装置 Download PDF

Info

Publication number
WO2006126279A1
WO2006126279A1 PCT/JP2005/009812 JP2005009812W WO2006126279A1 WO 2006126279 A1 WO2006126279 A1 WO 2006126279A1 JP 2005009812 W JP2005009812 W JP 2005009812W WO 2006126279 A1 WO2006126279 A1 WO 2006126279A1
Authority
WO
WIPO (PCT)
Prior art keywords
probe
substrate
electrical connection
deformation
wiring layer
Prior art date
Application number
PCT/JP2005/009812
Other languages
English (en)
French (fr)
Inventor
Kiyotoshi Miura
Hidehiro Kiyofuji
Yuji Miyagi
Shinji Kuniyoshi
Hitoshi Sato
Original Assignee
Kabushiki Kaisha Nihon Micronics
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kabushiki Kaisha Nihon Micronics filed Critical Kabushiki Kaisha Nihon Micronics
Priority to JP2007517706A priority Critical patent/JP4704426B2/ja
Priority to PCT/JP2005/009812 priority patent/WO2006126279A1/ja
Priority to US11/912,872 priority patent/US7667472B2/en
Priority to DE112005003580T priority patent/DE112005003580B4/de
Priority to MYPI20055776A priority patent/MY146719A/en
Priority to TW094145307A priority patent/TWI284379B/zh
Publication of WO2006126279A1 publication Critical patent/WO2006126279A1/ja

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/2851Testing of integrated circuits [IC]
    • G01R31/2886Features relating to contacting the IC under test, e.g. probe heads; chucks
    • G01R31/2889Interfaces, e.g. between probe and tester
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/06Measuring leads; Measuring probes
    • G01R1/067Measuring probes
    • G01R1/073Multiple probes
    • G01R1/07307Multiple probes with individual probe elements, e.g. needles, cantilever beams or bump contacts, fixed in relation to each other, e.g. bed of nails fixture or probe card
    • G01R1/07314Multiple probes with individual probe elements, e.g. needles, cantilever beams or bump contacts, fixed in relation to each other, e.g. bed of nails fixture or probe card the body of the probe being perpendicular to test object, e.g. bed of nails or probe with bump contacts on a rigid support
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49117Conductor or circuit manufacturing
    • Y10T29/49204Contact or terminal manufacturing

