WO2005112381A1 - 無線通信装置及び復調方法及び周波数偏差補正回路 - Google Patents

無線通信装置及び復調方法及び周波数偏差補正回路 Download PDF

Info

Publication number
WO2005112381A1
WO2005112381A1 PCT/JP2004/006638 JP2004006638W WO2005112381A1 WO 2005112381 A1 WO2005112381 A1 WO 2005112381A1 JP 2004006638 W JP2004006638 W JP 2004006638W WO 2005112381 A1 WO2005112381 A1 WO 2005112381A1
Authority
WO
WIPO (PCT)
Prior art keywords
state
demodulation
time constant
unit
signal
Prior art date
Application number
PCT/JP2004/006638
Other languages
English (en)
French (fr)
Inventor
Taisei Suemitsu
Original Assignee
Mitsubishi Denki Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Denki Kabushiki Kaisha filed Critical Mitsubishi Denki Kabushiki Kaisha
Priority to US11/578,150 priority Critical patent/US8018914B2/en
Priority to CN2004800430413A priority patent/CN1961554B/zh
Priority to PCT/JP2004/006638 priority patent/WO2005112381A1/ja
Priority to JP2006513477A priority patent/JP4286287B2/ja
Publication of WO2005112381A1 publication Critical patent/WO2005112381A1/ja

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/0014Carrier regulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/18Phase-modulated carrier systems, i.e. using phase-shift keying
    • H04L27/22Demodulator circuits; Receiver circuits
    • H04L27/227Demodulator circuits; Receiver circuits using coherent demodulation
    • H04L27/2271Demodulator circuits; Receiver circuits using coherent demodulation wherein the carrier recovery circuit uses only the demodulated signals

Definitions

  • Wireless communication device demodulation method, and frequency deviation correction circuit
  • the present invention relates to a wireless communication device and a demodulation method thereof.
  • TDMA time division multiple access
  • Time Division Multiple Access Related to a receiving device of a mobile communication base station used in a communication system using a TDD (Time Division Duplex) system.
  • the time constant used in each loop filter is such that the output result from the loop filter has an optimum convergence value. Such a value is selected.
  • the receiving unit of the wireless communication if the received frame (slot) is in an asynchronous state, it is desirable to perform the pull-in quickly, and therefore, it is better to reduce the value of the time constant when the received frame is in the synchronized state. Since it is necessary to increase the accuracy of the convergence value of the pull-in that does not require a quick pull-in, the value of the time constant should be large in order to lengthen the averaging time.
  • the required optimal time constant differs between the synchronous state and the asynchronous state of the received frame (slot). In the reception processing of wireless communication in which the state transitions to the synchronous state, the output result from the loop filter does not become the optimal convergence value.
  • the demodulator has a loop filter, and has two states, a synchronous state and an asynchronous state. Time constants with different values are prepared for the status, and the time constant is switched according to the status.
  • the above method does not relate to a receiving device that receives a phase-modulated burst signal used for wireless communication. Further, it does not have an object of improving reception sensitivity of wireless communication for demodulating a phase-modulated burst signal by a synchronous detection method or a quasi-synchronous detection method.
  • the method of providing a filter circuit for each time constant requires a number of filters using the time constant to be prepared, and the circuit scale increases.
  • a frequency deviation of Correction In a TDMA-TDD system for mobile communication, when the demodulation method of a demodulation unit of a receiving device that receives a burst signal subjected to phase modulation is a synchronous detection method or a quasi-synchronous detection method, a frequency deviation of Correction, carrier wave reproduction, and bit clock reproduction must be performed with high accuracy.
  • the frequency deviation correction function block, carrier wave reproduction function block, and bit clock reproduction function block perform processing such as averaging and sequential calculation using a loop filter, and the time constant multiplied by the loop filter is one. Sufficient performance cannot be achieved.
  • a demodulation unit that has a loop filter circuit and performs synchronous detection (or quasi-synchronous detection) in the TDMA-TDD system
  • the time constant when the burst signal changes from an asynchronous state to a synchronous state, the time constant If the magnitude of the time constant remains unchanged, or if the magnitude of the time constant is rapidly changed from a small value in the non-synchronous state to a large value in the synchronized state, jitter after convergence cannot be suppressed small. And you can't pull in quickly.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 7-336325
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2003-209485
  • An object of the present invention is to suppress jitter due to noise in a demodulation process of synchronously detecting (or quasi-synchronous detection) a phase-modulated burst signal when a TDMA-TDD system is adopted, And it is to be able to pull in quickly.
  • a wireless communication apparatus includes: a demodulation unit that receives a phase-modulated burst signal and demodulates the burst signal using one of a synchronous detection method and a quasi-synchronous detection method;
  • a demodulation control unit that generates a control signal that controls demodulation of the burst signal of the demodulation unit based on a reception state of the burst signal of the demodulation unit
  • a time constant switching unit for switching a time constant of the filter by a control signal.
  • the filter is a loop filter used for a frequency deviation correction unit that corrects a frequency deviation of a burst signal.
  • the filter is characterized in that it is a loop filter used in a carrier recovery unit that recovers a carrier of a burst signal.
  • the filter is characterized in that it is a loop filter used in a bit timing reproducing section for reproducing the bit timing of a burst signal.
  • the filter is a loop filter used in a reception level conversion unit that converts a reception level of a burst signal.
  • the demodulation section demodulates a burst signal digitally modulated by a time division multiplexing method.
  • the demodulation control unit may be configured so that the demodulation unit receives a burst signal in one of three states: a synchronous state, an asynchronous state, and an intermediate state located between the synchronous state and the asynchronous state. , And outputs a control signal indicating the detected reception state.
  • the switching unit outputs a time constant of a large value used for a synchronous state, a time constant of an intermediate value used for an intermediate state, and an asynchronous state. It has a small time constant used for Switching to a time constant corresponding to the communication state.
  • the demodulation control unit is characterized in that the reception state of a predetermined number of frames or slots when the reception state of the burst signal in the demodulation unit changes from the asynchronous state to the synchronous state is an intermediate state.
  • the demodulation control section may set the reception state of a predetermined number of frames or slots when the reception state of the burst signal in the demodulation section changes from the synchronous state to the asynchronous state to an intermediate state. .
  • the demodulation control unit detects a reception state of the burst signal in the demodulation unit based on a signal-to-noise ratio, and outputs a control signal indicating the detected reception state.
  • the switching unit switches to a time constant corresponding to a reception state indicated by the control signal.
  • a demodulation method is a demodulation method for a wireless communication device comprising: a demodulation unit that receives a burst signal and demodulates the signal by a synchronous detection method using a filter; and a demodulation control unit that controls the demodulation unit.
  • the demodulation unit receives the burst signal digitally modulated by the time division multiplexing method, and the demodulation control unit generates a control signal for controlling the time constant of the filter of the demodulation unit based on the reception status of the burst signal of the demodulation unit.
  • the demodulator switches the time constant of the filter by the control signal, and filters the signal based on the burst signal.
  • the demodulation method includes:
  • the demodulation control unit receives the burst signal in the demodulation unit in one of three states: a synchronous state, an asynchronous state, and an intermediate state located between the synchronous state and the asynchronous state. And outputs a control signal indicating the detected reception state,
  • the demodulation unit corresponds to the reception state indicated by the control signal among the large value time constant used for the synchronous state, the intermediate value time constant used for the intermediate state, and the small value time constant used for the asynchronous state It is characterized by switching to a constant.
  • the demodulation method includes: When the receiving state of the burst signal in the demodulation unit changes from the asynchronous state to the synchronous state, it is set to the intermediate state,
  • the state is set to an intermediate state.
  • a frequency deviation correction circuit includes: a multiplier that inputs and multiplies phase information and amplitude information of a burst signal to generate a complex signal;
  • a delay detection circuit that delay-detects the complex signal generated by the multiplier to obtain phase difference information
  • an angle information extraction circuit that extracts the phase difference information force angle information obtained by the delay detection circuit
  • a limiter circuit for limiting the excess deviation when the deviation of the angle from the modulation component removal circuit exceeds the allowable deviation
  • a switching switch for selecting one time constant from a plurality of existing time constants, a multiplier for multiplying the time constant selected by the switching switch by the angle deviation output from the limiter circuit,
  • a first integrator for adding the deviation amount of the angle multiplied by the time constant by the multiplier and outputting as an angle amount of the frequency deviation
  • a second integrator that restores the phase difference due to the differential detection circuit by adding the angle amount of the frequency deviation obtained by the first integrator
  • An angle information complex information conversion circuit for converting the angle information obtained by the second integrator into a complex signal
  • a TDMA-TDD system such as a PHS (registered trademark, handy 'horn' system) will be described as an example.
  • a demodulation unit of a synchronous detection system (or a quasi-synchronous detection system) that requires accurate frequency deviation correction, carrier wave reproduction, and bit clock reproduction will be described.
  • a case where a phase-modulated burst signal is received will be described.
  • the time constant of the loop filter present in the frequency deviation correction unit of the demodulation unit and the carrier recovery unit is not fixed but is not fixed (pull-in (asynchronous) and stationary (synchronous)).
  • pulse-in asynchronous
  • stationary synchronous
  • three or more stages such as two stages during asynchronous operation and one stage at synchronous operation, or three stages at one asynchronous operation and two synchronous operations will be described.
  • pull-in can be accelerated, jitter after convergence can be kept small, and frequency deviation correction and the like necessary for synchronous detection (or quasi-synchronous detection) operation can be performed without increasing the circuit scale. Higher precision can be achieved.
  • the pull-in speed is reduced and the jitter is reduced. It is possible to suppress.
  • synchronous detection or quasi-synchronous detection
  • synchronous detection of a burst signal that has been phase-modulated stably can be performed, and the performance of synchronous detection (or quasi-synchronous detection) can be maximized.
  • the demodulation unit according to the embodiment described below has a plurality of loop filter time constants.
  • the time constant refers to, for example, a product of a resistance R and a capacitance C in a primary filter (RC filter). If the time constant is small, the effect as a filter is lost. Also, if the time constant is large, the input response will be poor. Also, by setting the time constant of this filter appropriately in accordance with the characteristics of the signal and its noise level, it is possible to suppress the influence of input noise.
  • the time constant having an intermediate value is a time constant used for the loop filter in the initial stage of the synchronization state.
  • the time constant having an intermediate value is a time constant having an intermediate value between the small value for the asynchronous state and the large value for the synchronous state (intermediate value of the time constant). . Since the time constant having an intermediate value is used for the loop filter in the initial stage of the synchronization state, the jitter due to the influence of noise can be suppressed small and the signal can be quickly drawn. Jitter refers to temporal noise included in a digital waveform. As jitter increases, bit synchronization is lost and full-bit digital noise is generated.
  • (Slot) uses a time constant with an intermediate value, and after processing several frames (slots) using a time constant with an intermediate value, a large value for the synchronization state
  • the configuration is such that it automatically switches to a time constant with, depending on the time.
  • a multiple access (multiple access) technique as a technique for efficiently multiplexing and communicating radio signals transmitted from a plurality of mobile terminals at multiple points.
  • the following three schemes are used for multiple access technology used in an uplink channel from a mobile terminal to a mobile communication base station.
  • FDMA Frequency Division Multiple Access
  • CDMA Code Division Multiple Access
  • Each user assigned spreading code spreading (PN P S eudo Noise, pseudo-noise) by And multiplex and transmit.
  • the wireless communication apparatus employs a time division multiple access method.
  • the wireless communication device employs a time division duplex system.
  • the modulation / demodulation scheme includes amplitude modulation, frequency modulation, and phase modulation.
  • the demodulation unit of the wireless communication apparatus according to the present embodiment demodulates a phase-modulated signal.
  • Phase modulation refers to transferring bit data by, for example, changing the phase of a carrier wave and assigning 0 or 1 to different phases.
