WO2006103779A1 - 半導体装置及びその製造方法 - Google Patents

半導体装置及びその製造方法 Download PDF

Info

Publication number
WO2006103779A1
WO2006103779A1 PCT/JP2005/006183 JP2005006183W WO2006103779A1 WO 2006103779 A1 WO2006103779 A1 WO 2006103779A1 JP 2005006183 W JP2005006183 W JP 2005006183W WO 2006103779 A1 WO2006103779 A1 WO 2006103779A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
noble metal
semiconductor device
insulating film
plug
Prior art date
Application number
PCT/JP2005/006183
Other languages
English (en)
French (fr)
Inventor
Wensheng Wang
Original Assignee
Fujitsu Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Limited filed Critical Fujitsu Limited
Priority to KR1020077021107A priority Critical patent/KR100909029B1/ko
Priority to PCT/JP2005/006183 priority patent/WO2006103779A1/ja
Priority to CNA2005800493648A priority patent/CN101151729A/zh
Priority to JP2007510301A priority patent/JPWO2006103779A1/ja
Publication of WO2006103779A1 publication Critical patent/WO2006103779A1/ja
Priority to US11/862,606 priority patent/US20080017902A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/10Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a repetitive configuration
    • H01L27/105Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a repetitive configuration including field-effect components
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L28/00Passive two-terminal components without a potential-jump or surface barrier for integrated circuits; Details thereof; Multistep manufacturing processes therefor
    • H01L28/40Capacitors
    • H01L28/55Capacitors with a dielectric comprising a perovskite structure material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L28/00Passive two-terminal components without a potential-jump or surface barrier for integrated circuits; Details thereof; Multistep manufacturing processes therefor
    • H01L28/40Capacitors
    • H01L28/60Electrodes
    • H01L28/65Electrodes comprising a noble metal or a noble metal oxide, e.g. platinum (Pt), ruthenium (Ru), ruthenium dioxide (RuO2), iridium (Ir), iridium dioxide (IrO2)
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B53/00Ferroelectric RAM [FeRAM] devices comprising ferroelectric memory capacitors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B53/00Ferroelectric RAM [FeRAM] devices comprising ferroelectric memory capacitors
    • H10B53/30Ferroelectric RAM [FeRAM] devices comprising ferroelectric memory capacitors characterised by the memory core region

