WO2006025351A1 - 高分子電解質材料、高分子電解質部品、膜電極複合体、および高分子電解質型燃料電池 - Google Patents

高分子電解質材料、高分子電解質部品、膜電極複合体、および高分子電解質型燃料電池 Download PDF

Info

Publication number
WO2006025351A1
WO2006025351A1 PCT/JP2005/015703 JP2005015703W WO2006025351A1 WO 2006025351 A1 WO2006025351 A1 WO 2006025351A1 JP 2005015703 W JP2005015703 W JP 2005015703W WO 2006025351 A1 WO2006025351 A1 WO 2006025351A1
Authority
WO
WIPO (PCT)
Prior art keywords
polymer electrolyte
polymer
group
electrolyte material
water
Prior art date
Application number
PCT/JP2005/015703
Other languages
English (en)
French (fr)
Inventor
Daisuke Izuhara
Shinya Adachi
Masataka Nakamura
Original Assignee
Toray Industries, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries, Inc. filed Critical Toray Industries, Inc.
Priority to KR1020077005094A priority Critical patent/KR101232445B1/ko
Priority to US11/661,423 priority patent/US20080075999A1/en
Priority to JP2006532693A priority patent/JP5181474B2/ja
Priority to CA2576887A priority patent/CA2576887C/en
Priority to EP05781471A priority patent/EP1798795B1/en
Priority to AU2005278524A priority patent/AU2005278524A1/en
Publication of WO2006025351A1 publication Critical patent/WO2006025351A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • C08J5/2206Films, membranes or diaphragms based on organic and/or inorganic macromolecular compounds
    • C08J5/2218Synthetic macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • C08L101/12Compositions of unspecified macromolecular compounds characterised by physical features, e.g. anisotropy, viscosity or electrical conductivity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/12Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances organic substances
    • H01B1/122Ionic conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1025Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having only carbon and oxygen, e.g. polyethers, sulfonated polyetheretherketones [S-PEEK], sulfonated polysaccharides, sulfonated celluloses or sulfonated polyesters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1027Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having carbon, oxygen and other atoms, e.g. sulfonated polyethersulfones [S-PES]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1032Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having sulfur, e.g. sulfonated-polyethersulfones [S-PES]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1067Polymeric electrolyte materials characterised by their physical properties, e.g. porosity, ionic conductivity or thickness
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1069Polymeric electrolyte materials characterised by the manufacturing processes
    • H01M8/1072Polymeric electrolyte materials characterised by the manufacturing processes by chemical reactions, e.g. insitu polymerisation or insitu crosslinking
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0082Organic polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1009Fuel cells with solid electrolytes with one of the reactants being liquid, solid or liquid-charged
    • H01M8/1011Direct alcohol fuel cells [DAFC], e.g. direct methanol fuel cells [DMFC]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • Polymer electrolyte material Polymer electrolyte material, polymer electrolyte component, membrane electrode composite, and polymer electrolyte fuel cell
  • the present invention relates to a polymer electrolyte material, a polymer electrolyte component, a membrane electrode assembly, and a polymer electrolyte fuel cell that are excellent in proton conductivity and excellent in fuel cutoff and mechanical strength. Is.
  • Polymer electrolyte materials are used in, for example, medical material applications, filtration applications, concentration applications, ion-exchange resin applications, various structural material applications, coating material applications, electrochemical applications, and the like.
  • polymer electrolyte materials are used in fuel cells, redox flow batteries, water electrolysis devices, black-hole alkaline electrolysis devices, and the like as polymer electrolyte components or membrane electrode composites.
  • the fuel cell is a power generation device with a low burden on the environment with low emissions and high energy efficiency. For this reason, it is a technology that is attracting attention due to the recent increase in global environmental protection.
  • the fuel cell is a power generation device that is expected in the future as a power generation device for relatively small-scale distributed power generation facilities and mobile bodies such as automobiles and ships.
  • secondary batteries such as nickel metal hydride batteries and lithium ion batteries, they are also expected to be installed in small mobile devices such as mobile phones and personal computers.
  • PEFC polymer electrolyte fuel cell
  • a fuel such as methanol is directly supplied in place of a conventional fuel cell that uses hydrogen gas as fuel.
  • Type fuel cells are also attracting attention.
  • the direct fuel cell has a lower output than the conventional PEFC, the fuel is liquid and does not use a reformer, so the energy density is higher and the power generation time per charge is longer. There is.
  • direct fuel cells are required to have performances different from conventional PEFCs using hydrogen gas as fuel. That is, in the direct fuel cell, fuel such as methanol aqueous solution reacts with the catalyst layer of the anode electrode at the anode electrode to produce protons, electrons, and carbon dioxide, and the electrons are conducted to the electrode base material. Protons are conducted to the polymer electrolyte, and carbon dioxide and carbon are released out of the system through the electrode substrate. For this reason, in addition to the required characteristics of the anode electrode of the conventional PEFC, fuel permeability such as methanol aqueous solution and emission of carbon dioxide and carbon dioxide are also required.
  • a perfluorinated proton conductive polymer membrane represented by Naphion (registered trademark) (manufactured by DuPont) has been used as a polymer electrolyte membrane.
  • these perfluorinated proton conductive polymer membranes have a problem that the direct fuel cell has a large amount of permeation of fuel such as methanol and the battery output and energy capacity are not sufficient.
  • perfluorinated proton conductive polymers are extremely expensive in terms of both the point and the cost of using fluorine.
  • a fuel cell using a sulfon ⁇ aromatic polyetheretherketone as an electrolyte has also been studied.
  • aromatic polyetheretherketone (poorly soluble in organic solvents) Victrex (registered trademark) PEEK (registered trademark) (manufactured by Vitatrex Co., Ltd.) has been introduced that it is soluble in organic solvents and facilitates film formation by highly sulfonating.
  • Victrex registered trademark
  • PEEK registered trademark
  • these sulfone polyether ether ketones simultaneously improve hydrophilicity, become water-soluble, or cause a decrease in strength upon water absorption.
  • Polyelectrolyte fuel cells usually produce water as a by-product from the reaction of fuel and oxygen, and in DFCs, the fuel itself often contains water, so it is particularly difficult to make a sulfone polyetheretherketone. When water is soluble in water, it is not suitable for use in fuel cell electrolytes.
  • a sulfone compound of polyphosphazene has been described as a polymer proton conductor based on a phosphorus polymer (see Non-Patent Document 3).
  • sulfone-polyphosphazene itself has a very hydrophilic main chain and its water content is too high, so it cannot be expected to suppress fuel crossover.
  • composite membranes of proton conductive polymers and other polymers have been proposed.
  • a composite membrane (Patent Document 5) composed of sulfone polyphenylene oxide and polyvinylidene fluoride is known.
  • a composite membrane (Patent Document 6) composed of sulfone polystyrene and polyvinylidene fluoride.
  • the polymer electrolyte membranes described in these documents are membranes made of a blend polymer of an ion conductive polymer and polyvinylidene fluoride, and the compatibility between the polymers is poor. It was difficult to take the structure and achieve both high conductivity and fuel crossover suppression immediately. In this polymer electrolyte membrane, low-melting-point water and Balta water exist between the phases, and the fraction of antifreeze water in the electrolyte membrane is small, so it is estimated that it is difficult to suppress fuel crossover.
  • a membrane having a complex (patent document 8) force including a proton conductive polymer and a siloxane having a nitrogen atom-containing group and a metal oxide.
  • a membrane having strength such as a complex of Nafion (registered trademark) (manufactured by DuPont) and siloxane (Non-Patent Documents 5 and 6) is also known.
  • Nafion registered trademark
  • the membranes described in these documents use “Nafion (registered trademark)” which is a perfluorinated proton conductive polymer, even if it is a composite membrane with other polymer, it has high proton conductivity. It is difficult to achieve both a low fuel crossover and o
  • a composition comprising a monomer having an unsaturated bond and a monomer capable of introducing a crosslinked structure
  • An ion exchange material obtained by impregnating a porous substrate and then polymerizing and then sulfonating is known (see Patent Document 9).
  • DMFC direct methanol fuel cell
  • Patent Document 1 US Patent Application Publication No. 2002Z91225
  • Patent Document 2 US Pat. No. 5,403,675 specification
  • Patent Document 3 Japanese Patent Laid-Open No. 2002-226575
  • Patent Document 4 Japanese Translation of Special Publication 2002-524631
  • Patent Document 5 US Patent No. 6103414
  • Patent Document 6 Special Table 2001-504636
  • Patent Document 7 Japanese Patent Laid-Open No. 2002-260687
  • Patent Document 8 JP 2002-110200 A
  • Patent Document 9 Japanese Patent Laid-Open No. 2003-12835
  • Non-patent document 1 “Polymer”, 1987, vol.28, 1009.
  • Non-Patent Document 2 “Journal of Membrane Science” j, 1993, Vol. 83, 211-220.
  • Non-Patent Document 3 "Journal of Applied Polymer Science", 1999, Vol.71, 387-399.
  • Non-Patent Document 4 "Journal of Membrane Science” j, 2002, Vol.197,231-242
  • Non-Patent Document 5 "Polymers", 2002, Vol.43, 2311-2320
  • Non-Patent Document 6 “Journal of Material Chemi stry” J, 2002, Vol.12,834-837
  • the present invention is excellent in proton conductivity even in direct contact with high-temperature and high-concentration liquid fuel, and also excellent in fuel cutoff and mechanical strength.
  • the present invention employs the following means in order to solve the difficult problem.
  • the polymer electrolyte material of the present invention is immersed in a 1 to 30% by weight aqueous methanol solution at 40 to 80 ° C. for 12 hours and then immersed in pure water at 20 ° C. for 24 hours and immediately after being taken out.
  • the fraction Rw of antifreeze water represented by the following formula (S1) is 75 to: LO 0% by weight, and has an ionic group.
  • Wnf is the amount of antifreeze water per lg dry weight of the polymer electrolyte material
  • the polymer electrolyte component of the present invention is characterized by being made of a polymer electrolyte material that can be obtained.
  • the membrane electrode assembly of the invention is characterized in that it is configured using such a polymer electrolyte component, and the polymer electrolyte fuel cell of the present invention is configured using such a membrane electrode assembly. It is characterized by that.
  • a polymer electrolyte material that is excellent in proton conductivity, excellent in fuel cutoff properties and mechanical strength, even when in contact with a high-temperature, high-concentration liquid fuel. Accordingly, a polymer electrolyte fuel cell with high efficiency can be provided.
  • the present invention provides a polymer electrolyte material that is excellent in proton conductivity and excellent in fuel blocking properties and mechanical strength even when it is in direct contact with the above-mentioned problem, ie, high temperature and high concentration liquid fuel.
  • Research into the high proton conductivity and fuel cross of polymer electrolyte materials It has been found that the performance of over-suppression greatly depends on the presence and amount of moisture contained in the polymer electrolyte material. In particular, when the polymer electrolyte material comes into contact with high-temperature, high-concentration liquid fuel, the presence and amount of moisture contained in the polymer electrolyte material after pretreatment under specific conditions is important. As a result, the present invention has been reached.
  • Wnf is the amount of antifreeze water per lg dry weight of the polymer electrolyte material
  • Wfc Low melting point water amount per lg dry weight of the polymer electrolyte material
  • the moisture present in the polymer electrolyte material is
  • Balta water Water whose melting point is observed above o ° c,
  • Low melting point water Water whose melting point is observed below 0 ° C and above 30 ° C, and
  • Antifreeze water No melting point observed above 30 ° C, water,
  • the polymer electrolyte material contains, in a water-containing state, Balta water, low melting point water, and antifreeze water. Fuels such as methanol permeate mainly through low-melting-point water, and it is considered that fuel crossover increases when the ratio is large. On the other hand, antifreeze water is presumed to exist in the vicinity of ionic groups and polar groups in the polymer electrolyte material, and fuel such as methanol is presumably not permeated in this antifreeze water. Therefore, by realizing such a polymer electrolyte material with a large content of antifreeze water, high proton conductivity and low fuel can be achieved.
  • Rw fraction of the antifreeze water
  • the fuel crossover suppression effect becomes insufficient.
  • Rw is preferably as close to 100% by weight as possible.
  • the upper limit of Rw is 99.9% by weight.
  • Rw in the present invention is preferably 75 to 99.9% by weight, more preferably 80 to 99.9% by weight, and particularly preferably 90 to 99.9% by weight. %, and most preferably 9 5 to 99.9 is good is a weight 0/0.
  • the polymer electrolyte material of the present invention has a sufficiently high Rw even after being immersed in a 1 to 30% by weight methanol aqueous solution at 40 to 80 ° C. Even when used in direct contact with fuel, for example, when used in a direct fuel type fuel cell, high proton conductivity and high !, and a fuel crossover suppressing effect can be obtained.
  • the concentration of the aqueous methanol solution must be 1% by weight or more, 10% by weight or more is more preferable, 20% by weight or more is more preferable, 25% by weight or more, and 30% by weight is the most. preferable. If the concentration of the aqueous methanol solution is too thin, the effect of the present invention cannot be obtained sufficiently.
  • the temperature at which the polymer electrolyte material of the present invention is immersed in a 1 to 30% by weight aqueous methanol solution is 40 to 80 ° C.
  • a force of 50 to 75 ° C is more preferred, 55 to 65 ° C.
  • 60 ° C is most preferable.
  • the polymer electrolyte material of the present invention is immersed in a 30 wt% aqueous methanol solution at 60 ° C for 12 hours, and then immersed in pure water at 20 ° C for 24 hours.
  • Rw is 75-: LOO wt%, more preferably having an ionic group
  • the polymer electrolyte material of the present invention is "immersed in a 1 to 30 wt% aqueous methanol solution at 40 to 80 ° C for 12 hours, and then immersed in pure water at 20 ° C for 24 hours.
  • the amount of antifreeze water per lg dry weight of the polyelectrolyte material (hereinafter simply Wnf and V, may be different) is 0.05 to 2! /.
  • Wnf is less than 0.05, proton conductivity may not be ensured, and when it exceeds 2, it may not be possible to expect suppression of fuel crossover.
  • Wnf is more preferably 0.065 to 1, particularly preferably 0.08 to 0.8.
  • Wnf (antifreeze water amount) and Wfc (low melting point water amount) in the formula (S1), and Wf (bulk water amount) below are values obtained by a differential scanning calorimetry (DSC) method.
  • Wnf, Wfc, and Wnf in "a water-containing state immediately after being immersed in a 30 wt% aqueous methanol solution at 60 ° C for 12 hours and then immersed in pure water at 20 ° C for 24 hours" A description of the Wf measurement method will be added.
  • the sample was immersed in a 30 wt% aqueous methanol solution (at a weight ratio of at least 1 000 times the sample amount) at 60 ° C for 12 hours, and then pure water (weight ratio) at 20 ° C. Soaked in a sample (over 1000 times the sample volume) for 24 hours while stirring, removed, wiped off excess surface adhering water with gauze as quickly as possible, and measured the weight (Gp). After placing the sample in an aluminum-coated sealed sample container coated with alumina and tampering, measure the total weight (Gw) of the sample and the sealed sample container as quickly as possible, and immediately perform a DSC measurement.
  • a 30 wt% aqueous methanol solution at a weight ratio of at least 1 000 times the sample amount
  • pure water weight ratio
  • the measurement temperature program is to cool from room temperature to -30 ° C at a rate of 10 ° CZ and then increase to 5 ° C at a rate of 0.3 ° CZ.
  • (Wt) is a value represented by the weight per unit weight of the dried sample.
  • m is the dry sample weight
  • dqZdt is the DSC heat flux signal
  • TO is the melting point of Balta water
  • is the melting enthalpy at the melting point (TO) of Balta water.
  • the polymer electrolyte material of the present invention preferably has a film-like form. When used for fuel cells, they are usually used as a polymer electrolyte membrane or an electrode catalyst layer in a membrane state.
  • the polymer electrolyte material of the present invention has a film-like form !
  • the methanol permeation force per unit area with respect to a 30 wt% methanol aqueous solution under the condition of 20 ° C 0 ⁇ m 0 l it is preferred 'min _ 1' or less C m _2.
  • the amount of permeated fuel that maintains a high fuel concentration should be small.
  • the methanol permeation amount is 0 ⁇ mol'min _ 1 'cm_ 2 , from the viewpoint of ensuring the proton conductivity of 0. Ol / z mol'min ⁇ It is preferably 'cm— 2 or more.
  • polymer electrolyte material of the present invention in the case where a film-like form, it is preferred that the proton conductivity per unit area is 3S 'CM_ 2 or more.
  • Such proton conductivity is determined by the constant potential AC impedance method, which is performed as quickly as possible after immersing a membrane-like sample in 25 ° C pure water for 24 hours and taking it out in an atmosphere at 25 ° C and relative humidity of 50 to 80%.
  • Willow can be determined.
  • the proton conductivity per unit area 3S'cm- 2 or more, sufficient proton conductivity, that is, sufficient battery output can be obtained when used as a polymer electrolyte membrane for fuel cells. Can do.
  • High proton conductivity is preferable, but if too high, a membrane with a high proton conductivity tends to be dissolved or disintegrated by a fuel such as methanol water, and the amount of fuel permeation tends to increase.
  • the upper limit is 50S ⁇ cm— 2 .
  • the methanol permeation amount per unit area and unit thickness at the conditions of the polymer electrolyte material is preferably from it preferably tool is 1000nmol'min _1 'cm _1 following the present invention 500nnmol'min _1 'cm _1 less, more preferably 250nmol'min _1' Ru der cm _ 1 below.
  • 1000nmol'min _1 'cm _1 below, when used in direct methanol fuel cell (DFC), it is possible to prevent a decrease in energy capacity.
  • DFC direct methanol fuel cell
  • lnmol'min _1 'cm _1 or more from the viewpoint of ensuring proton conductivity.
  • Examples' more preferably preferably tool is cm- 1 or 5 mS 'LMS proton conductivity per unit area and unit thickness was measured under the conditions cm- 1 or more, more preferably 10 mS' cm- 1 or more.
  • lmS'cm- 1 or more By setting lmS'cm- 1 or more, a high output as a battery can be obtained.
  • film having high proton conductivity tends to dissolve or disintegrate by the fuel such as methanol water and also because they tend fuel permeation amount increases, practical upper limit is 5000mS 'cm _1.
  • the polymer electrolyte material of the present invention has a low methanol permeation amount and a high proton conductivity as described above. It is preferred to achieve the conductivity simultaneously. Achieving only one of these is possible because both high power and high energy capacity can be achieved by achieving both of the forces that are easy in the prior art.
  • the polymer electrolyte material of the present invention needs to have an ionic group. By having an ionic group, the polymer electrolyte material has high proton conductivity.
  • the ionic group to be used preferably has a proton exchange ability that is favored by a negatively charged atomic group.
  • a sulfonic acid group, a sulfonimide group, a sulfuric acid group, a phosphonic acid group, a phosphoric acid group, or a carboxylic acid group is preferably used.
  • the sulfonic acid group is a group represented by the following general formula (f 1)
  • the sulfonimide group is a group represented by the following general formula (f 2) [wherein R represents an arbitrary atomic group.
  • a sulfate group is a group represented by the following general formula (f 3)
  • a phosphonic acid group is a group represented by the following general formula (f4)
  • a phosphoric acid group is represented by the following general formula (f 5) or (f6)
  • the carboxylic acid group means a group represented by the following general formula (f7).
  • the ionic group includes a case where the functional groups (f1) to (f7) are converted into salts.
  • the cation forming the salt any metal cation, NR + (R)
  • 4 is an arbitrary organic group).
  • the valence etc. are particularly limited It can be used for anything.
  • Specific examples of preferable metal ions include Li, Na, K, Rh, Mg, Ca, Sr, Ti, Al, Fe, Pt, Rh, Ru, Ir, and Pd.
  • Na, K, and Li which are inexpensive and can be easily proton-substituted, are more preferably used as the polymer electrolyte material.
  • Two or more kinds of these ionic groups may be contained in the polymer electrolyte material, and it may be preferable to combine them.
  • the combination is appropriately determined depending on the structure of the polymer. Among them, it is most preferable to have at least a sulfonic acid group from the viewpoint of hydrolysis resistance, which is more preferable to have at least a sulfonic acid group, a sulfonic imide group, and a sulfuric acid group from the viewpoint of high proton conductivity.
  • the sulfonic acid group density is preferably 0.1 to 1.6 mmolZg, more preferably 0 from the viewpoint of proton conductivity and suppression of fuel crossover. 3 to 1.5 mmol / g, more preferably 0.5 to 1.4 mmol / g, most preferably 0.8 to 1.18 mmol / g.
  • the conductivity that is, the output performance can be maintained, and by setting it to 1.6 mm olZg or less, when used as an electrolyte membrane for a fuel cell, Sufficient fuel barrier properties and mechanical strength when containing water can be obtained.
  • the sulfonic acid group density is the molar amount of sulfonic acid group introduced per unit dry weight of the polymer electrolyte material, and this value is large! /, The degree of sulfonation! / , Is high!
  • the sulfonic acid group density can be measured by a neutralization titration method.
  • the polymer electrolyte material of the present invention includes an embodiment in which the polymer electrolyte material is a complex composed of a polymer having an ionic group and other components as will be described later. In this case as well, the sulfonic acid group density is the total amount of the complex. It shall be obtained as a standard.
  • One of the preferred embodiments of the polymer electrolyte material of the present invention is a polymer electrolyte material containing a hydrocarbon-based polymer having an ionic group (hereinafter sometimes referred to as embodiment 1).
  • polymer electrolyte material of the present invention is a polymer electrolyte material containing a hydrocarbon polymer having an ionic group and a heterocyclic polymer (hereinafter referred to as embodiment 2). Sometimes).
  • polymer electrolyte material of the present invention is a polymer electrolyte material containing a hydrocarbon polymer having an ionic group and a bulle polymer (hereinafter referred to as “embodiment”). Sometimes called 3).
  • Yet another preferred embodiment of the polymer electrolyte material of the present invention is a bridge comprising a hydrocarbon-based polymer having an ionic group and a crosslinkable polymer having a group represented by the following general formula (Ml). (Hereinafter sometimes referred to as embodiment 4).
  • the hydrocarbon polymer having an ionic group in the present invention means a polymer having an ionic group other than a perfluoro polymer.
  • the perfluoro-based polymer means a polymer in which most or all of alkyl group and Z or alkylene group hydrogen in the polymer are substituted with fluorine atoms.
  • a polymer in which 85% or more of hydrogen of the alkyl group and Z or alkylene group in the polymer is substituted with a fluorine atom is defined as a perfluoro polymer.
  • perfluorinated polymers having ionizable groups of the present invention include Nafion (registered trademark) (manufactured by Dubon), Flemion (registered trademark) (manufactured by Asahi Glass Co., Ltd.) and Aciplex (registered trademark) (Asahi Kasei Corporation). And other commercial products.
  • the structure of the perfluoropolymer having these ionic groups can be represented by the following general formula (N1).
  • n and n each independently represents a natural number. k and k are independent
  • a hydrophobic channel and a hydrophilic segment in the polymer form a clear phase structure, and therefore, a water channel called a cluster is formed in the polymer in a hydrous state.
  • a water channel called a cluster is formed in the polymer in a hydrous state.
  • Embodiments 1 to 4 of the polymer electrolyte material of the present invention can achieve both high proton conductivity and low fuel crossover by containing a hydrocarbon-based polymer having an ionic group. .
  • the reason why the fuel crossover reduction such as methanol is achieved is not clear at this stage, but is presumed as follows.
  • a rigid heterocyclic polymer or bull polymerization polymer in which a molecular chain of a polymer having an ionic group that easily swells in an aqueous fuel solution such as methanol does not swell at all in an aqueous fuel solution such as methanol.
  • the polymer electrolyte material of the present invention is preferably controlled to have a water content haze of 30% or less, and more preferably from the viewpoint of proton conductivity and fuel crossover suppression effect. It is advisable to control the haze in a moisture state to 20% or less. When the haze of the water-containing state exceeds 30 %, the hydrocarbon polymer having an ionic group and the second component are not mixed uniformly, and phase separation may occur. Reflecting the properties of the polymer having the original ionic group, sufficient proton conductivity, fuel crossover suppression effect and solvent resistance cannot be obtained. In addition, sufficient proton conductivity may not be obtained.
  • the polymer electrolyte membrane having a water-containing haze of 30% or less is also preferably used in view of positioning of the anode electrode and the force sword electrode with respect to the polymer electrolyte membrane during the production of the membrane electrode composite.
  • the haze in a water-containing state is a value measured as follows. A polymer electrolyte membrane is used as a sample. The sample is immersed in a 30% aqueous methanol solution (1000 times the weight of the sample by weight) at 60 ° C for 12 hours, and then pure at 20 ° C.
  • the film thickness can be arbitrarily selected in the range of 10 to 500 ⁇ m.
  • the weight loss after 5 hours of immersion is 30% by weight or less. More preferably, the weight loss is not more than 20% by weight. If the weight loss exceeds 30%, the fuel crossover suppression effect is insufficient, or it becomes difficult to apply a catalyst paste directly to the polymer electrolyte membrane to produce a membrane electrode composite. If the cost increases, the interface resistance with the catalyst layer increases, and sufficient power generation characteristics may not be obtained.
  • the weight loss of the powerful polymer electrolyte material relative to N-methylpyrrolidone is measured by the following method.
  • a polymer electrolyte material (about 0.1 lg) as a specimen is washed with pure water, and then vacuum dried at 40 ° C. for 24 hours to measure the weight.
  • the polymer electrolyte material is immersed in 1000 times the weight of N-methylpyrrolidone and heated in a sealed container at 50 ° C. for 5 hours with stirring.
  • filtration is performed using a filter paper (No. 2) manufactured by Advantech. During filtration, wash the filter paper and residue with the same solvent 1000 times the weight, and dissolve the eluate in the solvent. Calculate the weight loss by drying the residue under vacuum at 40 ° C for 24 hours and measuring the weight.
  • the film is soluble in a solvent that is preferably formed by solution casting.
  • the method of applying the catalyst paste is considered to be more preferable than usual from the viewpoint of reducing the interfacial resistance.
  • the membrane dissolves or cracks. Alternatively, deformation often occurs and the original film performance cannot be expressed.
  • a polymer electrolyte membrane is used as a laminated membrane, a method in which the following polymer solution is directly applied to the polymer electrolyte membrane is widely used. There was a problem that membrane performance could not be expressed.
  • Embodiments 1 to 4 of the polymer electrolyte material of the present invention are excellent in solvent resistance, for example, hardly dissolve in N-methylpyrrolidone, and have an interface resistance with the catalyst layer.
  • the polymer electrolyte material is considered to be an excellent polymer electrolyte material that can significantly reduce manufacturing costs.
  • hydrocarbon polymer having an ionic group used in Embodiments 1 to 4 will be described.
  • the hydrocarbon polymer having a strong ionic group two or more kinds of polymers may be used simultaneously.
  • a hydrocarbon-based polymer is more preferably used from the viewpoint of the fuel crossover suppressing effect and the production cost.
  • a perfluorinated polymer such as Nafion (registered trademark) (manufactured by DuPont)
  • Nafion registered trademark
  • DuPont the perfluorinated polymer
  • it is expensive and has a limit in the fuel crossover suppression effect because it forms a cluster structure. Therefore, it is very difficult to put a polymer electrolyte fuel cell that requires a high energy capacity into practical use.
  • hydrocarbon-based polymer having an ionic group used in the present invention a solvent-soluble non-crosslinked polymer is more preferably used from the viewpoint of ease of molding and production cost.
  • Examples of the hydrocarbon-based polymer having an ionic group are illustrated in the following (E-1) and (E-2).
  • (E-1) is a polymer obtained from a bull polymerization monomer.
  • a polymer obtained from a vinyl polymerization monomer having an ionic group represented by A polymer obtained by copolymerizing a monomer having no ionic group and a butyl polymerization monomer having such an ionic group is also suitable.
  • any compound having a vinyl polymerizable functional group can be used without particular limitation.
  • a polymer in which an ionic group is introduced into a polymer that has a vinyl polymerization monomer power that does not have an ionic group is also suitable.
  • the introduction of phosphonic acid groups is described in, for example, Polymer Preprints, Japan, 51, 750 (2002). This is possible by the method described.
  • the introduction of a phosphate group is possible, for example, by a high molecular phosphate ester having a hydroxyl group.
  • Carboxylic acid groups can be introduced, for example, by acidifying a high molecule having an alkyl group or a hydroxyalkyl group.
  • the introduction of a sulfate group is possible, for example, by a polymer sulfate ester having a hydroxyl group.
  • a method for introducing a sulfonic acid group for example, a method described in JP-A-2-16126 or JP-A-2-208322 is known. Specifically, for example, by reacting a high molecule with a sulfonating agent such as chlorosulfonic acid in a halogenated hydrocarbon solvent such as black mouth form, or reacting in concentrated sulfuric acid or fuming sulfuric acid. You can hesitate.
  • the strong sulfonating agent is not particularly limited as long as it is capable of sulfonating a polymer.
  • sulfur trioxide and sulfur can be used. For example, in the case of a polymer having an epoxy group, J. Electrochem. Soc, Vol. 143, No. 9, 2795-2799 (19 It can be sulfonated by the method described in 96).
  • the degree of sulfonation when a polymer is sulfonated by these methods can be easily controlled by the amount of the sulfonating agent used, the reaction temperature and the reaction time.
  • Introduction of a sulfonimide group into an aromatic polymer can be achieved, for example, by a method of reacting a sulfonic acid group and a sulfonamide group.
  • the polymer having a strong ionic group is a crosslinked polymer, a force that is advantageous for suppressing fuel crossover is often accompanied by an increase in production cost.
  • a copolymer having a plurality of polymerizable functional groups among bulle polymerization monomers may be copolymerized as a crosslinking agent.
  • vinyl polymerization monomers having a plurality of vinyl polymerizable functional groups include ethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, triethylene glycol di ( (Meth) acrylate, polyethylene glycol di (meth) acrylate, propylene glycol di (meth) acrylate, dipropylene glycol di (meth) acrylate, tripropylene glycol di (meth) acrylate, polypropylene glycol di (meth) (Meth) acrylate esters such as attalylate, trimethylolpropane tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, dipentaerythritol poly (meth) acrylate, dibilbenzene, dibi- Lunaphthalene, Styrene compounds such as divinyl biphenyl, (meth) acrylamide compounds such as methylene bis (meth)
  • the monomer composition contains a thermal polymerization initiator represented by a peroxide-based azo compound, in order to facilitate polymerization.
  • a photopolymerization initiator is added.
  • a material having an optimal decomposition characteristic for a desired reaction temperature is selected and used.
  • a peroxide-based initiator having a 10-hour half-life temperature of 40 to 100 ° C. is suitable, and a polymer electrolyte material free from cracks can be produced by using such an initiator.
  • a carbo-Louis compound such as benzophenone and an amine combined system
  • Mercabtan compound such as Mercabtan compound
  • disulfide compound such as Mercabtan compound
  • polymerization initiators are used alone or in combination, and are used in an amount of up to about 1% by weight.
  • polymerization method and molding method known methods can be used. For example, a method of polymerizing a monomer composition formed into a thin film by a method such as inter-plate polymerization and coating in an inert gas or a reduced-pressure atmosphere.
  • the inter-plate polymerization method will be described below.
  • the monomer composition is filled into the gap between the two plate molds.
  • photopolymerization or thermal polymerization is performed to form a film.
  • the plate-shaped mold is made of resin, glass, ceramics, metal, etc., but in the case of photopolymerization, an optically transparent material is used, and usually resin or glass is used. If necessary, a gasket having the purpose of giving a certain thickness to the film and preventing liquid leakage of the filled monomer composition may be used in combination.
  • the plate-shaped mold in which the void is filled with the monomer composition is then polymerized by being heated in a power oven or a liquid tank irradiated with actinic rays such as ultraviolet rays.
  • actinic rays such as ultraviolet rays.
  • heat polymerization is performed after photopolymerization, or conversely, both of photopolymerization after heat polymerization are used in combination.
  • photopolymerization it is common to irradiate light containing a large amount of ultraviolet light using a mercury lamp or insect lamp as a light source for a short time (usually 1 hour or less).
  • the temperature is gradually raised from around room temperature, and the temperature is raised to a temperature of 60 ° C to 200 ° C over several hours to several tens of hours to maintain uniformity and quality, and Preferred for enhancing reproducibility.
  • (E-2) is a polymer having an ionic group and an aromatic ring in the main chain. That is, it is a polymer having an aromatic ring in the main chain and having an ionic group.
  • the main chain structure is not particularly limited as long as it has an aromatic ring, but a structure having sufficient mechanical strength such as used as an engineering plastic is preferable.
  • polyphenylene-based polymers described in US Pat. No. 5,403,675, Akito Ita, JP-A-2001-192531, and JP-A-2002-293889 are suitable examples.
  • Sarako is preferably a polymer having at least one kind of polar group different from the ionic group in the main chain. The reason for this is to promote the coordination of water near the main chain and increase the amount of antifreeze water. Therefore, it is estimated that this is because high proton conductivity can be provided and fuel crossover can be reduced.
  • the polar group is not particularly limited, but a functional group capable of coordinating water is preferred.
  • polar groups include a sulfol group represented by the following general formula (gl), an oxy group represented by the general formula (g2), a thio group represented by the general formula (g3), and a general formula ( a carbonyl group represented by g4), a phosphine oxide group represented by general formula (g5) (wherein R 1 represents a monovalent organic group), and a phosphonic acid represented by general formula (g6)
  • An ester group (wherein R 2 represents a monovalent organic group), an ester group represented by the general formula (g7), an amide group represented by the general formula (g8) (wherein R 3 is 1
  • An imide group represented by the general formula (g9) and a phosphazene group represented by the general formula (glO) wherein R 4 and R 5 represent a monovalent organic group.
  • R 4 and R 5 represent a monovalent organic group
  • ZZ 2 represents an organic group containing an aromatic ring, each of which can represent two or more groups with one symbol.
  • Y 1 represents an electron-withdrawing group.
  • Y 2 represents O or A and b each independently represent an integer of 0 to 2, provided that a and b are not 0 at the same time.
  • Z 5 and Z 6 represent an organic group containing an aromatic ring, and each may represent two or more types of groups.
  • Preferred organic groups as Z 5 are organic groups represented by the following general formula (Z5-1) to general formula (Z5-4), and the most preferable in terms of hydrolysis resistance is the general formula It is an organic group represented by (Z5-1). These may be substituted.
  • the organic group is a organic group represented by the following general formula (Z6- 1) ⁇ formula (Z6- 10). These may be substituted.
  • polymer electrolyte material As a polymer electrolyte material, it has excellent hydrolysis resistance, and is represented by the following general formula (P1). More preferred are aromatic hydrocarbon polymers having repeating units. Among such aromatic hydrocarbon polymers having a repeating unit represented by the general formula (P1), an aromatic hydrocarbon polymer having a repeating unit represented by the general formula (P1-1) to the general formula (P1-9). One is particularly preferred. An aromatic hydrocarbon polymer having a repeating unit represented by the general formula (P1-6) to the general formula (P1-9) is most preferable in terms of high proton conductivity and ease of production.
  • Preferred organic groups as Z 1 are a phenylene group and a naphthylene group. These may be substituted.