  • the demodulation unit of the wireless communication apparatus according to the present embodiment demodulates a signal of a digital phase modulation system, that is, a signal of a PSK (Phase Shift Keying) modulation system.
  • PSK Phase Shift Keying
  • demodulation is also referred to as detection, and refers to an operation of extracting a signal wave from a modulated wave.
  • the demodulation method includes synchronous detection, quasi-synchronous detection, delay detection, and frequency detection.
  • Synchronized detection is a detection method in which the phase of a modulated signal is compared with the phase of a standard signal to extract a modulated signal.
  • the quasi-synchronous detection is a detection method for demodulating a quadrature modulated wave by using a local signal of a fixed frequency, performing a phase rotation process by reproducing a digital carrier, and extracting a modulated signal.
  • the demodulation unit of the wireless communication apparatus demodulates by synchronous detection or quasi-synchronous detection.
  • Burst transmission is a transmission method in which data signals are transmitted at intermittent time intervals.
  • a burst signal is a data signal transmitted in bursts. No.
  • the demodulation unit of the wireless communication apparatus receives and demodulates a burst signal by burst transmission.
  • the wireless communication apparatus and the demodulation unit of this embodiment receive a PSK-modulated burst signal of the TDMA-TDD scheme and demodulate it by a synchronous detection scheme or a quasi-synchronous detection scheme. is there. For this reason, it is required to accurately perform frequency deviation correction, carrier wave reproduction, and bit clock reproduction.
  • FIG. 1 is a conceptual configuration diagram of a demodulation unit using the present embodiment.
  • FIG. 2 is a diagram showing a burst signal.
  • antenna element 11 is an antenna element that receives a radio wave signal of a burst signal of the time division multiplex system. As shown in Fig. 2, burst signals are received at intermittent time intervals in frame units. Each frame is provided with a unique word (UW) as a reference signal.
  • the unique word (UW) has a known data pattern and its absolute phase can be detected. By detecting this data pattern, it is possible to determine whether the state is synchronous or asynchronous.
  • the A / D (analog / digital) converter 12 is a converter that converts an analog signal into a digital signal.
  • the demodulation unit 13 is a demodulation unit that demodulates a time-division multiplexed burst signal by digital baseband signal processing.
  • the loop filter 14 is a filter that performs averaging in the demodulation unit 13. As will be described later with reference to FIG. 3, the loop filter 14 is provided for each of the frequency deviation correction circuit, the bit timing recovery circuit, the reception level conversion circuit, and the carrier recovery circuit that constitute the demodulation unit 13.
  • the switching switch 15 is a switch that receives a control signal indicating a synchronous state or an asynchronous state from the demodulation control unit 16 and selects an optimal time constant. For example, for the time constant, a large value and an intermediate value are prepared in the synchronous state, and a small value is prepared in the asynchronous state. For large-scale integrated circuits, the value of the time constant is stored in a table such as a ROM (read 'only' memory). It may be.
  • the switching switch 15 is an example of a time constant switching unit.
  • the time constant switching unit includes hardware, software, firmware, and the like, such as a switch for physically switching the resistance R and a unit for reading and setting a time constant stored in a ROM table of a large-scale integrated circuit. It can be realized by a combination of these.
  • Demodulation control section 16 determines whether the reception state of the burst signal is synchronous or asynchronous based on the unique word (UW) of the demodulated data, and sends a control signal to the demodulation section. It is.
  • Each unit of the demodulation unit 13 and each unit of the demodulation control unit 16 can be realized by hardware, software, firmware, or a combination thereof.
  • each function can be realized by causing a CPU to execute a program.
  • the program is stored in a memory or a recording medium (not shown), and is read and executed by the CPU.
  • each unit can be realized by an analog circuit or a digital circuit.
  • an analog signal received by antenna element 11 is an A / D converter
  • the input digital signal is subjected to demodulation processing.
  • the value of the time constant used for the loop filter 14 existing in the demodulation unit is determined by the control signal from the demodulation control unit 16.
  • Switch switch 15 selects one value from at least two or more values.
  • control may be performed such that the number of frames (slots) of received data is counted and the time constant is switched when the number of frames (slots) reaches a certain number.
  • time constant may be switched by a combination of the control signal and the number of frames (slots).
  • the demodulation control unit 16 receives the data demodulated by the demodulation unit 13, identifies channel information such as a control channel and a communication channel, and identifies a synchronous state or an asynchronous state. The force used and the control signal to use a small value for the loop filter. Signal to the demodulation unit 13.
  • a control signal for selecting a small value of the time constant through the switching switch 15 is sent to the demodulation unit 13.
  • the following operation is performed in order to quickly shift from the asynchronous state to the synchronous state and to reduce jitter after the loop filter is pulled in.
  • a control signal is transmitted from the demodulation control unit 16 to the demodulation unit 13 so that a value having a small time constant is selected by the switching switch 15.
  • the demodulation control unit 16 When the demodulation control unit 16 confirms that the state has shifted to the synchronous state, the demodulation control unit 16 then controls the demodulation unit 13 to select a value with a large time constant at the switching switch 15. Send a signal.
  • control signal is automatically switched so as to select an intermediate value of the time constant in the first several frames (slots), and then to select a large value of the time constant.
  • the loop filter can be converged faster than in the case where a value having an intermediate value between the time constants is not used. Jitter / J can be reduced.
  • the switching switch 15 determines the intermediate state from the large time constant of the synchronized state. Can be controlled to automatically switch to a large time constant after several frames (slots).
  • the loop filter can quickly converge to a new convergence value, so that the loss of synchronization can be suppressed.
  • the loop filter can be pulled in quickly, and as a result, the state can be quickly shifted to the synchronous state.
  • the time constant By setting the time constant to a large value, it is possible to suppress the jitter of the convergence value after the loop filter is pulled in.
  • the time constant is switched to a large value immediately after entering the synchronous state, the time constant is switched to a large value in a state where it is not fully drawn in the asynchronous state. In other words, it takes time to reduce the jitter. To shorten the pull-in time, the time constant must be reduced, and it is difficult to suppress the jitter to a small value.
  • the demodulation unit employs the synchronous detection method (or quasi-synchronous detection method) of a TDMA-TDD system such as PHS (registered trademark), it is necessary to converge in a short period of time and suppress the jitter as small as possible. Since it becomes necessary, the synchronous detection can be performed by switching the time constant in two stages rather than fixing the time constant, and by switching the time constant in three stages (or more) than switching the two time constants. Optimal performance of synchronous detection) can be obtained.
  • FIG. 3 shows the configuration of the demodulation unit 13 of the TDMA-TDD system.
  • the demodulation unit 13 has a plurality of functional blocks in which a loop filter exists.
  • the reception level conversion unit 21 is a conversion unit that converts the level of the reception signal by performing a normalization process that varies the amplitude information within a certain range.
  • the loop filter 22 is a filter used when averaging the reception levels in the reception level converter 21.
  • the switch 23 is a switch that can switch the time constant used for the loop filter 22.
  • the switching switch 23 has a mechanism in which one time constant can be selected by a control signal from the demodulation control unit 16 from a table of a plurality of time constants, for example. Alternatively, the number of received frames (slots) is counted, and after a few frames (slots), an operation of automatically switching to a different time constant value is performed.
  • the frequency deviation correction unit 24 is an automatic frequency control (AFC) circuit that corrects the frequency deviation.
  • AFC automatic frequency control
  • the loop filter 25 is a filter used when integrating the phase rotation amount in the automatic frequency control circuit.
  • the switching switch 26 is a switch capable of switching the time constant used for the loop filter 25.
  • the switching switch 26 is configured to be able to select one time constant from a table of a plurality of existing time constants by a control signal from the demodulation control unit 16, for example. In some cases, the number of received frames (slots) is counted, and after several frames (slots), an operation of automatically switching to a different time constant value is performed.
  • the bit timing reproducing unit 27 is a circuit that reproduces the bit timing of the transmission data.
  • the loop filter 28 is a filter used in the bit timing reproducing unit 27 when calculating the correlation value between the rotation factor for phase rotation and the amount of phase fluctuation.
  • the switching switch 29 is a switch that can switch the time constant used for the loop filter 28.
  • the switching switch 29 has a mechanism that allows one time constant to be selected by a control signal from the demodulation control unit 16 from a table of a plurality of time constants, for example. Alternatively, the number of received frames (slots) is counted, and after a few frames (slots), an operation of automatically switching to a different time constant value is performed.
  • the carrier recovery circuit 210 is a circuit that recovers a carrier.
  • the norapeu-finoreta 211 is a filter used in the carrier recovery circuit 210 when estimating the transmission path using the LMS algorithm.
  • the switching switch 212 is a switch that can switch the time constant used for the loop filter 211.
  • the switching switch 212 is configured to be able to select one time constant from a plurality of tables of the time constant by a control signal from the demodulation control unit 16, for example. Alternatively, the number of received frames (slots) is counted, and after several frames (slots), an operation of automatically switching to a different time constant value is performed.
  • the demodulation control unit 16 receives the demodulated data from the carrier recovery circuit, determines the synchronization state, the asynchronous state, and the channel type, and switches the time constant to each of the loop filters 22, 25, 28, and 211. It is a control unit that sends a control signal to instruct. For example, in a system such as PHS (registered trademark), the demodulation control unit 16 determines whether the state is a synchronous state or an asynchronous state by detecting a unique word, passing a unique word pulse through an aperture gate, or the like.
  • PHS registered trademark
  • the reception level conversion section 21 when receiving the amplitude information, averages the amplitude information in the loop filter 22.
  • a control signal is sent from the demodulation control unit 16 and the time constant to be multiplied is set to a small value so that the pull-in is performed quickly and the state transitions quickly to the synchronous state.
  • the switching switch 23 switches so as to select a larger value from the intermediate value of the time constant in order to further reduce the jitter.
  • the reception level averaging process can be quickly completed, and the jitter after the convergence of the average reception level after the reception can be reduced, so that the reception level can be normalized stably. Will be able to do it.
  • time constant may be switched from an intermediate value to a large value by a control signal from demodulation control section 16.
  • the frequency deviation correction unit 24 Upon receiving the amplitude information and the phase information, the frequency deviation correction unit 24 obtains the frequency deviation amount, and averages the amount by using the loop filter 25.
  • the control signal is sent from the demodulation control unit 16 to make a quick transition to the synchronous state.
  • the constant is selected at the switching switch 26 with a small value.
  • a control signal is sent from the demodulation control unit 16 and the loop filter 25 is multiplied in order to perform an operation of slightly delaying the pull-in from the asynchronous state and suppressing jitter to some extent after the pull-in.
  • the time constant to be set has an intermediate value selected at switch 26.
  • the switching switch 26 switches so that the time constant selects a larger value from a middle value in order to further reduce the jitter.
  • the time constant may be switched from an intermediate value to a large value by a control signal from demodulation control section 16.
  • the bit timing reproducing unit 27 Upon receiving the phase information, the bit timing reproducing unit 27 obtains a correlation with the free-running clock using a loop filter.
  • the control signal is sent from the demodulation control unit 16 to make a quick transition to the synchronous state.
  • the constant is selected in the switching switch 29 at a small value.
  • control signal is sent from the demodulation control unit 16 and the loop filter 28 is multiplied by the control signal sent to slightly delay the pull-in from the asynchronous state and to suppress jitter to some extent after the pull-in.
  • the time constant to be set has an intermediate value selected in switch 29.
  • the switching switch 29 switches so as to select a larger value from the intermediate value of the time constant in order to further reduce the jitter.
  • the time constant may be switched from an intermediate value to a larger value by a control signal from demodulation control section 16.
  • the carrier recovery unit 210 Upon receiving the I and Q data after the frequency deviation correction and the recovered clock, the carrier recovery unit 210 performs a carrier recovery process using the loop filter 211.