Definitions

  • the present invention relates to a semiconductor device and a manufacturing method thereof, and more particularly to a semiconductor device having a capacitor using a high dielectric film or a ferroelectric film as a dielectric film and a manufacturing method thereof.
  • DRAMs Dynamic Random Access Memory
  • capacitors that make up DRAMs in order to realize high integration.
  • Technology using materials has been widely researched and developed.
  • Ferroelectric Random Access Memory using a ferroelectric capacitor having a ferroelectric film as a dielectric film of the capacitor is capable of high-speed operation, low power consumption, and writing. It is a non-volatile memory with features such as excellent Z read durability, and further development is expected in the future.
  • FeRAM is a memory that stores information by utilizing the hysteresis characteristics of a ferroelectric.
  • the ferroelectric film is polarized according to the applied voltage between the electrodes, and voltage is applied between the electrodes. Even after stopping, it has spontaneous polarization. If the polarity of the applied voltage between the electrodes is reversed, the polarity of this spontaneous polarization is also reversed. Thus, information corresponding to the polarity of the spontaneous polarization of the ferroelectric film is stored in the ferroelectric capacitor, and the stored information is read out by detecting the spontaneous polarization.
  • the material of the ferroelectric film used in the ferroelectric capacitor of FeRAM is PbZr.
  • PZT Pb La Zr Ti O
  • PZT ferroelectrics such as cocoons are used.
  • SBT SrBi Ta O
  • SrBi Ta N b
  • Bismuth layer structure ferroelectrics such as O (SBTN) are also used.
  • the dielectric film is formed by a sol-gel method, a sputtering method, a MOCVD (Metal Organic Chemical Vapor Deposition) method, or the like.
  • a ferroelectric film used in a ferroelectric capacitor is generally formed on a lower electrode by the sol-gel method or the like and then subjected to heat treatment to form a perovskite crystal or bismuth layer. Crystallized into structure crystals. For this reason, it is indispensable that the electrode material of the ferroelectric capacitor is a material that is difficult to oxidize or that remains conductive even when oxidized.
  • Such electrode materials include platinum group metals such as Pt, Ir, IrO, or
  • Platinum metal oxides are widely used.
  • A1 or the like used in ordinary semiconductor devices is generally used.
  • FeRAM has a future problem of reducing the cell area. Stacked cells are attracting attention as a structure that can reduce the cell area of FeRAM.
  • a ferroelectric capacitor is formed immediately above a plug connected to a source Z drain region of a transistor formed on a semiconductor substrate. That is, a barrier metal, a lower electrode, a strong dielectric film, and an upper electrode are sequentially formed on the plug connected to the source Z drain region.
  • a plug made of tungsten is used as the plug.
  • Noralia metal plays a role in suppressing oxygen diffusion.
  • a conductor film serving as a lower electrode and a barrier metal is formed. For this reason, it is difficult to clearly distinguish between the rare metal and the lower electrode, but there are combinations of TiN, TiAlN, Ir, Ru, IrO, RuO, and SrRuO (SRO) as materials for such conductor films.
  • the structure of the lower electrode is a structure in which an Ir film and a Pt film are sequentially stacked (PtZlr structure), and a structure in which an Ir film, an IrO film, and a Pt film are sequentially stacked Pt
  • a lower electrode has been proposed (see, for example, Patent Documents 1 to 3).
  • various barrier metals on the inner wall surface of the contact hole in which the tungsten plug is embedded, it is possible to prevent an increase in resistance at the connection portion between the tungsten plug and the lower electrode, and to deteriorate the characteristics of the ferroelectric capacitor.
  • Patent Documents 4 and 5 There are also proposals for techniques for preventing the above-mentioned problems.
  • a circuit connected to the ferroelectric capacitor is composed of A1 wiring.
  • A1 is known to cause a eutectic reaction with platinum group metals such as Pt (see, for example, Patent Document 6). For this reason, it is necessary to form a barrier layer having the same strength as the TiN film between the platinum group metal force electrode and the A1 wiring in order to prevent the eutectic reaction between the two (for example, Patent Document 7, (See 8).
  • tungsten plugs are generally used in FeRAM stack type cells.
  • various structures have been proposed regarding the structure of the noria layer and the like formed between the lower electrode of the ferroelectric capacitor and the tungsten plug (for example, Patent Document 11). , 12).
  • Patent Document 1 Japanese Patent Laid-Open No. 2003-425784
  • Patent Document 2 Patent No. 3454085
  • Patent Document 3 Japanese Patent Laid-Open No. 11 243179
  • Patent Document 4 Japanese Patent Laid-Open No. 2004-31533
  • Patent Document 5 Japanese Unexamined Patent Publication No. 2003-68993
  • Patent Document 6 Japanese Patent Application Laid-Open No. 2004-241679
  • Patent Document 7 Patent No. 3045928
  • Patent Document 8 Patent No. 3165093
  • Patent Document 9 Japanese Patent Laid-Open No. 2002-100740
  • Patent Document 10 Patent No. 3307609 Specification
  • Patent Document 11 Japanese Unexamined Patent Application Publication No. 2004-193430
  • Patent Document 12 Japanese Unexamined Patent Application Publication No. 2004-146772
  • Patent Documents 11 and 12 disclose structures aimed at preventing the oxidation of tungsten plugs, but the structures are complicated. Even if such a structure is adopted, it is difficult to reliably prevent the oxidation of the tungsten plug during heat treatment for crystallization of the ferroelectric film, recovery of damage, etc. Conceivable.
  • An object of the present invention is to realize a good contact between a capacitor electrode, a plug, and a wiring using a ferroelectric film or a high dielectric film, and to have excellent operation characteristics and high reliability. It is in providing the manufacturing method. Means for solving the problem
  • a semiconductor device is provided.
  • a semiconductor element formed on a semiconductor substrate, an insulating film formed on the semiconductor substrate on which the semiconductor element is formed, and the insulating film A plug formed and buried in a contact hole reaching the semiconductor element, connected to the semiconductor element and having a conductor film made of a noble metal or noble metal oxide, and a conductor film made of the noble metal or noble metal oxide.
  • a semiconductor device having a capacitor having a dielectric film made of a film and an upper electrode formed on the dielectric film.
  • a semiconductor element formed on a semiconductor substrate, an insulating film formed on the semiconductor substrate on which the semiconductor element is formed, and the insulating film A plug having a conductor film made of a noble metal or a noble metal oxide, embedded in a contact hole reaching the semiconductor element, connected to the semiconductor element, and a conductor film plug having a noble metal or noble metal oxide strength.
  • a semiconductor device is provided.
  • a semiconductor device having a wiring connected to the upper electrode through a contact hole reaching the upper electrode and having a conductor film made of a noble metal or a noble metal oxide.
  • a lower electrode formed on a semiconductor substrate, and a dielectric film formed on the lower electrode and made of a ferroelectric film or a high dielectric film
  • a capacitor having an upper electrode formed on the dielectric film, an insulating film formed on the semiconductor substrate and the capacitor, and formed on the insulating film and formed on the insulating film.
  • a semiconductor device having a wiring connected to the upper electrode or the lower electrode through a contact hole reaching the upper electrode or the lower electrode and having a conductor film made of a noble metal or a noble metal oxide.
  • a step of forming a semiconductor element on a semiconductor substrate, and a step of forming an insulating film on the semiconductor substrate on which the semiconductor element is formed Forming a contact hole reaching the semiconductor element in the insulating film; and forming a plug embedded in the contact hole and connected to the semiconductor element and having a conductor film made of a noble metal or a noble metal oxide.
  • a step of forming a semiconductor element on a semiconductor substrate, and a step of forming an insulating film on the semiconductor substrate on which the semiconductor element is formed Forming a contact hole reaching the semiconductor element in the insulating film; and forming a plug embedded in the contact hole and connected to the semiconductor element and having a conductor film made of a noble metal or a noble metal oxide.
  • Process of the conductor film plug A planarization step; a dielectric formed of a ferroelectric film or a high dielectric film formed on the insulating film on which the plug is formed; and a lower electrode connected to the plug; and a ferroelectric film or a high dielectric film formed on the lower electrode.
  • a method of manufacturing a semiconductor device comprising a step of forming a capacitor having a body film and an upper electrode formed on the dielectric film.
  • a step of forming a semiconductor element on a semiconductor substrate, and a step of forming an insulating film on the semiconductor substrate on which the semiconductor element is formed Forming a contact hole reaching the semiconductor element in the insulating film; and forming a plug embedded in the contact hole and connected to the semiconductor element and having a conductor film made of a noble metal or a noble metal oxide.
  • a step of flattening the conductor film plug ; forming an amorphous noble metal oxide and a lower electrode formed on the insulating film on which the plug is formed and connected to the plug; Forming a capacitor having a dielectric film formed on the lower electrode and made of a ferroelectric film or a high dielectric film, and an upper electrode formed on the dielectric film.
  • a step of forming a semiconductor element on a semiconductor substrate a step of forming an insulating film on the semiconductor substrate on which the semiconductor element is formed, Forming a contact hole reaching the semiconductor element in the insulating film; and a conductor embedded in the contact hole on the insulating film and connected to the semiconductor element, the noble metal or a noble metal oxide carrier Forming a film; a lower electrode formed on the insulating film and having the conductor film; a dielectric film formed on the lower electrode and made of a ferroelectric film or a high dielectric film; And a step of forming a capacitor having an upper electrode formed on the ferroelectric film.
  • a conductor made of a noble metal or a noble metal oxide is used as a plug to which a lower electrode is connected. Since the plug having the film is formed, the lower electrode having a desired orientation can be formed with high controllability. Thereby, the crystallinity of the dielectric film formed on the lower electrode can be improved, and a capacitor having excellent electrical characteristics can be obtained. In addition, since the lower electrode having the conductor film having the noble metal or noble metal oxide physical strength is formed on the plug having the conductor film having the noble metal or noble metal oxide physical strength, the contact between the plug and the lower electrode is improved.
  • the conductor film made of a noble metal metal constituting the plug is difficult to be oxidized and even when it is oxidized, it has a low resistance, so that a good contact can be realized.
  • the noble metal oxide has a property of preventing the diffusion of hydrogen and moisture, the plug having the conductive film made of noble metal or noble metal oxide suppresses the hydrogen and moisture from reaching the dielectric film of the capacitor. Therefore, it is possible to suppress deterioration of the electrical characteristics of the capacitor.
  • the wiring having the conductor film made of a noble metal or noble metal oxide is formed as the wiring connected to the upper electrode or the lower electrode of the capacitor through the contact hole, The reaction between the upper electrode or the lower electrode made of a noble metal oxide and the wiring can be suppressed, and the contact between the upper electrode or the lower electrode and the wiring can be improved. Furthermore, since the noble metal oxide has a property of preventing the diffusion of hydrogen and moisture, the wiring having the conductor film made of the noble metal or the noble metal oxide suppresses the hydrogen and moisture from reaching the dielectric film of the capacitor, It is possible to suppress the deterioration of the electrical characteristics of the capacitor.
  • FIG. 1 is a cross-sectional view showing a structure of a semiconductor device according to a first embodiment of the present invention.
  • FIG. 2 is a process cross-sectional view illustrating the method for manufacturing a semiconductor device according to the first embodiment of the invention. It is a diagram (part 1).
  • FIG. 3 is a process cross-sectional view (part 2) illustrating the method for manufacturing the semiconductor device according to the first embodiment of the present invention.
  • FIG. 4 is a process cross-sectional view (part 3) illustrating the method for manufacturing the semiconductor device according to the first embodiment of the present invention.
  • FIG. 5 is a process cross-sectional view (part 4) illustrating the method for manufacturing the semiconductor device according to the first embodiment of the present invention
  • FIG. 6 is a process cross-sectional view (part 5) illustrating the method for manufacturing the semiconductor device according to the first embodiment of the present invention
  • FIG. 7 is a cross-sectional view showing the structure of a semiconductor device according to a modification of the first embodiment of the present invention.
  • FIG. 8 is a cross-sectional view showing a structure of a semiconductor device according to a second embodiment of the present invention.
  • FIG. 9 is a process cross-sectional view (No. 1) showing the method for manufacturing a semiconductor device according to the second embodiment of the invention.
  • FIG. 10 is a process cross-sectional view (part 2) illustrating the method for manufacturing the semiconductor device according to the second embodiment of the present invention.
  • FIG. 11 is a process cross-sectional view (part 3) illustrating the method for manufacturing a semiconductor device according to the second embodiment of the present invention.
  • FIG. 12 is a cross-sectional view showing a structure of a semiconductor device according to a modification of the second embodiment of the present invention.
  • FIG. 13 is a sectional view showing a structure of a semiconductor device according to a third embodiment of the present invention.
  • FIG. 14 is a process cross-sectional view (part 1) showing the method for manufacturing a semiconductor device according to the third embodiment of the present invention.
  • FIG. 15 is a process cross-sectional view (No. 2) showing the method for manufacturing a semiconductor device according to the third embodiment of the present invention.
  • FIG. 16 is a process cross-sectional view (part 3) illustrating the method for manufacturing a semiconductor device according to the third embodiment of the present invention
  • FIG. 17 is a cross-sectional view showing the structure of the semiconductor device according to the fourth embodiment of the present invention.
  • FIG. 18 is a process cross-sectional view (part 1) illustrating the method for manufacturing a semiconductor device according to the fourth embodiment of the present invention.
  • FIG. 19 is a process cross-sectional view (part 2) illustrating the method for manufacturing a semiconductor device according to the fourth embodiment of the present invention.
  • FIG. 20 is a process cross-sectional view (part 3) illustrating the method for manufacturing a semiconductor device according to the fourth embodiment of the present invention.
  • FIG. 21 is a process cross-sectional view (part 4) showing the method for manufacturing a semiconductor device according to the fourth embodiment of the present invention.
  • FIG. 22 is a process cross-sectional view (part 5) showing the method for manufacturing a semiconductor device according to the fourth embodiment of the present invention.
  • FIG. 23 is a process sectional view (No. 6) showing the method for manufacturing a semiconductor device according to the fourth embodiment of the invention.
  • Adhesion layer ... Conductor film
  • FIG. 1 is a cross-sectional view illustrating the structure of the semiconductor device according to the present embodiment
  • FIGS. 2 to 6 are process cross-sectional views illustrating the method for manufacturing the semiconductor device according to the present embodiment.
  • the semiconductor device according to the present embodiment is an FeRAM having a stack type memory cell structure.
  • an element isolation region 12 that defines an element region is formed on a semiconductor substrate 10 that also has silicon force.
  • the semiconductor substrate 10 may be either n-type or p-type.
  • the wells 14a and 14b are formed in the semiconductor substrate 10 in which the element isolation region 12 is formed.
  • a gate electrode (gate wiring) 18 is formed via a gate insulating film 16 on the semiconductor substrate 10 on which the wells 14a and 14b are formed.
  • a sidewall insulating film 20 is formed on the side wall portion of the gate electrode 18.
  • Source / drain regions 22a and 22b are formed on both sides of the gate electrode 18 on which the sidewall insulating film 20 is formed.
  • the transistor 24 having the gate electrode 18 and the source Z drain regions 22a and 22b is formed on the semiconductor substrate 10.
  • a silicon oxynitride film (SiON film) 26 having a thickness of, for example, 200 nm and a silicon oxide film 28 having a thickness of, for example, lOOOnm are sequentially stacked. Yes.
  • an interlayer insulating film 30 is formed, in which the SiON film 26 and the silicon oxide film 28 are sequentially laminated. The surface of the interlayer insulating film 30 is planarized.
  • contact holes 32a and 32b reaching the source / drain regions 22a and 22b are formed.
  • the adhesion layer 34 is formed by sequentially stacking, for example, a Ti film having a thickness of 20 nm and a TiN film having a thickness of 50 nm, for example. Note that the adhesion layer 34 also functions as a barrier layer for preventing diffusion of hydrogen and moisture. Such an adhesion layer 3 4 suppresses the hydrogen and moisture from reaching the ferroelectric film 42, so that the reduction of the metal oxide constituting the ferroelectric film 42 by hydrogen and moisture can be suppressed. . As a result, deterioration of the electrical characteristics of the ferroelectric capacitor 46 can be suppressed.
  • a conductor film 36 having a noble metal force is formed in the contact hole 32a in which the adhesion layer 34 is formed and on the adhesion layer 34 around the contact hole 32a.
  • a conductor film 36 having a noble metal force is embedded in the contact hole 32b in which the adhesion layer 34 is formed.
  • an iridium (Ir) film having a film thickness of 400 nm is used as the conductor film 36.
  • the lower electrode 38 of the ferroelectric capacitor 46 is constituted by the adhesion layer 34 and the conductor film 36 having a noble metal force.
  • the lower electrode 38 integrally has a plug portion 38a embedded in the contact hole 32a and connected to the source Z drain region 22a.
  • a plug 40 constituted by the adhesion layer 34 and the conductor film 36 having a noble metal force and connected to the source / drain region 22b.
  • a ferroelectric film 42 of the ferroelectric capacitor 46 is formed on the lower electrode 38.
  • ferroelectric film 42 for example, a 120 nm-thick PbZr TiO film (PZT film) is used.
  • the upper electrode 44 of the ferroelectric capacitor 46 is formed.
  • an iridium oxide (IrO) film having a thickness of 200 nm is used as the upper electrode 44.
  • a ferroelectric capacitor 46 including the lower electrode 38, the ferroelectric film 42, and the upper electrode 44 is configured.
  • a protective film 48 that prevents diffusion of hydrogen and moisture is formed on the interlayer insulating film 30 on which the ferroelectric capacitor 46 is formed.
  • the protective film 48 is formed to cover the ferroelectric capacitor 46, that is, to cover the side surface of the lower electrode 38, the side surface of the ferroelectric film 42, the side surface of the upper electrode 44, and the upper surface of the upper electrode 44. Yes.
  • As the protective film 48 for example, a film Thickness 20 or more: LOOnm alumina (Al 2 O 3) film is used.
  • Protective film 48 makes ferroelectric
  • an interlayer insulating film 50 made of, for example, a TEOS film having a thickness of 1500 nm is formed on the protective film 48.
  • the surface of the interlayer insulating film 50 is flattened.
  • a contact hole 52a that reaches the upper electrode 44 of the ferroelectric capacitor 46 is formed.
  • a wiring groove 54a connected to the contact hole 52a is formed.
  • a contact hole 52b reaching the plug 40 is formed in the interlayer insulating film 50 and the protective film 48.
  • the interlayer insulating film 50 includes a wiring groove 5 connected to the contact hole 52b.
  • a barrier metal film 56 made of, for example, a 30 nm-thick Ti film and a 50 nm-thick TiN film is formed. .
  • An aluminum film 58 is embedded in the contact hole 52a and the wiring groove 54a in which the nore metal film 56 is formed, and in the contact hole 52b and the wiring groove 54b in which the barrier metal film 56 is formed.
  • the aluminum film 58 may be a tungsten film.
  • the wiring 60a composed of the rare metal film 56 and the aluminum film 58 is formed in the wiring groove 54a.
  • the wiring 60 a is integrally provided with a plug portion 62 a embedded in the contact hole 52 a and connected to the upper electrode 44 of the strong dielectric capacitor 46.
  • a wiring 60b composed of a rare metal film 56 and an aluminum film 58 is formed.
  • the wiring 60b is integrally provided with a plug portion 62b embedded in the contact hole 52b and connected to the plug 40.
  • the semiconductor device according to the present embodiment is constituted.
  • the lower electrode 38 of the ferroelectric capacitor 46 has the conductor film 36 made of a noble metal, and the plug portion 38a connected to the source Z drain region 22a is integrally formed. It has the main feature in having. Conventionally, in a stack type memory cell structure, a lower electrode of a ferroelectric capacitor is separately formed immediately above a tungsten plug connected to a source Z drain region. This tungsten plug had poor flatness after CMP, and the orientation of the lower electrode had deteriorated. In addition, when the heat treatment is performed on the ferroelectric capacitor, the tungsten plug can be easily oxidized. When the tungsten plug is oxidized, the adhesion between the tungsten plug and the lower electrode is deteriorated, and the film is peeled off. As a result, contact failure occurs between the tanta- lum plug and the lower electrode.
  • the lower electrode 38 of the ferroelectric capacitor 46 has the conductor film 36 made of a noble metal that is difficult to oxidize, and is connected to the source Z drain region 22 a.
  • the plug portion 38a is integrally provided.
  • the lower electrode 38 having a desired orientation can be formed with higher controllability compared to the case where the tanta- lum plug that is easily oxidized is formed separately from the lower electrode. Therefore, the crystallinity of the ferroelectric film 42 formed on the lower electrode 38 can be improved, and the ferroelectric capacitor 46 having excellent electrical characteristics can be obtained.
  • the semiconductor device according to the present embodiment integrally has the plug portion 38a connected to the lower electrode 38 force source Z drain region 22a, the tungsten plug is connected to the lower electrode as in the prior art. If they are formed separately, poor contact that may occur between them will not be a problem.
  • the conductive film 36 constituting the lower electrode 38 having the plug portion 38a is made of a noble metal, it is difficult to oxidize, and even when oxidized, the conductive film 36 remains low in resistance. Can be realized.
  • the noble metal oxide constituting the conductor film 36 has a property of preventing the diffusion of hydrogen and moisture. For this reason, if the conductor film 36 made of a noble metal is oxidized, the hydrogen and moisture are prevented from reaching the ferroelectric film 42, and the hydrogen and moisture of the metal oxide constituting the ferroelectric film 42 are suppressed. The reduction
  • a semiconductor substrate 10 made of silicon for example, STI (Shallow Trench
  • An element isolation region 12 that defines an element region is formed by an isolation method.
  • the wells 14a and 14b are formed by introducing dopant impurities by ion implantation.
  • a transistor 24 having a gate electrode (gate wiring) 18 and source Z drain regions 22a and 22b is formed in the element region defined by the element isolation region 12 by using a normal transistor formation method. (See Fig. 2 (a)).
  • a 200 nm-thickness SiON film 26 is formed on the entire surface by, eg, plasma CVD (Chemical Vapor Deposition).
  • the SiON film 26 functions as a staggered film during flattening by the CMP method.
  • a silicon oxide film 28 having a thickness of, for example, lOOOnm is formed on the entire surface by, eg, CVD.
  • the SiON film 26 and the silicon oxide film 28 constitute an interlayer insulating film 30.
  • the surface of the interlayer insulating film 30 is flattened by, eg, CMP (see FIG. 2B).
  • contact holes 32a and 32b reaching the source Z drain regions 22a and 22b are formed in the interlayer insulating film 30 by photolithography and etching (see FIG. 3A).
  • degassing treatment for example, heat treatment is performed in a nitrogen atmosphere, for example, at 650 ° C. for 30 minutes.
  • a Ti film of, eg, a 20 nm-thickness is formed on the entire surface by, eg, sputtering.
  • a TiN film of, eg, a 50 nm-thickness is formed on the entire surface by, eg, sputtering. In this way, the adhesion layer 34 in which the Ti film and the TiN film are sequentially laminated is formed.
  • an Ir film having a film thickness of, eg, 400 nm is formed on the adhesion layer 34 as the conductor film 36 having a noble metal force by, eg, MOCVD (see FIG. 3B).
  • a iridium precursor as a raw material for example, a Lewis base stable 8 j8-diketonate iridium composition, a Lewis base stable ⁇ j8-ketoimate iridium composition, or the like can be used. Iriji like this By decomposing the humic precursor in the presence of an acidic gas such as O, O, or NO,
  • the film forming temperature is, for example, less than 500 ° C.
  • a ferroelectric film 42 made of, for example, a PZT film having a thickness of 120 nm is formed on the conductor film 36 by, eg, MOCVD.
  • Ti (0—iPr) (DPM) Ti (C H O) (C H O)
  • Ti i (C H O)
  • C H O titanium
  • HF solution Dissolve the HF solution in a concentration of 3 mol% at a flow rate of 0.2 mlZmin.
  • the vaporizer is heated to a temperature of, for example, 260 ° C, and each of the organic sources described above is vaporized in the vaporizer.
  • Each vaporized organic source is mixed with oxygen in the vaporizer and then introduced into the shower head at the top of the reactor to form a uniform flow, which is uniformly sprayed toward the semiconductor substrate 10 provided opposite the shower head. Is done.
  • the partial pressure of oxygen in the reactor is 5 Torr.
  • the film formation time is 420 seconds, for example.
  • the ferroelectric film 42 is crystallized by performing heat treatment in an atmosphere containing oxygen.
  • the following two-stage heat treatment is performed. That is, as the first heat treatment, heat treatment is performed in a mixed gas atmosphere of oxygen and argon by a RTA method at a substrate temperature of 600 ° C. and a heat treatment time of 90 seconds. Subsequently, as a second stage heat treatment, a heat treatment is performed in an oxygen atmosphere by a RTA method at a substrate temperature of 750 ° C. and a heat treatment time of 60 seconds.
  • an upper electrode 44 made of, for example, an IrO film having a thickness of 200 nm is formed on the ferroelectric film 42 by, eg, sputtering (see FIG. 4A).
  • an insulating film 64 serving as a hard mask described later is formed on the upper electrode 44.
  • the insulating film 64 for example, a TiN film with a thickness of 200 nm and a TEOS film with a thickness of 800 nm are formed. To do.
  • the insulating film 64 is patterned in the planar shape of the ferroelectric capacitor 46 by photolithography and etching (see FIG. 4B).
  • the upper electrode 44, the ferroelectric film 42, the conductor film 36, and the adhesion layer 34 are sequentially etched while being covered with the insulating film 64. . After the etching is completed, the insulating film 64 used as a hard mask is removed (see FIG. 5 (a)).
  • a ferroelectric capacitor including the lower electrode 38, the ferroelectric film 42, and the upper electrode 44.
  • the lower electrode 38 is composed of a conductor film 36 made of a noble metal cover and an adhesion layer 34, and is formed so as to integrally have a plug portion 38a embedded in the contact hole 32a and connected to the source Z drain region 22a. Is done.
  • a plug 40 is formed which is composed of a conductor film 36 made of a noble metal and an adhesion layer 34 and connected to the source Z drain region 22b.
  • heat treatment is performed in a furnace containing oxygen, for example, at 350 ° C for 1 hour. This heat treatment is for preventing the film peeling from occurring in the protective film 48 to be formed later.
  • a protective film 48 is formed on the interlayer insulating film 30 on which the ferroelectric capacitor 46 is formed by, eg, sputtering or MOCVD (see FIG. 5B).
  • the ferroelectric capacitor 46 is covered with a protective film 48.
  • As the protective film 48 for example, an Al 2 O film with a film thickness of 20 to: LOOnm is formed.
  • the protective film 48 protects the ferroelectric capacitor 46 from process damage, etc.
  • heat treatment is performed in a furnace containing oxygen, for example, at 550 to 650 ° C for 60 minutes. This heat treatment is for recovering the damage received by the ferroelectric film 42 during the formation of the upper electrode 44 on the ferroelectric film 42 and during the etching.
  • an interlayer insulating film 50 made of a TEOS film having a thickness of, eg, 1500 nm is formed on the entire surface by, eg, CVD.
  • the surface of the interlayer insulating film 50 is flattened by, eg, CMP (see FIG. 6A).
  • the upper electrode 44 of the ferroelectric capacitor 46 is formed on the interlayer insulating film 50 and the protective film 48.
  • a contact hole 52a is formed, and a wiring groove 54a connected to the contact hole 52a is formed in the interlayer insulating film 50.
  • a contact hole 52b reaching the plug 40 is formed in the interlayer insulating film 50 and the protective film 48, and a wiring groove 54b connected to the contact hole 52b is formed in the interlayer insulating film 50.
  • a noria metal film 56 made of, for example, a 30 nm-thick Ti film and a 50 nm-thick TiN film by, eg, sputtering. Form.
  • an aluminum film 58 is embedded in the contact hole 52a and the wiring groove 54a in which the noria metal film 56 is formed, and in the contact hole 52b and the wiring groove 54b in which the barrier metal film 56 is formed.
  • the wiring 60a composed of the noria metal film 56 and the aluminum-metal film 58 is formed in the wiring groove 54a by the normal wiring formation process, and the noria metal film 56 and the wiring groove 54b are formed.
  • a wiring 60b composed of the aluminum film 58 is formed.
  • the wiring 60a is connected to the upper electrode 44 of the ferroelectric capacitor 46 by a plug portion 62a embedded in the contact hole 52a. Further, the wiring 60b is connected to the plug 40 by the plug portion 52b embedded in the contact hole 52b.
  • single-layer or multi-layer wiring is appropriately formed on the interlayer insulating film 50 on which the wirings 60a and 60b are formed by a normal wiring forming process.
  • the semiconductor device according to the present embodiment is manufactured.
  • the lower electrode 38 having the conductor film 36 made of a noble metal and integrally including the plug portion 38a connected to the source Z drain region 22a is formed.
  • the lower electrode 38 having a desired orientation can be formed with high controllability as compared with the case where the tungsten plug that is easily oxidized is formed separately from the lower electrode.
  • the crystallinity of the ferroelectric film 42 formed on the lower electrode 38 can be improved, and the ferroelectric capacitor 46 having excellent electrical characteristics can be obtained.
  • the tungsten plug is different from the lower electrode as in the related art. If they are formed separately, there is a problem of contact failure that may occur between them. It won't be a title.
  • the conductor film constituting the lower electrode 38 having the plug portion 38a a conductor made of a noble metal that is difficult to oxidize and remains low resistance even when oxidized. Since the film 36 is formed, good contact can be realized.
  • the oxide forms the conductor film 36 made of a noble metal having a property of preventing the diffusion of hydrogen and moisture
  • the conductor film 36 made of a noble metal is oxidized.
  • hydrogen and moisture are prevented from reaching the ferroelectric film 42, and reduction of the metal oxide constituting the ferroelectric film 42 by hydrogen and moisture can be suppressed.
  • FIG. 7 is a cross-sectional view showing the structure of a semiconductor device according to this modification.
  • the semiconductor device according to the present modification is the above semiconductor device in which the adhesion layer 34 for ensuring the adhesion of the conductor film 36 made of a noble metal to the base is not formed.
  • contact holes 32a and 32b reaching the source / drain regions 22a and 22b are formed.
  • a conductor film 36 made of a noble metal is directly formed in the contact hole 32a and on the interlayer insulating film 30 around the contact hole 32a.
  • a conductor film 36 made of a noble metal is directly formed in the contact hole 32b.
  • As the conductor film 36 for example, a film thickness of 4
  • the lower electrode 38 of the ferroelectric capacitor 46 is constituted by the conductor film 36 having a noble metal force.
  • the lower electrode 38 integrally has a plug portion 38a embedded in the contact hole 32a and connected to the source Z drain region 22a.
  • the contact hole 32b is constituted by the conductor film 36, and the source / drain regions are formed.
  • a plug 40 connected to 22b is formed.
  • a ferroelectric film 42 and an upper electrode 44 are sequentially formed on the lower electrode 38 in the same manner as described above, and a ferroelectric capacitor 46 including the lower electrode 38, the ferroelectric film 42, and the upper electrode 44 is formed. Is configured.
  • the adhesion layer 34 for ensuring the adhesion of the conductor film 36 made of the noble metal to the base may not be formed.
  • the conductor film 36 is made of a noble metal oxide, thereby preventing hydrogen and moisture from diffusing.
  • the conductive film 36 can function.
  • Such a conductor film 36 prevents hydrogen and moisture from reaching the ferroelectric film 42, and can suppress reduction of the metal oxide constituting the ferroelectric film 42 by hydrogen and moisture. As a result, it is possible to suppress the deterioration of the electrical characteristics of the ferroelectric capacitor 46.
  • FIG. 8 is a cross-sectional view showing the structure of the semiconductor device according to the present embodiment
  • FIGS. 9 to 11 are process cross-sectional views showing the method for manufacturing the semiconductor device according to the present embodiment.
  • the same components as those in the semiconductor device and the manufacturing method thereof according to the first embodiment are denoted by the same reference numerals, and description thereof is omitted or simplified.
  • the basic configuration of the semiconductor device according to the present embodiment is substantially the same as that of the semiconductor device according to the first embodiment.
  • the semiconductor device according to the present embodiment is such that the lower electrode 38 of the ferroelectric capacitor 46 and the plug 68a that electrically connects the lower electrode 38 and the source Z drain region 22a are formed independently of each other. This is different from the semiconductor device according to the first embodiment.
  • the structure of the semiconductor device according to the present embodiment will be explained with reference to FIG.
  • an interlayer insulating film 30 in which the SiON film 26 and the silicon oxide film 28 are sequentially stacked is formed. The surface of the interlayer insulating film 30 is planarized.
  • the adhesion layer 34 is formed by sequentially stacking, for example, a Ti film having a thickness of 20 nm and a TiN film having a thickness of 50 nm, for example.
  • the adhesion layer 34 also functions as a barrier layer that prevents diffusion of hydrogen and moisture.
  • Such an adhesion layer 34 suppresses the hydrogen and moisture from reaching the ferroelectric film 42, so that the reduction of the metal oxide constituting the ferroelectric film 42 by hydrogen and moisture can be suppressed. it can. As a result, it is possible to suppress deterioration of the electrical characteristics of the ferroelectric capacitor 46.
  • a conductor film 66 made of a noble metal is buried in the contact hole 32a in which the adhesion layer 34 is formed.
  • a conductive film 66 made of a noble metal is embedded in the contact hole 32b in which the adhesion layer 34 is formed.
  • the conductor film 66 for example, an Ir film having a film thickness of 250 nm is used.
  • the contact hole 32a is constituted by the adhesion layer 34 and the conductor film 66 having noble metal force.
  • the surface of the conductor film 66 is flattened to form a plug 68a connected to the source / drain region 22a.
  • a plug 68b constituted by the adhesion layer 34 and the conductor film 66 having a noble metal force and connected to the source Z drain region 22b.
  • the lower electrode 38 of the ferroelectric capacitor 46 is formed on the adhesion layer 34 formed on the interlayer insulating film 30 around the contact hole 32a and on the conductor film 66 embedded in the contact hole 32a.
  • the lower electrode 38 is made of a conductor film made of a noble metal, and specifically, is made of, for example, a platinum (Pt) film having a thickness of 50 nm.
  • a lower electrode comprising a 20 nm thick amorphous noble metal oxide film (eg, platinum oxide film (PtOx)) and a 50 nm platinum (Pt) film laminated film is desired.
  • This amorphous noble metal oxide film (PtOx film) can prevent the Ir film from diffusing into the ferroelectric film.
  • the crystallinity of the lower electrode can be further improved.
  • examples of the adhesion layer of the amorphous noble metal oxide film include Pt, Ir, Ru, Rh, Re, Os, Pd. Oxide and SrRuO force Group force at least one material force selected
  • a film can be used.
  • the lower electrode 38 is connected to the plug 68a.
  • annealing is performed for 60 seconds at 750 ° C in an Ar atmosphere by the RTA method.
  • the ferroelectric film 42 of the ferroelectric capacitor 46 is formed.
  • ferroelectric film 42 for example, a PZT film having a thickness of 120 nm is used.
  • An upper electrode 44 of the ferroelectric capacitor 46 is formed on the ferroelectric film 42.
  • an IrO film having a thickness of 200 nm is used as the upper electrode 44.
  • the ferroelectric capacitor 46 including the lower electrode 38, the ferroelectric film 42, and the upper electrode 44 is configured.
  • a protective film 48 for preventing diffusion of hydrogen and moisture is formed on the interlayer insulating film 30 on which the ferroelectric capacitor 46 is formed.
  • the protective film 48 covers the ferroelectric capacitor 46, that is, the side surface of the adhesion layer 34 formed on the interlayer insulating film 30, the side surface of the lower electrode 38, the side surface of the ferroelectric film 42, and the side surface of the upper electrode 44. It is formed so as to cover the side surface and the upper surface of the upper electrode 44.