  • Preferred organic groups as Z 2 are a phenylene group, a naphthylene group, and organic groups represented by the following general formulas (Z2-1) to (Z2-14). These may be substituted.
  • This Among these general formulas (Z2- 7) ⁇ formula (Z2- 14) organic group represented by the polyelectrolyte particularly preferred instrument present invention is excellent in fuel permeation suppression effect generally as Z 2 It preferably contains at least one of organic groups represented by the formula (Z2 7) to the general formula (Z2-14).
  • the organic groups represented by the general formulas (Z2-7) and (Z2-8) are the most preferred.
  • is an organic group represented by the general formula (Z2-7).
  • Preferable examples of the organic group represented by R 1 in the general formula (PI-4) and the general formula (PI-9) include methyl, ethyl, propyl, isopropyl, cyclopentyl, and cyclo Xyl group, norbornyl group, bur group, allyl group, benzyl group, phenyl group, naphthyl group, phenylphenyl group and the like. From the viewpoint of industrial availability, R 1 is most preferred as a phenol group.
  • Examples of the method for introducing an ionic group into these aromatic hydrocarbon polymers include a method of polymerizing using a monomer having an ionic group and a method of introducing an ionic group by a polymer reaction. .
  • a monomer having an ionic group in the repeating unit may be used. If necessary, an appropriate protecting group is introduced and a deprotecting group after polymerization. Can be done. Such a method is described in, for example, Journal of Membrane Science, 197 (2002) 231-242. This method is very preferable because the control of the sulfonic acid group density of the polymer is easy and the industrial application is easy.
  • introduction of a phosphonic acid group into an aromatic polymer may be performed by polymer preprints, Japan, 51, 750 (20 02), etc. Is possible by the method described in.
  • Introduction of a phosphate group into an aromatic polymer can be performed by, for example, phosphate ester of an aromatic polymer having a hydroxyl group.
  • the introduction of a carboxylic acid group into the aromatic polymer can be performed, for example, by oxidizing an aromatic polymer having an alkyl group or a hydroxyalkyl group.
  • Introduction of a sulfate group into an aromatic polymer can be achieved by, for example, an ester-based sulfate of an aromatic polymer having a hydroxyl group.
  • a method for sulfonating an aromatic polymer that is, a method for introducing a sulfonic acid group, for example, methods described in JP-A-2-16126 or JP-A-2-208322 are known.
  • sulfonating agent such as chlorosulfonic acid in a solvent such as chloroform
  • concentration of sulfuric acid or fuming sulfuric acid You can do it.
  • the sulfonating agent is not particularly limited as long as it is capable of sulfonating an aromatic polymer.
  • thiosulfur trioxide can be used.
  • the degree of sulfone is It can be easily controlled by the amount of the phonating agent used, the reaction temperature and the reaction time.
  • Introduction of a sulfonimide group into an aromatic polymer can be achieved, for example, by a method of reacting a sulfonic acid group and a sulfonamide group.
  • the heterocyclic polymer as used in the present invention means a polymer containing a heterocyclic ring in the repeating unit, and the heterocyclic ring means one hetero atom, that is, one of 0, S, and N atoms. It means a ring having the above.
  • the strong heterocyclic ring may be in the main chain or in the side chain in the polymer, but it is more preferably a heterocyclic polymer containing a heterocyclic ring in the main chain of mechanical strength.
  • the powerful heterocyclic ring include the following general (hi) to (hi 2), as well as their full hydrogen adducts and partial hydrogen adducts. It is not limited. Two or more of these heterocycles can be contained in the polymer electrolyte material, and it may be preferable to combine them.
  • the heterocyclic polymer must be effective in suppressing fuel crossover, and is preferably insoluble in a 10M aqueous methanol solution at 40 ° C. More preferred are polymers comprising Insoluble means that the polymer electrolyte membrane After soaking in a 10M aqueous methanol solution at 40 ° C for 8 hours, filtering with a filter paper, the amount of the heterocyclic polymer detected from the filtrate is 5% by weight or less of the amount of the heterocyclic polymer contained in the entire polymer electrolyte membrane. It means that there is. In this case, a force that assumes an aqueous methanol solution as the fuel The behavior of the aqueous methanol solution is common to other fuels and is general.
  • the heterocyclic polymer is more preferably insoluble in 50 ° C N-methylpyrrolidone since it is more preferable if it can provide solvent resistance.
  • Insoluble means that the polymer electrolyte membrane is immersed in N-methylpyrrolidone at 50 ° C for 5 hours, filtered through filter paper, and the amount of heterocyclic polymer detected by the filtrate force is included in the entire polymer electrolyte membrane. Means 5% by weight or less of the amount of the heterocyclic polymer.
  • a solvent for a polymer electrolyte material the behavior of N-methylpyrrolidone assuming N-methylpyrrolidone is common to other solvents and has generality.
  • the heterocyclic polymer used in the present invention is substantially uniformly mixed with the hydrocarbon-based polymer having an ionic group to be used, and the resulting polymer electrolyte material has a haze of 30% or less. It is not particularly limited. A polymer having an effect of suppressing fuel crossover without significantly degrading proton conductivity and having excellent mechanical strength and solvent resistance can be preferably used.
  • a plurality of types of polymers may be used in combination.
  • polyoxazole, polybenzoxazole, polythiazole, polybenzthiazole, polyimidazole, polybenzimidazole are preferred in terms of solvent resistance and molding cacheability.
  • the heterocyclic polymer is more preferably a solvent-insoluble polymer from the viewpoints of a fuel crossover suppressing effect, a swelling suppressing effect, and solvent resistance.
  • a solvent-insoluble polymer when used, the production cost is considered.
  • polyimide and its precursor polyamic acid are most preferably used from the viewpoint of compatibility with a hydrocarbon polymer having an ionic group, mechanical strength, solvent resistance and solvent solubility.
  • Polyamic acid which is a polyimide precursor, has a carboxylic acid group in addition to an amide group, and therefore has very good compatibility with a hydrocarbon polymer having an ionic group.
  • an example of a method for producing a polymer electrolyte material is polyamic acid, which is a precursor of polyimide and a hydrocarbon polymer having an ionic group substituted with an alkali metal such as sodium. Prepared in a solution state, cast on a support to obtain a self-supporting polyamic acid composite polymer electrolyte material, then heat imidize the polyamic acid, and further replace protons with ionic groups can do.
  • the polymer electrolyte material produced by a powerful method enables solution film formation that can achieve both high proton conductivity and suppression of fuel crossover. Due to the effect of imido, solvent resistance can be imparted, so the catalyst paste can be applied directly to the polymer electrolyte membrane, and the production cost of the membrane electrode assembly can be greatly reduced. Most preferably, it can be used.
  • the polyimide used in the present invention and the polyamic acid which is a precursor thereof will be specifically described.
  • the polyamic acid and imide used in the present invention are substantially uniformly mixed with the hydrocarbon polymer having an ionic group to be used, so that the fuel
  • the polymer is not particularly limited as long as it has a one-bar suppressing effect and can impart solvent resistance.
  • the strong polyimide a polymer that is soluble in the state of polyamic acid, is a polyimide after ring closure imidization, and is insoluble in a solvent is more preferably used.
  • the polyamic acid can be synthesized by a known method. For example, a method of reacting a tetracarboxylic dianhydride and a diamine compound at a low temperature, a method of obtaining a diester with tetracarboxylic dianhydride and an alcohol, and then reacting the amine with a condensing agent, tetracarboxylic A diester can be obtained from an acid dianhydride and an alcohol, and then the remaining dicarboxylic acid can be converted to an acid chloride and reacted with an amine.
  • a method of reacting a tetracarboxylic dianhydride and a diamine compound at a low temperature a method of obtaining a diester with tetracarboxylic dianhydride and an alcohol, and then reacting the amine with a condensing agent, tetracarboxylic A diester can be obtained from an acid dianhydride and an alcohol, and then the remaining dicarbox
  • the acid dianhydride include pyromellitic dianhydride, 3, 3, 4, 4, biphenyl tetracarboxylic dianhydride, 2, 3, 3 ', 4' -Biphenyltetracarboxylic dianhydride, 2, 2 ', 3, 3, -biphenyltetracarboxylic dianhydride, 3, 3', 4, 4, monobenzophenone tetracarboxylic dianhydride 2, 2 ', 3, 3, monobenzophenone tetracarboxylic dianhydride, 2, 2 bis (3,4 dicarboxyphenol) propane dianhydride, 2, 2 bis (2, 3 Dicarboxyphenyl) propane dianhydride, 1, 1-bis (3,4 dicarboxyl) ethaneni anhydride, 1, 1 bis (2, 3 dicarboxyphenyl) ethaneni anhydrous, bis (3,4 dicarboxyl) methane dianhydride, bis (2,3 dicarboxy
  • Aromatic tetracarboxylic dianhydrides such as 1,2,3,4-cyclopentanetetracarboxylic dianhydride Can do. These may be used alone or in combination of two or more.
  • diamine examples include 3,4'-diaminodiphenyl ether, 4,4, -diaminodiphenyl ether, 3,4'-diaminodiphenylmethane, 4,4'-diaminodiphenylmethane, 3 , 4'-diaminodiphenylsulfone, 4,4'-diaminodiphenylsulfone Hong, 3, 4, 1-diaminodiphenylsulfide, 4, 4, 1-diaminodiphenylsulfide, 1,4-bis (4-aminophenoxy) benzene, benzine, m-phenol-diamine, P-phenylenediamine, 1, 5 naphthalene Diamine, 2, 6 Naphthalenediamine, Bis (4-aminophenoxyphenyl) sulfone, Bis (3-aminophenoxyphenyl) sulfone, Bis (4-aminophenoxy) bipheny
  • aromatic polyimides having a repeating unit represented by the following general formula (P2) are more preferably used from the viewpoint of fuel crossover suppression effect, solvent resistance, and mechanical strength.
  • Z 4 represents an organic group containing an aromatic ring, and each of them may represent two or more types of groups.
  • more preferred polyamic acids include paraphenol-diamine, benzidine derivatives, 4,4'-diaminodiphenyl ether, 3,4'-diaminodiphenyl ether, bisaminophenoxybenzenes, diaminobenza-lides, etc.
  • Aromatic diamine component pyromellitic acid represented by pyromellitic dianhydride, 3, 3, 1-4, 4-bi-fertetracarboxylic acid or its dianhydride, 3, 3'— 4,
  • a polyimide obtained by polymerizing 4 'benzophenone tetracarboxylic acid or an aromatic tetracarboxylic acid compound such as dianhydride thereof in a solvent and having excellent solvent resistance is more preferably used.
  • Solvents used in the above polymerization include dimethyl sulfoxide, N, N dimethylacetamide, N, N jetylacetamide, N, N dimethylformamide, N, N jetylamide, N-methyl-2-pyrrolidone And dimethyl sulfone, and these are preferably used alone or in combination.
  • the polyamic acid obtained by the polymerization is prepared so as to have a ratio of 10 to 30% by weight in the solvent.
  • the hydrocarbon polymer having an ionic group and the heterocyclic polymer are homogeneously mixed together to suppress fuel crossover and proton conductivity. Therefore, it is preferable.
  • the state in which the hydrocarbon polymer having an ionic group and the heterocyclic polymer are uniformly mixed is a state in which the two types of polymers are mixed without substantially taking a phase separation structure even in a water-containing state. It is. It can be confirmed that the two types of polymers are substantially uniformly mixed by measuring the haze of the polymer electrolyte material in the water content state.
  • the domain size of the phase separation between the hydrophilic portion and the hydrophobic portion of the polymer electrolyte material is the visible light wavelength size.
  • the two types of polymers are not substantially uniformly mixed.
  • the haze is 30% or less, the two types of polymers are substantially uniformly mixed at the molecular level, and the molecular chain of the hydrocarbon polymer having an ionic group by interaction with the heterocyclic polymer. It is considered that the movement of the hydrocarbon polymer is restricted, that is, the molecular chain of the hydrocarbon polymer having an ionic group is restricted. Ionic In a state where the hydrocarbon-based polymer having a group and the heterocyclic polymer are mixed substantially uniformly, it is considered that the polymer chains are sufficiently entangled with each other. It is thought that it hinders dissolution in a solvent.
  • a hydrocarbon polymer having an ionic group and a heterocyclic polymer can be used as a method for realizing a state in which a hydrocarbon polymer having an ionic group and a heterocyclic polymer are substantially uniformly mixed. Both polymers are mixed in the state of polymer solution, or at least one of hydrocarbon polymer and heterocyclic polymer having ionic group is in the state of precursor (monomer, oligomer, or precursor polymer) There is a method of preparing a polymer electrolyte material by mixing and then polymerizing or reacting.
  • hydrocarbon polymer having an ionic group and heterocyclic polymer are mixed in the state of a precursor in view of ease of molding process and production cost, and then the precursor polymer is closed after film formation.
  • the most preferred method is to prepare a polymer electrolyte material through the steps and then immerse it in an aqueous methanol solution under heating.
  • the conditions for immersion in aqueous methanol solution under heating are as follows: temperature is room temperature to 120 ° C, concentration of methanol aqueous solution is 10 to 100% by weight, and time is 1 minute to 72 hours. Better ,.
  • the ratio between the hydrocarbon polymer having an ionic group and the heterocyclic polymer is such that the hydrocarbon polymer having an ionic group and the heterocyclic polymer have an ionic group. More preferably, it contains 2 to 80% by weight of the heterocyclic polymer relative to the total amount of polymer. If the amount of the heterocyclic polymer is less than 2% by weight and the force is not included, the fuel crossover suppressing effect may be insufficient, and the solvent resistance may be insufficient. If the amount exceeds 80% by weight, sufficient proton conductivity is obtained. There is a tendency not to be obtained.
  • the vinyl polymer used in the present invention means a polymer capable of obtaining vinyl polymer monomer power.
  • the strong bull polymerization polymer may be a non-crosslinked polymer or a crosslinked polymer, but it is more preferable that it is a solvent-resistant point cross-linked polymer.
  • the vinyl polymerization polymer used in Embodiment 3 of the polymer electrolyte material of the present invention will be specifically described.
  • the bull polymerization polymer is not particularly limited as long as it is substantially uniformly mixed with the hydrocarbon polymer having an ionic group to be used, and the resulting polymer electrolyte material has a haze of 30% or less. .
  • a polymer having an effect of suppressing fuel crossover without significantly degrading proton conductivity, and having excellent mechanical strength and solvent resistance can be more preferably used.
  • any compound having a vinyl polymerizable functional group can be used without particular limitation. From the raw material cost and industrial availability, it is preferable to use methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, 2-methyl (meth) acrylate.
  • a vinyl polymerization monomer having a plurality of polymerizable functional groups may be copolymerized as a crosslinking agent.
  • a polyelectrolyte material in which only those having a plurality of polymerizable functional groups among the butyl polymerization monomers are mixed with a polymer having an ionic group is also more suitable than the point of solvent resistance and fuel crossover suppression effect. .
  • vinyl polymerization monomers having a plurality of vinyl polymerizable functional groups include ethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, triethylene glycol di ( (Meth) acrylate, polyethylene glycol di (meth) Relate, propylene glycol di (meth) acrylate, dipropylene glycol di (meth) acrylate, tripropylene glycol di (meth) acrylate, polypropylene glycol di (meth) acrylate, trimethylolpropane tri (meth) acrylate, (Meth) acrylate compounds such as pentaerythritol tetra (meth) acrylate, dipentaerythritol poly (meth) acrylate, fluorene di (meth) acrylate represented by the following general formula (F), di Styrenic compounds such as bilbenzene, divinylnaphthalene and dibirubiphenol, (meth)
  • (meth) acrylic acid ester compounds and (meth) acrylamide compounds are more preferred from the viewpoint of compatibility with hydrocarbon polymers having an ionic group.
  • methylene bis (meth) acrylamide and fluorene-based di (meth) atrelate represented by the following general formula (F).
  • ⁇ 1 is hydrogen or a methyl group
  • ⁇ 2 is an arbitrary organic group
  • is an integer.
  • a thermal polymerization initiator typified by a peroxide type azo type or a photopolymerization initiator is generally added.
  • a material having an optimum decomposition characteristic for a desired reaction temperature is selected and used.
  • a peroxide-based initiator having a 10-hour half-life temperature of 40 to 100 ° C. is suitable, and a polymer electrolyte material free from cracks can be produced by using such an initiator.
  • a photopolymerization initiator a carbo-Louis compound such as benzophenone and an amine combined system, A mercabtan compound, a disulfide compound, etc. can be mentioned.
  • polymerization initiators are used alone or in combination, and are used in an amount of up to about 1% by weight.
  • polymerization method and molding method known methods can be used. For example, a method of polymerizing a monomer composition formed into a thin film by a method such as inter-plate polymerization and coating in an inert gas or a reduced-pressure atmosphere.
  • a method for polymerizing a monomer composition formed into a thin film by a method such as coating in an inert gas or a reduced-pressure atmosphere will be described below.
  • the monomer composition is dissolved in a solvent, and the solution is cast on a glass plate or the like, and a film is formed by photopolymerization or thermal polymerization while removing the solvent, and then heated under heating.
  • a method of immersing in an aqueous methanol solution As conditions for immersion in an aqueous methanol solution under heating, the temperature is preferably room temperature to 120 ° C., the concentration of the aqueous methanol solution is 10 to: LOO wt%, and the time is preferably 1 minute to 72 hours.
  • the glass plate in which the monomer composition is cast is subsequently irradiated with an active ray such as ultraviolet rays, or is heated in an oven or a liquid bath to be polymerized.
  • an active ray such as ultraviolet rays
  • photopolymerization it is common to irradiate light containing a large amount of ultraviolet light from a mercury lamp or insect trap for a short time (usually 1 hour or less).
  • the temperature is gradually increased from around room temperature in an inert gas atmosphere, and the temperature is increased from 60 ° C to 200 ° C over several hours to several tens of hours. It is preferred for maintaining quality and improving reproducibility.
  • crosslinkable compound having a group represented by the following general formula (Ml) in Embodiment 4 of the polymer electrolyte material of the present invention will be described.
  • two or more kinds of such crosslinkable compounds may be used at the same time.
  • Embodiment 4 of the polymer electrolyte material of the present invention is a polymer electrolyte membrane obtained by crosslinking the polymer electrolyte material of the present invention with a crosslinkable compound having a group represented by the general formula (Ml).
  • a crosslinkable compound having a group represented by the general formula (Ml) By cross-linking with the cross-linkable compound, fuel crossover and fuel The effect which suppresses the swelling which can be anticipated can be anticipated, mechanical strength improves, and it becomes more preferable.
  • U 1 has 1 carbon atom.
  • alkyl group having up to 20 or U 2 CO group (U 2 represents an alkyl group having 1 to 20 carbon atoms).
  • Examples of the crosslinkable compound containing a group represented by the formula (Ml) used in the present invention include ML-26X, ML-24X, and the like having one organic group (Ml).
  • DM-BI25X— F 46DMOC, 46DMOIPP, 46 DMOEP (trade name, Asahi Organic Materials Co., Ltd.), DML—MBPC, DML—MBOC, DM L—OCHP ⁇ DML—PC, DML—PCHP ⁇ DML—PTBP ⁇ DML—34X, DML—EP ⁇ DML-POP, DML—OC , Dimethylol—Bis—C, Dimethylol—BisOC—P, DML—BisOC—Z, DML—BisOCHP—Z, DML—PFP, DML—PSBP, DML—MB25, DML—MTrisPC, DML—Bis25X—34XL, DML— Bis25X—P CHP (trade name, manufactured by Honshu Chemical Industry Co., Ltd.), Futaki Rack (registered trademark) MX—290 (trade name, manufactured by Sanwa Chemical Co., Ltd.), 2, 6 Dimethoxymethyl 4 t TriML—P, TriML—35
  • TM-BIP-A (trade name, manufactured by Asahi Organic Materials Co., Ltd.), TML-BP, TML-HQ, TML-pp-BPF, TML-BPA, TMOM — BP (trade name, manufactured by Honshu Chemical Industry Co., Ltd.), Futaki Rack (registered trademark) MX-280, Nicarak (registered trademark) MX-270 (trade name, manufactured by Sanwa Chemical Co., Ltd.), etc.
  • HML—TPPHBA, HML—TPHAP (trade name, manufactured by Honshu Chemical Industry Co., Ltd.) can be cited as having six. Among these, in the present invention, at least two groups represented by the above formula (Ml) are used from the viewpoint of crosslinking. What is contained is preferable.
  • the resulting polymer electrolyte material is prevented from swelling with respect to the fuel water solution, achieving both high proton conductivity and fuel crossover suppression, and has high solvent resistance. improves.
  • crosslinkable I ⁇ product is estimated to polymer by the reaction mechanism of binding to the benzene ring by condensation with the elimination of HOU 1 is crosslinked.
  • the addition amount of such a crosslinkable compound is preferably 1 to 50 parts by weight, more preferably 3 to 40 parts by weight with respect to 100 parts by weight of the polymer. If the addition amount is less than 1 part by weight, the effect of crosslinking may be insufficient, and if it exceeds 50 parts by weight, proton conductivity or mechanical strength may be insufficient.
  • the type and amount of the crosslinkable compound contained in the polymer electrolyte can be analyzed by various nuclear magnetic resonance spectra (NMR), infrared absorption spectra (IR), pyrolysis gas chromatographs and the like.
  • an example of a method for producing a polymer electrolyte material is U, a hydrocarbon polymer having an ionic group substituted with an alkali metal such as sodium, and the general formula (Ml).
  • a crosslinkable compound having a group is mixed in a solution state, cast on a support and thermally crosslinked while evaporating the solvent to obtain a self-supporting composite polymer electrolyte material. It can be produced by proton substitution of the functional group and then immersing in an aqueous methanol solution under heating.
  • the temperature is preferably room temperature to 120 ° C.
  • the concentration of the methanol aqueous solution is 10 to 100% by weight
  • the time is preferably 1 minute to 72 hours.
  • the polymer electrolyte material produced by a powerful method is low in production cost because it enables solution film formation that can achieve both high proton conductivity and suppression of fuel crossover.
  • the cross-linking effect by the cross-linkable compound can also provide solvent resistance, the catalyst paste can be applied directly to the polymer electrolyte membrane, and the production cost of the membrane electrode assembly can be increased. Can be greatly reduced, and can be used most preferably.
  • an ionic group is used from the viewpoint of compatibility.
  • the most preferred method is to prepare a polymer electrolyte material by mixing the crosslinkable compound in a solution state with the hydrocarbon-based polymer, and then, after casting, cross-linking the crosslinkable compound.
  • a compatibilizing agent can be used as necessary if the compatibility is insufficient.
  • the compatibilizer used is not particularly limited as long as it compatibilizes the hydrocarbon polymer having an ionic group and the heterocyclic polymer used.
  • linear alkylbenzene sulfonic acid Surfactant such as salt and alkyl sulfate ester salt, hydroxyl group, ester group, amide group, imido group, ketone group, sulfone group, ether group, sulfonic acid group, sulfuric acid group, phosphonic acid group, phosphoric acid group, carvone
  • examples thereof include organic compounds and polymers having a polar group such as an acid group.
  • Still another preferred embodiment of the polymer electrolyte material of the present invention is the polymer (E-2) having an ionic group and an aromatic ring in the main chain, wherein the ionic group is a sulfonic acid group.
  • the sulfonic acid group density is from 0.1 to 1.6 mmol Zg (hereinafter may be referred to as embodiment 5).
  • a preferred example of the method for producing the polymer electrolyte material 5 will be described.
  • a method of molding a polymer having a sulfonic acid group a polymer of -SO M type (M is a metal) is cast from a solution state.
  • the metal M may be any salt that can form a salt with sulfonic acid, but in terms of cost and environmental impact, Li, Na, K, Rb, Cs, Mg, Ca, Sr, Ba, Ti, V, Of these, Mn, Fe, Co, Ni, Cu, Zn, Zr, Mo, and W are preferred. Li, Na, K, Ca, Sr, and Ba are more preferred. Li, Na, and K are more preferred. . The reason is not clear, but by molding by this method, the fractions Rw and Wnf of the antifreeze water of the present invention can be obtained, and both high proton conductivity and low fuel crossover can be achieved.
  • the temperature of the heat treatment is preferably 200 to 500 ° C in terms of the fraction of antifreeze water and the fuel barrier property of the obtained polymer electrolyte component, more preferably a force of 250 to 400 ° C, and 300 More preferred is ⁇ 350 ° C.
  • a temperature of 200 ° C. or higher is preferable for obtaining the fraction of antifreeze water defined in the present invention.
  • the temperature is 500 ° C. or lower, it is possible to prevent the polymer from decomposing.
  • the heat treatment time is preferably 1 minute to 24 hours in terms of the fraction of antifreeze water, proton conductivity, and productivity of the obtained polymer electrolyte component, and more preferably 3 minutes to 1 hour. More preferred is 5 to 30 minutes. If the heat treatment time is too short, the effect is low and the fraction of the antifreeze water of the present invention may not be obtained. If the heat treatment time is too long, decomposition of the polymer may occur and proton conductivity may be reduced, and productivity may be low. Become.
  • the temperature is room temperature to 120 ° C
  • the concentration of the aqueous methanol solution is 10 to: LOO wt%
  • the time is preferably 1 minute to 72 hours.
  • the polymer electrolyte material of the present invention is used for a fuel cell, it is usually used in the form of a membrane as a polymer electrolyte membrane or an electrode catalyst layer.
  • the high molecular electrolyte material of the present invention is not limited to a membrane shape, but other than the above-mentioned membrane shape, plate shape, fiber shape, hollow fiber shape, particle shape, lump shape, etc. It can take various forms.
  • the solvent used for film formation is not particularly limited as long as it dissolves the polymer and can be removed thereafter.
  • N, N-dimethylacetamide (DMAc), N, N-dimethylformamide (DMF), N-methyl — Aprotic polar solvents such as 2-pyrrolidone (NMP), dimethyl sulfoxide (DMSO), sulfolane, 1,3-dimethyl-2-imidazolidinone (DMI), hexamethylphosphontriamide, or ethylene glycol monomono methinolayer Alkylene glycol monoalkyl ethers such as tenole, ethylene glycolenomonochinenoatenole, propylene glycolenomonomonochinenoether, propylene glycolenomonochinenoatenole are preferably used.
  • Solvents that may be used in combination with these solvents include methanol, alcohols typified by ethanol, acetone, ketones typified by 2-butanone, esters typified by ethyl acetate and butyl acetate, and jets. Examples include ethers typified by tilether, tetrahydrofuran and dioxane, amines typified by triethylamine, ethylenediamine and the like.
  • the film thickness can be controlled by the solution concentration or the coating thickness on the substrate. When the film is formed from a molten state, a melt press method or a melt extrusion method can be used.
  • polymer electrolyte material of the present invention has voids, a porosity of 5 to 80% by volume, an average pore diameter of voids of less than 50 nm, and an ionic group It is a polymer electrolyte material that exists inside the voids (hereinafter may be referred to as embodiment 6).
  • the polymer constituting the polymer electrolyte material (embodiment 6) of the present invention may be a thermosetting resin or a tanned crystalline or amorphous thermoplastic resin!
  • inorganic substances, inorganic oxides, organic-inorganic composites, etc. may be included, but it is configured so that voids can be formed and ionic groups can exist inside the voids! Use something.
  • At least one monomer constituting the polymer preferably has an ionic group or can be introduced with an ionic group by post-treatment.
  • introduction means a state in which an ionic group is chemically bonded to the polymer itself, a state in which a substance having an ionic group is strongly adsorbed on the polymer surface, or a substance having an ionic group. This means that the ionic group is not easily removed by a physical means such as washing, such as in a state where is doped.
  • a repeating unit having an ionic group and a repeating unit having no ionic group coexist alternately to form an ionic group. It is preferable that the repeating continuity of the repeating unit having a bismuth be appropriately divided to such an extent that proton conduction is not impaired. By doing so, it is possible to prevent the portion of the repeating unit having an ionic group from containing excessively low melting point water or the like, that is, to suppress fuel crossover. In addition, the water resistance of the polymer electrolyte material can be improved, and cracks can be prevented from occurring or collapsing.
  • a copolymer of a monomer having an ionic group or capable of being introduced and a monomer other than that is preferable Furthermore, from the balance of fuel crossover and proton conductivity, it is preferable that units having ionic groups and units not so are connected alternately, that is, there are many portions of alternating polymerization.
  • a copolymer having many repeating units of alternating copolymerization can be obtained by copolymerizing a bull monomer having a positive e value and a negative one.
  • the e value here represents the charge state of the vinyl group or radical end of the monomer, and rpQLYMER This is the e value of the Qe concept described in detail in "HANDBOOK" (authored by J. BRANDRUP et al.)
  • Examples of the vinyl monomer that can be used in Embodiment 6 include those represented by the following general formulas (D1) to (D3).
  • J represents a substituent selected from hydrogen, methyl group and cyano group
  • J represents hydrogen
  • 1 2 represents a substituent selected from an alkyl group having 1 to 20 prime numbers, an aryl group, and derivatives thereof.
  • J represents an alkyl group having 1 to 20 carbon atoms, an aryl group, an aralkyl group and a cycloa
  • J represents a substituent selected from hydrogen and methyl groups
  • J represents hydrogen, hydroxyl, sulfo
  • vinyl monomer examples include acrylonitrile, meta-titolyl-tolyl, styrene, a -methylol styrene, p-methylol styrene, o-ethyl styrene, m-ethynol styrene, p-ethyl styrene, p-tert-butyl styrene, Aromatic butyl monomers such as chlorostyrene, 1,1-diphenylethylene, urnaphthalene, birbiphenyl, indene, and acenaphthylene, methyl (meth) acrylate, cyclohexyl (meth) acrylate, isobutyl (Meth) Atarylate, Adamantyl (Meth) Atarylate, Fail (Meth) Atarylate , Benzyl (meth) acrylate, 2-hydroxyethyl (
  • aromatic vinyl monomers such as styrene, a-methylstyrene, vinylenonaphthalene, vinylenobiphenylene, indene, and acenaphthylene is preferred from the viewpoint of easy introduction of ionic groups and polymerization workability. .
  • aromatic such as styrene with negative e value or a-methylstyrene
  • a bull monomer which has a positive e value and is difficult to introduce an ionic group for the reasons described above.
  • the polymer electrolyte material of the present invention (Aspect 6) more preferably has a crosslinked structure.
  • the definition of the crosslinked structure is as described above.
  • the cross-linking here may be chemical cross-linking or physical cross-linking.
  • This cross-linked structure can be formed, for example, by copolymerization of polyfunctional monomers or irradiation with radiation such as electron beams or ⁇ rays.
  • cross-linking with a polyfunctional monomer is preferable from the economical viewpoint.
  • polyfunctional monomer employed in the formation of the crosslinked structure include ethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, triethylene glycol di (meth) acrylate, glycerol (Di ⁇ tri) (meth) atarylate, trimethylolpro
  • Multivalents such as diato erythritol (di ⁇ tri ⁇ tetra ⁇ penta ⁇ hexa) (meth) acrylate, di (meth) acrylate biphenol, bisphenoxyethanol (meth) full orange attalate, etc.
  • monomers having a phosphazene skeleton with a polymerizable polyfunctional group introduced from dichlorophosphazene polyfunctional monomers having a heteroatom cyclic skeleton such as triallyl diisocyanurate, bismaleimide, methylenebis Examples include acrylamides.
  • aromatic polyfunctional monomers such as dibenzylbenzene, ethylene glycol di (meth) acrylate, bisphenol
  • polyhydric alcohols such as enoxyethanol (meth) fluorene acrylate, tri-, tetra-, penta-, and hex- (meth) acrylates.
  • the molecular weight of the copolymer obtained as described above is preferably 4000 or more in terms of weight average molecular weight from the viewpoint of maintaining the form.
  • the upper limit is not particularly limited because it may be a crosslinked structure.
  • polyfunctional monomer used for forming the crosslinked structure one kind may be used alone, or two or more kinds may be used in combination.
  • the polymer electrolyte material (Aspect 6) of the present invention has voids, and these voids are filled with a medium such as water during normal use as a polymer electrolyte material. Used. Normally, it is considered that the fuel crossover increases if there are voids in the polymer electrolyte material. However, in the polymer electrolyte material having the voids of the present invention (Aspect 6), the fuel crossover can be achieved by providing specific voids. High proton conductivity was achieved while suppressing overload.
  • the polymer electrolyte material of the present invention (Aspect 6) has a small change in the degree of swelling of the entire polymer electrolyte material due to the methanol concentration in methanol water, for example, when methanol water is used as the fuel.
  • the higher the concentration of fuel the greater the effect of suppressing methanol crossover compared to existing materials (for example perfluorinated electrolyte polymers).
  • the porosity of the polymer electrolyte material of Embodiment 6 is 5 to 80% by volume, preferably 10 to 60% by volume, and more preferably 20 to 50% by volume.
  • Fuel crossover may be related to the amount of water in the polymer electrolyte material, but the water content can also be optimized by controlling the porosity.
  • the porosity can be determined by the balance between the desired proton conductivity and the fuel crossover value. From the viewpoint of improving proton conductivity, the porosity is set to 5% or more, and from the viewpoint of suppressing fuel crossover, the porosity is set to 80% or less.
  • This porosity is the volume after immersion for 24 hours in water at 25 ° C for polymer electrolyte materials.
  • the true density D is the polymer density measuring device ULTRAP manufactured by UASA Iotas Co., Ltd.
  • the form of the void may be, for example, a film-like form in which the surface force on one side of the film penetrates the surface on the opposite side (continuous hole) or an independent hole. From the viewpoint of good properties, continuous pores are preferred. Also, the hole is branched.
  • This void may be a continuous hole or a single hole, but proton conductivity and suppression of fuel crossover. From the viewpoint of balance of the control effect, an irregular network void, or in other words, a three-dimensional network structure in which polymers are three-dimensionally connected is preferable. In addition, when this void is a continuous hole, it is preferable that all the paths connected to the front and back are 50 nm or less.
  • the average pore diameter of the voids is less than 50 nm, preferably 30 nm or less, more preferably lOnm or less. When it is 50 nm or more, the fuel crossover suppression effect tends to be insufficient. On the other hand, the lower limit of the average pore diameter is 0.1 nm or more, and 0.1 nm or more is preferable, so that proton conduction can be ensured by water permeating into the polymer electrolyte material.
  • the pore diameter of the void is expressed by the average value of the void diameter of the cross section of the polymer electrolyte material.
  • This void can be measured by observation with a scanning electron microscope (SEM) or a transmission electron microscope (TEM).
  • SEM scanning electron microscope
  • TEM transmission electron microscope
  • the average value is the pore diameter of the pores, with the maximum diameter of the spots stained in spots from the image taken by dyeing 100 nm ⁇ 30 nm ultrathin slices of polyelectrolyte material with osmium tetroxide. 20 It can be determined from one or more, preferably 100 or more voids. Usually measured with 100 voids.
  • an ionic group may be present in the polymer electrolyte material (embodiment 6) of the present invention.
  • an ionic group is present inside the void.
  • the interior refers to the inner surface of the void and the void portion itself.
  • an ionic group is present on the inner surface of the void and is in the state. It is possible that ionic groups are present in portions other than the inside of the void.
  • An ionic group is present when the ionic group is chemically bonded to the polymer itself, when a substance having an ionic group is strongly adsorbed on the polymer surface, or when the ionic group is This refers to a state in which the contained substance is held in the voids, and the ionic group is not easily detached from the voids by physical means such as washing.
  • the monomer may have an ionic group, it may be introduced after the polymerization. In view of the wide selection of raw materials and the ease of monomer preparation, it is better to introduce ionic groups after polymerization.
  • a membrane polymer is obtained from a monomer composition containing a monomer capable of introducing an ionic group and a pore-opening agent. Or after forming a polymer composition containing a polymer capable of introducing an ionic group and a pore opening agent, and removing the pore opening agent from the inside of the membrane; It includes a step of introducing an ionic group.
  • aromatic monomers such as styrene or a-methylstyrene having a negative e value can be used as the monomer capable of introducing an ionic group.
  • radical polymerization is preferable from the viewpoint of workability.
  • the radical generating initiator include various peroxide compounds, azo compounds, peroxides, cerium ammonium salts and the like.
  • Examples of the photoinitiator include a carbonyl compound, a peroxide, an azo compound, a sulfur compound, a halogen compound, and a metal salt.
  • Cast polymerization is a mixture of various monomers, pore-opening agents, initiators, etc., injected between two plates, sheets, and films set to a predetermined clearance with a gasket spacer. It is a method of polymerizing by applying energy such as heat or light, and it may be a single wafer type or a continuous type.
