TWI384024B - 質子交換膜與其形成方法 - Google Patents

質子交換膜與其形成方法 Download PDF

Info

Publication number
TWI384024B
TWI384024B TW097145902A TW97145902A TWI384024B TW I384024 B TWI384024 B TW I384024B TW 097145902 A TW097145902 A TW 097145902A TW 97145902 A TW97145902 A TW 97145902A TW I384024 B TWI384024 B TW I384024B
Authority
TW
Taiwan
Prior art keywords
exchange membrane
proton exchange
super
forming
bismaleimide
Prior art date
Application number
TW097145902A
Other languages
English (en)
Other versions
TW201020288A (en
Inventor
Chung Liang Chang
Jing Pin Pan
Tsung Hsiung Wang
Yueh Wei Lin
Ya Tin Hsu
Original Assignee
Ind Tech Res Inst
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ind Tech Res Inst filed Critical Ind Tech Res Inst
Priority to TW097145902A priority Critical patent/TWI384024B/zh
Priority to US12/418,534 priority patent/US8008360B2/en
Priority to JP2009155885A priority patent/JP5028451B2/ja
Publication of TW201020288A publication Critical patent/TW201020288A/zh
Application granted granted Critical
Publication of TWI384024B publication Critical patent/TWI384024B/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G83/00Macromolecular compounds not provided for in groups C08G2/00 - C08G81/00
    • C08G83/002Dendritic macromolecules
    • C08G83/005Hyperbranched macromolecules
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • C08J5/2206Films, membranes or diaphragms based on organic and/or inorganic macromolecular compounds
    • C08J5/2275Heterogeneous membranes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1023Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having only carbon, e.g. polyarylenes, polystyrenes or polybutadiene-styrenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1039Polymeric electrolyte materials halogenated, e.g. sulfonated polyvinylidene fluorides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1041Polymer electrolyte composites, mixtures or blends
    • H01M8/1044Mixtures of polymers, of which at least one is ionically conductive
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1069Polymeric electrolyte materials characterised by the manufacturing processes
    • H01M8/1081Polymeric electrolyte materials characterised by the manufacturing processes starting from solutions, dispersions or slurries exclusively of polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2327/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
    • C08J2327/02Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
    • C08J2327/12Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08J2327/18Homopolymers or copolymers of tetrafluoroethylene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2400/00Characterised by the use of unspecified polymers
    • C08J2400/20Polymers characterized by their physical structure
    • C08J2400/202Dendritic macromolecules, e.g. dendrimers or hyperbranched polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1069Polymeric electrolyte materials characterised by the manufacturing processes
    • H01M8/1072Polymeric electrolyte materials characterised by the manufacturing processes by chemical reactions, e.g. insitu polymerisation or insitu crosslinking
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Electrochemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Composite Materials (AREA)
  • Dispersion Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Fuel Cell (AREA)
  • Conductive Materials (AREA)