Definitions

  • the present invention relates to an electrical test of an electrical circuit, such as a probe card used to connect an electrical circuit of an integrated circuit, such as an integrated circuit, to an electrical circuit of a tester for performing the electrical inspection.
  • Connection device, probe thread used in this electric connection device
  • the present invention relates to a solid and a method of manufacturing the same.
  • An electrical connection device comprising a probe assembly provided with a probe substrate and a large number of probes extending from the probe substrate as one of conventional electrical connection devices of this type, wherein the flatness of the probe substrate is
  • An adjustable electrical connection device has been proposed (see Patent Document 1).
  • a pressing force or a pulling force can be applied to a part of the probe substrate from the support member that supports the probe substrate.
  • By adjusting the action force even if the probe substrate of the probe assembly is bent, it is possible to correct the bending deformation of the probe substrate and maintain the flatness of the probe substrate.
  • the above-mentioned adjustment operation after the assembly of the probe assembly to the electrical connection device holds the probe substrate flat. Since it is possible, the tips of a large number of probes extending from the probe substrate can be held on the same plane. As a result, since the tips of all the probes can be reliably brought into contact with the electrical connection terminals corresponding to the respective probes of the electrical circuit of the device under test, good electrical contact can be obtained between the two. it can.
  • Patent Document 1 Japanese Patent Application Laid-Open Publication No. 200003- 5 2 8 4 5 9 Disclosure of the Invention
  • the object of the present invention is to eliminate the need for the planarizing adjustment operation of the probe substrate after assembling the probe assembly to the electrical connection apparatus regardless of the deformation of the probe substrate, and to correspond to the electrical circuit of the probe and the test object It is an object of the present invention to provide a probe assembly capable of obtaining a reliable electrical connection with an electrical connection terminal, a method of manufacturing the same, and an electrical connection device. Means to solve the problem
  • the probe assembly according to the present invention is a probe assembly used for electrical measurement of an object to be inspected, and is a flat probe substrate which is bent in a free state not subjected to load,
  • the probe substrate is provided with a plurality of probes formed projecting from the surface on one side of the probe substrate, and the tips of all the probes are parallel to the virtual reference surface while maintaining the deformation of the probe substrate. Located on the same plane.
  • the plurality of probes are set so as to be positioned on the same plane parallel to the virtual reference plane while holding the deformation of the probe substrate. Therefore, as long as the probe assembly can be assembled at a predetermined location while holding the bending deformation of the probe substrate, the tips of all the probes can be removed without performing complicated operations for flattening the probe substrate. Test It can be pressed almost equally to each electrical connection terminal of the electric circuit which is a checker. Thus, all the probes of the probe assembly can be properly connected to the corresponding electrical connection terminals of the device under test.
  • the probe substrate can be formed of a substrate member and a wiring layer formed on one surface of the substrate member and having an electrical connection portion on the surface.
  • the probe is formed to project in a direction away from the substrate member at the electrical connection portion of the wiring layer.
  • a ceramic plate can be used for this substrate member.
  • the ceramic plate suitably supports the wiring layer because it exhibits heat resistance and insulation.
  • the wiring layer can be a multilayer wiring layer.
  • the multilayer wiring layer of this probe substrate is advantageous for arranging a large number of probes corresponding to fine circuits such as integrated circuits on the probe substrate with high density.
  • the other surface of the ceramic plate is provided with a plurality of anchors each having an internally threaded hole for receiving an end of a plurality of externally threaded members for attaching the probe substrate at a predetermined position, and a top surface of all the anchors.
  • each Anka part For example, when arranging a spacer member between the top and the mounting surface by the male screw member, the spacer member with the same length is used by aligning the top surface position of the anchor portion as described above. Since the probe assembly can be properly attached to the flat mounting reference surface of the electrical connection device while holding the deformation of the probe substrate, the length dimensions of the probe substrate differ depending on the deformation of the probe substrate. There is no need for different types of spacer members.
  • a probe land for each of the probes can be formed to project in a direction away from the ceramic plate at the electrical connection portion formed on the surface of the multilayer wiring layer.
  • the respective probes extend from the projecting end face of the respective probe lands.
  • the end faces of all the probe lands can be positioned on the same plane parallel to the virtual reference plane while holding the deformation of the probe substrate. This As in the above, by aligning the end faces of all the probe lands, a probe having the same height dimension, ie, the same length dimension, can be formed on the end faces of each probe land regardless of the above-described deformation of the probe substrate. For example, the tip positions of all the probes can be aligned on the same plane.
  • a multilayer wiring layer is formed on one surface of a substrate member and a plurality of probe lands are formed on the surface of the multilayer wiring layer.
  • the end faces of the probe lands are aligned in a state of holding the deformation introduced to the substrate member placed on the same plane parallel to the virtual reference surface regardless of the bending deformation of the substrate member; Forming a plurality of anchor portions having screw holes in which the end portions of the male screw members can be screwed on the other surface; and holding the deformation of the substrate member while retaining the deformation of the base members; Aligning the top surface of the anchor portion so as to be positioned on another same plane parallel to the imaginary axis line regardless of the bending deformation of the plate member; And forming a probe having a height dimension,
  • a multilayer wiring layer is formed on one surface of a substrate member, and the probe land is formed in association with the formation of the multilayer wiring layer.
  • a part of the anchor is formed on the other surface of the substrate member. Since these probe lands and anchors are aligned on the same plane, the top surface of all the anchors and all the anchors are obtained regardless of the bending of the substrate even if the substrate is bent or deformed. The tip of the probe is aligned on each plane parallel to the virtual reference plane.
  • the probe substrate in which the tips of all the probes are aligned on the same plane, and the top surfaces of all the anchor parts for mounting are aligned on the same plane. Since it can be manufactured, it is relatively easy to form a probe assembly which does not require adjustment of the flatness of the substrate member, and does not require various types of spacers having different lengths for mounting. Can.
  • the end face of the probe land and the top face of the anchor portion are in the form of the multilayer wiring layer Even if bending or deformation occurs in the substrate member made of, for example, a ceramic plate in the multilayer wiring formation step by aligning after formation, regardless of the bending and deformation of the substrate member, the top surfaces of all the anchor portions and all the probes The tips of the can be aligned on the respective same plane.
  • the plurality of probe lands on the surface of the multilayer wiring layer are formed to have the same height dimension, their end faces can be aligned according to the bending of the probe substrate. Further, after the plurality of anchor portions on the other surface of the substrate member are formed to have equal height dimensions to one another, their top surfaces can be aligned according to the bending of the probe substrate.
  • the end portions of the probe land and the anchor portion can be polished to align the end surface of the probe land and the top surface of the anchor portion.
  • Chemical mechanical polishing can be applied to this polishing.
  • the anchor is obtained by pressing the end of all or part of all the probe lands onto this flat surface.
  • the top face of the part or the end face of the probe land can be efficiently aligned.
  • a ceramic plate similar to that described above can be used for the substrate member, and the multilayer wiring layer can be formed using a photolithography technique.
  • the multilayer wiring layer can be formed using photolithography technology, it is possible to relatively easily miniaturize the probe assembly according to the miniaturization of the object to be inspected.
  • a cantilever type probe In order to achieve miniaturization, it is preferable to form a cantilever type probe using a photolithographic technique and fix the probe to the end face of the probe land.
  • needle type probes such as tungsten can be used as probes.
  • An electrical connection apparatus is an electrical connection apparatus for connecting a tester and an electrical connection terminal of a device under test subjected to electrical inspection by the tester, the support member having a mounting reference surface, A wiring board formed with a wiring circuit connected to the tester, disposed with one surface facing the reference surface of the support member, and having a plurality of connection terminals of the wiring circuit formed on the other surface.
  • a flat probe substrate which is bent in a free state free from load and provided on one surface of the probe substrate;
  • a probe yarn having a plurality of probes capable of abutting its tip to the connection terminal of an inspection body, wherein the other surface of the probe substrate is disposed opposite to the other surface of the wiring substrate.
  • An electrical connector disposed between the probe assembly S and the wiring board, for connecting the connection terminals of the wiring board to the probes corresponding to the connection terminals;
  • the other of the probe substrate is configured to hold the deformation of the probe substrate.
  • a plurality of spacers disposed so as to be fitted between the surface of the support member and the reference surface of the support member, and the tip of each of the probes is flush with the deformation of the probe substrate.
  • the probe assembly is securely deformed by the spacer inserted between the probe substrate of the probe assembly and the reference surface of the support member. It is attached to the reference surface of the support member in a state in which the tips of all the probes are located on the same plane.
  • each electrical connection of the electrical circuit which is the test object is the tip of all the probes. It can be pressed almost equally to the terminal. Therefore, even when the probe assembly is replaced, the above-described troublesome flattening adjustment operation as described above is not necessary, and efficient electrical inspection can be performed.
  • the probe substrate may be formed of a ceramic plate, and a multilayer wiring layer formed on one surface of the ceramic plate and having an electrical connection portion on the surface, and the probe on the electrical connection portion of the multilayer wiring layer.
  • the probe may be formed to project in a direction away from the ceramic plate.
  • the probe substrate can be attached to the support member via the support member, an externally threaded member disposed through the wiring substrate and the electrical connector.
  • the spacer is a plurality of anchor portions formed on the other surface of the ceramic plate and rising toward the reference surface of the support member, and the top surface is on the same surface parallel to the reference surface.
  • a plurality of anchor portions having a female screw hole formed therein and having an end portion of the male screw member, and being inserted between a top surface of the anchor portion and the reference surface
  • a plurality of spacer members having uniform length dimensions.
  • a spacer plate having a uniform thickness dimension may be disposed between the probe substrate and the wiring substrate, allowing penetration of the electrical connector and being coupled to the support member. it can.
  • the probe substrate is attached to the spacer plate via a male screw member disposed through the spacer plate, and the spacer is the other surface of the ceramic plate.
  • a plurality of anchor portions formed on the support member and rising toward the reference surface of the support member, and a female screw hole having a top surface on the same plane parallel to the reference surface and receiving an end of the male screw member is formed And a spacer plate inserted between the top surface of the anchor portion and the reference surface.
  • a bolt having a head embedded in the spacer member between the wiring board and the spacer plate can be used as the male screw member.
  • a thermal deformation suppressing member having a thermal expansion coefficient larger than a thermal expansion coefficient of the supporting member may be attached to the surface of the supporting member opposite to the reference surface in order to suppress the flexural deformation of the supporting member. it can.
  • the thermal deformation suppressing member has a surface to be attached to a support member having a thermal expansion coefficient smaller than the thermal expansion coefficient of the thermal deformation suppressing member, while the other surface located on the opposite side Since the surface is a free surface, a stress difference is generated between the two sides of the thermal deformation suppressing member when it is intended to extend due to the increase of the ambient temperature. By using this stress difference, it is possible to suppress the slack deformation of the central portion of the support member to which the thermal deformation suppressing member is attached.
  • the plurality of probes provided on the probe substrate are positioned on the same plane parallel to the virtual reference plane while holding the deformation of the probe substrate.
  • the probe assembly can be assembled at a predetermined location while holding the bending and deformation of the probe substrate, all of the probe assembly is not subjected to the complicated flat surface adjustment operation of the probe substrate. Since the tip of one of the probes can be pressed almost equally to each electrical connection terminal of the electrical circuit which is the device under test, ensure that all the probes are properly in contact with the corresponding electrical connection terminals of the device under test. Can.
  • the tips of all the probes are aligned on the same plane, regardless of the bending deformation of the substrate member, and moreover, all the anchor portions for mounting are Since it is relatively easy to manufacture a probe substrate whose top surface is aligned on the same plane, it is not necessary to adjust the flatness of the substrate member, and various types of spacers with different lengths for mounting can be obtained.
  • the probe assembly according to the present invention which does not need to be used, can be formed relatively easily.
  • the probe substrate is reliably deformed by the spacer inserted between the probe substrate of the probe assembly and the reference surface of the support member. It can be attached to the reference surface of the support member while being maintained. Therefore, after attaching the probe assembly to the support member, without performing the adjustment operation for flattening the probe substrate as in the prior art, each electrical connection of the electrical circuit which is the inspection object is the tip of all the probes. It can be pressed almost equally to the terminal. As a result, even when the probe assembly is replaced, the conventional troublesome adjustment of the flattening of the probe substrate is not necessary, and efficient electrical inspection can be performed.
  • FIG. 1 is an exploded perspective view showing an embodiment of the electrical connection device according to the present invention.
  • FIG. 2 is a top view of the electrical connection device shown in FIG.
  • FIG. 3 is a front view of the electrical connection device shown in FIG.
  • FIG. 4 is a bottom view of the electrical connection device shown in FIG.
  • FIG. 5 is a cross-sectional view of a probe substrate showing an example of an electrical connection in the probe substrate of the probe assembly shown in FIG.
  • FIG. 6 is a cross-sectional view showing an enlarged part of a cross section obtained along the line VI-VI shown in FIG.
  • FIG. 7 is a cross-sectional view showing a part of FIG. 6 in a further enlarged manner.
  • FIG. 8 is an explanatory view conceptually illustrating the function of the thermal deformation suppression plate provided in the electrical connection device shown in FIG.
  • Figures 9 (a) to 9 (g) show the manufacturing process of the probe assembly shown in Figure 1
  • Figure 9 (a) shows the condition of the ceramic plate before the formation of the multilayer wiring layer
  • Figure 9 (b) shows the process of forming the multilayer wiring and the probe land on the ceramic plate.
  • c) shows the polishing process of the probe land
  • FIG. 9 (d) shows the process of forming the anchor portion on the ceramic plate
  • FIG. 9 (e) shows the polishing process of the anchor portion
  • FIG. The state after polishing of each of the probe land and the anchor portion is shown
  • FIG. 9 (g) shows the process of attaching the probe to each probe land.
  • FIG. 10 is a view similar to FIG. 6 showing another embodiment of the electrical connection device according to the present invention.
  • FIG. 11 is a view similar to FIG. 7 showing another embodiment of the electrical connection device shown in FIG.
  • FIG. 12 is a perspective view from above of the spacer incorporating the electrical connector shown in FIG.
  • FIG. 13 is a perspective view from below of the spacer incorporating the electrical connector shown in FIG.
  • FIG. 14 is a cross-sectional view showing a method of manufacturing a probe substrate of the electrical connection device shown in FIG.
  • Multilayer wiring layer 3 6 a Multilayer wiring layer wiring path
  • the electrical connecting device 10 includes a flat support member 12 whose lower surface 12 a is a flat mounting reference surface, and a circular flat wiring board held by the mounting surface 12 a of the support member. 14, a probe assembly 18 electrically connected to the wiring board 14 via an electrical connector 16, and a base ring 20 a having a central opening 20 a for receiving the electrical connector 16. And a fixing ring 22 sandwiching the edge of the probe assembly 1 8 in cooperation with the edge of the central opening 2 0 a of the base ring.
  • the fixing ring 22 has at its central portion a central opening 22a allowing the exposure of a probe 18b described later of the probe assembly 18.
  • a thermal deformation suppressing member 24 for suppressing thermal deformation of the supporting member 12 holding the wiring substrate 14 is attached to the supporting member 12.
  • connection pad 2 6 a which is a connection terminal of the IC circuit to the electric circuit (not shown) of the tester 28 for the electrical test of the IC circuit (not shown).
  • the wiring board 14 is, for example, a polyimide resin plate having a generally circular plate shape in the illustrated example, and is connected to the electric circuit of the tester 28 on the annular peripheral portion of the upper surface 14a thereof. As shown in FIG. 2, a large number of connectors 30 are arranged in annular alignment. A large number of connection terminals 14c (see FIG.
  • corresponding to the connector 30 are arranged in a rectangular matrix at the center of the lower surface 14b (see FIG. 1) of the wiring board 14;
  • Each connector 30 and each connection terminal 14 c can be electrically connected to each other via a wiring circuit (not shown) formed in an imido resin plate but well known in the prior art.
  • the center of the top surface 14a of the wiring board Similarly, a large number of relays 32 are arranged for switching between the connector 30 and the connection terminal connected to the connector, or for interrupting the wiring circuit in an emergency.
  • the support member 12 is a frame member made of, for example, a stainless steel plate which allows the exposure of the connector 30 and the relay 32.
  • the lower surface 12a see FIG.
  • the support member 12 is an upper surface 14a of the wiring substrate 14 It is arranged in contact.