  • the carrier recovery unit 210 includes a loop filter used for both the Costas loop and the force S for which a method of performing a sequential calculation process using a minimum double average (LMS) algorithm for channel estimation is known.
  • LMS minimum double average
  • the demodulation control unit 16 sends a control signal and multiplies the loop filter 211 in order to make the pull-in a little slower than in the asynchronous state and to suppress jitter to some extent after the pull-in.
  • the intermediate value is selected by the switching switch 212. Selected.
  • the switching switch 212 switches so as to select a larger value from the intermediate value of the time constant in order to further reduce the jitter.
  • the convergence of the transmission channel estimation value can be terminated early, and the jitter after the pull-in can be suppressed to a small value, so that the carrier can be reproduced quickly and accurately.
  • time constant may be switched from the intermediate value to a large value by a control signal from demodulation control section 16.
  • FIG. 4 shows the configuration of the frequency deviation correction unit 24 (automatic frequency control circuit or frequency deviation correction circuit) having a loop filter using a plurality of time constants.
  • the multiplier 41 is a multiplier that multiplies the input phase information and amplitude information to generate a complex signal.
  • the delay detection circuit 42 is a delay detection circuit that obtains a phase difference by a delay detection method.
  • the angle information extraction circuit 43 is a circuit that extracts angle information from a complex value including the phase difference information obtained by the delay detection circuit 42.
  • the subtractor 44 is a subtractor for subtracting the angle amount of the obtained frequency deviation from the angle information in the loop filter.
  • the modulation component elimination circuit 45 outputs the angle information extracted by the angle information extraction circuit 43
  • This circuit calculates the difference from a point at an angle of 45 degrees from both the I axis and the Q axis on the Q plane, and makes the difference between the angles the amount of variation from the I axis.
  • the limiter circuit 46 is a circuit that can be ignored since the amount exceeding the deviation allowed by the system is due to noise.
  • the multiplier 47 is a multiplier that selects one time constant from a plurality of time constants and multiplies the same.
  • the integrator 48 is an integrator that adds the deviation amount of the angle to obtain the angle amount of the frequency deviation.
  • the integrator 49 is an integrator that restores the phase difference obtained by the delay detection circuit 42 by adding the angle amount of the frequency deviation.
  • the angle information complex information conversion circuit 410 is a circuit that converts the angle information obtained by the integrator 49 into a complex signal.
  • the frequency deviation corrector 411 multiplies the complex data obtained by the multiplier 41 by the complex signal of the angle information obtained by the angle information complex information conversion circuit 410 to eliminate the phase angle deviation. Is a corrector.
  • phase information and the amplitude information are subjected to complex multiplication in a multiplier 41 and multiplied by the complex conjugate of the data one symbol before in a delay detection circuit 42 to obtain a phase difference by complex multiplication.
  • the angle information extraction circuit 43 extracts only the angle information from the complex signal including the phase difference information obtained by the delay detection circuit 42.
  • the difference from the point in the quadrant where the angle information exists is determined, and the difference is defined as the amount of variation from the I axis.
  • the limiter circuit 46 the amount of change in the angle obtained by the modulation component removing circuit 45 is limited so as not to exceed the frequency deviation amount determined according to the communication standard.
  • the multiplier 47 multiplies the angle variation amount limited by the limiter circuit 46 by a time constant.
  • a control signal for selecting a small value of the time constant is sent from the demodulation control unit to speed up the acquisition, and the demodulation control unit multiplies the value by the small value of the time constant. I do.
  • the angle variation multiplied by the time constant by the multiplier 47 is added, and the average value of the angle variation is obtained.
  • the subtractor 44 also subtracts the output data power from the angle information extraction circuit 43 from the integration result of the angle variation obtained by the integrator 48. This makes the angle information extraction circuit 43 Only the extracted angle information and the deviation from the average value of the angle variation are sent to the loop filter. As a result, the angle variation gradually converges to the actual variation in the loop filter.
  • the angle fluctuation amount to which the phase rotation is applied in the integrator 49 is converted into complex data in the angle information complex information conversion circuit 410.
  • the complex conjugate of the angle information converted into complex data in the angle information complex information conversion circuit 410 is multiplied by the complex data output from the multiplier 41 in the frequency deviation corrector 411, and the output of the multiplier 41 is output.
  • the angle fluctuation of the subsequent data disappears.
  • FIG. 5 is a state transition diagram showing a synchronous / asynchronous state determined by the demodulation control unit and a time constant required to be used for each loop filter in the demodulation unit used at that time.
  • the state 51 is an asynchronous state
  • the state 52 is a synchronous state 1 (intermediate state)
  • the state 53 is a synchronous state 2.
  • the section is set to synchronization state 1 (state 52), and after several frames (slots) after entering the synchronization state, it is set to synchronization state 2 (state 53).
  • FIG. 6 is a state transition diagram showing the synchronous / asynchronous state determined by the demodulation control section and the magnitude of the time constant required to be used for each loop filter in the demodulation section used at that time.
  • State 61 is an asynchronous state
  • state 62 is a synchronous state 1 (intermediate state)
  • state 63 is a synchronous state
  • State 2 and state 64 are synchronous state 3 (intermediate state).
  • the section is set to synchronous state 1 (state 62), and after several frames (slots) after entering the synchronous state, it is set to synchronous state 2 (state 63). This state is called synchronization state 3 (state 64), and there are three types.
  • FIG. 7 is a state transition diagram showing the synchronous / asynchronous state determined by the demodulation control unit and the magnitude of the time constant required to be used for each loop filter in the demodulation unit used at that time.
  • the state 71 is the asynchronous state 1
  • the state 72 is the asynchronous state 2 (intermediate state)
  • the state 73 is the synchronous state
  • the state 74 is the asynchronous state 3 (intermediate state).
  • Asynchronous state means that the state of the first few frames (slots) after starting to receive frames (slots) (for example, a control channel in a PHS system) received in the asynchronous state is referred to as asynchronous state 1 (state 71).
  • FIG. 8 shows a configuration example of the demodulation control section 16.
  • UW detection section 101 detects a pulse of a unique word (UW) and determines whether the pulse is synchronous or asynchronous.
  • the frame number counter 102 is a counter that counts the number of frames (or slots) for which synchronization has been detected by the UW detection unit 101.
  • the control signal generation unit 103 generates a control signal based on the count of the frame number counter 102.
  • the frame number counter 102 may count the number of slots instead of the number of frames.
  • the frame number counter 102 can also count the number of discarded frames (slots).
  • the frame (slot) format has a unique word (UW) for identifying the synchronization state and timing.
  • UW unique word
  • the demodulation control unit it is determined whether the UW pulse is detected or not in the UW detection unit 101. If the UW pulse is not detected, the frame (slot) is discarded.
  • the counter 102 counts the number of frames (slots).
  • the control signal generation unit 103 a control signal for selecting the magnitude of the time constant is generated and sent to each functional block having a loop filter in the demodulation unit.
  • a signal-to-noise ratio determination unit may be provided to determine a synchronous state or an asynchronous state based on C / N (signal-to-noise ratio).
  • FIG. 9 shows how demodulation control section 16 actually determines the state transition when transitioning from the asynchronous state to synchronous state 1 and synchronous state 2 in FIGS. 5 and 6. It is a flow chart.
  • Step 81 is a conditional branch by UW (unique word) detection.
  • Step 82 is a conditional branch before and after the lapse of two frames.
  • step 81 if the UW detection unit 101 detects UW, the frame number counter 102 counts the number of frames, and determines in step 82 whether or not two frames have elapsed.
  • Condition 52 if the UW detection unit 101 detects UW, the frame number counter 102 counts the number of frames, and determines in step 82 whether or not two frames have elapsed.
  • FIG. 10 is a diagram showing the synchronous state to the asynchronous state 3 and the asynchronous state 3 to the asynchronous state in FIG.
  • 1 is a flowchart showing how demodulation control section 16 actually determines a state transition when transitioning from asynchronous state 3 to synchronous state.
  • Step 91 is a conditional branch due to non-detection of UW (unique word).
  • Step 92 is a conditional branch as to whether a UW (unique word) was detected two frames (slot) before.
  • step 91 when the UW detection unit 101 detects a UW in step 91, the state becomes the synchronization state (state 73).
  • step 91 if the UW detection unit 101 stops detecting UW, the frame number counter 102 counts the number of frames.
  • step 92 it is determined whether or not UW was detected two frames ago. If detected, transition to asynchronous state 3 (state 74); otherwise, transition to asynchronous state 1 (state 71).
  • FIG. 11 shows how a loop filter is pulled in using three time constants in the present embodiment.
  • FIG. 12 shows how a loop filter is pulled in using two types of time constants in the present embodiment.
  • the horizontal axis is time.
  • the horizontal axis is the slot time.
  • the horizontal axis may be the frame time.
  • the vertical axis indicates a convergence state such as a phase and a frequency deviation.
  • the time constant is changed in three stages from small to medium to large.
  • the synchronized time slots of the first and second slots are pulled in, and the time slot with a large time constant starts to be pulled in from the third slot.
  • the convergence time A approaches the convergence value.
  • the time constant is changed from small to large in two stages. From the synchronized first slot The time constant is starting to pull in at high. Thus, the convergence time B approaches the convergence value. The jitter after convergence is large.
  • the convergence time A ⁇ the convergence time B, so that the convergence value can be quickly approached, and the jitter after convergence is further reduced. It can be suppressed.
  • the radio communication apparatus includes a demodulation unit 13 that receives a phase-modulated burst signal and demodulates the signal using a synchronous detection method or a quasi-synchronous detection method, A demodulation control section 16 for generating a control signal for controlling the demodulation of the burst signal of the demodulation section based on the signal reception state, and the demodulation section 13 demodulates the burst signal digitally modulated by the time division multiplexing method.
  • a loop filter 14 for filtering a signal based on a burst signal, and a time constant switching unit 15 for switching a time constant of the loop filter by a control signal.
  • the signal based on the burst signal means amplitude information, phase information, angle information, a reproduction clock, a signal of I and Q data after frequency deviation correction, and the like of the burst signal.
  • the loop filter includes a frequency deviation correction unit 24 for correcting a frequency deviation of the burst signal, a carrier recovery unit 210 for recovering the carrier of the burst signal, and a bit timing recovery for reproducing the bit timing of the burst signal. It is a loop filter used in the unit 27 and the reception level conversion unit 21 for converting the reception level of the burst signal.
  • the demodulation control unit 16 determines that the receiving state of the burst signal in the demodulation unit 13 is a synchronous state, an asynchronous state, or an intermediate state located between the synchronous state and the asynchronous state. , And outputs a control signal indicating the detected reception state.
  • the time constant switching section 15 outputs a time constant having a large value used for the synchronization state and an intermediate value used for the intermediate state. It has a time constant and a small time constant used for the asynchronous state, and switches to a time constant corresponding to the three types of reception states indicated by the control signal.
  • the demodulation control section 16 is characterized in that the reception state of a predetermined number of frames when the reception state of the burst signal in the demodulation section 13 changes to the asynchronous state or the synchronous state is an intermediate state. Alternatively, the demodulation control section 16 sets the reception state of a predetermined number of frames when the reception state of the burst signal in the demodulation section 13 changes from the synchronous state to the asynchronous state as an intermediate state. I do.
  • the demodulation control section detects the reception state of the burst signal in the demodulation section by a signal-to-noise ratio, outputs a control signal indicating the detected reception state, and the time constant switching section 15 Switching to a time constant corresponding to the reception state indicated by the control signal is characterized.
  • the magnitude of the time constant used for the loop filter is set to a small value in the asynchronous state and a large value in the synchronous state except for the first few frames (slots). In the section of the first few frames (slots), control using an intermediate value is performed.
  • the magnitude of the time constant used for the loop filter is set to a small value in the asynchronous state and a large value in the synchronous state except for the first few frames (slots).