Description

質子交換膜與其形成方法
本發明係關於一種質子交換膜,更特別關於改良質子交換膜尺寸安定性的組成及方法。
Nafion(sulfonated tetrafluorethylene copolymer,磺酸化四氟乙基共聚物)係1960年代由Dupont公司發展之導電高分子。由於其離子性質,此類化合物又稱作離子聚合物(ionomer)。Nafion獨特的離子性質係來自於接枝於聚四氟乙基主幹末端之磺酸基,由於其優異的熱穩定性及機械性質,Nafion在質子交換膜燃料電池(PEMFC)的領域中占有一席之地。
Nafion之磺酸基上的質子可由某一磺酸基轉移至另一磺酸基以完成質子交換。相反的,電子和陰離子並無法進行上述的轉移。
雖然Nafion具有許多優點,但在加熱後的尺寸變化過大。為了進一步改善Nafion成膜後的機械性質,美國專利第4983690號揭露了一種Nafion與雙馬來醯亞胺的混掺物。不過經實驗証明,上述之混掺物並無法有效解決薄膜加熱後尺寸變化過大的問題。
綜上所述,目前仍需新的方法改善Nafion成膜後的物理性質。
本發明提供一種質子交換膜,包括85至90重量份之磺酸化四氟乙基共聚物;以及15至10重量份之超分歧高分子,係由雙馬來醯亞胺與巴比土酸聚合而成;其中磺酸化四氟乙基共聚物與超分歧高分子相互穿透。
本發明亦提供一種質子交換膜之形成方法,包括取雙馬來醯亞胺與巴比土酸共聚形成超分歧高分子;將磺酸化四氟乙基共聚物水溶液之溶劑由水置換成二甲基乙胺;將10至15重量份之超分歧高分子加入90至85重量份之磺酸化四氟乙基共聚物溶液後,靜置並加熱至50℃,使超分歧高分子與磺酸化四氟乙基共聚物互相穿透;將加熱後之溶液塗佈至基板上,烘烤後進行前處理步驟去除二甲基乙胺即形成質子交換膜。
本發明提供一種質子交換膜的形成方法。首先,取雙馬來醯亞胺與巴比土酸共聚形成超分歧高分子。雙馬來醯亞胺之結構如式1: 其中R1 包括:
巴比土酸之結構如式2所示,其中R2 與R3 各自獨立,係氫原子、甲基、苯基、異丙基、異丁基、或異戊基。
在本發明一實施例中,雙馬來醯亞胺與巴比土酸之莫耳比約介於10:1至1:1之間。取適當比例之雙馬來醯亞胺與巴比土酸加入γ-丁基內酯後,加熱至130℃並反應4小時以進行共聚反應形成超分歧高分子。
在本發明一實施例中,超分歧高分子的單體除了上述的雙馬來醯亞胺與巴比土酸外,亦可含有單馬來醯亞胺及/或多馬來醯亞胺。單馬來醯亞胺可為N-苯基馬來醯亞胺、N-環己烷基馬來醯亞胺、或其他合適之單馬來醯亞胺。多馬來醯亞胺可為三(4-苯基馬來醯亞胺基)胺、聚苯甲基馬來醯亞胺、或其他合適之多馬來醯亞胺。在本發明一實施例中,雙馬來醯亞胺:(多馬來醯亞胺及/或單馬來醯亞胺)之莫 耳比約介於99:1至1:1。
接著將市售之磺酸化四氟乙基共聚物(以下簡稱Nafion)水溶液之溶劑由水置換成二甲基乙胺。置換方式為使用高沸點溶劑再加熱過程取代揮發的水分子。在本發明一實施例中,Nafion係購自DuPont之NAF DE2020CS。
之後將超分歧高分子加入Nafion溶液後,靜置並加熱至50℃,使超分歧高分子與Nafion互相穿透,形成所謂的互穿型高分子(interpenetrating polymer)。超分歧高分子與Nafion之重量比介於10-15:90-85。超分歧高分子與Nafion之間的互穿程度可由透明度判別。當互穿程度越高,透明度越高。反之若互穿程度越低其透明度越低,甚至為肉眼可辨之不透明。值得注意的是,上述靜置加熱的步驟係完全的靜置,額外步驟如超音波震盪或攪拌等常見混合手段並不利於形成互穿型高分子。若互穿程度低,之後形成的質子交換膜將具有較差的尺寸安定性。
最後將加熱後之互穿型高分子溶液塗佈至基板上,以130℃烘烤後,進行前處理步驟。前處理係將質子交換膜取下,依序以H2 O、3%H2 O2 、H2 O、0.5M H2 SO4 及H2 O,於80℃下浸泡各一小時。以去除殘留的二甲基乙胺,即形成質子交換膜。由實驗可知,未進行前處理步驟之質子交換膜因殘留溶劑,其導電性及升溫後之尺寸安定性遠低於前處理後之質子交換膜。可以理解的是,上述之離子交換膜適用於所謂的質子交換膜燃料電池。