  • the support member 12 has an inner annular portion 12c surrounding the relay 32 and an outer annular portion 12d, as clearly shown in FIG. 2, and the outer annular portion
  • the connectors 30 are arranged around the periphery of the connector.
  • the thermal deformation suppressing member 24 is an annular member disposed to cover the outer annular portion 12 d on the upper surface 12 b of the support member 12 and is made of, for example, a metal material such as aluminum.
  • the probe assembly 18 basically comprises, as shown in FIG. 5, a probe substrate 18 a and a number of probes 18 b formed on the lower surface of the probe substrate.
  • the rob board 18a is, for example, a board member 34 made of a ceramic plate, and a multilayer wiring layer 36 formed on the lower surface 34a of the board member, that is, the ceramic plate.
  • the multilayer wiring layer 36 has a multilayer board made of, for example, a polyimide resin material which exhibits electrical insulation, and a wiring path 36a formed between the respective multilayer boards.
  • Each probe 18 b is formed to project downward from its lower surface 36 b which is the surface of the multilayer wiring layer 36.
  • a large number of conductive paths 38 penetrating in the thickness direction of the ceramic plate 34 are formed corresponding to the connection terminals 14 c of the wiring board 14.
  • a connection portion 3 8 a formed at one end of each conductive path 3 8 is disposed on the top surface 3 4 b of the ceramic plate 3 4 which is the top surface of the probe substrate 1 8 a. It is connected to the corresponding connection terminal 14 c of wiring board 14 via connector 16. Further, on the lower surface 3 4 a of the ceramic plate 3 4, a connection portion 3 8 b formed at the other end of each conductive path 3 8 is disposed.
  • each wiring path 36a of the multilayer wiring layer 36 is connected to the corresponding connection portion 38b of each conductive path 38 at the upper surface 36c of the multilayer wiring layer 36, and each wiring path The other end of 3 6 a is connected to a probe land 40 formed on the lower surface of the probe assembly 18, that is, the lower surface 3 6 b of the multilayer wiring layer 3 6.
  • Each probe land 40 is connected with a cantilever type 1 probe 18 b,
  • Each probe 18 b is connected to the corresponding connection terminal 14 c of the wiring board 14 via an electrical connector 16 at the upper surface 34 b of the probe board 18 a.
  • the electrical connector 16 includes a pogo pin block 16a formed of a plate-like member exhibiting electrical insulation, in which a large number of through holes 42 formed in the plate thickness direction are formed; A pair of pogo pins 1 6 b, 1 6 arranged in series in the hole 42 and slidably accommodated in the axial direction of the through hole 4 2 in a state in which they are prevented from falling off the through hole 42. And 6c. Between each pair of pogo pins 16 b and 16 c, a compressive force is applied to both pogo pins 16 b and 16 c in the direction away from each other, and a compression coil spring serving as a conductive path between the two pogo pins 16 d Is arranged.
  • the electric connector 16 is supported by the pogo pins 16b of each pair of pogo pins 16b and 16c by the spring force of the compression coil spring 16d. Since the other pogo pin 16 c is pressed to the connection portion 3 8 a of the conductive path 3 8 and the other pogo pin 16 c is pressed to the corresponding connection terminal 14 c of the wiring board 14, it is provided on each probe land 40 The probe 18 b is connected to the corresponding connection terminal 14 c of the wiring board 14. As a result, when the tip of the probe 18 is brought into contact with the connection pad 26a of the semiconductor wafer 26 which is the object to be inspected, the connection pad is connected to the tester 28 via the corresponding connector 30. Therefore, electrical inspection of the electric circuit of the semiconductor wafer 26 can be performed by the tester.
  • the above-described electrical connection device 10 is assembled by bolts 4 4 to 5 2 composed of a large number of male screw members. That is, as shown in FIG. 6, the thermal deformation suppressing member 24 is fixed to the upper surface 12 b of the supporting member 12 by a bolt 44 which is screwed into the female screw hole 54 formed in the supporting member 12. It is done.
  • An electrical connector 16 is attached to the support member 12 by a bolt 46 disposed through the wiring board 14. The bolt 46 is screwed into the female screw hole 56 formed at the tip end of the support member 12 to connect between the pogo pin block 16a of the electrical connector 16 and the support member 12 Hold the board 14.
  • the base ring 20 and the fixing ring 22 are provided with a port 4 8 whose end is screwed into an internal thread hole 5 8 formed in the base ring 2 0.
  • the probe assembly 18 has a probe base plate 1 8 a They are connected to one another so as to sandwich the edge.
  • the base ring 20 is a bolt whose tip end is screwed into the female screw hole 60 formed in the base ring. It is fixed to the support member 12 by 50.
  • the bolt 50 is inserted into a spacer 62 which penetrates the wiring board 14 in the thickness direction.
  • the spacer 62 supports the base ring 20 and the fixing ring 22 which hold the edge of the probe substrate 1 8 a by bringing its both ends into contact with the support member 12 and the base ring 20. Hold at a predetermined distance from the lower surface 1 2 a that is the mounting surface of 2.
  • the edge of the probe substrate 18a of the probe assembly 18 is clamped by the base ring 20 and the fixing ring 22.
  • the ceramic plate 34 which is a substrate member of the probe substrate 1 8a which holds the edge, or when forming the multilayer wiring layer 36, heat and external force in the manufacturing process and This may cause, for example, undulating bending of the flat ceramic plate 34.
  • the ceramic plate 34 itself may be bent and deformed before the conductive paths 38 and the multilayer wiring layer 36 are formed. The deformation of the probe substrate 18a due to the deformation of the substrate member 34 is held even in the free state where no external force is applied to the probe substrate.
  • the tips of all the probes 18 b are on the same plane P 1 in the free state in which the deformation is maintained regardless of such deformation of the probe substrate 18 a. It is pre-aligned to align. It is desirable that the plane P 1 be parallel to the imaginary plane P of the flat ceramic plate obtained when no deformation occurs in the ceramic plate 34 which is the substrate member.
  • the probe assembly 18 having the probe 18 b whose tips are aligned in this manner is supported on the supporting member 12 via the plurality of bolts 52 while holding its deformation on the probe substrate 18 a. It is supported.
  • the upper surface 34b of the ceramic board 34 is provided with a female screw hole 64 for receiving the tip of each bolt 52, as shown enlarged in FIG.
  • An anchor member 66 is fixed by an adhesive.
  • the anchor member 66 is made of, for example, a synthetic material that exhibits electrical insulation, and by fixing the anchor member 66, the bolt 5 is fixed to the top surface 34b of the probe substrate 18a which is the top surface of the ceramic plate 34.
  • An anchor portion 66 is formed in which the tip end portion of 2 is screwed.
  • the top surface of each anchor portion 66 is protected from the bending deformation described above on the probe substrate 18a. In the free state of the held probe substrate, it is aligned so as to coincide with the same plane P 2 parallel to the virtual plane P. Therefore, the height dimension of each anchor portion 66 has a different height dimension depending on the height position of the portion where each anchor portion 66 of the bent probe substrate 1 8 a is provided.
  • Through holes 70 for receiving spacer members 68 are formed in the thickness direction of wiring board 14 so as to correspond to respective anchor portions 66 in wiring board 14.
  • Each bolt 52 is disposed through the spacer member 68 with the head 52a thereof positioned on the side of the support member 12 and the anchor portion corresponding to the tip of the shaft 52b. Screw into 6 female screw holes 6 4.
  • Each spacer member 68 has an equal height dimension to each other. Each lower end of the spacer member 68 abuts on the top surface of the corresponding anchor portion 66 on the plane P 2, and each upper end of the spacer member 68 is a mounting reference surface of the support member 12. Abuts on the lower surface 1 2 a. Therefore, by fastening a bolt 52 from the upper side of the support member 12, an anchor portion 66 with which a distal end portion of the bolt is screwed, and a spacer member 68 disposed on each of the anchor portions. With the spacer action, the probe substrate 18a holds the above-mentioned bending deformation reliably so that the virtual plane P is parallel to the mounting reference surface 12a of the support member 12. Supported by
  • each probe 18 b of the probe assembly 18 is assembled on the electrical connection device 10 in a state of being aligned on the plane P 1 parallel to the virtual plane P, it is possible to It is possible to align the tips of all the probes 18 b on the same plane P 1 without performing complicated flattening work of the probe substrate. Therefore, since the tip of the probe 18 b corresponding to each connection pad 26 a of the semiconductor wafer 26 can be pressed uniformly, the electrical circuit of the semiconductor wafer 26 which is the inspection object is electrically The inspection can be performed properly and easily.
  • the height dimension of the pro brand 1 4 which projects away from the ceramic plate 3 4 of the probe substrate 1 8 a can be made different depending on the bending deformation of the probe substrate 18a.
  • Each probe land 40 is set at a height such that the lower end face thereof is aligned with a plane P3 parallel to the plane P1 according to the bending deformation of the probe substrate 18a. In this manner, by aligning the lower end surface of the probe land 40 on the plane P 3, the probes 18 b of the same height dimension, ie, the same length dimension, are adhered to the respective probe lands 40. Regardless of the bending deformation of the substrate 18a, the tip of the probe 18b can be aligned using the probe 18b of the same size.
  • a single height dimension of the probe 18 b may be formed on each of the probe lands 40 without facilitating various types of probes of different height dimensions according to the bending deformation of By fixing, the tip of the probe 18 b can be aligned on the plane P 1.
  • the probe assembly 1 with the deformation of the probe substrate 18 a is maintained. 8 can be incorporated.
  • various types of spacer In order to eliminate the need for members and simplify the manufacture of the electrical connection device 10, it is preferable to use the spacer members 68 of equal length as described above.
  • FIGS. 6 and 7 show an example of the bolt 52 inserted from above the support member 12 and having its tip screwed into the anchor portion 66 of the probe substrate 18a.
  • a bolt penetrating the probe substrate, the pogo pin block 16a and the wiring substrate 14 from the side of the lower surface of the probe substrate 18a is used, and the tip of the bolt is a support member 1 It can be screwed into the female screw hole formed in 2.
  • a spacer equal to the height dimension of both members 66, 68 is used instead of the anchor portion 66 and the spacer member 68.
  • the multilayer wiring technology is used. It is desirable to use it.
  • the support member 12 acts to reinforce the wiring board 14 held on the lower surface 12a, but in the test under a high temperature environment, the temperature rises. Due to the accompanying thermal deformation and the weight of the electrical connector 16 and the probe assembly 18 etc., the central portion tends to be deformed in a convex shape downward.
  • the thermal deformation suppressing member 24 is fixed to the upper surface 12 b of the supporting member 12 by means of the bolt 4 4 (see FIG. 6).
  • the thermal deformation suppressing member 24 is made of, for example, aluminum, which is a metal material having a thermal expansion coefficient larger than that of the supporting member 12 made of stainless steel (SUS 4 10: thermal expansion coefficient of 9.9 PPM / ° C.).
  • the thermal deformation suppressing member 24 stretches more than the supporting member 12 but its lower surface 24 a is a thermal deformation suppressing member.
  • the extension is restrained by the support member 12 having a thermal expansion coefficient smaller than 24.
  • the upper surface 24b which is a free surface, tends to expand more than the lower surface 24a to be restrained, and the stress difference makes the central portion of the free surface generally convex so as to move away from the support member. Show a tendency to swell.
  • the acting force by the stress difference acts as a force to suppress the downward convex deformation at the central portion of the support member 12 described above.
  • the thermal deformation suppressing member 24 As a result, by providing the thermal deformation suppressing member 24, the downward deflection due to the thermal expansion deformation of the support member 12 in a high temperature environment is suppressed, and the probe assembly accompanying the deflection of the support member 1 8 Can be suppressed.
  • Figures 9 (a) to 9 (g) show the manufacturing process of the probe assembly shown in Figure 1.
  • a ceramic plate 34 is prepared as a substrate member of the probe substrate 1 8 a for the probe assembly 18.
  • the ceramic plate 34 has substantially the same thickness over the entire surface.
  • the conductive paths 38 described above with reference to FIG. 5 are formed.
  • a wave-like bending deformation is generally introduced into the ceramic plate 34 with respect to the virtual flat surface P for forming the conductive paths 38.
  • the difference in height between the lowest point and the highest point on the lower surface of the ceramic plate 34 due to this deformation indicates, for example, several tens of ⁇ ⁇ 1 1 to 100 / im.
  • one side 3 4 a of the ceramic plate 34 in which bending deformation has occurred is the same as that shown in FIG. 5 using photolithography used in the integrated circuit manufacturing process.
  • Multilayer wiring layer 36 is formed.
  • a photolithograph similar to that described above is applied to a predetermined portion of the wiring path 3 6 a exposed on the surface of the multilayer
  • probe lands 40 with equal height dimensions for the probes 18 b are formed.
  • the lower end surface of the probe land 40 is aligned with the plane P3 parallel to the virtual flat surface P, as shown in FIG. 9 (c).
  • C M P chemical mechanical polishing
  • the lower end face of the probe land 40 is aligned with the plane P 3 with an error of, for example, less than 10 ⁇ .
  • an anchor member 66 made of, for example, a synthetic resin material is fixed to a predetermined place on the upper surface 34b of the ceramic plate 34 by an adhesive.
  • This anchor member 66 has the above-mentioned female screw holes 64 and has the same height dimension as each other.
  • the height position of the top surface of each anchor portion 66 formed by the anchor members 6 6 differs depending on the deformation of the ceramic plate 34.
  • the height position of the anchor portion 66 is aligned with the plane P2 parallel to the virtual flat surface P in the polishing process, as shown in FIG. 9 (e).
  • mechanical polishing is used to align the top surface of the anchor member 66 on the plane P2.
  • the top surface of the anchor member 66 is aligned with the plane P2 with an error of, for example, less than 10 / im as in the lower end surface of the probe land 40.
  • the formation of the anchor portions 66 shown in FIGS. 9 (d) and 9 (e) and the polishing process thereof can be performed before the formation of the probe lands 40 and the multilayer wiring layer 36 described above.
  • the anchor portion 66 whose top surface is aligned with the plane P2 is obtained.
  • a probe substrate 1 8a is formed having a probe land 40 having an end face aligned with the plane P3. Therefore, as shown in FIG. 9 (g), the probe 18b of equal length is then adhered to the lower end surface of each anchor 66 using a conductive adhesive such as solder, for example. As such, regardless of the bending deformation of the probe substrate 1 8 a, the probe assembly 18 with its tip aligned on the plane P 1 is formed.
  • this probe assembly 18 Since the top surface of the anchor portion 66 is aligned with the plane P2, this probe assembly 18 has an equal-length spacer member formed with a height dimension error of, for example, less than 10 ⁇ . 6 and the bolt 52 inserted into the spacer member, by being assembled to the support member 12 so as to be supported on the support member 12 as described above, the probe substrate 1 8 a The tip of each probe 18 b can be aligned on the same plane P 1 within a predetermined tolerance without adjusting the bending deformation.
  • the probe assembly 18 according to the present invention can be relatively easily manufactured by the above-described manufacturing method.
  • FIGS. 10 through 14 illustrate another embodiment of the present invention.
  • components having the same functions as those in the embodiments shown in FIGS. 1 to 9 are denoted by the same reference numerals.
  • the probe assembly 18 itself is identical to that in the previous embodiment, and in connection with the electrical connector 16 to the support member 1 2 of the probe assembly 18
  • the form of installation of is different from the example shown in Figure 6 and Figure 7. That is, in the example shown in FIG. 10 and FIG. 11, a space plate 16 8 having an equal thickness dimension is disposed between the wiring substrate 14 and the base ring 20.
  • the space plate 16 8 is formed with a plurality of openings 1 6 8 a penetrating in the thickness direction for receiving a plurality of electrical connectors 16 as shown in FIGS. 1 2 and 1 3. It is done.
  • the electrical connector 16 is, as shown in FIG.
  • each The pogo pin block 16a of the electrical connector 16 is inserted in the corresponding opening 168a.
  • one pogo pin 1 6 b of each pair of pogo pins 1 6 b and 1 6 c can be projected from the lower surface 1 6 8 b of the space plate 1 6 8 as shown in FIG. is there.
  • each other pogo pin 16 c can protrude from the top surface 16 8 c of the space plate 16 8 as shown in FIG. 12.
  • the space plate 1 6 8 is connected with its one pogo pin 1 6 b on the ceramic plate 3 4 by means of a bolt 50 screwed into its female screw hole 1 6 0, as clearly shown in FIG. 1 1
  • Wiring board 14 and base ring 2 so that they abut part 38a (see FIG. 5) and each other pogo pin 16c abuts connection terminal 14c (see FIG. 5) of wiring board 14 It is fixed between 0.
  • the distance between the lower surface 1 2 a of the support member 1 2 and the upper surface 1 6 8 c of the space plate 1 6 8 is defined by the spacer 6 2.
  • a base ring 20 for clamping the edge of the probe substrate 18 a in cooperation with the fixing ring 22 is fixed to the space plate 1 6 8 by bolts 1 4 8.
  • This bolt 1 4 8 is inserted from the upper surface 1 6 8 c of the space plate 1 6 8 into the through hole 1 6 8 d, and its tip is screwed into the female screw hole 1 5 8 of the base ring 20.
  • the fixing ring 22 is coupled to the base ring 20 by means of the same bolt 48 as in the previous example.
  • a through hole allowing penetration of the shaft portion 5 2 b of the bolt 5 2 screwed to the anchor portion corresponding to each anchor portion 6 6 of the probe substrate 1 8 a.
  • the upper surface 1 6 8 c of the space plate 1 6 there is a recess 1 7 0 a that accommodates the head 5 2 a of the bolt 5 2 corresponding to each through hole 1 7 0 It is formed.
  • the probe assembly 18 can be properly held on the space plate 1 6 8 in which the electrical connector 16 is incorporated, with the 6 and the probe assembly 1 8 holding the above-mentioned proper electrical connection. . Therefore, by bonding the space plate 1 6 8 to which the probe substrate 1 8 a is attached to the support member 1 2 by means of the Bonoreto 50, while maintaining the deformation of the probe substrate 1 8 a, the space The probe board 1 8 a can be properly supported by the support member 12 via the board 1 6 8.
  • the probe substrate It is possible to properly and easily carry out the electrical inspection of the electric circuit of the semiconductor wafer 26 which is the object to be inspected, without performing the complicated flattening operation.
  • the height position (plane P 2) of the top surface of each anchor portion 66 is the space plate 1 6 8, as clearly shown in FIG. It coincides with the upper surface 20 b of the base ring 20 that abuts the lower surface 16 8 b. Therefore, as shown in FIG. 14, both rings 20 and 22 are configured so that the base ring 20 and the fixing ring 22 sandwich the edge of the probe substrate 18 a of the probe assembly 18. In the grinding process of the anchor portion 66 shown in FIG. 9 (e), these are used as a holder for the probe assembly 18 and the upper surface of the base ring 20 is attached. b can be used as a reference surface of the top surface in the grinding process of the anchor portion 66.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Engineering & Computer Science (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Measuring Leads Or Probes (AREA)
  • Testing Of Individual Semiconductor Devices (AREA)