  • control is performed using an intermediate value in the asynchronous state of the asynchronous state, when the synchronous state occurs several frames (slot) before.
  • the size of the time constant used for the loop filter is set to a small value for the first few frames (slots) at the start of pull-in in the asynchronous state
  • Control is performed using intermediate values after the (slot), large values in the synchronized state, and intermediate values when the frame is synchronized several frames (slots) earlier in the asynchronous state.
  • the demodulation control method performs control in which the size of the time constant is automatically switched after the frame (slot) time elapses, and the frame (slot) time is reduced by two frames. (Slot).
  • the demodulation control method performs control in which the size of the time constant is automatically switched when the frame (slot) time elapses.
  • a demodulation control unit has a counter circuit for counting the number, and receives a count result of the counter circuit and generates a control signal for selecting a time constant.
  • the format of a frame or a slot is TD MA—The format is based on the TDD system. Conversely, the demodulation control method of this embodiment is based on the format power of a frame and a slot.
  • A-It is not in the FDD system.
  • the demodulation control method according to the present embodiment is characterized in that a frame synchronous state is used for determining a synchronous state or an asynchronous state.
  • the demodulation control method according to the present embodiment is characterized in that the magnitude of the time constant can be switched from a large value to a small value in three or more steps.
  • the demodulation control method uses a criterion for selecting the size of the time constant.
  • the reception level conversion unit 21, the frequency deviation correction unit 24 (automatic frequency control circuit), the bit timing recovery unit 27, and the carrier recovery unit 210 multiply the loop filter. It is characterized in that the time constant to be set can be selected from three different values.
  • the magnitude of the time constant used for the loop filter is reduced by the two time constants, large and small, instead of the three time constants, in the case of the asynchronous state.
  • control using a large value may be performed. It is also possible to have two time constants, large and small, and to switch between three types of time constants, large + small, large, and small. Also, it may be large + small, large, large-small, small.
  • the demodulation control method of the wireless communication apparatus is applicable to a receiver that receives a phase-modulated burst signal and that has a demodulation unit of a synchronous detection method or a quasi-synchronous detection method. it can.
  • the time constant used for the averaging process loop filter of the frequency deviation correction unit can be switched according to the reception state such as a synchronous state or an asynchronous state, so that the convergence of the averaging is performed quickly and the jitter is suppressed. This enables stable operation of carrier recovery in synchronous detection (quasi-synchronous detection).
  • the loop filter of the frequency deviation correction unit not only the loop filter of the frequency deviation correction unit, but also the loop filter of the reception level conversion unit, the carrier wave recovery unit, the bit timing recovery unit and the arbitrary loop filter in the demodulation unit, or all the loop filters in the demodulation unit
  • the time constant used for the measurement can be switched between different values, so that the convergence of averaging is quick and the jitter Enables stable operation of demodulation.
  • the demodulation operation of the demodulation unit 13 is unified. effective.
  • the control signal may be individually output to each unit, but is output under the control of the demodulation control unit 16, so that the demodulation operation of the demodulation unit 13 is controlled according to each state of each unit.
  • the method described in Japanese Patent Application Laid-Open No. 7-336325 is not related to mobile communication.
  • the demodulation method according to the present embodiment is related to mobile communication and has a different technical field.
  • the method described in Japanese Patent Application Laid-Open No. 7-336325 is a frequency modulation method, and the demodulation method of this embodiment is a demodulation method of the PSK modulation (digital phase modulation) method. Are different. Therefore, the configuration of the demodulation unit is different.
  • the method described in Japanese Patent Application Laid-Open No. 7-336325 does not take the configuration shown in FIGS. 3, 4, and 10 of the demodulation method of this embodiment.
  • the demodulation method of this embodiment improves the accuracy of correction of a frequency deviation peculiar to mobile communication. It is important to improve the accuracy of frequency deviation correction in the synchronous detection system that reproduces the carrier.
  • the method described in Japanese Patent Application Laid-Open No. 7-336325 is not related to a receiving apparatus that receives a phase-modulated burst signal used for wireless communication. Therefore, it does not solve the problem of jitter that occurs when demodulating a burst signal by the synchronous detection method (or quasi-synchronous detection method).
  • the demodulation method according to this embodiment relates to a receiving apparatus that receives a burst signal that is phase-modulated by a PSK modulation (digital phase modulation) method used for wireless communication. It has the purpose and effect of solving the problem of jitter that occurs when demodulating with the quasi-synchronous detection method and improving the reception sensitivity of wireless communication.
  • the demodulation method of this embodiment is based on PSK modulation (digital phase modulation). ), which relates to switching of the time constant of a loop filter of a demodulation unit for receiving a burst signal phase-modulated by the method and demodulating by a synchronous detection method (or a quasi-synchronous detection method).
  • the demodulation method according to the present embodiment can exert the effect of suppressing the jitter due to the influence of noise to a small extent and achieving the effect of pulling in quickly.