為讓本發明之上述和其他目的、特徵、和優點能更明 顯易懂,以實施例說明如下。
【實施例】
比較例1-1
取30g之Nafion水溶液(購自DuPont之DE2020CS),添加18g之DMAc溶液,於60℃下隔水加熱,以DMAc置換Nafion水溶液中之水及醇類。
將上述Nafion之DMAc溶液直接塗佈於基板上,烘乾後進行前處理以去除殘餘溶劑,形成10cm*10cm*0.003cm之質子交換膜。上述質子交換膜升溫後之尺寸變化如第1圖之曲線1及第2圖之曲線1所示。上述質子交換膜之導電性約為9*10-2 S/cm。
比較例1-2
與比較例1-1類似,差別在於未進行前處理去除殘餘溶劑。此比較例之質子交換膜升溫後之尺寸變化如第2圖之曲線1’所示。由第2圖的比較可知,前處理會大幅降低Nafion薄膜的尺寸安定性。
比較例2
取30g之Nafion水溶液(購自DuPont之DE2020CS),添加18g之DMAc溶液,於60℃下隔水加熱,以DMAc置換Nafion水溶液中之水及醇類。
接著取0.2439g之BMI(雙馬來醯亞胺)溶於0.9756之γ-丁基內酯,加熱至完全溶解後,加入8.7805g Nafion之二乙基甲胺溶液中,靜置。將上述混合物直接塗佈於基板上,烘乾形成10cm*10cm*0.003cm之質子交換膜。上述質 子交換膜升溫後之尺寸變化如第1圖之曲線2所示。
實施例1-1
取16.967g之BMI(式3之雙馬來醯亞胺)及3.3033g之巴比土酸加入100g之γ-丁基內酯後加熱至130℃並反應4.5小時,以形成超分歧高分子。
接著取30g之Nafion水溶液(購自DuPont之DE2020CS),添加18g之DMAc溶液,於60℃下隔水加熱,以DMAc置換Nafion水溶液中之水及醇類。
將上述超分歧高分子溶液加入Nafion之二甲基乙胺溶液後,靜置加熱至50℃直到溶液由不透明變透明,形成互穿型高分子溶液。
將互穿型高分子溶液塗佈於基板後,烘烤至130℃以去除大部份的溶劑。接著將質子交換膜取下,依序以H2 O、3%H2 O2 、H2 O、0.5M H2 SO4 、H2 O,於80℃下各處理一小時。去除殘餘溶劑,即形成10cm*10cm*0.003cm之質子交換膜。上述質子交換膜升溫後之尺寸變化如第1圖之曲線3及第2圖之曲線3。上述質子交換膜之導電性約為8*10-2 S/cm,近似於純Nafion薄膜的導電性。
由第1圖之曲線1-3可知,實施例1-1的質子交換膜比比較例1-1與比較例2的質子交換膜具有更佳之尺寸安定性。此外,由雙馬醯亞胺與巴比土酸共聚形成的超分歧高 分子,比雙馬來醯亞胺更能改善Nafion的機械性質。
實施例1-2
與實施例1-1類似,差別在於沒有前處理去除殘餘溶劑。上述質子交換膜升溫後之尺寸變化如第2圖之曲線3’所示。上述未前處理之質子交換膜的導電性約為5*10-4 S/cm。由第2圖的曲線3及3’之比較可知,雖然前處理也會降低此實施例之尺寸安定度,但降低幅度遠小於前處理對純Nafion薄膜造成的影響(曲線1’至1)。此外,前處理雖然會降低尺寸安定性,但可有效提升質子交換膜的導電性。
實施例1-3
與實施例1-1類似,差別在於將上述超分歧高分子溶液加入Nafion之二甲基乙胺溶液後,便直接將不透明的混合物(非互穿型高分子)塗佈於基板上。經前處理的質子交換膜升溫後之尺寸變化如第2圖之曲線4所示,未經前處理的質子交換膜升溫後之尺寸變化如第2圖之曲線4’所示。與靜置加熱形成互穿型高分子的實施例1-1及1-2相較,不透明的高分子混合物在形成質子交換膜後具有較差的尺寸安定性。
雖然本發明已以數個實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明之精神和範圍內,當可作任意之更動與潤飾,因此本發明之保護範圍當視後附之申請專利範圍所界定者為準。
第1圖係本發明比較例與實施例中質子交換膜的尺寸安定性對溫度曲線;以及第2圖係本發明比較例與實施例中質子交換膜在前處理前後的尺寸安定性對溫度曲線。