Abstract

 被検査体の電気的測定に用いられるプローブ組立体。プローブ組立体は、負荷を受けない自由状態で曲がり変形を生じた平板状のプローブ基板と、該プローブ基板の一方の面に該面から突出して形成された複数のプローブとを備える。全ての前記プローブの先端は、前記プローブ基板の前記変形を保持した状態で、仮想基準面に平行な同一平面上に位置する。

Description

プローブ組立体、 その製造方法および電気的接続装置
技術分野
本発明は、 電気回路の電気的検査のために、 被検査体である例えば集積回路の 電気回路とその電気的検查を行うテスタの電気回路との接続に用いられるプロ一 ブカードのような電気的接続装置、 この電気的接続装置に用いられるプローブ糸且 明
立体およびその製造方法に関する。
1糸
背景技術
従来のこの種の電気的接続装置の一つとして、 プローブ基板と該プローブ基板 から伸長する多数のプローブとが設けられたプローブ組立体を備える電気的接続 装置であって前記プローブ基板の平坦性を調整可能とする電気的接続装置が提案 されている (特許文献 1参照) 。 この従来の電気的接続装置によれば、 プローブ 基板を支持する支持部材からプローブ基板の一部に押圧力あるいは引張り力を作 用させることができる。 この作用力の調整により、 プローブ組立体のプローブ基 板に曲がりが生じていても、 プローブ基板の曲がり変形を修正し、 該プローブ基 板の平坦性を維持することができる。
したがって、 プローブ組立体の製造時に、 プローブが設けられるプローブ基板 に曲がり変形が生じても、 前記電気的接続装置へのプローブ組立体の組み付け後 の前記した調整作業により、 プローブ基板を平坦に保持することができることか ら、 該プローブ基板から伸長する多数のプローブの先端を同一平面上に保持する ことができる。 これにより、 全ての前記プローブの先端を被検査体の電気回路の 前記各プローブに対応する電気接続端子に確実に接触させることができることか ら、 この両者間に良好な電気的接触を得ることができる。
しかしながら、 特許文献 1に記載の前記した従来技術によれば、 プローブカー ド組立体の電気的接続装置への組み付け時毎に、 各プローブ基板に導入された曲 がり変形に応じて、 全てのプローブ先端が同一平面上に位置するように調整する 必要がある。 プローブ組立体を電気的接続装置に組み付けた状態で、 その全ての プローブの先端が被検査体の前記した対応する各電気接続端子に適正に接触する ように調整する作業は繁雑であり、 熟練を要する。 特に、 半導体ウェハ上に形成 された多数の集積回路の検査では、 プローブ組立体のプローブ数が著しく増大す ることから、 このような多数のプローブが半導体ウェハ上の対応する各パッドに 適正に接触するように、 調整する作業は容易ではない。 しかも、 このような調整 作業は、 プローブ組立体の取り替え毎に必要となることから、 この調整作業を不 要とすることが強く望まれていた。
[特許文献 1 ] 特表 2 0 0 3— 5 2 8 4 5 9号公報 発明の開示
発明が解決しようとする課題
本発明の目的は、 プローブ基板の変形に拘わらずプローブ組立体の電気的接続 装置への組み付け後におけるプローブ基板の平坦化調整作業を不要とし、 プロ一 ブと被検査体の電気回路の対応する電気接続端子との確実な電気的接続を得るこ とができるプローブ組立体、 その製造方法および電気的接続装置を提供すること ίこある。 課題を解決するための手段
本発明に係るプロ一ブ組立体は、 被検査体の電気的測定に用いられるプローブ 組立体であって、 負荷を受けない自由状態で曲がり変形を生じた平板状のプロ一 ブ基板と、 該プローブ基板の一方の面に該面から突出して形成された複数のプロ 一ブとを備え、 全ての前記プローブの先端は、 前記プローブ基板の前記変形を保 持した状態で、 仮想基準面に平行な同一平面上に位置する。
本発明に係る前記プローブ組立体では、 前記複数のプローブは、 前記プローブ 基板の前記変形を保持した状態で前記仮想基準面に平行な同一平面上に位置する ように設定されている。 そのため、 前記プローブ組立体がそのプローブ基板の曲 がり変形を保持した状態で所定箇所に組み付けられる限り、 前記プローブ基板を 平坦にするための煩雑な作業を行うことなく、 全ての前記プローブの先端を被検 査体である電気回路の各電気接続端子にほぼ均等に押し付けることができる。 こ れにより、 前記プローブ組立体の全ての前記プローブとこれに対応する被検査体 の前記電気接続端子とを適正に接続することができる。
前記プローブ基板は、 基板部材と、 該基板部材の一方の面に形成され、 表面に 電気接続部を有する配線層とで形成することができる。 この場合、 前記配線層の 前記電気接続部には前記プローブが前記基板部材から遠ざかる方向へ突出して形 成される。
この基板部材に、 セラミック板を用いることができる。 セラミック板は、 耐熱 性及び絶縁性を示すことから、 配線層を好適に支持する。
前記配線層を多層配線層とすることができる。 このプローブ基板の多層配線層 は、 集積回路のような微細回路に対応した多数のプローブをプローブ基板に高密 度で配置するのに有利である。
前記セラミック板の他方の面に、 前記プローブ基板を所定箇所に取付けるため の複数の雄ねじ部材の端部をそれぞれ受け入れる雌ねじ穴を有する複数のアンカ 一部を形成し、 全ての前記アンカー部の頂面を前記プローブ基板の前記変形を保 持した状態で前記仮想基準面に平行な同一平面上に位置させることができる。 このアンカー部の頂面位置を揃えることにより、 セラミック板の変形すなわち プロ一ブ基板の変形に応じて、 前記各アンカー部の高さ寸法にばらつきが生じる c し力 しながら、 各ァンカ一部の頂部と前記雄ねじ部材による取付け面との間に例 えばスぺーサ部材を配置する場合、 前記したようにアンカー部の頂面位置を揃え ることにより、 同一長さ寸法のスぺーサ部材を用いて、 前記プローブ基板の変形 を保持した状態でプローブ組立体を電気的接続装置の平坦な取付け基準面に適正 に取り付けることができるので、 前記プローブ基板の変形に応じた長さ寸法の異 なる多種類のスぺーサ部材が不要となる。
前記多層配線層の表面に形成される前記電気接続部に、 前記各プローブのため のプローブランドを前記セラミック板から遠ざかる方向へ突出して形成すること ができる。 該各プローブランドの突出する端面から前記各プローブが伸長する。 前記プローブ基板の前記変形を保持した状態で、 この全ての前記プローブランド の前記端面を前記仮想基準面に平行な同一平面上に位置させることができる。 こ のように、 全てのプローブランドの前記端面を揃えることにより、 プローブ基板 の前記した変形に拘わらず、 同一高さ寸法すなわち同一長さ寸法を有するプロ一 ブを各プローブランドの前記端面に形成すれば、 全てのプローブの先端位置を同 一平面上に揃えることができる。 したがって、 前記プローブ基板の変形に拘わら ずその変形に応じて異なる高さ寸法のプローブを用いることなく、 等長のプロ一 ブを用いることができるので、 プローブの製造工程の簡素化を図ることができる。 本発明に係るプローブ組立体の製造方法は、 基板部材の一方の面に多層配線層 を形成すると共に該多層配線層の表面に複数のプローブランドを形成すること、 前記プローブランドの全ての端面を前記基板部材の曲がり変形に拘わらず仮想基 準面に平行な同一平面上に位置させるベく前記基板部材に導入された変形を保持 した状態で前記プローブランドの端面を揃えること、 前記基板部材の他方の面に 雄ねじ部材の端部が螺合可能なねじ穴を有する複数のアンカー部を形成すること、 前記基板部材の前記変形を保持した状態で前記全てのァンカ一部の頂面を前記基 板部材の前記曲がり変形に拘わらず前記仮想軸線に平行な他の同一平面上に位置 させるべく前記アンカー部の頂面を揃えること、 揃えられた前記プローブランド の端面に同一高さ寸法を有するプローブを形成することを含む、
本発明に係る前記プロ一ブ組立体の製造方法では、 基板部材の一方の面に多層 配線層が形成され、 該多層配線層の形成に関連して前記プローブランドが形成さ れる。 また、 基板部材の他方の面にアンカ一部が形成される。 これらプローブラ ンドおよびアンカー部は、 それぞれの同一平面上に揃えられることから、 基板部 材に曲がり変形が生じていても基板部材の曲がり変形に拘わらず、 全てのアンカ 一部の頂面および全てのプローブの先端は、 仮想基準面に平行なそれぞれの平面 上に揃えられる。
したがって、 基板部材の曲がり変形に拘わらず、 全てのプローブの先端が同一 平面上に揃えられ、 しかも取付けのための全てのアンカー部の頂面を同一平面上 に揃えたプローブ基板を比較的容易に製造することができるので、 基板部材の平 坦性の調整が不要であり、 しかも取付けに長さの異なる多種類のスぺーサを不要 とするプロ一ブ組立体を比較的容易に形成することができる。
前記プローブランドの端面および前記アンカー部の頂面を前記多層配線層の形 成後に揃えることにより、 たとえ多層配線形成工程で例えばセラミック板から成 る前記基板部材に曲がり変形が生じても、 この基板部材の曲がり変形に拘わらず、 全てのアンカー部の頂面および全てのプローブの先端をそれぞれの前記同一平面 上に揃えることができる。
前記多層配線層の前記表面の前記複数のプローブランドを相互に等しい高さ寸 法に形成した後、 それらの端面を前記プローブ基板の曲がりに応じて揃えること ができる。 また、 前記基板部材の前記他方め面の前記複数のアンカー部を相互に 等しい高さ寸法に形成した後、 それらの頂面を前記プローブ基板の曲がりに応じ て揃えることができる。
前記プローブランドの端面およびアンカー部の頂面をそれぞれ揃えるために、 前記プローブランドおよびアンカー部の端部を研磨することができる。 この研磨 には、 化学機械研磨を適用することができる。 この化学機械研磨には、 例えば駆 動回転する平面研磨面が設けられた研磨装置を用い、 この平面研磨面に全てのァ ンカ一部または全てのプローブランドの端部を押し当てることにより、 アンカー 部の頂面またはプローブランドの端面を効率的に揃えることができる。
前記基板部材に前記したと同様なセラミック板を用いることができ、 また前記 多層配線層は、 フォトリソグラフィ技術を用いて形成することができる。 フォト リソグラフィ技術を用いて多層配線層を形成することにより、 被検査体の微細化 に応じたプロ一ブ組立体の微細化が比較的容易に行える。
微細化を図る上で、 フォトリソグラフィ技術を用いてカンチレバータイプのプ ローブを形成し、 該プローブを前記プローブランドの端面に固着することが好ま しい。 プローブとして、 その他、 タングステンのようなニードルタイプのプロ一 ブを用いることができる。
本発明に係る電気的接続装置は、 テスタと、 該テスタによる電気的検査を受け る被検査体の電気接続端子とを接続する電気的接続装置であって、 取付け基準面 を有する支持部材と、 前記テスタに接続される配線回路が形成され、 前記支持部 材の前記基準面に一方の面を対向させて配置され、 他方の面に前記配線回路の複 数の接続端子が形成された配線基板と、 負荷を受けない自由状態で曲がり変形を 生じた平板状のプローブ基板および該プローブ基板の一方の面に設けられ前記被 検査体の前記接続端子に先端部を当接可能な複数のプローブを有するプローブ糸且 立体であって前記プローブ基板の他方の面が前記配線基板の前記他方の面に対向 して配置されたプロ一ブ組立体と、 前記プロ一ブ S板と前記配線基板との間に配 置され該配線基板の前記接続端子を該接続端子に対応する前記プローブに接続す るための電気接続器と、 該電気接続器を経て前記プローブを前記配線基板の前記 接続端子に接続すべく前記プローブ組立体が前記支持部材に取り付けられたとき、 前記プローブ基板の前記変形を保持すべく前記プローブ基板の前記他方の面と前 記支持部材の前記基準面との間に適合して配置される複数のスぺーサとを備え、 前記各プローブの先端は前記プローブ基板の前記変形を保持した状態で同一平面 上に位置する。
本発明に係る電気的接続装置では、 そのプローブ組立体は、 該プローブ組立体 のプロ一ブ基板と前記支持部材の基準面との間に挿入される前記スぺーサにより、 確実に前記した変形を維持した状態で前記支持部材の基準面に取り付けられ、 こ の取付け状態で、 全てのプローブの先端が同一平面上に位置する。
したがって、 プローブ組立体の支持部材への取付け後、 従来のようなプローブ 基板を平坦化するための調整作業を行うことなく、 全てのプローブの先端を被検 査体である電気回路の各電気接続端子にほぼ均等に押し付けることができる。 そ のため、 プローブ組立体の取り替え毎においても、 従来のような前記した煩わし い平坦化調整作業が不要となり、 効率的な電気的検査が可能となる。
前記プローブ基板は、 セラミック板と、 該セラミック板の一方の面に形成され、 表面に電気接続部を有する多層配線層で構成することができ、 該多層配線層の前 記電気接続部に前記プローブを、 該プローブが前記セラミック板から遠ざかる方 向へ突出するように、 形成することができる。
前記プローブ基板は、 前記支持部材、 前記配線基板おょぴ前記電気的接続器を 貫通して配置される雄ねじ部材を介して前記支持部材に取り付けることができる。 この場合、 前記スぺーサは、 前記セラミック板の他方の面に形成され前記支持部 材の前記基準面に向けて立ち上がる複数のアンカー部であって前記基準面と平行 な同一面上に頂面を有しかつ前記雄ねじ部材の端部を受け入れる雌ねじ穴が形成 された複数のアンカー部と、 該アンカ一部の頂面と前記基準面との間に揷入され た均一な長さ寸法を有する複数のスぺーサ部材とで構成することができる。 また、 この例に代えて、 前記プローブ基板と前記配線基板との間に、 前記電気 接続器の貫通を許し前記支持部材に結合され均一な厚さ寸法を有するスぺーサ板 を配置することができる。 この場合、 前記プローブ基板は、 前記スぺーサ板を貫 通して配置された雄ねじ部材を介して前記スぺーサ板に取り付けられており、 前 記スぺーサは、 前記セラミック板の他方の面に形成され前記支持部材の前記基準 面に向けて立ち上がる複数のアンカー部であって前記基準面と平行な同一面上に 頂面を有しかつ前記雄ねじ部材の端部を受け入れる雌ねじ穴が形成されたアンカ 一部と、 該ァンカ一部の頂面と前記基準面との間に挿入された前記スぺーサ板と で構成される。 また、 この場合、 前記雄ねじ部材に、 前記配線基板と前記スぺー サ板との間で該スぺ一サ部材に埋設された頭部を有するボルトを用いることがで きる。
また、 前記支持部材の前記基準面と反対側の面に、 前記支持部材のたわみ変形 を抑制すべく該支持部材の熱膨張係数よりも大きな熱膨張係数を有する熱変形抑 制部材を取り付けることができる。
この熱変形抑制部材は、 その一方の面が熱変形抑制部材の熱膨張係数よりも小 さな熱膨張係数を有する支持部材への取付け面となるのに対し、 反対側に位置す る他方の面が自由面となることから、 雰囲気温度の上昇によって伸長しようとす るとき、 当該熱変形抑制部材の両面間に応力差が生じる。 この応力差を利用して 熱変形抑制部材が取り付けられた前記支持部材の中央部のたるみ変形を抑制する ことができる。
【発明の効果】
本発明に係るプロ一ブ組立体によれば、 プ口ーブ基板に設けられる複数のプロ ーブはプローブ基板の変形を保持した状態で仮想基準面に平行な同一平面上に位 置するように設定されていることから、 前記プローブ組立体は、 そのプローブ基 板の曲がり変形を保持した状態で所定箇所に組み付けられる限り、 このプローブ 基板の煩雑な平坦ィヒ調整作業を行うことなく、 全てのプローブの先端を被検査体 である電気回路の各電気接続端子にほぼ均等に押し付けることができるので、 全 てのプローブをこれに対応する被検査体の電気接続端子に適正に接触させること ができる。