  • the synchronous detection method (or quasi-synchronous detection method) is adopted, and the frequency deviation correction and the bit error correction are performed in the demodulator which needs to keep the frequency deviation and the reproduction clock jitter small. It is possible to prepare two or more (preferably three or more) time constants to be multiplied by the loop filter in the functional block that regenerates the clock (symbol clock), and to switch between synchronous and asynchronous states. As a result, fast pull-in and jitter after pull-in can be reduced. As a result, it is possible to make a quick transition from the asynchronous state to the synchronous state, and there is an effect that the transition from the synchronous to the asynchronous state becomes difficult.
  • FIG. 1 is a configuration diagram of a demodulation unit and a demodulation control unit having a loop filter capable of switching and changing a time constant according to Embodiment 1 of the present invention.
  • FIG. 2 is an explanatory diagram of a burst signal.
  • FIG. 3 is a more detailed configuration diagram of a demodulation unit and a demodulation control unit in FIG. 1 illustrating an example of a functional block having a loop filter among demodulation units according to Embodiment 1 of the present invention.
  • FIG. 4 is a configuration diagram of a frequency deviation correction unit (circuit) of FIG. 3 according to Embodiment 1 of the present invention.
  • FIG. 5 is a state transition diagram in the case where there are one asynchronous state and two synchronous state forces.
  • FIG. 6 is a state transition diagram in a case where there are one asynchronous state and two synchronous states.
  • FIG. 7 is a state transition diagram in a case where there are three asynchronous states and three synchronous states.
  • FIG. 8 is a configuration diagram of a demodulation control unit according to the first embodiment of the present invention.
  • FIG. 9 is a diagram showing a flowchart for determining the magnitude of a time constant when transitioning from a synchronous state to an asynchronous state.
  • FIG. 10 is a diagram illustrating a flowchart for determining the magnitude of a time constant when the progress of a frame (slot) is less than or equal to two frames (slots) in an asynchronous state.
  • FIG. 12 is a diagram showing convergence when the time constant is set to two stages in the first embodiment of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Synchronisation In Digital Transmission Systems (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)
  • Circuits Of Receivers In General (AREA)

Abstract

 移動体通信のTDMA−TDD方式で位相変調されたバースト信号を受信し、同期検波方式(または準同期検波方式)で復調する復調部13において、周波数偏差補正部や搬送波再生部内に存在するループフィルタ14の時定数を、3段階以上用意する。時定数の切替えは、復調制御部16からの制御信号により切替えスイッチ15が行う。引き込みを早くし、かつ、収束後のジッタを小さく抑えることで、回路規模を増大せずに同期検波(または準同期検波)の動作に必要な周波数偏差補正などの高精度化が図れる。

Description

明 細 書
無線通信装置及び復調方法及び周波数偏差補正回路
技術分野
[0001] 本発明は、無線通信装置及びその復調方法に関するものである。例えば、 TDMA
(Time Division Multiple Access:時分割多重)— TDD (Time Division Du plex :時分割型デュプレックス)方式を用いた通信システムに用いられる移動体通信 基地局の受信装置に関するものである。
背景技術
[0002] 移動体通信で行われる復調処理において、同期検波方式 (準同期検波方式)を採 用する場合、正確な搬送波の再生を行うために、搬送波再生回路の他に、精度のよ い周波数偏差の補正や、ビットクロックの再生回路が必要となってくる。
[0003] 搬送波再生回路、周波数偏差補正回路、ビットクロック再生回路に、ループフィル タが用いられる場合、それぞれのループフィルタに用いられる時定数は、ループフィ ルタからの出力結果が最適な収束値となるような値が選ばれる。
[0004] 無線通信の受信部において、受信フレーム (スロット)が非同期状態である場合は 引き込みを早く行いたいので、上記時定数の値は、小さくするほうが良ぐ受信フレー ムが同期状態である場合は、引き込みを早くする必要がなぐ引き込みの収束値の 精度を上げたいので、平均化の時間を長くするために、上記時定数の値は大きいほ うがよい。
[0005] 時定数の値をループフィルタごとに 1つだけにした場合、受信フレーム(スロット)の 同期状態と、非同期状態とにおいて、要求される最適な時定数は異なっているため に、非同期状態から同期状態に遷移するような無線通信の受信処理においては、ル ープフィルタからの出力結果が最適な収束値とならない。
[0006] 受信状態が同期状態の場合と、非同期状態の場合とで、時定数を切替えることによ つて、より性能のよい復調処理を可能にしている復調器のうちの 1つとして、「多重信 号再生装置」(特開平 7-336325号公報)に記載されている方式がある。
[0007] 上記方式は、復調器に、ループフィルタが存在し、同期状態、非同期状態の 2つの 状態で異なった値の時定数を用意して、状態に応じて、時定数を切替えるものである
[0008] しかし、上記方式は、無線通信に用いられる位相変調されたバースト信号を受信す る受信装置に関するものではない。また、位相変調されたバースト信号を同期検波方 式ほたは準同期検波方式)で復調する無線通信の受信感度改善という目的は有し ていない。
[0009] また、「無線通信装置の制御方法及び無線通信装置」(特開 2003 - 209485号公 報)では、複数の時定数を用意し、時定数ごとにその時定数を使用したフィルタを設 け、最適なフィルタ出力値を選択するような構成となっている。これにより、最適な時 定数を使用したフィルタの出力値が常に選択されるという効果がある。
[0010] し力、しながら、時定数ごとにフィルタ回路を設けるという手法は、時定数を用いるフィ ルタを時定数の数だけ用意しなければならず、回路規模が増大してしまう。
[0011] 移動体通信の TDMA— TDDシステムにおいて、位相変調されたバースト信号を受 信する受信装置の復調部の復調方式が同期検波方式ほたは準同期検波方式)で ある場合、周波数偏差の補正や、搬送波の再生、ビットクロックの再生を精度よく行う 必要がある。周波数偏差補正機能ブロックや、搬送波再生機能ブロック、ビットクロッ ク再生機能ブロックは、ループフィルタを用いて平均化や逐次演算などの処理を行つ ており、ループフィルタにおいて乗算される時定数は 1種類では十分な性能を出すこ とができない。
[0012] また、ループフィルタの回路を持っていて TDMA— TDD方式において同期検波す る (または準同期検波する)復調部において、バースト信号が非同期状態から同期状 態に変化した場合に、時定数の大きさがそのままであったり、時定数の大きさを、非 同期状態の小さい値から、同期状態の大きい値に急激に変化させると、収束後のジ ッタを小さく抑えることができず、かつ、早く引込むことも出来ない。
特許文献 1:特開平 7 - 336325号公報
特許文献 2:特開 2003 - 209485号公報
発明の開示
発明が解決しょうとする課題 [0013] 本発明の目的は、 TDMA— TDDシステムを採用した場合の位相変調されたバー スト信号を同期検波する (または準同期検波する)復調処理において、雑音の影響に よるジッタを小さく抑え、かつ、早く引込むことができるようにすることである。
課題を解決するための手段
[0014] この発明に係る無線通信装置は、位相変調されたバースト信号を受信して同期検 波方式と準同期検波方式とのいずれかにより復調する復調部と、
復調部のバースト信号の受信状態に基づいて、復調部のバースト信号の復調を制 御する制御信号を生成する復調制御部とを備え、
復調部は、
バースト信号に基づく信号を、設定された時定数を用いてフィルタリングするフィノレ タと、
制御信号により、フィルタの時定数を切替える時定数切替え部とを備えたこと特徴と する。
[0015] 上記フィルタは、バースト信号の周波数の偏差を補正する周波数偏差補正部に用 レ、られたループフィルタであることを特徴とする。
[0016] 上記フィルタは、バースト信号の搬送波を再生する搬送波再生部に用いられたル ープフィルタであることを特徴とする。
[0017] 上記フィルタは、バースト信号のビットタイミングを再生するビットタイミング再生部に 用いられたループフィルタであることを特徴とする。
[0018] 上記フィルタは、バースト信号の受信レベルを変換する受信レベル変換部に用いら れたループフィルタであることを特徴とする。
[0019] 上記復調部は、時分割多重方式によりディジタル位相変調されたバースト信号を復 調することを特徴とする。
[0020] 上記復調制御部は、復調部におけるバースト信号の受信状態が、同期状態と、非 同期状態と、同期状態と非同期状態との中間に位置する中間状態との 3種の状態の いずれかであるかを検出して、検出した受信状態を示す制御信号を出力し、 上記切替え部は、同期状態に用いる大きい値の時定数と、中間状態に用いる中間 の値の時定数と、非同期状態に用いる小さい値の時定数を有し、制御信号の示す受 信状態に対応した時定数に切替えることを特徴とする。
[0021] 上記復調制御部は、復調部におけるバースト信号の受信状態が非同期状態から同 期状態へ変化するときの所定数のフレームまたはスロットの受信状態を、中間状態と することを特徴とする。
[0022] 上記復調制御部は、復調部におけるバースト信号の受信状態が同期状態から非同 期状態へ変化するときの所定数のフレームまたはスロットの受信状態を、中間状態と することを特徴とする。
[0023] 上記復調制御部は、復調部におけるバースト信号の受信状態を、信号雑音比で検 出して、検出した受信状態を示す制御信号を出力し、
上記切替え部は、制御信号の示す受信状態に対応した時定数に切替えることを特 徴とする。
[0024] この発明に係る復調方法は、バースト信号を受信してフィルタを用いた同期検波方 式により復調する復調部と、復調部を制御する復調制御部とを備えた無線通信装置 の復調方法において、
復調部が、時分割多重方式によりディジタル位相変調されたバースト信号を受信し 復調制御部が、復調部のバースト信号の受信状態に基づいて、復調部のフィルタ の時定数を制御する制御信号を生成し、
復調部が、制御信号によりフィルタの時定数を切替え、バースト信号に基づく信号 をフィルタリングすること特徴とする。
[0025] 上記復調方法は、
復調制御部が、復調部におけるバースト信号の受信状態が、同期状態と、非同期 状態と、同期状態と非同期状態との中間に位置する中間状態との 3種の状態のいず れかであるかを検出して、検出した受信状態を示す制御信号を出力し、
上記復調部が、同期状態に用いる大きい値の時定数と、中間状態に用いる中間の 値の時定数と、非同期状態に用いる小さい値の時定数のうち、制御信号の示す受信 状態に対応した時定数に切替えることを特徴とする。
[0026] 上記復調方法は、 復調部におけるバースト信号の受信状態が非同期状態から同期状態へ変化すると き中間状態とし、
復調部におけるバースト信号の受信状態が同期状態から非同期状態へ変化すると き中間状態とすることを特徴とする。
この発明に係る周波数偏差補正回路は、バースト信号の位相情報と振幅情報とを 入力して乗算し、複素信号を生成する乗算器と、
乗算器が生成した複素信号を遅延検波して位相差情報を求める遅延検波回路と、 遅延検波回路にて求めた位相差情報力 角度情報を抽出する角度情報抽出回路 と、