Claims (15)

  1. 一種質子交換膜,包括:85至90重量份之磺酸化四氟乙基共聚物;以及15至10重量份之超分歧高分子,係由雙馬來醯亞胺與巴比土酸聚合而成;其中該磺酸化四氟乙基共聚物與該超分歧高分子相互穿透。
  2. 如申請專利範圍第1項所述之質子交換膜,其中該雙馬來醯亞胺之結構如下式: 其中R1 之結構如下式:
  3. 如申請專利範圍第1項所述質子交換膜,其中該雙馬來醯亞胺與該巴比土酸之莫耳比約介於10:1至1:1之間。
  4. 如申請專利範圍第1項所述之質子交換膜,其中該 超分歧高分子之單體更包括單馬來醯亞胺及/或多馬來醯亞胺。
  5. 如申請專利範圍第4項所述之質子交換膜,其中該單馬來醯亞胺包括N-苯基馬來醯亞胺或N-環己烷基馬來醯亞胺。
  6. 如申請專利範圍第4項所述之質子交換膜,其中該多馬來醯亞胺包括三(4-苯基馬來醯亞胺基)胺或聚苯甲基馬來醯亞胺。
  7. 如申請專利範圍第4項所述之質子交換膜,其中該雙馬來醯亞胺:(該多馬來醯亞胺及/或該單馬來醯亞胺)之莫耳比約介於99:1至1:1。
  8. 一種質子交換膜燃料電池,包括如申請專利範圍第1項所述之質子交換膜。
  9. 一種質子交換膜之形成方法,包括:取雙馬來醯亞胺與巴比土酸共聚形成一超分歧高分子;將磺酸化四氟乙基共聚物水溶液之溶劑由水置換成二甲基乙胺;將10至15重量份之該超分歧高分子加入90至85重量份之該磺酸化四氟乙基共聚物溶液後,靜置並加熱至50℃,使該超分歧高分子與該磺酸化四氟乙基共聚物互相穿透;將加熱後之溶液塗佈至一基板上,烘烤後進行前處理步驟去除二甲基乙胺即形成一質子交換膜。
  10. 如申請專利範圍第9項所述之質子交換膜之形成方法,其中該雙馬來醯亞胺之結構如下式: 其中R1 之結構如下式:
  11. 如申請專利範圍第9項所述之質子交換膜之形成方法,其中該雙馬來醯亞胺與該巴比土酸之莫耳比約介於10:1至1:1之間。
  12. 如申請專利範圍第9項所述之質子交換膜之形成方法,其中該超分歧高分子之單體更包括單馬來醯亞胺及/或多馬來醯亞胺。
  13. 如申請專利範圍第12項所述之質子交換膜之形成方法,其中該單馬來醯亞胺係包括N-苯基馬來醯亞胺或 N-環己烷基馬來醯亞胺。
  14. 如申請專利範圍第12項所述之質子交換膜之形成方法,其中該多馬來醯亞胺包括三(4-苯基馬來醯亞胺基)胺或聚苯甲基馬來醯亞胺。
  15. 如申請專利範圍第12項所述之質子交換膜之形成方法,其中該雙馬來醯亞胺:(該多馬來醯亞胺及/或該單馬來醯亞胺)之莫耳比約介於99:1至1:1。
TW097145902A 2008-11-27 2008-11-27 質子交換膜與其形成方法 TWI384024B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
TW097145902A TWI384024B (zh) 2008-11-27 2008-11-27 質子交換膜與其形成方法
US12/418,534 US8008360B2 (en) 2008-11-27 2009-04-03 Proton exchange membrane and method for manufacturing the same
JP2009155885A JP5028451B2 (ja) 2008-11-27 2009-06-30 プロトン交換膜およびその形成方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW097145902A TWI384024B (zh) 2008-11-27 2008-11-27 質子交換膜與其形成方法

Publications (2)

Publication Number Publication Date
TW201020288A TW201020288A (en) 2010-06-01
TWI384024B true TWI384024B (zh) 2013-02-01

Family

ID=42196911

Family Applications (1)

Application Number Title Priority Date Filing Date
TW097145902A TWI384024B (zh) 2008-11-27 2008-11-27 質子交換膜與其形成方法

Country Status (3)

Country Link
US (1) US8008360B2 (zh)
JP (1) JP5028451B2 (zh)
TW (1) TWI384024B (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI443133B (zh) * 2008-12-30 2014-07-01 Ind Tech Res Inst 互穿網狀質子交換膜與其形成方法及質子交換膜燃料電池
JP5236623B2 (ja) * 2008-12-30 2013-07-17 財團法人工業技術研究院 相互侵入網目プロトン交換膜およびその製造方法、ならびにプロトン交換膜燃料電池
TWI418580B (zh) * 2008-12-31 2013-12-11 Ind Tech Res Inst 具高質子傳導率之質子交換膜組成物
US8575235B2 (en) 2009-06-12 2013-11-05 Industrial Technology Research Institute Removable hydrophobic composition, removable hydrophobic coating layer and fabrication method thereof
TWI437027B (zh) 2011-12-29 2014-05-11 Ind Tech Res Inst 一種含有軟鏈段之馬來醯亞胺聚合物及其製備方法
EP2796488A4 (en) 2012-08-01 2014-11-26 Nat Inst For Materials Science IN HIGH TIMES PROTON-CONDUCTIVE POLYMERIC FILM, MANUFACTURING METHOD AND HUMIDITY SENSOR
TWI608646B (zh) * 2016-01-22 2017-12-11 國立臺灣科技大學 寡聚物添加劑以及鋰電池
CN108752614B (zh) * 2018-06-20 2020-08-04 四川大学 一种含有相容剂的共混质子交换膜及其制备方法
CN114122470B (zh) * 2021-11-24 2023-12-29 中汽创智科技有限公司 一种质子交换膜及其制备方法和应用
CN115473001B (zh) * 2022-10-26 2023-08-29 江苏中兴派能电池有限公司 电池隔膜及其制备方法和电池