また、 本発明に係るプローブ組立体の製造方法によれば、 基板部材の曲がり変 形に拘わらず、 全てのプローブの先端が同一平面上,に揃えられ、 しかも取付けの ための全てのアンカー部の頂面が同一平面上に揃えられたプローブ基板を比較的 容易に製造することができるので、 基板部材の平坦性の調整が不要であり、 しか も取付けに長さの異なる多種類のスぺーサを不要とする本発明に係るプローブ組 立体を比較的容易に形成することができる。
また、 本発明に係る電気的接続装置によれば、 プローブ組立体のプローブ基板 と支持部材の基準面との間に挿入されるスぺーサにより、 前記プローブ基板はそ の前記した変形を確実に維持した状態で前記支持部材の基準面に取り付けること ができる。 したがって、 プローブ組立体の支持部材への取付け後、 従来のような プローブ基板を平坦化するための調整作業を行うことなく、 全てのプローブの先 端を被検査体である電気回路の各電気接続端子にほぼ均等に押し付けることがで きる。 そのため、 プローブ組立体の取り替え毎においても、 従来のような煩わし いプローブ基板の平坦化調整作業が不要となり、 効率的な電気的検査が可能とな る。
図面の簡単な説明
図 1は、 本発明に係る電気的接続装置の一実施例を分解して示す斜視図である。 図 2は、 図 1に示した電気的接続装置の上面図である。
図 3は、 図 1に示した電気的接続装置の正面図である。
図 4は、 図 1に示した電気的接続装置の底面図である。
図 5は、 図 1に示したプローブ組立体のプローブ基板内の電気的接続関係の一 例を示すプローブ基板の断面図である。
図 6は、 図 2に示した線 VI-VIに沿って得られた断面の一部を拡大して示す断 面図である。
図 7は、 図 6の一部をさらに拡大して示す断面図である。
図 8は、 図 1に示した電気的接続装置に設けられた熱変形抑制板の作用を概念 的に説明する説明図である。
図 9 ( a ) ないし図 9 ( g ) は、 図 1に示したプローブ組立体の製造工程を示 す工程図であり、 図 9 (a) は多層配線層の形成前のセラミック板の状態を示し、 図 9 (b) はセラミック板への多層配線およびプローブランドの形成工程を示し、 図 9 (c) はプローブランドの研磨工程を示し、 図 9 (d) は、 セラミック板へ のアンカー部の形成工程を示し、 図 9 (e) はアンカー部の研磨工程を示し、 図 9 ( f ) は、 プローブランド及びアンカー部のそれぞれの研磨後の状態を示し、 図 9 (g) は各プローブランドへのプローブの取付け工程を示す。
図 1 0は、 本発明に係る電気的接続装置の他の実施例を示す図 6と同様な図面 である。
図 1 1は、 図 1 0に示した電気的接続装置の他の実施例を示す図 7と同様な図 面である。
図 1 2は、 図 1 0に示した電気接続器が組み込まれたスぺーサを上方から見た 斜視図である。
図 1 3は、 図 1 0に示した電気接続器が組み込まれたスぺーサを下方から見た 斜視図である。
図 1 4は、 図 1 0に示した電気的接続装置のプローブ基板の製造方法を示す断 面図である。
符号の説明
1 0 電気的接続装置
1 2 支持部材
1 4 配線基板
1 6 電気接続器
1 8 プローブ組立体
1 8 a プローブ基板
1 8 b プローブ
24 熱変形抑制部材
26 被検査体 (半導体ウェハ)
28 テスタ
34 基板部材 (セラミック板)
3 6 多層配線層 3 6 a 多層配線層の配線路
4 0 プローブランド
6 4 雌ねじ穴
6 6 アンカー部 (アンカー部材)
6 8 スぺーサ部材
1 6 8 スペース板
発明を実施するための最良の形態
本発明に係る電気的接続装置 1 0が、 図 1に分解して示されている。 この電気 的接続装置 1 0は、 下面 1 2 aが平坦な取付け基準面となる平板状の支持部材 1 2と、 該支持部材の前記取付け面 1 2 aに保持される円形平板状の配線基板 1 4 と、 該配線基板 1 4に電気接続器 1 6を経て電気的に接続されるプローブ組立体 1 8と、 電気接続器 1 6を受け入れる中央開口 2 0 aが形成されたベースリング 2 0と、 該ベースリングの中央開口 2 0 aの縁部と共同してプローブ組立体 1 8 の縁部を挟持する固定リング 2 2とを備える。 この固定リング 2 2は、 その中央 部に、 プローブ組立体 1 8の後述するプローブ 1 8 bの露出を許す中央開口 2 2 aを有する。 図示の例では、 配線基板 1 4を保持する支持部材 1 2の熱変形を抑 制するための熱変形抑制部材 2 4が支持部材 1 2に取り付けられている。
これらの部材 1 2〜2 4は、 図 2ないし図 4に示すように、 一体的に組み付け られ、 図 3に示すように、 例えば半導体ウェハ 2 6に作り込まれた多数の I C回 路 (図示せず) の電気的検査のために、 該 I C回路の接続端子である各接続パッ ド 2 6 aをテスタ 2 8の電気回路 (図示せず) に接続するのに用いられる。 配線基板 1 4は、 図示の例では、 全体的に円形板状の例えばポリイミ ド樹脂板 力、らなり、 その上面 1 4 aの環状周部には、 テスタ 2 8の前記電気回路に接続さ れる多数のコネクタ 3 0が図 2に示すよう環状に整列して配置されている。 配線 基板 1 4の下面 1 4 b (図 1参照) の中央部には、 コネクタ 3 0に対応する多数 の接続端子 1 4 c (図 5参照) が矩形マトリクス状に配列されており、 前記ポリ イミ ド樹脂板内に形成された図示しないが従来よく知られた配線回路を経て、 各 コネクタ 3 0と、 前記各接続端子 1 4 cとが相互に電気的に接続可能である。 ま た、 図 2に示すように、 配線基板 1 4の上面 1 4 aの中央部には、 試験内容に応 じてコネクタ 3 0と該コネクタに接続される前記接続端子とを切り換え、 あるい は緊急時に前記配線回路を遮断するための多数のリレー 3 2が配列されている。 支持部材 1 2は、 これらコネクタ 3 0およびリレー 3 2の露出を許す例えばス テンレス板からなる枠部材であり、 その下面 1 2 a (図 1参照) が配線基板 1 4 の上面 1 4 aに当接して配置されている。 支持部材 1 2は、 図 2に明確に示され ているように、 リ レー 3 2を取り巻く内方環状部 1 2 cと、 外方環状部 1 2 dと を有し、 該外方環状部の外周にコネクタ 3 0が配列されている。
熱変形抑制部材 2 4は、 支持部材 1 2の上面 1 2 bにおける外方環状部 1 2 d を覆って配置される環状部材からなり、 例えばアルミニゥムのような金属材料で 構成されている。
プローブ組立体 1 8は、 基本的には、 図 5に示すように、 プローブ基板 1 8 a と、 該プローブ基板の下面に形成された多数のプローブ 1 8 bとを備える。 ロー ブ基板 1 8 aは、 従来よく知られているように、 例えばセラミック板からなる基 板部材 3 4と、 該基板部材すなわちセラミック板の下面 3 4 aに形成された多層 配線層 3 6とを備える。 多層配線層 3 6は、 従来よく知られているように、 電気 絶縁性を示す例えばポリイミ ド樹脂材料からなる多層板と、 該各多層板間に形成 された配線路 3 6 aとを有する。 各プローブ 1 8 bは、 多層配線層 3 6の表面で あるその下面 3 6 bから下方へ突出して形成されている。
セラミック板 3 4には、 その板厚方向に貫通する多数の導電路 3 8が、 配線基 板 1 4のそれぞれの接続端子 1 4 cに対応して形成されている。 プローブ基板 1 8 aの上面となるセラミック板 3 4の上面 3 4 bには、 各導電路 3 8の一端に形 成された接続部 3 8 aが配置されており、 該各接続部は電気接続器 1 6を介して 配線基板 1 4の対応する接続端子 1 4 cに接続される。 また、 セラミック板 3 4 の下面 3 4 aには、 各導電路 3 8の他端に形成された接続部 3 8 bが配置されて いる。 多層配線層 3 6の各配線路 3 6 aの一端は、 多層配線層 3 6の上面 3 6 c で各導電路 3 8の対応する接続部 3 8 bに接続されており、 また各配線路 3 6 a の他端は、 プローブ組立体 1 8の下面すなわち多層配線層 3 6の下面 3 6 bに形 成されたプローブランド 4 0にそれぞれ接続されている。 各プローブランド 4 0 には、 カンチレバ一タイプのプローブ 1 8 bがそれぞれ接続されており、 これに より各プローブ 1 8 bは、 プローブ基板 1 8 aの上面 3 4 bで、 電気接続器 1 6 を介して配線基板 1 4の対応する接続端子 1 4 cに接続される。
電気接続器 1 6は、 図 5に示す例では、 板厚方向に形成された多数の貫通孔 4 2が形成された電気絶縁性を示す板状部材から成るポゴピンブロック 1 6 aと、 各貫通孔 4 2内に直列的に配置され、 それぞれが貫通孔 4 2からの脱落を防止さ れた状態で貫通孔 4 2の軸線方向へ摺動可能に収容される一対のポゴピン 1 6 b、 1 6 cとを備える。 各一対のポゴピン 1 6 b、 1 6 c間には、 両ポゴピン 1 6 b、 1 6 cに相離れる方向への偏倚力を与え、 両ポゴピン間の導電路となる圧縮コィ ノレばね 1 6 dが配置されている。 電気的接続装置 1 0の組み立て状態では、 電気 接続器 1 6はその圧縮コイルばね 1 6 dのばね力により、 各一対のポゴピン 1 6 b、 1 6 cの一方のポゴピン 1 6 bが対応する導電路 3 8の接続部 3 8 aに圧接 され、 また他方のポゴピン 1 6 cが配線基板 1 4の対応する接続端子 1 4 cに圧 接されることから、 各プローブランド 4 0に設けられたプローブ 1 8 bは、 配線 基板 1 4の対応する接続端子 1 4 cに接続される。 その結果、 プローブ 1 8 の 先端が被検査体である半導体ウェハ 2 6の接続パッド 2 6 aに当接されると、 該 接続パッドは対応するコネクタ 3 0を経て、 テスタ 2 8に接続されることから、 該テスタによる半導体ウェハ 2 6の前記電気回路の電気的検査が行える。
前記した電気的接続装置 1 0は、 多数の雄ねじ部材からなるボルト 4 4〜 5 2 によって組み立てられている。 すなわち、 図 6に示すように、 熱変形抑制部材 2 4は、 支持部材 1 2に形成された雌ねじ穴 5 4に螺合するボルト 4 4により、 支 持部材 1 2の上面 1 2 bに固定されている。 この支持部材 1 2には、 配線基板 1 4を貫通して配置されるボルト 4 6により、 電気接続器 1 6が取り付けられてい る。 ボルト 4 6は、 その先端が支持部材 1 2に形成された雌ねじ穴 5 6に螺合す ることにより、 電気接続器 1 6のポゴピンブロック 1 6 aと、 支持部材 1 2との 間で配線基板 1 4を挟持する。
また、 ベースリング 2 0および固定リング 2 2は、 ベースリング 2 0に形成さ れた雌ねじ穴 5 8に先端が螺合するポルト 4 8により、 プローブ組立体 1 8のプ ローブ基板 1 8 aの縁部を挟持するように相互に結合されている。 このベースリ ング 2 0は、 該ベースリングに形成された雌ねじ穴 6 0に先端が螺合するボルト 5 0により、 支持部材 1 2に固定されている。 ボルト 5 0は、 配線基板 1 4をそ の板厚方向に貫通するスぺーサ 6 2内に挿入されている。 スぺーサ 6 2は、 その 両端を支持部材 1 2およびベースリング 2 0に当接させることにより、 プローブ 基板 1 8 aの縁部を挟持するベースリング 2 0および固定リング 2 2を支持部材 1 2の取付け面である下面 1 2 aから所定の間隔で保持する。
前記したように、 プローブ組立体 1 8のプローブ基板 1 8 aの縁部はベースリ ング 2 0および固定リング 2 2により縁部を挟持される。 この縁部を挟持される プローブ基板 1 8 aの基板部材であるセラミック板 3 4に導電路 3 8を形成する とき、 または多層配線層 3 6を形成するとき、 その製造工程の熱と外力とによつ て平坦なセラミック板 3 4に例えば波状の曲がり変形を生じることがある。 ある いは、 導電路 3 8及び多層配線層 3 6の形成前に、 セラミック板 3 4自体に曲が り変形を生じることがある。 そのような基板部材 3 4の変形によるプローブ基板 1 8 aの変形は、 該プローブ基板にたとえ外力が作用していない自由状態であつ ても保持される。
本発明に係るプローブ組立体 1 8は、 そのようなプローブ基板 1 8 aの変形に 拘わらず、 該変形を維持した自由状態で、 全てのプローブ 1 8 bの先端が同一平 面 P 1上に整列するように、 予め揃えられている。 この平面 P 1は、 基板部材で あるセラミック板 3 4に変形が生じていない場合に得られる平坦なセラミック板 の仮想平面 Pに平行とすることが望ましい。
このように各先端が揃えられたプローブ 1 8 bを有するプローブ組立体 1 8は、 そのプローブ基板 1 8 aに変形を保持した状態で、 複数のボルト 5 2を介して支 持部材 1 2に支持されている。
このボルト 5 2による支持のために、 図 7に拡大して示されているように、 セ ラミック板 3 4の上面 3 4 bには、 各ボルト 5 2の先端部を受け入れる雌ねじ穴 6 4を有するアンカー部材 6 6が接着剤により固着されている。
アンカー部材 6 6は、 例えば電気絶縁性を示す合成材料からなり、 このアンカ 一部材 6 6の固着により、 セラミック板 3 4の上面であるプローブ基板 1 8 aの 上面 3 4 bには、 ボルト 5 2の先端部が螺合するアンカー部 6 6が形成されてい る。 各アンカー部 6 6の頂面は、 プローブ基板 1 8 aに前記した曲がり変形が保 持された該プローブ基板の自由状態で、 前記仮想平面 Pに平行な同一平面 P 2に 一致するように、 揃えられている。 したがって、 各アンカー部 6 6の高さ寸法は、 曲がりを生じたプローブ基板 1 8 aの各アンカー部 6 6が設けられた部分の高さ 位置に応じて、 異なる高さ寸法を有する。
各アンカー部 6 6に対応して配線基板 1 4には、 スぺーサ部材 6 8を受け入れ る貫通孔 7 0が配線基板 1 4の板厚方向に貫通して形成されている。 各ボルト 5 2は、 その頭部 5 2 aを支持部材 1 2の側に位置させてスぺーサ部材 6 8を貫通 して配置され、 その軸部 5 2 bの先端部分が対応するアンカー部 6 6の雌ねじ穴 6 4に螺合する。
各スぺーサ部材 6 8は、 相互に等しい高さ寸法を有する。 スぺーサ部材 6 8の 各下端は、 対応するアンカー部 6 6の平面 P 2上の頂面に当接し、 またスぺーサ 部材 6 8の各上端は取付け基準面となる支持部材 1 2の下面 1 2 aに当接する。 そのため、 支持部材 1 2の上方からボルト 5 2を締め付けることにより、 該ボル トの先端部が螺合するアンカー部 6 6と、 該各アンカー部上に配置されたスぺー サ部材 6 8とのスぺーサ作用により、 仮想平面 Pが支持部材 1 2の取付け基準面 1 2 aに平行となるように、 プローブ基板 1 8 aが前記した曲がり変形を保持し た状態で確実に支持部材 1 2に支持される。
したがって、 プローブ組立体 1 8の各プローブ 1 8 bの先端は、 仮想平面 Pに 平行な平面 P 1上に揃った状態で、 電気的接続装置 1 0に組み付けられることか ら、 従来のようなプローブ基板の煩雑な平坦化作業を行うことなく、 全てのプロ ーブ 1 8 bの先端を同一平面 P 1上に揃えることができる。 そのため、 半導体ゥ ェハ 2 6の各接続パッド 2 6 aに対応するプローブ 1 8 bの先端を均等に押し付 けることができるので、 被検査体である半導体ウェハ 2 6の電気回路の電気的検 查を適正かつ容易におこなうことができる。