角度情報抽出回路で求めた角度情報から、周波数偏差の角度量を減算する減算 器と、
減算器において減算された角度情報が、 I, Q平面の I軸及び Q軸の両方から 45度 の角度にある点からの差分を求め、その角度の差が、 I軸からの変動量となるように角 度の偏差量を出力する変調成分除去回路と、
変調成分除去回路からの角度の偏差量が、許容される偏差量を超えた場合に、超 えた偏差量を制限するリミタ回路と、
複数存在する時定数の中から、 1つの時定数を選択する切替えスィッチと、 切替えスィッチにより選択された時定数を、リミタ回路から出力された角度の偏差量 に乗算する乗算器と、
乗算器により時定数が乗算された角度の偏差量を加算して周波数偏差の角度量と して出力する第 1積分器と、
第 1積分器で求めた周波数偏差の角度量を加算することで、遅延検波回路による 位相差を元に戻す第 2積分器と、
第 2積分器にて求めた角度情報を、複素信号に変換する角度情報複素情報変換 回路と、
乗算器にて求めた複素データに、角度情報複素情報変換回路にて求めた角度情 報の複素信号を乗算し、位相角の偏差分を無くすようにする周波数偏差補正器と を備えたことを特徴とする。 発明を実施するための最良の形態
[0028] 実施の形態 1.
この実施の形態では、 PHS (登録商標、ハンディ'ホーン'システム)などの TDMA -TDDシステムを例に説明する。特に、周波数偏差補正、搬送波再生、ビットクロック 再生を精度よく行うことが要求される同期検波方式 (または準同期検波方式)の復調 部について説明する。また、特に、位相変調されたバースト信号を受信する場合につ いて説明する。
[0029] この実施の形態は、復調部の周波数偏差補正部や搬送波再生部内に存在するル ープフィルタの時定数を、固定ではなぐ引き込み時 (非同期)と定常時(同期)の 2段 階ではなぐ非同期時に 2段階さらに同期時に 1段階の計 3段階、または、非同期時 に 1段階さらに同期時に 2段階の 3段階というように、 3段階以上用いる場合を説明す る。こうすることによって、引き込みを早くし、かつ、収束後のジッタを小さく抑えること ができ、かつ、回路規模を増大せずに同期検波 (または準同期検波)の動作に必要 な周波数偏差補正などの高精度化を図ることが可能になる。
[0030] この実施の形態では、ループフィルタに乗算される時定数を大きい値、小さい値の ほかに、その中間の値を最適な位置に用いることで、引き込みを早くし、かつ、ジッタ を低く抑えることを可能としている。それにより、安定的に位相変調されたバースト信 号の同期検波 (または準同期検波)を行うことができ、同期検波 (または準同期検波) の性能を最大限に引き出すことができるようになる。
[0031] 以下に述べる実施の形態の復調部では、ループフィルタの時定数(time consta nt)を複数有している。
[0032] 時定数とは、例えば、 1次フィルタ(RCフィルタ)における、抵抗 Rと容量 Cの積をい う。時定数が小さいと、フィルタとしての効果がなくなる。また、時定数が大きいと、入 力の応答が悪くなる。また、このフィルタの時定数を、信号の特性とそのノイズレベル にあわせて適宜設定することによって、入力ノイズの影響を押さえることができる。
[0033] ここでは、時定数として、
1.非同期状態用の小さい値を持つ時定数、
2. 同期状態用の大きい値を持つ時定数、 3. 中間的な大きさの値を持つ時定数、
の 3種の時定数を用いる場合を説明する。
[0034] 中間的な大きさの値を持つ時定数は、同期状態の初期段階のループフィルタに使 用する時定数である。中間的な大きさの値を持つ時定数は、非同期状態用の小さい 値と同期状態用の大きい値との中間的な大きさの値を持つ時定数(時定数の中間値 )のことである。中間的な大きさの値を持つ時定数を、同期状態の初期段階のループ フィルタに使用する構成とするので、雑音の影響によるジッタを小さく抑え、かつ、早 く引き込めるようになる。ジッタとは、ディジタル波形に含まれる、時間的なノイズのこと をいう。ジッタが増えてくるとビット同期がはずれて、フルビットのディジタルノイズが発 生する。
[0035] また、以下に述べる実施の形態の復調部では、同期状態の初期段階の数フレーム
(スロット)に中間的な大きさの値を持つ時定数を用レ、、中間的な大きさの値を持つ時 定数を用いた数フレーム (スロット)の処理後は、同期状態用の大きい値を持つ時定 数へ、時間により自動的に切り替わるような構成としている。
[0036] ここで、以下に述べる実施の形態の無線通信装置及び復調部が動作する無線通 信方式について説明する。
[0037] 多地点にある複数の移動体端末から送信される無線信号を、効率良く多重化し通 信を行う技術としてマルチプル 'アクセス(多元接続)技術がある。移動体端末から移 動体通信基地局に向力う上りのチャネルで使われるマルチプル 'アクセス技術には、 例えば、次の 3つの方式がある。
[0038] ( 1 ) FDMA (Frequency Division Multiple Access:周波数分割多元接続) 電波を周波数分割し、分割された周波数を各ユーザーに割り当てて多重化して送 信する方式。
[0039] (2) TDMA (Time Division Multiple Access,時分割多元接続)
電波を時間分割し、分割した各時間(タイム'スロット)を各ユーザーに割り当てて多 重化する方式。
[0040] (3) CDMA (Code Division Multiple Access、符号分割多元接続)
各ユーザーに割り当てた拡散符号 (PN : PSeudo Noise,疑似雑音)によって拡散 し、多重化して送信する方式。
[0041] この実施の形態の無線通信装置は、時分割多元接続方式を適用したものである。
[0042] また、移動体端末と移動体無線基地局とが、双方向通信を行う場合に、上り回線と 下り回線を実現する方法として、例えば、以下のデュプレックス(Duplex)技術がある
[0043] (1) FDD (Frequency Division Duplex、周波数分割型デュプレックス)
上下回線を周波数的に分離する方式。
[0044] (2)TDD (Time Division Duplex、時分割型デュプレックス)
上下回線を時間的に分離する方式。
[0045] この実施の形態の無線通信装置は、時分割型デュプレックス方式を適用したもので ある。
[0046] また、変調 ·復調方式には、振幅変調、周波数変調、位相変調があるが、この実施 の形態の無線通信装置の復調部は、位相変調された信号を復調するものである。位 相変調(Phase Modulation)とは、例えば、搬送波(キャリア)の位相を変化させ、 異なる位相にそれぞれ 0または 1を割り当てることで、ビットデータを転送するものであ る。この実施の形態の無線通信装置の復調部は、ディジタル位相変調方式、すなわ ち、 PSK (Phase Shift Keying)変調方式の信号を復調するものである。
[0047] ここで、復調とは、検波とも言われ、変調波から信号波を取り出す操作をレ、う。この 復調方式 (検波方式)には、同期検波、準同期検波、遅延検波、周波数検波などが ある。同期検波(Synchronized Detection)は、被変調信号の位相と標準信号の 位相を比べて、変調信号を取り出す検波方式をいう。準同期検波は、直交変調波を 復調する場合、固定周波数のローカル信号を用いて復調し、ディジタルキャリアを再 生することによって位相回転処理を行って変調信号を取り出す検波方式をいう。
[0048] この実施の形態の無線通信装置の復調部は、同期検波あるいは準同期検波により 復調するものである。
[0049] 無線通信装置が、データ信号を伝送する形態として、連続伝送とバースト伝送とが ある。バースト伝送(Burst Transmittion)とは、間欠的な時間間隔でデータ信号 の伝送が行われる伝送方式である。バースト信号とは、バースト伝送されるデータ信 号をいう。
[0050] この実施の形態の無線通信装置の復調部は、バースト伝送によるバースト信号を 受信し、復調するものである。
[0051] 以上をまとめると、この実施の形態の無線通信装置及び復調部は、 TDMA-TDD 方式の PSK変調されたバースト信号を受信して、同期検波方式あるいは準同期検波 方式により復調するものである。このため、周波数偏差補正、搬送波再生、ビットクロ ック再生を精度よく行うことが要求される。
[0052] 以下、本発明の実施の形態を、図を用いて説明する。
[0053] 図 1は、本実施の形態を用いた復調部の概念構成図である。
[0054] 図 2は、バースト信号を示す図である。
[0055] 図 1において、アンテナ素子 11は、時分割多重方式のバースト信号の無線電波信 号を受信するアンテナ素子である。図 2に示すように、間欠的な時間間隔でフレーム 単位にバースト信号の受信が行われる。各フレームには、ユニークワード(UW)が参 照信号として付与されている。ユニークワード(UW)は、そのデータパターンが既知 であり絶対位相が検出でき、このデータパターンの検出により、同期状態か非同期状 態かを判定することができる。
[0056] A/D (アナログ/ディジタル)変換部 12は、アナログ信号をディジタル信号に変換 する変換部である。
[0057] 復調部 13は、時分割多重方式のバースト信号をディジタルベースバンド信号処理 によって、復調を行う復調部である。
[0058] ループフィルタ 14は、復調部 13内において、平均化を行うフィルタである。ループ フィルタ 14は、後述する図 3で説明するが、復調部 13を構成する周波数偏差補正回 路、ビットタイミング再生回路、受信レベル変換回路、搬送波再生回路毎に存在する
[0059] 切替えスィッチ 15は、復調制御部 16から、同期状態または非同期状態を表す制御 信号を受けて、最適な時定数を選択するスィッチである。例えば、時定数は、同期状 態時は、大きい値と中間の値、非同期状態時は、小さい値を用意している。時定数の 値は、大規模集積回路では、 ROM (リード 'オンリイ'メモリ)のテーブルなどに格納さ れていてもよい。切替えスィッチ 15は、時定数切替え部の一例である。時定数切替 え部は、抵抗 Rを物理的に切替える切替えスィッチや、大規模集積回路の ROMの テーブルなどに格納されている時定数を読み出して設定するものなど、ハードウェア 、ソフトウェア、ファームウェア、あるいは、これらの組み合わせで実現することができ る。
[0060] 復調制御部 16は、復調後データのユニークワード (UW)を元に、バースト信号の 受信状態が同期状態なのか、非同期状態なのかを判定し、復調部内に制御信号を 送る制御部である。
[0061] 復調部 13の各部及び復調制御部 16の各部は、ハードウェア、ソフトウェア、ファー ムウェア、あるいは、これらの組み合わせで実現することができる。例えば、 CPUによ りプログラムを実行させることにより、各機能を実現することができる。プログラムは、図 示していなレ、メモリや記録媒体に記憶され、 CPUにより読み出され実行される。また 、ハードウェアで実現される場合は、各部はアナログ回路やディジタル回路で実現す ること力 Sできる。
[0062] 次に、作用及び効果について説明する。
[0063] 図 1において、アンテナ素子 11において受信されたアナログ信号は、 A/D変換部
12によって、位相、振幅情報のディジタル信号となる。
[0064] 復調部 13内において、入力されたディジタル信号は復調処理をされる力 その際、 復調部内に存在するループフィルタ 14に用いる時定数の値は、復調制御部 16から の制御信号によって、切替えスィッチ 15で少なくとも 2つ以上の複数の値から 1つの 値を選択する。
[0065] また、受信データのフレーム(スロット)数をカウントし、あるフレーム(スロット)数とな つた場合に、時定数が切替わるような制御としてもよレ、。
[0066] また、制御信号と、フレーム (スロット)数との組み合わせで時定数を切替えるように してもよい。
[0067] 復調制御部 16は、復調部 13において復調されたデータを受け取り、制御チャネル •通信チャネルなどのチャネル情報や、同期状態 ·非同期状態を識別し、時定数の大 きい値をループフィルタで用いる力、、小さい値をループフィルタに用いるかの制御信 号を復調部 13に送る。
[0068] 非同期状態から同期状態に早く移行したい場合は、時定数の小さい値を切替えス イッチ 15におレ、て選択するような制御信号を復調部 13に送る。
[0069] 非同期状態から同期状態に早く移行し、かつ、ループフィルタの引き込み後のジッ タを小さく抑えるためには、以下の動作を行う。
[0070] まず、復調制御部 16から、復調部 13に、時定数の小さい値を切替えスィッチ 15に ぉレヽて選択するような制御信号を送る。
[0071] 復調制御部 16において、同期状態に移行したことが確認されると、次に、復調制御 部 16は、復調部 13に、時定数の大きい値を切替えスィッチ 15において選択するよう な制御信号を送る。
[0072] 制御信号は、この時、最初の数フレーム (スロット)区間は、時定数の中間の値を選 択し、その後に、時定数の大きい値を選択するように自動的に切替わるようにする。
[0073] このような時定数の切替えを行うことにより、時定数の中間の大きさの値を用いない 場合と比べて、ループフィルタの収束を早く行うことができ、さらに、収束後の雑音に よるジッタを/ J、さく卬えることができる。
[0074] また、突然、搬送波周波数偏差が大きくなつたり、ビットクロックの偏差が大きくなつ たりして、同期が外れそうになった場合に、切替えスィッチ 15において、同期状態の 大きい時定数から、中間の時定数に切替え、さらにまた、数フレーム (スロット)の後に 大きい時定数に自動的に切替える制御を行うこともできる。
[0075] これにより、ループフィルタの新しい収束値への収束を早く行うことができるようにな るので、同期はずれを起こりにくくすることができる。
[0076] 前述したように、時定数を小さい値にすることによって、ループフィルタの引き込み を早く行うことができ、その結果、早く同期状態に状態遷移することができる。時定数 を大きい値にすることによって、ループフィルタの引き込み後の収束値のジッタを低く 抑えることができる。
[0077] 同期状態に入ったときにすぐに時定数を大きい値に切替えると、非同期状態の時 に引き込みきれていない状態で、時定数を大きい値に切替えてしまうので、引き込み に時間がかかってしまい、ジッタを小さく押さえ込むのに時間がかかってしまう。 [0078] 引き込みの時間を短くしょうとすると、時定数を小さめにせざるを得ず、ジッタを小さ く押さえ込むことが難しい。