  • the protective film 48 for example, an Al O film having a film thickness of 20 to: LOOnm is used.
  • the protective film 48 suppresses the hydrogen and moisture from reaching the ferroelectric film 42, the reduction of the metal oxide constituting the ferroelectric film 42 by hydrogen and moisture can be suppressed. As a result, it is possible to suppress the deterioration of the electrical characteristics of the ferroelectric capacitor 46.
  • an interlayer insulating film 50 made of, for example, a TEOS film having a thickness of 1500 nm is formed.
  • the wiring 60a connected to the upper electrode 44 of the ferroelectric capacitor 46 and the wiring connected to the plug 68b are provided in the same manner as the semiconductor device according to the first embodiment. 60b is formed.
  • the semiconductor device according to the present embodiment is constituted.
  • the semiconductor device according to the present embodiment is formed under the lower electrode 38 of the ferroelectric capacitor 46, and electrically connects the lower electrode 38 and the source Z drain region 22a.
  • the main feature is that it has a membrane 66.
  • the plug 68a formed under the lower electrode 38 of the ferroelectric capacitor 46 has a conductor film 66 made of a noble metal that is not easily oxidized, a tungsten plug that is easily oxidized is formed separately from the lower electrode.
  • the lower electrode 38 having a desired orientation can be formed with high controllability compared with the case where it is present.
  • the plug 68a and the lower electrode 38 are formed separately and independently, the lower electrode 38 is further flatter than the semiconductor device according to the first embodiment. It has become.
  • the crystallinity of the ferroelectric film 42 formed on the lower electrode 38 can be improved, and the ferroelectric capacitor 46 having excellent electrical characteristics can be obtained.
  • the lower electrode 38 formed on the plug 68a is also formed of a conductor film having a noble metal force, like the conductor film 66 made of the noble metal constituting the plug 68a. Yes.
  • the adhesion between the plug 68a and the lower electrode 38 can be improved, and the occurrence of film peeling can be prevented.
  • the conductor film 36 constituting the plug 68a also has a noble metal force, it is difficult to be oxidized, and even when it is oxidized, it has a low resistance, so that a good contact can be realized. it can.
  • the noble metal oxide constituting the conductor film 36 has a characteristic of preventing diffusion of hydrogen and moisture. For this reason, if the conductor film 66 made of a noble metal is oxidized, the hydrogen and moisture are prevented from reaching the ferroelectric film 42, and the hydrogen and moisture of the metal oxide constituting the ferroelectric film 42 are suppressed. The reduction
  • a heat treatment is performed at, for example, 650 ° C for 30 minutes in a nitrogen atmosphere.
  • a Ti film of, eg, a 20 nm-thickness is formed on the entire surface by, eg, sputtering.
  • a TiN film of, eg, a 50 nm-thickness is formed on the entire surface by, eg, sputtering. In this way, the adhesion layer 34 in which the Ti film and the TiN film are sequentially laminated is formed.
  • an Ir film of, eg, a 200 nm-thickness is formed on the adhesion layer 34 as the conductor film 66 having a noble metal force by, eg, MOCVD (see FIG. 9B).
  • the iridium precursor as a raw material for example, a Lewis base stable 8 j8-diketonate iridium composition, a Lewis base stable ⁇ j8-ketoimate iridium composition, or the like can be used.
  • an acidic gas such as O, O, or N 2 O
  • the film forming temperature is, for example, less than 500 ° C.
  • the conductor film 66 is polished by CMP, for example, until the adhesion layer 34 formed on the interlayer insulating film 30 is exposed, and the conductor film 66 is embedded in the contact holes 32a and 32b.
  • a plug 68a is formed in the contact hole 32a by the adhesion layer 34 and the conductor film 66 made of a noble metal and connected to the source Z drain region 22a.
  • a plug 68b composed of the adhesion layer 34 and the conductor film 66 made of a noble metal and connected to the source Z drain region 22b is formed (see FIG. 10 (a)).
  • the lower electrode 38 made of, for example, platinum oxide (PtOx) having a thickness of 20 nm and a Pt film having a thickness of 50 nm is formed by, eg, sputtering. Furthermore, in order to improve the crystallinity of the lower electrode, annealing is performed for 60 seconds at 750 ° C in an Ar atmosphere by the RTA method.
  • PtOx platinum oxide
  • a ferroelectric film 42 made of a PZT film having a thickness of, eg, 120 nm is formed on the entire surface by, eg, MOCVD.
  • Zr (dmhd) is a 3 mol% concentration in THF solution.
  • the solution dissolved in is introduced into the vaporizer at a flow rate of 0.2 mlZmin.
  • the vaporizer is heated to a temperature of, for example, 260 ° C, and each organic source described above is vaporized in the vaporizer.
  • Each vaporized organic source is mixed with oxygen in the vaporizer and then introduced into the shower head at the top of the reactor to form a uniform flow, which is uniformly sprayed toward the semiconductor substrate 10 provided facing the shower head.
  • the partial pressure of oxygen in the reactor is 5 Torr.
  • the film formation time is 420 seconds, for example.
  • This ferroelectric PZT film may be formed by the RF notch method or the Sol-gel method.
  • the ferroelectric film 42 is crystallized by performing heat treatment in an atmosphere containing oxygen.
  • the following two-stage heat treatment is performed. That is, as the first heat treatment, heat treatment is performed in a mixed gas atmosphere of oxygen and argon by a RTA method at a substrate temperature of 600 ° C. and a heat treatment time of 90 seconds. Subsequently, as a second stage heat treatment, a heat treatment is performed in an oxygen atmosphere by a RTA method at a substrate temperature of 750 ° C. and a heat treatment time of 60 seconds.
  • the upper electrode 44 made of, for example, an IrO film having a thickness of 200 nm is formed on the ferroelectric film 42 by, eg, sputtering (see FIG. 10B).
  • an insulating film 64 serving as a hard mask described later is formed on the upper electrode 44.
  • the insulating film 64 for example, a TiN film having a thickness of 200 nm and a TEOS film having a thickness of 800 nm are formed.
  • the insulating film 64 is patterned in the planar shape of the ferroelectric capacitor 46 by photolithography and etching (see FIG. 11 (a)).
  • the insulating film 64 used as a node mask, the upper electrode 44, the ferroelectric film 42, the conductor film 66, and the adhesion layer 34 that are not covered with the insulating film 64 are sequentially etched. After the etching is completed, the insulating film 64 used as a hard mask is removed (see FIG. 11B).
  • a ferroelectric capacitor including the lower electrode 38, the ferroelectric film 42, and the upper electrode 44.
  • the lower electrode 38 is composed of a conductive film 36 made of a noble metal.
  • the plug 68a having the conductor film 66 having the noble metal force is formed as the plug to which the lower electrode 38 is connected, so that the tungsten plug is easily oxidized.
  • the lower electrode 38 having a desired orientation can be formed with high controllability compared to the case where it is formed separately.
  • the crystallinity of the ferroelectric film 42 formed on the lower electrode 38 can be improved, and the ferroelectric capacitor 46 having excellent electrical characteristics can be obtained.
  • the plug 68a having the conductor film 66 made of noble metal is formed, and the lower electrode 38 having the conductor film made of noble metal is formed on the plug 68a.
  • the adhesion between the lower electrode 38 can be improved, and the occurrence of film peeling can be prevented.
  • the conductor film constituting the plug 68a As the conductor film constituting the plug 68a, the conductor film 66 made of a noble metal that remains low in resistance even when it is hardly oxidized is formed. Therefore, good contact can be realized.
  • the oxide forms the conductor film 66 made of a noble metal having the property of preventing the diffusion of hydrogen and moisture
  • the conductor film 66 made of the noble metal is oxidized.
  • hydrogen and moisture are prevented from reaching the ferroelectric film 42, and reduction of the metal oxide constituting the ferroelectric film 42 by hydrogen and moisture can be suppressed.
  • FIG. 12 is a cross-sectional view showing the structure of a semiconductor device according to this modification.
  • the semiconductor device according to this modification is the above-described semiconductor device in which the adhesion layer 34 for ensuring the adhesion of the conductor film 36 made of the noble metal to the base is not formed.
  • contact holes 32a and 32b reaching source Z drain regions 22a and 22b are formed in interlayer insulating film 30.
  • a conductor film 66 made of a noble metal is directly formed in the contact hole 32a and on the interlayer insulating film 30 around the contact hole 32a.
  • a conductor film 66 made of a noble metal is directly formed in the contact hole 32b.
  • the conductor film 66 for example, an Ir film having a thickness of 250 nm is used!
  • the plug 68a formed of the conductor film 66 and connected to the source Z drain region 22a is formed in the contact hole 32a by planarization.
  • a plug 68b made of the conductor film 66 and connected to the source / drain region 22b is formed.
  • a lower electrode 38 of the ferroelectric capacitor 46 is formed on the interlayer insulating film 30 around the contact hole 32a and on the conductor film 66 embedded in the contact hole 32a.
  • the lower electrode 38 is made of a conductor film made of a noble metal, and specifically, for example, is made of a Pt film having a thickness of 50 nm.
  • This lower electrode is composed of a 20 nm thick amorphous noble metal oxide film (for example, an acid platinum film (PtOx), an iridium oxide film (IrOx)) and a 50 nm platinum (Pt) film laminated film. Is desirable.
  • the lower electrode 38 is connected to the plug 68a.
  • a ferroelectric film 42 and an upper electrode 44 are sequentially formed on the lower electrode 38 in the same manner as described above.
  • a ferroelectric capacitor 46 including the lower electrode 38, the ferroelectric film 42, and the upper electrode 44 is formed. Is configured.
  • the adhesion layer 34 for ensuring the adhesion of the conductor film 66 made of the noble metal to the base may not be formed.
  • the conductor film 66 has noble metal oxide strength as in the semiconductor device according to the modification of the first embodiment.
  • the conductive film 66 can also function as a film that prevents diffusion of hydrogen and moisture.
  • Such a conductor film 66 suppresses the hydrogen and moisture from reaching the ferroelectric film 42, and the reduction of the metal oxide constituting the ferroelectric film 42 by hydrogen and moisture can be suppressed. As a result, it is possible to suppress the deterioration of the electrical characteristics of the ferroelectric capacitor 46.
  • FIG. 13 is a cross-sectional view showing the structure of the semiconductor device according to the present embodiment
  • FIGS. 14 to 16 are process cross-sectional views showing the method for manufacturing the semiconductor device according to the present embodiment.
  • the same components as those of the semiconductor device and the manufacturing method thereof according to the first and second embodiments are denoted by the same reference numerals, and description thereof is omitted or simplified.
  • the basic configuration of the semiconductor device according to the present embodiment is substantially the same as that of the semiconductor device according to the second embodiment.
  • the semiconductor device according to the present embodiment is different from the semiconductor device according to the second embodiment in that the wiring 72 connected to the upper electrode 44 of the ferroelectric capacitor 46 has a conductor film 76 made of a noble metal.
  • the structure of the semiconductor device according to the present embodiment will be explained with reference to FIG.
  • a protective film 48 covering the ferroelectric capacitor 46 and an interlayer insulating film 50 are formed on the interlayer insulating film 30 on which the ferroelectric capacitor 46 is formed. It is formed sequentially.
  • a contact hole 70 reaching the upper electrode 44 of the ferroelectric capacitor 46 is formed.
  • a wiring (plate line) 72 connected to the upper electrode 44 of the ferroelectric capacitor 46 through the contact hole 70 is formed on the interlayer insulating film 50.
  • the wiring 72 includes a noria metal film 74, a conductor film 76 made of a noble metal, and a noria metal film 78.
  • the conductor film 76 made of noble metal for example, an Ir film having a thickness of 200 nm is used!
  • noria metal films 74 and 78 for example, a laminated film in which a 75 nm thick TiN film, a 5 nm thick TiN film, and a 75 nm thick TiN film, for example, are sequentially laminated is used. Talk to you.
  • the barrier metal layer 78 on the upper side of the wiring and the barrier metal layer 74 on the lower side of the wiring may be made of the same material or other materials.
  • it may be a single layer of Ti, Ta, TaN, TaSi, TiN, TiALN, TiSi or the like and a laminated film having at least one material force selected from a group force consisting of these.
  • a contact hole 80 reaching the plug 68b is formed in the interlayer insulating film 50 and the protective film 48.
  • contact hole 80 for example, a Ti film with a thickness of 20 nm and a thickness of 50 ⁇
  • a barrier metal film 82 made of m TiN film is formed.
  • a tungsten film 84 is embedded in the contact hole 80 in which the noria metal film 82 is formed.
  • a plug 86 composed of the nore metal film 82 and the tungsten film 84 and connected to the plug 68b is formed in the contact hole 80.
  • the wiring 88 is composed of, for example, a rare metal film 74, a conductor film 76 made of a noble metal, and a rare metal film 78 in the same manner as the wiring 72.
  • iridium (Ir) or iridium oxide (IrO) is used for the wiring 88.
  • An interlayer insulating film 90 is formed on the interlayer insulating film 50 on which the wirings 72 and 88 are formed.
  • a contact hole 92 reaching the wiring 88 is formed in the interlayer insulating film 90.
  • a rare metal film 94 is formed in the contact hole 92.
  • a tungsten film 96 is embedded in the contact hole 92 in which the barrier metal film 94 is formed. In this way, a plug 98 composed of the nore metal film 94 and the tungsten film 96 and connected to the wiring 88 is formed in the contact hole 92.
  • the semiconductor device according to the present embodiment is constituted.
  • the semiconductor device according to the present embodiment is characterized mainly in that the wiring 72 connected to the upper electrode 44 of the ferroelectric capacitor 46 through the contact hole 70 has the conductor film 76 having a noble metal force.
  • the wiring 72 has the conductor film 76 having a noble metal force, the reaction between the upper electrode 44 and the wiring 72 made of a noble metal or a noble metal oxide can be suppressed.
  • the contact between line 72 can be good.
  • the noble metal oxide constituting the conductor film 76 has a characteristic of preventing diffusion of hydrogen and moisture. For this reason, if the conductor film 76 made of a noble metal is oxidized, the hydrogen and moisture are prevented from reaching the ferroelectric film 42, and the hydrogen and moisture of the metal oxide constituting the ferroelectric film 42 are suppressed. The reduction
  • a contact hole 80 reaching the plug 68b is formed in the interlayer insulating film 50 and the protective film 48 by photolithography and dry etching (see FIG. 14A). .
  • a rare metal film 82 made of, for example, a 20 nm thick Ti film and a 50 nm TiN film is formed by sputtering, for example.
  • a tungsten film 84 of, eg, a 500 nm-thickness is formed on the entire surface by, eg, CVD.
  • the tandastain film 84 and the barrier metal film 82 are polished by, for example, CMP until the surface of the interlayer insulating film 50 is exposed.
  • a plug 86 is formed in the contact hole 80, which is composed of the barrier metal film and the tungsten film 84 and connected to the plug 68b (see FIG. 14B).
  • a W oxidation preventing insulating film (not shown) is formed on the entire surface.
  • a SiON film is used as the W oxidation prevention insulating film.
  • a contact hole 70 reaching the upper electrode 44 of the ferroelectric capacitor 46 is formed in the W anti-oxidation insulating film, the interlayer insulating film 50 and the protective film 48 by photolithography and dry etching.
  • the interlayer insulating film 50 and the protective film are formed by photolithography and dry etching.
  • a TiN film with a thickness of, eg, 150 nm and a Ti film with a thickness of, eg, 5 nm are sequentially formed on the entire surface by, eg, sputtering.
  • a rare metal film 74 in which the TiN film, the Ti film, and the Ti film are sequentially laminated is formed.
  • an Ir film having a thickness of 300 nm, for example, is formed on the entire surface, for example, by the MOCVD method as the conductor film 76 having a precious metal force.
  • a Ti film having a thickness of, for example, 5 nm and a Ti film having a thickness of, for example, 150 nm are sequentially formed on the entire surface by, eg, sputtering.
  • a barrier metal film 78 is formed by sequentially stacking the Ti film and the Ti film (see FIG. 15B).
  • the near metal film 78, the conductor film 76 made of a noble metal, and the barrier metal film 74 are patterned by dry etching using a hard mask.
  • a wiring 72 composed of the barrier metal film 74, the conductor film 76 made of a noble metal, and the rare metal film 78 and connected to the upper electrode 44 through the contact hole 70 is formed (FIG. 16). (See (a)).
  • a wiring 88 connected to the plug 86 is formed by the nore metal film 74, the noble metal conductive film 76, and the nore metal film 78.
  • the semiconductor device according to the present embodiment is manufactured.
  • the wiring 72 having the conductor film 76 made of a noble metal is formed as the wiring connected to the upper electrode 44 of the ferroelectric capacitor 46 through the contact hole 70.
  • the reaction between the upper electrode 44 made of a noble metal or a noble metal oxide and the wiring 72 can be suppressed, and the contact between the upper electrode 44 and the wiring 72 can be made satisfactory.
  • the oxide forms the conductor film 76 made of a noble metal having the property of preventing the diffusion of hydrogen and moisture
  • the conductor film 76 made of the noble metal is oxidized. If it is, hydrogen and moisture are prevented from reaching the ferroelectric film 42, and reduction of the metal oxide constituting the ferroelectric film 42 by hydrogen and moisture can be suppressed. As a result, it is possible to suppress the deterioration of the electrical characteristics of the ferroelectric capacitor 46.
  • the structure other than the wiring 72 connected to the upper electrode 44 of the ferroelectric capacitor 46 is substantially the same as that of the semiconductor device according to the second embodiment except the force wiring 72. This structure is almost the same as that of the semiconductor device according to the first embodiment.
  • the wiring 72 may be a single-layer wiring 76 in which the noria metal layer 74 and the barrier metal layer 78 are not formed.
  • FIG. 17 is a sectional view showing the structure of the semiconductor device according to the present embodiment.
  • FIGS. 18 to 23 are process sectional views showing the method for manufacturing the semiconductor device according to the present embodiment. Note that the same components as those of the semiconductor device and the manufacturing method thereof according to the first embodiment are denoted by the same reference numerals, and description thereof is omitted or simplified.
  • the semiconductor device according to this embodiment is an FeRAM having a planar memory cell structure.
  • an element isolation region 12 that defines an element region is formed on a semiconductor substrate 10 that also has silicon force.
  • the semiconductor substrate 10 may be either n-type or p-type.
  • the wells 14a and 14b are formed in the semiconductor substrate 10 in which the element isolation region 12 is formed.
  • a gate electrode (gate wiring) 18 is formed on the semiconductor substrate 10 on which the wells 14 a and 14 b are formed via a gate insulating film 16.
  • a sidewall insulating film 20 is formed on the side wall portion of the gate electrode 18.
  • Source / drain regions 22a and 22b are formed on both sides of the gate electrode 18 on which the sidewall insulating film 20 is formed.
  • the transistor 24 having the gate electrode 18 and the source Z drain regions 22a and 22b is formed on the semiconductor substrate 10.
  • a SiON film having a thickness of 200 nm.
  • an interlayer insulating film 30 is formed in which the SiON film 26 and the silicon oxide film 28 are sequentially laminated.
  • the surface of the interlayer insulating film 30 is flat.
  • Interlayer insulating film 30 has contact holes 32a reaching source / drain regions 22a and 22b.
  • a rare metal film 100 made of a TiN film having a thickness of 50 nm is formed.
  • a tungsten film is formed in the contact holes 32a and 32b in which the nanometal film 100 is formed.
  • plugs 104a and 104b which are constituted by the nore metal film 100 and the tungsten film 102 and connected to the source Z drain regions 22a and 22b, are formed in the contact holes 32a and 32b.
  • the lower electrode 38 of the ferroelectric capacitor 46 is formed.
  • the lower electrode 38 is formed by sequentially laminating, for example, a Ti film 106 having a thickness of 20 nm and a Pt film 108 having a thickness of 150 nm, for example.
  • a Ti film 106 having a thickness of 20 nm
  • a Pt film 108 having a thickness of 150 nm
  • a titanium oxide (TiO 2) film, a tantalum oxide (Ta 2 O 3) film, or an Al 2 O film may be used.
  • the ferroelectric film 42 of the ferroelectric capacitor 46 is formed.
  • ferroelectric film 42 for example, a 150 nm-thick Pb La Zr Ti O film (PLZT film)
  • An upper electrode 44 of the ferroelectric capacitor 46 is formed on the ferroelectric film 42.
  • an iridium oxide (IrO) film having a thickness of 200 nm is used as the upper electrode 44.
  • the ferroelectric capacitor 46 including the lower electrode 38, the ferroelectric film 42, and the upper electrode 44 is configured.
  • a protective film 48 for preventing diffusion of hydrogen and moisture is formed on the interlayer insulating film 30 on which the ferroelectric capacitor 46 is formed.
  • the protective film 48 covers the ferroelectric capacitor 46, that is, the side surface of the lower electrode 38, the side surface of the ferroelectric film 42, and the side surface of the upper electrode 44.
  • the upper surface of the upper electrode 44 and the upper surface of the lower electrode 38 where the ferroelectric film 42 is not formed are covered.
  • the protective film 48 for example, an Al 2 O film with a thickness of 50 nm is used.
  • the protective film 48 suppresses the hydrogen and moisture from reaching the ferroelectric film 42, the reduction of the metal oxide constituting the ferroelectric film 42 by hydrogen and moisture can be suppressed. As a result, it is possible to suppress the deterioration of the electrical characteristics of the ferroelectric capacitor 46.
  • an interlayer insulating film 50 made of, for example, a TEOS film having a thickness of 1500 nm is formed on the protective film 48.
  • the surface of the interlayer insulating film 50 is planarized.
  • a contact hole 110 reaching the upper electrode 44 of the ferroelectric capacitor 46 is formed.
  • a contact hole 112 reaching the lower electrode 38 of the ferroelectric capacitor 46 is formed in the interlayer insulating film 50 and the protective film 48.
  • contact holes 114a and 114b reaching the plugs 104a and 104b are formed.
  • rare metal films 116 and 122 made of a Ti film having a thickness of 20 nm and a TiN film having a thickness of 50 nm are formed.
  • Tungsten films 118 and 124 are buried in the contact holes 114a and 114b in which the noria metal films 116 and 122 are formed.
  • the plugs 120 and 126 formed of the NORA metal films 116 and 122 and the tungsten films 118 and 124 and connected to the plugs 104a and 104b are formed in the contact holes 114a and 114b.
  • the plug 120 may be configured using a conductive film made of a noble metal in order to prevent a eutectic reaction with the wiring.
  • the wiring 128 is composed of a rare metal film 130, a conductor film 132 made of a noble metal, and a rare metal film 134.
  • a wiring (plate line) 136 connected to the lower electrode 38 of the ferroelectric capacitor 46 through the contact hole 112 is formed.
  • the wiring 136 is composed of a rare metal film 130, a conductor film 132 made of a noble metal, and a rare metal film 134. Has been.
  • a wiring 138 connected to the plug 126 is formed on the interlayer insulating film 50.
  • the wiring 138 is composed of a rare metal film 130, a conductor film 132 made of a noble metal, and a barrier metal film 134.
  • the conductor film 132 made of a noble metal that forms the wirings 128, 136, and 138 for example, an Ir film having a thickness of 200 nm is used.
  • the barrier metal film 130 constituting the wirings 128, 136, and 138 for example, a laminated film in which a TiN film having a thickness of 150 nm and a Ti film having a thickness of 5 nm are sequentially laminated is used.
  • the rare metal film 134 constituting the wirings 128, 136, and 138 for example, a laminated film in which a Ti film having a thickness of 5 nm and a TiN film having a thickness of 150 nm are sequentially laminated is used.
  • the wirings 128, 136, and 138 may be V or a single-layer wiring 132 that does not form the NORA metal film 130 or the barrier metal film 134! /.
  • an interlayer insulating film 140 made of, for example, a TEOS film having a thickness of 2600 nm is formed.
  • a contact hole 142 reaching the wiring 138 is formed in the interlayer insulating film 140.
  • a rare metal film 144 is formed in the contact hole 142.
  • a tungsten film 146 is buried in the contact hole 142 in which the barrier metal film 144 is formed. In this way, a plug 148 that is constituted by the NORA metal film 144 and the tungsten film 146 and connected to the wiring 138 is formed in the contact hole 142.
  • the semiconductor device according to the present embodiment is constituted.
  • the semiconductor device has the wiring 128 connected to the upper electrode 44 of the ferroelectric capacitor 46 through the contact hole 110 and the lower electrode of the ferroelectric capacitor 46 through the contact hole 112.
  • the main feature is that the wiring 136 connected to 38 has a conductor film 1 32 made of a noble metal.
  • the wirings 128 and 136 have the conductor film 132 having a noble metal force, the reaction between the upper electrode 44 and the lower electrode 38 made of noble metal or noble metal oxide and the wirings 128 and 136 is suppressed. The contact between the upper electrode 44 and the lower electrode 38 and the wirings 128 and 136 can be improved.
  • the noble metal oxide constituting the conductor film 132 has a property of preventing diffusion of hydrogen and moisture. For this reason, if the conductor film 132 made of a noble metal is oxidized, the hydrogen and moisture are prevented from reaching the ferroelectric film 42, and the hydrogen and moisture of the metal oxides constituting the ferroelectric film 42 are suppressed. The reduction
  • the element isolation region 12 for defining the element region is formed on the semiconductor substrate 10 having a silicon force, for example, by the STI method, for example.
  • the transistor 24 having the gate electrode (gate wiring) 18 and the source Z drain regions 22a and 22b is formed in the element region defined by the element isolation region 12 by using a normal transistor formation method. (See Fig. 18 (a)).
  • a SiON film 26 of, eg, a 200 nm-thickness is formed on the entire surface by, eg, plasma CVD.
  • the SiON film 26 functions as a staggered film during flattening by the CMP method.
  • a silicon oxide film 28 having a thickness of, for example, lOOOnm is formed on the entire surface by, eg, CVD.
  • the interlayer insulating film 30 is constituted by the SiON film 26 and the silicon oxide film 28.
  • the surface of the interlayer insulating film 30 is flattened by, eg, CMP (see FIG. 18B).
  • contact holes 32a and 32b reaching the source Z drain regions 22a and 22b are formed in the interlayer insulating film 30 by photolithography and etching.
  • a varistor made of, for example, a 50 nm-thick TiN film is formed on the entire surface by, eg, sputtering.
  • a metal film 100 is formed.
  • a tungsten film 102 of, eg, a 300 nm-thickness is formed on the entire surface by, eg, CVD.
  • the tungsten film 102 and the barrier metal film 100 are polished by, eg, CMP method until the surface of the interlayer insulating film 30 is exposed, and the tungsten film 102 is embedded in the contact holes 32a and 32b.
  • a plug 104a composed of the NORA metal film 100 and the tungsten film 102 and connected to the source Z / drain region 22a is formed in the contact hole 32a.
  • a plug 104b composed of the nore metal film 100 and the tungsten film 102 and connected to the source Z drain region 22b is formed in the contact hole 32b (see FIG. 19A).
  • a Ti film 106 of, eg, a 20 nm-thickness is formed on the entire surface by, eg, sputtering.
  • a Pt film 108 of, eg, a 150 nm-thickness is formed on the Ti film 106 by, eg, sputtering.
  • the ferroelectric film 42 is crystallized by performing a predetermined heat treatment.
  • the upper electrode 44 made of, for example, an IrO film having a thickness of 200 nm is formed on the ferroelectric film 42 by, eg, sputtering (see FIG. 19B).
  • the upper electrode 44, the ferroelectric film 42, the Pt film 108, and the Ti film 106 are patterned step by step using photolithography and dry etching (see FIG. 20A).
  • a ferroelectric capacitor including the lower electrode 38, the ferroelectric film 42, and the upper electrode 44.
  • the lower electrode 38 is composed of a Ti film 106 and a Pt film 108.
  • a protective film 48 is formed on the interlayer insulating film 30 on which the ferroelectric capacitor 46 is formed by, eg, sputtering or MOCVD.
  • Ferroelectric capacitor 46 is a protective film
  • the protective film 48 for example, an Al 2 O film with a thickness of 50 nm is formed. Protection
  • the protective film 48 protects the ferroelectric capacitor 46 from process damage and the like.
  • heat treatment is performed, for example, at 650 ° C for 60 minutes in a furnace containing oxygen. This The heat treatment is for recovering the damage received by the ferroelectric film 42 during the formation of the upper electrode 44 on the ferroelectric film 42 and during the etching.
  • an interlayer insulating film 50 made of a TEOS film having a thickness of, for example, 1500 nm is formed on the entire surface by, eg, CVD.
  • the surface of the interlayer insulating film 50 is planarized by, eg, CMP (see FIG. 20B).
  • contact holes 114a and 114b reaching the plugs 104a and 104b are formed in the interlayer insulating film 50 and the protective film 48 by photolithography and etching (see FIG. 21A).
  • barrier metal films 116 and 122 made of, eg, a 20 nm-thick Ti film and a 50 nm TiN film are formed on the entire surface by, eg, sputtering.
  • a tungsten film 118 of, eg, a 500 nm-thickness is formed on the entire surface by, eg, CVD,
  • the tungsten films 118 and 124 and the barrier metal films 116 and 122 are polished by, for example, CMP method until the surface of the interlayer insulating film 50 is exposed, and the tungsten films 118 and 124 are polished in the contact holes 114a and 114b. Embed. In this way, plugs 120 and 126 composed of the nore metal films 116 and 122 and the tungsten films 118 and 124 and connected to the plugs 104a and 104b are formed in the contact holes 114a and 114b (FIG. 21B). reference).
  • a tungstic acid prevention insulating film (not shown) is formed on the entire surface.
  • a SiON film is used as the tungsten oxide preventing insulating film.
  • contact holes 110 reaching the upper electrode 44 of the ferroelectric capacitor 46 and contacts reaching the lower electrode 38 of the ferroelectric capacitor 46 are formed in the interlayer insulating film 50 and the protective film 48 by photolithography and dry etching. Hole 112 is formed.
  • an Ir film having a film thickness of 200 nm, for example, is formed as the conductor film 132 having a noble metal force on the entire surface by, eg, MOCVD.
  • a Ti film of, eg, a 5 nm-thickness and a TiN film of, eg, a 150 nm-thickness are sequentially formed on the entire surface by, eg, sputtering.
  • a barrier metal film 134 is formed by sequentially stacking a Ti film and a TiN film (see FIG. 22B).
  • the noble metal film 134, the conductor film 132 having a noble metal force, and the barrier metal film 130 are patterned.
  • a wiring 128 connected to the upper electrode 44 through the contact hole 110 and connected to the plug 120 is formed on the interlayer insulating film 50.
  • a wiring 136 connected to the lower electrode 38 through the contact hole 112 is formed.
  • a wiring 138 connected to the plug 126 is formed (see FIG. 23 (a)).
  • the wirings 128, 136, and 138 are composed of a rare metal film 130, a conductor film 132 made of a noble metal, and a rare metal film 134.
  • the interlayer insulating film 140, the plug 148 connected to the wiring 138, etc. are formed (see FIG. 23 (b)), and the normal wiring is formed on the interlayer insulating film 140 according to the circuit design. Depending on the process, single-layer or multi-layer wiring is appropriately formed.
  • the semiconductor device according to the present embodiment is manufactured.
  • the wiring connected to the upper electrode 44 of the ferroelectric capacitor 46 through the contact hole 110 and the lower part of the ferroelectric capacitor 46 through the contact hole 112 As the wiring connected to the electrode 38, the wiring 128, 136 having the conductor film 132 having noble metal force is formed, so that the reaction between the upper electrode 44 and the lower electrode 38 made of noble metal or noble metal oxide and the wiring 128, 136 is performed. Therefore, the contact between the upper electrode 44 and the lower electrode 38 and the wirings 128 and 136 can be improved.
  • the oxide forms the conductor film 132 made of a noble metal having the property of preventing the diffusion of hydrogen and moisture
  • the conductor film 132 made of the noble metal is oxidized. If this is done, it is possible to suppress the hydrogen and moisture from reaching the ferroelectric film 42 and to suppress the reduction of the metal oxide constituting the ferroelectric film 42 by hydrogen and moisture. As a result, the deterioration of the electrical characteristics of the ferroelectric capacitor 46 can be suppressed.
  • the ferroelectric film 42 is not limited to a PZT film or the like. Any ferroelectric film can be used as appropriate.
  • a perovskite crystal structure represented by the general formula ABO such as PZT film, PZT film, PZT film doped with a small amount of La, Ca, Sr, Si, etc.
  • the ferroelectric film 42 is formed by the MOCVD method and the sputtering method is described as an example.
  • the method for forming the ferroelectric film 42 is not limited to this. Absent.
  • a CVD method such as MOCVD method, a sputtering method, a sol-gel method, a MOD (Metal Organic Deposition) method, or the like can be used.
  • the case where the ferroelectric film 42 is used has been described as an example.
  • a high dielectric film for example, (BaSr) TiO
  • BST film Three films
  • SrTiO film STO film
  • TaO film etc.
  • high dielectric film is a
  • a dielectric film having a higher electric conductivity than silicon dioxide silicon having a higher electric conductivity than silicon dioxide silicon.
  • These conductor films 36, 66, 76, 132 have noble metal oxides. You may use what consists of a fried food.
  • Examples of the conductor films 36, 66, 76, and 132 include Pt, Ir, ruthenium (Ru), rhodium (Rh), rhenium (Re), osmium (Os), palladium (Pd), and their oxide strength. Group power of at least one kind of material power to be selected A membrane can be used. In addition, the laminated film of films having noble metal or noble metal oxide strength can be used as the conductor films 36, 66, 76, 132!
  • noble metal precursors When a conductor film made of these noble metals or noble metal oxides is formed by MOCVD, the following noble metal precursors can be used as raw materials.
  • precursors of Pt include trimethyl (cyclopentagel) Pt (IV), trimethyl (j8-diketonate) Pt (IV), bis (-diketonate) Pt (11), tetrakis (trifluorophosphine) Pt (O) or the like can be used.
  • precursor of Ru for example, bis (cyclopentagel) Ru, tris (tetramethyl-1,3-heptadionate) Ru, or the like can be used.
  • the precursor of Pd for example, «Radium bis (j8-diketonate) or the like can be used.
  • Rh for example, Lewis base stable rhodium (I) ⁇ -diketonate can be used.
  • the film when forming a conductor film made of a noble metal oxide, the film may be formed at a film formation temperature higher than the film formation temperature for forming a conductor film made of a noble metal.
  • the Ir film is formed at a film formation temperature of less than 550 ° C.
  • the IrO film can be formed by setting the film formation temperature to 550 ° C. or higher. it can.
  • the case where the conductor films 36, 66, 76, 132 are formed by the MOCVD method has been described as an example.
  • the method for forming the conductor films 36, 66, 76, 132 is not limited thereto. It is not limited.
  • the power of MOCVD method for example, CVD method such as LSCVD (Liquid Source Chemical Vapor Deposition) method, It is possible to use the CSD (Chemical Solution Deposition) method.
  • the adhesion layer 34 is not limited to this.
  • a Ti film, a TiN film, a TiAIN (titanium aluminum nitride) film, an Ir film, an IrO film, a Pt film, a Ru film, a Ta film, or the like can be used. Also, use these laminated films as the adhesion layer 34.
  • the conductor film constituting the lower electrode 38 is not limited to this.
  • a conductive film made of a noble metal or a noble metal oxide can be used.
  • Lower electrode 38 As the conductive film to be formed, for example, a film having at least one material force selected from the group force consisting of Pt, Ir, Ru, Rh, Re, Os, Pd, and oxides thereof can be used.
  • an SrRuO film SRO film
  • SRO film SRO film
  • these laminated films may be used as a conductor film constituting the lower electrode 38.
  • an IrO film is used as the upper electrode 44 as an example.
  • the conductor film constituting the upper electrode 44 is not limited to this, and various noble metals or noble metal oxides are used.
  • a conductive film such as a material can be used.
  • a conductor film constituting the upper electrode 44 in addition to an IrO film, for example, a film having at least one material force selected from a group force composed of Pt, Ir, Ru, Rh, Re, Os, Pd, and oxides thereof. Can be used.
  • an SRO film can be used as a conductor film constituting the upper electrode 44.
  • these laminated films may be used as a conductor film constituting the upper electrode 44.
  • the TiN film and the Ti film are used as the noble metal films 74 and 130 interposed between the upper electrode 44 or the lower electrode 38 and the conductor films 76 and 132, respectively.
  • the case of using a laminated film in which TiN films are sequentially laminated has been described as an example, but the rare metal films 74 and 130 are not limited to this.
  • the rare metal films 74 and 130 for example, a film having at least one material force selected from the group consisting of Ti, TiN, TiAlN, Pt, Ir, IrO, Ru, and Ta can be used.
  • these laminated films can be used as the NORA metal films 74 and 130.
  • the semiconductor device and the manufacturing method thereof according to the present invention are useful for realizing improvement in operating characteristics and reliability of a semiconductor device having a capacitor using a ferroelectric film or a high dielectric film as a dielectric film. is there.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Semiconductor Memories (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