また、 図 7に明確に示されているように、 プローブ 1 8 bの先端を揃えるため に、 プローブ基板 1 8 aのセラミック板 3 4から遠ざかる方向へ突出するプロ一 ブランド 4 0の高さ寸法をプローブ基板 1 8 aの曲がり変形に応じて異ならせる ことができる。 各プローブランド 4 0は、 プローブ基板 1 8 aの曲がり変形に応 じて、 その下端面を平面 P 1に平行な平面 P 3上に揃える高さに設定されている。 このように、 プローブランド 4 0の下端面を平面 P 3上に揃えることにより、 同 一高さ寸法すなわち同一長さ寸法のプローブ 1 8 bを各プローブランド 4 0に固 着することによって、 プローブ基板 1 8 aの曲がり変形に拘わらず,、 この同一寸 法のプローブ 1 8 bを用いてプローブ 1 8 bの先端を揃えることができる。
したがって、 プローブ基板 1 8 aの曲がり変形に応じた、 相互に異なる高さ寸 法の多種類のプローブを容易することなく、 単一の高さ寸法のプローブ 1 8 bを 各プローブランド 4 0に固着することにより、 プローブ 1 8 bの先端を平面 P 1 上に揃えることができる。
同様に、 アンカー部 6 6の高さ寸法を等しく設定し、 他方、 スぺーサ部材 6 8 の高さ寸法を異ならせることにより、 プローブ基板 1 8 aの変形を保持した状態 でプローブ組立体 1 8を組み込むことができる。 し力 しながら、 この場合、 プロ ーブ基板 1 8 aの変形に応じてそれぞれ最適な高さ寸法を有する多種類のスぺー サ部材を容易する必要があることから、 多種類のスぺーサ部材を不要とし、 電気 的接続装置 1 0の製造の簡素化を図る上で、 前記したように等長のスぺーサ部材 6 8を用いることが好ましい。
また、 図 6およぴ図 7には、 支持部材 1 2の上方から挿入され、 その先端がプ ローブ基板 1 8 aのアンカー部 6 6に螺合されたボルト 5 2の例を示したが、 こ れに代えて、 図示しないがプローブ基板 1 8 a下面の側から該プローブ基板、 ポ ゴピンブロック 1 6 aおよび配線基板 1 4を貫通するボルトを用い、 該ボルトの 先端を支持部材 1 2に形成された雌ねじ穴に螺合させることができる。 この場合、 アンカー部 6 6およびスぺーサ部材 6 8に代えて、 両部材 6 6、 6 8の高さ寸法 に等しいスぺーサが用いられる。
多層配線層 3 6に代えて、 単層の配線を用いることができるが、 多数のプロ一 ブ 1 8 bのために各配線路 3 6 aを高密度で配置するために、 多層配線技術を用 いることが望ましい。
また、 前記電気的接続装置 1 0では、 支持部材 1 2は、 その下面 1 2 aに保 持された配線基板 1 4を補強する作用をなすが、 高温環境下での検査では、 温度 上昇に伴う熱変形と、 電気接続器 1 6およびプローブ組立体 1 8等の重量により、 中央部が下方へ向けて凸状に変形を生じる傾向が見られる。 しかしながら、 熱変形抑制部材 2 4は、 ボルト 4 4 (図 6参照) により、 支持 部材 1 2の上面 1 2 bに当接して該支持部材に固定されている。 また、 熱変形抑 制部材 2 4は、 例えばステンレス (S U S 4 1 0 :熱膨張係数 9 . 9 P P M /°C) からなる支持部材 1 2よりも熱膨張係数の大きな金属材料であるアルミ二 ゥム (A 5 0 5 2 :熱膨張係数 2 3 . 8 P P M/°C) で形成されている。 そのた め、 高温環境下では、 図 8の概念図に示すように、 熱変形抑制部材 2 4が支持部 材 1 2よりも大きく伸長しょうとするが、 その下面 2 4 aが熱変形抑制部材 2 4 よりも熱膨張係数の小さな支持部材 1 2によりその伸長が拘束される。 このため、 自由面となる上面 2 4 bが拘束を受ける下面 2 4 aよりも大きく伸長しようとす ることから、 その応力差により、 全体に自由面の中央部が支持部材から遠ざかる ように凸状に膨らむ傾向を示す。 この応力差による作用力は、 前記した支持部材 1 2の中央部における下方への凸状変形を抑制する力として作用する。
その結果、 熱変形抑制部材 2 4を設けることにより、 高温環境下での支持部材 1 2の熱膨張変形による下方へのたわみを抑制し、 この支持部材 1 2のたわみに 伴うプローブ組立体 1 8のたわみ変形を抑制することができる。
図 9 ( a ) ないし図 9 ( g ) は、 図 1に示したプローブ組立体の製造工程を示 す。
プローブ組立体 1 8のためのプローブ基板 1 8 aの基板部材として、 例えばセ ラミック板 3 4が用意される。 セラミック板 3 4は、 その全面にわたってほぼ等 しい厚さ寸法を有する。 このセラミック板 3 4には、 既に図 5に沿って説明した 各導電路 3 8が形成されている。 この導電路 3 8の形成加工のために、 セラミツ ク板 3 4には、 図 9 ( a ) に示すように、 その仮想平坦面 Pに関して全体に波状 の曲がり変形が導入されている。 この変形によるセラミック板 3 4の下面におけ るもっとも低い箇所と高い箇所との高低差は、 例えば数十 μ Ιη〜1 0 0 /i mを示 す。
曲がり変形を生じたセラミック板 3 4の一方の面 3 4 aには、 図 9 ( b ) に示 すように、 集積回路の製造工程で用いられるフォトリソグラフィを利用して図 5 に示したと同様な多層配線層 3 6が形成される。 また、 多層配線層 3 6の表面に 露出する配線路 3 6 aの所定箇所には、 例えば前記したと同様なフォトリソグラ フィおよび電気メツキ法を用いて、 導電材料を均等な厚さで選択的に堆積させる ことにより、 プローブ 1 8 bのための互いに等しい高さ寸法を有するプローブラ ンド 4 0が形成される。
このプローブランド 4 0の下端面は、 図 9 ( c ) に示すように、 仮想平坦面 P と平行な前記平面 P 3に揃えられる。 このプローブランド 4 0の下端面を揃える ために、 例えば化学機械研磨 (C M P ) が用いられる。 これにより、 プローブラ ンド 4 0の下端面は、 例えば 1 0 μ πι未満の誤差で前記平面 P 3に揃えられる。 図 9 ( d ) に示すように、 セラミック板 3 4の上面 3 4 bの所定箇所に、 例え ば合成樹脂材料からなるアンカー部材 6 6が接着材により固着される。 このアン カー部材 6 6は、 前記した雌ねじ穴 6 4を有し、 互いに等しい高さ寸法をする。 アンカー部材 6 6は、 等しい高さ寸法を有することから、 このアンカー部材 6 6 により形成される各アンカー部 6 6の頂面の高さ位置は、 セラミック板 3 4の変 形に応じて異なる。 このアンカー部 6 6の高さ位置は、 図 9 ( e ) に示すように、 研磨工程で、 仮想平坦面 Pと平行な前記平面 P 2に揃えられる。 このアンカー部 材 6 6の頂面を前記平面 P 2上に揃えるために、 例えば機械研磨が用いられる。 この機械研磨により、 アンカー部材 6 6の頂面は、 前記プローブランド 4 0の下 端面におけると同様に、 例えば 1 0 /i m未満の誤差で前記平面 P 2に揃えられる。 図 9 ( d ) および図 9 ( e ) に示したアンカー部 6 6の形成おょぴその研磨ェ 程を前記したプローブランド 4 0および多層配線層 3 6の形成前におこなうこと ができる。
しかしながら、 多層配線層 3 6およびプローブランド 4 0の形成工程の加熱下 でセラミック板 3 4にさらに曲がり変形が導入される虞がある。 この多層配線層
3 6およびプローブランド 4 0の形成でセラミック板 3 4に導入される曲がり変 形の影響によるアンカー部 6 6の頂面のばらつきを確実に防止する上で、 図 9
( b ) 〜図 9 ( e ) に示すように、 多層配線層 3 6の形成およびプローブランド
4 0の形成およびその研磨工程後に、 アンカー部 6 6の研磨工程を行うことが好 ましい。
いずれにしても、 プローブランド 4 0の研磨およびアンカー部 6 6の研磨によ り、 図 9 ( f ) に示すように、 前記平面 P 2に頂面が揃ったアンカー部 6 6およ び前記平面 P 3に揃った端面を有するプローブランド 4 0を有するプローブ基板 1 8 aが形成される。 したがって、 その後、 図 9 ( g ) に示すように、 等長のプ ローブ 1 8 bを例えば半田のような導電性接着を用いて各アンカー部 6 6の下端 面に接着することにより、 前記したように、 プローブ基板 1 8 aの曲がり変形に 拘わらず、 前記平面 P 1上に先端を揃えたプローブ組立体 1 8が形成される。 このプローブ組立体 1 8は、 アンカー部 6 6の頂面が前記平面 P 2に揃えられ ていることから、 例えば 1 0 μ πι未満の高さ寸法誤差で形成された等長のスぺー サ部材 6 8および該スぺ一サ部材に挿入されるボルト 5 2を用いて、 前記したよ うに支持部材 1 2に支持されるように、 これに組み付けられることにより、 プロ ーブ基板 1 8 aの曲がり変形を調整することなく、 各プローブ 1 8 bの先端を所 定の許容誤差内で同一平面 P 1上に揃えることができる。
したがって、 煩わしいプローブ基板 1 8 aの平坦化調整をおこなうことなく、 全てのプローブ 1 8 bと、 半導体ウェハ 2 6の前記電気回路の対応する接続パッ ド 2 6 aとの良好な電気的接触を得ることができる。
また、 前記した製造方法により、 本発明に係るプローブ組立体 1 8を比較的容 易に製造することができる。
図 1 0ないし図 1 4は、 本発明の他の実施例を示す。 図 1 0ないし図 1 4では、 図 1ないし図 9に示した実施例におけると同様な機能を有する構成部分には、 同 一の参照符号が付されている。
図 1 0および図 1 1に示す例では、 プローブ組立体 1 8自体は前記した実施例 におけると同一であり、 電気接続器 1 6に関連して、 プローブ組立体 1 8の支持 部材 1 2への取り付け形態が図 6およぴ図 7に示した例と異なる。 すなわち、 図 1 0および図 1 1に示す例では、 配線基板 1 4とベースリング 2 0との間には、 均等な厚さ寸法を有するスペース板 1 6 8が配置されている。 このスペース板 1 6 8には、 図 1 2および図 1 3に示されているように、 複数の電気接続器 1 6を 受け入れるための板厚方向に貫通する複数の開口 1 6 8 aが形成されている。 電 気接続器 1 6は、 図 1 1に示すように、 前記したと同様なポゴピンブロック 1 6 a、 それぞれが対をなすポゴピン 1 6 b、 1 6 cおよび対をなす両ポゴピン 1 6 b、 1 6 cに相離れる方向へ偏倚力を与える圧縮コイルばね 1 6 dを備える。 各 電気接続器 1 6のポゴピンブロック 1 6 aは、 対応する開口 1 6 8 aに挿入され ている。 この挿入により、 各一対のポゴピン 1 6 b、 1 6 cのうちの一方のポゴ ピン 1 6 bは、 図 1 3に示すように、 スペース板 1 6 8の下面 1 6 8 bから突出 可能である。 また、 各他方のポゴピン 1 6 cは、 図 1 2に示すように、 スペース 板 1 6 8の上面 1 6 8 cから突出可能である。
スペース板 1 6 8は、 図 1 1に明確に示されているように、 その雌ねじ穴 1 6 0に螺合するボルト 5 0により、 各一方のポゴピン 1 6 bがセラミック板 3 4上 の接続部 3 8 a (図 5参照) に当接し、 各他方のポゴピン 1 6 cが配線基板 1 4 の接続端子 1 4 c (図 5参照) に当接するように、 配線基板 1 4およびベースリ ング 2 0間で固定されている。 支持部材 1 2の下面 1 2 aとスペース板 1 6 8の 上面 1 6 8 cとの間隔は、 スぺ一サ 6 2により規定されている。
また、 固定リング 2 2と共同してプローブ基板 1 8 aの縁部を挟持するベース リング 2 0は、 ボルト 1 4 8によりスペース板 1 6 8に固定されている。 このボ ルト 1 4 8は、 スペース板 1 6 8の上面 1 6 8 cから貫通孔 1 6 8 dに挿入され、 その先端がベースリング 2 0の雌ねじ穴 1 5 8に螺合する。 固定リング 2 2は、 前記した例におけると同様なボルト 4 8によりベースリング 2 0に結合されてレ、 る。
また、 スペース板 1 6 8には、 プローブ基板 1 8 aの各アンカー部 6 6に対応 して該アンカー部に螺合するボルト 5 2の軸部 5 2 bの貫通を許す貫通孔 1 7 0 が形成されており、 スペース板 1 6 8の上面 1 6 8 cには、 各貫通孔 1 7 0に対 応してボルト 5 2の頭部 5 2 aを収容する凹所 1 7 0 aが形成されている。
したがって、 電気接続器 1 6が組み込まれたスペース板 1 6 8をボルト 5 0で 支持部材 1 2に結合するに先立ち、 ボルト 5 2をスペース板 1 6 8の貫通孔 1 7 0を経てアンカー部 6 6の雌ねじ穴 6 4に螺合させ、 その頭部 5 2 aの頂面が凹 所 1 7 0 aから突出することなく該凹所に頭部 5 2 aが完全に収容されるように、 ボルト 5 2を締め付けることができる。 このボルト 5 2の締め付けに関して、 了 ンカ一部 6 6およびスペース板 1 6 8がプローブ基板 1 8 aの変形を保持するた めのスぺーサとして機能する。 そのため、 ボルト 5 2の締め付けにより、 プロ一 ブ基板 1 8 aの自由状態での前記した変形を保持した状態で、 かつ電気接続器 1 6とプローブ組立体 1 8とが前記した適正な電気的接続を保持した状態で、 電気 接続器 1 6が組み込まれたスペース板 1 6 8にプローブ組立体 1 8を適正に保持 することができる。 したがって、 このプローブ基板 1 8 aが取り付けられたスぺ —ス板 1 6 8をボノレト 5 0により支持部材 1 2に結合することにより、 プローブ 基板 1 8 aの前記変形を保持した状態で、 スペース板 1 6 8を介してプローブ基 板 1 8 aを支持部材 1 2に適正に支持することができる。
その結果、 従来のようなプローブ基板の煩雑な平坦化作業を行うことなく、 全 てのプローブ 1 8 bの先端を同一平面 P 1上に揃えることができるので、 前記し たと同様に、 プローブ基板の煩雑な平坦化作業を行うことなく、 被検査体である 半導体ウェハ 2 6の電気回路の電気的検査を適正かつ容易におこなうことができ る。
また、 スペース板 1 6 8を用いた例では、 図 1 1に明確に示されているように、 各アンカー部 6 6の頂面の高さ位置 (平面 P 2 ) がスペース板 1 6 8の下面 1 6 8 bに当接するベースリング 2 0の上面 2 0 bに一致する。 そのため、 図 1 4に 示すように、 ベースリング 2 0および固定リング 2 2がプローブ組立体 1 8のプ 口ーブ基板 1 8 aの縁部を挟持するように、 両リング 2 0、 2 2をボルト 4 8で 結合することにより、 図 9 ( e ) に示したアンカー部 6 6の研削工程で、 これら をプローブ組立体 1 8の保持具として利用すると共に、 ベースリング 2 0の上面 2 0 bをアンカー部 6 6の研削工程での頂面の基準面として利用することができ る。
本発明は、 上記実施例に限定されず、 その趣旨を逸脱しない限り、 種々変更す ることができる。