  • a photoinitiator represented by Darocur (registered trademark), Irgacure (registered trademark) (manufactured by CIBA) or the like was added to the monomer composition to be used.
  • the composition solution is injected between two sheets of quartz glass, polyethylene, polypropylene or amorphous polyolefin, sealed, and irradiated with an ultraviolet lamp.
  • Illuminance is 0.01 ⁇ : about LOOmWZc m 2 , 0 It can be polymerized by light irradiation in about 1 second to 1 hour.
  • the pore opening agent need not itself have the ability to introduce ionic groups directly. That is, the penetration of a substance capable of introducing an ionic group into a polymer is replaced with a substance capable of introducing an ionic group by decomposition, reaction, evaporation, sublimation, or outflow, or a solvent containing the substance. By doing so, at least a part of the pore-opening agent is removed, and the ionic group is easily introduced into the portion where the ionic group can be introduced inside the polymer, not just the surface layer of the polymer.
  • the pore-opening agent occupies a part of the monomer composition or polymer composition at the time of polymerization or film formation, and is removed after the polymerization or film formation, so that the inside of the polymer electrolyte material can be removed. This forms voids.
  • the types of pore-opening agents include compatibility with polymer materials, chemical solutions and solvents used for extraction and decomposition, heating, solvent immersion, light, electron beam, radiation treatment, and other methods for removing pore-opening agents.
  • Yotsu Organic compounds, solvents, soluble polymers, salts, metals and the like can be appropriately selected.
  • the pore-opening agent may be in the form of a liquid or a powder, and the oligomer, unreacted monomer or by-product that also has the monomer power used is actively left as a pore-opening agent. You may take a method. Further, it may be a liquid and solid by reacting, such as a metal alkoxide.
  • an opening agent having a boiling point or a decomposition temperature higher than the polymerization temperature is preferable.
  • pore-opening agent examples include ethylene carbonate, propylene carbonate, methyl cellosolve, diglyme, toluene, xylene, trimethylbenzene, ⁇ -butyrolatatone, dimethylformamide, dimethylacetamide, ⁇ -methyl-2-pyrrolidone, 1,4 Dioxane, carbon tetrachloride, dichloromethane, nitromethane, nitroethane, acetic acid, acetic anhydride, dioctyl phthalate, di- ⁇ -octyl phthalate, trioctyl phosphate, decalin, decane, hexadecane, tetrabutoxy titanium, tetraisopropoxy titanium , Tetramethoxysilane, tetraethoxysilane and the like.
  • One type may be used alone, or two or more types may be used in combination.
  • the amount of the pore-opening agent may be appropriately set depending on the combination of the pore-opening agent and the monomer used, the desired porosity, and the pore diameter. It is preferable to add 80% by weight, more preferably 5 to 50% by weight, and still more preferably 10 to 30% by weight. When the amount of the strong pore-opening agent used is less than 1% by weight, the ionic group is not easily introduced into the polymer, resulting in poor proton conductivity. On the other hand, if it exceeds 80% by weight, the low melting point water content increases and the fuel permeation amount increases, which is not preferable.
  • the pore-opening agent is removed from the film. This is because of void formation.
  • the film may be immersed in a solvent capable of removing the pore opening agent.
  • the solvent from which the pore-opening agent can be removed is appropriately selected from water and organic solvents. Selected.
  • organic solvents include halogenated hydrocarbons such as chlorophenol, 1,2-dichloroethane, dichloromethane and perchloroethylene, alcohols such as nitromethane and nitroethane, and alcohols such as methanol and ethanol.
  • Aromatic hydrocarbons such as toluene and benzene, aliphatic hydrocarbons such as hexane, heptane and decane, esters such as ethyl acetate, butyl acetate and ethyl lactate, jetyl ether, tetrahydrofuran, 1, 4- Ethers such as dioxane and -tolyls such as acetonitrile are preferred.
  • One of these may be used alone, or two or more may be used in combination.
  • the solvent may be removed by drying or the like.
  • an ionic group into the polymer in the film.
  • An ionic group is introduced by an agent.
  • the ionic group-introducing agent here is a compound that can introduce an ionic group into a part of repeating units capable of an ionic group constituting the polymer, and a commonly known one can be used. it can.
  • the ionic group introducing agent when introducing a sulfonic acid group, concentrated sulfuric acid, chlorosulfonic acid, fuming sulfuric acid, thiosulfuric acid trioxide, etc. are suitable, and the reaction control is easy and the productivity is improved. Most preferred from the viewpoint is chlorosulfonic acid. Further, when a sulfonimide group is introduced, a sulfonamide is preferable.
  • an ionic group into the copolymer in the film specifically, means for immersing the film in an ionic group introducing agent or a mixture of an ionic group introducing agent and a solvent is employed. do it.
  • the solvent mixed with the ionic group introducing agent can be used as long as it does not react with the ionic group introducing agent or can penetrate into the polymer where the reaction is intense. Examples of such solvents include chlorophenol, 1,2-dichloroethane, dichloromethane, halogenated hydrocarbons such as perchloroethylene, nitrohydrocarbons such as nitromethane and nitroethane, and -tolyls such as acetonitrile. .
  • Single or two types of solvent and ionic group introduction agent It may be a mixture of more than one kind.
  • the solvent capable of removing the pore-opening agent a solvent capable of not reacting with the ionic group introducing agent or capable of penetrating into the polymer body in which the reaction is intense is used.
  • the solvent capable of removing the pore-opening agent may be a single system or a mixture of two or more types.
  • an ionic group introduction aid for assisting the introduction of ionic groups is contained in the monomer Z polymer composition before film formation, the ionic group introduction aid is also included.
  • a removable solvent is preferred.
  • the solvent capable of removing the pore-opening agent includes, for example, black mouth form, 1,2-dichloro mouth ethane, halogenated hydrocarbons such as dichloromethane and perchloroethylene, nitromethane, nitroethane and the like.
  • halogenated hydrocarbons such as dichloromethane and perchloroethylene
  • nitromethane nitroethane and the like.
  • -tolyls such as -trocarbonized hydrocarbons and acetonitrile are preferred.
  • Rw and Wnf as defined by the present invention can be achieved.
  • the metal M may be any salt as long as it can form a salt with sulfonic acid, but the price and the environmental load, Li, Na, K :, Rb, Cs, Mg, Ca, Sr, Ba Ti, V, Mn, Fe, Co, Ni, Cu, Zn, Zr, Mo, W, etc. are preferred Among these, Li, Na, K, Ca, Sr, Ba are more preferred Li, Na, K is more preferable. The reason is not clear, but by this method, the fractions Rw and Wnf of the antifreeze water of the present invention can be obtained, and both high proton conductivity and low fuel crossover can be achieved. [0232] How to make polymer electrolyte member SO M type (M is metal) by ion exchange
  • an SO H type polymer electrolyte member an aqueous solution of M salt or M hydroxide
  • the method of immersing in is increased.
  • the temperature of the heat treatment is preferably 200 to 500 ° C, more preferably 250 to 400 ° C in terms of the fraction of antifreeze water and the fuel barrier property of the obtained polymer electrolyte component, More preferred is ⁇ 350 ° C.
  • a temperature of 200 ° C. or higher is preferable for obtaining the fraction of antifreeze water defined in the present invention.
  • the temperature is 500 ° C. or lower, it is possible to prevent the polymer from decomposing.
  • the heat treatment time is preferably 1 minute to 24 hours in terms of the fraction of antifreeze water, proton conductivity and productivity of the obtained polymer electrolyte component, and more preferably 3 minutes to 1 hour. More preferred is 5 to 30 minutes. If the heat treatment time is too short, the effect is low and the fraction of the antifreeze water of the present invention may not be obtained. If the heat treatment time is too long, decomposition of the polymer may occur and proton conductivity may be reduced, and productivity may be low. Become.
  • the conditions for immersion in an aqueous methanol solution under heating are as follows: the temperature is room temperature to 120 ° C, the concentration of the aqueous methanol solution is 10 to: LOO wt%, and the time is preferably 1 minute to 72 hours.
  • the polymer electrolyte material of the present invention can be used as various polymer electrolyte parts when used for fuel cells.
  • Examples of polymer electrolyte parts are polymer electrolyte membranes and electrode catalyst layers.
  • the film thickness of the polymer electrolyte membrane comprising the polymer electrolyte material of the present invention a film having a thickness of usually 3 to 2000 ⁇ m is preferably used. A thickness of less than 3 ⁇ m is preferred to obtain a practically strong membrane strength. A thickness of less than 2000 m is preferred to reduce membrane resistance, that is, to improve power generation performance. A more preferable range of the film thickness is 5 to: LOOO / z m A more preferable range is 10 to 500 ⁇ m.
  • the film thickness can be controlled by various methods. For example, when forming a film by the solvent casting method, it can be controlled by the concentration of the solution or the coating thickness on the substrate, and when forming the film by the cast polymerization method, for example, the thickness of the spacer between the plates. Can also be prepared. Further, the polymer electrolyte material of the present invention includes other materials within a range not impairing the object of the present invention. The components can be copolymerized or other polymer compounds can be blended. In addition, as long as the properties are not impaired, stabilizers such as hindered phenol, hindered amine, zeolite and phosphorus antioxidants, plasticizers, colorants, mold release agents, etc. Additives can be added.
  • stabilizers such as hindered phenol, hindered amine, zeolite and phosphorus antioxidants, plasticizers, colorants, mold release agents, etc. Additives can be added.
  • the polymer electrolyte component of the present invention is formed using the polymer electrolyte material of the present invention.
  • the shape can take various forms such as a plate shape, a fiber shape, a hollow fiber shape, a particle shape, and a lump shape depending on the intended use.
  • Processing into these shapes can be performed by a coating method, extrusion molding, press molding, cast polymerization method, etc., but when a three-dimensional cross-linked structure is added to the polymer electrolyte material, A cast polymerization method using heating or light between glass plates or continuous belts is preferred.
  • the membrane electrode assembly of the present invention comprises the polymer electrolyte material of the present invention.
  • the membrane electrode assembly comprises a membrane made of a polymer electrolyte material, and an electrode made of an electrode catalyst layer and an electrode substrate.
  • the electrode catalyst layer is a layer containing an electrode catalyst that promotes an electrode reaction, an electron conductor, an ion conductor, and the like.
  • a noble metal catalyst such as platinum, palladium, ruthenium, nickel, iridium and gold is preferably used.
  • a noble metal catalyst such as platinum, palladium, ruthenium, nickel, iridium and gold is preferably used.
  • One of these may be used alone, or two or more of them, such as alloys and mixtures, may be used in combination.
  • a carbon material and an inorganic conductive material are preferably used in terms of electron conductivity and chemical stability.
  • amorphous and crystalline carbon materials are mentioned.
  • carbon black such as channel black, thermal black, furnace black, and acetylene black is preferably used from the viewpoint of electron conductivity and specific surface area.
  • Furnace Black includes Cabot Vulcan (registered trademark) XC-72, Vulcan (registered trademark) P, Black Pearls (registered trademark) 880, Luck Pearls (registered trademark) 1100, Black Pearls (registered trademark) 1300, Black Pearls (registered trademark) 2000, Regal (registered trademark) 400, Ketjen Black 'Ketjen Black (registered trademark) EC manufactured by International Corporation, EC600JD, # 3150, # 3250 manufactured by Mitsubishi Chemical Co., Ltd. and the like, and acetylene black includes Denka Black (registered trademark) manufactured by Denki Kagaku Kogyo Co., Ltd.
  • the electron conductor is uniformly dispersed with the catalyst particles. For this reason, it is preferable that the catalyst particles and the electron conductor are well dispersed in advance as a coating solution. Furthermore, it is also preferable to use catalyst-supported carbon or the like in which the catalyst and the electron conductor are integrated as the electrode catalyst layer. By using this catalyst-supporting carbon, the utilization efficiency of the catalyst is improved, and it can contribute to the improvement of the battery performance and the cost reduction.
  • a conductive agent As such a conductive agent, the above-mentioned force-bon black is preferably used.
  • an ion conductive substance (ion conductor) used in the electrode catalyst layer generally, various organic and inorganic materials are known.
  • a polymer having an ionic group such as a sulfonic acid group, a carboxylic acid group, or a phosphoric acid group (an ion conductive polymer) is preferably used.
  • An electrolyte material is preferably used.
  • the perfluorinated ion conductive polymer for example, Nafion (registered trademark) manufactured by DuPont, Aciplex (registered trademark) manufactured by Asahi Kasei Corporation, and Flemion (registered trademark) manufactured by Asahi Glass Co., Ltd. are preferably used.
  • These ion conductive polymers are provided in the electrode catalyst layer in the state of a solution or a dispersion.
  • the solvent for dissolving or dispersing the polymer is not particularly limited.
  • a polar solvent is also preferable for the point of solubility of the conductive polymer.
  • the ionic conductor Since the catalyst and the electronic conductors are usually powders, the ionic conductor usually plays a role of solidifying them.
  • the ionic conductor When producing an electrode catalyst layer, the ionic conductor is pre-added to a coating liquid mainly composed of electrode catalyst particles and an electron conductor, and applied in a uniformly dispersed state.
  • the preferred force electrode catalyst layer may be applied before applying the ion conductor.
  • examples of the method for applying the ion conductor to the electrode catalyst layer include spray coating, brush coating, dip coating, die coating, curtain coating, and flow coating, and are not particularly limited.
  • the amount of the ionic conductor contained in the electrode catalyst layer should be appropriately determined according to the required electrode characteristics and the conductivity of the ionic conductor used, and is not particularly limited.
  • the range of 1 to 80% is preferable in terms of the quantity ratio, and the range of 5 to 50% is more preferable. If the ionic conductor is too low, the ionic conductivity is too low, and if it is too high, the gas permeability may be hindered.
  • the electrode catalyst layer may contain various substances in addition to the catalyst, the electron conductor, and the ion conductor.
  • a polymer other than the above-mentioned ion conductive polymer may be included.
  • Such polymers include, for example, polyfluoride (PVF), poly (vinylidene fluoride) (PVDF), polyhexafluoropropylene (FEP), polytetrafluoroethylene, polyperfluoroalkyl biphenyl.
  • polymers containing fluorine atoms such as ether (PFA), copolymers of these, copolymers of monomer units constituting these polymers with other monomers such as ethylene and styrene, or blend polymers.
  • PFA ether
  • the content of these polymers in the electrode catalyst layer is preferably in the range of 5 to 40% by weight. If the polymer content is too high, the electron and ionic resistance will increase and the electrode performance will tend to decrease.
  • the electrode catalyst layer when the fuel is a liquid or gas, the electrode catalyst layer also facilitates the discharge of by-products accompanying the electrode reaction, which preferably has a structure through which the liquid or gas easily permeates. The structure is preferred.
  • the electrode base material one that can collect current or supply power with low electrical resistance can be used.
  • an electrode substrate is particularly used. It does not have to be.
  • the constituent material of the electrode base material include carbonaceous and conductive inorganic substances.
  • the form is not particularly limited, and for example, it is used in the form of a fiber or particles, but a fibrous conductive material (conductive fiber) such as carbon fiber is preferred from the viewpoint of fuel permeability!
  • Nonwoven fabrics can be used, and misaligned structures can also be used.
  • carbon paper TGP series, SO series manufactured by Toray Industries, Inc., carbon cloth manufactured by E-TEK, etc. are used.
  • plain weaving, oblique weaving, satin weaving, crest weaving, binding weaving and the like are not particularly limited.
  • the nonwoven fabric can be used without any particular limitation, such as a paper making method, a needle punch method, a spun bond method, a water jet punch method, or a melt blow method. It may also be a knitted fabric.
  • plain fabrics using flame-resistant spun yarns are carbonized or graphitized woven fabrics
  • flame-resistant yarns are nonwoven fabrics made by needle punching or water jet punching.
  • a non-woven fabric carbonized or graphitized after processing, a mat non-woven fabric by a paper making method using a flame-resistant yarn, a carbonized yarn or a graphite yarn is preferably used.
  • the carbon fibers include polyacrylo-tolyl (PAN) -based carbon fibers, phenol-based carbon fibers, pitch-based carbon fibers, and lane-based carbon fibers. Etc.
  • PAN polyacrylo-tolyl
  • the electrode base material has a water repellent treatment for preventing gas diffusion / permeability deterioration due to water retention, a partial water repellent treatment for forming a water discharge path, a hydrophilic treatment, and a resistance. It is also possible to add carbon powder for lowering the temperature.
  • the polymer electrolyte fuel cell of the present invention it is preferable to provide a conductive intermediate layer containing at least an inorganic conductive substance and a hydrophobic polymer between the electrode base material and the electrode catalyst layer.
  • the electrode base material is a carbon fiber woven fabric or a nonwoven fabric having a large porosity
  • by providing the conductive intermediate layer it is possible to suppress performance degradation due to the electrode catalyst layer permeating into the electrode base material.
  • an electrode catalyst layer or an electrode catalyst layer and an electrode substrate The method for producing a membrane electrode assembly (MEA) using a material is not particularly limited! /.
  • Known methods for example, the chemical method described in “Electrochemistry” 1985, 53, 269. “J. Electrochem. Boc.”): Electrochemical Science ana fechnology, 1988, 135 (9 ), 2209. can be applied. It is a preferable method to integrally form by hot pressing.
  • the temperature and pressure may be appropriately selected depending on the thickness of the polymer electrolyte membrane, the moisture content, the electrode catalyst layer and the electrode substrate.
  • the polymer electrolyte membrane may be pressed in a water-containing state, or may be bonded with a polymer having ion conductivity.
  • the polymer electrolyte material of the present invention is molded into a polymer electrolyte component such as a polymer electrolyte membrane or an electrode catalyst layer, or MEA, Rw and Z or Wnf as defined in the present invention are used.
  • a polymer electrolyte component such as a polymer electrolyte membrane or an electrode catalyst layer, or MEA, Rw and Z or Wnf as defined in the present invention are used.
  • the polymer electrolyte component can be regarded as a polymer electrolyte material.
  • the polymer electrolyte membrane includes a porous membrane, a reinforcing material such as a fiber, a fabric, or a fine particle, and an additive such as a stabilizer, or a mixture of a plurality of materials.
  • a reinforcing material such as a fiber, a fabric, or a fine particle
  • an additive such as a stabilizer, or a mixture of a plurality of materials.
  • the electrode catalyst layer is regarded as a polymer electrolyte material while containing the catalyst metal, catalyst-supported carbon, etc., and the weight measurement and the Wf, Wfc, Wt, Wnf Etc. can be measured.
  • the measurement may be performed after the polymer electrolyte component is decomposed or separated.
  • the fuel for the polymer electrolyte fuel cell of the present invention include oxygen, hydrogen and methane, ethane, propane, butane, methanol, isopropyl alcohol, acetone, ethylene glycol, formic acid, acetic acid, dimethyl ether, hydroquinone, and cyclohexane.
  • examples thereof include organic compounds having 1 to 6 carbon atoms and mixtures of these with water, and may be one kind or a mixture of two or more kinds.
  • a fuel containing an organic compound having 1 to 6 carbon atoms is preferably used from the viewpoint of power generation efficiency and simplification of the entire battery system, and methanol aqueous solution is particularly preferable in terms of power generation efficiency.
  • the content of the organic compound having 1 to 6 carbon atoms in the fuel supplied to the membrane electrode assembly is preferably 1 to 100% by weight. By setting the content to 1% by weight or more, a practical high energy capacity can be obtained.
  • a sample (approx. 0.2 g) was immersed in a 30% aqueous methanol solution (over 1000 times the weight of the sample by weight) at 60 ° C for 12 hours with stirring, and then pure water (weighed the sample amount by weight) at 20 ° C.
  • the sample was immersed for 24 hours with stirring in a mixture of 1000 times or more, and further immersed in fresh pure water (at least 1000 times the sample amount by weight ratio) at 20 ° C for 24 hours with stirring.
  • the obtained sample was dried in a vacuum dryer (50 ° C, full vacuum, 24 hours).
  • the weight average molecular weight of the polymer was measured by GPC.
  • Tosoh's HLC-8022GPC as an integrated device for UV detector and differential refractometer, and Tosoh's TSK as a GPC column Use two gel SuperHM-H (inner diameter 6. Omm, length 15 cm), N-methyl-2-pyrrolidone solvent (N-methyl-2-pyrrolidone solvent containing lOmmol / L of lithium bromide, flow rate 0. Measurement was performed at 2 mLZmin, and the weight average molecular weight was determined by standard polystyrene conversion.
  • the sample was immersed in a 30% methanol aqueous solution (over 1000 times the weight of the sample by weight ratio) at 60 ° C for 12 hours with stirring, and then pure water (1000% of the sample amount by weight ratio) at 20 ° C. Soak it for 24 hours with stirring and remove it, wipe off excess surface water with gauze as quickly as possible, and place it in a sealed sample container where the weight Gp has been measured. After crimping and measuring the total weight Gw of the sample and the closed sample container as quickly as possible, the differential scanning calorimetry (DSC) was immediately applied.
  • DSC differential scanning calorimetry
  • the temperature is first cooled from room temperature to 30 ° C at a rate of 10 ° CZ, then heated to 5 ° C at a rate of 0.3 ° CZ. Measurements were made at
  • DSC device DSC Q100 manufactured by TA Instruments
  • Sample pan Alumina-coated aluminum sealed sample container
  • the film-like sample was immersed in a 30% methanol aqueous solution (at least 1000 times the sample amount by weight) at 60 ° C for 12 hours with stirring, and then pure water (1 000 of the sample amount by weight) at 20 ° C. After stirring for 24 hours with stirring, the proton conductivity was measured as quickly as possible by the constant potential alternating current impedance method after being taken out in an atmosphere at 25 ° C and a relative humidity of 50-80%.
  • the film-like sample was immersed in a 30% methanol aqueous solution (at least 1000 times the sample amount by weight) at 60 ° C for 12 hours with stirring, and then pure water (1 000 of the sample amount by weight) at 20 ° C. 30% by weight methanol at 20 ° C Measurement was performed using an aqueous solution.
  • a sample membrane was sandwiched between H-type cells, and pure water (60 mL) was placed in one cell, and a 30 wt% aqueous methanol solution (60 mL) was placed in the other cell.
  • the cell capacity was 80 mL each.
  • the area of the opening between the cells was 1.77 cm 2 . Both cells were stirred at 20 ° C.
  • the amount of methanol eluted in pure water at the time of 1 hour, 2 hours and 3 hours was measured and quantified by Shimadzu gas chromatography (GC-2010). The methanol permeation amount per unit time was determined from the slope of the graph. The value is shown per unit area.
  • the sample used was a polymer electrolyte membrane immersed in pure water with a weight of 1000 times weight at 25 ° C for 24 hours.After wiping off water droplets on the surface, a fully automatic direct-reading haze computer (Suga Test Machine) The haze value (Hz%) was measured using HGM-2DP).
  • the polymer electrolyte material (approximately 0.1 lg) as a specimen was thoroughly washed with pure water, and then vacuum-dried at 40 ° C for 24 hours to measure the weight.
  • the polymer electrolyte material was immersed in 1000 times the weight of N-methylpyrrolidone and heated in a sealed container at 50 ° C. for 5 hours with stirring.
  • filtration was performed using filter paper (No. 2) manufactured by Advantech. During filtration, the filter paper and the residue were washed with the same solvent 1000 times the weight, and the eluate was sufficiently eluted in the solvent.
  • the weight loss was calculated by drying the residue under vacuum at 40 ° C for 24 hours and measuring the weight.
  • the film-like sample was immersed in a 30% methanol aqueous solution (at least 1000 times the sample amount by weight) at 60 ° C for 12 hours with stirring, and then pure water (1 000 of the sample amount by weight) at 20 ° C. After stirring for 24 hours with stirring, the film was taken out and the membrane was bent 90 °. The state of the film at this time was judged visually. A with no fracture and no cracks, B with some cracks, and C with fractures.
  • MEA membrane electrode assembly
  • the MEA was evaluated by flowing air to the sword side. In the evaluation, a constant current was passed through the MEA and the voltage at that time was measured. Measurements were continued until the current was increased gradually until the voltage dropped below 10 mV.
  • the output (mWZcm 2 ) is the maximum force (per unit area of MEA) that is the output of the product of the current and voltage at each measurement point.
  • the energy capacity was calculated by the following formula (n4) based on the output, MCO at MEA.
  • the MCO at the MEA sampled the exhaust gas from the power sword with a collection tube. This was evaluated using a total organic carbon meter TOC-VCSH (manufactured by Shimadzu Corporation) or Maicro GC CP-4900 (gas chromatograph manufactured by GL Sciences). MCO was calculated by measuring the total of MeOH and carbon dioxide in the sampling gas.
  • volume Volume of fuel (calculated as 10 mL in this example)
  • a commercially available naphthion (registered trademark) 117 membrane (manufactured by DuPont) was used to evaluate ionic conductivity, MCO and haze, and weight loss relative to N-methylpyrrolidone.
  • Naphion (registered trademark) 117 membrane is immersed in 5% hydrogen peroxide-hydrogen water at 100 ° C for 30 minutes, and then immersed in 5% dilute sulfuric acid at 100 ° C for 30 minutes. Washed well with ionic water.
  • Table 1 The evaluation results are summarized in Table 1. The methanol permeation amount was small when Rw was small.
  • NMP N-methylpyrrolidone
  • the resulting sulfonated polymer had a sulfonic acid group density of 1.8 mmolZg.
  • the polymer (Na type) obtained in Synthesis Example 2 is made into a 25 wt% solution using N-methylpyrrolidone as a solvent, the solution is cast on a glass substrate, dried at 100 ° C for 4 hours, and the solvent is removed. Removed. Further, the temperature was raised to 200 to 325 ° C. over 1 hour in a nitrogen gas atmosphere, heat-treated under the condition of heating at 325 ° C. for 10 minutes, and then allowed to cool. After immersing in 1N hydrochloric acid for 1 day or more and replacing the proton, it was immersed in a large excess of pure water for 1 day or more and washed thoroughly. The obtained film was a light yellow transparent flexible film.
  • the sulfone polymer obtained in Synthesis Example 7 was substituted with Na by immersing with saturated saline, and then a solution containing N, N-dimethylacetamide as a solvent was cast on a glass substrate and applied at 100 ° C. And dried for 4 hours to remove the solvent. Furthermore, the temperature was raised from 200 to 300 ° C over 1 hour in a nitrogen gas atmosphere, heat-treated at 300 ° C for 10 minutes, and then allowed to cool. After immersing in 1N hydrochloric acid for 3 days or more to perform proton substitution, it was immersed in a large excess of pure water for 3 days or more and thoroughly washed.
  • the obtained film was a light yellow film with haze.
  • the polymer of formula (G2) obtained in Synthesis Example 3 (Na type, sulfonic acid group density l.lmmol / g) is made into a 20 wt% solution using N-methylpyrrolidone as a solvent, and the solution is flowed on a glass substrate. The solution was spread applied and dried at 100 ° C for 4 hours to remove the solvent. Furthermore, under nitrogen gas atmosphere, 200-3 The temperature was raised to 25 ° C over 1 hour, heat-treated at 325 ° C for 10 minutes, and then allowed to cool. After immersing in 1N hydrochloric acid for 1 day or more to replace the protons, it was immersed in a large excess of pure water for 1 day or more and washed thoroughly.
  • the polymer of formula (G3) obtained in Synthesis Example 4 (Na type, sulfonic acid group density l.lmmol / g) is made into a 20 wt% solution using N-methylpyrrolidone as a solvent, and the solution is flowed on a glass substrate The solution was spread applied and dried at 100 ° C for 4 hours to remove the solvent. Furthermore, in a nitrogen gas atmosphere, the temperature was raised to 200-350 ° C over 1 hour, heat-treated at 350 ° C for 10 minutes, and then allowed to cool. After immersing in 1N hydrochloric acid for 1 day or more to replace the protons, it was immersed in a large excess of pure water for 1 day or more and washed thoroughly.
  • the polymer of formula (G3) obtained in Synthesis Example 5 (Na type, sulfonic acid group density 0.9 mmol / g) is made into a 20 wt% solution using N-methylpyrrolidone as a solvent, and the solution is cast on a glass substrate. It was applied and dried at 100 ° C for 4 hours to remove the solvent. Furthermore, the temperature was raised to 200 to 325 ° C over 1 hour under a nitrogen gas atmosphere, heat-treated at 325 ° C for 10 minutes, and then allowed to cool. After immersing in 1N hydrochloric acid for 1 day or more to replace the protons, it was immersed in a large excess of pure water for 1 day or more and washed thoroughly.
  • Citric acid Tenice (registered trademark) # 3000 manufactured by Toray Industries, Inc.
  • polymer Z polyamic acid of the formula (G3) 83.5 / 16.5 (weight ratio) and stirred at room temperature for 1 hour.
  • the mixed solution is cast on a glass substrate, pre-dried at 100 ° C for 30 minutes, heated to 200-350 ° C over 1 hour in a nitrogen gas atmosphere, and heated at 350 ° C for 10 minutes.
  • Acid Tenice (registered trademark) # 3000 manufactured by Toray Industries, Inc.
  • the mixed solution is cast on a glass substrate, pre-dried at 100 ° C for 30 minutes, then heated to 200-40 ° C over 1 hour in a nitrogen gas atmosphere and heated at 400 ° C for 10 minutes. After being heat-treated under the above conditions, it was allowed to cool.
  • NMP N- methylpyrrolidone
  • G3 N- methylpyrrolidone polymer
  • NMP N- methylpyrrolidone
  • 10 g of the solution was mixed with N, N, -methylenebisacrylamide (Tokyo Kasei Reagent) lg and AIBN 1 mg, and the mixture was stirred for 1 hour at room temperature.
  • the mixed solution was cast-coated on a glass substrate, pre-dried at 100 ° C. for 30 minutes, and then heat-treated at 200 ° C. for 10 minutes under nitrogen to obtain a polymer electrolyte membrane.
  • the resulting membrane had a sulfonic acid group density of 1.2 mmolZg.
  • the evaluation results are summarized in Table 1. Rw was large and methanol permeation was small.
  • the resulting membrane had a sulfonic acid group density of 1.2 mmolZg.
  • the evaluation results are summarized in Table 1. Rw was large and methanol permeation was small.
  • the above film-like polymer was immersed in 1,2-dichloroethane to which 5% by weight of chlorosulfonic acid had been added for 30 minutes, then taken out, and then added with methanol. 1,2-Dichloroethane was washed and further washed with water until the washing solution became neutral. After substituting Na by saturated saline immersion, it was dried at 100 ° C for 4 hours. Furthermore, the temperature was raised to 200-300 ° C over 1 hour under a nitrogen gas atmosphere, heat-treated for 10 minutes at 300 ° C, and then allowed to cool.
  • Example 1 Using the polymer electrolyte membrane of Example 1, a polymer electrolyte fuel cell was prepared and evaluated by the following method. Similarly, the commercially available naphthion (registered trademark) 117 membrane of Comparative Example 1 is also highly concentrated. A child electrolyte fuel cell was fabricated and evaluated.
  • the two carbon fiber cloth base materials were subjected to a water repellent treatment by immersion in 20% PTFE water, and then fired to produce an electrode base material.
  • an anode electrode catalyst coating solution consisting of Pt—Ru-supported carbon and a commercially available Nafion (registered trademark) solution (manufactured by DuPont) was applied and dried to form another anode electrode.
  • a force sword electrode was prepared by applying and drying a force sword electrode catalyst coating solution consisting of Pt-supported carbon and Nafion (registered trademark) solution on the electrode substrate.
  • the polymer electrolyte membrane of Example 1 was sandwiched between the previously prepared anode electrode and force sword electrode and heated and pressed to produce a membrane-one electrode composite (MEA).
  • MEA membrane-one electrode composite
  • This MEA was set in a cell manufactured by Electrochem. Before starting the evaluation, aging was performed by supplying a 30% aqueous methanol solution at 60 ° C. for 100 hours to the anode side in an electrically open circuit state. At the time of evaluation, the MEA was evaluated by flowing 20 ° C, 30% aqueous methanol solution on the anode side and air on the power sword side. In the evaluation, a constant current was passed through the MEA, and the voltage at that time was measured. Measurements were continued until the current was increased gradually until the voltage dropped below 10 mV. The product of the current and voltage at each measurement point is the output.
  • the MEA using the polymer electrolyte membrane of Example 1 has a higher output (mWZcm 2 ) than the MEA using the Nafion (registered trademark) 117 membrane of Comparative Example 1 (Comparative Example 4). 2. Doubled and 2.5 times the energy capacity (Wh), showing excellent characteristics.
  • Example 4 Using the polymer electrolyte membrane of Example 4, a polymer electrolyte fuel cell was prepared and evaluated in the same manner as Example 11.
  • the MEA of this example was 3.2 times higher in output (mWZcm 2 ) and 2.8 times in energy capacity (Wh) than MEA (Comparative Example 4) using a naphthion (registered trademark) 117 membrane. It showed a good value.
  • Example 6 Using the polymer electrolyte membrane of Example 6, a polymer electrolyte fuel cell was prepared and evaluated in the same manner as Example 11.
  • the MEA of this example is MEA (Comparative Example 4) using a naphthion (registered trademark) 117 membrane.
  • the output (mWZcm 2 ) was 3.3 times, and the energy capacity (Wh) was 2.3 times, indicating excellent characteristics.
  • Example 8 Using the polymer electrolyte membrane of Example 8, a polymer electrolyte fuel cell was prepared and evaluated in the same manner as Example 11.
  • the MEA of this example was 2.1 times higher in output (mWZcm 2 ) and 3.9 times higher in energy capacity (Wh) than MEA (Comparative Example 4) using a naphthion (registered trademark) 117 membrane. It showed a good value.
  • Example 10 Using the polymer electrolyte membrane of Example 10, a polymer electrolyte fuel cell was prepared and evaluated in the same manner as Example 11.
  • the MEA of this example was 3.3 times higher in output (mWZcm 2 ) and 1.9 times higher in energy capacity (Wh) than MEA (Comparative Example 4) using a naphthion (registered trademark) 117 membrane. It showed a good value.
  • the polymer of formula (G3) obtained in Synthesis Example 8 (Na type, sulfonic acid group density 1.2 mmol / g) is made into a 20 wt% solution using N-methylpyrrolidone as a solvent, and the solution is cast on a glass substrate. It was applied and dried at 100 ° C for 4 hours to remove the solvent. Furthermore, the temperature was raised to 200 to 325 ° C over 1 hour under a nitrogen gas atmosphere, heat-treated at 325 ° C for 10 minutes, and then allowed to cool. After immersing in 1N hydrochloric acid for 1 day for proton substitution, it was immersed in a large excess of pure water for 1 day and washed thoroughly.
  • the polymer of formula (G3) obtained in Synthesis Example 5 (Na type, sulfonic acid group density 1.4 mmol / g) is made into a 20 wt% solution using N-methylpyrrolidone as a solvent, and the solution is cast on a glass substrate. It was applied and dried at 100 ° C for 4 hours to remove the solvent. Furthermore, the temperature was raised to 200 to 325 ° C over 1 hour under a nitrogen gas atmosphere, heat-treated at 325 ° C for 10 minutes, and then allowed to cool. After immersing in 1N hydrochloric acid for 1 day or more to replace the protons, it was immersed in a large excess of pure water for 1 day or more and washed thoroughly.
  • the polymer electrolyte material or polymer electrolyte component of the present invention can be applied to various applications.
  • medical applications such as extracorporeal circulation columns and artificial skin, filtration applications, ion exchange grease applications, various structural material applications, and electrochemical applications.
  • Gasochemical applications include fuel cells, redox flow batteries, water electrolyzers and black-hole alkali electrolyzers, among which fuel cells are particularly preferred, for example, direct fuel cells using methanol or the like as fuel. It is done.
  • a power supply source of a moving body is preferable.
  • mobile devices such as mobile phones, notebook computers, PDAs (Portable Digital Assistance), TVs, radios, music players, game consoles, headsets, DVD players, video cameras (camcorders), digital cameras, electric shavers, cordless devices, etc.
  • Household appliances such as vacuum cleaners, human-type and animal-type robots for industrial use, electric tools, passenger cars, automobiles such as buses and trucks, motorcycles, bicycles with electric assist, electric carts, electric wheelchairs, ships and railways It is preferably used as an alternative to conventional primary batteries such as body power supply sources, stationary generators, secondary batteries, or hybrid power sources.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Electrochemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Fuel Cell (AREA)
  • Conductive Materials (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Polyethers (AREA)