 半導体基板10上に形成された層間絶縁膜30と、層間絶縁膜30上に形成され、貴金属又は貴金属酸化物からなる導体膜36を有する下部電極38と、下部電極38上に形成された強誘電体膜42と、強誘電体膜42上に形成された上部電極44とを有する強誘電体キャパシタ46とを有する半導体装置において、下部電極38は、層間絶縁膜30に形成されたコンタクトホール32a内に埋め込まれ、ソース/ドレイン領域22aに接続されたプラグ部38aを一体的に有している。

Description

半導体装置及びその製造方法
技術分野
[0001] 本発明は、半導体装置及びその製造方法に係り、特に誘電体膜として高誘電体膜 又は強誘電体膜を用いたキャパシタを有する半導体装置及びその製造方法に関す る。
背景技術
[0002] 近年のデジタル技術の進展に伴い、大容量のデータを高速に保存、処理等する必 要性が高まる中、電子機器に使用される半導体装置には、高集積化及び高性能化 が要求されている。このような要求に応えるベぐ例えば、 DRAM (Dynamic Random Access Memory)に関しては、その高集積ィ匕を実現するために、 DRAMを構成する キャパシタの誘電体膜として、強誘電体材料、高誘電率材料を用いる技術が広く研 究開発されている。
[0003] キャパシタの誘電体膜として強誘電体膜を有する強誘電体キャパシタを用いた強 誘電体メモリ(FeRAM: Ferroelectric Random Access Memory)は、高速動作が可能 である、低消費電力である、書き込み Z読み出し耐久性に優れている等の特徴を有 する不揮発性メモリであり、今後の更なる発展が見込まれている。
[0004] FeRAMは、強誘電体のヒステリシス特性を利用して情報を記憶するメモリである。
一対の電極に挟まれた強誘電体膜を有する強誘電体キャパシタにお!/、て、強誘電 体膜は、電極間の印加電圧に応じて分極を生じ、電極間への電圧の印加を止めた 後も自発分極を有している。電極間の印加電圧の極性を反転すれば、この自発分極 の極性も反転する。このように、強誘電体キャパシタには、強誘電体膜の自発分極の 極性に応じた情報が記憶され、自発分極を検出することにより、記憶された情報が読 み出される。
[0005] FeRAMの強誘電体キャパシタに用いられる強誘電体膜の材料としては、 PbZr
1 -X
Ti O (PZT)、 Pb La Zr Ti O (PLZT)、 Caゝ Srゝ Siが微量ドープされた PZ
X 3 1 -X X 1 -Y Υ 3
Τ等の PZT系強誘電体が用いられている。また、 SrBi Ta O (SBT)、 SrBi (Ta N b ) O (SBTN)等のビスマス層状構造強誘電体等も用いられている。これらの強
1 -X 2 9
誘電体膜は、ゾル 'ゲル法、スパッタ法、 MOCVD (Metal Organic Chemical Vapor Deposition)法等により成膜されて 、る。
[0006] 強誘電体キャパシタに用いられる強誘電体膜は、一般的に、上記のゾル 'ゲル法等 により下部電極上に成膜された後、熱処理により、ぺロブスカイト構造の結晶やビス マス層状構造の結晶に結晶化される。このため、強誘電体キャパシタの電極材料は 、酸化し難い材料であること、又は酸化されても導電性を維持したままであることが不 可欠となっている。このような電極材料として、 Pt、 Ir、 IrO等の白金族系金属又は
X
白金系金属の酸ィ匕物が広く用いられている。なお、 FeRAMにおけるその他の配線 材料としては、通常の半導体デバイスで用いられて 、る A1等が一般的に用いられて いる。
[0007] FeRAMもまた、他の半導体装置と同様に、セル面積を低減することが今後の課題 となっている。 FeRAMのセル面積の低減を実現しうる構造としては、スタック型セル が注目されている。
[0008] スタック型セルにおいては、半導体基板上に形成されたトランジスタのソース Zドレ イン領域に接続されたプラグの直上に、強誘電体キャパシタが形成されている。すな わち、ソース Zドレイン領域に接続されたプラグ上に、バリアメタル、下部電極、強誘 電体膜、及び上部電極が順次形成されている。プラグとしては、タングステンからなる ものが用いられている。また、ノ リアメタルは、酸素の拡散を抑制する役割を果たして いる。一般的に、下部電極とバリアメタルとを兼ねる導体膜が形成されている。このた め、ノ リアメタルと下部電極とを明確に区別することは困難であるが、このような導体 膜の材料として、 TiN、 TiAlN、 Ir、 Ru、 IrO 、 RuO 、 SrRuO (SRO)の組合せが
2 2 3
検討されている。
[0009] また、上述のように、強誘電体キャパシタの電極材料としては、白金族系金属又は 白金系金属の酸ィ匕物が用いられている。しかし、 Ptは、酸素に対して高い透過性を 有している。このため、スタック型セルにおいて、タングステンプラグの直上に下部電 極として Pt膜を形成すると、 Pt膜を酸素が容易に透過し、熱処理によりタングステン プラグが容易に酸ィ匕されてしまう場合がある。このようなタングステンプラグの酸化を 抑制すベぐスタック型セルにおいては、下部電極の構造として、 Ir膜と Pt膜とが順 次積層された構造 (PtZlr構造)、 Ir膜と IrO膜と Pt膜とが順次積層された構造 (Pt
2
/IrO Zlr構造)が用いられることが多くなつている。さらには、種々の積層構造を有
2
する下部電極が提案されている(例えば特許文献 1〜3を参照)。また、タングステン プラグが埋め込まれるコンタクトホールの内壁面に、種々のバリアメタルを形成してお くことで、タングステンプラグと下部電極との接続部の抵抗増大の防止、強誘電体キ ャパシタの特性劣化の防止等を実現する技術も提案されて ヽる (例えば特許文献 4、 5を参照)。
[0010] また、一般的に、強誘電体キャパシタに接続される回路は、 A1配線により構成され ている。 A1は、 Pt等の白金族系金属と共晶反応を起こすことが知られている(例えば 特許文献 6を参照)。このため、白金族系金属力 なる電極と A1配線との間には、両 者の共晶反応を防止するため、 TiN膜等力 なるバリア層を形成する必要がある(例 えば特許文献 7、 8を参照)。
[0011] し力しながら、 TiN膜や、通常のロジック品等で用いられている Ti膜と TiN膜との積 層膜をバリア層として用いた場合であっても、電極材料と配線材料との反応や、 Ti膜 の酸ィ匕等を防止することができず、コンタクト不良等の不都合が生じてしまうことがあ つた。力かる不都合を回避すベぐこれまでに、バリア層の構造、材料等について種 々の提案が行われて 、る(例えば特許文献 9、 10を参照)。
[0012] また、 FeRAMのスタック型セルでは、上述のように、タングステンプラグが一般的に 、用いられている。このタングステンプラグの酸ィ匕を防止するために、強誘電体キャパ シタの下部電極とタングステンプラグとの間に形成するノリア層等の構造に関して、 種々の構造が提案されている(例えば特許文献 11、 12を参照)。
特許文献 1:特開 2003— 425784号公報
特許文献 2:特許第 3454085号明細書
特許文献 3 :特開平 11 243179号公報
特許文献 4:特開 2004 - 31533号公報
特許文献 5:特開 2003— 68993号公報
特許文献 6:特開 2004— 241679号公報 特許文献 7:特許第 3045928号明細書
特許文献 8 :特許第 3165093号明細書
特許文献 9:特開 2002— 100740号公報
特許文献 10:特許第 3307609号明細書
特許文献 11:特開 2004— 193430号公報
特許文献 12 :特開 2004— 146772号公報
発明の開示
発明が解決しょうとする課題
[0013] 従来の FeRAMでは、酸化され易いタングステンプラグが用いられているため、製 造工程における熱処理等によりタングステンプラグが酸ィ匕されることがあった。ー且タ ングステンプラグが酸ィ匕されると、タングステンプラグ上の下部電極等の膜剥がれや 、コンタクト不良が発生してしまうことがあった。特許文献 11、 12には、タングステンプ ラグの酸ィ匕を防止することを目的とする構造が開示されているが、その構造は複雑な ものとなってしまっている。また、そのような構造を採用したとしても、強誘電体膜の結 晶化、ダメージの回復等のために行う熱処理の際に、タングステンプラグの酸ィ匕を確 実に防止するとは困難であると考えられる。
[0014] また、強誘電体キャパシタの電極材料である Pt等と、配線材料の A1との共晶反応 を防止するため、 Ti膜、 TiN膜等のノ リア層が形成されている力 このようなノ リア層 では共晶反応を防止することができないことがあった。例えば、バリア層の形成後の 熱処理によりゥエーハのストレスが変化すると、ノ リア層に亀裂が生じ、電極材料であ る Pt等と、配線材料の A1との共晶反応が起きてしまう場合があった。
[0015] また、タングステンプラグは、 CMP (Chemical Mechanical Polishing)法による研磨 後の平坦性があまり良好でないため、タングステンプラグ上に形成される下部電極の 配向が劣化してしまう場合がある。この結果、下部電極上に形成される強誘電体膜の 結晶性も劣化し、強誘電体キャパシタの電気的特性が劣化してしまうことがあった。
[0016] 本発明の目的は、強誘電体膜又は高誘電体膜を用いたキャパシタの電極とプラグ 、配線と間の良好なコンタクトを実現し、動作特性に優れ、信頼性の高い半導体装置 及びその製造方法を提供することにある。 課題を解決するための手段
[0017] 本発明の一観点によれば、半導体基板上に形成された半導体素子と、前記半導体 素子が形成された前記半導体基板上に形成された絶縁膜と、前記絶縁膜に形成さ れ、前記半導体素子に達するコンタクトホール内に埋め込まれ、前記半導体素子に 接続され、貴金属又は貴金属酸ィ匕物力 なる導体膜を有するプラグと、前記プラグが 形成された前記絶縁膜上に形成され、前記プラグに接続された下部電極と、前記下 部電極上に形成され、強誘電体膜又は高誘電体膜からなる誘電体膜と、前記誘電 体膜上に形成された上部電極とを有するキャパシタとを有する半導体装置が提供さ れる。
[0018] また、本発明の他の観点によれば、半導体基板上に形成された半導体素子と、前 記半導体素子が形成された前記半導体基板上に形成された絶縁膜と、前記絶縁膜 に形成され、前記半導体素子に達するコンタクトホール内に埋め込まれ、前記半導 体素子に接続され、貴金属又は貴金属酸化物からなる導体膜を有するプラグと、前 記貴金属又は貴金属酸ィ匕物力 なる導体膜プラグを平坦化されたプラグと、前記プ ラグが形成された前記絶縁膜上に形成され、前記プラグに接続された下部電極と、 前記下部電極上に形成され、強誘電体膜又は高誘電体膜からなる誘電体膜と、前 記誘電体膜上に形成された上部電極とを有するキャパシタとを有する半導体装置が 提供される。
[0019] また、本発明の更に他の観点によれば、半導体基板上に形成された半導体素子と 、前記半導体素子が形成された前記半導体基板上に形成された絶縁膜と、前記絶 縁膜に形成され、前記半導体素子に達するコンタクトホール内に埋め込まれ、前記 半導体素子に接続され、貴金属又は貴金属酸化物からなる導体膜を有するプラグと 、前記貴金属又は貴金属酸ィ匕物力 なる導体膜プラグを平坦化されたプラグと、前 記プラグが形成された前記絶縁膜上に形成され、前記プラグに接続されたァモルフ ァス貴金属酸化物密着層と、前記アモルファス貴金属酸化物密着層に形成された下 部電極と、前記下部電極上に形成され、強誘電体膜又は高誘電体膜からなる誘電 体膜と、前記誘電体膜上に形成された上部電極とを有するキャパシタとを有する半 導体装置が提供される。 [0020] また、本発明の更に他の観点によれば、半導体基板上に形成され、下部電極と、 前記下部電極上に形成され、強誘電体膜又は高誘電体膜からなる誘電体膜と、前 記誘電体膜上に形成された上部電極とを有するキャパシタと、前記半導体基板上及 び前記キャパシタ上に形成された絶縁膜と、前記絶縁膜上に形成され、前記絶縁膜 に形成され前記上部電極に達するコンタクトホールを介して前記上部電極に接続さ れ、貴金属又は貴金属酸化物からなる導体膜を有する配線とを有する半導体装置 が提供される。
[0021] また、本発明の更に他の観点によれば、半導体基板上に形成され、下部電極と、 前記下部電極上に形成され、強誘電体膜又は高誘電体膜からなる誘電体膜と、前 記誘電体膜上に形成された上部電極とを有するキャパシタと、前記半導体基板上及 び前記キャパシタ上に形成された絶縁膜と、前記絶縁膜上に形成され、前記絶縁膜 に形成され前記上部電極又は前記下部電極に達するコンタクトホールを介して前記 上部電極又は前記下部電極に接続され、貴金属又は貴金属酸化物からなる導体膜 を有する配線とを有する半導体装置が提供される。
[0022] また、本発明の更に他の観点によれば、半導体基板上に、半導体素子を形成する 工程と、前記半導体素子が形成された前記半導体基板上に、絶縁膜を形成するェ 程と、前記絶縁膜に、前記半導体素子に達するコンタクトホールを形成する工程と、 前記コンタクトホール内に埋め込まれ、前記半導体素子に接続され、貴金属又は貴 金属酸化物からなる導体膜を有するプラグを形成する工程と、前記プラグが形成され た前記絶縁膜上に形成され、前記プラグに接続された下部電極と、前記下部電極上 に形成され、強誘電体膜又は高誘電体膜からなる誘電体膜と、前記誘電体膜上に 形成された上部電極とを有するキャパシタを形成する工程とを有する半導体装置の 製造方法が提供される。
[0023] また、本発明の更に他の観点によれば、半導体基板上に、半導体素子を形成する 工程と、前記半導体素子が形成された前記半導体基板上に、絶縁膜を形成するェ 程と、前記絶縁膜に、前記半導体素子に達するコンタクトホールを形成する工程と、 前記コンタクトホール内に埋め込まれ、前記半導体素子に接続され、貴金属又は貴 金属酸化物からなる導体膜を有するプラグを形成する工程と、前記導体膜プラグの 平坦化する工程と、前記プラグが形成された前記絶縁膜上に形成され、前記プラグ に接続された下部電極と、前記下部電極上に形成され、強誘電体膜又は高誘電体 膜からなる誘電体膜と、前記誘電体膜上に形成された上部電極とを有するキャパシ タを形成する工程とを有する半導体装置の製造方法が提供される。
[0024] また、本発明の更に他の観点によれば、半導体基板上に、半導体素子を形成する 工程と、前記半導体素子が形成された前記半導体基板上に、絶縁膜を形成するェ 程と、前記絶縁膜に、前記半導体素子に達するコンタクトホールを形成する工程と、 前記コンタクトホール内に埋め込まれ、前記半導体素子に接続され、貴金属又は貴 金属酸化物からなる導体膜を有するプラグを形成する工程と、前記導体膜プラグの 平坦化する工程と、前記プラグが形成された前記絶縁膜上に形成され、前記プラグ に接続されたアモルファス貴金属酸ィ匕物と下部電極とを形成する工程と、前記下部 電極上に形成され、強誘電体膜又は高誘電体膜からなる誘電体膜と、前記誘電体 膜上に形成された上部電極とを有するキャパシタを形成する工程とを有する半導体 装置の製造方法が提供される。
[0025] また、本発明の更に他の観点によれば、半導体基板上に半導体素子を形成するェ 程と、前記半導体素子が形成された前記半導体基板上に絶縁膜を形成する工程と、 前記絶縁膜に、前記半導体素子に達するコンタクトホールを形成する工程と、前記 絶縁膜上に、前記コンタクトホール内に埋め込まれ、前記半導体素子に接続され、 貴金属又は貴金属酸ィ匕物カゝらなる導体膜を形成する工程と、前記絶縁膜上に形成 され、前記導体膜を有する下部電極と、前記下部電極上に形成され、強誘電体膜又 は高誘電体膜からなる誘電体膜と、前記強誘電体膜上に形成された上部電極とを有 するキャパシタを形成する工程とを有する半導体装置の製造方法が提供される。
[0026] また、本発明の更に他の観点によれば、半導体基板上に、下部電極と、前記下部 電極上に形成され、強誘電体膜又は高誘電体膜からなる誘電体膜と、前記誘電体 膜上に形成された上部電極とを有するキャパシタを形成する工程と、前記半導体基 板上及び前記キャパシタ上に、絶縁膜を形成する工程と、前記絶縁膜に、前記上部 電極又は前記下部電極に達するコンタクトホールを形成する工程と、前記絶縁膜上 に、前記コンタクトホールを介して前記上部電極又は前記下部電極に接続され、貴 金属又は貴金属酸化物からなる導体膜を有する配線を形成する工程とを有する半 導体装置の製造方法が提供される。
発明の効果
[0027] 本発明によれば、誘電体膜として高誘電体膜又は強誘電体膜を用いたキャパシタ を有する半導体装置において、下部電極が接続されるプラグとして、貴金属又は貴 金属酸化物からなる導体膜を有するプラグを形成するので、所望の配向の下部電極 を高い制御性で形成することができる。これにより、下部電極上に形成される誘電体 膜の結晶性を向上することができ、優れた電気的特性を有するキャパシタを得ること ができる。また、貴金属又は貴金属酸ィ匕物力もなる導体膜を有するプラグ上に、貴金 属又は貴金属酸ィ匕物力 なる導体膜を有する下部電極を形成するので、プラグと下 部電極との間の密着性を向上することができ、膜剥がれの発生を防止することができ る。しかも、プラグを構成する貴金属カゝらなる導体膜は、酸化され難ぐまた酸化され た場合であっても低抵抗のままであるので、良好なコンタクトを実現することができる。 さらに、貴金属酸化物は水素及び水分の拡散を防止する特性を有するので、貴金属 又は貴金属酸ィ匕物力 なる導体膜を有するプラグにより、キャパシタの誘電体膜に水 素及び水分が達するのが抑制され、キャパシタの電気的特性の劣化を抑制すること が可能となる。
[0028] また、本発明によれば、コンタクトホールを介してキャパシタの上部電極又は下部電 極に接続された配線として、貴金属又は貴金属酸化物からなる導体膜を有する配線 を形成するので、貴金属又は貴金属酸化物により構成される上部電極又は下部電 極と配線との反応を抑制することができ、上部電極又は下部電極と配線との間のコン タクトを良好なものとすることができる。さらに、貴金属酸化物は水素及び水分の拡散 を防止する特性を有するので、貴金属又は貴金属酸化物からなる導体膜を有する配 線により、キャパシタの誘電体膜に水素及び水分が達するのが抑制され、キャパシタ の電気的特性の劣化を抑制することが可能となる。
図面の簡単な説明
[0029] [図 1]図 1は、本発明の第 1実施形態による半導体装置の構造を示す断面図である。
[図 2]図 2は、本発明の第 1実施形態による半導体装置の製造方法を示す工程断面 図(その 1)である。
[図 3]図 3は、本発明の第 1実施形態による半導体装置の製造方法を示す工程断面 図(その 2)である。
[図 4]図 4は、本発明の第 1実施形態による半導体装置の製造方法を示す工程断面 図(その 3)である。
[図 5]図 5は、本発明の第 1実施形態による半導体装置の製造方法を示す工程断面 図(その 4)である。
[図 6]図 6は、本発明の第 1実施形態による半導体装置の製造方法を示す工程断面 図(その 5)である。
[図 7]図 7は、本発明の第 1実施形態の変形例による半導体装置の構造を示す断面 図である。
[図 8]図 8は、本発明の第 2実施形態による半導体装置の構造を示す断面図である。
[図 9]図 9は、本発明の第 2実施形態による半導体装置の製造方法を示す工程断面 図(その 1)である。
[図 10]図 10は、本発明の第 2実施形態による半導体装置の製造方法を示す工程断 面図(その 2)である。
[図 11]図 11は、本発明の第 2実施形態による半導体装置の製造方法を示す工程断 面図(その 3)である。
[図 12]図 12は、本発明の第 2実施形態の変形例による半導体装置の構造を示す断 面図である。
[図 13]図 13は、本発明の第 3実施形態による半導体装置の構造を示す断面図であ る。
[図 14]図 14は、本発明の第 3実施形態による半導体装置の製造方法を示す工程断 面図(その 1)である。
[図 15]図 15は、本発明の第 3実施形態による半導体装置の製造方法を示す工程断 面図(その 2)である。
[図 16]図 16は、本発明の第 3実施形態による半導体装置の製造方法を示す工程断 面図(その 3)である。 [図 17]図 17は、本発明の第 4実施形態による半導体装置の構造を示す断面図であ る。
[図 18]図 18は、本発明の第 4実施形態による半導体装置の製造方法を示す工程断 面図(その 1)である。
[図 19]図 19は、本発明の第 4実施形態による半導体装置の製造方法を示す工程断 面図(その 2)である。
[図 20]図 20は、本発明の第 4実施形態による半導体装置の製造方法を示す工程断 面図(その 3)である。
[図 21]図 21は、本発明の第 4実施形態による半導体装置の製造方法を示す工程断 面図(その 4)である。
[図 22]図 22は、本発明の第 4実施形態による半導体装置の製造方法を示す工程断 面図(その 5)である。
[図 23]図 23は、本発明の第 4実施形態による半導体装置の製造方法を示す工程断 面図(その 6)である。
符号の説明
10· ··半導体基板
12· ··素子分離領域
14a、 14b…ゥエル
16· ··ゲート絶縁膜
18…ゲート電極
20…サイドウォール絶縁膜
22a、 22b…ソース Zドレイン領域
24…トランジスタ
26〜SiON膜
28…シリコン酸ィ匕膜
30…層間絶縁膜
32a、 32b…コンタクトホーノレ
34· ··密着層 …導体膜
…下部電極
a…プラグ部
·· 'プラグ
···強誘電体膜 …上部電極
…強誘電体キャパシタ …保護膜
…層間絶縁膜a, 52b…コンタク卜ホールa、 54b…配線溝
···バリアメタル膜 …ァノレ ゥム膜a、 60b…酉己線a, 62b…プラグ部 …絶縁膜
···導体膜
a, 68b…プラグ
···コンタクトホール …配線
、 78···バリアメタル膜···導体膜
···コンタクトホール···バリアメタル膜 …タングステン膜 …プラグ
…配線
…層間絶縁膜 92·· 'コンタクトホール
94·· 'バリアメタル膜
96··' 'タングステン膜
98···プラグ
100· "バリアメタル膜
102· ··タングステン膜
104a, 104b…プラグ
106· ••Ti膜
108· ••Pt膜
110· "コンタクトホール
112· "コンタクトホール
114a, 114b…コンタクトホ、
116· "バリアメタル膜
118· "導体膜
120· ··プラグ
122· "バリアメタル膜
124· ··タングステン膜
126· ··プラグ
128· "配線
130、 134···バリアメタノレ膜
132· "導体膜
136· ,·配線
138· "配線
140· 層間絶縁膜
142·' '·コンタクトホール
144·. '·バリアメタル膜
146·· 'タングステン膜
148·· -プラグ 発明を実施するための最良の形態
[0031] [第 1実施形態]
本発明の第 1実施形態による半導体装置及びその製造方法を図 1乃至図 6を用い て説明する。図 1は本実施形態による半導体装置の構造を示す断面図、図 2乃至図 6は本実施形態による半導体装置の製造方法を示す工程断面図である。
[0032] まず、本実施形態による半導体装置の構造について図 1を用いて説明する。本実 施形態による半導体装置は、スタック型のメモリセル構造を有する FeRAMである。
[0033] 例えばシリコン力もなる半導体基板 10上には、素子領域を画定する素子分離領域 12が形成されている。半導体基板 10は、 n型、 p型のいずれのものであってもよい。 素子分離領域 12が形成された半導体基板 10内には、ゥエル 14a、 14bが形成され ている。
[0034] ゥエル 14a、 14bが形成された半導体基板 10上には、ゲート絶縁膜 16を介してゲ ート電極 (ゲート配線) 18が形成されている。ゲート電極 18の側壁部分には、サイドウ オール絶縁膜 20が形成されて 、る。
[0035] サイドウォール絶縁膜 20が形成されたゲート電極 18の両側には、ソース/ドレイン 領域 22a、 22bが形成されている。
[0036] こうして、半導体基板 10上に、ゲート電極 18とソース Zドレイン領域 22a、 22bとを 有するトランジスタ 24が構成されて 、る。
[0037] トランジスタ 24が形成された半導体基板 10上には、例えば膜厚 200nmのシリコン 窒化酸化膜 (SiON膜) 26と、例えば膜厚 lOOOnmのシリコン酸ィ匕膜 28とが順次積 層されている。こうして、 SiON膜 26とシリコン酸ィ匕膜 28とが順次積層されてなる層間 絶縁膜 30が形成されて 、る。層間絶縁膜 30の表面は平坦化されて 、る。
[0038] 層間絶縁膜 30には、ソース/ドレイン領域 22a、 22bに達するコンタクトホール 32a 、 32bが形成されている。
[0039] コンタクトホール 32aの内壁面、コンタクトホール 32a底部のソース Zドレイン領域 2 2a上、及びコンタクトホール 32a周辺の層間絶縁膜 30上には、後述する貴金属から なる導体膜 36の下地に対する密着性を確保するための密着層 34が形成されている 。また、コンタクトホール 32bの内壁面、及びコンタクトホール 32b底部のソース Zドレ イン領域 22b上には、後述する貴金属力もなる導体膜 36の下地に対する密着性を 確保するための密着層 34が形成されている。密着層 34は、例えば膜厚 20nmの Ti 膜と、例えば膜厚 50nmの TiN膜とが順次積層されてなるものである。なお、密着層 3 4は、水素及び水分の拡散を防止するバリア層としても機能する。このような密着層 3 4により、強誘電体膜 42に水素及び水分が達するのが抑制されため、強誘電体膜 4 2を構成する金属酸化物の水素や水分による還元を抑制することができる。これによ り、強誘電体キャパシタ 46の電気的特性の劣化を抑制することが可能となる。