[0079] 復調部が、 PHS (登録商標)などの TDMA— TDDシステムの同期検波方式 (また は準同期検波方式)を採用する場合は、短期間で収束させ、できるだけジッタを小さ く押さえ込むことが必要になってくるので、時定数固定よりも 2段階の時定数の切替え により、さらに、 2段階の時定数の切替えよりも 3段階 (以上)の時定数の切替えにより 、同期検波ほたは準同期検波)の最適な性能を引き出すことが可能になる。
[0080] 図 3は、 TDMA— TDD方式の復調部 13の構成である。復調部 13は、ループフィ ルタの存在する機能ブロックを複数持っている。
[0081] 受信レベル変換部 21は、振幅情報を、一定の範囲内で変動するような正規化処理 を行うことにより受信信号のレベルを変換する変換部である。
[0082] ループフィルタ 22は、受信レベル変換部 21内において、受信レベルの平均化を行 う際に用いるフィルタである。
[0083] 切替えスィッチ 23は、ループフィルタ 22に用いる時定数を切替えられるようにでき るスィッチである。切替えスィッチ 23は、例えば、複数存在する時定数のテーブルか ら、復調制御部 16からの制御信号によって 1つの時定数を選択できるような仕組みと なっている。あるいは、受信フレーム(スロット)数をカウントして、数フレーム(スロット) の後に、自動的に異なる時定数の値に切替える動作を行う。
[0084] 周波数偏差補正部 24は、周波数偏差を補正する自動周波数制御 (AFC)回路で ある。
[0085] ループフィルタ 25は、 自動周波数制御回路内において、位相回転量を積分する際 に用いるフィルタである。
[0086] 切替えスィッチ 26は、ループフィルタ 25に用いる時定数を切替えられるようにでき るスィッチである。
[0087] 切替えスィッチ 26は、例えば、複数存在する時定数のテーブルから、復調制御部 1 6からの制御信号によって 1つの時定数を選択できるような仕組みとなっている。ある レ、は、受信フレーム(スロット)数をカウントして、数フレーム(スロット)の後に、自動的 に異なる時定数の値に切替える動作を行う。 [0088] ビットタイミング再生部 27は、送信データのビットタイミングを再生する回路である。
[0089] ループフィルタ 28は、ビットタイミング再生部 27内において、位相回転する回転因 子と位相変動量との相関値を計算する際に用いるフィルタである。
[0090] 切替えスィッチ 29は、ループフィルタ 28に用いる時定数を切替えられるようにでき るスィッチである。切替えスィッチ 29は、例えば、複数存在する時定数のテーブルか ら、復調制御部 16からの制御信号によって 1つの時定数を選択できるような仕組みと なっている。あるいは、受信フレーム(スロット)数をカウントして、数フレーム(スロット) の後に、自動的に異なる時定数の値に切替える動作を行う。
[0091] 搬送波再生回路 210は、搬送波の再生を行う回路である。
[0092] ノレープフイノレタ 211は、搬送波再生回路 210内において、 LMSアルゴリズムで伝 送路推定を行う際に用レヽるフィルタである。
[0093] 切替えスィッチ 212は、ループフィルタ 211に用いる時定数を切替えられるようにで きるスィッチである。切替えスィッチ 212は、例えば、複数存在する時定数のテープ ルから、復調制御部 16からの制御信号によって 1つの時定数を選択できるような仕 組みとなっている。あるいは、受信フレーム(スロット)数をカウントして、数フレーム(ス ロット)の後に、 自動的に異なる時定数の値に切替える動作を行う。
[0094] 復調制御部 16は、搬送波再生回路から復調後データを受け取り、同期状態 ·非同 期状態、チャネル種別を判定し、各ループフィルタ 22, 25, 28, 211に時定数の切 替えを指示する制御信号を送る制御部である。復調制御部 16は、例えば、 PHS (登 録商標)などのシステムにおいては、ユニークワード検出、ユニークワードパルスのァ パーチヤゲート通過などにより、同期状態か非同期状態かを判別する。
[0095] 次に、作用及び効果について説明する。
[0096] 図 3において、受信レベル変換部 21は、振幅情報を受け取ると、ループフィルタ 22 にて振幅情報の平均化を行う。
[0097] その際、非同期状態の場合は、引き込みを早く行い、同期状態に早く遷移するよう に、復調制御部 16より制御信号が送られ、乗算される時定数は、小さい値が切替え スィッチ 23において選択される。
[0098] 同期状態に遷移すると、引き込みを非同期状態時より少し遅くし、引き込み後のジ ッタをある程度抑える動作をしたいために、復調制御部 16より制御信号が送られ、ル ープフィルタ 22に乗算される時定数は、中間の値が切替えスィッチ 23において選択 される。
[0099] その後、数フレーム (スロット)受信すると、さらにジッタを小さく抑えるために、切替 えスィッチ 23は、時定数が中間の大きさの値から、大きな値を選択するように切替わ る。
[0100] これにより、受信レベル平均化処理の引き込みを早く終わらせ、かつ、引込んだ後 の平均受信レベルの収束後のジッタを小さく抑えることができるので、受信レベルの 正規化を安定的に行うことができるようになる。
[0101] なお、時定数の中間値から大きい値へは、復調制御部 16からの制御信号によって 切替えてもよい。
[0102] 周波数偏差補正部 24は、振幅情報と位相情報を受け取ると、周波数偏差量を求 め、ループフィルタ 25により平均化する。
[0103] その際、ループフィルタ 25内で乗算される時定数は、非同期状態である場合は、 早く同期状態に遷移させたいために、復調制御部 16より制御信号が送られ、乗算さ れる時定数は、小さい値が切替えスィッチ 26において選択される。
[0104] 同期状態に遷移すると、引き込みを非同期状態時より少し遅くし、引き込み後のジ ッタをある程度抑える動作をしたいために、復調制御部 16より制御信号が送られ、ル ープフィルタ 25に乗算される時定数は、中間の値が切替えスィッチ 26において選択 される。
[0105] その後、数フレーム (スロット)受信すると、さらにジッタを小さく抑えるために、切替 えスィッチ 26は、時定数が中間の大きさの値から、大きな値を選択するように切替わ る。
[0106] これにより、周波数偏差量の平均化処理の引き込みを早く終わらせ、かつ、引込ん だ後の平均周波数偏差量の収束後のジッタを小さく抑えることができるので、周波数 偏差補正を早ぐかつ、精度よく行うことができる。
[0107] なお、時定数の中間値から大きい値へは、復調制御部 16からの制御信号によって 切替えてもよい。 [0108] ビットタイミング再生部 27は、位相情報を受け取ると、ループフィルタにより自走クロ ックとの相関を求める。
[0109] その際、ループフィルタ 28内で乗算される時定数は、非同期状態である場合は、 早く同期状態に遷移させたいために、復調制御部 16より制御信号が送られ、乗算さ れる時定数は、小さい値が切替えスィッチ 29において選択される。
[0110] 同期状態に遷移すると、引き込みを非同期状態時より少し遅くし、引き込み後のジ ッタをある程度抑える動作をしたいために、復調制御部 16より制御信号が送られ、ル ープフィルタ 28に乗算される時定数は、中間の値が切替えスィッチ 29において選択 される。
[0111] その後、数フレーム (スロット)受信すると、さらにジッタを小さく抑えるために、切替 えスィッチ 29は、時定数が中間の大きさの値から、大きな値を選択するように切替わ る。
[0112] これにより、ビットクロック(π /4シフト QPSKの場合はシンボルクロック)の再生の 相関値算出の引き込みを早く終わらせ、かつ、引込んだ後の平均周波数偏差量の 収束後のジッタを小さく抑えることができるので、ビットクロックの再生を早ぐかつ、精 度よく行うことができる。
[0113] なお、時定数の中間値から大きい値へは、復調制御部 16からの制御信号によって 切替えてもよい。
[0114] 搬送波再生部 210は、周波数偏差補正後の I, Qデータ、及び、再生クロックを受け 取ると、ループフィルタ 211を用いて搬送波再生処理を行う。
[0115] 搬送波再生部 210には、コスタスループや、伝送路推定に最小二重平均 (LMS) アルゴリズムを用いて逐次演算処理を行う手法が知られている力 S、いずれにも用いる ループフィルタに乗算される時定数は、非同期状態である場合は、早く同期状態に 遷移させたいために、復調制御部 16より制御信号が送られ、乗算される時定数は、 小さい値が切替えスィッチ 212において選択される。
[0116] 同期状態に遷移すると、引き込みを非同期状態時より少し遅くし、引き込み後のジ ッタをある程度抑える動作をしたいために、復調制御部 16より制御信号が送られ、ル ープフィルタ 211に乗算される時定数は、中間の値が切替えスィッチ 212において選 択される。
[0117] その後、数フレーム (スロット)受信すると、さらにジッタを小さく抑えるために、切替 えスィッチ 212は、時定数が中間の大きさの値から、大きな値を選択するように切替 わる。これにより、伝送路推定値の収束を早く終わらせ、かつ、引込んだ後のジッタを 小さく抑えることができるので、搬送波再生を早ぐかつ、精度よく行うことができる。
[0118] なお、時定数の中間値から大きい値へは、復調制御部 16からの制御信号によって 切替えてもよい。
[0119] 図 4は、時定数を複数用いるループフィルタを有する周波数偏差補正部 24 (自動 周波数制御回路または周波数偏差補正回路)の構成である。
[0120] 乗算器 41は、入力した位相情報と振幅情報とを乗算し、複素信号を生成する乗算 器である。
[0121] 遅延検波回路 42は、遅延検波方式により位相差を求める遅延検波回路である。
[0122] 角度情報抽出回路 43は、遅延検波回路 42にて求めた位相差情報を含む複素の 値から角度情報を抽出する回路である。
[0123] 減算器 44は、ループフィルタ内において、求めた周波数偏差の角度量を角度情報 力 減算する減算器である。
[0124] 変調成分除去回路 45は、角度情報抽出回路 43において抽出した角度情報が、 I,
Q平面の I軸、及び、 Q軸の両方から 45度の角度にある点からの差分を求め、その角 度の差が、 I軸からの変動量となるようにする回路である。
[0125] リミタ回路 46は、システムにより許容される偏差量を超えた分は雑音によるものなの で無視できるようにした回路である。
[0126] 乗算器 47は、複数存在する時定数の中から、 1つの時定数を選択し、乗算する乗 算器である。
[0127] 積分器 48は、角度の偏差量を加算して周波数偏差の角度量とする積分器である。
[0128] 積分器 49は、遅延検波回路 42によって求めた位相差を、周波数偏差の角度量を 加算することで元に戻す積分器である。
[0129] 角度情報複素情報変換回路 410は、積分器 49にて求めた角度情報を、複素信号 に変換する回路である。 [0130] 周波数偏差補正器 411は、乗算器 41にて求めた複素データに、角度情報複素情 報変換回路 410にて求めた角度情報の複素信号を乗算し、位相角の偏差分を無く すようにする補正器である。
[0131] 次に、作用及び効果について説明する。
[0132] 図 4において、位相情報と振幅情報は、乗算器 41において複素乗算され、遅延検 波回路 42において 1シンボル前のデータの複素共役と乗算されることで位相差分を 複素乗算により求める。
[0133] 遅延検波回路 42によって求められた位相差情報を含む複素信号は、角度情報抽 出回路 43において、角度情報のみを抽出される。
[0134] 変調成分除去回路 45において、角度情報抽出回路 43で抽出された角度情報と、 I
, Q平面上の、 I軸、 Q軸からそれぞれ 45度の角度にある点のうち、角度情報の存在 する象限の点との差分を求め、その差分を I軸からの変動量とする。
[0135] リミタ回路 46において、変調成分除去回路 45で求めた角度の変動量が、通信規 格にぉレ、て定められた周波数偏差量を超えなレ、ように制限する。
[0136] リミタ回路 46においてリミットされた角度変動量に、乗算器 47において時定数を乗 算する。
[0137] この時、非同期状態である場合は、復調制御部から、引き込みを早くするために、 時定数の小さい値を選択するような制御信号が送られてきて、時定数の小さい値を 乗算する。
[0138] 同期状態となれば、復調制御部から、同期状態を意味する制御信号が送られてき て、中間の大きさの時定数が選択され、乗算器 47において乗算される。引き込み速 度は遅くなるが、収束後のジッタが小さくなる。
[0139] 数フレーム (スロット)時間の後、時定数は大きい値に切替わり、収束後のジッタがさ らに小さくなる。
[0140] 積分器 48において、乗算器 47により時定数を乗算された角度変動量を加算し、角 度の変動量の平均値を求める。
[0141] 減算器 44において、積分器 48によって求めた角度変動量の積分結果を、角度情 報抽出回路 43からの出力データ力も減算する。これにより、角度情報抽出回路 43に おいて抽出された角度情報と、角度変動量の平均値からのずれの分だけをループフ ィルタ内に送ることになる。これにより、ループフィルタ内で徐々に角度変動量は実際 の変動量の値に収束してレ、く。
[0142] 積分器 48において積分された角度変動量を、積分器 49において加算して、遅延 検波回路 42において求めた位相回転を加える。
[0143] 積分器 49において位相回転が加わった角度変動量は、角度情報複素情報変換 回路 410において、複素データに変換される。角度情報複素情報変換回路 410に おいて複素データに変換された角度情報の複素共役は、周波数偏差補正器 411に おいて、乗算器 41の出力後の複素データと乗算され、乗算器 41の出力後のデータ の角度変動量はなくなる。
[0144] 時定数を小さい値から中間の値、大きい値に徐々に変化させることによって、積分 器 48で積分される角度変動量は、早く収束し、かつ、ジッタの小さい値を得ることが できるようになる。
[0145] 図 5は、復調制御部において判定される同期 ·非同期状態と、その時に用いる復調 部内の各ループフィルタに用いることを要求する時定数の大きさを示した状態遷移 図である。
[0146] 状態 51は、非同期状態、状態 52は、同期状態 1 (中間状態)、状態 53は、同期状 態 2である。
[0147] 非同期状態は、 1通り(状態 51)存在する。同期状態は、初めの数フレーム (スロット
)区間を同期状態 1 (状態 52)とし、同期状態に入ってからの数フレーム (スロット)区 間より後を、同期状態 2 (状態 53)とし、 2通り存在する。
[0148] 同期状態 1の時の時定数を中間の値としているので、引き込みの速さが、時定数が 大きいときより早いので、同期状態 1 (状態 52)から非同期状態 (状態 51)へ遷移する 確率が少なくなる。
[0149] 図 6は、復調制御部において判定される同期 ·非同期状態と、その時に用いる復調 部内の各ループフィルタに用いることを要求する時定数の大きさを示した状態遷移 図である。