Claims

請求の範囲
1 . 被検査体の電気的測定に用いられるプローブ組立体であって、 負荷を受け ない自由状態で曲がり変形を生じた平板状のプローブ基板と、 該プローブ基板の 一方の面に該面から突出して形成された複数のプローブとを備え、 全ての前記プ ローブの先端は、 前記プローブ基板の前記変形を保持した状態で、 仮想基準面に 平行な同一平面上に位置するプローブ a立体。
2 . 前記プローブ基板は、 基板部材と、 該基板部材の一方の面に形成され、 表 面に電気接続部を有する配線層とを備え、 該配線層の前記電気接続部には前記プ ローブが前記基板部材から遠ざかる方向へ突出して形成されている、 請求項 1に 記載のプローブ組立体。
3 . 前記プローブ基板の前記基板部材は、 セラミック板である請求項 2に記載 のプローブ組立体。
4 . 前記配線層は多層配線層である、 請求項 3に記載のプローブ組立体。
5 . 前記セラミック板の他方の面には、 前記プローブ基板を所定箇所に取付け るための複数の雄ねじ部材の端部をそれぞれ受け入れる雌ねじ穴を有する複数の アンカー部が形成されており、 全ての前記アンカー部の頂面は、 前記プローブ基 板の前記変形を保持した状態で前記仮想基準面に平行な同一平面上に位置する、 請求項 3に記載のプローブ組立体。
6 . 前記多層配線層の表面に形成された電気接続部には、 前記プローブのため の複数のプローブランドが前記セラミック板から遠ざかる方向へ突出して形成さ れており、 該各プローブランドの突出する端面から前記各プローブが伸長し、 全 ての前記プローブランドの前記端面は、 前記プローブ基板の前記変形を保持した 状態で、 前記仮想基準面に平行な同一平面上に位置する、 請求項 4に記載のプロ ーブ組立体。
7 . 基板部材の一方の面に多層配線層を形成すると共に該多層配線層の表面に 複数のプローブランドを形成すること、 前記プローブランドの全ての端面を前記 基板部材の曲がり変形に拘わらず仮想基準面に平行な同一平面上に位置させるベ く前記基板部材に導入された変形を保持した状態で前記プローブランドの端面を 揃えること、 前記多層配線の形成後、 前記基板部材の他方の面に雄ねじ部材の端 部が螺合可能なねじ穴を有する複数のアンカー部を形成すること、 前記基板部材 の前記変形を保持した状態で前記全てのアンカー部の頂面を前記基板部材の前記 曲がり変形に拘わらず前記仮想軸線に平行な他の同一平面上に位置させるベく前 記アンカー部の頂面を揃えること、 揃えられた前記プローブランドの端面に同一 高さ寸法を有するプローブを形成することを含む、 プロ一ブ組立体の製造方法。
8 . 前記プローブランドの端面および前記アンカー部の頂面は、 前記多層配線 層の形成後、 行われる、 請求項 7に記載の製造方法。
9 . 前記多層配線層の前記表面の前記複数のプローブランドは相互に等しい高 さ寸法に形成された後、 それらの端面が揃えられ、 また前記基板部材の前記他方 の面の前記複数のアンカー部は相互に等しい高さ寸法に形成された後、 それらの 頂面が揃えられる、 請求項 7に記載の製造方法。
1 0 . 前記プローブランドの端面およびアンカー部の頂面をそれぞれ揃えるた めに、 前記プローブランドおよびアンカー部の端部はそれぞれ研磨を受ける、 請 求項 9に記載の製造方法。
1 1 . 前記基板部材にセラミック板が用いられる、 請求項 7に記載の製造方法。
1 2 . 前記多層配線層は、 フォトリソグラフィ技術を用いて形成される、 請求 項 7に記載の製造方法。
1 3 . 前記プローブは、 フォ トリソグラフィで形成されたカンチレバータイプ のプローブが接着により前記アンカー部の頂面に固着されて形成される、 請求項
7に記載の製造方法。
1 4 . テスタと、 該テスタによる電気的検査を受ける被検查体の電気接続端子 とを接続する電気的接続装置であって、
取付け基準面を有する支持部材と、 前記テスタに接続される配線回路が形成さ れ、 前記支持部材の前記基準面に一方の面を対向させて配置され、 他方の面に前 記配線回路の複数の接続端子が形成された配線基板と、 負荷を受けない自由状態 で曲がり変形を生じた平板状のプローブ基板および該プローブ基板の一方の面に 設けられ前記被検査体の前記接続端子に先端部を当接可能な複数のプローブを有 するプローブ組立体であって前記プローブ基板の他方の面が前記配線基板の前記 他方の面に対向して配置されたプローブ組立体と、 前記プローブ基板と前記配線 基板との間に配置され該配線基板の前記接続端子を該接続端子に対応する前記プ 口ーブに接続するための電気接続器と、 該電気接続器を経て前記プローブを前記 配線基板の前記接続端子に接続すべく前記プローブ組立体が前記支持部材に取り 付けられたとき、 前記プローブ基板の前記変形を保持すべく前記プローブ基板の 前記他方の面と前記支持部材の前記基準面との間に適合して配置される複数のス ぺーサとを備え、 前記各プローブの先端は前記プローブ基板の前記変形を保持し た状態で同一平面上に位置する、 電気的接続装置。
1 5 . 前記プローブ基板は、 セラミック板と、 該セラミック板の一方の面に形 成され、 表面に電気接続部を有する多層配線層とを備え、 該多層配線層の前記電 気接続部には前記プローブが前記セラミック板から遠ざかる方向へ突出して形成 されている、 請求項 1 4に記載の電気的接続装置。
1 6 . 前記プローブ基板は、 前記支持部材、 前記配線基板および前記電気的接 続器を貫通して配置される雄ねじ部材を介して前記支持部材に取り付けられてお り、 前記スぺーサは、 前記セラミック板の他方の面に形成され前記支持部材の前 記基準面に向けて立ち上がる複数のアンカー部であって前記基準面と平行な同一 面上に頂面を有しかつ前記雄ねじ部材の端部を受け入れる雌ねじ穴が形成された 複数のアンカー部と、 該ァンカ一部の頂面と前記基準面との間に揷入された均一 な長さ寸法を有する複数のスぺーサ部材とからなる、 請求項 1 4に記載の電気的 接続装置。
1 7 . . 前記プローブ基板と前記配線基板との間には、 前記電気接続器の貫通を 許し前記支持部材に結合され均一な厚さ寸法を有するスぺーサ板が配置されてお り、 前記プローブ基板は、 前記スぺーサ板を貫通して配置された雄ねじ部材を介 して前記スぺーサ板に取り付けられており、 前記スぺーサは、 前記セラミック板 の他方の面に形成され前記支持部材の前記基準面に向けて立ち上がる複数のアン 力一部であつて前記基準面と平行な同一面上に頂面を有しかつ前記雄ねじ部材の 端部を受け入れる雌ねじ穴が形成されたアンカー部と、 該アンカー部の頂面と前 記基準面との間に挿入された前記スぺーサ板とからなる、 請求項 1 5に記載の電 気的接続装置。
1 8 . 前記雄ねじ部材は、 前記配線基板と前記スぺーサ板との間で該スぺーサ 部材に埋設された頭部を有するボルトである請求項 1 7に記載の電気的接続装置。
1 9 . 前記支持部材の前記基準面と反対側の面には、 前記支持部材のたわみ変 形を抑制すべく該支持部材の熱膨張係数よりも大きな熱膨張係数を有する熱変形 抑制部材が取り付けられている、 請求項 1 4に記載の電気的接続装置。
PCT/JP2005/009812 2005-05-23 2005-05-23 プローブ組立体、その製造方法および電気的接続装置 WO2006126279A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2007517706A JP4704426B2 (ja) 2005-05-23 2005-05-23 電気的接続装置、その製造方法および電気的接続装置
PCT/JP2005/009812 WO2006126279A1 (ja) 2005-05-23 2005-05-23 プローブ組立体、その製造方法および電気的接続装置
US11/912,872 US7667472B2 (en) 2005-05-23 2005-05-23 Probe assembly, method of producing it and electrical connecting apparatus
DE112005003580T DE112005003580B4 (de) 2005-05-23 2005-05-23 Sondenanordnung, Verfahren zu ihrer Herstellung und elektrische Verbindungsvorrichtung
MYPI20055776A MY146719A (en) 2005-05-23 2005-12-09 Probe assembly, method of producing it and electrical connecting apparatus
TW094145307A TWI284379B (en) 2005-05-23 2005-12-20 Probe assembly, method of producing it and electrical connecting apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2005/009812 WO2006126279A1 (ja) 2005-05-23 2005-05-23 プローブ組立体、その製造方法および電気的接続装置

Publications (1)

Publication Number Publication Date
WO2006126279A1 true WO2006126279A1 (ja) 2006-11-30

Family

ID=37451715

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/009812 WO2006126279A1 (ja) 2005-05-23 2005-05-23 プローブ組立体、その製造方法および電気的接続装置

Country Status (6)