Description

明 細 書
高分子電解質材料、高分子電解質部品、膜電極複合体、および高分子 電解質型燃料電池
技術分野
[0001] 本発明は、プロトン伝導性に優れ、かつ、燃料遮断性や機械強度にも優れた高分 子電解質材料、高分子電解質部品、膜電極複合体、および高分子電解質型燃料電 池に関するものである。
背景技術
[0002] 高分子電解質材料は、例えば、医療材料用途、ろ過用途、濃縮用途、イオン交換 榭脂用途、各種構造材用途、コーティング材用途、電気化学用途などに使用されて いる。
[0003] 電気化学用途としては、高分子電解質材料は高分子電解質部品または膜電極複 合体として燃料電池、レドックスフロー電池、水電解装置およびクロ口アルカリ電解装 置等に使用されている。
[0004] これらの中で燃料電池は、排出物が少なぐかつエネルギー効率が高ぐ環境への 負担の低い発電装置である。このため、近年の地球環境保護への高まりの中で注目 される技術である。燃料電池は、比較的小規模の分散型発電施設や、自動車、船舶 などの移動体の発電装置として、将来的にも期待されている発電装置である。また、 ニッケル水素電池やリチウムイオン電池などの二次電池に替わり、携帯電話やバソコ ンなどの小型移動機器への搭載も期待されて 、る。
[0005] 高分子電解質型燃料電池(Polymer Electrolyte Fuel Cell。以下、 PEFCとも記載 する。 )においては、水素ガスを燃料とする従来型のものにカ卩えて、メタノールなどの 燃料を直接供給する直接型燃料電池も注目されている。直接型燃料電池は、従来 の PEFCに比べて出力が低いものの、燃料が液体で改質器を用いないために、エネ ルギー密度が高くなり、一充填あたりの発電時間が長時間になるという利点がある。
[0006] 直接型燃料電池用の高分子電解質材料においては、水素ガスを燃料とする従来 の PEFC用の高分子電解質材料に要求される性能に加えて、燃料の透過抑制も要 求される。特に高分子電解質材料を用いた高分子電解質膜中の燃料透過は、燃料 クロスオーバー、ケミカルショートとも呼ばれ、電池出力およびエネルギー容量が低下 するという問題を引き起こす。
[0007] また、直接型燃料電池にお!、ては、水素ガスを燃料とする従来の PEFCとは異なる 性能が要求される。すなわち、直接型燃料電池においては、アノード電極ではメタノ ール水溶液などの燃料がアノード電極の触媒層で反応してプロトン、電子、二酸ィ匕 炭素を生じ、電子は電極基材に伝導し、プロトンは高分子電解質に伝導し、二酸ィ匕 炭素は電極基材を通過して系外へ放出される。このため、従来の PEFCのアノード電 極の要求特性に加えて、メタノール水溶液などの燃料透過性や二酸ィ匕炭素の排出 性も要求される。さらに、直接型燃料電池の力ソード電極では、従来の PEFCと同様 な反応に加えて、電解質膜を透過したメタノールなどの燃料と酸素あるいは空気など の酸ィ匕ガスが力ソード電極の触媒層で、二酸化炭素と水を生成する反応も起こる。こ のため、従来の PEFCよりも生成水が多くなるため、さらに効率よく水を排出すること が必要となる。
[0008] 従来、高分子電解質膜としてナフイオン (登録商標)(デュポン社製)に代表される パーフルォロ系プロトン伝導性ポリマー膜が使用されてきた。しかし、これらのパーフ ルォロ系プロトン伝導性ポリマー膜は直接型燃料電池においてはメタノールなどの燃 料透過量が大きぐ電池出力やエネルギー容量が十分でないという問題があった。ま たパーフルォロ系プロトン伝導性ポリマーは、フッ素を使用するという点力も価格も非 常に高いものである。
[0009] そこで、非フッ素系のプロトン伝導体の高分子電解質が市場力 望まれて、非フッ 素系ポリマーをベースとした高分子電解質膜についても既にいくつかの取り組みが なされている。
[0010] 例えば 1950年代には、スチレン系の陽イオン交換樹脂が検討された。しかしなが ら、通常燃料電池に使用する際の形態である膜としての強度が十分ではな力つたた め、十分な電池寿命を得るには至らな力つた。
[0011] スルホンィ匕芳香族ポリエーテルエーテルケトンを電解質に用いた燃料電池の検討 もなされている。例えば、有機溶媒に難溶性の芳香族ポリエーテルエーテルケトン( ビクトレックス (登録商標) PEEK (登録商標)(ビタトレックス社製)等が挙げられる)が 、高度にスルホンィ匕することにより有機溶媒に可溶となり成膜が容易になることが紹 介されている(非特許文献 1参照)。し力しながら、これらのスルホンィ匕ポリエーテルエ ーテルケトンは、同時に親水性も向上し、水溶性となったり、あるいは吸水時の強度 低下などを引き起こす。高分子電解質型燃料電池は、通常燃料と酸素の反応により 水を副生するし、また DFCにおいては燃料自体に水を含む場合がほとんどであるこ とから、特にカゝかるスルホンィ匕ポリエーテルエーテルケトンが水溶性となる場合にはそ のまま燃料電池用電解質へ利用するには適さない。
[0012] また、芳香族ポリエーテルスルホンであるポリスルホン(UDELP— 1700 (ァモコ社 製)等があげられる)やポリエーテルスルホン (スミカエタセル PES (住友化学社製)等 があげられる)のスルホンィ匕物について記載されている(非特許文献 2参照)。それに はスルホンィ匕ポリスルホンは完全に水溶性となってしま ヽ、電解質としての評価がで きな 、とされて 、る。スルホン化ポリエーテルスルホンにつ!、ては水溶性とはならな!ヽ けれども、高吸水率の問題があり、高い燃料クロスオーバーの抑制効果は期待でき ない。
[0013] また例えば、リン系ポリマーをベースとした高分子プロトン伝導体として、ポリホスフ ァゼンのスルホンィ匕物について記載されている(非特許文献 3参照)。しかしながら、 スルホンィ匕ポリホスファゼンは主鎖自身が極めて親水性であり、含水率が高すぎて、 高 、燃料クロスオーバーの抑制効果は期待できな 、。
[0014] また、非フッ素系の芳香族系高分子にァ-オン性基を導入した高分子電解質膜は 他にも種々提案されている (特許文献 1, 2、非特許文献 1参照)。
[0015] しかし、これら従来の高分子電解質膜では、高伝導度を得るためにイオン性基の導 入量を多くすると内部に水を取り込み易くなり、メタノールなどの燃料クロスオーバー が大きいという欠点があった。この高分子電解質膜では、膜中に低融点水が多く存 在し、不凍水の分率が少ないので、低融点水中をメタノールなどの燃料が透過しや すぐ燃料クロスオーバーが大きくなつているものと推測される。
[0016] また、フルオレン成分を含むスルホン化されたポリエーテル系共重合体力もなる高 分子電解質材料が紹介されて ヽる (特許文献 3参照)。 [0017] また、フルオレン成分およびフエ-レン成分を両方含むスルホン化されたポリエー テル系共重合体からなる高分子電解質材料が提案されている(特許文献 4の例 19お よび例 24参照)。し力しながら、これらの高分子電解質材料は不凍水の分率が十分 に高くなぐ高温、高濃度の液体燃料で使用した場合、燃料クロスオーバーの抑制が 不十分であった。
[0018] また、プロトン伝導性ポリマーと他の高分子との複合膜も提案されている。例えば、 スルホンィ匕ポリフエ-レンォキシドとポリビ-リデンフルオライドからなる複合膜 (特許 文献 5)が知られている。またスルホンィ匕ポリスチレンとポリビ-リデンフルオライドから なる複合膜 (特許文献 6)も知られている。しかし、これらの文献に記載の高分子電解 質膜は、イオン伝導性ポリマーとポリビ-リデンフルオライドとのブレンドポリマーから なる膜であって、ポリマーどうしの相溶性が悪ぐ mオーダーの大きな相分離構造 を取りやすぐ高伝導度と燃料クロスオーバー抑制を両立させることは難し力つた。こ の高分子電解質膜では相間に低融点水やバルタ水が存在し、電解質膜中の不凍水 の分率が少ないので、燃料クロスオーバーの抑制が困難なものと推測される。
[0019] また、スルホン酸基を有するブロック共重合体と芳香族ポリイミドをブレンドした高分 子電解質材も紹介されている(特許文献 7)。しかし、当該文献中でこれらのブレンド 電解質材は半透明あるいは白色あるいは淡黄色不透明であると記載され、燃料クロ スオーバー等についての記述はないが、このような相分離構造を有し、ヘーズの大き いブレンド電解質材では我々の知る限り、十分な燃料クロスオーバー抑制効果は期 待できない。
[0020] また、プロトン伝導性ポリマーおよび窒素原子含有基を有するシロキサンと金属酸 化物との共重合体力もなる複合体 (特許文献 8)力もなる膜が知られている。また、ナ フイオン (登録商標)(デュポン社製)とシロキサンとの複合体 (非特許文献 5, 6)など 力もなる膜も知られている。しかし、これら文献に記載の膜は、パーフルォロ系プロト ン伝導性ポリマーである"ナフイオン (登録商標) "を用いて 、ることから、他の高分子 との複合体膜であっても高プロトン伝導度と低燃料クロスオーバーの両立は困難であ つた o
[0021] また、不飽和結合を有する単量体と架橋構造を導入できる単量体を含む組成物を 多孔性基材に含浸させた後に重合し、その後スルホンィ匕して得られるイオン交換材 料が知られている(特許文献 9参照)。しかし、この膜は、直接メタノール形燃料電池( 以下、 DMFCとも記載する)用途に使用する場合、スルホン化時間が長いのにもか かわらず、プロトン伝導度が不十分であり、 DMFCの実用化レベルのプロトン伝導度 は得ることは困難であった。
これら従来の技術においては、得られる電解質が高価であったり、耐水性が不足し て強度が不十分力あるいは燃料クロスオーバーが大きぐ耐酸ィ匕性ゃ耐ラジカル性 に劣る等の問題点があった。
特許文献 1 :米国特許出願公開第 2002Z91225号明細書
特許文献 2:米国特許第 5403675号明細書
特許文献 3:特開 2002— 226575号公報
特許文献 4 :特表 2002— 524631号公報
特許文献 5:米国特許第 6103414号明細書
特許文献 6:特表 2001 - 504636号公報
特許文献 7:特開 2002 - 260687号公報
特許文献 8:特開 2002— 110200号公報
特許文献 9:特開 2003— 12835号公報
非特許文献 1:「ポリマー(Polymer)」, 1987年, vol.28, 1009.
非特許文献 2 :「ジャーナル'ォブ'メンブレン'サイエンス(Journal of Membrane Scien ce) j , 1993年, Vol.83,211-220.
非特許文献 3 :「ジャーナル'ォブ 'アプライド 'ポリマ一'サイエンス」(Journal of Applie d PolymerScience) , 1999年, Vol.71, 387-399.
非特許文献 4 :「ジャーナル'ォブ'メンブレン'サイエンス(Journal of Membrane Scien ce) j , 2002年, Vol.197,231-242
非特許文献 5 :「ポリマー(Polymers)」, 2002年, Vol.43, 2311-2320
非特許文献 6 :「ジャーナル'ォブ'マテリアル 'ケミストリー」(Journal of Material Chemi stry) J , 2002年, Vol.12,834-837
発明の開示 発明が解決しょうとする課題
[0023] 本発明は、カゝかる従来技術の背景に鑑み、高温、高濃度の液体燃料に直接接触し た場合においても、プロトン伝導性に優れ、かつ、燃料遮断性や機械強度にも優れ た高分子電解質材料を提供し、ひいては、効率の高い高分子電解質型燃料電池を 提供せんとするものである。
課題を解決するための手段
[0024] 本発明は、力かる課題を解決するために、次のような手段を採用するものである。
すなわち、本発明の高分子電解質材料は、 40〜80°Cにおいて 1〜30重量%のメタ ノール水溶液に 12時間浸漬し、その後 20°Cにおいて純水に 24時間浸漬し、取り出 した直後の含水状態において、下記式(S1)で表される不凍水の分率 Rwが 75〜: LO 0重量%であり、イオン性基を有することを特徴とするものである。
[0025] Rw= [Wnf/ (Wfc+Wnf) ] X 100 …… (SI)
式中、 Wnf : 高分子電解質材料の乾燥重量 lg当たりの不凍水量
Wfc: 高分子電解質材料の乾燥重量 lg当たりの低融点水量 また、本発明の高分子電解質部品は、カゝかる高分子電解質材料を用いて構成され ていることを特徴とするものであり、本発明の膜電極複合体は、かかる高分子電解質 部品を用いて構成されていることを特徴とするものであり、本発明の高分子電解質型 燃料電池は、かかる膜電極複合体を用いて構成されていることを特徴とするものであ る。
発明の効果
[0026] 本発明によれば、高温、高濃度の液体燃料に接触した場合にぉ 、ても、プロトン伝 導性に優れ、かつ、燃料遮断性や機械強度にも優れた高分子電解質材料を提供し 、ひいては、効率の高い高分子電解質型燃料電池を提供することができる。
発明を実施するための最良の形態
[0027] 本発明は、前記課題、つまり高温、高濃度の液体燃料に直接接触した場合におい ても、プロトン伝導性に優れ、かつ、燃料遮断性や機械強度にも優れた高分子電解 質材料について、鋭意検討し、高分子電解質材料の高プロトン伝導度と燃料クロス オーバー抑制の性能は、高分子電解質材料中に含まれる水分の存在状態、および その量に大きく左右されることを見出した。特に、高分子電解質材料が高温、高濃度 の液体燃料に接触する場合は、特定条件下での前処理を行った後における高分子 電解質材料中に含まれる水分の存在状態、およびその量が重要であることを見出し 、本発明に到達した。
[0028] すなわち、 40〜80°Cにおいて 1〜30重量%のメタノール水溶液に 12時間浸漬し、 その後 20°Cにおいて純水に 24時間浸漬し、取り出した直後の含水状態において、 下記式 (S1)で表される不凍水の分率 (Rw)が 75〜: LOO重量%であり、イオン性基を 有する高分子電解質材料が、前記課題を一挙に解決することを究明したものである
[0029] Rw= [Wnf/ (Wfc+Wnf) ] X 100 …… (SI)
式中、 Wnf : 高分子電解質材料の乾燥重量 lg当たりの不凍水量
Wfc: 高分子電解質材料の乾燥重量 lg当たりの低融点水量 本発明にお ヽては、高分子電解質材料中に存在する水分を、
バルタ水: o°c以上で融点が観測される水、
低融点水: 0°C未満、 30°C以上で融点が観測される水、および
不凍水: 30°C以上では融点が観測されな 、水、
に定義,分類し、これらの割合、特に、不凍水の割合を制御することによって、高分子 電解質材料の性能を大きく高めることができることを究明したものである。
[0030] この測定法については、「Journal of Colloid and Interface Science,Vol.l71, 92-102
(1995)」の文献に記載がある。示差走査熱量分析 (DSC)法により求められる値であ る。
[0031] 高分子電解質材料は含水状態において、バルタ水、低融点水および不凍水を含 む。メタノールなどの燃料は主として低融点水中を透過し、その割合が大きいと燃料 クロスオーバーが大きくなると考えられる。一方、不凍水は、高分子電解質材料中で イオン性基および極性基の近傍に存在すると推測され、この不凍水中はメタノールな どの燃料は容易には透過しないものと推測される。従って、このような不凍水の含有 割合が大きな高分子電解質材料を実現することによって、高プロトン伝導度と低燃料 クロスオーバーを両立することができ、高分子電解質型燃料電池においては高出力 と高工ネルギー容量を達成することが可能になる。し力しながら、かかる条件を満た す場合においても、高分子電解質材料が高温、高濃度の燃料に接触すると、低融点 水の比率と量が増えるために燃料クロスオーバーが大きくなるという問題があった力 前記本発明の特定な高分子電解質材料を採用したことにより、見事に解決したもの である。
[0032] 前記式 (S1)において、該不凍水の分率 (以下単に Rwという場合がある)が小さす ぎると、燃料クロスオーバー抑制効果が不十分となる。かかる観点では、 Rwはできる 限り 100重量%に近い方が好ましいが、低融点水が全く含まれない場合、プロトン伝 導度の低下が懸念されるので、 Rwの上限としては 99. 9重量%程度であるのが好ま しぐかかる観点から、本発明における Rwとしては、好ましくは 75〜99. 9重量%、よ り好ましくは 80〜99. 9重量%、特に好ましくは 90〜99. 9重量%、最も好ましくは 9 5〜99. 9重量0 /0であるのがよい。
[0033] 本発明の高分子電解質材料は 40〜80°Cにおいて 1〜30重量%のメタノール水溶 液に浸漬した後においても、 Rwが十分大きいために、高分子電解質材料が高温、 高濃度の燃料に直接接触するような用途、例えば直接燃料型燃料電池に使用した 場合にお 、ても、高 、プロトン伝導度と高!、燃料クロスオーバー抑制効果が得られる ものである。 ここでメタノール水溶液の濃度は 1重量%以上であることが必要であり、 10重量%以上がより好ましぐ 20重量%以上がさらに好ましぐ 25重量%以上、さら には 30重量%が最も好ましい。メタノール水溶液の濃度が薄すぎる場合、本発明の 効果が十分に得られない。
[0034] また、本発明の高分子電解質材料を 1〜30重量%のメタノール水溶液に浸漬する 温度は 40〜80°Cである力 50〜75°Cがより好ましぐ 55〜65°C、さらには 60°Cが 最も好ましい。
[0035] 本発明の高分子電解質材料は、 60°Cにおいて 30重量%メタノール水溶液に 12時 間浸漬し、その後 20°Cにおいて純水に 24時間浸漬し、取り出した直後の含水状態 において、該 Rwが 75〜: LOO重量%であり、イオン性基を有すること力 より好ましい [0036] また、本発明の高分子電解質材料は、「40〜80°Cにおいて 1〜30重量%のメタノ ール水溶液に 12時間浸漬し、その後 20°Cにおいて純水に 24時間浸漬し、取り出し た直後の含水状態」、より好ましくは「60°Cにおいて 30重量%メタノール水溶液に 12 時間浸漬し、その後 20°Cにおいて純水に 24時間浸漬し、取り出した直後の含水状 態」において、高分子電解質材料の乾燥重量 lg当たりの不凍水量 (以下単に Wnfと V、う場合がある)が 0. 05〜2であることが好まし!/、。
[0037] かかる Wnfが 0. 05未満であると、プロトン伝導度を確保することができない場合が あり、 2を越えると、燃料クロスオーバーの抑制の実効を期待することができなくなる場 合がある。かかる観点から、 Wnfとしては 0. 065〜1であるのがより好ましぐ 0. 08〜 0. 8であるのが特に好ましい。
[0038] 前記式(S1)中の Wnf (不凍水量)および Wfc (低融点水量)、さらに下記 Wf (バル ク水量)は、示差走査熱量分析 (DSC)法により求められる値である。
[0039] 以下、「60°Cにおいて 30重量%メタノール水溶液に 12時間浸漬し、その後 20°Cに おいて純水に 24時間浸漬し、取り出した直後の含水状態」においての Wnf、 Wfcお よび Wfの測定方法にっ 、て説明を加える。
[0040] すなわち、試料を 60°Cにお ヽて 30重量%メタノール水溶液(重量比で試料量の 1 000倍以上)に撹拌しながら 12時間浸漬し、その後 20°Cにおいて純水(重量比で試 料量の 1000倍以上)に撹拌しながら 24時間浸漬し、取り出し、過剰な表面付着水を できるだけ素早くガーゼで拭き取って除去してから、あら力じめ重量 (Gp)を測定して あるアルミナコートされたアルミニウム製密閉型試料容器に入れてタリンプした後、で きるだけ素早く試料と密閉型試料容器の合計重量 (Gw)を測定し、直ちに DSC測定 を実施する。測定温度プログラムは、室温から— 30°Cまで 10°CZ分の速度で冷却し た後、 0. 3°CZ分の速度で 5°Cまで昇温するものであり、この昇温過程の DSC曲線 から下記の数式 (nl)を使ってバルタ水量 (Wf)を求め、下記の数式 (n2)を使って低 融点水量 (Wfc)を求め、また、全水分率 (Wt)からそれらの値を差し引くことで、不凍 水量 (Wnf)を求める〔下記の数式 (n3)〕。
[0041] [数 1]
Figure imgf000012_0001
Figure imgf000012_0002
Figure imgf000012_0003
[0042] ここで、バルタ水量 (Wf )、低融点水量 (Wfc)、不凍水量 (Wnf )、および全水分率
(Wt)は、乾燥試料の単位重量あたりの重量で表される値である。 mは乾燥試料重量 、 dqZdtは DSCの熱流束シグナル、 TOはバルタ水の融点、 Δ ΗΟはバルタ水の融 点 (TO)での融解ェンタルピーである。
[0043] 本発明の高分子電解質材料は、膜状の形態を有することが好ま ヽ。燃料電池用 として使用する場合、通常、膜の状態で高分子電解質膜や電極触媒層として使用さ れるカゝらである。
[0044] 本発明の高分子電解質材料は、膜状の形態を有する場合にお!、て、 20°Cの条件 下、 30重量%メタノール水溶液に対する単位面積当たりのメタノール透過量力 0 μ m0l'min_ 1 'Cm_2以下であることが好ましい。高分子電解質材料の膜を用いた燃料 電池において、燃料濃度が高い領域において高出力および高エネルギー容量が得 られるという観点から、高い燃料濃度を保持すベぐ燃料透過量が小さいことが望ま れるカゝらである。
[0045] かかる観点からは、前記メタノール透過量が 0 μ mol'min_ 1 'cm_2であることが最 も好ましいが、プロトン伝導度を確保する観点からは 0. Ol /z mol'min^ 'cm—2以上 であることが好ましい。
[0046] なおかつ、本発明の高分子電解質材料は、膜状の形態を有する場合において、単 位面積当たりのプロトン伝導度が 3S 'cm_2以上であることが好ましい。かかるプロトン 伝導度は、 25°Cの純水に膜状の試料を 24時間浸漬した後、 25°C、相対湿度 50〜8 0%の雰囲気中に取り出し、できるだけ素早く行う定電位交流インピーダンス法により 柳』定することができる。
[0047] 単位面積当たりのプロトン伝導度を 3S 'cm—2以上とすることにより、燃料電池用高 分子電解質膜として使用する際に、十分なプロトン伝導性、すなわち十分な電池出 力を得ることができる。プロトン伝導度は高い方が好ましいが、あまり高すぎると、高プ 口トン伝導度の膜はメタノール水などの燃料により溶解や崩壊しやすくなり、また燃料 透過量も大きくなる傾向があるので、好ましくは上限を 50S · cm—2とするのがよ 、。
[0048] また、本発明の高分子電解質材料の前記条件での単位面積 ·単位厚み当たりのメ タノール透過量は 1000nmol'min_1 'cm_1以下であることが好ましぐより好ましくは 500nnmol'min_1 'cm_1以下、さらに好ましくは 250nmol'min_1 'cm_ 1以下であ る。 1000nmol'min_1 'cm_1以下とすることで、直接型燃料電池(DFC)に使用した 場合、エネルギー容量の低下を防ぐことができる。一方、プロトン伝導度を確保する 観点からは lnmol'min_1 'cm_1以上が好ましい。
[0049] なおかつ、前記条件で測定した単位面積 ·単位厚み当たりのプロトン伝導度として は lmS 'cm—1以上が好ましぐより好ましくは 5mS 'cm—1以上、さらに好ましくは 10 mS 'cm—1以上である。 lmS 'cm—1以上とすることにより、電池として高出力が得られ る。一方、高プロトン伝導度の膜はメタノール水などの燃料により溶解や崩壊しやすく なり、また燃料透過量も大きくなる傾向があるので、現実的な上限は 5000mS 'cm_1 である。
[0050] 本発明の高分子電解質材料は、上記したような低メタノール透過量と高プロトン伝 導度を同時に達成することが好ましい。これらのうち一方だけを達成することは従来 技術においても容易である力 両方を達成してこそ高出力と高エネルギー容量の両 立が可能となるからである。
[0051] 本発明の高分子電解質材料は、イオン性基を有することが必要である。イオン性基 を有することで、高分子電解質材料が高プロトン伝導度を有するようになる。
[0052] 使用されるイオン性基は、負電荷を有する原子団が好ましぐプロトン交換能を有す るものが好ましい。このような官能基としては、スルホン酸基、スルホンイミド基、硫酸 基、ホスホン酸基、リン酸基、カルボン酸基が好ましく用いられる。ここで、スルホン酸 基は下記一般式 (f 1)で表される基、スルホンイミド基は下記一般式 (f 2)で表される 基 [式中 Rは任意の原子団を表す。 ]、硫酸基は下記一般式 (f 3)で表される基、ホス ホン酸基は下記一般式 (f4)で表される基、リン酸基は下記一般式 (f 5)または (f6)で 表される基、カルボン酸基は下記一般式 (f 7)で表される基を意味する。
[0053] [化 1]
Figure imgf000014_0001
0
0
O-S-OH (f3)
I I 0 - — OH (f6)
0
O
C-OH (f7)
I I
O
[0054] かかるイオン性基は前記官能基 (f 1)〜 (f 7)が塩となって ヽる場合を含むものとす る。前記塩を形成するカチオンとしては、任意の金属カチオン、 NR + (R
4 は任意の有 機基)等を例として挙げることができる。金属カチオンの場合、その価数等特に限定さ れるものではなぐ使用することができる。好ましい金属イオンの具体例を挙げるとす れば、 Li、 Na、 K、 Rh、 Mg、 Ca、 Sr、 Ti、 Al、 Fe、 Pt、 Rh、 Ru、 Ir、 Pd等が挙げら れる。中でも、高分子電解質材料としては、安価で、容易にプロトン置換可能な Na、 K、 Liがより好ましく使用される。
[0055] これらのイオン性基は前記高分子電解質材料中に 2種類以上含むことができ、組 み合わせることにより好ましくなる場合がある。組み合わせはポリマーの構造などによ り適宜決められる。中でも、高プロトン伝導度の点から少なくともスルホン酸基、スルホ ンイミド基、硫酸基を有することがより好ましぐ耐加水分解性の点から少なくともスル ホン酸基を有することが最も好まし 、。
[0056] 本発明の高分子電解質材料がスルホン酸基を有する場合、そのスルホン酸基密度 は、プロトン伝導性および燃料クロスオーバー抑制の点から 0. 1〜1. 6mmolZgが 好ましく、より好ましくは 0. 3〜1. 5mmol/g、さらに好ましくは 0. 5〜1. 4mmol/g 、最も好ましくは 0. 8〜1. 18mmol/gである。スルホン酸基密度を 0. lmmol/g 以上とすることにより、伝導度すなわち出力性能を維持することができ、また 1. 6mm olZg以下とすることで、燃料電池用電解質膜として使用する際に、十分な燃料遮断 性および含水時の機械的強度を得ることができる。
[0057] ここで、スルホン酸基密度とは、高分子電解質材料の単位乾燥重量当たりに導入さ れたスルホン酸基のモル量であり、この値が大き!/、ほどスルホン化の度合!/、が高!、こ とを示す。スルホン酸基密度は、中和滴定法により測定が可能である。本発明の高分 子電解質材料は、後述するようにイオン性基を有するポリマーとそれ以外の成分から なる複合体である態様を含むが、その場合もスルホン酸基密度は複合体の全体量を 基準として求めるものとする。
[0058] 本発明の高分子電解質材料の好ましい態様の 1つは、イオン性基を有する炭化水 素系ポリマーを含有する高分子電解質材料である (以下、態様 1と呼ぶ場合がある)
[0059] 本発明の高分子電解質材料の好ましい態様の別の 1つは、イオン性基を有する炭 化水素系ポリマーと複素環状ポリマーを含有する高分子電解質材料である(以下、 態様 2と呼ぶ場合がある)。 [0060] 本発明の高分子電解質材料の好ま 、態様の別の 1つは、イオン性基を有する炭 化水素系ポリマーとビュル重合系ポリマーを含有する高分子電解質材料である(以 下、態様 3と呼ぶ場合がある)。
[0061] 本発明の高分子電解質材料のさらに別の好ましい態様は、イオン性基を有する炭 化水素系ポリマーと下記一般式 (Ml)で示される基を有する架橋性ィヒ合物により架 橋されている高分子電解質材料である(以下、態様 4と呼ぶ場合がある)。
[0062] -CH OU1 (Ml)
2
(ここで、 u1は水素、または任意の有機基である。 )
また、本発明でいうイオン性基を有する炭化水素系ポリマーとは、パーフルォロ系 ポリマー以外のイオン性基を有するポリマーのことを意味している。ここで、パーフル ォロ系ポリマーとは、該ポリマー中のアルキル基および Zまたはアルキレン基の水素 の大部分または全部がフッ素原子に置換されたものを意味する。本明細書において は、ポリマー中のアルキル基および Zまたはアルキレン基の水素の 85%以上がフッ 素原子で置換されたポリマーを、パーフルォロ系ポリマーと定義する。本発明のィォ ン性基を有するパーフルォロ系ポリマーの代表例としては、 Nafion (登録商標)(デュ ボン社製)、フレミオン (登録商標)(旭硝子社製)およびァシプレックス (登録商標) ( 旭化成社製)などの市販品を挙げることができる。これらのイオン性基を有するパーフ ルォロ系ポリマーの構造は下記一般式 (N1)で表すことができる。
[0063] [化 2] 一 (CF2CF2) n1— (CF2CF) n2(N1 )
(OCF2CF) k1-0-(CF2) k2— S03H
CF3
[0064] [式 (Nl)中、 n、 nはそれぞれ独立に自然数を表す。 kおよび kはそれぞれ独立
1 2 1 2
に 0〜5の整数を表す。 ]
これらイオン性基を有するパーフルォロ系ポリマーは、ポリマー中の疎水性部分と 親水性部分が明確な相構造を形成するために、含水状態ではポリマー中にクラスタ 一と呼ばれる水のチャンネルが形成される。この水チャンネル中はメタノールなどの 燃料の移動が容易であり、燃料クロスオーバー低減が望めない。
[0065] 一方、本発明の高分子電解質材料の態様 1〜4は、イオン性基を有する炭化水素 系ポリマーを含有することにより、高プロトン伝導度と低燃料クロスオーバーを両立し うるものである。本発明の高分子電解質材料において、メタノールなどの燃料クロスォ 一バー低減が達成された要因は現段階で明確ではないが、次のように推測される。 つまり、通常容易にメタノールなどの燃料水溶液に膨潤してしまうイオン性基を有す るポリマーの分子鎖が、メタノールなどの燃料水溶液に全く膨潤しな 、剛直な複素環 状ポリマー、ビュル重合系ポリマー、または下記式 (Ml)で示される基を有する架橋 性化合物に分子レベルで混和な ヽし結合されることにより、分子レベルで拘束され、 高分子電解質材料のメタノールなどの燃料水溶液に対する膨潤が抑制されて燃料ク ロスオーバーが低減し、膜の強度低下も抑えられるものと推測される。
[0066] -CH OU1 (Ml)
2
(ここで、 u1は水素、または任意の有機基である。 )
すなわち、従来のイオン性基を有するポリマーを高分子電解質材料として用いた場 合、プロトン伝導性を高めるためにイオン性基の含有量を増加すると、高分子電解質 材料が膨潤し、内部に大きな水のクラスターができ易ぐ高分子電解質材料中にいわ ゆる自由水が多くなる。かかる自由水中には、メタノールなどの燃料の移動が容易に 行なわれるため、メタノールなどの燃料クロスオーバーは抑制され難 、。
[0067] 本発明の高分子電解質材料は、その含水状態のヘーズを 30%以下に制御するこ とが好ましぐさらに、プロトン伝導性および燃料クロスオーバー抑制効果の点力 よ り好ましくは、該含水状態のヘーズを 20%以下に制御するのがよい。かかる含水状 態のヘーズが 30%を越える場合には、イオン性基を有する炭化水素系ポリマーと、 第 2成分が均一に混合せず、相分離したりし、これらの相間の影響か、あるいは元の イオン性基を有するポリマーの性質が反映され、十分なプロトン伝導性、燃料クロス オーバー抑制効果、耐溶剤性が得られない。また、十分なプロトン伝導性が得られな い場合もある。また、膜電極複合体作製時の高分子電解質膜に対するアノード電極 と力ソード電極の位置決めの観点力もも、高分子電解質膜は含水状態のヘーズが 3 0%以下のものがより好ましく用いられる。 [0068] 本発明で 、う含水状態のヘーズとは、次のようにして測定した値とする。試料として は高分子電解質膜を使用し、試料を 60°Cにお ヽて 30%メタノール水溶液 (重量比 で試料量の 1000倍以上)に撹拌しながら 12時間浸漬し、その後 20°Cにおいて純水 (重量比で試料量の 1000倍以上)に撹拌しながら 24時間以上浸漬し、取り出し、表 面の水滴を拭き取った後、全自動直読ヘーズコンピューター (スガ試験機 (株)社製: HGM- 2DP)によって測定した値である。なお、膜厚は 10〜500 μ mの範囲で任 意に選択することができる。
[0069] 力かる本発明の高分子電解質材料の好ましい態様 1〜4においては、製造コストお よび燃料クロスオーバー抑制効果の点から、耐溶剤性に優れる、すなわち 50°Cの N —メチルピロリドンに 5時間浸漬後の重量減が 30重量%以下であることがより好まし い。さら〖こ好ましくは、重量減が 20重量%以下である。重量減が 30%を越える場合 は、燃料クロスオーバー抑制効果が不十分であったり、高分子電解質膜に直接、触 媒ペーストを塗工して膜電極複合体を作製することが困難となり、製造コストが増大 するだけでなぐ触媒層との界面抵抗が大きくなり、十分な発電特性が得られない場 合がある。
[0070] 力かる高分子電解質材料の N—メチルピロリドンに対する重量減は、次の方法で測 定する。
[0071] すなわち、検体となる高分子電解質材料 (約 0. lg)を純水で洗浄した後、 40°Cで 2 4時間真空乾燥して重量を測定する。該高分子電解質材料を 1000倍重量の N—メ チルピロリドンに浸漬し、密閉容器中、撹拌しながら 50°C、 5時間加熱する。次に、ァ ドバンテック社製濾紙 (No. 2)を用いて濾過を行う。濾過時に 1000倍重量の同一溶 剤で濾紙と残渣を洗浄し、十分に溶出物を溶剤中に溶出させる。残渣を 40°Cで 24 時間真空乾燥して重量を測定することにより、重量減を算出する。
[0072] ところで、通常、イオン性基を有する炭化水素系ポリマーは、イオン性基の耐熱性 の低さから溶融製膜が困難であるため、膜の製造コストや成形加工の容易さの点か ら、溶液製膜で製膜することが好ましぐ溶剤に可溶性であることが好ましいものであ る。
[0073] 一方、高分子電解質膜に触媒層を設ける方法としては、高分子電解質膜に直接、 触媒ペーストを塗工する方法が、界面抵抗低減の点から通常より好ましいと考えられ るが、その際、耐溶剤性に劣る高分子電解質膜である場合には、膜が溶解したり、ク ラックあるいは変形が起き、本来の膜性能が発現できない場合が多い。さらに、高分 子電解質膜を積層膜にする場合には、高分子電解質膜に直接、次のポリマー溶液 を塗工する方法が広く採用されるが、同様に膜が溶解あるいは変形し、本来の膜性 能が発現できな 、と 、う問題があった。
[0074] これに対して、本発明の高分子電解質材料の態様 1〜4は、耐溶剤性に優れ、例え ば N—メチルピロリドンに対してほとんど溶解しないものであり、触媒層との界面抵抗 も低減でき、かつ製造コストを大幅に低減できる優れた高分子電解質材料となると考 えられる。
[0075] 次に、態様 1〜4に使用されるイオン性基を有する炭化水素系ポリマーについて説 明する。なお、本発明においては、力かるイオン性基を有する炭化水素系ポリマーは 2種以上のポリマーを同時に使用しても構わない。
[0076] 本発明に使用されるイオン性基を有するポリマーとしては、燃料クロスオーバー抑 制効果および製造コストの点で、炭化水素系ポリマーがより好ましく用いられる。ナフ イオン (登録商標)(デュポン社製)のようなパーフルォロ系ポリマーを用いた場合には 、前述の通り、高価な上、クラスター構造を形成するために、燃料クロスオーバー抑 制効果に限界があり、高エネルギー容量を必要とされる高分子電解質型燃料電池の 実用化は非常に困難となる。
[0077] また、本発明に使用されるイオン性基を有する炭化水素系ポリマーとしては、成形 加工の容易さおよび製造コストの点から、溶剤可溶性の非架橋ポリマーがより好まし く用いられる。
[0078] イオン性基を有する炭化水素系ポリマーの例を以下 (E— 1)および (E— 2)に例示 する。
[0079] まず、(E— 1)とは、ビュル重合系モノマーから得られる高分子である。
[0080] 例えばアクリル酸、メタアクリル酸、ビュル安息香酸、ビニルスルホン酸、ァリルスル ホン酸、スチレンスルホン酸、マレイン酸、 2—アクリルアミドー 2—メチルプロパンスル ホン酸、スルホプロピル(メタ)アタリレート、エチレングリコールメタタリレートホスフエ一 トなどに代表されるイオン性基を有するビニル重合系モノマーから得られる高分子が 挙げられる。このようなイオン性基を有するビュル重合系モノマーとイオン性基を持た な 、モノマーを共重合させた高分子も好適である。
[0081] 力かるイオン性基を持たないモノマーとしては、ビニル重合性官能基を有する化合 物であれば特に限定なく用いることができる。好ましくは (メタ)アクリル酸メチル、(メタ )アクリル酸ェチル、 (メタ)アクリル酸プロピル、 (メタ)アクリル酸ブチル、 (メタ)アタリ ル酸 2—ェチルへキシル、(メタ)アクリル酸ドデシル、(メタ)アクリル酸ベンジル、(メタ )アクリル酸 2—ヒドロキシェチルなどの(メタ)アクリル酸エステル系化合物、スチレン 、 a—メチノレスチレン、アミノスチレン、クロロメチノレスチレンなどのスチレン系ィ匕合物 、 (メタ)アクリロニトリル、 (メタ)アクリルアミド、 N, N—ジメチルアクリルアミド、 N—ァク リロイルモルホリン、 N—メチルアクリルアミドなどの(メタ)アクリルアミド系化合物、 N —フエ-ルマレイミド、 N—ベンジルマレイミド、 N—シクロへキシルマレイミド、 N—ィ ソプロピルマレイミドなどのマレイミド系化合物等が挙げられる。
[0082] また、イオン性基を持たないビニル重合系モノマー力も得られる高分子にイオン性 基を導入した高分子も好適である。イオン性基を導入する方法につ!ヽては公知の方 法を適用できる力 例を挙げると、まず、ホスホン酸基の導入は、例えば Polymer Prep rints, Japan , 51, 750 (2002)等に記載の方法によって可能である。つぎに、リン酸基 の導入は、例えばヒドロキシル基を有する高分子のリン酸エステルイ匕によって可能で ある。カルボン酸基の導入は、例えばアルキル基ゃヒドロキシアルキル基を有する高 分子を酸ィ匕することによって可能である。硫酸基の導入は、例えばヒドロキシル基を 有する高分子の硫酸エステルイ匕によって可能である。
[0083] スルホン酸基を導入する方法としては、例えば特開平 2— 16126号公報あるいは 特開平 2— 208322号公報等に記載の方法が公知である。具体的には、例えば、高 分子をクロ口ホルム等のハロゲン化炭化水素系溶媒中でクロロスルホン酸のようなス ルホン化剤と反応させたり、濃硫酸や発煙硫酸中で反応することによりスルホンィ匕す ることができる。力かるスルホン化剤には高分子をスルホン化するものであれば特に 制限はなぐ上記以外にも三酸ィ匕硫黄等を使用することができる。また例えばェポキ シ基を有する高分子の場合には J . Electrochem. Soc, Vol.143, No.9, 2795-2799(19 96)に記載の方法によってスルホンィ匕することができる。
[0084] これらの方法により高分子をスルホンィ匕する場合におけるスルホンィ匕の度合いは、 スルホン化剤の使用量、反応温度および反応時間により、容易に制御することができ る。芳香族系高分子へのスルホンイミド基の導入は、例えばスルホン酸基とスルホン アミド基を反応させる方法によって可能である。
[0085] 力かるイオン性基を有するポリマーが架橋ポリマーであれば、燃料クロスオーバー 抑制のためには有利である力 製造コストが高くなる場合が多い。ビニル重合系モノ マーから得られる高分子を架橋させる場合には、ビュル重合系モノマーの中で重合 性官能基を複数有するものを架橋剤として共重合させればよい。
[0086] ビニル重合系モノマーの中でビニル重合性官能基を複数有するものを一部例示す れば、エチレングリコールジ (メタ)アタリレート、ジエチレングリコールジ(メタ)アタリレ ート、トリエチレングリコールジ (メタ)アタリレート、ポリエチレングリコールジ (メタ)ァク リレート、プロピレングリコールジ(メタ)アタリレート、ジプロピレングリコールジ(メタ)ァ タリレート、トリプロピレングリコールジ (メタ)アタリレート、ポリプロピレングリコールジ( メタ)アタリレート、トリメチロールプロパントリ(メタ)アタリレート、ペンタエリスリトールテ トラ (メタ)アタリレート、ジペンタエリスリトールポリ(メタ)アタリレートなどの(メタ)アタリ ル酸エステル系化合物、ジビルベンゼン、ジビ-ルナフタレン、ジビニルビフエ-ルな どのスチレン系化合物、メチレンビス (メタ)アクリルアミドなどの(メタ)アクリルアミド系 化合物、フエ-レンビスマレイミド、 p, p,一ォキシビス(フエ-ル一 N—マレイミド)など のマレイミド系化合物等である。