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200827026A (en) * 2006-12-29 2008-07-01 Ind Tech Res Inst An exchange membrane containing modified maleimide oligomers

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4983690A (en) 1988-02-22 1991-01-08 Lockheed Corporation Conductive polymer-maleimide blends and method of producing same
JP2584895B2 (ja) * 1990-11-15 1997-02-26 ツアイトワンフアーレンゴンイェジシュウイェンジオウユエン ポリイミド接着剤の組成物
JP3342726B2 (ja) * 1993-01-29 2002-11-11 旭硝子株式会社 固体高分子電解質型の燃料電池及びその製造方法
US20080075999A1 (en) * 2004-09-03 2008-03-27 Toray Industries, Inc. Polyelectrolyte Material, Polyelectrolyte Component, Membrane Electrode Composite Body, and Polyelectrolyte Type Fuel Cell
TWI422089B (zh) * 2006-12-29 2014-01-01 Ind Tech Res Inst 膠態高分子電解液前驅組合物及包含其之二次電池
TWI361822B (en) * 2006-12-29 2012-04-11 Ind Tech Res Inst Composition comprising bismaleimide oligomer and preparation method thereof
CN101219349B (zh) 2006-12-30 2011-07-20 财团法人工业技术研究院 含有改性马来酰亚胺低聚物的交换膜
TWI402278B (zh) * 2008-07-23 2013-07-21 Ind Tech Res Inst 高分岐聚合物之形成方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200827026A (en) * 2006-12-29 2008-07-01 Ind Tech Res Inst An exchange membrane containing modified maleimide oligomers

Also Published As

Publication number Publication date
TW201020288A (en) 2010-06-01
JP5028451B2 (ja) 2012-09-19
US8008360B2 (en) 2011-08-30
JP2010126723A (ja) 2010-06-10
US20100130625A1 (en) 2010-05-27

Similar Documents

Publication Publication Date Title
TWI384024B (zh) 質子交換膜與其形成方法
US8101669B2 (en) Exchange membrane containing modified maleimide oligomers
Sekhon et al. Small-angle X-ray scattering study of water free fuel cell membranes containing ionic liquids
CN108110290B (zh) 燃料电池用交联咪唑型聚醚醚酮阴离子交换膜及其制备方法
CN110041552B (zh) 基于磺化芳醚型聚苯并咪唑与磺化聚倍半硅氧烷的复合型高温质子交换膜及其制备方法
CN104710639B (zh) 一种基于全氟磺酰胺阴离子交换膜的制备方法
JP2008311226A (ja) 複合高分子電解質膜、膜−電極接合体および燃料電池
CN104371128B (zh) 高强度机械性能碱性阴离子交换复合膜、制备及应用
JP4467227B2 (ja) 高耐久性固体高分子電解質(複合)膜
CN104927079A (zh) 一种碱性阴离子交换膜的制备方法
JP2009538966A (ja) フルオロポリマー分散体および膜
Sinirlioglu et al. Investigation of proton conductivity of anhydrous proton exchange membranes prepared via grafting vinyltriazole onto alkaline‐treated PVDF
CN101219349B (zh) 含有改性马来酰亚胺低聚物的交换膜
TWI443133B (zh) 互穿網狀質子交換膜與其形成方法及質子交換膜燃料電池
CN101931086B (zh) 互穿网状质子交换膜与其形成方法及质子交换膜燃料电池
Sinirlioglu et al. Novel membranes based on poly (5‐(methacrylamido) tetrazole) and sulfonated polysulfone for proton exchange membrane fuel cells
Abdi et al. Synthesis of ionic polybenzimidazoles with broad ion exchange capacity range for anion exchange membrane fuel cell application
Shen et al. Preparation and characterization of sulfonated polyetherimide/polyetherimide blend membranes
TWI404751B (zh) 改質超分歧高分子、和應用此改質超分歧高分子所製成之質子交換膜及其製法
CN111342096B (zh) 燃料电池用吡啶化交联型阴离子交换膜及其制备方法
CN111342098B (zh) 一种磷酸掺杂的聚苯并咪唑交联膜的制备方法
JP5038226B2 (ja) 高分子電解質膜、膜−電極接合体および燃料電池
JP4752336B2 (ja) 熱安定性改良プロトン伝導膜および該伝導膜形成用組成物
CN101747572B (zh) 质子交换膜与其形成方法
CN107151339A (zh) 一种在吡啶功能化聚乙烯醇中引入双核吗啉离子液体构筑复合阴离子膜的方法

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees