WO2006078078A1 - プロピレン系樹脂製配管部材 - Google Patents

プロピレン系樹脂製配管部材 Download PDF

Info

Publication number
WO2006078078A1
WO2006078078A1 PCT/JP2006/301388 JP2006301388W WO2006078078A1 WO 2006078078 A1 WO2006078078 A1 WO 2006078078A1 JP 2006301388 W JP2006301388 W JP 2006301388W WO 2006078078 A1 WO2006078078 A1 WO 2006078078A1
Authority
WO
WIPO (PCT)
Prior art keywords
propylene
piping member
based resin
pipe
parts
Prior art date
Application number
PCT/JP2006/301388
Other languages
English (en)
French (fr)
Inventor
Hidehiro Kourogi
Sueyoshi Suetome
Original Assignee
Asahi Organic Chemicals Industry Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Organic Chemicals Industry Co., Ltd. filed Critical Asahi Organic Chemicals Industry Co., Ltd.
Priority to JP2006554011A priority Critical patent/JPWO2006078078A1/ja
Publication of WO2006078078A1 publication Critical patent/WO2006078078A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/16Elastomeric ethene-propene or ethene-propene-diene copolymers, e.g. EPR and EPDM rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L9/00Compositions of homopolymers or copolymers of conjugated diene hydrocarbons
    • C08L9/06Copolymers with styrene