[0040] 密着層 34が形成されたコンタクトホール 32a内、及びコンタクトホール 32a周辺の密 着層 34上には、貴金属力もなる導体膜 36が形成されている。また、密着層 34が形 成されたコンタクトホール 32b内には、貴金属力もなる導体膜 36が埋め込まれている 。導体膜 36としては、例えば膜厚 400nmのイリジウム (Ir)膜が用いられている。
[0041] こうして、強誘電体キャパシタ 46の下部電極 38が、密着層 34と、貴金属力もなる導 体膜 36とにより構成されている。下部電極 38は、コンタクトホール 32a内に埋め込ま れ、ソース Zドレイン領域 22aに接続されたプラグ部 38aを一体的に有している。
[0042] また、コンタクトホール 32b内には、密着層 34と、貴金属力もなる導体膜 36とにより 構成され、ソース/ドレイン領域 22bに接続されたプラグ 40が形成されて 、る。
[0043] 下部電極 38上には、強誘電体キャパシタ 46の強誘電体膜 42が形成されている。
強誘電体膜 42としては、例えば膜厚 120nmの PbZr Ti O膜 (PZT膜)が用いら
1 -Χ X 3
れている。
[0044] 強誘電体膜 42上には、強誘電体キャパシタ 46の上部電極 44が形成されている。
上部電極 44としては、例えば膜厚 200nmの酸化イリジウム (IrO )膜が用いられてい る。
[0045] こうして、下部電極 38と強誘電体膜 42と上部電極 44とからなる強誘電体キャパシタ 46が構成されている。
[0046] 強誘電体キャパシタ 46が形成された層間絶縁膜 30上には、水素及び水分の拡散 を防止する保護膜 48が形成されている。保護膜 48は、強誘電体キャパシタ 46を覆う ように、すなわち、下部電極 38の側面、強誘電体膜 42の側面、上部電極 44の側面 、及び上部電極 44の上面を覆うように形成されている。保護膜 48としては、例えば膜 厚 20〜: LOOnmのアルミナ (Al O )膜が用いられている。保護膜 48により、強誘電体
2 3
膜 42に水素及び水分が達するのが抑制されため、強誘電体膜 42を構成する金属 酸ィ匕物の水素や水分による還元を抑制することができる。これにより、強誘電体キヤ パシタ 46の電気的特性の劣化を抑制することが可能となる。
[0047] 保護膜 48上には、例えば膜厚 1500nmの TEOS膜からなる層間絶縁膜 50が形成 されて 、る。層間絶縁膜 50の表面は平坦ィ匕されて 、る。
[0048] 層間絶縁膜 50及び保護膜 48には、強誘電体キャパシタ 46の上部電極 44に達す るコンタクトホール 52aが形成されている。層間絶縁膜 50には、コンタクトホール 52a に接続された配線溝 54aが形成されて 、る。
[0049] また、層間絶縁膜 50及び保護膜 48には、プラグ 40に達するコンタクトホール 52b が形成されている。層間絶縁膜 50には、コンタクトホール 52bに接続された配線溝 5
4bが形成されている。
[0050] コンタクトホール 52a及び配線溝 54a内、及びコンタクトホール 52b及び配線溝 54b 内には、例えば膜厚 30nmの Ti膜及び膜厚 50nmの TiN膜からなるバリアメタル膜 5 6が形成されている。
[0051] ノ リアメタル膜 56が形成されたコンタクトホール 52a及び配線溝 54a内、及びバリア メタル膜 56が形成されたコンタクトホール 52b及び配線溝 54b内には、アルミニウム 膜 58が埋め込まれて 、る。このアルミニウム膜 58はタングステン膜でもよ 、。
[0052] こうして、配線溝 54a内に、ノ リアメタル膜 56とアルミニウム膜 58とにより構成される 配線 60aが形成されている。配線 60aは、コンタクトホール 52a内に埋め込まれ、強誘 電体キャパシタ 46の上部電極 44に接続されたプラグ部 62aを一体的に有している。
[0053] また、配線溝 54b内には、ノ リアメタル膜 56とアルミニウム膜 58とにより構成される 配線 60bが形成されている。配線 60bは、コンタクトホール 52b内に埋め込まれ、プラ グ 40に接続されたプラグ部 62bを一体的に有している。
[0054] こうして、本実施形態による半導体装置が構成されている。
[0055] 本実施形態による半導体装置は、強誘電体キャパシタ 46の下部電極 38が、貴金 属からなる導体膜 36を有し、ソース Zドレイン領域 22aに接続されたプラグ部 38aを 一体的に有していることに主たる特徴がある。 [0056] 従来、スタック型のメモリセル構造にぉ 、ては、ソース Zドレイン領域に接続された タングステンプラグの直上に、強誘電体キャパシタの下部電極が別個に形成されて いた。このタングステンプラグは、 CMP後の平坦性が良好ではないため、下部電極 の配向が劣化してしまっていた。また、強誘電体キャパシタに対して熱処理を行う際 に、タングステンプラグは、容易に酸化されうる。タングステンプラグが酸ィ匕されると、 タングステンプラグと下部電極との間の密着性が低下して膜剥がれが生じ、タンダス テンプラグと下部電極との間にコンタクト不良が生じることとなる。
[0057] これに対して、本実施形態による半導体装置では、強誘電体キャパシタ 46の下部 電極 38が、酸化され難い貴金属からなる導体膜 36を有し、ソース Zドレイン領域 22 aに接続されたプラグ部 38aを一体的に有している。これにより、酸ィ匕され易いタンダ ステンプラグが下部電極とは別個に形成されている場合と比較して、所望の配向の 下部電極 38を高い制御性で形成することができる。したがって、下部電極 38上に形 成される強誘電体膜 42の結晶性を向上することができ、優れた電気的特性を有する 強誘電体キャパシタ 46を得ることができる。
[0058] また、本実施形態による半導体装置では、下部電極 38力 ソース Zドレイン領域 2 2aに接続されたプラグ部 38aを一体的に有しているため、従来のようにタングステン プラグが下部電極とは別個に形成されている場合に両者の間に生じうるコンタクト不 良が問題となることはない。
[0059] また、プラグ部 38aを有する下部電極 38を構成する導体膜 36は、貴金属からなる ため酸化され難ぐまた酸化された場合であっても低抵抗のままであるため、良好な コンタクトを実現することができる。
[0060] さらに、導体膜 36を構成する貴金属の酸化物は、水素及び水分の拡散を防止する 特性を有している。このため、貴金属からなる導体膜 36が酸化されていれば、強誘 電体膜 42に水素及び水分が達するのが抑制され、強誘電体膜 42を構成する金属 酸ィ匕物の水素や水分による還元を抑制することができる。これにより、強誘電体キヤ パシタ 46の電気的特性の劣化を抑制することが可能となる。
[0061] したがって、本実施形態によれば、動作特性に優れ、信頼性の高!ヽスタック型のメ モリセル構造を有する FeRAMを提供することができる。 [0062] 次に、本実施形態による半導体装置の製造方法について図 2乃至図 6を用いて説 明する。
[0063] まず、例えばシリコンからなる半導体基板 10に、例えば STI (Shallow Trench
Isolation)法により、素子領域を画定する素子分離領域 12を形成する。
[0064] 次いで、イオン注入法により、ドーパント不純物を導入することにより、ゥエル 14a、 1 4bを形成する。
[0065] 次いで、通常のトランジスタの形成方法を用いて、素子分離領域 12により画定され た素子領域に、ゲート電極 (ゲート配線) 18とソース Zドレイン領域 22a、 22bとを有 するトランジスタ 24を形成する(図 2 (a)参照)。
[0066] 次!、で、全面に、例えばプラズマ CVD (Chemical Vapor Deposition)法により、例え ば膜厚 200nmの SiON膜 26を形成する。 SiON膜 26は、 CMP法による平坦ィ匕の際 のストツバ膜として機能する。
[0067] 次いで、全面に、例えば CVD法により、例えば膜厚 lOOOnmのシリコン酸ィ匕膜 28 を形成する。
[0068] こうして、 SiON膜 26とシリコン酸ィ匕膜 28とにより層間絶縁膜 30が構成される。
[0069] 次いで、例えば CMP法により、層間絶縁膜 30の表面を平坦ィ匕する(図 2 (b)参照)
[0070] 次いで、フォトリソグラフィー及びエッチングにより、層間絶縁膜 30に、ソース Zドレ イン領域 22a、 22bに達するコンタクトホール 32a、 32bを形成する(図 3 (a)参照)。
[0071] 次いで、脱ガス処理として、例えば窒素雰囲気中にて、例えば 650°C、 30分間の 熱処理を行う。
[0072] 次 、で、全面に、例えばスパッタ法により、例えば膜厚 20nmの Ti膜を形成する。
続いて、全面に、例えばスパッタ法により、例えば膜厚 50nmの TiN膜を形成する。こ うして、 Ti膜と TiN膜とが順次積層されてなる密着層 34が形成される。
[0073] 次いで、密着層 34上に、例えば MOCVD法により、貴金属力もなる導体膜 36とし て、例えば膜厚 400nmの Ir膜を形成する(図 3 (b)参照)。原料であるイリジウム前駆 体としては、例えば、ルイス塩基安定ィ匕 j8—ジケトネートイリジウム組成物、ルイス塩 基安定ィ匕 j8—ケトイミネートイリジウム組成物等を用いることができる。このようなイリジ ゥム前駆体を、例えば O、 O、 N O等の酸ィ匕性ガスの存在下で分解することにより、
2 3 2
Ir膜を堆積する。成膜温度は、例えば 500°C未満とする。
[0074] 次いで、導体膜 36上に、例えば MOCVD法により、例えば膜厚 120nmの PZT膜 からなる強誘電体膜 42を形成する。
[0075] MOCVD法による PZT膜の成膜では、鉛 (Pb)供給用の有機ソースとして、 Pb (D
PM) (Pb (C H 0 ) )を1¾ 0:6 &1^(11"011^ :じ 11 0)液に311101%の濃度で溶
2 11 19 2 2 4 8
解させたものを 0. 32mlZminの流量で気ィ匕器に導入する。また、ジルコニウム !:) 供給用の有機ソースとして、 Zr(dmhd) (Zr (C H O ) )を THF液に 3mol%の濃
4 9 15 2 4
度で溶解させたものを 0. 2mlZminの流量で気化器に導入する。更に、チタン (Ti) 供給用の有機ソースとして、 Ti (0— iPr) (DPM) (Ti (C H O) (C H O ) )を丁
2 2 3 7 2 11 19 2 2
HF液に 3mol%の濃度で溶解させたものを 0. 2mlZminの流量で気ィ匕器に導入す る。気化器は例えば 260°Cの温度に加熱されており、上述の各有機ソースは気化器 内で気化する。気化した各有機ソースは、気化器において酸素と混合された後、リア クタ上部のシャワーヘッドに導入されて一様な流れとなり、シャワーヘッドと対向して 設けられる半導体基板 10に向けて均一に噴射される。なお、リアクタ内における酸素 の分圧は例えば 5Torrとする。また、成膜時間は例えば 420秒とする。なお、このよう な条件で成膜した PZT膜の組成は、 PbZ (Zr+Ti) = 1. 15、 Zr/ (Zr+Ti) =0. 4 5となった。
[0076] 次いで、酸素を含む雰囲気中にて熱処理を行うことにより、強誘電体膜 42を結晶 化する。具体的には、例えば、次のような 2段階の熱処理を行う。すなわち、第 1段階 の熱処理として、酸素とアルゴンとの混合ガス雰囲気中にて、 RTA法により、基板温 度 600°C、熱処理時間 90秒間の熱処理を行う。続いて、第 2段階の熱処理として、 酸素雰囲気中にて、 RTA法により、基板温度 750°C、熱処理時間 60秒間の熱処理 を行う。
[0077] 次 、で、強誘電体膜 42上に、例えばスパッタ法により、例えば膜厚 200nmの IrO 膜からなる上部電極 44を形成する(図 4 (a)参照)。
[0078] 次いで、上部電極 44上に、後述するハードマスクとなる絶縁膜 64を形成する。絶 縁膜 64としては、例えば膜厚 200nmの TiN膜及び膜厚 800nmの TEOS膜を形成 する。
[0079] 次いで、フォトリソグラフィー及びエッチングにより、強誘電体キャパシタ 46の平面形 状に絶縁膜 64をパターユングする(図 4 (b)参照)。
[0080] 次 、で、絶縁膜 64をノヽードマスクとして、絶縁膜 64により覆われて 、な 、領域の上 部電極 44、強誘電体膜 42、導体膜 36、及び密着層 34を順次エッチングする。エツ チング終了後、ハードマスクとして用いた絶縁膜 64を除去する(図 5 (a)参照)。
[0081] こうして、下部電極 38と強誘電体膜 42と上部電極 44とからなる強誘電体キャパシタ
46が形成される。下部電極 38は、貴金属カゝらなる導体膜 36と密着層 34とにより構成 され、コンタクトホール 32a内に埋め込まれ、ソース Zドレイン領域 22aに接続された プラグ部 38aを一体的に有するように形成される。
[0082] また、コンタクトホール 32b内には、貴金属からなる導体膜 36と密着層 34とにより構 成され、ソース Zドレイン領域 22bに接続されたプラグ 40が形成される。
[0083] 次いで、酸素を含む炉内において、例えば 350°C、 1時間の熱処理を行う。この熱 処理は、この後に形成する保護膜 48に膜剥がれが発生するのを防止するためのも のである。
[0084] 次 、で、強誘電体キャパシタ 46が形成された層間絶縁膜 30上に、例えばスパッタ 法又は MOCVD法により、保護膜 48を形成する(図 5 (b)参照)。強誘電体キャパシ タ 46は、保護膜 48により覆われる。保護膜 48としては、例えば膜厚 20〜: LOOnmの Al O膜を形成する。保護膜 48は、強誘電体キャパシタ 46をプロセスダメージ等から
2 3
保護するものである。
[0085] 次いで、酸素を含む炉内において、例えば 550〜650°C、 60分間の熱処理を行う 。この熱処理は、強誘電体膜 42上への上部電極 44の成膜時、及びエッチング時に 強誘電体膜 42が受けたダメージを回復するためのものである。
[0086] 次いで、全面に、例えば CVD法により、例えば膜厚 1500nmの TEOS膜からなる 層間絶縁膜 50を形成する。
[0087] 次いで、例えば CMP法により、層間絶縁膜 50の表面を平坦ィ匕する(図 6 (a)参照)
[0088] 次いで、層間絶縁膜 50及び保護膜 48に、強誘電体キャパシタ 46の上部電極 44 に達するコンタクトホール 52aを形成し、層間絶縁膜 50に、コンタクトホール 52aに接 続された配線溝 54aを形成する。また、層間絶縁膜 50及び保護膜 48に、プラグ 40 に達するコンタクトホール 52bを形成し、層間絶縁膜 50に、コンタクトホール 52bに接 続された配線溝 54bを形成する。
[0089] 次いで、コンタクトホール 52a及び配線溝 54a内、及びコンタクトホール 52b及び配 線溝 54b内に、例えばスパッタ法により、例えば膜厚 30nmの Ti膜及び膜厚 50nmの TiN膜からなるノリアメタル膜 56を形成する。
[0090] 次いで、ノリアメタル膜 56が形成されたコンタクトホール 52a及び配線溝 54a内、及 びバリアメタル膜 56が形成されたコンタクトホール 52b及び配線溝 54b内に、アルミ -ゥム膜 58を埋め込む。
[0091] こうして、通常の配線形成工程により、配線溝 54a内に、ノ リアメタル膜 56とアルミ -ゥム膜 58とにより構成される配線 60aが形成され、配線溝 54b内に、ノリアメタル膜 56とアルミニウム膜 58とにより構成される配線 60bが形成される。配線 60aは、コンタ タトホール 52a内に埋め込まれたプラグ部 62aにより、強誘電体キャパシタ 46の上部 電極 44に接続される。また、配線 60bは、コンタクトホール 52b内に埋め込まれたプ ラグ部 52bにより、プラグ 40に接続される。
[0092] 以後、回路設計等に応じて、配線 60a、 60bが形成された層間絶縁膜 50上に、通 常の配線形成工程により単層又は複数層の配線を適宜形成する。
[0093] こうして、本実施形態による半導体装置が製造される。
[0094] このように、本実施形態によれば、貴金属からなる導体膜 36を有し、ソース Zドレイ ン領域 22aに接続されたプラグ部 38aを一体的に有する下部電極 38を形成するの で、酸ィ匕され易いタングステンプラグが下部電極とは別個に形成されている場合と比 較して、所望の配向の下部電極 38を高い制御性で形成することができる。これにより 、下部電極 38上に形成される強誘電体膜 42の結晶性を向上することができ、優れた 電気的特性を有する強誘電体キャパシタ 46を得ることができる。
[0095] また、本実施形態によれば、ソース Zドレイン領域 22aに接続されたプラグ部 38aを 一体的に有するように下部電極 38を形成するので、従来のようにタングステンプラグ が下部電極とは別個に形成されている場合に両者の間に生じうるコンタクト不良が問 題となることはない。
[0096] また、本実施形態によれば、プラグ部 38aを有する下部電極 38を構成する導体膜 として、酸化され難ぐまた酸化された場合であっても低抵抗のままである貴金属から なる導体膜 36を形成するので、良好なコンタクトを実現することができる。
[0097] さらに、本実施形態によれば、酸化物が水素及び水分の拡散を防止する特性を有 する貴金属からなる導体膜 36を形成するので、貴金属からなる導体膜 36が酸化さ れていれば、強誘電体膜 42に水素及び水分が達するのが抑制され、強誘電体膜 42 を構成する金属酸化物の水素や水分による還元を抑制することができる。これにより 、強誘電体キャパシタ 46の電気的特性の劣化を抑制することが可能となる。
[0098] (変形例)
本実施形態の変形例による半導体装置について図 7を用いて説明する。図 7は本 変形例による半導体装置の構造を示す断面図である。
[0099] 本変形例による半導体装置は、上記の半導体装置において、貴金属からなる導体 膜 36の下地に対する密着性を確保するための密着層 34が形成されていないもので ある。
[0100] 図 7に示すように、層間絶縁膜 30には、ソース/ドレイン領域 22a、 22bに達するコ ンタクトホール 32a、 32bが形成されている。
[0101] コンタクトホール 32a内、及びコンタクトホール 32a周辺の層間絶縁膜 30上には、貴 金属からなる導体膜 36が直接形成されている。また、コンタクトホール 32b内には、 貴金属からなる導体膜 36が直接形成されている。導体膜 36としては、例えば膜厚 4
OOnmの Ir膜が用いられて!/、る。
[0102] こうして、強誘電体キャパシタ 46の下部電極 38が、貴金属力もなる導体膜 36により 構成されている。下部電極 38は、コンタクトホール 32a内に埋め込まれ、ソース Zドレ イン領域 22aに接続されたプラグ部 38aを一体的に有している。
[0103] また、コンタクトホール 32b内には、導体膜 36により構成され、ソース/ドレイン領域
22bに接続されたプラグ 40が形成されて 、る。
[0104] 下部電極 38上には、上記と同様に、強誘電体膜 42及び上部電極 44が順次形成 され、下部電極 38と強誘電体膜 42と上部電極 44とからなる強誘電体キャパシタ 46 が構成されている。
[0105] 本変形例による半導体装置のように、貴金属からなる導体膜 36の下地に対する密 着性を確保するための密着層 34が形成されていなくてもよい。
[0106] なお、本変形例による半導体装置のように密着層 34を形成しない場合には、導体 膜 36を貴金属酸ィ匕物からなるものとすることで、水素及び水分の拡散を防止する膜 としても導電膜 36を機能させることができる。このような導体膜 36により、強誘電体膜 42に水素及び水分が達するのが抑制され、強誘電体膜 42を構成する金属酸化物 の水素や水分による還元を抑制することができる。これにより、強誘電体キャパシタ 4 6の電気的特性の劣化を抑制することが可能となる。
[0107] [第 2実施形態]
本発明の第 2実施形態による半導体装置及びその製造方法について図 8乃至図 1 1を用いて説明する。図 8は本実施形態による半導体装置の構造を示す断面図、図 9乃至図 11は本実施形態による半導体装置の製造方法を示す工程断面図である。 なお、第 1実施形態による半導体装置及びその製造方法と同様の構成要素には、同 一の符号を付し説明を省略或いは簡略にする。
[0108] 本実施形態による半導体装置の基本的構成は、第 1実施形態による半導体装置と ほぼ同様である。本実施形態による半導体装置は、強誘電体キャパシタ 46の下部電 極 38と、下部電極 38とソース Zドレイン領域 22aとを電気的に接続するプラグ 68aと が互いに別個独立に形成されている点で、第 1実施形態による半導体装置と異なつ ている。以下、本実施形態による半導体装置の構造について図 8を用いて説明する
[0109] 第 1実施形態による半導体装置と同様に、トランジスタ 24が形成された半導体基板 10上には、例えば膜厚 200nmの SiON膜 26と、例えば膜厚 lOOOnmのシリコン酸 化膜 28とが順次積層されている。こうして、 SiON膜 26とシリコン酸ィ匕膜 28とが順次 積層されてなる層間絶縁膜 30が形成されている。層間絶縁膜 30の表面は平坦化さ れている。
[0110] 層間絶縁膜 30には、ソース Zドレイン領域 22a、 22bに達するコンタクトホール 32a 、 32bが形成されている。 [0111] コンタクトホール 32aの内壁面、コンタクトホール 32a底部のソース Zドレイン領域 2 2a上、及びコンタクトホール 32a周辺の層間絶縁膜 30上には、後述する貴金属から なる導体膜 66及び下部電極 38の下地に対する密着性を確保するための密着層 34 が形成されている。また、コンタクトホール 32bの内壁面、及びコンタクトホール 32b底 部のソース Zドレイン領域 22b上には、後述する貴金属力もなる導体膜 66の下地に 対する密着性を確保するための密着層 34が形成されている。密着層 34は、例えば 膜厚 20nmの Ti膜と、例えば膜厚 50nmの TiN膜とが順次積層されてなるものである 。なお、密着層 34は、水素及び水分の拡散を防止するバリア層としても機能する。こ のような密着層 34により、強誘電体膜 42に水素及び水分が達するのが抑制されため 、強誘電体膜 42を構成する金属酸ィ匕物の水素や水分による還元を抑制することが できる。これにより、強誘電体キャパシタ 46の電気的特性の劣化を抑制することが可 能となる。
[0112] 密着層 34が形成されたコンタクトホール 32a内には、貴金属からなる導体膜 66が 埋め込まれている。また、密着層 34が形成されたコンタクトホール 32b内には、貴金 属からなる導体膜 66が埋め込まれている。導体膜 66としては、例えば膜厚 250nm の Ir膜が用いられている。
[0113] こうして、コンタクトホール 32a内に、密着層 34と、貴金属力もなる導体膜 66とにより 構成される。この導体膜 66の表面は平坦ィ匕されて、ソース/ドレイン領域 22aに接続 されたプラグ 68aが形成されて 、る。
[0114] また、コンタクトホール 32b内には、密着層 34と、貴金属力もなる導体膜 66とにより 構成され、ソース Zドレイン領域 22bに接続されたプラグ 68bが形成されて ヽる。
[0115] コンタクトホール 32a周辺の層間絶縁膜 30上に形成された密着層 34上、及びコン タクトホール 32a内に埋め込まれた導体膜 66上には、強誘電体キャパシタ 46の下部 電極 38が形成されている。下部電極 38は、貴金属からなる導体膜により構成されて おり、具体的には、例えば膜厚 50nmの白金 (Pt)膜からなるものである。
[0116] さらに膜厚 20nmのアモルファス貴金属酸ィ匕膜 (例えば酸化白金膜 (PtOx) )及び 50nmの白金 (Pt)膜積層膜からなる下部電極が望ま ヽ。このアモルファス貴金属 酸ィ匕膜 (PtOx膜)は Ir膜が強誘電体膜へ拡散するのを防止することができるので、キ ャパシタのリーク電流を押さえられる上に、下部電極の結晶性をさらに向上することが できる。なお、このように、下部電極に、アモルファス貴金属酸ィ匕膜の密着層を用いる 場合、アモルファス貴金属酸ィ匕膜の密着層としては、例えば、 Pt、 Ir、 Ru、 Rh、 Re、 Os、 Pdの酸ィ匕物、及び SrRuO力 なる群力 選ばれる少なくとも一種の材料力 な
3
る膜を用いることができる。下部電極 38は、プラグ 68aに接続されている。この下部電 極の結晶性をさらに向上するために、 RTA法で Arの雰囲気中 750°Cで 60secのァ ニールを行う。
[0117] 下部電極 38上には、強誘電体キャパシタ 46の強誘電体膜 42が形成されている。
強誘電体膜 42としては、例えば膜厚 120nmの PZT膜が用いられている。
[0118] 強誘電体膜 42上には、強誘電体キャパシタ 46の上部電極 44が形成されている。