Country Link
US (1) US7667472B2 (ja)
JP (1) JP4704426B2 (ja)
DE (1) DE112005003580B4 (ja)
MY (1) MY146719A (ja)
TW (1) TWI284379B (ja)
WO (1) WO2006126279A1 (ja)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007066622A1 (ja) * 2005-12-05 2007-06-14 Nhk Spring Co., Ltd. プローブカード
JP2008145238A (ja) * 2006-12-08 2008-06-26 Micronics Japan Co Ltd 電気接続器及びこれを用いた電気的接続装置
JP2008203036A (ja) * 2007-02-19 2008-09-04 Micronics Japan Co Ltd 電気的接続装置
JP2008216060A (ja) * 2007-03-05 2008-09-18 Micronics Japan Co Ltd 電気的接続装置
WO2008126601A1 (ja) * 2007-03-14 2008-10-23 Nhk Spring Co., Ltd. プローブカード
US7468610B2 (en) 2006-11-29 2008-12-23 Kabushiki Kaisha Nihon Micronics Electrical connecting apparatus
WO2009011365A1 (ja) * 2007-07-19 2009-01-22 Nhk Spring Co., Ltd. プローブカード
JP2009043640A (ja) * 2007-08-10 2009-02-26 Micronics Japan Co Ltd 電気接続器及びこれを用いた電気的接続装置
JP2009139160A (ja) * 2007-12-05 2009-06-25 Tokyo Electron Ltd プローブカードの製造方法
JP2009204326A (ja) * 2008-02-26 2009-09-10 Micronics Japan Co Ltd 電気的接続装置
US7667472B2 (en) 2005-05-23 2010-02-23 Kabushiki Kaisha Nihon Micronics Probe assembly, method of producing it and electrical connecting apparatus
US7728608B2 (en) 2005-10-24 2010-06-01 Kabushiki Naisha Nihon Micronics Method for assembling electrical connecting apparatus
US7843198B2 (en) 2005-08-02 2010-11-30 Kabushiki Kaisha Nihon Micronics Electrical connecting apparatus
US7924034B2 (en) 2006-06-02 2011-04-12 Kabushiki Kaisha Nihon Micronics Electric connecting apparatus
US8149006B2 (en) 2005-12-05 2012-04-03 Nhk Spring Co., Ltd. Probe card
JP2013191736A (ja) * 2012-03-14 2013-09-26 Tokyo Electron Ltd ウエハ検査用インターフェース及びウエハ検査装置
TWI638164B (zh) * 2016-06-16 2018-10-11 美商加斯凱德微科技公司 探針頭組件以及用以測試積體電路裝置的探針系統
JP2020112487A (ja) * 2019-01-15 2020-07-27 株式会社日本マイクロニクス プローブ基板及び電気的接続装置

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7764073B2 (en) * 2005-04-18 2010-07-27 Kabushiki Kaisha Nihon Micronics Electrical connecting apparatus
TW200937704A (en) * 2008-02-26 2009-09-01 Anor Prec Ceramic Ind Co Ltd Ceramic plate capable of increasing working area
JP5530124B2 (ja) * 2009-07-03 2014-06-25 株式会社日本マイクロニクス 集積回路の試験装置
JP6084882B2 (ja) 2013-04-04 2017-02-22 株式会社日本マイクロニクス プローブ組立体及びプローブ基板
SG11201510255QA (en) * 2013-07-11 2016-01-28 Johnstech Int Corp Testing apparatus for wafer level ic testing
TWI493195B (zh) * 2013-11-04 2015-07-21 Via Tech Inc 探針卡
US10067164B2 (en) 2015-08-24 2018-09-04 Johnstech International Corporation Testing apparatus and method for microcircuit testing with conical bias pad and conductive test pin rings
US10973413B2 (en) * 2015-10-07 2021-04-13 Fiomet Ventures, Inc. Advanced compression garments and systems
TWI596344B (zh) * 2016-04-27 2017-08-21 Replaceable probe module probe card and its assembly method and probe module replacement side law
CN107894521B (zh) * 2016-10-04 2021-08-20 旺矽科技股份有限公司 同轴探针卡装置
TWI739764B (zh) * 2016-10-04 2021-09-21 旺矽科技股份有限公司 同軸探針卡裝置
TWI678537B (zh) * 2018-01-05 2019-12-01 旺矽科技股份有限公司 探針卡
JP7198127B2 (ja) * 2019-03-20 2022-12-28 株式会社アドバンテスト インタポーザ、ソケット、ソケット組立体、及び、配線板組立体
KR102454947B1 (ko) * 2020-11-05 2022-10-17 주식회사 에스디에이 프로브 카드
CN116879598B (zh) * 2023-09-01 2023-12-01 江苏鹏利芝达恩半导体有限公司 一种用于连接探头卡和半导体检测装置的接口制造方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1031034A (ja) * 1996-07-17 1998-02-03 Denki Kagaku Kogyo Kk 平行度調整器付きプローブカード
JP2003179110A (ja) * 1994-11-15 2003-06-27 Formfactor Inc プローブカード・アセンブリ及びキット、及びそれらを用いる方法
JP2003203954A (ja) * 1999-11-18 2003-07-18 Ibiden Co Ltd 検査装置およびプローブカード
WO2003062837A1 (fr) * 2002-01-25 2003-07-31 Advantest Corporation Carte sonde

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100196195B1 (ko) * 1991-11-18 1999-06-15 이노우에 쥰이치 프로우브 카드
JP3430862B2 (ja) * 1997-06-17 2003-07-28 セイコーエプソン株式会社 プローブカード
DE60142030D1 (de) 2000-03-17 2010-06-17 Formfactor Inc Verfahren und vorrichtung zum einebnen von einem halbleitersubstrat in einer testkartenanordnung
JP4689070B2 (ja) * 2001-04-12 2011-05-25 ルネサスエレクトロニクス株式会社 半導体素子試験装置およびこれを用いた半導体素子試験方法
TW200525675A (en) * 2004-01-20 2005-08-01 Tokyo Electron Ltd Probe guard
JP2005265720A (ja) * 2004-03-19 2005-09-29 Nec Corp 電気接点構造及びその形成方法と素子検査方法
DE112005003580B4 (de) 2005-05-23 2013-05-16 Kabushiki Kaisha Nihon Micronics Sondenanordnung, Verfahren zu ihrer Herstellung und elektrische Verbindungsvorrichtung
JP5190195B2 (ja) * 2006-11-29 2013-04-24 株式会社日本マイクロニクス 電気的接続装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003179110A (ja) * 1994-11-15 2003-06-27 Formfactor Inc プローブカード・アセンブリ及びキット、及びそれらを用いる方法
JPH1031034A (ja) * 1996-07-17 1998-02-03 Denki Kagaku Kogyo Kk 平行度調整器付きプローブカード
JP2003203954A (ja) * 1999-11-18 2003-07-18 Ibiden Co Ltd 検査装置およびプローブカード
WO2003062837A1 (fr) * 2002-01-25 2003-07-31 Advantest Corporation Carte sonde

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7667472B2 (en) 2005-05-23 2010-02-23 Kabushiki Kaisha Nihon Micronics Probe assembly, method of producing it and electrical connecting apparatus
US7843198B2 (en) 2005-08-02 2010-11-30 Kabushiki Kaisha Nihon Micronics Electrical connecting apparatus
JP4791473B2 (ja) * 2005-08-02 2011-10-12 株式会社日本マイクロニクス 電気的接続装置
US7728608B2 (en) 2005-10-24 2010-06-01 Kabushiki Naisha Nihon Micronics Method for assembling electrical connecting apparatus
DE112005003731B4 (de) * 2005-10-24 2013-04-18 Kabushiki Kaisha Nihon Micronics Verfahren zur Montage einer elektrischen Verbindungsvorrichtung
US8149006B2 (en) 2005-12-05 2012-04-03 Nhk Spring Co., Ltd. Probe card
JP5289771B2 (ja) * 2005-12-05 2013-09-11 日本発條株式会社 プローブカード
US8018242B2 (en) 2005-12-05 2011-09-13 Nhk Spring Co., Ltd. Probe card
WO2007066622A1 (ja) * 2005-12-05 2007-06-14 Nhk Spring Co., Ltd. プローブカード
US7924034B2 (en) 2006-06-02 2011-04-12 Kabushiki Kaisha Nihon Micronics Electric connecting apparatus
US7468610B2 (en) 2006-11-29 2008-12-23 Kabushiki Kaisha Nihon Micronics Electrical connecting apparatus
JP2008145238A (ja) * 2006-12-08 2008-06-26 Micronics Japan Co Ltd 電気接続器及びこれを用いた電気的接続装置
JP2008203036A (ja) * 2007-02-19 2008-09-04 Micronics Japan Co Ltd 電気的接続装置
US7586316B2 (en) 2007-03-05 2009-09-08 Kabushiki Kaisha Nihon Micronics Probe board mounting apparatus
JP2008216060A (ja) * 2007-03-05 2008-09-18 Micronics Japan Co Ltd 電気的接続装置
JPWO2008126601A1 (ja) * 2007-03-14 2010-07-22 日本発條株式会社 プローブカード
JP5426365B2 (ja) * 2007-03-14 2014-02-26 日本発條株式会社 プローブカード
US8456184B2 (en) 2007-03-14 2013-06-04 Nhk Spring Co., Ltd. Probe card for a semiconductor wafer
WO2008126601A1 (ja) * 2007-03-14 2008-10-23 Nhk Spring Co., Ltd. プローブカード
US8149008B2 (en) 2007-07-19 2012-04-03 Nhk Spring Co., Ltd. Probe card electrically connectable with a semiconductor wafer
JP5714817B2 (ja) * 2007-07-19 2015-05-07 日本発條株式会社 プローブカード
CN101755216B (zh) * 2007-07-19 2012-10-10 日本发条株式会社 探针卡
TWI394953B (zh) * 2007-07-19 2013-05-01 Nhk Spring Co Ltd 探針卡
WO2009011365A1 (ja) * 2007-07-19 2009-01-22 Nhk Spring Co., Ltd. プローブカード
JP2009043640A (ja) * 2007-08-10 2009-02-26 Micronics Japan Co Ltd 電気接続器及びこれを用いた電気的接続装置
JP2009139160A (ja) * 2007-12-05 2009-06-25 Tokyo Electron Ltd プローブカードの製造方法
US7843204B2 (en) 2008-02-26 2010-11-30 Kabushiki Kaisha Nihon Micronics Electrical connecting apparatus
JP2009204326A (ja) * 2008-02-26 2009-09-10 Micronics Japan Co Ltd 電気的接続装置
JP2013191736A (ja) * 2012-03-14 2013-09-26 Tokyo Electron Ltd ウエハ検査用インターフェース及びウエハ検査装置
TWI638164B (zh) * 2016-06-16 2018-10-11 美商加斯凱德微科技公司 探針頭組件以及用以測試積體電路裝置的探針系統
JP2020112487A (ja) * 2019-01-15 2020-07-27 株式会社日本マイクロニクス プローブ基板及び電気的接続装置
KR20210096258A (ko) 2019-01-15 2021-08-04 가부시키가이샤 니혼 마이크로닉스 프로브 기판 및 전기적 접속장치
CN113302503A (zh) * 2019-01-15 2021-08-24 日本麦可罗尼克斯股份有限公司 探针基板以及电性连接装置
US11747365B2 (en) 2019-01-15 2023-09-05 Kabushiki Kaisha Nihon Micronics Probe substrate and electrical connecting apparatus
KR102659300B1 (ko) 2019-01-15 2024-04-19 가부시키가이샤 니혼 마이크로닉스 프로브 기판 및 전기적 접속장치
CN113302503B (zh) * 2019-01-15 2024-04-30 日本麦可罗尼克斯股份有限公司 探针基板以及电性连接装置

Also Published As

Publication number Publication date
US7667472B2 (en) 2010-02-23
US20090058440A1 (en) 2009-03-05
TWI284379B (en) 2007-07-21
JP4704426B2 (ja) 2011-06-15
MY146719A (en) 2012-09-14
DE112005003580B4 (de) 2013-05-16
TW200642027A (en) 2006-12-01
DE112005003580T5 (de) 2008-05-29
JPWO2006126279A1 (ja) 2008-12-25

Similar Documents

Publication Publication Date Title
WO2006126279A1 (ja) プローブ組立体、その製造方法および電気的接続装置
US8149008B2 (en) Probe card electrically connectable with a semiconductor wafer
JP5426161B2 (ja) プローブカード
KR100942166B1 (ko) 전기적 접속 장치
KR101242004B1 (ko) 프로브 카드
US7843198B2 (en) Electrical connecting apparatus
EP1364221A1 (en) Planarizing interposer
JP4842049B2 (ja) プローブ組立体
TW200905202A (en) Probe card assembly with a mechanically decoupled wiring substrate
TW200829921A (en) Electric connection device and its assembling method
WO2008015962A1 (fr) Mécanisme de réglage du parallélisme d'une carte sonde
KR20090128186A (ko) 프로브 카드의 프로브 니들 구조체와 그 제조 방법
JP2005533254A (ja) 被試験部品上の電気回路を試験するために被試験部品を試験機械に電気的に接続するための組立体
US7586316B2 (en) Probe board mounting apparatus
WO2008114973A1 (en) Probe card having planarization means
KR101328136B1 (ko) 프로브 카드
JPWO2007046153A1 (ja) 電気的接続装置の組み立て方法
KR100920790B1 (ko) 프로브 조립체, 그 제조방법 및 전기적 접속장치
KR101081901B1 (ko) 프로브 카드
TW200949255A (en) Probe card
TWI282429B (en) An integrated circuit test card
JP2009222680A (ja) プローブカード及びプローブカードの製造方法
JP2000147005A (ja) コンタクトユニット及び電気的接続装置
KR101877861B1 (ko) 검사프로브 제조방법 및 제조장치, 그리고 이에 의해 제조된 검사프로브
JPH10300783A (ja) コンタクトプローブおよびそれを備えたプローブ装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007517706

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 1020077024179

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 11912872

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1120050035808

Country of ref document: DE

NENP Non-entry into the national phase

Ref country code: RU

WWW Wipo information: withdrawn in national office

Ref document number: RU

RET De translation (de og part 6b)

Ref document number: 112005003580

Country of ref document: DE

Date of ref document: 20080529

Kind code of ref document: P

122 Ep: pct application non-entry in european phase

Ref document number: 05743592

Country of ref document: EP

Kind code of ref document: A1

REG Reference to national code

Ref country code: DE

Ref legal event code: 8607