Definitions

  • the present invention relates to a pipe manufactured by an extrusion molding method suitably used for a piping line through which a high temperature fluid of 60 ° C. or more flows, a joint manufactured by an injection molding method, a flange, a valve, a light and an opening
  • the present invention relates to a piping member made of a propylene-based resin such as a casing of evening, and more specifically, in the use of a book with a piping line through which a high temperature fluid flows, the elongation in the longitudinal direction of the piping member accompanying thermal expansion is
  • the present invention relates to a propylene-based resin piping member which is excellent in the long life, heat resistance and moldability of the piping member. Background art
  • propylene-based resin piping members have been widely used in various factories, medical fields, construction fields, etc. because of excellent properties such as rigidity, heat resistance, or chemical resistance.
  • Propylene-based resin pipes in particular, are resistant to acids and alkalis in high temperature ranges and are inexpensive, so they are suitable for high-temperature liquid chemical pipes and pipes for hot water supply in the industrial field. It is greatly expected.
  • the surface-treated talc is obtained by adding 0.5 to 5 parts by weight of silicone oil with respect to 100 parts by weight of talc and higher fatty acid metal salt 0.1.
  • a polypropylene resin composition which was surface-treated with 5 parts by weight (Japanese Patent Application Laid-Open No. 2 0 0 5). This resin composition can be suitably used for various industrial products such as automotive parts, and has an effect of generating a small amount of particles and having excellent dispersibility. .
  • the melt-off rate measured under a load of 2.16 kg is in the range of 0.000-5 to 5 g / 10 min.
  • the temperature of the maximum peak position of the endothermic curve measured by differential scanning calorimeter is in the range of 1 2 8 to 17 2 ° C, and the density is in the range of 8 9 8 to 9 1 7 kg / m 3
  • the content ratio of the structural unit derived from a polyolefin having 4 to 20 carbon atoms is in the range of 0 to 6 mol%, and the flexural modulus of the press sheet test piece molded by 200 is 8
  • propylene-based resin piping members need to have oxidation resistance for long-term use, especially when used for piping through which high-temperature fluid flows.
  • oxidation-resistant propylene-based resins are used for molding.
  • the oxidation resistance can be improved by blending an agent, but conventional propylene-based
  • the oxidation resistance as a piping member application is not considered.
  • the antioxidant is eluted and the oxidation resistance inside the piping member is impaired. There was a risk of problems.
  • the inorganic filler and other additives for suppressing the linear expansion coefficient are not contained, and the linear expansion coefficient can be estimated from the composition by a small amount. Since it is estimated that the temperature is about T 5 / ° C, when the pipe is fixedly installed and a high temperature fluid flows, an elongation in the longitudinal direction of the pipe accompanying the thermal expansion causes a serpentine phenomenon, and the large strain stress in the pipe And the longevity of the pipe may be impaired.
  • the present invention overcomes the drawbacks of the conventional propylene-based resin piping members as described above, and extends the piping members in the longitudinal direction due to thermal expansion particularly when used in piping lines through which high temperature fluid flows. It is an object of the present invention to provide a propylene-based resin piping member which exhibits excellent characteristics of heat resistance and moldability of the piping member while suppressing the long-term life of the piping member.
  • the present inventors found that the linear expansion coefficient of the pipe member is within a predetermined range by the inorganic filler present in the pipe member. It has been found that this predetermined range can be adapted to the pipe member characteristics derived from the relationship between the coefficient of linear expansion and the tensile modulus of elasticity, and the present invention has been completed based on this finding.
  • the present invention is a piping member made of a propylene-based resin containing an inorganic filler as an essential component, wherein 5 to 30 parts by mass of the inorganic filler is used with respect to 100 parts by mass of the propylene-based resin piping member.
  • a third feature is that the linear expansion coefficient ( ⁇ ) of the piping member and the tensile elastic modulus (E) in 90 ° C. satisfy the relation equation of EX ⁇ 6 6 6 7.
  • the fourth feature is that the tensile elastic modulus at 0 ° C. is in the range of 3 7 0 to 1 3 1 0 P a, and the said propylene-based resin piping member 100 parts by weight of styrene ⁇ butadiene
  • the fifth feature is that 1 to 20 parts by mass of a system rubber is blended
  • the sixth feature is that the polystyrene equivalent weight average molecular weight of the styrene * butadiene based rubber is at least 200,000.
  • the piping member is any one of a pipe, a joint, a valve, a pump, a casing, a flow meter, and various sensors.
  • Fig. 1 is a graph showing an area where the thermal stress of Formula (1) can be tolerated.
  • Fig. 2 is an explanatory view of a thermal stress test. Detailed Description of the Invention
  • the propylene-based resin molding material in the present invention those conventionally used, such as propylene homopolymers, copolymers of propylene and other copolymers of polypropylene and the like, are used conventionally, and mixtures of these polymers are also used. It can be used without problems.
  • MFR melt transfer rate
  • the range of 0.1 to 2.0 g ⁇ 10 minutes is preferable, and 0.2 is preferable. It is more preferable that 1 to 1.0 g / 10 minutes.
  • MFR In order to obtain good productivity of propylene-based resin, MFR should be 0.1 g / 10 min or more, and in order to obtain good stress crackability by suppressing drawdown in pipe molding, MFR should be 2. 0 g / 1 0 minutes or less is good.
  • MFR is JIS It is measured under the conditions of test temperature 230 ° C and test load 2.16 kg according to K 720.
  • the inorganic filler in the present invention conventionally used ones such as a spherical filler, a plate-like filler, a fibrous filler and the like are used, and it is possible to appropriately select and use from these.
  • Spherical fillers include calcium carbonate, myotonicity, barium sulfate, calcium sulfate, clay, pearlite, shirasu balloon, diatomaceous earth, calcined alumina, calcium silicate and the like.
  • plate-like filters include talc and My strength.
  • fibrous fibers examples include glass fibers, carbon fibers, boron fibers, silicon carbide fibers, potassium titanate fibers, polyamide fibers, polyester fibers, polyarylate fibers, polyimide fibers, and the like.
  • amorphous fillers is silica.
  • the above inorganic fillers may be used alone or in combination of two or more.
  • those mainly composed of talc, myophilic force, silica, calcium carbonate and glass fiber are preferable in terms of thermal expansion characteristics, heat resistance, cost and the like. It is preferable because the tension coefficient is reduced.
  • one that has been treated with a silane coupling agent or the like may be used for the purpose of improving the adhesion to the propylene-based resin.
  • the average particle size and average fiber size of the inorganic filler are not particularly limited, but when the inorganic filler is talc, myophilic, silica, calcium carbonate, the average particle size is 0.5 -10 x m is preferable, and 1.-6. 0 are more preferable.
  • the average particle diameter is preferably 0.5 wm or more from the viewpoint of preventing deterioration of moldability such as extrusion molding and injection molding, and the average particle diameter is 1 from the viewpoint of improving thermal expansion characteristics and impact resistance. It is good that it is less than 0 ⁇ m.
  • the place where the inorganic filler is glass fiber In this case, the average fiber diameter is preferably from 3.0 to 12 m. This is preferably 3.0 or more in terms of availability of glass fibers, and is preferably 12 m or less in terms of improving strength and heat resistance.
  • the blending ratio of the inorganic filler to the propylene-based resin in the present invention varies depending on the type and combination of the inorganic filler, the average particle diameter and the average fiber diameter, 100 parts by mass of the propylene-based resin piping member It is necessary to blend 5 to 30 parts by mass of the inorganic filler. This is preferably 5 parts by mass or more in order to reduce the linear expansion coefficient, without reducing the chemical resistance and the impact resistance, and reducing the thermal stress and the tensile elastic modulus to obtain a piping member. In order to extend the life, it is preferable that the content be 30 parts by mass or less.
  • Linear expansion coefficient of the propylene-based resin pipe member of the present invention 1 0 X 1 0- 5 Z ° C must be at or less, more preferably 2 XI 0 one 5 ⁇ 8 X 1 0- 5 ° C It needs to be. This is because when the piping member (especially the pipe) is fixedly installed and a high temperature fluid is caused to flow, the strain in the piping member is caused by the meandering phenomenon caused by the elongation in the longitudinal direction of the piping member accompanying the thermal expansion. As a result, the long-term life of the piping member is impaired, and distortion of the connection portion between the pipe and the joint or valve is prevented to prevent fluid leakage.
  • the oxidation induction time at 200 ° C. of the propylene-based resin piping member of the present invention is preferably 40 minutes or more, and more preferably 80 minutes or more. This means that the oxidation induction time at 200 ° C is 40 minutes or more, and it has sufficient oxidation resistance even for applications in piping lines that flow high temperature fluids, and the piping member has a temperature of about 90 ° C. This is to enable long-term use without oxidative degradation at high temperatures.
  • the piping member will be removed by that time.
  • the coefficient of linear expansion decreases and the tensile elastic modulus tends to increase.
  • the amount of the inorganic filler blended is linear expansion Assuming that the modulus of elasticity is E and the tensile modulus of elasticity at 90 ° C. is E, it is preferable to adjust so as to satisfy the equation (1).
  • the equation (1) shows that the strain due to the elastic limit when a high temperature fluid of 90 ° C. flows through the piping member made of propylene resin fixed at both ends at normal temperature allows the strain due to the thermal expansion in 90 ° C. It defines the range that can be done. More specifically, the strain ( ⁇ 1) due to the elastic limit at 90 ° C. is obtained from the tensile strength ( ⁇ ) at 90 ° C. and the tensile elastic modulus (E) at 90 ° C.
  • ⁇ 1 ⁇ / ⁇ ⁇ ⁇ ⁇ (2)
  • the strain due to thermal expansion ( ⁇ 2) in 90 is the temperature difference ( ⁇ t) between the linear expansion coefficient ( ⁇ ) and the normal temperature
  • the strain due to the elastic limit ( ⁇ 1) and the strain due to thermal expansion ( ⁇ 2) are propylene-based resin piping members, as long as the strain due to the elastic limit ( ⁇ 1) can tolerate the strain due to thermal expansion ( ⁇ 2) As a high temperature fluid flows, it is possible to prevent the negative effects of stress distortion on the piping members.
  • the tensile strength ( ⁇ 5) of the propylene-based resin piping member in 90 is about 10 to 15 MP a. 6 substantially 6 MP a or more (considering a safety factor of about 2)
  • the limit value of the tensile strength in 90 ° C is considered to be 6 MP a, since the piping member will be destroyed if the stress is applied instantaneously.
  • the temperature difference (At) with respect to the normal temperature is 67 ° C (90-23 ° C)
  • the equation (1) can be derived (the equation ( See Fig. 1) for the area of acceptable thermal stress in 1).
  • the range of the tensile modulus of elasticity in 90 ° C. in the relational expression of the formula (1) is preferably 3 7 0 to 1, 3 10 0 MP a, 5 2 0 1, 0 5 0 MP It is more preferable that it is a.
  • the tensile modulus at 90 ° C is 3 7 0 MP a or more in order for the piping member (especially the pipe) to be stiff due to its own weight and not to be stressed at the joint of the piping member at high temperatures. In order to have a strain due to the elastic limit that can tolerate a strain due to thermal expansion of the piping member, it is preferable to be less than 1, 3 1 OMP a.
  • the range of the tensile modulus of elasticity at normal temperature in the present invention is preferably the above-mentioned reason, such as 1, 0 5 to 3, 5 2 O M P a.
  • a styrene-based rubber is blended in the propylene-based resin piping member of the present invention. This is to reduce the thermal stress with a smaller blending amount compared to the case where other rubbers are blended, for example, even if a high temperature fluid is allowed to flow in a pipeline where pipes and joints are connected, pipes and joints due to high temperature
  • a pipe for example, in the case of a pipe, the deflection of the pipe due to the weight of the pipe when it is installed can be used to suppress the deterioration of the material and to use it for a long time without breakage.
  • the styrene / butadiene rubber be contained in an amount of 1 to 20 parts by mass.
  • the stress is concentrated at one point because the tensile modulus is low even if the stress is concentrated on a specific location of the pipe or valve in the pipe connection. Since it is dispersed without any damage, it is preferable that the content be 1 part by mass or more in order to prevent breakage of the pipe or valve.
  • the amount is 20 mass parts or less.
  • the weight average molecular weight in terms of styrene and styrene / butadiene rubber is at least 200,000, and it is more preferable that the weight average molecular weight is in the range of 200,000 to 700,000. This is because the decrease in creep characteristics of piping components caused by the compounding of rubber is significantly suppressed, and for example, high-temperature fluid is allowed to flow while internal pressure is applied to the pipelines in which pipes, joints, etc. are connected.
  • additives such as an antioxidant, a UV absorber, a nucleating agent, a pigment, a plasticizer and the like may be blended.
  • the piping member made of propylene resin of the present invention and the molding method thereof are not particularly limited.
  • a pipe manufactured by a known extrusion molding method, a joint manufactured by an injection molding method, a valve, a pump, an actuator tube, One thing, a flow meter, and various sensors are mentioned as a suitable thing.
  • piping members of the present invention pipes, fittings, valves, pumps, casings of actuators, flow meters, and various sensors, are connected by piping, and piping due to thermal expansion when high temperature fluid flows It suppresses the occurrence of meandering phenomenon due to the elongation of members (especially pipes), reduces stress distortion applied to piping members to maintain the long life of pipes, and has low molding shrinkage rate, so that dimensional stability during molding can be achieved. Since it is excellent, it is easy to manufacture products, because the variation in dimensions of molded parts such as valves, pumps, casings, flow meters, and various sensors can be suppressed especially.
  • the pipe was made of the propylene-based resin piping member of the present invention, and the performance was evaluated by the test method shown below.
  • a test piece for linear expansion measurement was cut out from a pipe made of a propylene-based resin by processing according to JIS K7197, and a linear expansion coefficient measurement test was performed in the range of 23 to 100 ° C.
  • JIS K 7 113 tensile test specimens are cut out from a pipe made of propylene resin, and tensile tests are conducted in an atmosphere of 2 3 ⁇ 1 ° C and 90 ° 1 0 C, and tensile strength and tensile elasticity are obtained. The rate was measured.
  • JIS K 6 7 6 1 (Appendix 4), cut out a 15 ⁇ 0.5 mg test piece from the inner surface of a pipe made of propylene resin, and use a differential scanning calorimeter to Heated to 0 0 ⁇ 0,5 ° C, stabilized, then replaced with oxygen atmosphere, and measured oxidation induction time.
  • the plan is carried out in an atmosphere of 2 3 ⁇ 1 ° C and 90 0 ⁇ 1 ° C against propylene-based resin pipe 1 0 0 0 0 0 Water pressure was applied using a jar pump. The water pressure was increased by 0.5 MP a and the water pressure at failure was measured. (6) Thermal stress test
  • both ends of a 300 mm propylene-based resin pipe 1 were fixed by 2 3 ⁇ 1. Fix one end of pipe 1 with jig 2 and connect the other end to load cell 3 and leave the pipe in thermostatic bath 4 at 90 ° C for 10 minutes. The measurement was performed using The smaller the thermal stress, the better the long-term life.
  • the weight-average molecular weight of styrene / butadiene-based rubber was determined in terms of polystyrene, using gel permeation chromatography (GP (:, column; Tosoh Co., Ltd., TSK gel GMHXL)).
  • a pipe was prepared in the same manner as in Example 1 by blending 35 parts by mass of a bulk having an average particle diameter of 5.0 m with 5 parts by mass of the crystalline propylene-based resin 6 and carrying out an evaluation test. The results are shown in Table 1.
  • Examples 1-5 By inorganic filler is 5-3 0 mass part formulation, the linear expansion coefficient of the pipe becomes below 1 0 X 1 0- 5 ° C There is.
  • Comparative Example 1 contains no inorganic filler
  • Comparative Example 2 contains 5 to 30 parts by mass of the inorganic filler, so the linear expansion coefficient is 1 compared to the examples. It is about 4 to 2 times larger.
  • the linear expansion coefficient of the pipe is 10 X 10 5 Z C or less but the tensile modulus is high and the thermal stress is also high. .
  • the time to induce oxidation of the pipe is significantly extended by the inclusion of the inorganic filler.
  • the life of the example is about 2 to 4 times as long as that of the comparative example 1 in which no inorganic filler is blended, so the long life is excellent.
  • the mold shrinkage rate of the pipe of the example is reduced to about 20 to 70% of that of the comparative example 1 by using the inorganic filler as an essential component.
  • the small molding shrinkage ratio facilitates mold design, particularly in injection molding of joints and valves, and also facilitates the processing of molded articles.
  • stress distortion on metal parts can be suppressed if the molding shrinkage ratio is small.
  • pipes with a tensile modulus in the range of 3 7 0 to 1 3 10 MP a can be used in a wider range of applications, and high temperature fluid is allowed to flow after the pipes are fixed and installed. It is desirable from the viewpoint of being able to reduce stress distortion occurring at the time. Further, from Examples 1 to 5, as long as the inorganic filler is an essential component, the effect can be obtained with any inorganic filler. Among these inorganic fillers, it is better to reduce the coefficient of linear expansion without raising the tensile modulus too much for the pipe, so that the tensile modulus and the coefficient of linear expansion have well-balanced values. It is more preferable to use talc as the inorganic filler.
  • Example 7 As can be seen from Table 2, according to Examples 3, 6, 10, 1 1 to Comparative Example 1, particularly when styrene / butadiene rubber is blended, it is more effective than when other rubbers are blended. Thermal stress can be reduced. Further, according to Example 7, even when the blending amount of the styrene-butadiene rubber is half that of Example 6, the thermal stress is at the same level as that of Example 3 and the creep characteristics are improved. Also, from Examples 7, 8 and 9, creep properties improve as the weight average molecular weight of the styrene • butadiene rubber increases. In particular, Examples 8 and 9, which are excellent in creep characteristics, are suitable for use as high pressure pipes.
  • Propylene resin pipes reduce thermal stress when rubber is compounded, but creep property is better or better than the case where rubber is not compounded if it is within an appropriate range, but when the compounding amount of rubber is increased. Creep characteristics are reduced. Therefore, for use as a piping member, it is preferable that the blending amount of styrene butadiene rubber is 1 to 20 parts by mass, and the S amount average molecular weight in terms of polystyrene is 20 000 or more.
  • a propylene-based resin pipe manufactured by extrusion molding is used, a joint manufactured by injection molding, a valve, a pump, a casing of a valve, a flow meter, various sensors, and the like are used.
  • a joint manufactured by injection molding a valve, a pump, a casing of a valve, a flow meter, various sensors, and the like are used.
  • the molding shrinkage rate is low, so long time passes after molding
  • the dimensional change due to post-shrinkage can be suppressed, and the deterioration of the workability can be prevented.
  • the propylene-based-resin piping member of the present invention has the following excellent properties.
  • the piping member is any of a pipe, a joint, a valve, a pump, a casing, a casing, a flow meter, and various sensors, the piping member (especially a pipe) by thermal expansion when a high temperature fluid flows.
  • stress distortion applied to the piping member is reduced to maintain the long life of the pipe, and the dimensional stability at the time of molding is excellent, so that the dispersion of the dimensions of molded parts is suppressed.
  • the manufacture of the product becomes easy, and the dimensional change due to the post-shrinkage of the piping member is suppressed with the passage of a long time after molding, and the deterioration of the workability due to the dimensional change can be prevented when connecting the piping.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

無機充填材を必須成分とするプロピレン系樹脂製配管部材であって、線膨張係数が10×10-5/℃以下であることを特徴とするプロピレン系樹脂製配管部材、および更に前記配管部材の200℃中における酸化誘導時間が40分以上であること、前記配管部材の、線膨張係数(α)と90℃中における引張弾性率(E)が式E×α<6/67を満たすこと、および前記配管部材の90℃中における引張弾性率が370~1,310MPaであることを特徴とするプロピレン系樹脂製配管部材。

Description

プロピレン系樹脂製配管部材 技術分野
本発明は、 6 0 °C以上の高温流体が流れる配管ラインに好適に使 用される押出成形法で製造されるパイプや、 射出成形法で製造され る継手、 フランジ、 バルブ、明及びァクチユエ一夕のケーシング等の プロピレン系樹脂製配管部材に関するものであり、 さ らに詳しくは 、 特に高温流体が流れる配管ライ ンで書の使用において、 熱膨張に伴 う配管部材の長手方向への伸びを抑え、 配管部材の長期寿命、 耐熱 性及び成形性の優れたプロピレン系樹脂製配管部材に関するもので ある。 背景技術
従来プロピレン系樹脂製配管部材は、 各種工場、 医療分野、 建築 分野などにおいて、 剛性、 耐熱性、 または耐薬品性などの優れた特 性から幅広く使用されている。 特にプロピレン系樹脂製パイプは、 高温域での酸 · アルカリに対する耐性を有し、 価格も安価であるこ とから、 工業分野での高温薬液配管や給湯用配管に適しており、 今 後その普及が大きく期待されている。
しかしながら、 プロピレン系樹脂製パイプを高温流体が流れる配 管ライ ンに用いた場合、 通常のプロピレン系樹脂の線膨張係数は 1 2 X 1 0—5〜 1 5 X 1 0 - 5 / °C程度であるため、 熱膨張に伴うパイ プ長手方向への伸びが大きいという問題があった。 このため、 パイ プを固定施工して 6 0で以上の高温流体を流す際に、 熱膨張に伴う パイプ長手方向への伸びにより蛇行現象が生じ、 パイプに大きな歪 み応力が生じてパイプの長期寿命が損なわれるだけでなく、 継手や バルブとの接続部分に歪みが生じることで流体の漏れが発生する恐 れがあった。 この対策として、 パイプの一定間隔にコの字型の流路 (蛸ベン ド) を設けてパイプの膨張を緩和する方法や伸縮管を使用 する方法があるが、 そのために設置スペースを大きく とる必要があ り、 配管にコス トがかかるという問題があった。 このため、 プロピ レン系樹脂製パイプ自体の熱膨張の低減が望まれている。
プロピレン系樹脂成形材料の熱膨張を抑制させる方法として、 従 来からプロピレン系樹脂に無機充填材を配合する手法が用いられて おり、 ポリプロピレンを 1 0 0部とエチレンプロピレンゴムを 2 0 〜 5 0部とからなる樹脂に、 タルクを 0 〜 2 0部とウイスカ一を 2 . 5 〜 2 0部とからなる無機質の充填剤が配合されたゴム変性ポリ プロピレン樹脂材があった (特開昭 6 3 - 5 7 6 5 3号公報) 。 こ の樹脂材は、 主にバンパ一などの自動車部品用途で用いられている ものであり、 耐衝撃性に優れ線膨張係数が低いという効果が得られ るものであった。
また、 従来ではプロピレン系樹脂成形材料の剛性と耐熱性向上を 目的に、 表面処理したタルクを用いて無機充填材を高充填したもの として、 ポリプロピレン系樹脂 1 0 0重量部と表面処理タルク 3 0 〜 4 0 0重量部とからなるポリ プロピレン系樹脂組成物において、 表面処理タルクが、 タルク 1 0 0重量部に対してシリ コーンオイル 0 . :! 〜 5重量部と高級脂肪酸金属塩 0 . 1 〜 5重量部とにより表面 処理されているポリ プロピレン系樹脂組成物があった (特開 2 0 0 0 — 2 5 6 5 1 9号公報) 。 この樹脂組成物は、 自動車用部品をは じめとする各種工業製品に好適に使用することができるものであり , 目ャ二の発生が少なく分散性に優れるという効果が得られるもの であった。 従来のプロピレン系樹脂製配管部材としては、 2 3 0で、 2 . 1 6 k g荷重下で測定されるメルトフ口一レー トが 0 . 0 0 5 〜 5 g / 1 0分の範囲にあり、 示差走査型熱量計により測定される吸熱曲 線の最大ピーク位置の温度が 1 2 8 〜 1 7 2 °Cの範囲にあり、 密度 が 8 9 8 〜 9 1 7 k g / m 3 の範囲にあり、 炭素原子数が 4 ~ 2 0 のひ —ォレフィ ンから導かれる構成単位の含有割合が 0 〜 6モル% の範囲にあり、 2 0 0 で成形したプレスシー ト試験片の曲げ弾性 率が 8 0 0 〜 2, 6 0 O M P aの範囲にあるポリプロピレンからな るポリ プロピレン製パイプがあった (特開平 1 0 — 1 9 5 2 6 4 ) 。 このパイプは、 無機充填材ゃ他の線膨張係数を抑えるような添加 剤は含まれておらず、 特定のポリ プロピレンから形成されているの で機械的強度に優れているという効果が得られるものであった。 発明の開示
しかしながら、 無機充填材が添加されたプロピレン系樹脂成形材 料において、 配管部材に必要な特性が考慮された技術はこれまでに 確認されていない。 従来技術をそのまま配管部材用途に用いたとし ても、 無機充填材を添加しただけでは配管部材と して特性を満たす ことができず、 そのまま配管部材用に適用できないのが実情である 。 例えば、 パイプ成形において ドローダウンが大きく成形できなか つたり、 仮にパイプ成形できたと しても耐熱性が不十分なためにパ ィプの寿命が短かかったり、 配管部材として十分な引張弾性率が得 られずに破損し易いなどの問題が発生する恐れがあつた。
また、 プロピレン系樹脂製配管部材は、 特に高温流体が流れる配 管に用いる場合において長期使用のために耐酸化性を有する必要が あり、 通常は成形に使用するプロピレン系樹脂に数種の酸化防止剤 を配合することで耐酸化性を向上できるが、 従来のプロピレン系樹 脂成形材料では配管部材用途と しての耐酸化性が考慮されていない ため、 例えば、 配管部材内部を流れる流体によっては酸化防止剤が 溶出されて配管部材内部の耐酸化性が損なわれるなどの問題が発生 する恐れがあった。
また、 従来のプロピレン系樹脂製配管部材において、 無機充填材 や他の線膨張係数を抑えるような添加剤は含まれておらず、 組成か ら線膨張係数は少なく見積もっても 1 2 X 1 (T 5 / °C程度であるこ とが推測されるため、 パイプを固定施工して高温流体を流す際に、 熱膨張に伴うパイプ長手方向への伸びにより蛇行現象が生じ, パイ プに大きな歪み応力が生じてパイプの長期寿命が損なわれる恐れが めった。
本発明は、 以上のような従来のプロピレン系樹脂製配管部材が有 する欠点を克服し、 特に高温流体が流れる配管ラインでの使用にお いて熱膨張に伴う配管部材の長手方向への伸びを抑え、 配管部材の 長期寿命や耐熱性や成形性の優れた特性を発揮するプロピレン系樹 脂製配管部材を提供することを目的としてなされたものである。 本発明者らは上記の好ましい性質を有するプロピレン系樹脂製配 管部材を開発すべく鋭意研究を重ねた結果、 配管部材中に存在する 無機充填材により配管部材の線膨張係数が所定範囲にあって、 この 所定範囲が線膨張係数と引張弾性率との関係から導き出される配管 部材特性に適合しうることを見出し、 この知見に基づいて本発明を 完成するに至った。
すなわち、 本発明は無機充填材を必須成分とするプロピレン系樹 脂製配管部材であって、 該プロピレン系樹脂製配管部材 1 0 0質量 部に対して該無機充填材が 5〜 3 0質量部配合してなり、 線膨張係 数が 1 0 X 1 0—5 / °C以下であることを第一の特徴とし、 配管部材 の 2 0 0 °Cにおける酸化誘導時間が 4 0分以上であることを第二の 特徴とし、 配管部材の線膨張係数 ( α ) と 9 0 °C中における引張弾 性率 ( E ) が E X αぐ 6 6 7 の関係式を満たすことを第三の特徴 とし、 配管部材の 9 0 °Cにおける引張弾性率が 3 7 0 〜 1, 3 1 0 P aの範囲にあることを第四の特徴とし、 前記プロピレン系樹脂 製配管部材 1 0 0質量部に対して、 スチレン · ブタジエン系ゴムを 1 〜 2 0質量部配合してなることを第五の特徴とし、 前記スチレン * ブタジエン系ゴムのポリスチレン換算の重量平均分子量が 2 0万 以上であることを第六の特徴とし、 前記配管部材が、 パイプ、 継手 、 バルブ、 ポンプ、 ァクチユエ一夕一のケーシング、 流量計、 及び 各種センサのいずれかであることを第七の特徴とする。 図面の簡単な説明
図 1 は、 式 ( 1 ) の熱応力を許容できる領域を示すグラフである 図 2 は、 熱応力試験の説明図である。 発明の詳細な説明
本発明におけるプロピレン系樹脂成形材料は、 プロピレン単独重 合体、 プロピレンとそれ以外のひ一才レフィ ンとの共重合体など、 従来慣用されているものが使用されており、 これら重合体の混合物 でも問題なく使用できる。 また、 プロピレン系樹脂成形材料の分子 量に起因するメルトフ口一レー ト (以下 M F Rと称す) は特に限定 されないが、 0 . 1 〜 2 . 0 gノ 1 0分の範囲が好ましく、 0 . 2 〜 1 . 0 g / 1 0分がより好ましい。 プロピレン系樹脂の良好な生産 性を得るために M F Rは 0 . 1 g / 1 0分以上が良く、 パイプ成形 における ドローダウンを抑えて良好なス ト レスクラック性を得るた めに M F Rは 2 . 0 g / 1 0分以下が良い。 なお M F Rは、 J I S K 7 2 1 0に準拠し、 試験温度 2 3 0 °C、 試験荷重 2. 1 6 k g の条件で測定したものである。
また本発明における無機充填材は、 球状フイ ラ一、 板状フイ ラ一 、 繊維状フイ ラ一など、 従来慣用されているものが使用され、 この 中から適宜選択して用いることができる。 球状フィ ラーとしては、 炭酸カルシウム、 マイ力、 硫酸バリ ウム、 硫酸カルシウム、 ク レー 、 パーライ ト、 シラスバルーン、 けいそう土、 焼成アルミナ、 ケィ 酸カルシウムなどが挙げられる。 板状フイ ラ一としては、 タルク、 マイ力などが挙げられる。 繊維状フイ ラ一としては、 ガラス繊維、 炭素繊維、 ホウ素繊維、 炭化ケィ素繊維、 チタン酸カ リウム繊維、 あるいはポリアミ ド繊維、 ポリエステル繊維、 ポリアリ レー ト繊維 、 ポリイミ ド繊維などが挙げられる。 このほかに無定形フィ ラーと してシリカなどが挙げられる。
上記無機充填材は、 単独で用いても良く、 2種以上を組み合わせ て用いても良い。 このうちタルク、 マイ力、 シリカ、 炭酸カルシゥ ム、 ガラス繊維を主体としたものが、 熱膨張特性、 耐熱性、 コス ト などの面で好ましく、 特にタルクは引張弾性率を上げすぎずに線膨 張係数を低減させるので好適である。 また、 プロピレン系樹脂との 接着性を良くする目的で、 シランカップリ ング剤などで有機化処理 したものを用いても良い。
また、 無機充填材の平均粒子径 · 平均繊維径は特に限定されるも のではないが、 無機充填材がタルク、 マイ力、 シリカ、 炭酸カルシ ゥムの場合は、 平均粒子径は 0. 5〜 1 0 xmが好ましく、 1. 0〜 6. 0 がより好ましい。 これは押出成形や射出成形などの成形 性を低下させなくする点から平均粒子径は 0. 5 w m以上であるこ とが良く、 熱膨張特性ゃ耐衝撃性を向上させる点から平均粒子径は 1 0 ^ m以下であることが良い。 また無機充填材がガラス繊維の場 合は、 平均繊維径は 3 . 0〜 1 2 mが好ましい。 これはガラス繊 維の入手のし易さの点から 3 . 0 ; 以上であることが良く、 強度 、 耐熱性を向上させる点から 1 2 m以下であることが良い。
本発明におけるプロピレン系樹脂に対する無機充填材の配合割合 は、 無機充填材の種類や組み合わせや平均粒子径 · 平均繊維径で変 わるものの、 プロピレン系樹脂製配管部材 1 0 0質量部に対して、 無機充填材が 5〜 3 0質量部配合してなる必要がある。 これは線膨 張係数を低減させるために 5質量部以上であることが良く、 耐薬品 性と耐衝撃性を低下させなく し、 熱応力及び引張弾性率を低減させ て配管部材と しての寿命を長くするために 3 0質量部以下であるこ とが良い。
本発明のプロピレン系樹脂製配管部材の線膨張係数は、 1 0 X 1 0— 5 Z °C以下である必要があり、 より好ましくは 2 X I 0一5〜 8 X 1 0—5 °Cである必要がある。 これは配管部材 (特にパイプ) を固 定施工して高温流体を流す際に、 熱膨張に伴う配管部材の長手方向 への伸びにより蛇行現象が生じることにより, 配管部材に大きな歪 み応力が生じて配管部材の長期寿命が損なわれたり、 パイプと継手 やバルブ等との接続部分に歪みが生じて流体の漏れが発生すること を防止するためである。
また、 本発明のプロピレン系樹脂製配管部材の 2 0 0 °C中での酸 化誘導時間は、 4 0分以上であることが好ましく、 8 0分以上であ ることがより好ましい。 これは 2 0 0 °C中での酸化誘導時間が 4 0 分以上であれば高温流体を流れる配管ライ ンでの用途でも十分な耐 酸化性を有し、 配管部材を 9 0 °C程度の高温で酸化劣化することな く長期使用を可能にするためである。 また、 2 0 0 °C中での酸化誘 導時間が 4 0分以上であれば、 使用済みのプロピレン系樹脂製配管 部材をリサイクルしょうとする場合において、 それまでに配管部材 が受けた熱履歴や成形加工熱による酸化防止剤の消費を抑えること ができるため、 再ペレツ ト化する際に新たに酸化防止剤を添加する 必要がなくなるか最小限の添加量で済ませることができるので、 リ サイクルの手間を省く ことができる。
また本発明のプロピレン系樹脂製配管部材において、 無機充填材 をプロピレン系樹脂に配合すると、 線膨張係数は下がり、 引張弾性 率は増加する傾向を示すが、 無機充填材の配合量は、 線膨張係数を ひ 、 9 0 °C中における引張弾性率を Eとすると、 式 ( 1 ) を満足す るよう調整することが好ましい。
Ε Χ α < 6 / 6 7 · · · ( 1 )
式 ( 1 ) は、 常温にて両端を固定したプロピレン系樹脂製配管部材 に 9 0 °Cの高温流体を流した際の弾性限界による歪みが、 9 0 °C中 における熱膨張による歪みを許容できる範囲を規定したものである 。 詳しく説明すると、 9 0 °C中における弾性限界による歪み ( ε 1 ) は、 9 0 °C中における引張強度 ( δ ) と 9 0 °C中における引張弾 性率 ( E ) から、
ε 1 = δ / Ε · · · ( 2 )
で表される。 次に、 9 0 中における熱膨張による歪み ( ε 2) は 、 線膨張係数 ( α ) と常温との温度差 ( Δ t ) から、
ε 2 = α X Δ t · · · ( 3 )
で表される。 弾性限界による歪み ( ε 1 ) と熱膨張による歪み ( ε 2 ) は、 弾性限界による歪み ( ε 1 ) が熱膨張による歪み ( ε 2 ) を許容できる範囲であれば、 プロピレン系樹脂製配管部材として高 温流体が流れる際に配管部材にかかる応力歪みによる弊害を防止で きるので
ε 1 > ε 2 · · · ( 4 )
となり、 式 ( 4 ) に式 ( 2 ) 、 式 ( 3 ) を代入すると、 E X α < δ / Δ t · · · ( 5 )
となる。 こ こでプロピレン系樹脂製配管部材の 9 0 中における引 張強度 ( <5 ) は 1 0〜 1 5 M P a程度であるカ^ 実質的には 6 M P a以上 (安全率約 2 を考慮) の応力が瞬時でも加わると配管部材が 破壊されることから、 9 0 °C中における引張強度の限界値は 6 M P aと考えられる。 また常温との温度差 ( A t ) が 6 7 °C ( 9 0 - 2 3 °C) であることから、 これらを式 ( 5 ) に当てはめれば、 式 ( 1 ) が導き出される (式 ( 1 ) の熱応力を許容できる領域を示すダラ フは図 1参照) 。
式 ( 1 ) の関係式の中で 9 0 °C中における引張弾性率の範囲は、 3 7 0〜 1, 3 1 0 M P aであることが好ましく、 5 2 0〜 1, 0 5 0 M P aであることがより好ましい。 高温時に配管部材 (特にパイ プ) が自重により大きく たわんだり配管部材の接続部に応力のかか ることのない剛性を有するためには 9 0 °C中の引張弾性率が 3 7 0 M P a以上であることが必要で、 配管部材の熱膨張による歪みを許 容できる弾性限界による歪みを有するためには 1 , 3 1 O M P a以 下であることが良い。
また、 本発明の常温中における引張弾性率の範囲は、 上記の理由 力、ら 1 , 0 0 5〜 3 , 5 2 O M P aであることが好ましい。
また、 本発明のプロピレン系樹脂製配管部材にはスチレン · ブ夕 ジェン系ゴムが配合されていることが望ましい。 これは他のゴムを 配合した場合と比較して、 より少ない配合量で熱応力を低減させる ため、 例えばパイプゃ継手などを配管接続した管路に高温流体を流 しても高温によるパイプ、 継手の材質の劣化が抑えられて破損する ことなく長期間使用することができ、 より少ない配合量で引張弾性 率を低減させるため、 例えばパイプの場合ではパイプを設置したと きのパイプの自重によるたわみや高温流体を流したときの熱膨張な どによりパイプの特定箇所に応力が集中しても引張弾性率が低いこ とで応力は一点に集中することなく分散されるのでパイプが破損す ることが防止され、 バルブの場合ではバルブ閉止時の内部圧力によ る応力集中や接続されたパイプのたわみなどの応力がバルブに集中 したと しても同様に応力が分散されて破損することが防止されるの で好適である。 特にスチレン · ブタジエン系ゴムのうち、 水素添加 されたスチレン · ブタジエン系ゴムであれば、 耐薬品性に優れるた めに例えばパイプや継手などを配管接続した管路に流す流体と して 硫酸、 苛性ソーダ等の酸性、 アルカ リ性の薬品を流した場合でも薬 品によって腐食することなく使用することができ、 耐候性に優れる ため例えばパイプや継手などを屋外に配管設置しても紫外線劣化が 抑えられて問題なく使用できるので好適である。
また、 スチレン · ブタジエン系ゴムは 1 〜 2 0質量部含有するこ とが望ましい。 配管部材として好適に使用できる程度に引張弾性率 を低減させることで、 例えば配管接続した管路のパイプやバルブの 特定箇所に応力が集中しても引張弾性率が低いことで応力は一点に 集中することなく分散されるのでパイプやバルブが破損することを 防止させるために 1 質量部以上であることが良く 、 良好なク リープ 特性を長期間維持することで、 例えばパイプゃ継手などを配管接続 した管路に内圧が加わった状態で高温流体を流しても配管部材が劣 化して破損することなく長期間使用できるようにするために 2 0質 量部以下であることが良い。
また、 スチレン · ブタジエン系ゴムのポ Uスチレン換算の重量平 均分子量が 2 0万以上であることが望まし < 、 2 0万〜 7 0万の範 囲であることがより望ましい。 これは、 ゴムの配合で生じる配管部 材のク リープ特性の低下を格段に抑える とで、 例えばパイプゃ継 手などを配管接続した管路に内圧が加わ た状態で高温流体を流し ても配管部材が劣化して破損することなく長期間使用できるように するために 2 0万以上であることが良く 、 安定した重量平均分子量 を維持し良好な成形外観を得ることで、 成形されたパイプなどの内 面を平滑にして流体が流れるときの抵抗を低減させ、 外面に傷がつ きにく くするために 7 0万以下であることが良い。
本発明で使用するプロ ピレン系樹脂成形材料には、 必要に応じて 、 酸化防止剤や紫外線吸収剤、 造核剤、 顔料、 可塑剤等の公知の添 加剤を配合してもかまわない。
本発明のプロピレン系樹脂製配管部材およびその成形方法は特に 限定されないが、 例えば公知の押出成形法で製造されるパイプ、 射 出成形法で製造される継手、 バルブ、 ポンプ、 ァクチユエ一夕のケ 一シング、 流量計、 及び各種センサが好適なものと して挙げられる 。 これは、 本発明の配管部材であるパイプ、 継手、 バルブ、 ポンプ 、 ァクチユエ一夕のケーシング、 流量計、 及び各種センサを配管接 続して用いた場合、 高温流体が流れる際の熱膨張による配管部材 ( 特にパイプ) の伸びで蛇行現象が起こることを抑制し、 配管部材に かかる応力歪みを少なく してパイプの長期寿命を維持すると共に、 成形収縮率が低いため成形時の寸法の安定性に優れるので、 特にバ ルブ、 ポンプ、 ァクチユエ一夕のケーシング、 流量計、 及び各種セ ンサなどの成形部品の寸法のばらつきが抑えられて製品の製造が容 易となる。 また、 成形収縮率が低いと成形後の長期時間の経過で配 管部材の後収縮による寸法変化が抑えられるので配管接続する際に 寸法の変化による施工性の悪化を防ぐことができるので好適である
発明を実施するための最良の形態
以下に実施例を挙げて本発明をさ らに詳細に説明するが、 本発明 はこれら実施例のみに限定されるものではない。
本発明のプロピレン系樹脂製配管部材について、 パイプを成形し て、 その性能を以下に示す試験方法で評価した。
( 1 ) 線膨張係数測定試験
J I S K 7 1 9 7 に準拠して、 プロピレン系樹脂製パイプから 加工にて線膨張測定用試験片を切り出し、 2 3〜 1 0 0 °Cの範囲で 線膨張係数測定試験を行い測定した。
( 2 ) 引張試験
J I S K7 1 1 3 に準拠して、 プロピレン系樹脂製パイプから 引張試験片を切り出し、 2 3 ± 1 °C及び 9 0 土 1 °Cの雰囲気中で引 張試験を行い、 引張強度及び引張弾性率を測定した。
( 3 ) 成形収縮率測定試験
パイプ成形時のサイジングダィ寸法を基準と して、 プロピレン系 樹脂製パイプを 2 3 ± 1 °C雰囲気中で 4 8 h r放置した後の外径寸法 の収縮率を測定した。
( 4 ) 熱安定性試験
J I S K 6 7 6 1 (付属書 4 ) に準拠して、 プロピレン系樹脂 製パイプの内面から 1 5 ± 0. 5 m gの試験片を切り出し、 示差走 查熱量計を用いて、 窒素雰囲気下で 2 0 0 ± 0. 5 °Cに加熱し、 安 定後、 酸素雰囲気下に置き換え、 酸化誘導時間を測定した。 なお、 酸化誘導時間は長いほうが熱安定性に優れることになる。
( 5 ) 破壊水圧試験
配水用ポリエチレン協会規格の水道配水用ポリエチレン管 PWA0 0 1 に準拠して、 プロピレン系樹脂製パイプ 1 0 0 0 mmに対し、 2 3 ± 1 °C及び 9 0 ± 1 °Cの雰囲気中でプランジャーポンプを用いて 水圧をかけた。 水圧は 0. 5 M P a刻みで上昇させ、 破壊時の水圧 を測定した。 ( 6 ) 熱応力試験
図 2 に示すように、 まず 2 3 ± 1でにて 3 0 0 mmのプロピレン系 樹脂製パイプ 1 の両端を固定した。 パイプ 1 の一端を冶具 2で固定 し、 他端をロー ドセル 3 に結合させ、 上記パイプを 9 0 °Cの恒温槽 4 に 1 0分放置し、 パイプ 1 の熱膨張で発生する応力をロー ドセル 3 にて測定した。 なお、 熱応力は小さいほど長期寿命に優れること になる。
( 7 ) ク リ一プ試験
D I N 8 0 8 7 に準拠して、 プロピレン系樹脂製パイプ 1 0 0 0 niniに対し、 9 5 ± 1 °Cの雰囲気中で内圧 0 . 7 5 M P a をかけ、 破 壊に至るまでの時間を測定した。
( 8 ) 重量平均分子量測定
ゲルパ一ミェ一シヨ ンクロマ トグラフィ ー (GP (:、 カラム ; 東ソ 一 (株) 製、 TSK ge l GMHXL) を用いてスチレン · ブタジエン系ゴ ムをポリスチレン換算で重量平均分子量を求めた。
実施例 1
エチレン含有量 9質量部のプロピレン · エチレン共重合体 8 5質 量部に、 平均粒径 5 . 0 mのタルクを 1 5質量部配合し、 単軸押 出機にて混練、 ペレッ ト化し、 M F Rが 0 . 5 g 1 0分のプロピ レン系樹脂成形材料と して製造した。 得られた成形材料を、 単軸押 出機を用い、 シリ ンダー温度 2 2 0 °Cにて厚さ 3 . 0■、 内径 2 6 m Diのプロピレン系樹脂製パイプを作製し、 線膨張係数測定試験、 引 張試験、 成形収縮率測定試験、 熱安定性試験、 破壊水圧試験、 熱応 力試験を実施した。 結果を表 1 に示す。
実施例 2
エチレン含有量 9質量部のプロピレン · エチレン共重合体 7 5質 量部に、 平均粒径 4 . 8 mのマイ力を 2 5質量部配合して、 実施 例 1 と同様にパイプを作製し、 評価試験を実施した。 結果を表 1 に 示す。
実施例 3
結晶性プロピレン系樹脂 7 0質量部に、 平均粒径 5 . 0 a mのタ ルクを 2 0質量部と、 M F Rが 0 . 7 g / 1 0分のエチレンプロピ レンゴムを 1 0質量部配合して、 実施例 1 と同様にパイプを作製し 、 評価試験を実施した。 結果を表 1 に示す。 同様に熱応力試験、 ク リーブ試験を実施した。 結果を表 2 に示す。
実施例 4
結晶性プロピレン系樹脂 7 5質量部に、 平均粒径 2 . 5 mの炭 酸カルシウムを 2 5質量部配合して、 実施例 1 と同様にパイプを作 製し、 評価試験を実施した。 結果を表 1 に示す。
実施例 5
結晶性プロピレン系樹脂 8 0質量部に、 平均繊維径 1 0 mのガ ラス繊維を 2 0質量部配合して、 実施例 1 と同様にパイプを作製し 、 評価試験を実施した。 結果を表 1 に示す。
表 1
Figure imgf000016_0001
実施例 6
結晶性プロピレン系樹脂 7 0質量部に、 平均粒径 5. 0 の夕 ルクを 2 0質量部と、 重量平均分子量 1 0万 (M F Rは 3. 0 g Z 1 0分) のスチレン · ブタジエンゴムを 1 0質量部配合して、 実施 例 1 と同様にパイプを作製し、 熱応力試験、 ク リープ試験を実施し た。 結果を表 2に示す。
実施例 7
結晶性プロピレン系樹脂 7 5質量部に、 平均粒径 5. 0 mの夕 ルクを 2 0質量部と、 重量平均分子量 1 0万 (M F Rは 3. 0 § 1 0分) のスチレン · ブタジエンゴムを 5質量部配合して、 実施例 1 と同様にパイプを作製し、 評価試験を実施した。 結果を表 2 に示 す。
実施例 8
結晶性プロピレン系樹脂 7 5質量部に、 平均粒径 5. 0 の夕 ルクを 2 0質量部と、 重量平均分子量 2 0万 (M F Rは O . l g Z 1 0分未満) のスチレン · ブタジエンゴムを 5質量部配合して、 実 施例 1 と同様にパイプを作製し、 評価試験を実施した。 結果を表 2 に示す。
実施例 9
結晶性プロピレン系樹脂 7 5質量部に、 平均粒径 5. 0 mの夕 ルクを 2 0質量部と、 重量平均分子量 2 5万 (M F Rは O . l g Z 1 0分未満) のスチレン · ブタジエンゴムを 5質量部配合して、 実 施例 1 と同様にパイプを作製し、 評価試験を実施した。 結果を表 2 に示す。
実施例 1 0
結晶性プロピレン系樹脂 5 5質量部に、 平均粒径 5. 0 mの夕 ルクを 2 0質量部と、 重量平均分子量 2 5万 (M F Rは O . l g Z 1 0分未満) のスチレン · ブタジエンゴムを 2 5質量部配合して、 実施例 1 と同様にパイプを作製し、 評価試験を実施した。 結果を表 2 に示す。
実施例 1 1
結晶性プロピレン系樹脂 5 5質量部に、 平均粒径 5 . 0 の夕 ルクを 2 0質量部と、 M F Rが 0 . Ί g / 1 0分のエチレンプロピ レンゴムを 2 5質量部配合して、 実施例 1 と同様にパイプを作製し 、 評価試験を実施した。 結果を表 2 に示す。
表 2
Figure imgf000019_0001
比較例 1
結晶性プロピレン系樹脂 1 0 0質量部のプロピレン樹脂成形材料 を、 実施例 1 と同様にパイプを作製し、 線膨張係数測定試験、 引張 試験、 成形収縮率測定試験、 熱安定性試験、 破壊水圧試験、 熱応力 試験、 ク リープ試験を実施した。 結果を表 1 と表 2 に示す。
比較例 2
結晶性プロピレン系樹脂 9 7質量部に、 平均粒径 5 . 0 / mの夕 ルクを 3質量部配合して、 実施例 1 と同様にパイプを作製し、 線膨 張係数測定試験、 引張試験、 成形収縮率測定試験、 熱安定性試験、 破壊水圧試験、 熱応力試験を実施した。 結果を表 1 に示す。
比較例 3
結晶性プロピレン系樹脂 6 5質量部に、 平均粒径 5 . 0 mの夕 ルクを 3 5質量部配合して、 実施例 1 と同様にパイプを作製し、 評 価試験を実施した。 結果を表 1 に示す。
表 1 からわかるように、 実施例 1 〜 5 は無機充填材が 5 〜 3 0質 量部配合されていることで、 パイプの線膨張係数が 1 0 X 1 0— 5 °C以下になっている。 一方、 比較例 1 は無機充填材が配合されてお らず、 比較例 2 は無機充填材が 5 〜 3 0質量部の範囲に満たないた め、 実施例と比較して線膨張係数は 1 . 4〜 2 . 2倍程大きくなつて いる。 また比較例 3 は無機充填材が 5 〜 3 0質量部の範囲より い多 いため、 パイプの線膨張係数は 1 0 X 1 0— 5 Z °C以下だが引張弾性 率が高く熱応力も高くなる。 これにより線膨張係数が 1 0 X 1 0 一 5 /で以下のパイプであれば高温流体が流れる際に熱膨張によるパイ プの伸びで蛇行現象が起こることが抑制でき、 パイブにかかる応力 歪みが少なくなるので歪みによる流体の漏れを防止でき、 熱応力を 低減させることでパイプに高温流体を流しても高温によるパイプの 材質の劣化が抑えられて破損することなく長期間使用することがで さる。
また、 無機充填材が配合されていることで、 パイプの酸化誘導時 間が大幅に長くなつている。 実施例と比較例について酸化誘導時間 からパイプの寿命を比較すると、 無機充填材を配合しない比較例 1 に対して実施例の寿命は約 2 〜 4倍となるため長期寿命に優れてい る。
さ らに、 無機充填材を必須成分とすることによ り、 実施例のパイ プの成形収縮率は比較例 1 の 2 〜 7割程度に低減している。 成形収 縮率が小さいことにより、 特に継手やバルブなどの射出成形におい て金型設計が容易となり、 成形品の加工も容易となる。 また金属部 品をイ ンサー ト成形する場合、 成形収縮率が小さければ金属部品に 対する応力歪みを抑えることができる。
次に、 式 ( 1 ) の範囲内である実施例 1 〜 5 と、 式 ( 1 ) の範囲 から外れる比較例 3 とを比較すると、 線膨張係数と酸化誘導時間は 優れた性能を有しているが、 熱応力が他より劣っており、 式 ( 1 ) を満たしているほうが寿命を長期化できるという点でより望ましい 。 また、 比較例 3 は 9 0 °C中における引張弾性率が 3 7 0 〜 1 , 3 1 0 M P aの範囲より大きいが、 引張弾性率が大きくなるとパイプ の耐衝撃特性が低下する傾向になり、 パイプの用途が狭まるため、 引張弾性率が 3 7 0 〜 1 , 3 1 0 M P aの範囲であるほうがパィプ を広い用途で使用でき、 さ らにパイプを固定施工した後で高温流体 を流す際に発生する応力歪みを低減することができる点で望ましい また、 実施例 1 〜 5 より無機充填材を必須成分にするのであれば いずれの無機充填材でも効果が得られる。 これらの無機充填材のう ち、 パイプと して引張弾性率を上げすぎずに線膨張係数を低減させ るほうが良いため、 引張弾性率と線膨張係数がバランスの良い値と なるタルクを無機充填材と して用いることがより好適である。
表 2からわかるように、 比較例 1 に対して実施例 3 、 6 、 1 0 、 1 1 より、 特にスチレン · ブタジエンゴムを配合すると、 他のゴム を配合した場合と比較してもよ り効果的に熱応力を低減することが できる。 また実施例 7 より、 スチレン ' ブタジエンゴムの配合量を 実施例 6 の半分にしても熱応力は実施例 3 と同レベルであり、 ク リ ープ特性が向上している。 また、 実施例 7 、 8 、 9 より、 スチレン • ブタジエンゴムの重量平均分子量が高くなるとク リープ特性が向 上している。 特にク リープ特性に優れている実施例 8 、 9 は高圧配 管としての使用に好適である。 プロピレン樹脂製パイプは、 ゴムを 配合すると熱応力は低減するが、 ク リープ特性は適量の範囲内であ ればゴムを配合しない場合より向上するか同等程度であるがゴムの 配合量が多くなるとク リープ特性は低下する。 このため、 配管部材 と して使用するにはスチレン · ブタジエンゴムの配合量は 1 〜 2 0 質量部とし、 ポリスチレン換算の S量平均分子量は 2 0万以上であ ることが好適である。
なお、 本実施例では押出成形で作製したプロピレン系樹脂製パイ プを用いているが、 射出成形で作製した継手、 バルブ、 ポンプ、 ァ クチユエ一夕一のケーシング、 流量計、 及び各種センサなどの他の 配管部材においても同様に、 高温流体を流しても高温による材質の 劣化が抑えられて破損することなく長期間使用することができると 共に、 成形収縮率が低いので成形後に長期時間が経過しても後収縮 による寸法の変化は抑えられ施工性の悪化を防ぐことができる。 ま た継手、 バルブ、 ポンプにおいてはク リープ特性に優れるため管路 に内圧が加わつた状態で高温流体を流しても、 配管部材の材質が劣 化して破損することなく長期間使用でき、 バルブ、 ポンプ、 ァクチ ユエ一夕一のケーシング、 流量計、 及び各種センサにおいては成形 収縮率が低いことで寸法のばらつきが抑えられて部品の製造が容易 となるなどの効果が得られる。 発明の効果
本発明のプロピレン系樹脂製配管部材は、 以下のような優れた特 性を有する。
( 1 ) 無機充填材を必須成分と し、 線膨張係数 1 0 X 1 0— 5 Z :以 下であるプロピレン系樹脂製配管部材であるため、 高温流体が流れ る際の熱膨張による配管部材 (特にパイプ) の伸びで蛇行現象が起 こることを抑制し、 配管に蛸ベン ドや伸縮管などを設ける必要がな い。
( 2 ) 無機充填材を必須成分と し、 線膨張係数 1 0 X 1 0— 5 Z °C以 下であるプロピレン系樹脂製配管部材であるため、 高温流体が流れ る際に配管部材にかかる応力歪みを少なく し、 歪みによる流体の漏 れを防止するとともにパイプの長期寿命を維持することができる。
( 3 ) 2 0 0 °C中における酸化誘導時間が 4 0分以上であるため、 高温での耐酸化性に優れ、 高温流体が流れる配管においてもパイプ の長期寿命を維持することができる。
( 4 ) スチレン · ブタジエンゴムを配合すると、 応力歪みを緩和し 、 良好なク リープ特性を維持することができ、 さ らにポリスチレン 換算の重量平均分子量を 2 0万以上にすると、 配管部材のク リープ 特性の低下を格段に抑えるため、 配管部材を配管接続した管路に内 圧が加わった状態で高温流体を流しても、 配管部材の材質が劣化し て破損することなく長期間使用できる。
( 5 ) プロピレン系樹脂成形部材の成形収縮率が小さいため、 特に 継手やバルブなどの射出成形において金型設計や成形品の加工が容 易となり、 また金属部品をイ ンサー ト成形する場合、 金属部品に対 する応力歪みを抑えることができる。
( 6 ) 配管部材が、 パイプ、 継手、 バルブ、 ポンプ、 ァクチユエ一 夕一のケーシング、 流量計、 及び各種センサのいずれかであるため 、 高温流体が流れる際の熱膨張による配管部材 (特にパイプ) の伸 びで蛇行現象が起こることを抑制し、 配管部材にかかる応力歪みを 少なく してパイプの長期寿命を維持すると共に、 成形時の寸法の安 定性に優れるので成形部品の寸法のばらつきが抑えられて製品の製 造が容易となり、 成形後の長期時間の経過で配管部材の後収縮によ る寸法変化が抑えられて配管接続する際に寸法変化による施工性の 悪化を防ぐことができる。