上部電極 44としては、例えば膜厚 200nmの IrO膜が用いられている。
[0119] こうして、下部電極 38と強誘電体膜 42と上部電極 44とからなる強誘電体キャパシタ 46が構成されている。
[0120] 強誘電体キャパシタ 46が形成された層間絶縁膜 30上には、水素及び水分の拡散 を防止する保護膜 48が形成されている。保護膜 48は、強誘電体キャパシタ 46を覆う ように、すなわち、層間絶縁膜 30上に形成された密着層 34の側面、下部電極 38の 側面、強誘電体膜 42の側面、上部電極 44の側面、及び上部電極 44の上面を覆うよ うに形成されている。保護膜 48としては、例えば膜厚 20〜: LOOnmの Al O膜が用い
2 3 られている。保護膜 48により、強誘電体膜 42に水素及び水分が達するのが抑制され ため、強誘電体膜 42を構成する金属酸化物の水素や水分による還元を抑制するこ とができる。これにより、強誘電体キャパシタ 46の電気的特性の劣化を抑制すること が可能となる。
[0121] 保護膜 48上には、例えば膜厚 1500nmの TEOS膜からなる層間絶縁膜 50が形成 されている。
[0122] 層間絶縁膜 50及び保護膜 48には、第 1実施形態による半導体装置と同様に、強 誘電体キャパシタ 46の上部電極 44に接続された配線 60a、及びプラグ 68bに接続さ れた配線 60bが形成されて 、る。
[0123] こうして、本実施形態による半導体装置が構成されている。 [0124] 本実施形態による半導体装置は、強誘電体キャパシタ 46の下部電極 38下に形成 され、下部電極 38とソース Zドレイン領域 22aとの間を電気的に接続するプラグ 68a 力 貴金属力もなる導体膜 66を有していることに主たる特徴がある。
[0125] 強誘電体キャパシタ 46の下部電極 38下に形成されたプラグ 68aが、酸化され難い 貴金属からなる導体膜 66を有するため、酸化され易いタングステンプラグが下部電 極とは別個に形成されている場合と比較して、所望の配向の下部電極 38を高い制 御性で形成することができる。力 tlえて、本実施形態による半導体装置は、プラグ 68a と下部電極 38とが別個独立に形成されているため、第 1実施形態による半導体装置 と比較して、下部電極 38が更に平坦なものとなっている。これにより、下部電極 38上 に形成される強誘電体膜 42の結晶性を向上することができ、優れた電気的特性を有 する強誘電体キャパシタ 46を得ることができる。
[0126] また、本実施形態による半導体装置では、プラグ 68aを構成する貴金属からなる導 体膜 66と同様に、プラグ 68a上に形成された下部電極 38もまた貴金属力もなる導体 膜により構成されている。これにより、プラグ 68aと下部電極 38との間の密着性を向 上することができ、膜剥がれの発生を防止することができる。
[0127] また、プラグ 68aを構成する導体膜 36は、貴金属力もなるため酸化され難ぐまた 酸ィ匕された場合であっても低抵抗のままであるため、良好なコンタクトを実現すること ができる。
[0128] さらに、導体膜 36を構成する貴金属の酸化物は、水素及び水分の拡散を防止する 特性を有している。このため、貴金属からなる導体膜 66が酸化されていれば、強誘 電体膜 42に水素及び水分が達するのが抑制され、強誘電体膜 42を構成する金属 酸ィ匕物の水素や水分による還元を抑制することができる。これにより、強誘電体キヤ パシタ 46の電気的特性の劣化を抑制することが可能となる。
[0129] したがって、本実施形態によれば、動作特性に優れ、信頼性の高!ヽスタック型のメ モリセル構造を有する FeRAMを提供することができる。
[0130] 次に、本実施形態による半導体装置の製造方法について図 9乃至図 11を用いて 説明する。
[0131] 層間絶縁膜 30に、ソース Zドレイン領域 22a、 22bに達するコンタクトホール 32a、 3 2bを形成するまでの工程は、図 2及び図 3 (a)に示す第 1実施形態による半導体装 置の製造方法と同様であるので説明を省略する。
[0132] コンタクトホール 32a、 32bを形成した後(図 9 (a)参照)、脱ガス処理として、例えば 窒素雰囲気中にて、例えば 650°C、 30分間の熱処理を行う。
[0133] 次 、で、全面に、例えばスパッタ法により、例えば膜厚 20nmの Ti膜を形成する。
続いて、全面に、例えばスパッタ法により、例えば膜厚 50nmの TiN膜を形成する。こ うして、 Ti膜と TiN膜とが順次積層されてなる密着層 34が形成される。
[0134] 次いで、密着層 34上に、例えば MOCVD法により、貴金属力もなる導体膜 66とし て、例えば膜厚 200nmの Ir膜を形成する(図 9 (b)参照)。原料であるイリジウム前駆 体としては、例えば、ルイス塩基安定ィ匕 j8—ジケトネートイリジウム組成物、ルイス塩 基安定ィ匕 j8—ケトイミネートイリジウム組成物等を用いることができる。このようなイリジ ゥム前駆体を、例えば O、 O、 N O等の酸ィ匕性ガスの存在下で分解することにより、
2 3 2
Ir膜を堆積する。成膜温度は、例えば 500°C未満とする。
[0135] 次いで、例えば CMP法により、層間絶縁膜 30上に形成された密着層 34が露出す るまで導体膜 66を研磨し、導体膜 66をコンタクトホール 32a、 32b内に埋め込む。こ うして、コンタクトホール 32a内に、密着層 34と、貴金属からなる導体膜 66とにより構 成され、ソース Zドレイン領域 22aに接続されたプラグ 68aが形成される。また、コンタ タトホール 32b内に、密着層 34と、貴金属からなる導体膜 66とにより構成され、ソース Zドレイン領域 22bに接続されたプラグ 68bが形成される(図 10 (a)参照)。
[0136] 次いで、例えば、スパッタ法により、例えば膜厚 20nmの酸化白金(PtOx)及び 50 nmの Pt膜からなる下部電極 38を形成する。さらに、下部電極の結晶性向上するた めに、 RTA法で Arの雰囲気中 750°Cで 60secのァニールを行う。
[0137] 次いで、全面に、例えば MOCVD法により、例えば膜厚 120nmの PZT膜からなる 強誘電体膜 42を形成する。
[0138] MOCVD法による PZT膜の成膜では、 Pb供給用の有機ソースとして、 Pb (DPM)
2 を THF液に 3mol%の濃度で溶解させたものを 0. 32mlZminの流量で気ィ匕器に導 入する。また、 Zr供給用の有機ソースとして、 Zr (dmhd) を THF液に 3mol%の濃度
4
で溶解させたものを 0. 2mlZminの流量で気化器に導入する。更に、 Ti供給用の有 機ソースとして、 Ti (0—iPr) (DPM) を THF液に 3mol%の濃度で溶解させたもの
2 2
を 0. 2mlZminの流量で気ィ匕器に導入する。気ィ匕器は例えば 260°Cの温度に加熱 されており、上述の各有機ソースは気化器内で気化する。気化した各有機ソースは、 気化器において酸素と混合された後、リアクタ上部のシャワーヘッドに導入されて一 様な流れとなり、シャワーヘッドと対向して設けられる半導体基板 10に向けて均一に 噴射される。なお、リアクタ内における酸素の分圧は例えば 5Torrとする。また、成膜 時間は例えば 420秒とする。なお、このような条件で成膜した PZT膜の組成は、 Pb / (Zr+Ti) = l. 15、 Zr/ (Zr+Ti) =0. 45となった。この強誘電体 PZT膜は RFス ノッタ法、 Sol— gel法で形成するでも良い。
[0139] 次いで、酸素を含む雰囲気中にて熱処理を行うことにより、強誘電体膜 42を結晶 化する。具体的には、例えば、次のような 2段階の熱処理を行う。すなわち、第 1段階 の熱処理として、酸素とアルゴンとの混合ガス雰囲気中にて、 RTA法により、基板温 度 600°C、熱処理時間 90秒間の熱処理を行う。続いて、第 2段階の熱処理として、 酸素雰囲気中にて、 RTA法により、基板温度 750°C、熱処理時間 60秒間の熱処理 を行う。
[0140] 次 、で、強誘電体膜 42上に、例えばスパッタ法により、例えば膜厚 200nmの IrO 膜からなる上部電極 44を形成する(図 10 (b)参照)。
[0141] 次いで、上部電極 44上に、後述するハードマスクとなる絶縁膜 64を形成する。絶 縁膜 64としては、例えば膜厚 200nmの TiN膜及び膜厚 800nmの TEOS膜を形成 する。
[0142] 次いで、フォトリソグラフィー及びエッチングにより、強誘電体キャパシタ 46の平面形 状に絶縁膜 64をパターユングする(図 11 (a)参照)。
[0143] 次いで、絶縁膜 64をノヽードマスクとして、絶縁膜 64により覆われていない領域の上 部電極 44、強誘電体膜 42、導体膜 66、及び密着層 34を順次エッチングする。エツ チング終了後、ハードマスクとして用いた絶縁膜 64を除去する(図 11 (b)参照)。
[0144] こうして、下部電極 38と強誘電体膜 42と上部電極 44とからなる強誘電体キャパシタ
46が形成される。下部電極 38は、貴金属カゝらなる導体膜 36により構成される。
[0145] 以後、保護膜 48形成前の熱処理工程カゝら配線 60a、 60bを形成する工程までは、 図 5 (b)及び図 6に示す第 1実施形態による半導体装置の製造方法と同様であるの で説明を省略する。
[0146] このように、本実施形態によれば、下部電極 38が接続されるプラグとして、貴金属 力もなる導体膜 66を有するプラグ 68aを形成するので、酸化され易!ヽタングステンプ ラグが下部電極とは別個に形成されている場合と比較して、所望の配向の下部電極 38を高い制御性で形成することができる。これにより、下部電極 38上に形成される強 誘電体膜 42の結晶性を向上することができ、優れた電気的特性を有する強誘電体 キャパシタ 46を得ることができる。
[0147] また、本実施形態によれば、貴金属からなる導体膜 66を有するプラグ 68aを形成し 、プラグ 68a上に、貴金属からなる導体膜を有する下部電極 38を形成するので、ブラ グ 68aと下部電極 38との間の密着性を向上することができ、膜剥がれの発生を防止 することができる。
[0148] また、本実施形態によれば、プラグ 68aを構成する導体膜として、酸化され難ぐま た酸化された場合であっても低抵抗のままである貴金属カゝらなる導体膜 66を形成す るので、良好なコンタクトを実現することができる。
[0149] さらに、本実施形態によれば、酸化物が水素及び水分の拡散を防止する特性を有 する貴金属からなる導体膜 66を形成するので、貴金属からなる導体膜 66が酸化さ れていれば、強誘電体膜 42に水素及び水分が達するのが抑制され、強誘電体膜 42 を構成する金属酸化物の水素や水分による還元を抑制することができる。これにより 、強誘電体キャパシタ 46の電気的特性の劣化を抑制することが可能となる。
[0150] (変形例)
本実施形態の変形例による半導体装置について図 12を用いて説明する。図 12は 本変形例による半導体装置の構造を示す断面図である。
[0151] 本変形例による半導体装置は、上記の半導体装置において、貴金属からなる導体 膜 36の下地に対する密着性を確保するための密着層 34が形成されていないもので ある。
[0152] 図 12に示すように、層間絶縁膜 30には、ソース Zドレイン領域 22a、 22bに達する コンタクトホール 32a、 32bが形成されている。 [0153] コンタクトホール 32a内、及びコンタクトホール 32a周辺の層間絶縁膜 30上には、貴 金属からなる導体膜 66が直接形成されている。また、コンタクトホール 32b内には、 貴金属からなる導体膜 66が直接形成されている。導体膜 66としては、例えば膜厚 2 50nmの Ir膜が用いられて!/、る。
[0154] こうして、コンタクトホール 32a内に、導体膜 66により構成され、平坦化により、ソー ス Zドレイン領域 22aに接続されたプラグ 68aが形成されている。
[0155] また、コンタクトホール 32b内には、導体膜 66により構成され、ソース/ドレイン領域 22bに接続されたプラグ 68bが形成されている。
[0156] コンタクトホール 32a周辺の層間絶縁膜 30上、及びコンタクトホール 32a内に埋め 込まれた導体膜 66上には、強誘電体キャパシタ 46の下部電極 38が形成されている 。下部電極 38は、貴金属からなる導体膜により構成されており、具体的には、例えば 膜厚 50nmの Pt膜からなるものである。さらに、この下部電極は膜厚 20nmのァモル ファス貴金属酸ィ匕膜 (例えば酸ィ匕白金膜 (PtOx)、酸化イリジウム膜 (IrOx) )及び 50 nmの白金 (Pt)膜積層膜からなる下部電極が望ましい。下部電極 38は、プラグ 68a に接続されている。
[0157] 下部電極 38上には、上記と同様に、強誘電体膜 42及び上部電極 44が順次形成 され、下部電極 38と強誘電体膜 42と上部電極 44とからなる強誘電体キャパシタ 46 が構成されている。
[0158] 本変形例による半導体装置のように、貴金属からなる導体膜 66の下地に対する密 着性を確保するための密着層 34が形成されていなくてもよい。
[0159] なお、本変形例による半導体装置のように密着層 34を形成しない場合には、第 1 実施形態の変形例による半導体装置と同様に、導体膜 66を貴金属酸ィ匕物力もなる ものとすることで、水素及び水分の拡散を防止する膜としても導電膜 66を機能させる ことができる。このような導体膜 66により、強誘電体膜 42に水素及び水分が達するの が抑制され、強誘電体膜 42を構成する金属酸化物の水素や水分による還元を抑制 することができる。これにより、強誘電体キャパシタ 46の電気的特性の劣化を抑制す ることが可能となる。
[0160] [第 3実施形態] 本発明の第 3実施形態による半導体装置及びその製造方法について図 13乃至図 16を用いて説明する。図 13は本実施形態による半導体装置の構造を示す断面図、 図 14乃至図 16は本実施形態による半導体装置の製造方法を示す工程断面図であ る。なお、第 1及び第 2実施形態による半導体装置及びその製造方法と同様の構成 要素については同一の符号を付し説明を省略し或いは簡略にする。
[0161] 本実施形態による半導体装置の基本的構成は、第 2実施形態による半導体装置と ほぼ同様である。本実施形態による半導体装置は、強誘電体キャパシタ 46の上部電 極 44に接続された配線 72が、貴金属からなる導体膜 76を有する点で、第 2実施形 態による半導体装置と異なっている。以下、本実施形態による半導体装置の構造に っ 、て図 13を用いて説明する。
[0162] 第 2実施形態による半導体装置と同様に、強誘電体キャパシタ 46が形成された層 間絶縁膜 30上には、強誘電体キャパシタ 46を覆う保護膜 48と、層間絶縁膜 50とが 順次形成されている。
[0163] 層間絶縁膜 50及び保護膜 48には、強誘電体キャパシタ 46の上部電極 44に達す るコンタクトホール 70が形成されている。層間絶縁膜 50上には、コンタクトホール 70 を介して強誘電体キャパシタ 46の上部電極 44に接続された配線 (プレート線) 72が 形成されている。配線 72は、ノリアメタル膜 74と、貴金属からなる導体膜 76と、ノリア メタル膜 78とにより構成されている。貴金属カゝらなる導体膜 76としては、例えば膜厚 200nmの Ir膜が用いられて!/、る。
[0164] また、ノリアメタル膜 74、 78としては、例えば、膜厚 75nmの TiN膜と、膜厚 5nmの Ti膜と、例えば膜厚 75nmの TiN膜とが順次積層されてなる積層膜が用いられて ヽ る。
[0165] この配線上側のバリアメタル層 78と配線下側のバリアメタル層 74は同一材料でもよ いし、他の材料でもよい。例えば、 Ti、 Ta、 TaN、 TaSi、 TiN、 TiALN、 TiSiなどの 単層及びこれらからなる群力 選択される少なくとも一種以上の材料力 なる積層膜 であればよい。
[0166] また、層間絶縁膜 50及び保護膜 48には、プラグ 68bに達するコンタクトホール 80 が形成されている。コンタクトホール 80内には、例えば膜厚 20nmの Ti膜と膜厚 50η mの TiN膜からなるバリアメタル膜 82が形成されて 、る。ノ リアメタル膜 82が形成さ れたコンタクトホール 80内には、タングステン膜 84が埋め込まれている。こうして、コ ンタクトホール 80内に、ノ リアメタル膜 82とタングステン膜 84とにより構成され、ブラ グ 68bに接続されたプラグ 86が形成されている。
[0167] 層間絶縁膜 50上には、プラグ 86、 68bを介してソース/ドレイン領域 22bに電気的 に接続された配線 (ビット線) 88が形成されている。配線 88は、例えば、配線 72と同 様にノ リアメタル膜 74と、貴金属からなる導体膜 76と、ノ リアメタル膜 78とにより構成 されている。配線 88には、イリジウム (Ir)又は酸化イリジウム(IrO )が用いられている
[0168] 配線 72、 88が形成された層間絶縁膜 50上には、層間絶縁膜 90が形成されている
[0169] 層間絶縁膜 90には、配線 88に達するコンタクトホール 92が形成されている。
[0170] コンタクトホール 92内には、ノ リアメタル膜 94が形成されている。バリアメタル膜 94 が形成されたコンタクトホール 92内には、タングステン膜 96が埋め込まれている。こう して、コンタクトホール 92内に、ノ リアメタル膜 94とタングステン膜 96とにより構成され 、配線 88に接続されたプラグ 98が形成されて 、る。
[0171] こうして、本実施形態による半導体装置が構成されている。
[0172] 本実施形態による半導体装置は、コンタクトホール 70を介して強誘電体キャパシタ 46の上部電極 44に接続された配線 72が、貴金属力もなる導体膜 76を有すること〖こ 主たる特徴がある。
[0173] 貴金属力もなる導体膜 76を配線 72が有するため、貴金属又は貴金属酸ィ匕物によ り構成される上部電極 44と配線 72との反応を抑制することができ、上部電極 44と配 線 72との間のコンタクトを良好なものとすることができる。
[0174] さらに、導体膜 76を構成する貴金属の酸化物は、水素及び水分の拡散を防止する 特性を有している。このため、貴金属からなる導体膜 76が酸化されていれば、強誘 電体膜 42に水素及び水分が達するのが抑制され、強誘電体膜 42を構成する金属 酸ィ匕物の水素や水分による還元を抑制することができる。これにより、強誘電体キヤ パシタ 46の電気的特性の劣化を抑制することが可能となる。 [0175] したがって、本実施形態によれば、動作特性に優れ、信頼性の高!ヽスタック型のメ モリセル構造を有する FeRAMを提供することができる。
[0176] 次に、本実施形態による半導体装置の製造方法について図 14乃至図 16を用いて 説明する。
[0177] 層間絶縁膜 50を形成するまでの工程は、第 2実施形態による半導体装置の製造 方法と同様であるので説明を省略する。
[0178] 層間絶縁膜 50を平坦ィ匕した後、フォトリソグラフィー及びドライエッチングにより、層 間絶縁膜 50及び保護膜 48に、プラグ 68bに達するコンタクトホール 80を形成する( 図 14 (a)参照)。
全面に、例えばスパッタ法により、例えば膜厚 20nmの Ti膜と 50nmの TiN膜からな るノ リアメタル膜 82を形成する。
[0179] 次いで、全面に、例えば CVD法により、例えば膜厚 500nmのタングステン膜 84を 形成する。
[0180] 次いで、例えば CMP法により、層間絶縁膜 50の表面が露出するまで、タンダステ ン膜 84及びバリアメタル膜 82を研磨する。こうして、コンタクトホール 80内に、バリアメ タル膜とタングステン膜 84とにより構成され、プラグ 68bに接続されたプラグ 86が形 成される(図 14 (b)参照)。
[0181] 次いで、全面に W酸化防止絶縁膜 (図示せず)を形成する。 W酸ィ匕防止絶縁膜とし ては、例えば SiON膜を用いる。
[0182] 次 、で、フォトリソグラフィー及びドライエッチングにより、 W酸化防止絶縁膜及び層 間絶縁膜 50及び保護膜 48に、強誘電体キャパシタ 46の上部電極 44に達するコン タクトホール 70を形成する。
[0183] 次いで、フォトリソグラフィー及びドライエッチングにより、層間絶縁膜 50及び保護膜
48に、強誘電体キャパシタ 46の上部電極 44に達するコンタクトホール 70を形成する
[0184] 次いで、酸素雰囲気中にて、例えば 500°C、 60分間の熱処理を行う。この熱処理 は、キャパシタ周りの層間絶縁膜 50中の水分を追い出せる上に、コンタクトホール 70 を形成するためのドライエッチングの際に強誘電体キャパシタ 46が受けたダメージを 回復し、強誘電体キャパシタ 46の電気的特性を回復するためのものである。このァ- ール処理の後、タングステン酸ィ匕防止絶縁膜をエッチバックにより除去する(図 15 (a )参照)。
[0185] 次いで、全面に、例えばスパッタ法により、例えば膜厚 150nmの TiN膜と、例えば 膜厚 5nmの Ti膜とを順次形成する。こうして、 TiN膜と Ti膜と Ti膜とが順次積層され てなるノ リアメタル膜 74が形成される。
[0186] 次いで、全面に、例えば MOCVD法により、貴金属力もなる導体膜 76として、例え ば膜厚 300nmの Ir膜を形成する。
[0187] 次 、で、全面に、例えばスパッタ法により、例えば膜厚 5nmの Ti膜と、例えば膜厚 1 50nmの Ti膜とを順次形成する。こうして、 Ti膜と Ti膜とが順次積層されてなるバリア メタル膜 78が形成される(図 15 (b)参照)。
[0188] 次いで、ハードマスクを用いたドライエッチングにより、ノ リアメタル膜 78、貴金属か らなる導体膜 76、及びバリアメタル膜 74をパターユングする。これにより、バリアメタル 膜 74と、貴金属からなる導体膜 76と、ノ リアメタル膜 78とにより構成され、コンタクトホ ール 70を介して上部電極 44に接続された配線 72が形成される(図 16 (a)参照)。ま た、ノ リアメタル膜 74と、貴金属からなる導体膜 76と、ノ リアメタル膜 78とにより構成 され、プラグ 86に接続された配線 88が形成される。
[0189] 以後、層間絶縁膜 90、配線 88に接続されたプラグ 98等を形成し (図 16 (b)参照) 、回路設計等に応じて、通常の配線形成工程により単層又は複数層の配線を適宜 形成する。
[0190] こうして、本実施形態による半導体装置が製造される。
[0191] このように、本実施形態によれば、コンタクトホール 70を介して強誘電体キャパシタ 46の上部電極 44に接続する配線として、貴金属からなる導体膜 76を有する配線 72 を形成するので、貴金属又は貴金属酸化物により構成される上部電極 44と配線 72 との反応を抑制することができ、上部電極 44と配線 72との間のコンタクトを良好なも のとすることができる。
[0192] さらに、本実施形態によれば、酸化物が水素及び水分の拡散を防止する特性を有 する貴金属からなる導体膜 76を形成するので、貴金属からなる導体膜 76が酸化さ れていれば、強誘電体膜 42に水素及び水分が達するのが抑制され、強誘電体膜 42 を構成する金属酸化物の水素や水分による還元を抑制することができる。これにより 、強誘電体キャパシタ 46の電気的特性の劣化を抑制することが可能となる。
[0193] なお、本実施形態では、強誘電体キャパシタ 46の上部電極 44に接続された配線 7 2以外の構造については、第 2実施形態による半導体装置とほぼ同様の構造とした 力 配線 72以外の構造を、第 1実施形態による半導体装置とほぼ同様の構造として ちょい。
[0194] さらに、配線 72は、ノリアメタル層 74やバリアメタル層 78を形成しない単層の配線 76でもよい。
[0195] [第 4実施形態]
本発明の第 4実施形態による半導体装置及びその製造方法について図 17乃至図 23を用いて説明する。図 17は本実施形態による半導体装置の構造を示す断面図、 図 18乃至図 23は本実施形態による半導体装置の製造方法を示す工程断面図であ る。なお、第 1実施形態による半導体装置及びその製造方法と同様の構成要素につ いては同一の符号を付し説明を省略し或いは簡略にする。
[0196] まず、本実施形態による半導体装置の構造について図 17を用いて説明する。本実 施形態による半導体装置は、プレーナ型のメモリセル構造を有する FeRAMである。
[0197] 例えばシリコン力もなる半導体基板 10上には、素子領域を画定する素子分離領域 12が形成されている。半導体基板 10は、 n型、 p型のいずれのものであってもよい。 素子分離領域 12が形成された半導体基板 10内には、ゥエル 14a、 14bが形成され ている。
[0198] ゥエル 14a、 14bが形成された半導体基板 10上には、ゲート絶縁膜 16を介してゲ ート電極 (ゲート配線) 18が形成されている。ゲート電極 18の側壁部分には、サイドウ オール絶縁膜 20が形成されて 、る。
[0199] サイドウォール絶縁膜 20が形成されたゲート電極 18の両側には、ソース/ドレイン 領域 22a、 22bが形成されている。
[0200] こうして、半導体基板 10上に、ゲート電極 18とソース Zドレイン領域 22a、 22bとを 有するトランジスタ 24が構成されて 、る。 [0201] トランジスタ 24が形成された半導体基板 10上には、例えば膜厚 200nmの SiON膜
26と、例えば膜厚 lOOOnmのシリコン酸ィ匕膜 28とが順次積層されている。こうして、 S iON膜 26とシリコン酸ィ匕膜 28とが順次積層されてなる層間絶縁膜 30が形成されて いる。層間絶縁膜 30の表面は平坦ィ匕されている。
[0202] 層間絶縁膜 30には、ソース/ドレイン領域 22a、 22bに達するコンタクトホール 32a
、 32bが形成されている。
[0203] コンタクトホール 32a、 32b内には、例えば膜厚 50nmの TiN膜からなるノ リアメタル 膜 100が形成されている。
[0204] ノ リアメタル膜 100が形成されたコンタクトホール 32a、 32b内には、タングステン膜
102が埋め込まれている。
[0205] こうして、コンタクトホール 32a、 32b内に、ノ リアメタル膜 100とタングステン膜 102 とにより構成され、ソース Zドレイン領域 22a、 22bに接続されたプラグ 104a、 104b が形成されている。
[0206] 層間絶縁膜 30上には、強誘電体キャパシタ 46の下部電極 38が形成されている。
下部電極 38は、例えば膜厚 20nmの Ti膜 106と、例えば膜厚 150nmの Pt膜 108と が順次積層されてなるものである。なお、 Ti膜 106に代えて、酸ィ匕チタン (TiO )膜、 酸化タンタル (Ta O )膜、又は Al O膜が用いられていてもよい。
2 5 2 3
[0207] 下部電極 38上には、強誘電体キャパシタ 46の強誘電体膜 42が形成されている。
強誘電体膜 42としては、例えば膜厚 150nmの Pb La Zr Ti O膜 (PLZT膜)
1 -X X 1 -Y Y 3
が用いられている。
[0208] 強誘電体膜 42上には、強誘電体キャパシタ 46の上部電極 44が形成されている。
上部電極 44としては、例えば膜厚 200nmの酸化イリジウム (IrO )膜が用いられてい
X
る。
[0209] こうして、下部電極 38と強誘電体膜 42と上部電極 44とからなる強誘電体キャパシタ 46が構成されている。
[0210] 強誘電体キャパシタ 46が形成された層間絶縁膜 30上には、水素及び水分の拡散 を防止する保護膜 48が形成されている。保護膜 48は、強誘電体キャパシタ 46を覆う ように、すなわち、下部電極 38の側面、強誘電体膜 42の側面、上部電極 44の側面 、上部電極 44の上面、及び強誘電体膜 42が形成されてない下部電極 38の上面を 覆うように形成されている。保護膜 48としては、例えば膜厚 50nmの Al O膜が用い
2 3 られている。保護膜 48により、強誘電体膜 42に水素及び水分が達するのが抑制され ため、強誘電体膜 42を構成する金属酸化物の水素や水分による還元を抑制するこ とができる。これにより、強誘電体キャパシタ 46の電気的特性の劣化を抑制すること が可能となる。
[0211] 保護膜 48上には、例えば膜厚 1500nmの TEOS膜からなる層間絶縁膜 50が形成 されている。層間絶縁膜 50の表面は、平坦化されている。
[0212] 層間絶縁膜 50及び保護膜 48には、強誘電体キャパシタ 46の上部電極 44に達す るコンタクトホール 110が形成されている。また、層間絶縁膜 50及び保護膜 48には、 強誘電体キャパシタ 46の下部電極 38に達するコンタクトホール 112が形成されてい る。また、層間絶縁膜 50及び保護膜 48には、プラグ 104a、 104bに達するコンタクト ホール 114a、 114bが形成されている。
[0213] コンタクトホール 114a、 114b内には、例えば膜厚 20nmの Ti膜と膜厚 50nmの Ti N膜からなるノ リアメタル膜 116、 122が形成されている。ノ リアメタル膜 116、 122が 形成されたコンタクトホール 114a、 114b内には、タングステン膜 118、 124が埋め込 まれている。
[0214] こうして、コンタクトホール 114a、 114b内に、ノ リアメタル膜 116、 122と、タングス テン膜 118、 124とにより構成され、プラグ 104a、 104bに接続されたプラグ 120、 12 6が形成されている。なお、プラグ 120は、配線との共晶反応を防止するため、貴金 属からなる導体膜を用いて構成してもよ 、。
[0215] 層間絶縁膜 50上には、コンタクトホール 110を介して強誘電体キャパシタ 46の上 部電極 44に接続され、また、プラグ 120に接続された配線 128が形成されている。配 線 128は、ノ リアメタル膜 130と、貴金属からなる導体膜 132と、ノ リアメタル膜 134と により構成されている。
[0216] また、層間絶縁膜 50上には、コンタクトホール 112を介して強誘電体キャパシタ 46 の下部電極 38に接続された配線 (プレート線) 136が形成されている。配線 136は、 ノ リアメタル膜 130と、貴金属からなる導体膜 132と、ノ リアメタル膜 134とにより構成 されている。
[0217] さらに、層間絶縁膜 50上には、プラグ 126に接続された配線 138が形成されている 。配線 138は、ノ リアメタル膜 130と、貴金属からなる導体膜 132と、バリアメタル膜 1 34とにより構成されている。
[0218] 配線 128、 136、 138を構成する貴金属カゝらなる導体膜 132としては、例えば膜厚 200nmの Ir膜が用いられている。また、配線 128、 136、 138を構成するバリアメタル 膜 130としては、例えば、膜厚 150nmの TiN膜と、膜厚 5nmの Ti膜とが順次積層さ れてなる積層膜が用いられている。配線 128、 136、 138を構成するノ リアメタル膜 1 34としては、例えば、膜厚 5nmの Ti膜と、膜厚 150nmの TiN膜とが順次積層されて なる積層膜が用いられて 、る。
[0219] なお、配線 128、 136、 138は、ノ リアメタル膜 130やバリアメタル膜 134を形成しな V、単層の配線 132でもよ!/、。
[0220] 配線 128、 136、 138が形成された層間絶縁膜 50上には、例えば膜厚 2600nmの TEOS膜からなる層間絶縁膜 140が形成されて 、る。
[0221] 層間絶縁膜 140には、配線 138に達するコンタクトホール 142が形成されている。
コンタクトホール 142内には、ノ リアメタル膜 144が形成されている。バリアメタル膜 1 44が形成されたコンタクトホール 142内には、タングステン膜 146が埋め込まれてい る。こうして、コンタクトホール 142内に、ノ リアメタル膜 144とタングステン膜 146とに より構成され、配線 138に接続されたプラグ 148が形成されている。
[0222] 層間絶縁膜 140上には、プラグ 148に接続された配線 (ビット線)(図示せず)が形 成されている。
[0223] こうして、本実施形態による半導体装置が構成されている。
[0224] 本実施形態による半導体装置は、コンタクトホール 110を介して強誘電体キャパシ タ 46の上部電極 44に接続された配線 128、及びコンタクトホール 112を介して強誘 電体キャパシタ 46の下部電極 38に接続された配線 136が、貴金属からなる導体膜 1 32を有することに主たる特徴がある。
[0225] 貴金属力もなる導体膜 132を配線 128、 136が有するため、貴金属又は貴金属酸 化物により構成される上部電極 44及び下部電極 38と配線 128、 136との反応を抑 制することができ、上部電極 44及び下部電極 38と配線 128、 136との間のコンタクト を良好なものとすることができる。
[0226] さらに、導体膜 132を構成する貴金属の酸化物は、水素及び水分の拡散を防止す る特性を有している。このため、貴金属からなる導体膜 132が酸化されていれば、強 誘電体膜 42に水素及び水分が達するのが抑制され、強誘電体膜 42を構成する金 属酸ィ匕物の水素や水分による還元を抑制することができる。これにより、強誘電体キ ャパシタ 46の電気的特性の劣化を抑制することが可能となる。
[0227] したがって、本実施形態によれば、動作特性に優れ、信頼性の高!、プレーナ型の メモリセル構造を有する FeRAMを提供することができる。
[0228] 次に、本実施形態による半導体装置の製造方法について図 18乃至図 23を用いて 説明する。
[0229] まず、例えばシリコン力もなる半導体基板 10に、例えば STI法により、素子領域を 画定する素子分離領域 12を形成する。
[0230] 次いで、イオン注入法により、ドーパント不純物を導入することにより、ゥエル 14a、 1
4bを形成する。
[0231] 次いで、通常のトランジスタの形成方法を用いて、素子分離領域 12により画定され た素子領域に、ゲート電極 (ゲート配線) 18とソース Zドレイン領域 22a、 22bとを有 するトランジスタ 24を形成する(図 18 (a)参照)。
[0232] 次いで、全面に、例えばプラズマ CVD法により、例えば膜厚 200nmの SiON膜 26 を形成する。 SiON膜 26は、 CMP法による平坦ィ匕の際のストツバ膜として機能する。
[0233] 次いで、全面に、例えば CVD法により、例えば膜厚 lOOOnmのシリコン酸ィ匕膜 28 を形成する。
[0234] こうして、 SiON膜 26とシリコン酸ィ匕膜 28とにより層間絶縁膜 30が構成される。
[0235] 次いで、例えば CMP法により、層間絶縁膜 30の表面を平坦ィ匕する(図 18 (b)参照
) o
[0236] 次いで、フォトリソグラフィー及びエッチングにより、層間絶縁膜 30に、ソース Zドレ イン領域 22a、 22bに達するコンタクトホール 32a、 32bを形成する。
[0237] 次いで、全面に、例えばスパッタ法により、例えば膜厚 50nmの TiN膜からなるバリ ァメタル膜 100を形成する。
[0238] 次いで、全面に、例えば CVD法により、例えば膜厚 300nmのタングステン膜 102 を形成する。
[0239] 次いで、例えば CMP法により、層間絶縁膜 30の表面が露出するまでタングステン 膜 102及びバリアメタル膜 100を研磨し、タングステン膜 102をコンタクトホール 32a、 32b内に埋め込む。こうして、コンタクトホール 32a内に、ノ リアメタル膜 100とタングス テン膜 102とにより構成され、ソース Zドレイン領域 22aに接続されたプラグ 104aが 形成される。また、コンタクトホール 32b内に、ノ リアメタル膜 100とタングステン膜 10 2とにより構成され、ソース Zドレイン領域 22bに接続されたプラグ 104bが形成される (図 19 (a)参照)。
[0240] 次 、で、全面に、例えばスパッタ法により、例えば膜厚 20nmの Ti膜 106を形成す る。
[0241] 次いで、 Ti膜 106上に、例えばスパッタ法により、例えば膜厚 150nmの Pt膜 108 を形成する。
[0242] 次いで、 Pt膜 108上〖こ、例えばスパッタ法により、例えば膜厚 150nmの PLZT膜か らなる強誘電体膜 42を形成する。
[0243] 次いで、所定の熱処理を行うことにより、強誘電体膜 42を結晶化する。
[0244] 次 、で、強誘電体膜 42上に、例えばスパッタ法により、例えば膜厚 200nmの IrO 膜からなる上部電極 44を形成する(図 19 (b)参照)。
[0245] 次 、で、フォトリソグラフィー及びドライエッチングを用いて、上部電極 44、強誘電体 膜 42、 Pt膜 108、及び Ti膜 106を段階的にパターユングする(図 20 (a)参照)。
[0246] こうして、下部電極 38と強誘電体膜 42と上部電極 44とからなる強誘電体キャパシタ
46力 S形成される。下部電極 38は、 Ti膜 106と Pt膜 108とにより構成される。
[0247] 次 、で、強誘電体キャパシタ 46が形成された層間絶縁膜 30上に、例えばスパッタ 法又は MOCVD法により、保護膜 48を形成する。強誘電体キャパシタ 46は、保護膜
48により覆われる。保護膜 48としては、例えば膜厚 50nmの Al O膜を形成する。保
2 3
護膜 48は、強誘電体キャパシタ 46をプロセスダメージ等力も保護するものである。
[0248] 次いで、酸素を含む炉内において、例えば 650°Cで 60分間の熱処理を行う。この 熱処理は、強誘電体膜 42上への上部電極 44の成膜時、及びエッチング時に強誘 電体膜 42が受けたダメージを回復するためのものである。
[0249] 次いで、全面に、例えば CVD法により、例えば膜厚 1500nmの TEOS膜からなる 層間絶縁膜 50を形成する。
[0250] 次いで、例えば CMP法により、層間絶縁膜 50の表面を平坦ィ匕する(図 20 (b)参照
) o
[0251] 次いで、フォトリソグラフィー及びエッチングにより、層間絶縁膜 50及び保護膜 48に 、プラグ 104a、 104bに達するコンタクトホール 114a、 114bを形成する(図 21 (a)参 照)。
[0252] 次いで、全面に、例えばスパッタ法により、例えば膜厚 20nmの Ti膜と 50nmの TiN 膜からなるバリアメタル膜 116、 122を形成する。
[0253] 次いで、全面に、例えば CVD法により、例えば膜厚 500nmのタングステン膜 118、
124を形成する。
[0254] 次いで、例えば CMP法により、層間絶縁膜 50の表面が露出するまでタングステン 膜 118、 124及びバリアメタル膜 116、 122を研磨し、タングステン膜 118、 124をコ ンタクトホール 114a、 114b内に埋め込む。こうして、コンタクトホール 114a、 114b内 に、ノ リアメタル膜 116、 122とタングステン膜 118、 124とにより構成され、プラグ 10 4a、 104bに接続されたプラグ 120、 126が形成される(図 21 (b)参照)。
[0255] 次に、全面にタングステン酸ィ匕防止絶縁膜(図示せず)を形成する。タングステン酸 化防止絶縁膜としては、例えば SiON膜を用いる。
[0256] 次いで、フォトリソグラフィー及びドライエッチングにより、層間絶縁膜 50及び保護膜 48に、強誘電体キャパシタ 46の上部電極 44に達するコンタクトホール 110、及び強 誘電体キャパシタ 46の下部電極 38に達するコンタクトホール 112を形成する。
[0257] 次いで、酸素雰囲気中にて、例えば 550°C、 60分間の熱処理を行う。この熱処理 は、コンタクトホール 110、 112を形成するためのドライエッチングの際に強誘電体キ ャパシタ 46が受けたダメージを回復し、強誘電体キャパシタ 46の電気的特性を回復 するためのものである。このァニールの後、タングステン酸化防止絶縁膜(図示せず) をエッチバックにより除去する(図 22 (a)参照)。 [0258] 次いで、全面に、例えばスパッタ法により、例えば膜厚 150nmの TiN膜と、例えば 膜厚 5nmの Ti膜とを順次形成する。こうして、 TiN膜と Ti膜とが順次積層されてなる ノ リアメタル膜 130が形成される。
[0259] 次いで、全面に、例えば MOCVD法により、貴金属力もなる導体膜 132として、例 えば膜厚 200nmの Ir膜を形成する。
[0260] 次 、で、全面に、例えばスパッタ法により、例えば膜厚 5nmの Ti膜と、例えば膜厚 1 50nmの TiN膜とを順次形成する。こうして、 Ti膜と TiN膜とが順次積層されてなるバ リアメタル膜 134が形成される(図 22 (b)参照)。
[0261] 次いで、ハードマスクを用いたドライエッチングにより、ノ リアメタル膜 134、貴金属 力もなる導体膜 132、及びバリアメタル膜 130をパターユングする。これにより、層間 絶縁膜 50上に、コンタクトホール 110を介して上部電極 44に接続され、また、プラグ 120に接続された配線 128が形成される。また、コンタクトホール 112を介して下部電 極 38に接続された配線 136が形成される。また、プラグ 126に接続された配線 138 が形成される(図 23 (a)参照)。配線 128、 136、 138は、ノ リアメタル膜 130と、貴金 属からなる導体膜 132と、ノ リアメタル膜 134とにより構成される。
[0262] 以後、層間絶縁膜 140、配線 138に接続されたプラグ 148等を形成し(図 23 (b)参 照)、回路設計等に応じて、層間絶縁膜 140上に、通常の配線形成工程により単層 又は複数層の配線を適宜形成する。
[0263] こうして、本実施形態による半導体装置が製造される。
[0264] このように、本実施形態によれば、コンタクトホール 110を介して強誘電体キャパシ タ 46の上部電極 44に接続された配線、及びコンタクトホール 112を介して強誘電体 キャパシタ 46の下部電極 38に接続された配線として、貴金属力もなる導体膜 132を 有する配線 128、 136を形成するので、貴金属又は貴金属酸化物により構成される 上部電極 44及び下部電極 38と配線 128、 136との反応を抑制することができ、上部 電極 44及び下部電極 38と配線 128、 136との間のコンタクトを良好なものとすること ができる。
[0265] さらに、本実施形態によれば、酸化物が水素及び水分の拡散を防止する特性を有 する貴金属からなる導体膜 132を形成するので、貴金属からなる導体膜 132が酸ィ匕 されていれば、強誘電体膜 42に水素及び水分が達するのが抑制され、強誘電体膜 42を構成する金属酸化物の水素や水分による還元を抑制することができる。これに より、強誘電体キャパシタ 46の電気的特性の劣化を抑制することが可能となる。
[0266] [変形実施形態]
本発明は上記実施形態に限らず種々の変形が可能である。
[0267] 例えば、上記実施形態では、強誘電体膜 42として PZT膜又は PLZT膜を用いる場 合を例に説明したが、強誘電体膜 42は PZT膜等に限定されるものではなぐ他のあ らゆる強誘電体膜を適宜用いることができる。例えば、強誘電体膜 42として、 PZT膜 、 PLZT膜のほ力、 La、 Ca、 Sr、 Si等が微量にドープされた PZT膜等の一般式 AB Oで表されるぺロブスカイト型の結晶構造を有するものや、 SrBi Ta O膜 (SBT膜)
3 2 2 9
、 (Bi La ) Ti O 膜(BLT膜)、 SrBi (Ta Nb ) O膜(SBTN膜)等のビスマ
X l -X 4 3 12 2 X 1 -X 2 9
ス層状構造の結晶構造を有するものを用いることができる。
[0268] また、上記実施形態では、 MOCVD法及びスパッタ法により強誘電体膜 42を成膜 する場合を例に説明したが、強誘電体膜 42の成膜方法はこれに限定されるものでは ない。強誘電体膜 42の成膜方法としては、 MOCVD法等の CVD法ゃスパッタ法の ほ力、ゾル 'ゲル法、 MOD (Metal Organic Deposition)法等を用いることができる。
[0269] また、上記実施形態では、強誘電体膜 42を用いる場合を例に説明したが、強誘電 体膜 42に代えて高誘電体膜を用い、例えば DRAM等を構成する場合にも、本発明 を適用することができる。高誘電体膜としては、例えば、(BaSr)TiO
3膜 (BST膜)、 S rTiO膜 (STO膜)、 Ta O膜等を用いることができる。なお、高誘電体膜とは、比誘
3 2 5
電率が二酸ィ匕シリコンより高い誘電体膜のことである。
[0270] また、上記実施形態では、下部電極 38を構成する導体膜 36、ビア 68aを構成する 導体膜 66、上部電極 44に接続された配線 72を構成する導体膜 76、上部電極 44又 は下部電極 38に接続された配線 128、 136を構成する導体膜 132として、貴金属か らなるものを用いる場合を例に説明した力 これらの導体膜 36、 66、 76、 132は、貴 金属酸ィ匕物からなるものを用いてもよい。導体膜 36、 66、 76、 132としては、例えば 、 Pt、 Ir、ルテニウム(Ru)、ロジウム(Rh)、レニウム(Re)、オスミウム(Os)、パラジゥ ム(Pd)及びこれらの酸ィ匕物力 なる群力 選択される少なくとも一種の材料力 なる 膜を用いることができる。また、これら貴金属又は貴金属酸ィ匕物力もなる膜の積層膜 を、導体膜 36、 66、 76、 132として用! /、てもよ!/、。
[0271] MOCVD法によりこれら貴金属又は貴金属酸化物からなる導体膜を成膜する場合 、原料として次のような貴金属の前駆体を用いることができる。 Ptの前駆体としては、 例えば、トリメチル(シクロペンタジェ -ル) Pt (IV)、トリメチル(j8—ジケトネート) Pt ( IV)、ビス( —ジケトネート) Pt (11)、テトラキス(トリフルォロホスフィン) Pt (O)等を用 いることができる。 Ruの前駆体としては、例えば、ビス(シクロペンタジェ -ル) Ru、トリ ス (テトラメチル一 3, 5—ヘプタジォネート) Ru等を用いることができる。 Pdの前駆体 としては、例えば、ノ《ラジウムビス(j8—ジケトネート)等を用いることができる。 Rhの前 駆体としては、例えば、ルイス塩基安定ィ匕ロジウム (I) β—ジケトネート等を用いること ができる。また、貴金属酸化物からなる導体膜を成膜する場合には、貴金属からなる 導体膜を成膜する際の成膜温度よりも高温の成膜温度で成膜すればよ!ヽ。例えば、 上記実施形態においては、 550°C未満の成膜温度にて Ir膜を成膜していたが、成膜 温度を 550°C以上に設定することにより、 IrO膜を成膜することができる。
[0272] また、上記実施形態では、導体膜 36、 66、 76、 132を MOCVD法により成膜する 場合を例に説明したが、導体膜 36、 66、 76、 132の成膜方法はこれに限定されるも のではない。貴金属又は貴金属酸ィ匕物力もなる導体膜 36、 66、 76、 132の成膜方 法としては、 MOCVD法のほ力、、例えば、 LSCVD (Liquid Source Chemical Vapor Deposition)法等の CVD法や、 CSD (Chemical Solution Deposition)法等を用いるこ とがでさる。
[0273] また、上記実施形態では、密着層 34として Ti膜と TiN膜との積層膜を用いる場合を 例に説明したが、密着層 34はこれに限定されるものではない。密着層 34としては、 例えば、 Ti膜、 TiN膜、 TiAIN (チタンアルミナイトライド)膜、 Ir膜、 IrO膜、 Pt膜、 R u膜、 Ta膜等を用いることができる。また、これらの積層膜を、密着層 34として用いて ちょい。
[0274] また、上記第 2乃至第 4実施形態では、下部電極 38として Pt膜を用いる場合を例 に説明したが、下部電極 38を構成する導体膜はこれに限定されるものではなぐ種 々の貴金属又は貴金属酸ィ匕物からなる導体膜を用いることができる。下部電極 38を 構成する導体膜としては、例えば、 Pt、 Ir、 Ru、 Rh、 Re、 Os、 Pd及びこれらの酸ィ匕 物からなる群力 選択される少なくとも一種の材料力もなる膜を用いることができる。 また、下部電極 38を構成する導体膜として、 SrRuO膜 (SRO膜)を用いることもでき
3
る。また、これらの積層膜を、下部電極 38を構成する導体膜として用いてもよい。
[0275] また、上記実施形態では、上部電極 44として IrO膜を用いる場合を例に説明した 力 上部電極 44を構成する導体膜はこれに限定されるものではなぐ種々の貴金属 又は貴金属酸ィ匕物カゝらなる導体膜を用いることができる。上部電極 44を構成する導 体膜としては、 IrO膜のほか、例えば、 Pt、 Ir、 Ru、 Rh、 Re、 Os、 Pd及びこれらの酸 化物からなる群力 選ばれる少なくとも一種の材料力もなる膜を用いることができる。 また、上部電極 44を構成する導体膜として、 SRO膜を用いることもできる。また、これ らの積層膜を、上部電極 44を構成する導体膜として用いてもょ 、。
[0276] また、上記第 3及び第 4実施形態では、上部電極 44又は下部電極 38等と導体膜 7 6、 132との間に介在するノ リアメタル膜 74、 130として、 TiN膜と Ti膜と TiN膜とが 順次積層されてなる積層膜を用いる場合を例に説明したが、ノ リアメタル膜 74、 130 はこれに限定されるものではない。ノ リアメタル膜 74、 130としては、例えば、 Ti、 Ti N、 TiAlN、 Pt、 Ir、 IrO、 Ru、及び Taからなる群から選択される少なくとも一種の材 料力もなる膜を用いることができる。また、これらの積層膜を、ノ リアメタル膜 74、 130 として用いることができる。
[0277] また、上記実施形態では、下部電極 38のプラグ部 38a、下部電極 38が接続された プラグ 68aが、トランジスタ 24のソース Zドレイン領域 22aに接続された場合を例に説 明したが、本発明は、プラグ部 38a、プラグ 68aが種々の半導体素子に接続される場 合に適用することができる。
産業上の利用可能性
[0278] 本発明による半導体装置及びその製造方法は、誘電体膜として強誘電体膜又は 高誘電体膜を用いたキャパシタを有する半導体装置の動作特性及び信頼性の向上 を実現するのに有用である。

Claims

請求の範囲
[1] 半導体基板上に形成された半導体素子と、
前記半導体素子が形成された前記半導体基板上に形成された絶縁膜と、 前記絶縁膜に形成され、前記半導体素子に達するコンタクトホール内に埋め込ま れ、前記半導体素子に接続され、貴金属又は貴金属酸ィ匕物力もなる導体膜を有す るプラグと、
前記プラグが形成された前記絶縁膜上に形成され、前記プラグに接続された下部 電極と、前記下部電極上に形成され、強誘電体膜又は高誘電体膜からなる誘電体 膜と、前記誘電体膜上に形成された上部電極とを有するキャパシタと
を有することを特徴とする半導体装置。
[2] 半導体基板上に形成された半導体素子と、
前記半導体素子が形成された前記半導体基板上に形成された絶縁膜と、 前記絶縁膜に形成され、前記半導体素子に達するコンタクトホール内に埋め込ま れ、前記半導体素子に接続され、貴金属又は貴金属酸ィ匕物力もなる導体膜を有す るプラグと、
前記貴金属又は貴金属酸ィ匕物力もなる導体膜プラグを平坦化されたプラグと、 前記プラグが形成された前記絶縁膜上に形成され、前記プラグに接続された下部 電極と、前記下部電極上に形成され、強誘電体膜又は高誘電体膜からなる誘電体 膜と、前記誘電体膜上に形成された上部電極とを有するキャパシタと
を有することを特徴とする半導体装置。
[3] 半導体基板上に形成された半導体素子と、
前記半導体素子が形成された前記半導体基板上に形成された絶縁膜と、 前記絶縁膜に形成され、前記半導体素子に達するコンタクトホール内に埋め込ま れ、前記半導体素子に接続され、貴金属又は貴金属酸ィ匕物力もなる導体膜を有す るプラグと、
前記貴金属又は貴金属酸ィ匕物力もなる導体膜プラグを平坦化されたプラグと、 前記プラグが形成された前記絶縁膜上に形成され、前記プラグに接続されたァモ ルファス貴金属酸化物密着層と、前記アモルファス貴金属酸化物密着層に形成され た下部電極と、前記下部電極上に形成され、強誘電体膜又は高誘電体膜からなる 誘電体膜と、前記誘電体膜上に形成された上部電極とを有するキャパシタと を有することを特徴とする半導体装置。
[4] 請求の範囲第 1項記載の半導体装置において、
前記プラグは、前記下部電極と一体的に形成されて ヽる
ことを特徴とする半導体装置。
[5] 請求の範囲第 1項乃至第 4項のいずれ力 1項に記載の半導体装置において、 前記コンタクトホール内に形成され、前記導体膜の下地に対する密着性を確保す る密着層を更に有する
ことを特徴とする半導体装置。
[6] 請求の範囲第 5項記載の半導体装置にお 、て、
前記密着層は、水素又は水分の拡散を防止する
ことを特徴とする半導体装置。
[7] 請求の範囲第 5項又は第 6項記載の半導体装置において、
前記密着層は、 Ti膜、 TiN膜、 T1A1N膜、 Ir膜、 IrO膜、 Pt膜、 Ru膜、及び Ta膜 からなる群から選択される膜を含む
ことを特徴とする半導体装置。
[8] 請求の範囲第 1項乃至第 7項のいずれ力 1項に記載の半導体装置において、 前記絶縁膜上及び前記キャパシタ上に形成された他の絶縁膜と、
前記他の絶縁膜上に形成され、前記他の絶縁膜に形成され前記上部電極に達す るコンタクトホールを介して前記上部電極に接続され、貴金属又は貴金属酸化物か らなる導体膜を有する配線とを更に有する
ことを特徴とする半導体装置。
[9] 半導体基板上に形成され、下部電極と、前記下部電極上に形成され、強誘電体膜 又は高誘電体膜からなる誘電体膜と、前記誘電体膜上に形成された上部電極とを有 するキャパシタと、
前記半導体基板上及び前記キャパシタ上に形成された絶縁膜と、
前記絶縁膜上に形成され、前記絶縁膜に形成され前記上部電極に達するコンタク トホールを介して前記上部電極に接続され、貴金属又は貴金属酸化物からなる導体 膜を有する配線と
を有することを特徴とする半導体装置。
[10] 半導体基板上に形成され、下部電極と、前記下部電極上に形成され、強誘電体膜 又は高誘電体膜からなる誘電体膜と、前記誘電体膜上に形成された上部電極とを有 するキャパシタと、
前記半導体基板上及び前記キャパシタ上に形成された絶縁膜と、
前記絶縁膜上に形成され、前記絶縁膜に形成され前記上部電極又は前記下部電 極に達するコンタクトホールを介して前記上部電極又は前記下部電極に接続され、 貴金属又は貴金属酸ィ匕物力 なる導体膜を有する配線と
を有することを特徴とする半導体装置。
[11] 請求の範囲第 1項乃至第 10項のいずれ力 1項に記載の半導体装置において、 前記プラグ又は前記配線の前記導体膜は、 Pt、 Ir、 Ru、 Rh、 Re、 Os、 Pd及びこれ らの酸ィ匕物力 なる群力 選択される少なくとも一種の材料力 なる膜を含む
ことを特徴とする半導体装置。
[12] 請求の範囲第 1項乃至第 11項のいずれ力 1項に記載の半導体装置において、 前記下部電極は、 Pt、 Ir、 Ru、 Rh、 Re、 Os、 Pd、これらの酸化物、及び SrRuO
3 力 なる群力 選ばれる少なくとも一種の材料力 なる膜を含む
ことを特徴とする半導体装置。
[13] 請求の範囲第 3項に記載の半導体装置において、
前記アモルファス貴金属酸化物密着層は、 Pt、 Ir、 Ru、 Rh、 Re、 Os、 Pdの酸化物 、及び SrRuO力 なる群力 選ばれる少なくとも一種の材料力 なる膜を含む
3
ことを特徴とする半導体装置。
[14] 請求の範囲第 1項乃至第 13項のいずれ力 1項に記載の半導体装置において、 前記強誘電体膜は、 PbZr Ti O膜、 Pb La Zr Ti O膜、(Bi La ) Ti
1 -X X 3 1 -X X 1 -Y Y 3 X 1— X 4
O 膜、又は SrBi Ta O膜である
3 12 2 2 9
ことを特徴とする半導体装置。
[15] 請求の範囲第 1項乃至第 14項のいずれ力 1項に記載の半導体装置において、 前記上部電極は、 Pt、 Ir、 Ru、 Rh、 Re、 Os、 Pd、これらの酸化物、及び SrRuO
3 力 なる群力 選ばれる少なくとも一種の材料力 なる膜を含む
ことを特徴とする半導体装置。
[16] 半導体基板上に、半導体素子を形成する工程と、
前記半導体素子が形成された前記半導体基板上に、絶縁膜を形成する工程と、 前記絶縁膜に、前記半導体素子に達するコンタクトホールを形成する工程と、 前記コンタクトホール内に埋め込まれ、前記半導体素子に接続され、貴金属又は 貴金属酸化物からなる導体膜を有するプラグを形成する工程と、
前記プラグが形成された前記絶縁膜上に形成され、前記プラグに接続された下部 電極と、前記下部電極上に形成され、強誘電体膜又は高誘電体膜からなる誘電体 膜と、前記誘電体膜上に形成された上部電極とを有するキャパシタを形成する工程 と
を有することを特徴とする半導体装置の製造方法。
[17] 半導体基板上に、半導体素子を形成する工程と、
前記半導体素子が形成された前記半導体基板上に、絶縁膜を形成する工程と、 前記絶縁膜に、前記半導体素子に達するコンタクトホールを形成する工程と、 前記コンタクトホール内に埋め込まれ、前記半導体素子に接続され、貴金属又は 貴金属酸化物からなる導体膜を有するプラグを形成する工程と、
前記導体膜プラグの平坦ィヒする工程と、
前記プラグが形成された前記絶縁膜上に形成され、前記プラグに接続された下部 電極と、前記下部電極上に形成され、強誘電体膜又は高誘電体膜からなる誘電体 膜と、前記誘電体膜上に形成された上部電極とを有するキャパシタを形成する工程 と
を有することを特徴とする半導体装置の製造方法。
[18] 半導体基板上に、半導体素子を形成する工程と、
前記半導体素子が形成された前記半導体基板上に、絶縁膜を形成する工程と、 前記絶縁膜に、前記半導体素子に達するコンタクトホールを形成する工程と、 前記コンタクトホール内に埋め込まれ、前記半導体素子に接続され、貴金属又は 貴金属酸化物からなる導体膜を有するプラグを形成する工程と、
前記導体膜プラグの平坦ィヒする工程と、
前記プラグが形成された前記絶縁膜上に形成され、前記プラグに接続されたァモ ルファス貴金属酸化物と下部電極とを形成する工程と、
前記下部電極上に形成され、強誘電体膜又は高誘電体膜からなる誘電体膜と、前 記誘電体膜上に形成された上部電極とを有するキャパシタを形成する工程と を有することを特徴とする半導体装置の製造方法。
[19] 半導体基板上に半導体素子を形成する工程と、
前記半導体素子が形成された前記半導体基板上に絶縁膜を形成する工程と、 前記絶縁膜に、前記半導体素子に達するコンタクトホールを形成する工程と、 前記絶縁膜上に、前記コンタクトホール内に埋め込まれ、前記半導体素子に接続 され、貴金属又は貴金属酸化物からなる導体膜を形成する工程と、
前記絶縁膜上に形成され、前記導体膜を有する下部電極と、前記下部電極上に 形成され、強誘電体膜又は高誘電体膜からなる誘電体膜と、前記強誘電体膜上に 形成された上部電極とを有するキャパシタを形成する工程と
を有することを特徴とする半導体装置の製造方法。
[20] 請求の範囲第 16項乃至第 19項のいずれか 1項に記載の半導体装置の製造方法 において、
前記コンタクトホールを形成する工程の後に、前記コンタクトホール内に、前記導体 膜の下地に対する密着性を確保する密着層を形成する工程を更に有する
ことを特徴とする半導体装置の製造方法。
[21] 請求の範囲第 16項乃至第 20項のいずれか 1項に記載の半導体装置の製造方法 において、
前記絶縁膜上及び前記キャパシタ上に、他の絶縁膜を形成する工程と、 前記他の絶縁膜に、前記上部電極に達する他のコンタクトホールを形成する工程と 前記他の絶縁膜上に、前記他のコンタクトホールを介して前記上部電極に接続さ れ、貴金属又は貴金属酸化物からなる導体膜を有する配線を形成する工程を更に 有する
ことを特徴とする半導体装置の製造方法。
[22] 半導体基板上に、下部電極と、前記下部電極上に形成され、強誘電体膜又は高 誘電体膜からなる誘電体膜と、前記誘電体膜上に形成された上部電極とを有するキ ャパシタを形成する工程と、
前記半導体基板上及び前記キャパシタ上に、絶縁膜を形成する工程と、 前記絶縁膜に、前記上部電極又は前記下部電極に達するコンタクトホールを形成 する工程と、
前記絶縁膜上に、前記コンタクトホールを介して前記上部電極又は前記下部電極 に接続され、貴金属又は貴金属酸化物からなる導体膜を有する配線を形成するェ 程と
を有することを特徴とする半導体装置の製造方法。
[23] 請求の範囲第 16項乃至第 22項のいずれか 1項に記載の半導体装置の製造方法 において、
前記プラグ、前記下部電極、又は前記配線の前記導体膜は、 MOCVD法、 LSCV D法、又は CSD法により形成される
ことを特徴とする半導体装置の製造方法。
PCT/JP2005/006183 2005-03-30 2005-03-30 半導体装置及びその製造方法 WO2006103779A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020077021107A KR100909029B1 (ko) 2005-03-30 2005-03-30 반도체 장치 및 그 제조 방법
PCT/JP2005/006183 WO2006103779A1 (ja) 2005-03-30 2005-03-30 半導体装置及びその製造方法
CNA2005800493648A CN101151729A (zh) 2005-03-30 2005-03-30 半导体装置及其制造方法
JP2007510301A JPWO2006103779A1 (ja) 2005-03-30 2005-03-30 半導体装置及びその製造方法
US11/862,606 US20080017902A1 (en) 2005-03-30 2007-09-27 Semiconductor device and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2005/006183 WO2006103779A1 (ja) 2005-03-30 2005-03-30 半導体装置及びその製造方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/862,606 Continuation US20080017902A1 (en) 2005-03-30 2007-09-27 Semiconductor device and method of manufacturing the same

Publications (1)

Publication Number Publication Date
WO2006103779A1 true WO2006103779A1 (ja) 2006-10-05

Family

ID=37053054

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/006183 WO2006103779A1 (ja) 2005-03-30 2005-03-30 半導体装置及びその製造方法

Country Status (5)

Country Link
US (1) US20080017902A1 (ja)
JP (1) JPWO2006103779A1 (ja)
KR (1) KR100909029B1 (ja)
CN (1) CN101151729A (ja)
WO (1) WO2006103779A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008135698A (ja) * 2006-10-27 2008-06-12 Seiko Epson Corp 誘電体キャパシタの製造方法
JP2014120569A (ja) * 2012-12-14 2014-06-30 Canon Inc 光電変換装置の製造方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2007063573A1 (ja) * 2005-11-29 2009-05-07 富士通マイクロエレクトロニクス株式会社 半導体装置とその製造方法
JP2008071897A (ja) * 2006-09-13 2008-03-27 Toshiba Corp 半導体メモリ及び半導体メモリの製造方法
US8981440B2 (en) * 2008-09-16 2015-03-17 Rohm Co., Ltd. Semiconductor storage device and method for manufacturing the semiconductor storage device
KR101628355B1 (ko) * 2008-10-30 2016-06-21 엘지이노텍 주식회사 임베디드 커패시터 및 그 제조방법
CN102169860B (zh) * 2011-01-31 2013-03-27 日月光半导体制造股份有限公司 具有被动组件结构的半导体结构及其制造方法
WO2014157639A1 (ja) * 2013-03-28 2014-10-02 独立行政法人物質・材料研究機構 有機el素子及びその製造方法
CN105529329A (zh) * 2014-09-29 2016-04-27 中芯国际集成电路制造(上海)有限公司 埋入式dram器件及其形成方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003179211A (ja) * 2001-12-10 2003-06-27 Sony Corp 強誘電体型不揮発性半導体メモリ及びその製造方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6130102A (en) * 1997-11-03 2000-10-10 Motorola Inc. Method for forming semiconductor device including a dual inlaid structure
CN1155092C (zh) * 1998-07-03 2004-06-23 松下电器产业株式会社 半导体装置及其制造方法
US6421223B2 (en) * 1999-03-01 2002-07-16 Micron Technology, Inc. Thin film structure that may be used with an adhesion layer
US6548343B1 (en) 1999-12-22 2003-04-15 Agilent Technologies Texas Instruments Incorporated Method of fabricating a ferroelectric memory cell
JP2001217397A (ja) * 2000-02-02 2001-08-10 Nec Corp 半導体装置とその製造方法
JP4428500B2 (ja) 2001-07-13 2010-03-10 富士通マイクロエレクトロニクス株式会社 容量素子及びその製造方法
JP2004146772A (ja) * 2002-03-18 2004-05-20 Fujitsu Ltd 半導体装置及びその製造方法
WO2004093193A1 (ja) * 2003-04-15 2004-10-28 Fujitsu Limited 半導体装置の製造方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003179211A (ja) * 2001-12-10 2003-06-27 Sony Corp 強誘電体型不揮発性半導体メモリ及びその製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008135698A (ja) * 2006-10-27 2008-06-12 Seiko Epson Corp 誘電体キャパシタの製造方法
JP2014120569A (ja) * 2012-12-14 2014-06-30 Canon Inc 光電変換装置の製造方法

Also Published As

Publication number Publication date
KR20070106566A (ko) 2007-11-01
KR100909029B1 (ko) 2009-07-22
JPWO2006103779A1 (ja) 2008-09-04
US20080017902A1 (en) 2008-01-24
CN101151729A (zh) 2008-03-26

Similar Documents

Publication Publication Date Title
KR100989086B1 (ko) 반도체 장치와 그 제조 방법
JP4827653B2 (ja) 半導体装置とその製造方法
JP5205741B2 (ja) 半導体装置の製造方法
JP5251864B2 (ja) 半導体装置及びその製造方法
KR100949109B1 (ko) 반도체 장치 및 그 제조 방법
JP4946287B2 (ja) 半導体装置及びその製造方法
KR100909029B1 (ko) 반도체 장치 및 그 제조 방법
US8349679B2 (en) Semiconductor device and method of manufacturing the same
JP5125510B2 (ja) 半導体装置
JP4930371B2 (ja) 半導体装置及びその製造方法
JP5076890B2 (ja) 半導体装置及びその製造方法
JP4983172B2 (ja) 半導体装置及びその製造方法
JP4845624B2 (ja) 半導体装置とその製造方法
KR101262432B1 (ko) 반도체 장치의 제조 방법
CN101702408A (zh) 半导体装置及其制造方法
KR100943011B1 (ko) 반도체 장치 및 그 제조 방법
JP5007723B2 (ja) キャパシタを含む半導体装置及びその製造方法
JP2007266023A (ja) 半導体装置、及び半導体装置の製造方法
JP2011223031A (ja) 半導体装置の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007510301

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 1020077021107

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 11862606

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 200580049364.8

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Ref document number: DE

NENP Non-entry into the national phase

Ref country code: RU

WWW Wipo information: withdrawn in national office

Ref document number: RU

WWP Wipo information: published in national office

Ref document number: 11862606

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 05721681

Country of ref document: EP

Kind code of ref document: A1

WWW Wipo information: withdrawn in national office

Ref document number: 5721681

Country of ref document: EP