[0087] 力かるビュル重合系モノマーから得られるポリマーを製造する場合には、モノマー 組成物には、重合をしやすくするために、パーオキサイド系ゃァゾ系に代表される熱 重合開始剤や、光重合開始剤が添加されるのが一般的である。
[0088] 熱重合を行う場合は、所望の反応温度に対して最適な分解特性を有するものを選 択して使用する。一般的には 10時間半減期温度が 40〜100°Cの過酸ィ匕物系開始 剤が好適であり、カゝかる開始剤によりひび割れのない高分子電解質材料を製造する ことができる。
[0089] 光重合開始剤としては、ベンゾフエノンのようなカルボ-ルイ匕合物とアミン併用系や 、メルカブタンィ匕合物、ジスルフイドィ匕合物などを挙げることができる。
[0090] これらの重合開始剤は単独または混合して用いられ、およそ 1重量%くらいまでの 量で使用される。
[0091] 重合方法、成形方法としては、公知の方法を使用することができる。例えば、板間 重合法、およびコーティング等の方法で薄膜状にしたモノマー組成物を不活性ガス または減圧雰囲気下で重合する方法などである。
[0092] 一例として板間重合法にっ 、て、次に説明する。まず、モノマー組成物を 2枚の板 状モールドの空隙に充填する。そして光重合あるいは熱重合を行って膜状に賦型す る。板状モールドは、榭脂、ガラス、セラミックス、金属等で製作されているが、光重合 の場合は光学的に透明な素材が用いられ、通常は榭脂またはガラスが使用される。 必要に応じて膜に一定の厚みを与えかつ充填したモノマー組成物の液モレを防止 する目的を有するガスケットを併用してもよい。空隙にモノマー組成物を充填した板 状モールドは、続いて紫外線のような活性光線を照射される力 オーブンや液槽に 入れて加熱されて重合される。光重合の後に加熱重合したり、逆に加熱重合後に光 重合する両者を併用する方法もありうる。光重合の場合は、例えば水銀ランプや捕虫 灯を光源とする紫外線を多く含む光を短時間 (通常は 1時間以下)照射するのがー 般的である。熱重合を行う場合には、室温付近から徐々に昇温し、数時間ないし数 十時間かけて 60°C〜200°Cの温度まで高めて行く条件が、均一性、品位を保持し、 かつ再現性を高めるために好まれる。
[0093] 次に (E— 2)とは、イオン性基を有し主鎖に芳香環を有するポリマーである。すなわ ち、主鎖に芳香環を有するポリマーであって、イオン性基を有するものである。
[0094] 主鎖構造は、芳香環を有するものであれば特に限定されるものではな 、が、例えば エンジニアリングプラスチックとして使用されるような十分な機械強度を有する物が好 ましい。例えば米国特許第 5, 403, 675号明糸田書、特開 2001— 192531号公報お よび特開 2002— 293889号公報などに記載のあるポリフエ-レン系高分子は好適 な例である。
[0095] さら〖こは、少なくとも主鎖にイオン性基とは異なる 1種類以上の極性基を有する高分 子が好ましい。この理由は、主鎖近傍への水の配位を促し不凍水量を増やすことに よって、高プロトン伝導性を与え、燃料クロスオーバーを低減できるためであると推定 される。
[0096] 極性基とは、特に限定されるものではな 、が、水が配位できる官能基が好ま 、。こ の様な極性基としては下記一般式 (gl)で表されるスルホ-ル基、一般式 (g2)で表さ れるォキシ基、一般式 (g3)で表されるチォ基、一般式 (g4)で表されるカルボニル基 、一般式 (g5)で表されるホスフィンォキシド基 (式中、 R1は 1価の有機基を表す。)、 一般式 (g6)で表されるホスホン酸エステル基 (式中、 R2は 1価の有機基を表す。)、 一般式 (g7)で表されるエステル基、一般式 (g8)で表されるアミド基 (式中、 R3は 1価 の有機基を表す。)、一般式 (g9)で表されるイミド基および一般式 (glO)で表される ホスファゼン基 (式中、 R4および R5は 1価の有機基を表す。)などが好適である。
[0097] [化 3]
Figure imgf000024_0001
Figure imgf000024_0002
[0098] そのような極性基を有するポリマーの中でも、下記一般式 (P1)
[0099] [化 4]
(P1)
Figure imgf000024_0003
(ここで、 Z Z2は芳香環を含む有機基を表し、それぞれは 1種類の記号で 2種類以 上の基を表すことができる。 Y1は電子吸引性基を表す。 Y2は Oまたは Sを表す。 aお よび bはそれぞれ独立に 0〜2の整数を表し、ただし aと bは同時に 0ではない。 ) で示される繰返し単位を有する芳香族炭化水素系ポリマー、および下記一般式 (P3 )
[0101] [ィ匕 5]
N N _z6一 (P3)
Figure imgf000025_0001
[0102] (ここで、 Z5、 Z6は芳香環を含む有機基を表し、それぞれが 2種類以上の基を表し ても良い。)
で示される繰返し単位を有するポリイミドカも選ばれることが好ましい。
[0103] Z5として好ましい有機基は、下記一般式 (Z5— 1)〜一般式 (Z5— 4)で示される有 機基であり、耐加水分解性の点で最も好ましいのは、一般式 (Z5— 1)で示される有 機基である。これらは置換されていてもよい。
[0104] [化 6]
Figure imgf000026_0001
[0105] Z6として好ま 、有機基は下記一般式 (Z6— 1)〜一般式 (Z6— 10)で示される有 機基である。これらは置換されていてもよい。
[0106] [化 7]
Figure imgf000027_0001
高分子電解質材料としては耐加水分解性に優れて 、る点で下記一般式 (P1)で される繰返し単位を有する芳香族炭化水素系ポリマーがより好ま 、。かかる一般式 (P1)で示される繰返し単位を有する芳香族炭化水素系ポリマーの中でも、一般式( P1 - 1)〜一般式 (P1— 9)で示される繰返し単位を有する芳香族炭化水素系ポリマ 一は特に好ましい。プロトン伝導度の高さ、製造の容易さの点では一般式 (P1— 6) 〜一般式 (P1— 9)で示される繰返し単位を有する芳香族炭化水素系ポリマーが最 も好ましい。
[化 8]
) d (0)9 kj (11
〇 (3
C
N
〇 0
έ (ε
N 2S;0ZZ 0—-I-
〇= 〇
CM 〇 )£ (寸 -
〇 έ (9
Figure imgf000029_0001
[0109] Z1として好ましい有機基は、フエ-レン基およびナフチレン基である。これらは置換 されていてもよい。
[0110] Z2として好ましい有機基はフエ-レン基、ナフチレン基ならびに下記一般式 (Z2— 1)〜一般式 (Z2— 14)で示される有機基である。これらは置換されていてもよい。こ れらの中でも一般式 (Z2— 7)〜一般式 (Z2— 14)で示される有機基は、燃料透過抑 制効果に優れるために特に好ましぐ本発明の高分子電解質は Z2として一般式 (Z2 7)〜一般式 (Z2— 14)で示される有機基のうち少なくとも 1種類を含有することが 好ま 、。一般式 (Z2— 7)〜一般式 (Z2— 14)で示される有機基の中でもさらに好 まし 、のは一般式 (Z2— 7)および (Z2— 8)で示される有機基、最も好まし ヽのは一 般式 (Z2— 7)で示される有機基である。
[化 9]
Figure imgf000031_0001
Figure imgf000031_0002
z) ( w寸
[0112] 一般式 (PI— 4)および一般式 (PI— 9)における R1で示される有機基の好ましい 例としては、メチル基、ェチル基、プロピル基、イソプロピル基、シクロペンチル基、シ クロへキシル基、ノルボル-ル基、ビュル基、ァリル基、ベンジル基、フエ-ル基、ナ フチル基、フエニルフエ-ル基などである。工業的な入手の容易さの点では R1として 最も好まし 、のはフエ-ル基である。
[0113] これら芳香族炭化水素系ポリマーに対してイオン性基を導入する方法は、イオン性 基を有するモノマーを用いて重合する方法と、高分子反応でイオン性基を導入する 方法が挙げられる。
[0114] イオン性基を有するモノマーを用いて重合する方法としては、繰り返し単位中にィ オン性基を有したモノマーを用いれば良ぐ必要により適当な保護基を導入して重合 後脱保護基を行えばよい。かかる方法は例えば Journal of Membrane Science, 197( 2002) 231-242 に記載がある。この方法はポリマーのスルホン酸基密度の制御が容 易であり、工業的にも適用が容易であり、非常に好ましい。
[0115] 高分子反応でイオン性基を導入する方法について例を挙げて説明すると、芳香族 系高分子へのホスホン酸基の導入は、例えば Polymer Preprints, Japan , 51, 750 (20 02)等に記載の方法によって可能である。芳香族系高分子へのリン酸基の導入は、 例えばヒドロキシル基を有する芳香族系高分子のリン酸エステルイ匕によって可能であ る。芳香族系高分子へのカルボン酸基の導入は、例えばアルキル基ゃヒドロキシァ ルキル基を有する芳香族系高分子を酸化することによって可能である。芳香族系高 分子への硫酸基の導入は、例えばヒドロキシル基を有する芳香族系高分子の硫酸ェ ステルイ匕によって可能である。芳香族系高分子をスルホン化する方法、すなわちスル ホン酸基を導入する方法としては、たとえば特開平 2— 16126号公報あるいは特開 平 2— 208322号公報等に記載の方法が公知である。
[0116] 具体的には、例えば、芳香族系高分子をクロ口ホルム等の溶媒中でクロロスルホン 酸のようなスルホン化剤と反応させたり、濃硫酸や発煙硫酸中で反応することによりス ルホンィ匕することができる。スルホン化剤には芳香族系高分子をスルホン化するもの であれば特に制限はなぐ上記以外にも三酸ィ匕硫黄等を使用することができる。この 方法により芳香族系高分子をスルホンィ匕する場合には、スルホンィ匕の度合いはスル ホン化剤の使用量、反応温度および反応時間により、容易に制御できる。芳香族系 高分子へのスルホンイミド基の導入は、例えばスルホン酸基とスルホンアミド基を反応 させる方法によって可能である。
[0117] 次に、本発明の高分子電解質材料の態様 2における、前記複素環状ポリマーにつ いて説明を加える。
[0118] 本発明でいう複素環状ポリマーとは、繰り返し単位中に複素環を含むポリマーのこ とを意味し、複素環とは、ヘテロ原子、すなわち 0、 S、 N原子のいずれかを 1個以上 有する環のことを意味する。力かる複素環はポリマー中の主鎖にあっても、側鎖にあ つても構わないが、機械強度の点力 主鎖に複素環を含む複素環状ポリマーである のがより好ましい。
[0119] 力かる複素環として具体的な例としては、下記の下記一般 (hi)〜 (hi 2)、ならび にこれらの全水素付加物、部分水素付加物を挙げることができるが、これらに限定さ れるものではない。これらの複素環は高分子電解質材料中に 2種類以上含むことが でき、組み合わせることにより好ましくなる場合がある。
[0120] [化 10]
Figure imgf000034_0001
Figure imgf000034_0002
Figure imgf000034_0003
Figure imgf000034_0004
該複素環状ポリマーは、燃料クロスオーバーを抑制することに有効である必要があ ること力 、 40°Cの 10Mメタノール水溶液に対して不溶であることが好ましぐそのた め主鎖に複素環を含むポリマーがより好ましい。不溶であるとは、高分子電解質膜を 40°Cの 10Mメタノール水溶液に 8時間浸漬した後、濾紙で濾過し、濾液から検出さ れる複素環状ポリマーの量が、高分子電解質膜全体に含まれる複素環状ポリマーの 量の 5重量%以下であることを意味する。なお、ここでは燃料としてメタノール水溶液 を想定した力 メタノール水溶液に対する挙動は他の燃料に対しても共通しており、 一般性を有する。
[0122] また、該複素環状ポリマーは、耐溶剤性を付与できればさらに好ましいことから、 50 °Cの N—メチルピロリドンに対して不溶であることがさらに好ましい。不溶であるとは、 高分子電解質膜を 50°Cの N—メチルピロリドンに 5時間浸漬した後、濾紙で濾過し、 濾液力 検出される複素環状ポリマーの量が、高分子電解質膜全体に含まれる複素 環状ポリマーの量の 5重量%以下であることを意味する。なお、ここでは高分子電解 質材料用溶剤の例として、 N—メチルピロリドンを想定した力 N—メチノレピロリドンに 対する挙動は他の溶剤に対しても共通しており、一般性を有する。
[0123] 次に、本発明に使用される複素環状ポリマーについて具体的に説明する。本発明 に使用される複素環状ポリマーは、使用されるイオン性基を有する炭化水素系ポリマ 一と実質的に均一に混和し、得られる高分子電解質材料のヘーズが 30%以下であ れば、特に限定されるものではない。プロトン伝導性を大きく損なうことなぐ燃料クロ スオーバー抑制効果があり、機械強度および耐溶剤性に優れたポリマーをより好まし く用いることができる。
[0124] その具体例としては、ポリフラン、ポリチォフェン、ポリピロール、ポリピリジン、ポリオ キサゾール、ポリべンズォキサゾール、ポリチアゾール、ポリべンズチアゾール、ポリイ ミダゾール、ポリべンズイミダゾール、ポロピラゾール、ポリべンズピラゾール、ポリオキ サジァゾール、ォキサジァゾール環含有ポリマー、ポリチアジアゾール、チアジアゾー ル環含有ポリマー、ポリトリァゾール、トリァゾール環含有ポリマー、ポリアミック酸、ポ リイミド、ポリエーテルイミド、ポリイミドスルホンなどの炭化水素系ポリマーなどが挙げ られる力 これらに限定されるものではない。また複数種類のポリマーを併用してもか まわない。
[0125] なかでも、耐溶剤性、成形カ卩ェ性の点で、ポリオキサゾール、ポリベンズォキサゾー ル、ポリチアゾール、ポリべンズチアゾール、ポリイミダゾール、ポリべンズイミダゾール 、ポロピラゾール、ポリべンズピラゾール、ポリオキサジァゾール、ォキサジァゾール環 含有ポリマー、ポリチアジアゾール、チアジアゾール環含有ポリマー、ポリトリァゾール 、トリァゾール環含有ポリマー、ポリイミドが好ましぐ工業製品入手の容易さの点から ポリオキサゾール、ポリイミダゾール、ポリイミドがさらに好ましぐ相溶性、耐溶剤性の 点からポリイミドが最も好ましく使用される。
[0126] また、複素環状ポリマーとしては、燃料クロスオーバー抑制効果、膨潤抑制効果、 ならびに耐溶剤性の点から、溶剤不溶性ポリマーがより好ましいが、溶剤不溶性ポリ マーを用いる場合は、製造コストを考慮し、前駆体ポリマーとして溶液製膜が可能で 熱処理、あるいは閉環促進剤等の何らかの処理により、閉環し、溶剤不溶化するポリ マーを用いることが最も好まし 、。
[0127] なかでも、イオン性基を有する炭化水素系ポリマーとの相溶性、機械強度、耐溶剤 性と溶剤可溶性の両立の点から、ポリイミドならびにその前駆体であるポリアミック酸 が最も好ましく用いられる。ポリイミドの前駆体であるポリアミック酸は、アミド基に加え 、カルボン酸基を有するため、イオン性基を有する炭化水素系ポリマーとの相溶性が 極めて良好である。
[0128] ここで、好ま U、高分子電解質材料の作製方法の一例を挙げれば、ナトリウムなど のアルカリ金属で置換されたイオン性基を有する炭化水素系ポリマーとポリイミドの前 駆体であるポリアミック酸を溶液状態で混ぜ、支持体上にキャストして自己支持性の ポリアミック酸複合高分子電解質材料を得た後、前記ポリアミック酸を加熱イミド化、さ らにイオン性基をプロトン置換することによって製造することができる。力かる方法によ り作製した高分子電解質材料は、高プロトン伝導性と燃料クロスオーバー抑制を両 立することができるだけでなぐ溶液製膜が可能であることから、製造コストが極めて 安ぐさらに閉環イミドィ匕の効果により、耐溶剤性も付与することができるので、高分子 電解質膜に対して触媒ペーストの直接塗工が可能で、膜電極複合体の製造コストも 大幅に低減可能であるため、最も好ましく利用することができる。
[0129] 次に、本発明に使用されるポリイミド、ならびにその前駆体であるポリアミック酸につ いて具体的に説明する。本発明に使用されるポリアミック酸、およびイミドは、使用さ れるイオン性基を有する炭化水素系ポリマーと実質的に均一に混和し、燃料クロスォ 一バー抑制効果があり、耐溶剤性を付与できるポリマーであれば、特に限定されるも のではない。力かるポリイミドとしては、ポリアミック酸の状態では可溶性であり、閉環 イミドィ匕後のポリイミドで、かつ、溶剤不溶性のポリマーがより好ましく用いられる。
[0130] 前記ポリアミック酸は公知の方法により合成が可能である。例えば、低温中でテトラ カルボン酸二無水物とジァミンィヒ合物を反応させる方法、テトラカルボン酸二無水物 とアルコールとによりジエステルを得、その後ァミンと縮合剤の存在下で反応させる方 法、テトラカルボン酸二無水物とアルコールとによりジエステルを得、その後残りのジ カルボン酸を酸クロリド化し、ァミンと反応させる方法などで合成することができる。
[0131] かかる酸二無水物の具体的としては、ピロメリット酸二無水物、 3, 3,、 4, 4,ービフ ェ -ルテトラカルボン酸二無水物、 2, 3, 3' , 4'ービフエ-ルテトラカルボン酸二無 水物、 2, 2' , 3, 3,ービフエ-ルテトラカルボン酸二無水物、 3, 3' , 4, 4,一べンゾ フエノンテトラカルボン酸二無水物、 2, 2' , 3, 3,一べンゾフエノンテトラカルボン酸 二無水物、 2, 2 ビス(3, 4 ジカルボキシフエ-ル)プロパン二無水物、 2, 2 ビ ス(2, 3 ジカルボキシフエ-ル)プロパン二無水物、 1, 1—ビス(3, 4 ジカルボキ シフエ-ル)エタンニ無水物、 1, 1 ビス(2, 3 ジカルボキシフエ-ル)エタンニ無 水物、ビス(3, 4 ジカルボキシフエ-ル)メタン二無水物、ビス(2, 3 ジカルボキシ フエ-ル)メタン二無水物、ビス(3, 4—ジカルボキシフエ-ル)スルホン二無水物、ビ ス(3, 4 ジカルボキシフエ-ル)エーテル二無水物、 1, 2, 5, 6 ナフタレンテトラ カルボン酸二無水物、 2, 3, 6, 7 ナフタレンテトラカルボン酸二無水物、 2, 3, 5, 6 ピリジンテトラカルボン酸二無水物、 3, 4, 9, 10 ペリレンテトラカルボン酸二無 水物、 2, 2 ビス(3, 4 ジカルボキシフエ-ル)へキサフルォロプロパン二無水物 などの芳香族テトラカルボン酸二無水物や、ブタンテトラカルボン酸二無水物、 1, 2 , 3, 4ーシクロペンタンテトラカルボン酸二無水物などの脂肪族のテトラカルボン酸二 無水物などを挙げることができる。これらは単独で又は 2種以上を組み合わせて使用 される。
[0132] また、ジァミンの具体的な例としては、 3, 4'ージアミノジフエ-ルエーテル、 4, 4, ージアミノジフエニルエーテル、 3, 4'ージアミノジフエニルメタン、 4, 4'ージアミノジ フエニルメタン、 3, 4'ージアミノジフエニルスルホン、 4, 4'ージアミノジフエニルスル ホン、 3, 4,一ジアミノジフエ-ルスルヒド、 4, 4,一ジアミノジフエ-ルスルヒド、 1, 4— ビス(4—アミノフエノキシ)ベンゼン、ベンジン、 m—フエ-レンジァミン、 P フエ-レ ンジァミン、 1, 5 ナフタレンジァミン、 2, 6 ナフタレンジァミン、ビス(4ーァミノフエ ノキシフエ-ル)スルホン、ビス(3—ァミノフエノキシフエ-ル)スルホン、ビス(4—アミ ノフエノキシ)ビフエ-ル、ビス {4— (4 アミノフエノキシ)フエ-ル}エーテル、 1, 4— ビス(4 アミノフエノキシ)ベンゼン、 2, 2'—ジメチルー 4, 4'—ジアミノビフエ-ル、 2, 2' ジェチルー 4, 4'ージアミノビフエニル、 3, 3' ジメチルー 4, 4'ージァミノ ビフエニル、 3, 3,一ジェチルー 4, 4,ージアミノビフエニル、 2, 2' , 3, 3,ーテトラメ チノレー 4, 4'ージアミノビフエ二ノレ、 3, 3' , 4, 4'ーテトラメチノレー 4, 4'ージアミノビ フエニル、 2, 2'ージ(トリフルォロメチル) 4, 4'ージアミノビフエ-ル、あるいはこれ らの芳香族環にアルキル基やハロゲン原子で置換した化合物や、脂肪族のシクロへ キシルジァミン、メチレンビスシクロへキシルァミンなどが挙げられる。これらは単独で 又は 2種以上を組み合わせて使用される。
[0133] これらのなかでも、燃料クロスオーバー抑制効果、耐溶剤性、および機械強度の点 から下記一般式 (P2)で示される繰り返し単位を有する芳香族ポリイミドがより好ましく 使用される。
[0134] [化 11]
Figure imgf000038_0001
Figure imgf000038_0002
[0135] (ここで、
Figure imgf000038_0003
Z4は芳香環を含む有機基を表し、それぞれが 2種類以上の基を表し ても良い。) なかでも、より好ましいポリアミック酸としては、パラフエ-レンジァミン、ベンジジン誘 導体、 4, 4'ージアミノジフエ-ルエーテル、 3, 4'—ジアミノジフエ-ルエーテル、ビ スァミノフエノキシベンゼン類、ジァミノべンズァ -リド類などの芳香族ジァミン成分と、 ピロメリット酸酸二無水物に代表されるピロメリット酸類、 3, 3,一4, 4,ービフエ-ルテ トラカルボン酸またはその二無水物、 3, 3'— 4, 4' ベンゾフヱノンテトラカルボン酸 またはその二無水物などの芳香族テトラカルボン酸類ィ匕合物とを、溶媒中で重合さ せることによって得られ、耐溶剤性に優れたポリイミドをより好ましく用いることができる
[0136] 前記の重合で使用する溶媒としては、ジメチルスルホキシド、 N, N ジメチルァセ トアミド、 N, N ジェチルァセトアミド、 N, N ジメチルホルムアミド、 N, N ジェチ ルホルムアミド、 N—メチルー 2—ピロリドンおよびジメチルスルホンなどが挙げられ、 これらを単独あるいは混合して使用するのが好まし 、。
[0137] 前記の重合で得られるポリアミック酸は、前記溶媒中に 10〜30重量%の割合とな るように調製する。
[0138] 本発明の高分子電解質材料の態様 2において、イオン性基を有する炭化水素系ポ リマーと複素環状ポリマーとは、均一に混じり合つていることが燃料クロスオーバー抑 制およびプロトン伝導性のために好ましい。イオン性基を有する炭化水素系ポリマー と複素環状ポリマーが均一に混じり合つている状態とは、前記 2種類のポリマーが含 水状態においても実質的に相分離構造を取らずに混じり合つている状態である。前 記 2種類のポリマーが実質的に均一に混じり合つていることの確認は、高分子電解質 材料の含水状態のヘーズを測定することによって可能である。高分子電解質材料の 含水状態のヘーズを測定し、ヘーズが 30%を越える場合には、該高分子電解質材 料の例えば、親水部分と疎水部分による相分離のドメインサイズが、可視光波長サイ ズ以上となっており、前記 2種類のポリマーが実質的に均一に混じり合っていないと 判断する。ヘーズが 30%以下である場合は、前記 2種類のポリマーが実質的に、分 子レベルで均一に混和し、複素環状ポリマーとの相互作用によってイオン性基を有 する炭化水素系ポリマーの分子鎖の運動が制限された状態、すなわちイオン性基を 有する炭化水素系ポリマーの分子鎖が拘束された状態になると考えられる。イオン性 基を有する炭化水素系ポリマーと複素環状ポリマーが実質的に均一に混じり合った 状態では、互いの高分子鎖どうしが十分にからみ合っている状態と考えられ、互いの 動きを拘束し、燃料透過を妨げたり、溶剤に対する溶解を妨げるものと考えられる。
[0139] イオン性基を有する炭化水素系ポリマーと複素環状ポリマーが実質的に均一に混 じり合った状態を実現するための方法としては、イオン性基を有する炭化水素系ポリ マーと複素環状ポリマーの両方をポリマー溶液の状態にて混ぜ合わせたり、イオン性 基を有する炭化水素系ポリマーと複素環状ポリマーのうち少なくともいずれか一方を 前駆体 (モノマー、オリゴマー、または前駆体ポリマー)の状態にて混ぜ合わせ、その 後、重合あるいは反応を行って高分子電解質材料を作製する方法などがある。なか でも、成形加工の容易さ、製造コストから、イオン性基を有する炭化水素系ポリマーと 複素環状ポリマーを前駆体の状態にて混ぜ合わせ、その後、製膜後、前記前駆体ポ リマーを閉環させる工程を経ることにより、高分子電解質材料を作製し、その後加温 下にお 、てメタノール水溶液に浸漬する方法が最も好ま 、。加温下にお!/、てメタノ ール水溶液に浸漬する際の条件としては、温度は室温〜 120°C、メタノール水溶液 の濃度は 10〜100重量%、時間は 1分〜 72時間が好まし 、。
[0140] 本発明の高分子電解質材料の態様 2において、前記イオン性基を有する炭化水素 系ポリマーと前記複素環状ポリマーの糸且成比率は、イオン性基を有する炭化水素系 ポリマーと前記複素環状ポリマーの合計量に対して、複素環状ポリマーを 2〜80重 量%含むことがより好まし 、。複素環状ポリマーを 2重量%未満し力含まな 、場合に は、燃料クロスオーバー抑制効果ゃ耐溶剤性が不足する場合があり、 80重量%を越 えて含む場合には、十分なプロトン伝導度が得られない傾向がある。
[0141] 次に、本発明の高分子電解質材料の態様 3における、前記ビニル重合系ポリマー について説明を加える。なお、本発明においては、力かるビュル重合系ポリマーは 2 種以上のポリマーを同時に使用しても構わない。
[0142] 本発明でいうビニル重合系ポリマーとは、ビニル重合系モノマー力も得られるポリマ 一のことを意味する。力かるビュル重合系ポリマーは非架橋ポリマーであっても架橋 ポリマーであっても構わないが、耐溶剤性の点力 架橋ポリマーであるのがより好まし い。 [0143] 次に、本発明の高分子電解質材料の態様 3に使用されるビニル重合系ポリマーに ついて具体的に説明する。ビュル重合系ポリマーは、使用されるイオン性基を有する 炭化水素系ポリマーと実質的に均一に混和し、得られる高分子電解質材料のヘーズ が 30%以下であれば、特に限定されるものではない。プロトン伝導性を大きく損なう ことなぐ燃料クロスオーバー抑制効果があり、機械強度および耐溶剤性に優れたポ リマーをより好ましく用いることができる。
[0144] 力かるビュル重合系ポリマーを得るために使用するビュル重合系モノマーの具体 的な例としてはビニル重合性官能基を有する化合物であれば特に限定なく用いるこ とができる。原料コストおよび工業的入手の容易さから、好ましくは (メタ)アクリル酸メ チル、(メタ)アクリル酸ェチル、(メタ)アクリル酸プロピル、(メタ)アクリル酸ブチル、( メタ)アクリル酸 2—ェチルへキシル、(メタ)アクリル酸ドデシル、(メタ)アクリル酸ベン ジル、(メタ)アクリル酸 2—ヒドロキシェチルなどの(メタ)アクリル酸エステル系化合物 、スチレン、 aーメチノレスチレン、アミノスチレン、クロロメチルスチレンなどのスチレン 系化合物、(メタ)アクリロニトリル、(メタ)アクリルアミド、 N, N—ジメチルアクリルアミド 、 N—アタリロイルモルホリン、 N—メチルアクリルアミドなどの(メタ)アクリルアミド系化 合物、 N—フエ-ルマレイミド、 N—ベンジルマレイミド、 N—シクロへキシルマレイミド 、 N—イソプロピルマレイミドなどのマレイミド系化合物等が挙げられる。中でも、ィォ ン性基を有する炭化水素系ポリマーとの相溶性の点から、(メタ)アクリル酸エステル 系化合物および (メタ)アクリルアミド系化合物から得られる (メタ)アクリル酸エステル 系ポリマー、(メタ)アクリルアミド系ポリマーがより好まし!/、。
[0145] ビュル重合系モノマーから得られる高分子を架橋させる場合には、ビニル重合系モ ノマーの中で重合性官能基を複数有するものを架橋剤として共重合させればよい。 ビュル重合系モノマーの中で重合性官能基を複数有するもののみを、イオン性基を 有するポリマーに混和させた高分子電解質材料も、耐溶剤性および燃料クロスォー バー抑制効果の点力 より好適である。
[0146] ビニル重合系モノマーの中でビニル重合性官能基を複数有するものを一部例示す れば、エチレングリコールジ (メタ)アタリレート、ジエチレングリコールジ(メタ)アタリレ ート、トリエチレングリコールジ (メタ)アタリレート、ポリエチレングリコールジ (メタ)ァク リレート、プロピレングリコールジ(メタ)アタリレート、ジプロピレングリコールジ(メタ)ァ タリレート、トリプロピレングリコールジ (メタ)アタリレート、ポリプロピレングリコールジ( メタ)アタリレート、トリメチロールプロパントリ(メタ)アタリレート、ペンタエリスリトールテ トラ (メタ)アタリレート、ジペンタエリスリトールポリ(メタ)アタリレート、下記一般式 (F) で示されるフルオレン系ジ (メタ)アタリレートなどの(メタ)アクリル酸エステル系化合 物、ジビルベンゼン、ジビ-ルナフタレン、ジビ-ルビフエ-ルなどのスチレン系化合 物、メチレンビス (メタ)アクリルアミドなどの(メタ)アクリルアミド系化合物、フエ-レンビ スマレイミド、 p, ρ,一ォキシビス(フエ-ルー Ν—マレイミド)などのマレイミド系化合物 等である。中でも、イオン性基を有する炭化水素系ポリマーとの相溶性の点から、(メ タ)アクリル酸エステル系化合物および (メタ)アクリルアミド系化合物がより好適である 。相溶性および燃料クロスオーバー抑制効果の点から、さらに好ましくはメチレンビス (メタ)アクリルアミドおよび下記一般式 (F)で示されるフルオレン系ジ (メタ)アタリレー トである。
[0147] [化 12]
Figure imgf000042_0001
[0148] (ここで、 Τ1は水素、またはメチル基、 Τ2は任意の有機基、 ηは整数を表す。 ) ビュル重合系モノマーから得られるポリマーを製造する場合には、モノマー組成物 には、重合をしやすくするためにパーオキサイド系ゃァゾ系に代表される熱重合開始 剤や、光重合開始剤が添加されるのが一般的である。
[0149] 熱重合を行う場合は、所望の反応温度に対して最適な分解特性を有するものを選 択して使用する。一般的には 10時間半減期温度が 40〜100°Cの過酸ィ匕物系開始 剤が好適であり、カゝかる開始剤によりひび割れのない高分子電解質材料を製造する ことができる。
[0150] 光重合開始剤としてはべンゾフエノンのようなカルボ-ルイ匕合物とアミン併用系や、 メルカブタンィ匕合物、ジスルフイドィ匕合物などを挙げることができる。
[0151] これらの重合開始剤は単独または混合して用いられ、およそ 1重量%くらいまでの 量で使用される。
[0152] 重合方法、成形方法としては、公知の方法を使用することができる。例えば、板間 重合法、およびコーティング等の方法で薄膜状にしたモノマー組成物を不活性ガス または減圧雰囲気下で重合する方法などである。
[0153] 一例としてコーティング等の方法で薄膜状にしたモノマー組成物を不活性ガスまた は減圧雰囲気下で重合する方法について、次に説明する。モノマー組成物を溶媒に 溶解し、その溶液をガラス板等の上に流延塗布し、溶媒を除去しながら光重合あるい は熱重合を行って膜を作製し、その後加温下にお ヽてメタノール水溶液に浸漬する 方法が例示できる。加温下にお 、てメタノール水溶液に浸漬する際の条件としては、 温度は室温〜 120°C、メタノール水溶液の濃度は 10〜: LOO重量%、時間は 1分〜 7 2時間が好ましい。モノマー組成物を流延したガラス版は、続いて紫外線のような活 性光線を照射されるか、オーブンや液槽に入れて加熱されて重合される。光重合の 後に加熱重合したり、逆に加熱重合後に光重合する両者を併用する方法もありうる。 光重合の場合は、例えば水銀ランプや捕虫灯を光源とする紫外線を多く含む光を短 時間(通常は 1時間以下)照射するのが一般的である。熱重合を行う場合には、不活 性ガス雰囲気下で、室温付近から徐々に昇温し、数時間ないし数十時間かけて 60 °C〜200°Cの温度まで高めて行く条件力 均一性、品位を保持し、かつ再現性を高 めるために好まれる。
[0154] 次に、本発明の高分子電解質材料の態様 4における下記一般式 (Ml)で示される 基を有する架橋性化合物について説明を加える。なお、本発明においては、かかる 架橋性ィ匕合物は 2種以上のものを同時に使用しても構わない。
[0155] -CH OU1 (Ml)
2
(ここで、 u1は水素、または任意の有機基である。 )
本発明の高分子電解質材料の態様 4は、本発明の高分子電解質材料を前記一般 式 (Ml)で示される基を有する架橋性化合物で架橋せしめた高分子電解質膜である 。前記架橋性化合物で架橋せしめることにより、燃料クロスオーバーおよび燃料に対 する膨潤を抑制する効果が期待でき、機械的強度が向上し、より好ましくなる。
[0156] 芳香族炭化水素系ポリマーを高分子電解質材料に用いる場合は、一般的にポリマ 一がラジカル耐性に優れるため、電子線や γ線といった放射線架橋では十分に内 部まで架橋せしめることは難しい。しかし、本発明の前記式 (Ml)で示される基を有 する架橋性化合物で架橋せしめた場合は、十分な架橋が進行し、比較的容易に燃 料クロスオーバー抑制ゃ耐溶剤性に優れた高分子電解質材料を得ることができる。
[0157] なかでも、工業的入手の容易さおよび反応効率の点から、前記 U1としては炭素数 1
〜20までのアルキル基、または U2CO基 (U2は炭素数 1〜20までのアルキル基を表 す)がより好ましい。
[0158] 本発明で使用される前記式 (Ml)で表される基を含有する架橋性化合物としては、 たとえば、前記有機基(Ml)を 1つ有するものとして ML— 26X、 ML— 24X、 ML— 236TMP、 4ーメチロール 3M6C、 ML— MC、 ML— TBC (商品名、本州化学工業 (株)製)等、 2つ有するものとして DM— BI25X— F、 46DMOC、 46DMOIPP、 46 DMOEP (商品名、旭有機材工業(株)製)、 DML— MBPC、 DML— MBOC、 DM L— OCHPゝ DML— PC、 DML— PCHPゝ DML— PTBPゝ DML— 34X、 DML— EPゝ DML -POP, DML— OC、ジメチロール— Bis— C、ジメチロール— BisOC— P、 DML— BisOC— Z、 DML— BisOCHP— Z、 DML— PFP、 DML— PSBP、 D ML— MB25、 DML— MTrisPC、 DML— Bis25X— 34XL、 DML— Bis25X— P CHP (商品名、本州化学工業 (株)製)、二力ラック (登録商標) MX— 290 (商品名、( 株)三和ケミカル製)、 2, 6 ジメトキシメチルー 4 t ブチルフエノール、 2, 6 ジメ トキシメチルー p クレゾール、 2, 6 ジァセトキシメチルー p タレゾール等、 3つ有 するものとして TriML— P、 TriML— 35XL、 TriML— TrisCR— HAP (商品名、本 州化学工業 (株)製)等、 4つ有するものとして TM— BIP— A (商品名、旭有機材ェ 業(株)製)、 TML— BP、 TML— HQ、 TML— pp— BPF、 TML— BPA、 TMOM — BP (商品名、本州化学工業 (株)製)、二力ラック (登録商標) MX— 280、二カラッ ク (登録商標) MX— 270 (商品名、(株)三和ケミカル製)等、 6つ有するものとして H ML— TPPHBA、 HML— TPHAP (商品名、本州化学工業 (株)製)が挙げられる。 これらのうち、本発明では架橋の点から、前記式 (Ml)で表される基を少なくとも 2つ 含有するものが好ましい。
[0159] これらの架橋性化合物を添加することで、得られる高分子電解質材料は、燃料水 溶液に対する膨潤が抑制され、高プロトン伝導性と燃料クロスオーバー抑制が両立さ れ、耐溶剤性も大きく向上する。
[0160] これら架橋性ィ匕合物は、 HOU1の脱離を伴う縮合によりベンゼン環に結合する反応 機構によってポリマーが架橋されると推定される。
[0161] 中でも、工業的入手の容易さ、燃料クロスオーバー抑制効果、イオン性基を有する ポリマーとの相溶性の点から、下記に本発明で使用するのに特に好ましい架橋性ィ匕 合物の構造を下記に示す。
[0162] [化 13- 1]
Figure imgf000046_0001
46DMOC 46DMOEP DMし MBPC DMし MBOC
Figure imgf000046_0002
DML-OCHP DMし PCHP DMし PC
DMし PTBP
Figure imgf000046_0003
TMレ pp-BPF TMし BPA TMOM-BP
[0163] [化 13— 2]
Figure imgf000048_0001
C0/.ST0/S00Zdf/X3d 917 [0164] このような架橋性ィ匕合物の添加量としては、ポリマー 100重量部に対して、好ましく は 1から 50重量部であり、さらに好ましくは 3から 40重量部の範囲である。添加量が 1 重量部未満であれば、架橋の効果が不十分となる場合があり、 50重量部を越えると プロトン伝導性あるいは機械強度が不十分となる場合がある。高分子電解質中に含 まれる架橋性化合物の種類および添加量は、各種核磁気共鳴スペクトル (NMR)、 赤外吸収スペクトル (IR)、熱分解ガスクロマトグラフ等により分析することができる。
[0165] ここで、好ま U、高分子電解質材料の作製方法の一例を挙げれば、ナトリウムなど のアルカリ金属で置換されたイオン性基を有する炭化水素系ポリマーと前記一般式( Ml)で示される基を有する架橋性化合物を溶液状態で混ぜ、支持体上に流延して 溶媒を蒸発させながら前記架橋性化合物を熱架橋させ、自己支持性の複合高分子 電解質材料を得た後、さらにイオン性基をプロトン置換し、その後加温下においてメ タノール水溶液に浸漬することによって製造することができる。加温下においてメタノ ール水溶液に浸漬する際の条件としては、温度は室温〜 120°C、メタノール水溶液 の濃度は 10〜100重量%、時間は 1分〜 72時間が好ましい。力かる方法により作製 した高分子電解質材料は、高プロトン伝導性と燃料クロスオーバー抑制を両立するこ とができるだけでなぐ溶液製膜が可能であることから、製造コストが低い。さらに前記 架橋性ィ匕合物による架橋の効果により、耐溶剤性も付与することができるので、高分 子電解質膜に対して触媒ペーストの直接塗工が可能で、膜電極複合体の製造コスト も大幅に低減可能であるため、最も好ましく利用することができる。
[0166] イオン性基を有する炭化水素系ポリマーと前記架橋性ィヒ合物が実質的に均一に混 じり合った状態を実現するための方法としては、相溶性の観点からイオン性基を有す る炭化水素系ポリマーに、前記架橋性化合物を溶液状態で混ぜ合わせ、その後、流 延後、前記架橋性化合物を架橋させる工程を経ることにより、高分子電解質材料を 作製する方法が最も好まし ヽ。
[0167] 本発明の高分子電解質材料の態様 1〜4においては、相溶性が不十分であるなら ば必要に応じて相溶化剤を用いることができる。使用される相溶化剤としては、使用 されるイオン性基を有する炭化水素系ポリマーと複素環状ポリマーを相溶させるもの であれば、特に限定されるものではなぐたとえば直鎖アルキルベンゼンスルホン酸 塩やアルキル硫酸エステル塩などの界面活性剤、水酸基、エステル基、アミド基、ィ ミド基、ケトン基、スルホン基、エーテル基、スルホン酸基、硫酸基、ホスホン酸基、リ ン酸基、カルボン酸基などの極性基を有する有機化合物およびポリマーが挙げられ る。
[0168] 本発明の高分子電解質材料のさらに別の好ましい態様は、前述の (E— 2)イオン 性基を有し主鎖に芳香環を有するポリマーであって、イオン性基がスルホン酸基であ り、スルホン酸基密度が 0. 1〜1. 6mmolZgのものである(以下、態様 5と呼ぶ場合 がある)。
[0169] 高分子電解質材料の態様 5の好ま ヽ製法を述べる。スルホン酸基を有する重合 体を成形する方法としては、 -SO M型 (Mは金属)のポリマーを溶液状態より流延
3
塗付し、その後高温で熱処理し、プロトン置換し、その後加温下においてメタノール 水溶液に浸漬する方法が挙げられる。前記の金属 Mはスルホン酸と塩を形成しうるも のであればよいが、価格および環境負荷の点からは Li、 Na、 K、 Rb、 Cs、 Mg、 Ca、 Sr、 Ba、 Ti、 V、 Mn、 Fe、 Co、 Ni、 Cu、 Zn、 Zr、 Mo、 Wなどが好ましぐこれらの中 でも Li、 Na、 K、 Ca、 Sr、 Baがより好ましぐ Li、 Na、 Kがさらに好ましい。理由は明ら かではないが、この方法で成形することによって本発明の不凍水の分率 Rwおよび W nfが得られ、高プロトン伝導度と低燃料クロスオーバーが両立可能となる。
[0170] 前記熱処理の温度としては、得られる高分子電解質部品の不凍水の分率および燃 料遮断性の点で 200〜500°Cが好ましぐ 250〜400°C力より好ましく、 300〜350 °Cがさらに好ましい。 200°C以上とするのは、本発明で規定する不凍水の分率を得る 上で好ましい。一方、 500°C以下とすることで、ポリマーが分解するのを防ぐことがで きる。