Claims

請 求 の 範 囲
1. 無機充填材を必須成分とするプロピレン系樹脂製配管部材で あって、 該プロピレン系樹脂製配管部材 1 0 0質量部に対して該無 機充填材が 5〜 3 0質量部配合してなり、 線膨張係数が 1 0 X 1 0 _5Z°C以下であることを特徴とするプロピレン系樹脂製配管部材
2. 前記配管部材の 2 0 0 °C中における酸化誘導時間が 4 0分以 上であることを特徴とする請求項 1記載のプロピレン系樹脂製配管 部材。
3. 前記配管部材の、 線膨張係数 ( α ) と 9 0 °C中における引張 弾性率 (E) が式 ( 1 ) を満たすことを特徴とする請求項 1 または 請求項 2記載のプロピレン系樹脂製配管部材。
Ε Χ α < 6 / 6 7 · - - ( 1 )
4. 前記配管部材の 9 0 °C中における引張弾性率が 3 7 0〜 1, 3 1 O M P aであることを特徴とする請求項 3記載のプロピレン系 樹脂製配管部材。
5. 前記プロピレン系樹脂製配管部材 1 0 0質量部に対して、 ス チレン · ブタジエン系ゴムを 1〜 2 0質量部配合してなることを特 徴とする請求項 1乃至請求項 4のいずれかに記載のプロピレン系樹 脂製配管部材。
6. 前記スチレン · ブタジエン系ゴムのポリスチレン換算の重量 平均分子量が 2 0万以上であることを特徴とする請求項 5記載のプ ロピレン系樹脂製配管部材。
7. 前記配管部材が、 パイプ、 継手、 バルブ、 ポンプ、 ァクチュ エー夕一のケーシング、 流量計、 及び各種センサのいずれかである ことを特徴とする請求項 1乃至請求項 6のいずれかに記載のプロピ レン系樹脂製配管部材
PCT/JP2006/301388 2005-01-24 2006-01-24 プロピレン系樹脂製配管部材 WO2006078078A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006554011A JPWO2006078078A1 (ja) 2005-01-24 2006-01-24 プロピレン系樹脂製配管部材

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005015775 2005-01-24
JP2005-015775 2005-01-24

Publications (1)

Publication Number Publication Date
WO2006078078A1 true WO2006078078A1 (ja) 2006-07-27

Family

ID=36692436

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/301388 WO2006078078A1 (ja) 2005-01-24 2006-01-24 プロピレン系樹脂製配管部材

Country Status (3)

Country Link
JP (1) JPWO2006078078A1 (ja)
TW (1) TW200632020A (ja)
WO (1) WO2006078078A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8344050B2 (en) 2007-02-16 2013-01-01 Asahi Organic Chemicals Industry Co., Ltd. Piping member formed by using propylene-based resin composition
JP2019143810A (ja) * 2019-04-24 2019-08-29 積水化学工業株式会社 多層管

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS637932A (ja) * 1986-06-28 1988-01-13 Idemitsu Petrochem Co Ltd ポリプロピレン樹脂成形体の製造方法
JPH05170932A (ja) * 1991-12-26 1993-07-09 Mitsubishi Petrochem Co Ltd ポリプロピレン樹脂製給排水用管状成形体
JPH0859913A (ja) * 1994-08-23 1996-03-05 Mitsubishi Chem Corp ポリプロピレン樹脂製給排水用管状成形体
JPH11182760A (ja) * 1997-12-19 1999-07-06 Sumitomo Rubber Ind Ltd 配管用継手
JP2001304463A (ja) * 2000-04-27 2001-10-31 Showa Denko Kk 繊維強化樹脂製パイプ及び繊維強化多層樹脂製パイプ、ならびにその製造方法
JP2002037894A (ja) * 2000-07-26 2002-02-06 Sekisui Chem Co Ltd 配向管状体
JP2002256124A (ja) * 2000-12-27 2002-09-11 Mitsui Chemicals Inc ポリ−1−ブテン樹脂組成物、それからなる管材および管
JP2002295741A (ja) * 2001-03-29 2002-10-09 Asahi Kasei Corp ポリプロピレン系樹脂パイプ材料

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3396100B2 (ja) * 1994-10-25 2003-04-14 昭和電工株式会社 プロピレン系樹脂組成物およびその成形体
JP4421145B2 (ja) * 2001-07-02 2010-02-24 Sabicイノベーティブプラスチックスジャパン合同会社 配管部材

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS637932A (ja) * 1986-06-28 1988-01-13 Idemitsu Petrochem Co Ltd ポリプロピレン樹脂成形体の製造方法
JPH05170932A (ja) * 1991-12-26 1993-07-09 Mitsubishi Petrochem Co Ltd ポリプロピレン樹脂製給排水用管状成形体
JPH0859913A (ja) * 1994-08-23 1996-03-05 Mitsubishi Chem Corp ポリプロピレン樹脂製給排水用管状成形体
JPH11182760A (ja) * 1997-12-19 1999-07-06 Sumitomo Rubber Ind Ltd 配管用継手
JP2001304463A (ja) * 2000-04-27 2001-10-31 Showa Denko Kk 繊維強化樹脂製パイプ及び繊維強化多層樹脂製パイプ、ならびにその製造方法
JP2002037894A (ja) * 2000-07-26 2002-02-06 Sekisui Chem Co Ltd 配向管状体
JP2002256124A (ja) * 2000-12-27 2002-09-11 Mitsui Chemicals Inc ポリ−1−ブテン樹脂組成物、それからなる管材および管
JP2002295741A (ja) * 2001-03-29 2002-10-09 Asahi Kasei Corp ポリプロピレン系樹脂パイプ材料

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8344050B2 (en) 2007-02-16 2013-01-01 Asahi Organic Chemicals Industry Co., Ltd. Piping member formed by using propylene-based resin composition
JP2019143810A (ja) * 2019-04-24 2019-08-29 積水化学工業株式会社 多層管

Also Published As

Publication number Publication date
JPWO2006078078A1 (ja) 2008-08-07
TW200632020A (en) 2006-09-16

Similar Documents

Publication Publication Date Title
CN107250216B (zh) Paek/ppsu/pes组合物
KR101906957B1 (ko) 니트릴 공중합체 고무 조성물 및 고무 가교물
JP5137465B2 (ja) バルブ
WO2007102827A1 (en) Flexible, hydrocarbon-resistant polyarylenesulfide compounds and articles
JP2011189736A (ja) 加圧流体導管用2層プラスチックチューブ部品
WO2006078078A1 (ja) プロピレン系樹脂製配管部材
JP2007291295A (ja) 耐水性ニトリルゴム組成物
JP6572398B2 (ja) 樹脂組成物、成形品及びその製造方法
WO2008099760A1 (ja) プロピレン系樹脂組成物を用いて成形した配管部材
KR101321456B1 (ko) 배관부재용 프로필렌계 수지조성물 그리고 그것을 이용하여성형한 배관부재 및 다층배관부재
JP2004300270A (ja) 流体配管用部材
JP6860338B2 (ja) 防振ゴム用ゴム組成物
WO2022075124A1 (ja) 無理抜き成形品、ポリアリーレンスルフィド樹脂組成物及び無理抜き成形品の製造方法
JP5167965B2 (ja) 燃料配管用継手、燃料配管用クイックコネクター及び燃料配管部品
JP4961970B2 (ja) ポリアリ−レンスルフィド樹脂組成物
JP2008274301A (ja) エンジン冷却水系部品用ポリアミド樹脂組成物及びそれからなる部品
JP2009209187A (ja) ポリフェニレンスルフィド樹脂組成物およびその製造方法
JP6860337B2 (ja) 防振ゴム用ゴム組成物
JPH08269238A (ja) 防振ゴム組成物及びその組成物を用いたポリフェニレンエーテル樹脂・防振ゴム複合体
CN216867762U (zh) 具有多层复合管壁的增强型复合纤维管
JPS61149683A (ja) 耐熱性高圧ホ−ス
JP6803219B2 (ja) 防振ゴム用ゴム組成物
Khoury Moussa et al. Enhancement of mechanical properties of high modulus polypropylene grade for multilayer sewage pipes applications
WO2021060096A1 (ja) 車載カメラ用ケーシング部材
WO2020175290A1 (ja) チューブ及びポリアミド樹脂組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006554011

Country of ref document: JP

122 Ep: pct application non-entry in european phase

Ref document number: 06701405

Country of ref document: EP

Kind code of ref document: A1

WWW Wipo information: withdrawn in national office

Ref document number: 6701405

Country of ref document: EP