[0171] また、熱処理時間としては、得られる高分子電解質部品の不凍水の分率、プロトン 伝導性および生産性の点で 1分〜 24時間が好ましぐ 3分〜 1時間がより好ましぐ 5 分〜 30分がさらに好ましい。熱処理時間が短すぎると、効果が薄く本発明の不凍水 の分率が得られない場合があり、長すぎるとポリマーの分解が起きプロトン伝導性が 低下する場合があり、また生産性が低くなる。
[0172] SO M型のポリマーを溶液状態より成形する方法としては例えば、粉砕した S O H型のポリマーを Mの塩または Mの水酸ィ匕物の水溶液に浸漬し、水で充分洗浄
3
した後、乾燥し、次に非プロトン性極性溶媒等に溶解して溶液を調製し、該溶液より ガラス板あるいはフィルム上に適当なコーティング法で塗布し、溶媒を除去し、酸処 理によりプロトン置換する方法を例示することができる。
[0173] 加温下においてメタノール水溶液に浸漬する際の条件としては、温度は室温〜 12 0°C、メタノール水溶液の濃度は 10〜: LOO重量%、時間は 1分〜 72時間が好ましい
[0174] 本発明の高分子電解質材料を燃料電池用として使用する際には、高分子電解質 膜または電極触媒層として、通常膜の状態で使用される。しかしながら、本発明の高 分子電解質材料は、膜状に限定されるものではなぐその形状としては、前述の膜状 の他、板状、繊維状、中空糸状、粒子状、塊状など、使用用途によって様々な形態を とりうる。
[0175] 本発明の高分子電解質材料 (態様 1〜5)を膜へ転ィ匕する方法に特に制限はない 力 溶液状態より製膜する方法ある 、は溶融状態より製膜する方法等が可能である。 前者では、たとえば、該高分子電解質材料を N, N—ジメチルァセトアミドゃ N—メチ ルー 2—ピロリドン等の溶媒に溶解し、その溶液をガラス板等の上に流延塗布し、溶 媒を除去することにより製膜する方法が例示できる。製膜に用いる溶媒は、高分子を 溶解し、その後に除去し得るものであるならば特に制限はなぐ N, N—ジメチルァセ トアミド(DMAc)、 N, N—ジメチルホルムアミド(DMF)、 N—メチル— 2—ピロリドン( NMP)、ジメチルスルホキシド(DMSO)、スルホラン、 1, 3—ジメチルー 2—イミダゾ リジノン (DMI)、 へキサメチルホスホントリアミド等の非プロトン性極性溶媒、あるいは エチレングリコーノレモノメチノレエーテノレ、エチレングリコーノレモノェチノレエーテノレ、プ ロピレングリコーノレモノメチノレエーテル、プロピレングリコーノレモノェチノレエーテノレ等 のアルキレングリコールモノアルキルエーテルが好適に用いられる。これらの溶媒と 併用しても良い溶媒としては、メタノール、エタノールに代表されるアルコール類、ァ セトン、 2—ブタノンに代表されるケトン類、酢酸ェチル、酢酸ブチルに代表されるェ ステル類、ジェチルエーテル、テトラヒドロフラン、ジォキサンに代表されるエーテル 類、トリェチルァミン、エチレンジァミンに代表されるァミン類などが挙げられ使用され る。膜厚は、溶液濃度あるいは基板上への塗布厚により制御できる。溶融状態より製 膜する場合は、溶融プレス法あるいは溶融押し出し法等が可能である。
[0176] 本発明の高分子電解質材料の別の好適な態様は、空隙を有し、空隙率が 5〜80 体積%、空隙の孔径の平均が 50nm未満であり、かつ、イオン性基が該空隙の内部 に存在する高分子電解質材料である (以下、態様 6と呼ぶ場合がある)。
[0177] 以下、この高分子電解質材料 (態様 6)についての詳細な実施形態を説明する。
[0178] 本発明の高分子電解質材料 (態様 6)を構成する重合体としては、熱硬化性榭脂で もよ!/ヽし結晶性または非晶性の熱可塑性榭脂でもよ!、し、また無機物や無機酸ィ匕物 や有機無機複合体などが含まれていてもよいが、空隙を形成でき、また、空隙の内 部にイオン性基が存在できるように構成されて!、るものを用いる。
[0179] 従って重合体を構成する単量体の 1種以上は、イオン性基を有するか、または後処 理でイオン性基が導入可能なものが好ましい。ここでの「導入」とは、重合体自身にィ オン性基が化学的に結合された状態やイオン性基を有する物質が重合体表面に強 く吸着された状態やイオン性基を有する物質がドープされた状態などのように、洗浄 等の物理的手段により容易にイオン性基が脱離されな!/、状態にすることをさす。
[0180] また、本発明の高分子電解質材料 (態様 6)を構成する重合体にお!ヽて、イオン性 基を有する繰り返し単位とそうでない繰り返し単位とが、交互に共存し、イオン性基を 有する繰り返し単位の繰り返しの連続性がプロトン伝導を損なわない程度に適度に 分断されていることが好ましい。そうすることにより、イオン性基を有する繰り返し単位 の部分が低融点水などを過剰に含有することを防ぎ、すなわち燃料クロスオーバー を低く抑えることができる。カロえて、高分子電解質材料の耐水性も向上させ、クラック の発生や崩壊を防ぐこともできる。
[0181] つまり、イオン性基を有するか導入可能な単量体とそうでない単量体との共重合体 が好ましい。さらに、燃料クロスオーバーとプロトン伝導度のバランスから、イオン性基 を有する単位とそうでない単位が交互に連結されている、すなわち交互重合の部分 が多く存在することが好ま 、。交互共重合の繰り返し単位を多く有する共重合体は 、ビュル単量体の e値が正のものと負のものとを共重合することで得ることができる。こ こでの e値とは、単量体のビニル基やラジカル末端の荷電状態を表し、 rpQLYMER HANDBOOK」(J.BRANDRUPら著)等に詳細に記載されている Qe概念の e値である
[0182] 態様 6に使用可能なビニル単量体としては例えば、下記一般式 (D1)〜(D3)で表 されるちのを挙げることができる。
[0183] CH =C (J ) COOJ (Dl)
2 1 2
(式中、 Jは水素、メチル基およびシァノ基力 選ばれる置換基を表し、 Jは水素、炭
1 2 素数 1〜20のアルキル基、ァリール基およびこれらの誘導体から選ばれる置換基を 表す。)
[0184] [化 14]
Figure imgf000053_0001
J3
[0185] (式中、 Jは炭素数 1〜20のアルキル基、ァリール基、ァラルキル基およびシクロア
3
ルキル基から選ばれる置換基を表す。 )
CH =C (J ) (J ) (D3)
2 4 5
(式中、 Jは水素、メチル基力 選ばれる置換基を表し、 Jは水素、水酸基、スルホ
4 5
ン酸基、炭素数 1〜20のアルキル基、およびフエ-ル基、シクロへキシル基、シァノ 基、アミド基、ハロゲン含有アルキル基およびこれらの誘導体から選ばれる置換基を 表す。)
ビニル単量体の具体例を挙げると、アクリロニトリル、メタタリ口-トリル、スチレン、 a —メチノレスチレン、 p—メチノレスチレン、 o—ェチルスチレン、 m—ェチノレスチレン、 p ーェチルスチレン、 p— tert—ブチルスチレン、クロロスチレン、 1, 1ージフエニルェ チレン、ビュルナフタレン、ビ-ルビフエ-ル、インデン、ァセナフチレンなどの芳香 族ビュル単量体、メチル (メタ)アタリレート、シクロへキシル (メタ)アタリレート、イソボ ル-ル (メタ)アタリレート、ァダマンチル (メタ)アタリレート、フエ-ル (メタ)アタリレート 、ベンジル (メタ)アタリレート、 2—ヒドロキシェチル (メタ)アタリレート、 2—ヒドロキシプ 口ピル (メタ)アタリレート、 2—ヒドロキシブチル (メタ)アタリレート、ラウリル (メタ)アタリ レート、ステアリル (メタ)アタリレート、イソオタチル (メタ)アタリレート、 n—ォクチル (メ タ)アタリレート、イソブチル (メタ)アタリレート、 t—ブチル (メタ)アタリレート、等の(メタ )アクリル系単量体、 N—メチルマレイミド、 N—n—ブチルマレイミド、 N—フエ-ルマ レイミド、 N— o—メチルフエ-ルマレイミドマレイミド、 N—m—メチルフエ-ルマレイミ ド、 N—p—メチルフエ-ルマレイミド、 N— o ヒドロキシフエ-ルマレイミド、 N— m— ヒドロキシフエ-ルマレイミド、 N—p ヒドロキシフエ-ルマレイミド、 N— o—メトキシフ ェ-ルマレイミド、 N—m—メトキシフエ-ルマレイミド、 N—p—メトキシフエ-ルマレイ ミド、 N— o クロ口フエ二ノレマレイミド、 N—m—クロ口フエ二ノレマレイミド、 N—p—クロ 口フエ-ルマレイミド、 N—o カルボキシフエ-ルマレイミド、 N—m—カルボキシフエ -ルマレイミド、 N— p カルボキシフエ-ルマレイミド、 N— o -トロフエ-ルマレイミ ド、 N—m—二トロフエニルマレイミド、 N—p 二トロフエニルマレイミド、 N ェチノレマ レイミド、 N—イソプロピルマレイミド、 N—イソブチルマレイミド、 N— tert ブチルマ レイミド、 N シクロへキシルマレイミド、 N ベンジルマレイミド、無水マレイン酸、ァク リル酸、メタクリル酸、クロトン酸、ケィ皮酸、マレイン酸、フマール酸、シトラコン酸、メ サコン酸、ィタコン酸、メタリルスルホン酸、 2—アクリルアミドー 2—メチルプロパンス ルホン酸、スルホメチルスチレン、 p—スチレンスルホン酸、 p—スチレンスルホン酸ナ トリウム、 p—スチレンスルホン酸カリウム、ビュル安息香酸、ビュル安息香酸ナトリウム 塩、ビュル安息香酸カリウム塩、酢酸ビュル、プロピオン酸ビュル、ビニルスルホン酸 、ビニノレ硫酸、 2, 2, 2 卜!;フノレ才 Pェチノレ (メタ)ァクジレー卜、 2, 2, 3, 3—テ卜ラフ ルォロプロピル (メタ)アタリレート、 1H, 1H, 5H—ォクタフルォロペンチル (メタ)ァク リレート、 1H, 1H, 2H, 2H—ヘプタデカフルォロデシル(メタ)アタリレートなどの含 フッ素単量体等が挙げられる。
[0186] 中でも、イオン性基の導入の容易さや重合作業性の観点からスチレン、 a メチル スチレン、ビニノレナフタレン、ビニノレビフエ二ノレ、インデン、ァセナフチレンなどの芳香 族ビニル単量体の使用が好まし 、。
[0187] また、組み合わせとしては、 e値が負のスチレンや aーメチルスチレンなどの芳香族 ビュル単量体を選択した場合、先述した理由から e値が正でイオン性基の導入が困 難なビュル単量体の使用が好ましぐ燃料クロスオーバー抑制効果の観点から、ァク リロ-トリル、メタタリ口-トリ、 N—フエ-ルマレイミド、 N—イソプロピルマレイミド、 N— シクロへキシルマレイミド、 N—べンジルマレイミド、 2, 2, 2—トリフルォロェチル(メタ )アタリレート、 2, 2, 3, 3—テトラフルォロプロピル (メタ)アタリレート、 1H, 1H, 5H ーォクタフルォロペンチル(メタ)アタリレート、 1H, 1H, 2H, 2H—へプタデカフルォ 口デシル (メタ)アタリレートなどの含フッ素単量体が好ま U、。
[0188] また、本発明の高分子電解質材料 (態様 6)は架橋構造を有することがより好ましい 。架橋構造の定義は前述のとおりである。架橋構造を有することにより、水分や燃料 の浸入に対する高分子鎖間の広がりを抑えることができる。そのため、プロトン伝導に 対して過剰な低融点水などの水分含量を低く抑えることができ、また、燃料に対する 膨潤ゃ崩壊も抑制できることから、結果的に燃料クロスオーバーを低減できる。また、 高分子鎖を拘束できるため耐熱性、剛性、耐薬品性なども付与できる。また、後述す るような空隙の形態の保持性にも優れる。さらに、重合後にイオン性基を導入する場 合には、空隙内壁部に効率よく選択的にイオン性基を導入することが可能となる。こ こでの架橋は、化学架橋であっても物理架橋であってもよい。この架橋構造は例えば 、多官能単量体の共重合や電子線、 γ線などの放射線照射によって形成できる。特 に多官能単量体による架橋が経済的観点力 好ましい。
[0189] 架橋構造の形成に採用される多官能単量体の具体例としては、エチレングリコール ジ (メタ)アタリレート、ジエチレングリコールジ (メタ)アタリレート、トリエチレングリコー ルジ (メタ)アタリレート、グリセロール(ジ Ζトリ)(メタ)アタリレート、トリメチロールプロ
ート、ジペンタエリスリトール (ジ Ζトリ Ζテトラ Ζペンタ Ζへキサ)(メタ)アタリレート、ジ (メタ)アクリル酸ビフエノール、ビスフエノキシエタノール (メタ)フルオレンジアタリレー ト、などの多価アルコールのジ一、トリ一、テトラ一、ペンター、へキサ一(メタ)アタリレ ート類、ポリエチレングリコールジ (メタ)アタリレート(好ましくはポリエチレングリコール 部分の平均分子量; 400〜 1000程度)、メトキシポリエチレングリコールモノ(メタ)ァ タリレート、ビスフエノール Αエチレンオキサイド 30モル付カ卩物のジ (メタ)アタリレート、 グリセリンエチレンオキサイド付加物のジ (メタ)アタリレート、グリセリンエチレンォキサ イド付加物のトリ(メタ)アタリレート、トリメチロールプロパンエチレンオキサイド付加物 のジ (メタ)アタリレート、トリメチロールプロパンエチレンオキサイド付加物のトリ(メタ) アタリレート、ソルビトールエチレンオキサイド付加物のジ (メタ)アタリレート、ソルビト ールエチレンオキサイド付カ卩物のジ (メタ)アタリレート、ソルビトールエチレンォキサイ ド付加物のトリ (メタ)アタリレート、ソルビトールエチレンオキサイド付加物のテトラ (メタ )アタリレート、ソルビトールエチレンオキサイド付加物のペンタ (メタ)アタリレートおよ びソルビトールエチレンオキサイド付加物のへキサ(メタ)アタリレート等のポリオキシ エチレン系ポリエーテル類、 o—ジビュルベンゼン、 m—ジビュルベンゼン、 p—ジビ -ルベンゼン、ジビ-ルビフエ-ル、ジビュルナフタレンなどの芳香族多官能単量体 、ジ (メタ)アクリル酸エステル、ジ (メタ)アクリル酸ジァリルエステル、アジピン酸ジビ -ルなどのエステル類、ジエチレングリコールビスァリルカーボネート、ジァリルフタレ ートなどのジァリル化合物、ブタジエン、へキサジェン、ペンタジェン、 1, 7—ォクタジ ェンなどのジェン類、ジクロロホスファゼンを原料として重合性多官能基を導入したホ スファゼン骨格を有する単量体、トリアリルジイソシァヌレートなどの異原子環状骨格 を有する多官能単量体、ビスマレイミド、メチレンビスアクリルアミド類などが挙げられ る。
[0190] これらの中でも、機械的強度やイオン性基の導入時の耐薬品性の観点から、ジビ- ルベンゼンなどの芳香族多官能単量体類、エチレングリコールジ (メタ)アタリレート、 ビスフエノキシエタノール(メタ)フルオレンジアタリレートなどの多価アルコールのジー 、トリ—、テトラ—、ペンタ—、へキサ—(メタ)アタリレート類が特に好ましい。
[0191] 以上のような単量体力 得られる共重合体の分子量としては、形態保持の観点から 、重量平均分子量で 4000以上であることが好ましい。また、架橋構造でもよいことか ら上限には特に制限はない。
[0192] また、架橋構造の形成に用いる多官能単量体は、 1種類を単独で使用してもよいし 、 2種類以上を併用してもよい。
[0193] 本発明の高分子電解質材料 (態様 6)は空隙を有しているものであり、この空隙には 高分子電解質材料としての通常使用時においては、水などの媒体が充填されて使 用される。高分子電解質材料中に空隙があれば燃料クロスオーバーは増大すると、 通常は考えられるが、本発明の空隙を有する高分子電解質材料 (態様 6)において は、特定の空隙を設けることによって、燃料クロスオーバーを抑制しつつ高いプロトン 伝導性を達成できたものである。特に、本発明の高分子電解質材料 (態様 6)は、例 えば燃料としてメタノール水を使用する場合に、メタノール水中のメタノール濃度によ る高分子電解質材料全体の膨潤度合 ヽの変化が小さ ヽため、高濃度燃料になるほ ど既存材料 (例えばパーフルォロ系電解質ポリマー)と比較してメタノールクロスォー バーの抑制効果が大きくなる利点がある。
[0194] 態様 6の高分子電解質材料に対する空隙率としては、 5〜80体積%とし、 10〜60 体積%が好ましぐ 20〜50体積%がより好ましい。燃料クロスオーバーは高分子電 解質材料中の水分量に関係する可能性があるが、水分含有量も空隙率を制御する ことで最適化することが可能である。希望するプロトン伝導性と燃料クロスオーバー値 のバランスで空隙率を決めることができる。プロトン伝導性を向上させる観点からは、 空隙率を 5%以上とし、燃料クロスオーバー抑制の観点からは空隙率を 80%以下と する。
[0195] この空隙率は、高分子電解質材料について、 25°Cの水中に 24時間浸漬後の体積
A (cm3)と、 60°Cで 6時間熱風乾燥した後の重量 W(g)とを測定し、乾燥した重合体 の真密度 D (g/cm3)の値を用いて次式で求めることができる。
[0196] 空隙率(%) = [ (A-W/D) /A] X 100
なお、真密度 Dはュアサアイォ-タス株式会社製 ポリマー密度測定装置 ULTRAP
YCNOMETER 1000にて求めることができる。
[0197] なお、上記測定条件では除去困難な結晶水や不凍水が膜中に存在する場合、こ れらが占める体積は本発明にお 、ては空隙として扱わな 、。
[0198] 空隙の形態としては、例えば膜状の形態において膜の片側表面力も反対側の表面 に貫通するもの(連続孔)であってもよいし、独立孔であってもよいが、プロトン伝導性 が良好であることから連続孔であることが好ましい。また、孔は分岐するものであって ちょい。
[0199] この空隙は連続孔でも単独孔でもよいが、プロトン伝導性と燃料クロスオーバー抑 制効果のバランスの観点力 は不定形な網目状の空隙、逆に述べれば、重合体が 立体的に繋がった三次元網目構造が好ましい。また、この空隙が連続孔である場合 は、表裏につながった全ての経路が 50nm以下であることが好ましい。
[0200] また、空隙の孔径の平均は、 50nm未満とし、好ましくは 30nm以下、より好ましくは lOnm以下である。 50nm以上の場合は、燃料クロスオーバー抑制効果が不十分と なる傾向にある。一方、空隙の孔径の平均の下限としては、 0. lnm以上が好ましぐ 0. lnm以上とすることにより、水が高分子電解質材料中に滲入することによる、プロ トン伝導を確保できる。
[0201] ここで空隙の孔径は、高分子電解質材料断面の空隙の孔径の平均値でもって表 す。この空隙は、走査型電子顕微鏡 (SEM)や透過型電子顕微鏡 (TEM)などによ る観察から測定できる。平均値は高分子電解質材料断面の 100nm± 30nm超薄切 片を四酸ィ匕オスミウムで染色して撮影した像から、斑点状に染色されたの部分の最 大径を空隙の孔径とし、 20個以上好ましくは 100個以上の空隙から求めることができ る。通常は 100個の空隙で測定する。膜自身が四酸ィ匕オスミウムに染まってしまう場 合などで、染色剤の変更や四酸ィ匕オスミウムを使用せずに測定する方が良い場合は 、像の陰影で斑点に見える部分を空隙として測定する。なお、明らかに線状に染色さ れた部分 (切片作製時のクラック等)は除外する。
[0202] また、本発明の高分子電解質材料 (態様 6)中にはイオン性基が存在して ヽる。好 ましくはその空隙の内部にイオン性基が存在している。内部とは空隙の内表面及び 空隙部分それ自身を 、う。好ましくは空隙の内表面にイオン性基が存在して 、る状 態である。空隙の内部以外の部分にもイオン性基が存在していることは差し支えない 。イオン性基が存在しているとは、重合体自身にイオン性基が化学的に結合された 状態や、イオン性基を有する物質が重合体表面に強く吸着された状態や、イオン性 基を有する物質が空隙内に保持された状態などのことを言い、洗浄等の物理的手段 により容易にイオン性基が空隙内から脱離されない状態である。
[0203] 態様 6におけるイオン性基については、すでに述べたものと同様の思想を適用する ことができる。
[0204] 本発明の高分子電解質材料 (態様 6)にイオン性基を導入するにあたり、重合前の 単量体があら力じめイオン性基を有して 、てもよ 、が、重合後にイオン性基を導入し てもよい。原料の選択性の広さ、モノマー調整の容易性からは、重合後にイオン性基 を導入するのが良い。
[0205] すなわち本発明の高分子電解質膜 (態様 6)の製造方法は、イオン性基を導入可 能な単量体と開孔剤とを含む単量体組成物から膜状の重合体を得た後、または、ィ オン性基導入可能な重合体と開孔剤とを含む重合体組成物力ゝら製膜した後、膜中 力ゝら開孔剤を除去する工程と、重合体にイオン性基を導入する工程を含むものであ る。
[0206] イオン性基を導入可能な単量体としては、前述のように、ビュル単量体の内 e値が 負のスチレンや aーメチルスチレンなどの芳香族ビュル単量体を採用することができ る。
[0207] これらを含む前述のようなビニル単量体の重合としては例えばラジカル重合が作業 性の観点で好ましい。ラジカル発生性開始剤としては、各種バーオキシド化合物、ァ ゾ化合物、過酸化物、セリウムアンモ-ゥム塩などが挙げられる。
[0208] その具体例としては、 2, 2'—ァゾビスイソブチ口-トリル、 1, Γ—ァゾビス(シクロ へキサン一 1—カルボ-トリル)、 2, 2'—ァゾビス(4—メトキシ一 2, 4 ジメチルバレ 口-トリル)、 2, 2'—ァゾビス(2—シクロプロピルプロピオ-トリル)、 2, 2'—ァゾビス (2, 4 ジメチルバレ口-トリル)、 2, 2'—ァゾビス(2—メチルブチ口-トリル)、 1— [ ( 1 シァノ 1—メチルェチル)ァゾ]フオルムアミド、 2 フエ-ルァゾ 4—メトキシ一 2, 4 ジメチルバレ口-トリルなどのァゾ-トリル化合物、 2, 2'—ァゾビス(2—メチル —N—フエ-ルプロピオンアミジン)二塩基酸塩などのァゾアミジン化合物、 2, 2' - ァゾビス [2—(5 メチル 2 イミダゾリン 2 ィル)プロパン]二塩基酸塩などの 環状ァゾアミジン化合物、 2, 2'—ァゾビス {2—メチルー N—[l, 1—ビス(ヒドロキシ メチル)一2—ヒドロキシェチル]プロピオンアミド}などのァゾアミドィ匕合物、 2, 2'—ァ ゾビス(2, 4, 4 トリメチルペンタン)などのアルキルァゾ化合物、過硫酸カリウム、過 硫酸アンモ-ゥム、過酸化水素、過酸ィ匕ベンゾィルなどの過酸ィ匕物、硫酸第 2セリウ ムアンモ-ゥム、硝酸第 2セリウムアンモ-ゥム等のセリウムアンモ-ゥム塩などが挙 げられる。 [0209] また、放射線、電子線、紫外線などを利用した光開始剤による重合も利用すること ができる。
[0210] 光開始剤としては、カルボニル化合物、過酸化物、ァゾィ匕合物、硫黄化合物、ハロ ゲンィ匕合物および金属塩などが挙げられる。
[0211] また、多官能単量体を含む場合は、熱や光を利用したキャスト重合による成形およ び製膜が好ましい。キャスト重合とは、各種単量体ゃ開孔剤および開始剤などを混 合したものを、ガスケットゃスぺーサ一により所定のクリアランスに設定した 2枚の板、 シート、フィルムの間に注入し、熱や光などのエネルギーを与えることにより重合する 方法であり、枚葉式でも連続式でもよい。
[0212] 例えば、使用する単量体組成物に、ダロキュア (登録商標)、ィルガキュア (登録商 標)(CIBA社製)等に代表される光開始剤を 0. 01〜2重量部程度添加した組成物 溶液を、 2枚の石英ガラスや、ポリエチレン、ポリプロピレンまたは非晶性ポリオレフィ ン製などのシート間に注入し、密封し、紫外線灯を用いて照度 0. 01〜: LOOmWZc m2程度、 0. 1秒〜 1時間程度にて光照射して重合することができる。
[0213] 重合体に求める特性として、プロトン伝導性を優先させる場合には、重合体の内部 までイオン性基を導入することも好ましぐそのためには、重合前の単量体中にあらか じめイオン性基の導入を補助する開孔剤を添加しておいた上で重合することが有効 である。該開孔剤は、それ自身が直接的にイオン性基を導入する能力を有している 必要はない。すなわち、イオン性基を導入可能な物質の重合体中への浸透を、自ら 、分解、反応、蒸発、昇華、あるいは流出等しイオン性基を導入可能な物質、または それを含有する溶剤と置換することにより少なくとも開孔剤の一部分が除去され、重 合体の表層だけではなぐ重合体内部のイオン性基導入可能な部分にもイオン性基 が導入されやすくするものである。
[0214] 開孔剤は、重合あるいは製膜の際に単量体組成物あるいは重合体組成物の一部 を占め、重合あるいは製膜の後にこれを除去することで、高分子電解質材料の内部 に空隙を形成せしめるものである。
[0215] 開孔剤の種類としては、重合体の材料との相溶性、抽出や分解に使用する薬液や 溶剤および加熱、溶剤浸漬、光、電子線、放射線処理などの開孔剤除去方法によつ て有機化合物、溶剤類、可溶性ポリマー類、塩類、金属類などカゝら適宜選択できる。 開孔剤は液体状であっても粉末状であってもよ 、し、使用した単量体力もなるオリゴ マーや未反応単量体や副生成物を開孔剤として積極的に残すような手法をとつても よい。また、金属アルコキシドなどのように反応することによって液体と固体になるもの でもよい。
[0216] また、イオン性基導入後に重合体中に開孔剤の一部が残留しても、反応によって 生成したものが残留しても高分子電解質材料に悪影響を与えないものを選択するの が好ましい。
[0217] また、重合前に開孔剤を配合する場合は、重合温度よりもその沸点や分解温度が 高い開孔剤が好ましい。
[0218] 開孔剤の具体例としては、エチレンカーボネート、プロピレンカーボネート、メチル セロソルブ、ジグライム、トルエン、キシレン、トリメチルベンゼン、 γ ブチロラタトン、 ジメチルホルムアミド、ジメチルァセトアミド、 Ν—メチルー 2 ピロリドン、 1,4 ジォキ サン、四塩化炭素、ジクロロメタン、ニトロメタン、ニトロェタン、酢酸、無水酢酸、フタ ル酸ジォクチル、フタル酸ジ—η—ォクチル、リン酸トリオクチル、デカリン、デカン、 へキサデカン、テトラブトキシチタン、テトライソプロポキシチタン、テトラメトキシシラン 、テトラエトキシシラン等が挙げられ、 1種類を単独で用いてもよいし、 2種類以上を併 用してちょい。
[0219] また開孔剤の使用量は、使用する開孔剤と単量体の組み合わせや所望の空隙率 、孔径により適宜設定するとよいが、開孔剤も含めた全組成物中の 1〜80重量%添 加するのが好ましぐより好ましくは 5〜50重量%、さらに好ましくは 10〜30重量%で ある。力かる開孔剤の使用量が 1重量%未満では重合体内部までイオン性基が導入 されにくぐプロトン伝導度が不良となる。また、 80重量%を越えると、低融点水含量 が増大し、燃料透過量が大きくなり好ましくない。
[0220] 膜状の重合体を得た後、または、重合体組成物から製膜した後、膜中から開孔剤 を除去する。空隙形成のためである。
[0221] 開孔剤を除去する手段としては例えば、開孔剤を除去可能な溶剤中に、膜を浸漬 するとよい。開孔剤を除去可能な溶剤としては、水および有機溶剤の中から適宜選 択される。有機溶剤としては例免ば、クロロホノレム、 1, 2—ジクロ口エタン、ジクロロメタ ン、パークロロエチレンなどのハロゲン化炭化水素、ニトロメタン、ニトロェタン等の-ト 口化炭化水素、メタノール、エタノールなどのアルコール類、トルエン、ベンゼンなど の芳香族炭化水素、へキサン、ヘプタン、デカンなどの脂肪族炭化水素、酢酸ェチ ル、酢酸ブチル、乳酸ェチルなどのエステル類、ジェチルエーテル、テトラヒドロフラ ン、 1, 4—ジォキサンなどのエーテル類、ァセトニトリルなどの-トリル類等が好ましい 。また、これらのうち 1種類を単独で使用してもよいし、 2種類以上を併用してもよい。
[0222] 重合体力 開孔剤を除去した後、前記溶剤は乾燥等によって除いてもよぐ除かな くてちょい。
[0223] 高分子反応によってイオン性基を導入する方法は、前述の態様 2および態様 3にィ オン性基を導入する方法についての記載のとおりである。
[0224] 次に、膜中の前記重合体にイオン性基を導入させることについて説明する。開孔剤 を含む重合体力ゝら製膜された膜を高分子電解質膜とするためには、少なくとも膜中の 空隙内部にイオン性基を存在させることが重要であり、そのためにイオン性基導入剤 によってイオン性基を導入させる。ここでいうイオン性基導入剤は、イオン性基を、重 合体を構成するイオン性基可能な繰り返し単位の一部に導入することができる化合 物であり、通常公知のものを使用することができる。イオン性基導入剤の具体例として は、スルホン酸基を導入する場合は、濃硫酸、クロロスルホン酸あるいは発煙硫酸、 三酸ィヒ硫黄等が好適であり、反応制御の容易さおよび生産性の観点で最も好ましい のはクロロスルホン酸である。またスルホンイミド基を導入する場合はスルホンアミドが 好適である。
[0225] 膜中の前記共重合体にイオン性基を導入させるためには、具体的には、イオン性 基導入剤またはイオン性基導入剤と溶剤の混合物中に膜を浸漬する手段を採用す ればよい。イオン性基導入剤と混合する溶剤は、イオン性基導入剤と反応しないかま たは反応が激しくなぐ重合体内に浸透可能であれば使用できる。かかる溶剤の例を 挙げると、クロロホノレム、 1, 2—ジクロロエタン、ジクロロメタン、パークロロエチレンな どのハロゲンィ匕炭化水素、ニトロメタン、ニトロェタン等の-トロ化炭化水素、ァセトニ トリルなどの-トリル類等が好ま ヽ。溶剤およびイオン性基導入剤は単一でも二種 類以上の混合物でもよい。
[0226] 膜中からの開孔剤の除去と、重合体中へのイオン性基の導入とを同一の工程で行 うことも、工程数短縮の点で好ましい。
[0227] より具体的には、開孔剤を除去可能な溶剤にイオン性基導入剤 (たとえば上記スル ホン化剤)を添加してなる溶液中に膜を浸漬することにより、膜中からの開孔剤の除 去と重合体へのイオン性基の導入 (スルホン化)とを同時に行うことが好ましい。この 場合、膜中の開孔剤が、イオン性基を含む溶液に置換されながら除去されることにな る。この方法は、イオン性基の導入の度合いを精度よく制御できるという点力もも好ま しい。この場合、開孔剤を除去可能な溶剤としては、イオン性基導入剤と反応しない 力または反応が激しくなぐ重合体内に浸透可能なものを用いる。また、開孔剤を除 去可能な溶剤は単一系でも二種類以上の混合系でもよい。
[0228] 製膜前の単量体 Z重合体組成物中にイオン性基の導入を補助するためのイオン 性基導入助剤が含有されて ヽる場合には、イオン性基導入助剤も除去可能な溶剤 であることが好ましい。
[0229] 以上のような観点から、開孔剤を除去可能な溶剤としては例えば、クロ口ホルムや 1 , 2—ジクロ口エタン、ジクロロメタン、パークロロエチレンなどのハロゲン化炭化水素、 ニトロメタン、ニトロェタン等の-トロ化炭化水素、ァセトニトリルなどの-トリル類等が 好ましい。
[0230] 態様 6においては、高分子電解質部材をイオン交換によりいつたん SO M型 (M
3 は金属)とし、その後高温で熱処理し、次にプロトン置換し、その後加温下においてメ タノール水溶液に浸漬することが好ましい。力かる処理により本発明により規定される Rwおよび Wnfの値を達成しうる。
[0231] 前記の金属 Mはスルホン酸と塩を形成しうるものであればよいが、価格および環境 負荷の, 力らは Li、 Na、 K:、 Rb、 Cs、 Mg、 Ca、 Sr、 Ba、 Ti、 V、 Mn、 Fe、 Co、 Ni、 Cu、 Zn、 Zr、 Mo、 Wなどが好ましぐこれらの中でも Li、 Na、 K、 Ca、 Sr、 Baがより 好ましぐ Li、 Na、 Kがさらに好ましい。理由は明らかではないが、この方法によって 本発明の不凍水の分率 Rwおよび Wnfが得られ、高プロトン伝導度と低燃料クロスォ 一バーが両立可能となる。 [0232] 高分子電解質部材をイオン交換によりいつたん SO M型 (Mは金属)とする方法
3
としては、 SO H型の高分子電解質部材を Mの塩または Mの水酸ィ匕物の水溶液
3
に浸漬する方法が上げられる。
[0233] 前記熱処理の温度としては、得られる高分子電解質部品の不凍水の分率および燃 料遮断性の点で 200〜500°Cが好ましぐ 250〜400°C力より好ましく、 300〜350 °Cがさらに好ましい。 200°C以上とするのは、本発明で規定する不凍水の分率を得る 上で好ましい。一方、 500°C以下とすることで、ポリマーが分解するのを防ぐことがで きる。
[0234] また、熱処理時間としては、得られる高分子電解質部品の不凍水の分率、プロトン 伝導性および生産性の点で 1分〜 24時間が好ましぐ 3分〜 1時間がより好ましぐ 5 分〜 30分がさらに好ましい。熱処理時間が短すぎると、効果が薄く本発明の不凍水 の分率が得られない場合があり、長すぎるとポリマーの分解が起きプロトン伝導性が 低下する場合があり、また生産性が低くなる。
[0235] 加温下においてメタノール水溶液に浸漬する際の条件としては、温度は室温〜 12 0°C、メタノール水溶液の濃度は 10〜: LOO重量%、時間は 1分〜 72時間が好ましい
[0236] 本発明の高分子電解質材料は、燃料電池用として使用する場合、各種高分子電 解質部品として使用できる。高分子電解質部品の例は高分子電解質膜および電極 触媒層である。
[0237] 本発明の高分子電解質材料カゝらなる高分子電解質膜の膜厚としては、通常 3〜20 00 μ mのものが好適に使用される。実用に耐える膜の強度を得るには 3 μ mより厚 ヽ 方が好ましぐ膜抵抗の低減つまり発電性能の向上のためには 2000 mより薄い方 が好ましい。膜厚のより好ましい範囲は 5〜: LOOO /z m さらに好ましい範囲は 10〜5 00 μ mである。
[0238] 膜厚は、種々の方法で制御できる。例えば、溶媒キャスト法で製膜する場合は、溶 液濃度あるいは基板上への塗布厚により制御することができるし、また、例えばキャス ト重合法で製膜する場合は板間のスぺーサー厚みによって調製することもできる。 また、本発明の高分子電解質材料には、本発明の目的を損なわない範囲で、他の 成分を共重合せしめたり、他の高分子化合物をブレンドしたりすることができる。また 、その特性を損なわない範囲で、ヒンダードフエノール系、ヒンダードアミン系、チォェ 一テル系およびリン系の各種抗酸化剤等の安定剤や、可塑剤、着色剤、離型剤に 代表される各種添加剤を添加することができる。
[0239] また、前述の諸特性に悪影響をおよぼさない範囲内で機械的強度、熱安定性、加 ェ性などの向上を目的に、各種ポリマー、エラストマ一、フィラー、微粒子などを含有 させてちょい。
[0240] 本発明の高分子電解質部品は、本発明の高分子電解質材料を用いてなるもので ある。その形状としては、前述の膜状の他、板状、繊維状、中空糸状、粒子状、塊状 など、使用用途によって様々な形態をとりうる。
[0241] これらのような形状への加工は、コーティング法、押し出し成形、プレス成形、キャス ト重合法などにより行うことができるが、高分子電解質材料に三次元架橋構造を付与 する場合には、ガラス板や連続ベルト間での加熱や光を利用したキャスト重合法が好 ましい。
[0242] 次に、本発明の膜電極複合体は、本発明の高分子電解質材料を用いてなる。
[0243] 膜電極複合体 (MEA)は、高分子電解質材料からなる膜、ならびに、電極触媒層 および電極基材からなる電極からなる。
[0244] 電極触媒層は、電極反応を促進する電極触媒、電子伝導体、イオン伝導体などを 含む層である。
[0245] 電極触媒層に含まれる電極触媒としては例えば、白金、パラジウム、ルテニウム、口 ジゥム、イリジウム、金などの貴金属触媒が好ましく用いられる。これらの内の 1種類を 単独で用いてもよいし、合金、混合物など、 2種類以上を併用してもよい。
[0246] 電極触媒層に含まれる電子伝導体 (導電材)としては、電子伝導性や化学的な安 定性の点カゝら炭素材料、無機導電材料が好ましく用いられる。なかでも、非晶質、結 晶質の炭素材料が挙げられる。例えば、チャネルブラック、サーマルブラック、ファー ネスブラック、アセチレンブラックなどのカーボンブラックが電子伝導性と比表面積の 大きさから好ましく用いられる。ファーネスブラックとしては、キャボット社製バルカン( 登録商標) XC— 72、バルカン (登録商標) P、ブラックパールズ (登録商標) 880、ブ ラックパールズ (登録商標) 1100、ブラックパールズ (登録商標) 1300、ブラックパー ルズ(登録商標) 2000、リーガル(登録商標) 400、ケッチェンブラック 'インターナショ ナル社製ケッチェンブラック (登録商標) EC、 EC600JD、三菱ィ匕学社製 # 3150、 # 3250などが挙げられ、アセチレンブラックとしては電気化学工業社製デンカブラック (登録商標)などが挙げられる。またカーボンブラックのほか、天然の黒鉛、ピッチ、コ 一タス、ポリアクリロニトリル、フエノール榭脂、フラン榭脂などの有機化合物力も得ら れる人工黒鉛や炭素なども使用することができる。これらの炭素材料の形態としては 、不定形粒子状のほか繊維状、鱗片状、チューブ状、円錐状、メガホン状のものも用 いることができる。また、これら炭素材料を後処理カ卩ェしたものを用いてもよい。
[0247] また、電子伝導体は、触媒粒子と均一に分散して 、ることが電極性能の点で好まし い。このため、触媒粒子と電子伝導体は予め塗液として良く分散しておくことが好まし い。さらに、電極触媒層として、触媒と電子伝導体とが一体化した触媒担持カーボン 等を用いることも好まし 、実施態様である。この触媒担持カーボンを用いることにより 、触媒の利用効率が向上し、電池性能の向上および低コスト化に寄与できる。ここで 、電極触媒層に触媒担持カーボンを用いた場合においても、電子伝導性をさらに高 めるために導電剤を添加することも可能である。このような導電剤としては、上述の力 一ボンブラックが好ましく用いられる。
[0248] 電極触媒層に用いられるイオン伝導性を有する物質 (イオン伝導体)としては、一般 的に、種々の有機、無機材料が公知である力 燃料電池に用いる場合には、イオン 伝導性を向上するスルホン酸基、カルボン酸基、リン酸基などのイオン性基を有する ポリマー (イオン伝導性ポリマー)が好ましく用いられる。なかでも、イオン性基の安定 性の観点から、フルォロアルキルエーテル側鎖とフルォロアルキル主鎖と力 構成さ れるイオン伝導性を有するポリマー、炭化水素系イオン伝導性ポリマー、あるいは本 発明の高分子電解質材料が好ましく用いられる。パーフルォロ系イオン伝導性ポリマ 一としては、例えばデュポン社製のナフイオン (登録商標)、旭化成社製の Aciplex ( 登録商標)、旭硝子社製フレミオン (登録商標)などが好ましく用いられる。これらのィ オン伝導性ポリマーは、溶液または分散液の状態で電極触媒層中に設ける。この際 に、ポリマーを溶解あるいは分散化する溶媒は特に限定されるものではないが、ィォ ン伝導性ポリマーの溶解性の点力も極性溶媒が好ましい。
[0249] 前記、触媒と電子伝導体類は通常粉体であるので、イオン伝導体はこれらを固める 役割を担うことが通常である。イオン伝導体は、電極触媒層を作製する際に電極触 媒粒子と電子伝導体とを主たる構成物質とする塗液に予め添加し、均一に分散した 状態で塗布することが電極性能の点力 好ま ヽものである力 電極触媒層を塗布し た後にイオン伝導体を塗布してもよい。ここで、電極触媒層にイオン伝導体を塗布す る方法としては、スプレーコート、刷毛塗り、ディップコート、ダイコート、カーテンコート 、フローコートなどが挙げられ、特に限定されるものではない。電極触媒層に含まれる イオン伝導体の量としては、要求される電極特性や用いられるイオン伝導体の伝導 度などに応じて適宜決められるべきものであり、特に限定されるものではないが、重 量比で 1〜80%の範囲が好ましぐ 5〜50%の範囲がさらに好ましい。イオン伝導体 は、少な過ぎる場合はイオン伝導度が低ぐ多過ぎる場合はガス透過性を阻害する 点で、いずれも電極性能を低下させることがある。
[0250] 電極触媒層には、上記の触媒、電子伝導体、イオン伝導体の他に、種々の物質を 含んでいてもよい。特に、電極触媒層中に含まれる物質の結着性を高めるために、 上述のイオン伝導性ポリマー以外のポリマーを含んでもょ 、。このようなポリマーとし ては例えば、ポリフッ化ビュル(PVF)、ポリフッ化ビ-リデン(PVDF)、ポリへキサフ ルォロプロピレン(FEP)、ポリテトラフルォロエチレン、ポリパーフルォロアルキルビ- ルエーテル(PFA)などのフッ素原子を含むポリマー、これらの共重合体、これらのポ リマーを構成するモノマ単位とエチレンやスチレンなどの他のモノマーとの共重合体 、あるいは、ブレンドポリマーなどを用いることができる。これらポリマーの電極触媒層 中の含有量としては、重量比で 5〜40%の範囲が好ましい。ポリマー含有量が多す ぎる場合、電子およびイオン抵抗が増大し電極性能が低下する傾向がある。
[0251] また電極触媒層は、燃料が液体や気体の場合には、その液体や気体が透過しや すい構造を有していることが好ましぐ電極反応に伴う副生成物質の排出も促す構造 が好ましい。
[0252] 電極基材としては、電気抵抗が低ぐ集電あるいは給電を行えるものを用いることが できる。また、前記電極触媒層を集電体兼用で使用する場合は、特に電極基材を用 いなくてもよい。電極基材の構成材としては、たとえば、炭素質、導電性無機物質が 挙げられ、例えば、ポリアクリロニトリル力 の焼成体、ピッチからの焼成体、黒鉛及び 膨張黒鉛などの炭素材、ステンレススチール、モリブデン、チタンなどが例示される。 これらの、形態は特に限定されず、たとえば繊維状あるいは粒子状で用いられるが、 燃料透過性の点から炭素繊維などの繊維状導電性物質 (導電性繊維)が好まし!/ヽ。 導電性繊維を用いた電極基材としては、織布ある!ゝは不織布!、ずれの構造も使用 可能である。たとえば、東レ (株)製カーボンペーパー TGPシリーズ、 SOシリーズ、 E -TEK社製カーボンクロスなどが用いられる。織布としては、平織、斜文織、朱子織、 紋織、綴織など、特に限定されること無く用いられる。また、不織布としては、抄紙法、 ニードルパンチ法、スパンボンド法、ウォータージェットパンチ法、メルトブロー法によ るものなど特に限定されること無く用いられる。また編物であってもよい。これらの布帛 において、特に炭素繊維を用いた場合、耐炎化紡績糸を用いた平織物を炭化ある いは黒鉛ィ匕した織布、耐炎化糸をニードルパンチ法やウォータージェットパンチ法な どによる不織布加工した後に炭化あるいは黒鉛ィ匕した不織布、耐炎化糸あるいは炭 化糸あるいは黒鉛ィ匕糸を用いた抄紙法によるマット不織布などが好ましく用いられる 。特に、薄く強度のある布帛が得られる点から不織布を用いるのが好ましい。
[0253] 電極基材に炭素繊維からなる導電性繊維を用いた場合、炭素繊維としては、ポリア クリロ-トリル (PAN)系炭素繊維、フエノール系炭素繊維、ピッチ系炭素繊維、レーョ ン系炭素繊維などがあげられる。
[0254] また電極基材には、水の滞留によるガス拡散 ·透過性の低下を防ぐための撥水処 理ゃ、水の排出路を形成するための部分的撥水、親水処理や、抵抗を下げるための 炭素粉末の添加等を行うこともできる。
[0255] 本発明の高分子電解質型燃料電池においては、電極基材と電極触媒層の間に、 少なくとも無機導電性物質と疎水性ポリマーを含む導電性中間層を設けることが好ま しい。特に、電極基材が空隙率の大きい炭素繊維織物ゃ不織布である場合、導電性 中間層を設けることで、電極触媒層が電極基材にしみ込むことによる性能低下を抑 えることができる。
[0256] 本発明の高分子電解質膜を使用して、電極触媒層あるいは電極触媒層と電極基 材を用いて膜電極複合体 (MEA)を作製する方法は特に限定されるものではな!/、。 公知の方法 (例えば、「電気化学」 1985, 53, 269.記載の化学メツキ法、「ジエイエレク 卜ログ カルソサ ,アイ」 (J. Electrochem. boc.): Electrochemical Science ana fechn ology, 1988, 135(9), 2209.記載のガス拡散電極の熱プレス接合法など)を適用する ことが可能である。熱プレスにより一体ィ匕することは好ましい方法である力 その温度 や圧力は、高分子電解質膜の厚さ、水分率、電極触媒層や電極基材により適宜選 択すればよい。また、高分子電解質膜が含水した状態でプレスしてもよいし、イオン 伝導性を有するポリマーで接着してもよ 、。
[0257] 本発明の高分子電解質材料が、高分子電解質膜、電極触媒層などの高分子電解 質部品、あるいは MEAに成形されている場合は、本発明で定義される Rwおよび Z または Wnfの測定、算出にあたっては、高分子電解質部品を高分子電解質材料と 見なすことができる。
[0258] 例えば、高分子電解質膜が多孔質膜、繊維、布帛、微粒子などの補強材、安定剤 などの添加剤を含む場合、あるいは複数の材料の混合物である場合などであっても 、これら複合状態の高分子電解質膜を高分子電解質材料と見なして、重量の測定や 前記 Wf、 Wfc、 Wt、 Wnfなどの測定を行うことができる。
[0259] 電極触媒層においても同様であり、触媒金属、触媒担持カーボンなどを含んだまま の状態で電極触媒層を高分子電解質材料と見なして、重量の測定や前記 Wf、 Wfc 、 Wt、 Wnfなどの測定を行うことができる。
[0260] 本発明の高分子電解質材料が MEAに成形されて ヽる場合は、前記高分子電解 質部品に分解あるいは分離した後に、前記の測定を行えばよい。 本発明の高分子 電解質型燃料電池の燃料としては、酸素、水素およびメタン、ェタン、プロパン、ブタ ン、メタノール、イソプロピルアルコール、アセトン、エチレングリコール、ギ酸、酢酸、 ジメチルエーテル、ハイドロキノン、シクロへキサンなどの炭素数 1〜6の有機化合物 およびこれらと水との混合物等が挙げられ、 1種または 2種以上の混合物でもよ 、。 特に発電効率や電池全体のシステム簡素化の観点から炭素数 1〜6の有機化合物 を含む燃料が好適に使用され、発電効率の点でとりわけ好ましいのはメタノール水溶 液である。 [0261] 膜電極複合体に供給される燃料中の炭素数 1〜6の有機化合物の含有量は 1〜1 00重量%が好ましい。含有量を 1重量%以上とすることで実用的な高いエネルギー 容量を得ることができる。
実施例
[0262] 以下、実施例により本発明をさらに詳しく説明するが、これらの例は本発明をよりよ く理解するためのものであり、本発明はこれらに限定されるものではない。また、本実 施例中には化学構造式を挿入するが、該化学構造式は読み手の理解を助ける目的 で挿入するものであり、ポリマーの重合成分の並び方、スルホン酸基の数、分子量な どを必ずしも正確に表すわけではな 、。
[測定方法]
(1)スルホン酸基密度
試料 (約 0. 2g)を 60°Cにおいて 30%メタノール水溶液(重量比で試料量の 1000 倍以上)に撹拌しながら 12時間浸漬し、その後 20°Cにおいて純水(重量比で試料量 の 1000倍以上)に撹拌しながら 24時間浸漬し、さらに 20°Cにおいて新鮮な純水(重 量比で試料量の 1000倍以上)に撹拌しながら 24時間浸漬した。得られた試料を真 空乾燥器で乾燥した(50°C、フルバキューム、 24時間)。
[0263] シユウ酸二水和物を約 0.68 gを正確に量りとり、 100 cm3メスフラスコを用いてシユウ 酸溶液を調製した。次に約 2 gの水酸ィ匕ナトリウムを精製水約 500 mLに溶解させ、水 酸ィ匕ナトリウム水溶液を調製した。一日放置した後、上記のシユウ酸水溶液を用いて 水酸ィ匕ナトリウムを標定した。続いて密閉容器に乾燥した試料を秤量し、 40 cm3の飽 和食塩水を加え一日撹拌後、生じた塩酸を水酸化ナトリウム水溶液で滴定した。指 示薬にはフエノールフタレインを用い、薄い赤紫色になった点を終点とした。イオン交 換容量は、以下の式により求めた。
[0264] スルホン酸基密度 (mmol/g) =
水酸ィ匕ナトリウム水溶液の濃度 (mol cm"3) X滴下量 (cm3)Z試料の重量 (g)
(2)重量平均分子量
ポリマーの重量平均分子量を GPCにより測定した。紫外検出器と示差屈折計の一 体型装置として東ソー製 HLC - 8022GPCを、また GPCカラムとして東ソー製 TSK gel SuperHM—H (内径 6. Omm、長さ 15cm) 2本を用い、 N—メチルー 2 ピロ リドン溶媒 (臭化リチウムを lOmmol/L含有する N—メチル—2—ピロリドン溶媒にて 、流量 0. 2mLZminで測定し、標準ポリスチレン換算により重量平均分子量を求め た。
[0265] (3)不凍水の量 Wnf、および不凍水の分率 Rw
試料を 60°Cにお!/、て 30%メタノール水溶液 (重量比で試料量の 1000倍以上)に 撹拌しながら 12時間浸漬し、その後 20°Cにおいて純水(重量比で試料量の 1000倍 以上)に撹拌しながら 24時間浸潰し、取り出し、過剰な表面付着水をできるだけ素早 くガーゼで拭き取って除去してから、あら力じめ重量 Gpを測定してある密閉型試料 容器に入れ、クリンプし、できるだけ素早く試料と密閉型試料容器の合計重量 Gwを 測定した後、直ちに示差走査熱量分析 (DSC)に力 4ナた。
[0266] DSCの温度プログラムとしては、まず室温から 30°Cまで 10°CZ分の速度で冷却 し、その後、 0. 3°CZ分の速度で 5°Cまで昇温し、当該昇温過程にて測定を行った。
[0267] DSC測定の機器および条件は下記のようにした。
[0268] DSC装置: TA Instruments社製 DSC Q100
データ処理装置:東レリサーチセンター製 TRC— THADAP— DSC
測定温度範囲: 30〜5°C
走査速度: 0. 3°CZ分
試料量:約 5mg
試料パン:アルミナコートされたアルミニウム製密閉型試料容器
DSC測定後に、試料の入った密閉型試料容器に小さな穴を開け、真空乾燥機に て 110°Cで 24時間真空乾燥した後、できるだけ素早く試料と密閉型試料容器の合 計重量 Gdを測定した。乾燥試料重量 mは、
m=Gd-Gp
により求め、また、全水分量 Wtは、
Wt= (Gw-Gd) /
により求めた。
[0269] 上記の昇温過程で得られる DSC曲線から、前出の数式 (nl)を使ってバルタ水量( Wf)を、また前出の数式 (n2)を使って低融点水量 (Wfc)を求め、また、全水分量( Wt)からバルタ水量および低融点水量を差し引くことで、不凍水量 (Wnf)を求めた( 前出の数式 (n3) )。
[0270] 計算にあたり、バルタ水の融点 Τおよびバルタ水の融点での融解ェンタルピー Δ
0
Ηは、次の値を用いた。
0
[0271] Τ 0· 0 (°C)
Figure imgf000072_0001
なお、本測定は株式会社東レリサーチセンターに委託して行った。
[0272] (4)膜厚
接触式膜厚計にて測定した。
[0273] (5)プロトン伝導度
膜状の試料を 60°Cにおいて 30%メタノール水溶液 (重量比で試料量の 1000倍以 上)に撹拌しながら 12時間浸漬し、その後 20°Cにおいて純水(重量比で試料量の 1 000倍以上)に撹拌しながら 24時間浸漬した後、 25°C、相対湿度 50〜80%の雰囲 気中に取り出し、できるだけ素早く定電位交流インピーダンス法でプロトン伝導度を 測定した。
[0274] 測定装置としては、 Solartron製電気化学測定システム(Solartron 1287 Electroch emical Interfaceおよび Solartron 1255B Frequency ResponseAnalyzer)を使用し 7こ。 サンプルは、 φ 2mmおよび φ 10mmの 2枚の円形電極 (ステンレス製)間に加重 lk gをかけて挟持した。有効電極面積は 0. 0314cm2である。サンプルと電極の界面に は、ポリ(2—アクリルアミド— 2—メチルプロパンスルホン酸)の 15%水溶液を塗布し た。 25°Cにおいて、交流振幅 50mVの定電位インピーダンス測定を行い、膜厚方向 のプロトン伝導度を求めた。またその値は、単位面積当たりのもので表した。
[0275] (6)メタノール透過量
膜状の試料を 60°Cにおいて 30%メタノール水溶液 (重量比で試料量の 1000倍以 上)に撹拌しながら 12時間浸漬し、その後 20°Cにおいて純水(重量比で試料量の 1 000倍以上)に撹拌しながら 24時間浸漬した後、 20°Cにおいて 30重量%メタノール 水溶液を用いて測定した。
[0276] H型セル間にサンプル膜を挟み、一方のセルには純水(60mL)を入れ、他方のセ ルには 30重量%メタノール水溶液(60mL)を入れた。セルの容量は各 80mLであつ た。また、セル間の開口部面積は 1. 77cm2であった。 20°Cにおいて両方のセルを 撹拌した。 1時間、 2時間および 3時間経過時点で純水中に溶出したメタノール量を 島津製作所製ガスクロマトグラフィ (GC— 2010)で測定し定量した。グラフの傾きか ら単位時間あたりのメタノール透過量を求めた。またその値は、単位面積当たりのも ので表した。
[0277] (7)高分子電解質膜のヘーズ測定法
試料としては、含水状態、すなわち 25°Cで、 1000倍重量の純水中に 24時間浸漬 した高分子電解質膜を使用し、表面の水滴を拭き取った後、全自動直読ヘーズコン ピューター (スガ試験機 (株)社製: HGM - 2DP)を使用し、曇価 (Hz%)を測定した
[0278] (8) N—メチルピロリドン(NMP)に対する重量減
検体となる高分子電解質材料 (約 0. lg)を純水で十分に洗浄した後、 40°Cで 24 時間真空乾燥して重量を測定した。高分子電解質材料を 1000倍重量の N—メチル ピロリドンに浸漬し、密閉容器中、撹拌しながら 50°C、 5時間加熱した。次に、アドバ ンテック社製濾紙 (No. 2)を用いて濾過を行った。濾過時に 1000倍重量の同一溶 剤で濾紙と残渣を洗浄し、十分に溶出物を溶剤中に溶出させた。残渣を 40°Cで 24 時間真空乾燥して重量を測定することにより、重量減を算出した。
[0279] (9)折り曲げ試験
膜状の試料を 60°Cにおいて 30%メタノール水溶液 (重量比で試料量の 1000倍以 上)に撹拌しながら 12時間浸漬し、その後 20°Cにおいて純水(重量比で試料量の 1 000倍以上)に撹拌しながら 24時間浸漬した後、取出し、膜を 90°折り曲げた。このと きの膜の様子を目視で判定した。破断および亀裂無しを A、一部に亀裂発生を B、破 断を Cとした。
[0280] (10) MEAおよび高分子電解質型燃料電池の評価
膜電極複合体 (MEA)をエレクトロケム社製セルにセットし、アノード側〖こ 30%メタノ ール水溶液、力ソード側に空気を流して MEA評価を行った。評価は MEAに定電流 を流し、その時の電圧を測定した。電流を順次増加させ電圧が 10mV以下になるま で測定を行った。各測定点での電流と電圧の積が出力となる力 その最大値 (MEA の単位面積あたり)を出力(mWZcm2)とした。
[0281] エネルギー容量は、出力、 MEAでの MCOを基に下記式(n4)にて計算した。
[0282] MEAでの MCOは、力ソードからの排出ガスを捕集管でサンプリングした。これを全 有機炭素計 TOC- VCSH (島津製作所製)、あるいは Maicro GC CP- 4900 (ジーエル サイエンス製ガスクロマトグラフ)を用い評価した。 MCOは、サンプリングガス中の Me OHと二酸ィ匕炭素の合計を測定して算出した。
[0283] [数 2]
Figure imgf000075_0001
[0284] エネルギー容量: Wh
出力:最大出力密度 (mWZcm2)
容積:燃料の容積 (本実施例では 10mLとして計算した。 )
濃度:燃料のメタノール濃度 (%)
MCO: MEAでの MCO ( μ mol · min" 1 · cm"2)
電流密度:最大出力密度が得られるときの電流密度 (mAZcm2)
比較例 1
市販のナフイオン (登録商標) 117膜 (デュポン社製)を用い、イオン伝導度、 MCO およびヘーズ、 N—メチルピロリドンに対する重量減を評価した。ナフイオン (登録商 標) 117膜は 100°Cの 5%過酸ィ匕水素水中にて 30分、続いて 100°Cの 5%希硫酸中 にて 30分浸漬した後、 100°Cの脱イオン水でよく洗浄した。評価結果は表 1にまとめ た。 Rwが小さぐメタノール透過量が大きカゝつた。
[0285] 合成例 1
ジソジゥム 3, 3,一ジスルホネート 4, 4'ージフルォロベンゾフエノン(G1)の合 成
[0286] [化 15]
Figure imgf000076_0001
[0287] 4, 4,一ジフルォロベンゾフエノン 109. lgを発煙硫酸(50%SO ) 150mL中、 10
3
0°Cで lOh反応させた。その後、多量の水中に少しずつ投入し、 NaOHで中和した 後、食塩 200gを加え合成物を沈殿させた。得られた沈殿を濾別し、エタノール水溶 液で再結晶し、上記式(G1)で示されるジソジゥム 3, 3' ジスルホネート 4, 4' ジフルォ口べンゾフエノンを得た。
[0288] 合成例 2
式(G2)で表されるポリマー(スルホン酸基密度 1.7mmol/g)の合成 [0289] [化 16]
Figure imgf000077_0001
[0290] (式中、 *はその位置で上式の右端と下式の左端とが結合していることを表す。) 炭酸カリウム 6. 9g、 4, 4'—(9H フルオレン一 9—イリデン)ビスフエノール 14. 1 g、 4, 4'ージフルォロベンゾフエノン 4. 4g、および上記合成例 1で得たジソジゥム 3 , 3, 一ジスルホネート一 4, 4'—ジフルォ口べンゾフエノン 8. 4gを用いて、 N—メチル ピロリドン (NMP)中、 190°Cで重合を行った。多量の水で再沈することで精製を行い 、上記式 (G2)で示されるポリマーを得た。得られたポリマーのプロトン置換後のスル ホン酸基密度は 1. 7mmol/g,重量平均分子量は 22万であった。
[0291] 合成例 3
式(G2)で表されるポリマー(スルホン酸基密度 l.lmmol/g)の合成
炭酸カリウム 6. 9g、 4, 4'—(9H フルオレン一 9—イリデン)ビスフエノール 14. 1 g、 4, 4'ージフルォロベンゾフエノン 6. lg、および上記合成例 1で得たジソジゥム 3 , 3,一ジスルホネート 4, 4'ージフルォロベンゾフエノン 5. lgを用いて、 N—メチル ピロリドン (NMP)中、 190°Cで重合を行った。多量の水で再沈することで精製を行い 、前記式 (G2)で示されるポリマーを得た。得られたポリマーのプロトン置換後のスル ホン酸基密度は 1. lmmol/g,重量平均分子量は 22万であった。
[0292] 合成例 4
下記式 (G3)で表されるポリマー (スルホン酸基密度 l.lmmol/g)の合成
[0293] [化 17]
Figure imgf000078_0001
[0294] (式中、 *はその位置で上式の右端と下式の左端とが結合していることを表す。) 炭酸カリウム 6. 9g、4, 4'ージヒドロキシテトラフェニルメタン 14. lg、4, 4'ージフノレ ォ口べンゾフエノン 6. lg、および上記合成例 1で得たジソジゥム 3, 3,一ジスルホネ 一トー 4, 4,一ジフルォ口べンゾフエノン 5. lgを用いて、 N—メチルピロリドン(NMP )中、 190°Cで重合を行った。多量の水で再沈することで精製を行い、上記式 (G3) で示されるポリマーを得た。得られたポリマーのプロトン置換後のスルホン酸基密度 は 1. lmmol/g,重量平均分子量は 22万であった。
[0295] 合成例 5
下記式 (G3)で表されるポリマー (スルホン酸基密度 0.9mmol/g)の合成
炭酸カリウム 6. 9g、4, 4'ージヒドロキシテトラフェニルメタン 14. lg, 4, 4'ージフノレ ォ口べンゾフエノン 6. 5g、および上記合成例 1で得たジソジゥム 3, 3,一ジスルホネ 一トー 4, 4,一ジフルォ口べンゾフエノン 4. 2gを用いて、 N—メチルピロリドン(NMP )中、 190°Cで重合を行った。多量の水で再沈することで精製を行い、前記式 (G3) で示されるポリマーを得た。得られたポリマーのプロトン置換後のスルホン酸基密度 は 0. 9mmolZg、重量平均分子量は 22万であった。
[0296] 合成例 6
式(G3)で表されるポリマー(スルホン酸基密度 1.7mmol/g)の合成
炭酸カリウム 6. 9g、4, 4'ージヒドロキシテトラフェニルメタン 14. lg, 4, 4'ージフノレ ォ口べンゾフエノン 4. 4g、および上記合成例 1で得たジソジゥム 3, 3'—ジスルホネ 一トー 4, 4,一ジフルォ口べンゾフエノン 8. 4gを用いて、 N—メチルピロリドン(NMP )中、 190°Cで重合を行った。多量の水で再沈することで精製を行い、上記式 (G3) で示されるポリマーを得た。得られたポリマーのプロトン置換後のスルホン酸基密度 は 1. 7mmolZg、重量平均分子量は 22万であった。
[0297] 合成例 7
[0298] [化 18]
Figure imgf000080_0001
[0299] (未スルホン化ポリマーの合成)
炭酸カリウム 35g、 ヒドロキノン l lg、 4, 4'— (9H—フルオレン一 9—イリデン)ビ スフエノール 35g、 および 4, 4'—ジフルォ口べンゾフエノン 44gを用いて、 N—メチ ルピロリドン(NMP)中、 160°Cで重合を行った。
[0300] 重合後、水洗し、多量のメタノールで再沈することで精製を行 、、上記式 (G4)で示 されるポリマーを定量的に得た。その重量平均分子量は 11万であった。
[0301] (スルホン化)
室温、 N雰囲気下で、上記で得られたポリマー 10gをクロ口ホルムに溶解させた後
2
、激しく撹拌しながらクロロスルホン酸 12mLをゆっくり滴下し、 5分反応させた。白色 沈殿を濾別し、粉砕し、水で十分洗浄した後、乾燥し、目的のスルホンィ匕ポリマーを 得た。
[0302] 得られたスルホン化ポリマーは、スルホン酸基密度 1. 8mmolZgであった。
[0303] 比較例 2
合成例 2で得たポリマー (Na型)を N—メチルピロリドンを溶媒とする 25重量%溶液 とし、当該溶液をガラス基板上に流延塗布し、 100°Cにて 4時間乾燥して溶媒を除去 した。さらに、窒素ガス雰囲気下、 200〜325°Cまで 1時間かけて昇温し、 325°Cで 1 0分間加熱する条件で熱処理した後、放冷した。 1N塩酸に 1日間以上浸漬してプロ トン置換した後に、大過剰量の純水に 1日間以上浸漬して充分洗浄した。得られた膜 は、淡黄色透明の柔軟な膜であった。
[0304] 評価結果は表 1にまとめた。 Rwが小さぐメタノール透過量が大きかった。
[0305] 比較例 3
合成例 7で得たスルホンィ匕ポリマーを、飽和食塩水浸漬により Na置換後、 N, N— ジメチルァセトアミドを溶媒とする溶液とし、当該溶液をガラス基板上に流延塗布し、 100°Cにて 4時間乾燥して溶媒を除去した。さらに、窒素ガス雰囲気下、 200〜300 °Cまで 1時間かけて昇温し、 300°Cで 10分間加熱する条件で熱処理した後、放冷し た。 1N塩酸に 3日間以上浸漬してプロトン置換した後に、大過剰量の純水に 3日間 以上浸漬して充分洗浄した。
[0306] 得られた膜は、ヘーズのある淡黄色の膜であった
評価結果は表 1にまとめた。 Rwが小さぐメタノール透過量が大きかった。
[0307] 実施例 1
合成例 3で得た式(G2)のポリマー(Na型、スルホン酸基密度 l.lmmol/g)を N—メ チルピロリドンを溶媒とする 20重量%溶液とし、当該溶液をガラス基板上に流延塗布 し、 100°Cにて 4時間乾燥して溶媒を除去した。さらに、窒素ガス雰囲気下、 200〜3 25°Cまで 1時間かけて昇温し、 325°Cで 10分間加熱する条件で熱処理した後、放冷 した。 1N塩酸に 1日間以上浸漬してプロトン置換した後に、大過剰量の純水に 1日 間以上浸漬して充分洗浄した。次に、 5cm角の膜 (3枚)を 1Lの純水に 24時間浸漬 して充分洗浄し、次に 60°Cにおいて 30%メタノール水溶液(1L)に撹拌しながら 12 時間浸漬した後、撹拌しながら 1Lの純水に 24時間以上浸漬して充分洗浄した。得 られた膜は淡黄色透明の柔軟な膜であった。
[0308] 評価結果は表 1にまとめた。 Rwが大きぐメタノール透過量が小さかった。
[0309] 実施例 2
合成例 4で得た式(G3)のポリマー(Na型、スルホン酸基密度 l.lmmol/g)を N—メ チルピロリドンを溶媒とする 20重量%溶液とし、当該溶液をガラス基板上に流延塗布 し、 100°Cにて 4時間乾燥して溶媒を除去した。さらに、窒素ガス雰囲気下、 200〜3 50°Cまで 1時間かけて昇温し、 350°Cで 10分間加熱する条件で熱処理した後、放冷 した。 1N塩酸に 1日間以上浸漬してプロトン置換した後に、大過剰量の純水に 1日 間以上浸漬して充分洗浄した。次に、 5cm角の膜 (3枚)を 1Lの純水に 24時間浸漬 して充分洗浄し、次に 60°Cにおいて 30%メタノール水溶液(1L)に撹拌しながら 12 時間浸漬した後、撹拌しながら 1Lの純水に 24時間以上浸漬して充分洗浄した。得 られた膜は淡黄色透明の柔軟な膜であった。
[0310] 評価結果は表 1にまとめた。 Rwが大きぐメタノール透過量が小さかった。
[0311] 実施例 3
合成例 5で得た式(G3)のポリマー(Na型、スルホン酸基密度 0.9mmol/g)を N—メ チルピロリドンを溶媒とする 20重量%溶液とし、当該溶液をガラス基板上に流延塗布 し、 100°Cにて 4時間乾燥して溶媒を除去した。さらに、窒素ガス雰囲気下、 200〜3 25°Cまで 1時間かけて昇温し、 325°Cで 10分間加熱する条件で熱処理した後、放冷 した。 1N塩酸に 1日間以上浸漬してプロトン置換した後に、大過剰量の純水に 1日 間以上浸漬して充分洗浄した。次に、 5cm角の膜 (3枚)を 1Lの純水に 24時間浸漬 して充分洗浄し、次に密閉容器中で 80°Cにおいて 30%メタノール水溶液(1L)に撹 拌しながら 12時間浸漬した後、撹拌しながら 1Lの純水に 24時間以上浸漬して充分 洗浄した。得られた膜は淡黄色透明の柔軟な膜であった。 [0312] 評価結果は表 1にまとめた。 Rwが大きぐメタノール透過量が小さかった。
[0313] 実施例 4
N—メチルピロリドン (NMP)に溶解させた合成例 3で得た前記式 (G2)のポリマー( スルホン酸基密度 l.lmmol/g)と、 N—メチルピロリドン (NMP)に溶解させたポリアミ ック酸 (東レ株式会社製トレニース (登録商標) # 3000)を、式 (G3)のポリマー Zポリ ァミック酸 =83. 5/16. 5 (重量比)で混合し、 1時間室温で攪拌した。混合溶液を ガラス基板上に流延塗布し、 100°Cにて 30分予備乾燥後、窒素ガス雰囲気下、 200 〜350°Cまで 1時間かけて昇温し、 350°Cで 10分間加熱する条件で熱処理した後、 放冷した。 1N塩酸に 1日間以上浸漬してプロトン置換した後に、大過剰量の純水に 1日間以上浸漬して充分洗浄した。次に、 5cm角の膜 (3枚)を 1Lの純水に 24時間 浸漬して充分洗浄し、次に 60°Cにおいて 30%メタノール水溶液(1L)に撹拌しなが ら 12時間浸漬した後、撹拌しながら 1Lの純水に 24時間以上浸漬して充分洗浄した
[0314] スルホン酸基密度は 0. 9mmolZgであった。評価結果は表 1にまとめた。 Rwが大 きぐメタノール透過量が小さ力つた。
[0315] 実施例 5
N—メチルピロリドン (NMP)に溶解させた合成例 6で得た前記式 (G3)のポリマー( スルホン酸基密度 1.7mmol/g)と、 N—メチルピロリドン (NMP)に溶解させたポリアミ ック酸 (東レ株式会社製トレニース (登録商標) # 3000)を、式 (G3)のポリマー Zポリ ァミック酸 =75Z25 (重量比)で混合し、 1時間室温で攪拌した。混合溶液をガラス 基板上に流延塗布し、 100°Cにて 30分予備乾燥後、窒素ガス雰囲気下、 200-40 0°Cまで 1時間かけて昇温し、 400°Cで 10分間加熱する条件で熱処理した後、放冷 した。 1N塩酸に 1日間以上浸漬してプロトン置換した後に、大過剰量の純水に 1日 間以上浸漬して充分洗浄した。次に、 5cm角の膜 (3枚)を 1Lの純水に 24時間浸漬 して充分洗浄し、次に 60°Cにおいて 30%メタノール水溶液(1L)に撹拌しながら 12 時間浸漬した後、撹拌しながら 1Lの純水に 24時間以上浸漬して充分洗浄した。
[0316] スルホン酸基密度は 0. 9mmolZgであった。評価結果は表 1にまとめた。 Rwが大 きぐメタノール透過量が小さ力つた。 [0317] 実施例 6
N—メチルピロリドン (NMP)に溶解させた合成例 6で得た前記式 (G3)のポリマー( スルホン酸基密度 1.7mmol/g)を溶解させた 25重量0 /0N—メチルピロリドン(NMP) 溶液 10gと、 N, N,—メチレンビスアクリルアミド(東京化成試薬) lg、 AIBNlmgを混 合し、 1時間室温で攪拌した。混合溶液をガラス基板上に流延塗布し、 100°Cにて 3 0分予備乾燥後、窒素下 200°Cで 10分間熱処理し、高分子電解質膜を得た。 1N塩 酸に 1日間以上浸漬してプロトン置換した後に、大過剰量の純水に 1日間以上浸漬 して充分洗浄した。次に、 5cm角の膜 (3枚)を 1Lの純水に 24時間浸漬して充分洗 浄し、次に 60°Cにおいて 30%メタノール水溶液(1L)に撹拌しながら 12時間浸漬し た後、撹拌しながら 1Lの純水に 24時間以上浸漬して充分洗浄した。
[0318] 得られた膜のスルホン酸基密度は 1. 2mmolZgであった。評価結果は表 1にまと めた。 Rwが大きく、メタノール透過量が小さカゝつた。
[0319] 実施例 7
N, N'—メチレンビスアクリルアミド (東京化成試薬) lgを下記式 (G5)で示されるフ ルオレン系ビスアタリレート(大阪ガスケミカル社製) lgに変えた以外は実施例 1に記 載の方法で膜の作製を行った。
[0320] 得られた膜のスルホン酸基密度は 1. 2mmolZgであった。評価結果は表 1にまと めた。 Rwが大きく、メタノール透過量が小さカゝつた。
[0321] [化 19] (G5)
Figure imgf000084_0001
[0322] 実施例 8
合成例 4で得た前記式 (G3)のポリマー (スルホン酸基密度 l.lmmol/g)を溶解させ た 25重量0 /oN—メチルピロリドン(NMP)溶液 16gと、 HMOM— TPPHBA (本州化 学工業社製) 0. 44gを混合し、 1時間室温で攪拌した。混合溶液をガラス基板上に 流延塗布し、 100°Cにて 2時間乾燥後、窒素下 325°Cで 10分間熱処理し、高分子電 解質膜を得た。 1N塩酸に 1日間以上浸漬してプロトン置換した後に、大過剰量の純 水に 1日間以上浸漬して充分洗浄した。次に、 5cm角の膜 (3枚)を 1Lの純水に 24 時間浸漬して充分洗浄し、次に 60°Cにおいて 30%メタノール水溶液(1L)に撹拌し ながら 12時間浸漬した後、撹拌しながら 1Lの純水に 24時間以上浸漬して充分洗浄 した。
[0323] 得られた膜は赤色透明であり、スルホン酸基密度は 1. OmmolZgであった。評価 結果は表 1にまとめた。 Rwが大きぐメタノール透過量が小さ力つた。
[0324] 実施例 9
合成例 4で得た前記式 (G3)のポリマー (スルホン酸基密度 l.lmmol/g)を溶解させ た 25重量%N—メチルピロリドン(NMP)溶液 16gと、 TML— BPA (本州化学工業 社製) 0. 21gを混合し、 1時間室温で攪拌した。混合溶液をガラス基板上に流延塗 布し、 100°Cにて 2時間乾燥後、窒素下 325°Cで 10分間熱処理し、高分子電解質膜 を得た。 1N塩酸に 1日間以上浸漬してプロトン置換した後に、大過剰量の純水に 1 日間以上浸漬して充分洗浄した。次に、 5cm角の膜 (3枚)を 1Lの純水に 24時間浸 漬して充分洗浄し、次に 60°Cにおいて 30%メタノール水溶液(1L)に撹拌しながら 1 2時間浸漬した後、撹拌しながら 1Lの純水に 24時間以上浸漬して充分洗浄した。
[0325] 得られた膜は赤色透明であり、スルホン酸基密度は 1. OmmolZgであった。評価 結果は表 1にまとめた。 Rwが大きぐメタノール透過量が小さ力つた。
[0326] [表 1]
Figure imgf000086_0001
ビーカーに、スチレン 13g、 N—シクロへキシルマレイミド 9g、多官能単量体である エチレングリコールジメタタリレート 6g、開孔剤であるプロピレンカーボネートを 6g、重 合開始剤である 2, 2'—ァゾビスイソブチ口-トリル 0. 05gを仕込み、マグネツチタス ターラーにて撹拌し均一に溶解し、単量体組成物溶液とした。
[0328] (キャスト成型)
厚み 5mmで 30cm X 30cmサイズのガラス板 2枚をその間隔が 0. 2mmとなるよう にガスケットで調整したモールドを準備し、ガラス板間に上記の単量体組成物溶液を ガスケット内が満たされるまで注入した。
[0329] 次に 65°Cの熱風乾燥機内で 8時間、板間重合したのち、ガラス板間から膜状の重 合体を取り出した。
[0330] (高分子電解質膜化)
開孔剤の除去とイオン性基の導入として、上記の膜状の重合体を、 5重量%のクロ ロスルホン酸を添加した 1, 2—ジクロロェタン中に 30分間浸漬した後、取り出し、メタ ノールで 1, 2—ジクロロェタンを洗浄し、さらに洗浄液が中性になるまで水洗した。 飽和食塩水浸漬により Na置換後、 100°Cにて 4時間乾燥した。さらに、窒素ガス雰 囲気下、 200〜300°Cまで 1時間かけて昇温し、 300°Cで 10分間加熱する条件で熱 処理した後、放冷した。 1N塩酸に 1日間以上浸漬してプロトン置換した後に、大過剰 量の純水に 1日間以上浸漬して充分洗浄した。次に、 5cm角の膜 (3枚)を 1Lの純水 に 24時間浸漬して充分洗浄し、次に 60°Cにおいて 30%メタノール水溶液(1L)に撹 拌しながら 12時間浸漬した後、撹拌しながら 1Lの純水に 24時間以上浸漬して充分 洗浄し、高分子電解質膜を得た。
[0331] スルホン酸基の分布状態の観察の結果、当該高分子電解質膜の断面全体に渡つ てスルホン酸基が分布しており、空隙内にイオン性基が導入されていることが確認で きた。スルホン酸基密度は 1. 6mmolZgであった。評価結果は表 1にまとめた。 Rw が大きぐメタノール透過量が小さ力つた。
[0332] 実施例 11および比較例 4
実施例 1の高分子電解質膜を用いて、次の方法により高分子電解質型燃料電池を 作製し評価した。また、比較例 1の市販のナフイオン (登録商標) 117膜も同様に高分 子電解質型燃料電池を作製し評価した。
[0333] 2枚の炭素繊維クロス基材に 20%PTFE水への浸漬による撥水処理を行ったのち 、焼成して電極基材を作製した。 1枚の電極基材上に、 Pt— Ru担持カーボンと巿販 の Nafion (登録商標)溶液 (デュポン社製)からなるアノード電極触媒塗液を塗工、 乾燥してアノード電極を、もう 1枚の電極基材上に、 Pt担持カーボンと Nafion (登録 商標)溶液からなる力ソード電極触媒塗液を塗工、乾燥して力ソード電極を作製した
[0334] 実施例 1の高分子電解質膜を、先に作製したアノード電極と力ソード電極で夾持し 加熱プレスすることで膜一電極複合体 (MEA)を作製した。この MEAをエレクトロケ ム社製セルにセットした。評価を開始する前に、電気的に開回路状態でアノード側に 60°C、 30%メタノール水溶液を 100時間供給してエージングした。評価時にはァノ ード側に 20°C、 30%メタノール水溶液、力ソード側に空気を流して MEA評価を行つ た。評価は MEAに定電流を流し、その時の電圧を測定した。電流を順次増加させ電 圧が 10mV以下になるまで測定を行った。各測定点での電流と電圧の積が出力とな る。
[0335] 実施例 1の高分子電解質膜を使用した MEA (実施例 11)は、比較例 1のナフィォ ン (登録商標) 117膜を使用した MEA (比較例 4)より出力(mWZcm2)で 2. 2倍、ェ ネルギー容量 (Wh)で 2. 5倍の値を示し、優れた特性を有していた。
[0336] 実施例 12
実施例 4の高分子電解質膜を用いて、実施例 11と同様に高分子電解質型燃料電 池を作製し評価した。
[0337] 本実施例の MEAは、ナフイオン (登録商標) 117膜を使用した MEA (比較例 4)よ り出力(mWZcm2)で 3. 2倍、エネルギー容量 (Wh)で 2. 8倍の値を示し、優れた特 '性を有していた。
[0338] 実施例 13
実施例 6の高分子電解質膜を用いて、実施例 11と同様に高分子電解質型燃料電 池を作製し評価した。
[0339] 本実施例の MEAは、ナフイオン (登録商標) 117膜を使用した MEA (比較例 4)よ り出力(mWZcm2)で 3. 3倍、エネルギー容量 (Wh)で 2. 3倍の値を示し、優れた特 '性を有していた。
[0340] 実施例 14
実施例 8の高分子電解質膜を用いて、実施例 11と同様に高分子電解質型燃料電 池を作製し評価した。
[0341] 本実施例の MEAは、ナフイオン (登録商標) 117膜を使用した MEA (比較例 4)よ り出力(mWZcm2)で 2. 1倍、エネルギー容量 (Wh)で 3. 9倍の値を示し、優れた特 '性を有していた。
[0342] 実施例 15
実施例 10の高分子電解質膜を用いて、実施例 11と同様に高分子電解質型燃料 電池を作製し評価した。
[0343] 本実施例の MEAは、ナフイオン (登録商標) 117膜を使用した MEA (比較例 4)よ り出力(mWZcm2)で 3. 3倍、エネルギー容量 (Wh)で 1. 9倍の値を示し、優れた特 '性を有していた。
[0344] 合成例 8
下記式 (G3)で表されるポリマー (スルホン酸基密度 1.2mmol/g)の合成 炭酸カリウム 6. 9g、4, 4'—ジヒドロキシテトラフエ-ルメタン 14. lg、4, 4'—ジフル ォ口べンゾフエノン 5. 7g、および上記合成例 1で得たジソジゥム 3, 3,一ジスルホネ 一トー 4, 4,一ジフルォ口べンゾフエノン 5. 9gを用いて、 N—メチルピロリドン(NMP )中、 190°Cで重合を行った。多量の水で再沈することで精製を行い、上記式 (G3) で示されるポリマーを得た。得られたポリマーのプロトン置換後のスルホン酸基密度 は 1. 2mmolZg、重量平均分子量は 26万であった。
[0345] 合成例 9
下記式 (G3)で表されるポリマー (スルホン酸基密度 1.4mmol/g)の合成 炭酸カリウム 6. 9g、4, 4'—ジヒドロキシテトラフエ-ルメタン 14. lg、4, 4'—ジフル ォ口べンゾフエノン 5. 2g、および上記合成例 1で得たジソジゥム 3, 3,一ジスルホネ 一トー 4, 4,一ジフルォ口べンゾフエノン 6. 8gを用いて、 N—メチルピロリドン(NMP )中、 190°Cで重合を行った。多量の水で再沈することで精製を行い、上記式 (G3) で示されるポリマーを得た。得られたポリマーのプロトン置換後のスルホン酸基密度 は 1. 4mmolZg、重量平均分子量は 24万であった。
[0346] 実施例 16
合成例 8で得た式(G3)のポリマー(Na型、スルホン酸基密度 1.2mmol/g)を N—メ チルピロリドンを溶媒とする 20重量%溶液とし、当該溶液をガラス基板上に流延塗布 し、 100°Cにて 4時間乾燥して溶媒を除去した。さらに、窒素ガス雰囲気下、 200〜3 25°Cまで 1時間かけて昇温し、 325°Cで 10分間加熱する条件で熱処理した後、放冷 した。 1N塩酸に 1日間浸漬してプロトン置換した後に、大過剰量の純水に 1日間浸 漬して充分洗浄した。次に、 5cm角の膜 (3枚)を 1Lの純水に 24時間浸漬して充分 洗浄し、次に 60°Cにおいて 30%メタノール水溶液(1L)に撹拌しながら 12時間浸漬 した後、撹拌しながら 1Lの純水に 24時間浸漬して充分洗浄した。得られた膜は淡黄 色透明の柔軟な膜であった。
[0347] 評価結果は表 1にまとめた。 Rwが大きぐメタノール透過量が小さかった。
[0348] 実施例 17
合成例 5で得た式(G3)のポリマー(Na型、スルホン酸基密度 1.4mmol/g)を N—メ チルピロリドンを溶媒とする 20重量%溶液とし、当該溶液をガラス基板上に流延塗布 し、 100°Cにて 4時間乾燥して溶媒を除去した。さらに、窒素ガス雰囲気下、 200〜3 25°Cまで 1時間かけて昇温し、 325°Cで 10分間加熱する条件で熱処理した後、放冷 した。 1N塩酸に 1日間以上浸漬してプロトン置換した後に、大過剰量の純水に 1日 間以上浸漬して充分洗浄した。次に、 5cm角の膜 (3枚)を 1Lの純水に 24時間浸漬 して充分洗浄し、次に 60°Cにおいて 30%メタノール水溶液(1L)に撹拌しながら 12 時間浸漬した後、撹拌しながら 1Lの純水に 24時間浸漬して充分洗浄した。得られた 膜は淡黄色透明の柔軟な膜であった。
[0349] 評価結果は表 1にまとめた。 Rwが大きぐメタノール透過量が小さかった。
産業上の利用可能性
[0350] 本発明の高分子電解質材料あるいは高分子電解質部品は、種々の用途に適用可 能である。例えば、体外循環カラム、人工皮膚などの医療用途、ろ過用用途、イオン 交換榭脂用途、各種構造材用途、電気化学用途に適用可能である。また例えば、電 気化学用途としては、燃料電池、レドックスフロー電池、水電解装置およびクロ口アル カリ電解装置等が挙げられ、中でも燃料電池がとりわけ好ましぐ例えば、メタノール などを燃料とする直接型燃料電池に用いられる。
本発明の高分子電解質型燃料電池の用途としては、移動体の電力供給源が好ま しいものである。特に、携帯電話、ノ ソコン、 PDA (Portable DigitalAssistance)、テレ ビ、ラジオ、ミュージックプレーヤー、ゲーム機、ヘッドセット、 DVDプレーヤー、ビデ ォカメラ (カムコーダ一)、デジタルカメラなどの携帯機器、電動シェーバー、コードレ ス掃除機等の家電、産業用などの人型、動物型の各種ロボット、電動工具、乗用車、 バスおよびトラックなどの自動車、二輪車、電動アシスト付自転車、電動カート、電動 車椅子や船舶および鉄道などの移動体の電力供給源、据え置き型の発電機など従 来の一次電池、二次電池の代替、もしくはこれらとのハイブリッド電源として好ましく用 いられる。

Claims

請求の範囲
[1] 40°C〜80°Cにおいて 1〜30重量%のメタノール水溶液に 12時間浸漬し、その後 2
0°Cにおいて純水に 24時間浸漬し、取り出した直後の含水状態において、下記式(
S1)で表される不凍水の分率 Rwが 75〜: LOO重量%であり、イオン性基を有すること を特徴とする高分子電解質材料。
Rw= [Wnf/ (Wfc+Wnf) ] X 100 …… (SI)
式中、 Wnf : 高分子電解質材料の乾燥重量 lg当たりの不凍水量
Wfc: 高分子電解質材料の乾燥重量 lg当たりの低融点水量
[2] 60°Cにおいて 30重量%メタノール水溶液に 12時間浸漬し、その後 20°Cにおいて 純水に 24時間浸漬し、取り出した直後の含水状態において、該 Rwが 75〜: LOO重量
%である請求項 1に記載の高分子電解質材料。
[3] 該不凍水量 (Wnf)力 0. 05〜2である請求項 1に記載の高分子電解質材料。
[4] 該高分子電解質材料が、イオン性基を有する炭化水素系ポリマーを含有する請求項
1に記載の高分子電解質材料。
[5] 該高分子電解質材料が、さらに複素環状ポリマーを含有することを特徴とする請求 項 4に記載の高分子電解質材料。
[6] 該高分子電解質材料が、さらにビュル重合系ポリマーを含有する請求項 4に記載の 高分子電解質材料。
[7] 該高分子電解質材料が、さらに下記一般式 (Ml)で示される基を有する架橋性化合 物により架橋されている請求項 4に記載の高分子電解質材料。
-CH OU1 (Ml)
2
(ここで、 u1は水素、または任意の有機基である。 )
[8] 該イオン性基を有する炭化水素系ポリマーが、下記一般式 (P1)で表される構造を含 む請求項 4に記載の高分子電解質材料。
[化 1]
Figure imgf000093_0001
(ここで、
Figure imgf000093_0002
Z2は芳香環を含む有機基を表し、それぞれは 1種類の記号で 2種類以 上の基を表すことができる。 Y1は電子吸引性基を表す。 Y2は Oまたは Sを表す。 aお よび bはそれぞれ独立に 0〜2の整数を表し、ただし aと bは同時に 0ではない。 )
[9] 空隙率が 5〜80%、空隙の孔径の平均が 50nm未満である空隙を有し、かつ、ィォ ン性基が該空隙の内部に存在する請求項 1に記載の高分子電解質材料。
[10] イオン性基がスルホン酸基である、請求項 1に記載の高分子電解質材料。
[11] スルホン酸基密度が 0. 1〜1. 6mmolZgである請求項 10に記載の高分子電解質 材料。
[12] 請求項 1に記載の高分子電解質材料を用いて構成されて!ヽることを特徴とする高分 子電解質部品。
[13] 請求項 12に記載の高分子電解質部品を用いて構成されていることを特徴とする膜 電極複合体。
[14] 請求項 13に記載の膜電極複合体を用いて構成されていることを特徴とする高分子 電解質型燃料電池。
[15] 該高分子電解質型燃料電池が、炭素数 1〜6の有機化合物およびこれと水との混合 物から選ばれた少なくとも 1種を燃料に用いる直接型燃料電池である請求項 14に記 載の高分子電解質型燃料電池。
PCT/JP2005/015703 2004-09-03 2005-08-30 高分子電解質材料、高分子電解質部品、膜電極複合体、および高分子電解質型燃料電池 WO2006025351A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020077005094A KR101232445B1 (ko) 2004-09-03 2005-08-30 고분자 전해질 재료, 고분자 전해질 부품, 막 전극 복합체,및 고분자 전해질형 연료 전지
US11/661,423 US20080075999A1 (en) 2004-09-03 2005-08-30 Polyelectrolyte Material, Polyelectrolyte Component, Membrane Electrode Composite Body, and Polyelectrolyte Type Fuel Cell
JP2006532693A JP5181474B2 (ja) 2004-09-03 2005-08-30 高分子電解質材料、高分子電解質部品、膜電極複合体、および高分子電解質型燃料電池
CA2576887A CA2576887C (en) 2004-09-03 2005-08-30 Polymer electrolyte material, polymer electrolyte part, membrane electrode assembly, and polymer electrolyte type fuel cell
EP05781471A EP1798795B1 (en) 2004-09-03 2005-08-30 Polyelectrolyte material, polyelectrolyte component, membrane electrode composite body, and polyelectrolyte type fuel cell
AU2005278524A AU2005278524A1 (en) 2004-09-03 2005-08-30 Polyelectrolyte material, polyelectrolyte component, membrane electrode composite body, and polyelectrolyte type fuel cell

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-256590 2004-09-03
JP2004256590 2004-09-03

Publications (1)

Publication Number Publication Date
WO2006025351A1 true WO2006025351A1 (ja) 2006-03-09

Family

ID=36000003

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/015703 WO2006025351A1 (ja) 2004-09-03 2005-08-30 高分子電解質材料、高分子電解質部品、膜電極複合体、および高分子電解質型燃料電池

Country Status (9)

Country Link
US (1) US20080075999A1 (ja)
EP (1) EP1798795B1 (ja)
JP (1) JP5181474B2 (ja)
KR (1) KR101232445B1 (ja)
CN (1) CN100541888C (ja)
AU (1) AU2005278524A1 (ja)
CA (1) CA2576887C (ja)
TW (1) TWI366940B (ja)
WO (1) WO2006025351A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008117663A (ja) * 2006-11-06 2008-05-22 Cheil Industries Inc 燃料電池用高分子電解質膜、膜−電極接合体及び燃料電池
WO2009005055A1 (ja) * 2007-07-02 2009-01-08 Kaneka Corporation 高分子電解質、高分子電解質膜、燃料電池用触媒層バインダー、およびその利用
JP2010040530A (ja) * 2006-08-09 2010-02-18 Hitachi Chem Co Ltd プロトン伝導性電解質膜、その製造方法、及びそれを用いた膜−電極接合体、燃料電池
TWI406895B (zh) * 2006-08-11 2013-09-01 Toray Industries 高分子電解質材料、以及使用它之高分子電解質成型體與它之製法、膜電極複合體及固體高分子型燃料電池

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004079844A1 (ja) * 2003-03-06 2004-09-16 Toray Industries, Inc. 高分子電解質材料、高分子電解質部品、膜電極複合体および高分子電解質型燃料電池
CA2529926C (en) * 2003-06-25 2012-07-03 Toray Industries, Inc. Polymer electrolyte as well as polymer electrolyte membrane, membrane electrode assembly and polymer electrolyte fuel cell using the same
KR20120139848A (ko) * 2005-02-15 2012-12-27 도레이 카부시키가이샤 고분자 전해질 성형체의 제조 방법, 고분자 전해질 재료, 고분자 전해질막 및 고분자 전해질형 연료 전지
US8257979B2 (en) * 2007-11-12 2012-09-04 GM Global Technology Operations LLC Method for characterizing the porosity in fuel cell electrodes
JP2009272217A (ja) * 2008-05-09 2009-11-19 Three M Innovative Properties Co 膜電極接合体の活性化方法及び膜電極接合体とそれを用いた固体高分子型燃料電池
US8163439B2 (en) * 2008-06-03 2012-04-24 The University Of Akron Electrolyte membranes and methods of use
TWI384024B (zh) * 2008-11-27 2013-02-01 Ind Tech Res Inst 質子交換膜與其形成方法
TWI443133B (zh) * 2008-12-30 2014-07-01 Ind Tech Res Inst 互穿網狀質子交換膜與其形成方法及質子交換膜燃料電池
EP2489690A1 (en) * 2009-10-16 2012-08-22 Sumitomo Chemical Company Limited Polyarylene copolymer and uses thereof
CN102044648B (zh) 2009-10-16 2013-04-10 大连融科储能技术发展有限公司 聚芳基醚苯并咪唑离子交换膜及其制备和全钒液流电池
JP4897119B2 (ja) * 2010-03-05 2012-03-14 パナソニック株式会社 燃料電池用カソード電極の製造方法及び燃料電池用カソード電極
KR101840817B1 (ko) * 2011-03-25 2018-03-21 삼성전자 주식회사 연료전지용 전해질막, 연료전지용 전극 및 이를 채용한 연료전지
CA2847107C (en) * 2011-08-29 2017-10-24 Toray Industries, Inc. Polymer electrolyte membrane, membrane electrode assembly using same, and polymer electrolyte fuel cell
WO2013046380A1 (ja) * 2011-09-28 2013-04-04 株式会社エクォス・リサーチ 燃料電池の反応層の観察方法
WO2014126626A1 (en) * 2013-02-15 2014-08-21 Empire Technology Development Llc Phenolic epoxy compounds
CN105408411B (zh) 2013-06-13 2018-04-06 英派尔科技开发有限公司 多官能酚醛树脂
CN104512075B (zh) 2013-10-04 2017-06-23 财团法人工业技术研究院 离型层、基板结构、与柔性电子元件工艺
TWI632088B (zh) * 2013-11-14 2018-08-11 國立高雄科技大學 電動折疊腳踏車及其操作方法
EP3077364A4 (en) 2013-12-02 2017-11-08 Empire Technology Development LLC Novel gemini surfactants and their use
WO2016160703A1 (en) 2015-03-27 2016-10-06 Harrup Mason K All-inorganic solvents for electrolytes
EP3282512B1 (en) * 2015-04-08 2023-05-03 LG Chem, Ltd. Polymer electrolyte membrane, electrochemical cell and flow cell comprising same, method for manufacturing polymer electrolyte membrane, and flow cell electrolyte
JP6366550B2 (ja) * 2015-08-24 2018-08-01 信越化学工業株式会社 導電性ポリマー用高分子化合物及びその製造方法
US10707531B1 (en) 2016-09-27 2020-07-07 New Dominion Enterprises Inc. All-inorganic solvents for electrolytes

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003217342A (ja) * 2002-01-24 2003-07-31 Toyobo Co Ltd 光架橋性高分子固体電解質、架橋高分子固体電解質膜及びその製造方法
JP2003217343A (ja) * 2002-01-24 2003-07-31 Toyobo Co Ltd 熱架橋性高分子固体電解質、高分子固体電解質膜及びその製造方法
JP2003217365A (ja) * 2002-01-24 2003-07-31 Toyobo Co Ltd 高分子固体電解質成形体及び高分子固体電解質膜とそれらの製造方法
WO2004036679A1 (ja) * 2002-10-17 2004-04-29 Toyo Boseki Kabushiki Kaisha 複合イオン交換膜
JP2005019055A (ja) * 2003-06-24 2005-01-20 Toray Ind Inc 高分子電解質ならびにそれを用いた高分子電解質膜、膜電極複合体および高分子電解質型燃料電池
JP2005174897A (ja) * 2003-04-22 2005-06-30 Toray Ind Inc 高分子電解質材料、高分子電解質部品、膜電極複合体、および高分子電解質型燃料電池

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0341473B1 (de) * 1988-04-30 1999-10-06 Akzo Nobel N.V. Verfahren zur Sulfonierung von aromatischen Polyäthersulfonen
SG73410A1 (en) * 1992-06-13 2000-06-20 Hoechst Ag Polymer electrolyte membrane and process for the production thereof
US5403675A (en) * 1993-04-09 1995-04-04 Maxdem, Incorporated Sulfonated polymers for solid polymer electrolytes
DE4422158A1 (de) * 1994-06-24 1996-01-04 Hoechst Ag Homogene Polymerlegierungen auf der Basis von sulfonierten, aromatischen Polyetherketonen
US6103414A (en) * 1995-12-28 2000-08-15 The Research Foundation Of State University Of The New York Blend membranes based on sulfonated poly(phenylene oxide) for polymer electrochemical cells
US6444343B1 (en) * 1996-11-18 2002-09-03 University Of Southern California Polymer electrolyte membranes for use in fuel cells
US6248469B1 (en) * 1997-08-29 2001-06-19 Foster-Miller, Inc. Composite solid polymer electrolyte membranes
DE19807876C2 (de) * 1998-02-25 2002-10-24 Xcellsis Gmbh Brennstoffzellensystem
DE19817376A1 (de) * 1998-04-18 1999-10-21 Univ Stuttgart Lehrstuhl Und I Säure-Base-Polymerblends und ihre Verwendung in Membranprozessen
DE19817374A1 (de) * 1998-04-18 1999-10-21 Univ Stuttgart Lehrstuhl Und I Engineering-Ionomerblends und Engineering-Ionomermembranen
MY121057A (en) * 1998-04-18 2005-12-30 Uni Stuttgart Lehrstuhl Und Inst Fur Chemische Verfahrenstechnik Acid-base polymer blends and their use in membrane processes
DE69933129T2 (de) * 1998-09-11 2007-03-01 Victrex Mfg. Ltd., Thornton Cleveleys Ionenaustauschpolymere
US6365294B1 (en) * 1999-04-30 2002-04-02 The Administrators Of The Tulane Educational Fund Sulfonated polyphosphazenes for proton-exchange membrane fuel cells
US6413676B1 (en) * 1999-06-28 2002-07-02 Lithium Power Technologies, Inc. Lithium ion polymer electrolytes
US6645675B1 (en) * 1999-09-02 2003-11-11 Lithium Power Technologies, Inc. Solid polymer electrolytes
US6447943B1 (en) * 2000-01-18 2002-09-10 Ramot University Authority For Applied Research & Industrial Development Ltd. Fuel cell with proton conducting membrane with a pore size less than 30 nm
US7361729B2 (en) * 2000-09-20 2008-04-22 Virginia Tech Intellectual Properties, Inc. Ion-conducting sulfonated polymeric materials
JP3513097B2 (ja) * 2000-09-29 2004-03-31 株式会社東芝 プロトン伝導性膜およびそれを用いた燃料電池
JP3820888B2 (ja) * 2001-01-31 2006-09-13 Jsr株式会社 スルホン酸基を有するポリエーテル系共重合体およびプロトン伝導膜
JP3698067B2 (ja) * 2001-03-30 2005-09-21 Jsr株式会社 電子吸引性基および電子供与性基を有するモノマー、それを用いた共重合体、ならびにプロトン伝導膜
US20020191225A1 (en) * 2001-06-04 2002-12-19 Stringham Gary G. Methods and arrangements for compressing raster data
TWI236486B (en) * 2001-10-10 2005-07-21 Mitsui Chemicals Inc Crosslinkable aromatic resin having protonic acid group, and ion conductive polymer membrane, binder and fuel cell using the resin
JP4408599B2 (ja) * 2001-11-16 2010-02-03 東洋紡績株式会社 スルホン酸基含有芳香族ポリアリーレンエーテル化合物および高分子電解質膜
JP2003257452A (ja) * 2001-12-27 2003-09-12 Toray Ind Inc 高分子固体電解質およびそれを用いた固体高分子型燃料電池
EP1518290A4 (en) * 2002-05-13 2009-12-02 Polyfuel Inc COPOLYMERES ION CONDUCTIVE BLOCKS
AU2003237849B2 (en) * 2002-05-13 2009-07-02 Polyfuel, Inc. Sulfonated copolymer
JP3928611B2 (ja) * 2002-10-08 2007-06-13 東洋紡績株式会社 ポリアリーレンエーテル系化合物、それを含有する組成物、およびそれらの製造方法
JP2004247252A (ja) * 2003-02-17 2004-09-02 Fuji Photo Film Co Ltd プロトン伝導材料及びそれを用いたプロトン伝導膜
WO2004079844A1 (ja) * 2003-03-06 2004-09-16 Toray Industries, Inc. 高分子電解質材料、高分子電解質部品、膜電極複合体および高分子電解質型燃料電池
JPWO2004090015A1 (ja) * 2003-04-07 2006-07-06 三井化学株式会社 架橋性イオン伝導性樹脂、並びにそれを用いてなるイオン伝導性高分子膜、結着剤及び燃料電池
CA2529926C (en) * 2003-06-25 2012-07-03 Toray Industries, Inc. Polymer electrolyte as well as polymer electrolyte membrane, membrane electrode assembly and polymer electrolyte fuel cell using the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003217342A (ja) * 2002-01-24 2003-07-31 Toyobo Co Ltd 光架橋性高分子固体電解質、架橋高分子固体電解質膜及びその製造方法
JP2003217343A (ja) * 2002-01-24 2003-07-31 Toyobo Co Ltd 熱架橋性高分子固体電解質、高分子固体電解質膜及びその製造方法
JP2003217365A (ja) * 2002-01-24 2003-07-31 Toyobo Co Ltd 高分子固体電解質成形体及び高分子固体電解質膜とそれらの製造方法
WO2004036679A1 (ja) * 2002-10-17 2004-04-29 Toyo Boseki Kabushiki Kaisha 複合イオン交換膜
JP2005174897A (ja) * 2003-04-22 2005-06-30 Toray Ind Inc 高分子電解質材料、高分子電解質部品、膜電極複合体、および高分子電解質型燃料電池
JP2005019055A (ja) * 2003-06-24 2005-01-20 Toray Ind Inc 高分子電解質ならびにそれを用いた高分子電解質膜、膜電極複合体および高分子電解質型燃料電池

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010040530A (ja) * 2006-08-09 2010-02-18 Hitachi Chem Co Ltd プロトン伝導性電解質膜、その製造方法、及びそれを用いた膜−電極接合体、燃料電池
TWI406895B (zh) * 2006-08-11 2013-09-01 Toray Industries 高分子電解質材料、以及使用它之高分子電解質成型體與它之製法、膜電極複合體及固體高分子型燃料電池
KR101383938B1 (ko) 2006-08-11 2014-04-10 도레이 카부시키가이샤 고분자 전해질 재료, 이를 이용한 고분자 전해질 성형체 및그의 제조 방법, 막 전극 복합체 및 고체 고분자형 연료 전지
US9673468B2 (en) 2006-08-11 2017-06-06 Toray Industries, Inc. Polymer electrolyte material, polymer electrolyte molded product using the polymer electrolyte material and method for manufacturing the polymer electrolyte molded product, membrane electrode composite, and solid polymer fuel cell
US10026983B2 (en) 2006-08-11 2018-07-17 Toray Industries, Inc. Polymer electrolyte material, polymer electrolyte molded product using the polymer electrolyte material and method for manufacturing the polymer electrolyte molded product, membrane electrode composite, and solid polymer fuel cell
JP2008117663A (ja) * 2006-11-06 2008-05-22 Cheil Industries Inc 燃料電池用高分子電解質膜、膜−電極接合体及び燃料電池
WO2009005055A1 (ja) * 2007-07-02 2009-01-08 Kaneka Corporation 高分子電解質、高分子電解質膜、燃料電池用触媒層バインダー、およびその利用

Also Published As

Publication number Publication date
JPWO2006025351A1 (ja) 2008-05-08
TW200623499A (en) 2006-07-01
CA2576887A1 (en) 2006-03-09
EP1798795B1 (en) 2012-08-22
KR101232445B1 (ko) 2013-02-12
CN100541888C (zh) 2009-09-16
AU2005278524A1 (en) 2006-03-09
TWI366940B (en) 2012-06-21
KR20070049193A (ko) 2007-05-10
CN101048906A (zh) 2007-10-03
CA2576887C (en) 2013-04-23
EP1798795A1 (en) 2007-06-20
JP5181474B2 (ja) 2013-04-10
EP1798795A4 (en) 2011-05-04
US20080075999A1 (en) 2008-03-27

Similar Documents

Publication Publication Date Title
JP5181474B2 (ja) 高分子電解質材料、高分子電解質部品、膜電極複合体、および高分子電解質型燃料電池
KR101055105B1 (ko) 고분자 전해질 재료, 고분자 전해질 부품, 막 전극 복합체및 고분자 전해질형 연료 전지
JP5250935B2 (ja) 高分子電解質材料、ならびにそれを用いた高分子電解質部品、膜電極複合体および高分子電解質型燃料電池
EP1641063B1 (en) Polymer electrolyte, polymer electrolyte membrane therefrom, membrane electrode assembly and polymer electrolyte fuel cell
Gao et al. Novel proton conducting membranes based on cross-linked sulfonated polyphosphazenes and poly (ether ether ketone)
JP4572512B2 (ja) 高分子電解質ならびにそれを用いた高分子電解質膜、膜電極複合体および高分子電解質型燃料電池
KR102295383B1 (ko) 고분자 전해질 막, 막 전극 접합체 및 고체 고분자형 연료 전지
KR101569719B1 (ko) 방사선을 이용한 다이올 가교 탄화수소계 고분자 전해질막 및 이의 제조방법
JP5017766B2 (ja) 高分子電解質材料、高分子電解質部品、膜電極複合体、および高分子電解質型燃料電池
JP2005353581A (ja) 電解質膜および膜電極複合体ならびに高分子電解質型燃料電池
JP5261877B2 (ja) 高分子電解質成型体の製造方法
JP2005350658A (ja) 高分子電解質材、ならびにそれを用いた高分子電解質膜、膜電極複合体および高分子電解質型燃料電池
JP5309822B2 (ja) 芳香族スルホン酸誘導体、スルホン化ポリマーならびにそれを用いた高分子電解質材料および高分子電解質型燃料電池
Kyeong et al. Development of poly (arylene ether sulfone)-based blend membranes containing aliphatic moieties for the low-temperature decal transfer method
JP5309803B2 (ja) 水素燃料電池用膜電極複合体
JP2009217950A (ja) イオン伝導性高分子電解質膜およびその製造方法
JP2021051994A (ja) 複合高分子電解質膜、触媒層付電解質膜、膜電極複合体および固体高分子形燃料電池
JP5504552B2 (ja) 非対称型電解質膜ならびにそれを用いた膜電極複合体および高分子電解質型燃料電池
JP4843910B2 (ja) 高分子電解質材、ならびにそれを用いた高分子電解質膜、膜電極複合体および高分子電解質型燃料電池
TWI342637B (en) Polymer electrolyte fuel cell, polymer electrolyte film using it, film electrolyte composite and polymer electrolyte fuel cell
JP2007149651A (ja) 電解質膜およびその製法ならびにその用途
WO2021054252A1 (ja) 複合高分子電解質膜、触媒層付電解質膜、膜電極複合体および固体高分子形燃料電池
JP2007087853A (ja) 非対称型電解質膜ならびにそれを用いた膜電極複合体および高分子電解質型燃料電池

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006532693

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2576887

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2005781471

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2005278524

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 11661423

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1020077005094

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2005278524

Country of ref document: AU

Date of ref document: 20050830

Kind code of ref document: A

WWP Wipo information: published in national office

Ref document number: 2005278524

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 200580037213.0

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 2005781471

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 11661423

Country of ref document: US