[0150] 状態 61は、非同期状態、状態 62は、同期状態 1 (中間状態)、状態 63は、同期状 態 2、状態 64は、同期状態 3 (中間状態)である。
[0151] 非同期状態は、 1通り(状態 61)存在する。同期状態は、初めの数フレーム (スロット
)区間を同期状態 1 (状態 62)とし、同期状態に入ってからの数フレーム (スロット)区 間より後を、同期状態 2 (状態 63)とし、同期状態であるが、非同期状態になりそうな 状態を同期状態 3 (状態 64)とし、 3通り存在する。
[0152] 同期状態 1の時の時定数を中間の値としているので、引き込みの早さが時定数が 大きいときより早いので、同期状態 1 (状態 62)から非同期状態 (状態 61)へ遷移する 確率が少なくなる。
[0153] 同期状態 3 (状態 64)の時の時定数を中間の値としているので、引き込みの早さが 時定数が大きいときより早いので、突然周波数偏差や受信レベルなどが異なったとな つた場合に、時定数が大きい場合より早く新たに引き込みなおせるので、同期状態 3 (状態 64)から非同期状態 (状態 61)へ遷移する確率が少なくなる。
[0154] 図 7は、復調制御部において判定される同期 ·非同期状態と、その時に用いる復調 部内の各ループフィルタに用いることを要求する時定数の大きさを示した状態遷移 図である。
[0155] 状態 71は、非同期状態 1、状態 72は、非同期状態 2 (中間状態)、状態 73は、同期 状態、状態 74は、非同期状態 3 (中間状態)である。
[0156] 非同期状態は、非同期状態に受信するフレーム (スロット)(例えば、 PHSシステム では制御チャネル)を受信し始めてから最初の数フレーム (スロット)の状態を非同期 状態 1 (状態 71)とし、数フレーム (スロット)より後を非同期状態 2 (状態 72)とし、同期 状態を外れて力 数フレーム (スロット)しか経過していない非同期状態を非同期状 態 3 (状態 74)とする。
[0157] 同期状態は、 1通り(状態 73)である。
[0158] 非同期状態 2 (状態 72)において、数フレーム (スロット)経過して同期状態 (状態 73 )に移行しない場合は、非同期状態 1 (状態 71)に遷移する。
[0159] 非同期状態から同期状態への遷移は、時定数の小さい非同期状態 1 (状態 71)か ら時定数の中間値の非同期状態 2 (状態 72)を経てからであるので、同期状態の判 定閾値が厳しい場合には、引き込み後のジッタを時定数が小さい場合より小さく抑え ることができるので、非同期状態力 SI通りしか存在しない場合より同期状態に遷移し やすい効果がある。
[0160] 同期状態から非同期状態に遷移した場合に、最初の数フレーム (スロット)は時定 数が中間値である事を要求する非同期状態 3 (状態 74)となる。時定数を中間値にす ることによって、時定数が小さい場合より引き込み後のジッタを小さく抑えることができ るので、同期状態(状態 73)に早く再び遷移しやすいという効果がある。
[0161] 図 8は、復調制御部 16の構成例である。
[0162] UW検出部 101は、ユニークワード(UW)のパルスを検出し同期か非同期かを判 定する。フレーム数カウンタ 102は、 UW検出部 101により同期が検出されたフレー ム(あるいはスロット)数をカウントするカウンタである。制御信号生成部 103は、フレー ム数カウンタ 102のカウントに基づいて制御信号を生成する。
[0163] フレーム数カウンタ 102は、フレーム数の代わりに、スロット数をカウントしてもよレ、。
また、フレーム数の変わりにフレーム時間をカウントしてもよレ、。また、スロット数の変 わりにスロット時間をカウントしてもよい。あるいは、所定時間をカウントしてもよい。ま た、フレーム数カウンタ 102は、破棄したフレーム(スロット)数をカウントすることもでき る。
[0164] フレーム (スロット)フォーマットに、同期状態、タイミングを識別するためのユニーク ワード(UW)が存在する。復調制御部内において、 UWパルスを UW検出部 101に おいて検出するか、しないかの判定を行い、検出しな力 た場合はそのフレーム(ス ロット)を破棄し、検出した場合は、フレーム数カウンタ 102にて、フレーム (スロット)数 をカウントしていく。制御信号生成部 103において、時定数の大きさを選ぶ制御信号 が生成され、復調部内のループフィルタを持った各機能ブロックへ送られる。
[0165] なお、 UW検出部 101の代わりに、信号雑音比判定部を設けて同期状態、非同期 状態の判定を C/N (信号雑音比)で行ってもょレ、。
[0166] 図 9は、図 5,図 6において、非同期状態から同期状態 1、同期状態 2へ遷移する場 合に、実際に復調制御部 16がどのように状態遷移を判断するのかを示したフローチ ヤートである。
[0167] ステップ 81は、 UW (ユニークワード)検出による条件分岐である。 [0168] ステップ 82は、 2フレーム経過前後による条件分岐である。
[0169] 図 5,図 6の非同期状態(状態 51 , 61)において、ステップ 81で、 UW検出部 101 が UWを検出しない場合、非同期状態(状態 51, 61)になる。ステップ 81で、 UW検 出部 101が UWを検出したならば、フレーム数カウンタ 102が、フレーム数をカウント し、ステップ 82で 2フレーム経過か否かを判断し、経過前なら、同期状態 1 (状態 52,
62)、経過後なら、同期状態 2 (状態 53, 63)へ遷移する。
[0170] 図 10は、図 7において、同期状態から非同期状態 3、非同期状態 3から非同期状態
1、非同期状態 3から同期状態へ遷移する場合に、実際に復調制御部 16がどのよう に状態遷移を判断するのかを示したフローチャートである。
[0171] ステップ 91は、 UW (ユニークワード)不検出による条件分岐である。
[0172] ステップ 92は、 2フレーム(スロット)前は UW (ユニークワード)を検出していたかどう かの条件分岐である。
[0173] 図 7の同期状態(状態 73)において、ステップ 91で、 UW検出部 101が UWを検出 した場合、同期状態(状態 73)になる。ステップ 91で、 UW検出部 101が UWを検出 しなくなつたならば、フレーム数カウンタ 102が、フレーム数をカウントし、ステップ 92 で 2フレーム前は UWを検出していたか否かを判断し、検出していたら、非同期状態 3 (状態 74)、検出していなかったなら、非同期状態 1 (状態 71)へ遷移する。
[0174] 図 11は、本実施の形態における 3種の時定数を用いたループフィルタの引き込み の様子を示したものである。
[0175] 図 12は、本実施の形態における 2種の時定数を用いたループフィルタの引き込み の様子を示したものである。
[0176] 図 11 ,図 12において、横軸は、時間である。横軸は、スロット時間である。横軸は、 フレーム時間でもよい。縦軸は、位相、周波数偏差などの収束状態を示している。
[0177] 図 11の場合は、時定数を小→中→大と 3段階に変更している。同期した第 1スロット と第 2スロットを時定数が中で引き込んでおり、第 3スロットから時定数が大での引き込 みを開始している。こうして、収束時間 Aで収束値に近づく。収束後のジッタは少ない
[0178] 図 12の場合は、時定数を小→大と 2段階に変更している。同期した第 1スロットから 時定数が大での引き込みを開始している。こうして、収束時間 Bで収束値に近づく。 収束後のジッタは多い。
[0179] 時定数の中間の大きさの値を用いた図 11の場合のほうが、収束時間 A<収束時間 Bとなり、早く収束値に近づくことができるようになり、さらに収束後のジッタを小さく抑 えることができる。
[0180] 以上のように、この実施の形態の無線通信装置は、位相変調されたバースト信号を 受信して同期検波方式または準同期検波方式により復調する復調部 13と、復調部 1 3のバースト信号の受信状態に基づいて、復調部のバースト信号の復調を制御する 制御信号を生成する復調制御部 16とを備え、復調部 13は、時分割多重方式により ディジタル位相変調されたバースト信号を復調するものであり、バースト信号に基づく 信号をフィルタリングするループフィルタ 14と、制御信号により、ループフィルタの時 定数を切替える時定数切替え部 15とを備えたこと特徴とする。
[0181] ここで、バースト信号に基づく信号とは、バースト信号の振幅情報、位相情報、角度 情報、再生クロック、周波数偏差補正後の I, Qデータの信号などをいう。
[0182] また、上記ループフィルタは、バースト信号の周波数の偏差を補正する周波数偏差 補正部 24と、バースト信号の搬送波を再生する搬送波再生部 210と、バースト信号 のビットタイミングを再生するビットタイミング再生部 27と、バースト信号の受信レベル を変換する受信レベル変換部 21とに用いられたループフィルタであることを特徴とす る。
[0183] また、上記復調制御部 16は、復調部 13におけるバースト信号の受信状態が、同期 状態と、非同期状態と、同期状態と非同期状態との中間に位置する中間状態との 3 種の状態のいずれかであるかを検出して、検出した受信状態を示す制御信号を出力 し、上記時定数切替え部 15は、同期状態に用いる大きい値の時定数と、中間状態に 用いる中間の値の時定数と、非同期状態に用いる小さい値の時定数を有し、制御信 号の示す 3種の受信状態に対応した時定数に切替えることを特徴とする。
[0184] 上記復調制御部 16は、復調部 13におけるバースト信号の受信状態が非同期状態 力 同期状態へ変化するときの所定数のフレームの受信状態を、中間状態とすること を特徴とする。 [0185] あるいは、上記復調制御部 16は、復調部 13におけるバースト信号の受信状態が 同期状態から非同期状態へ変化するときの所定数のフレームの受信状態を、中間状 態とすることを特徴とする。
[0186] また、上記復調制御部は、復調部におけるバースト信号の受信状態を、信号雑音 比で検出して、検出した受信状態を示す制御信号を出力し、上記時定数切替え部 1 5は、制御信号の示す受信状態に対応した時定数に切替えることを特徴とする。
[0187] また、この実施の形態の復調制御方式は、ループフィルタに用いる時定数の大きさ を、非同期状態の場合は小さい値、同期状態の場合は最初の数フレーム (スロット) 以外は大きい値、最初の数フレーム (スロット)の区間は中間の値を用いる制御を行う ことを特徴とする。
[0188] また、この実施の形態の復調制御方式は、ループフィルタに用いる時定数の大きさ を、非同期状態の場合は小さい値、同期状態の場合は最初の数フレーム (スロット) 以外は大きい値、最初の数フレーム (スロット)の区間は中間の値、非同期状態のうち 、数フレーム (スロット)前が同期状態であった場合に、中間の値を用いる制御を行う ことを特徴とする。
[0189] また、この実施の形態の復調制御方式は、ループフィルタに用いる時定数の大きさ を、非同期状態の場合の引き込み開始の最初の数フレーム (スロット)は小さい値、最 初の数フレーム (スロット)以降は中間の値、同期状態の場合は大きい値、非同期状 態のうち、数フレーム (スロット)前が同期状態であった場合に、中間の値を用いる制 御を行うことを特徴とする。
[0190] また、この実施の形態の復調制御方式は、フレーム (スロット)時間が経過すると自 動的に時定数の大きさが切替わる制御を行レ、、そのフレーム(スロット)時間を 2フレ ーム (スロット)としたことを特徴とする。
[0191] また、この実施の形態の復調制御方式は、フレーム (スロット)時間が経過すると自 動的に時定数の大きさが切替わる制御を行レ、、復調制御部 16が、フレーム (スロット) 数をカウントするカウンタ回路を持ち、復調制御部が、カウンタ回路のカウント結果を 受けて、時定数を選択する制御信号を生成することを特徴とする。
[0192] また、この実施の形態の復調制御方式は、フレーム、スロットのフォーマットが、 TD MA— TDD方式におけるフォーマットであることを特徴とする。逆に、この実施の形態 の復調制御方式は、フレーム、スロットのフォーマット力 CDMA— TDD方式、 CDM
A— FDD方式におけるものでないことを特徴とする。
[0193] また、この実施の形態の復調制御方式は、同期状態、非同期状態の判定にフレー ム同期状態を用いたことを特徴とする。
[0194] また、この実施の形態の復調制御方式は、時定数の大きさを大きい値から小さい値 へ 3段階以上切替えることができるようにしたことを特徴とする。
[0195] また、この実施の形態の復調制御方式は、時定数の大きさを選択する判断基準に
C/N (信号雑音比)を用いたことを特徴とする。
[0196] また、この実施の形態の復調制御方式は、受信レベル変換部 21、周波数偏差補 正部 24 (自動周波数制御回路)、ビットタイミング再生部 27、搬送波再生部 210が、 ループフィルタに乗算される時定数を大きさの異なる 3つのうちから選択することがで きることを特徴とする。
[0197] なお、この実施の形態の復調制御方式において、 3種の時定数ではなぐ大,小の 2種の時定数により、ループフィルタに用いる時定数の大きさを、非同期状態の場合 は小さい値、同期状態の場合は大きい値を用いる制御を行うようにしてもよい。また、 大,小の 2種の時定数を有し、大 +小,大,小の 3種の時定数を切り替えるようにして もよい。また、大 +小,大、大-小,小としてもよい。
[0198] 上記無線通信装置の復調制御方式は、位相変調されたバースト信号を受信する受 信機であって、同期検波方式または準同期検波方式の復調部を搭載した無線装置 に適用することができる。そして、周波数偏差補正部の平均化処理用ループフィルタ に用いる時定数を同期状態、非同期状態などの受信状態に応じて切替えられるよう にして、平均化の収束を早ぐかつ、ジッタを小さく抑えるようにして同期検波ほたは 準同期検波)における搬送波再生の安定動作を可能にする。
[0199] また、周波数偏差補正部のループフィルタだけではなぐ受信レベル変換部、搬送 波再生部、ビットタイミング再生部のループフィルタ及び復調部内の任意のループフ ィルタ、あるいは、復調部内の全てのループフィルタに用いる時定数も大きさの異な る値を切替えられるようにしたので、平均化の収束を早ぐかつ、ジッタを小さく抑え、 復調の安定動作を可能にする。
[0200] また、この切替えは、復調制御部 16から復調部内の任意の、または、全てのループ フィルタに対して同一の制御信号により指令されるため、復調部 13の復調動作が統 一される効果がある。あるいは、制御信号は、各部に個別に出力されてもよいが、復 調制御部 16のコントロールの元に出力されるため、復調部 13の復調動作が各部の 各状態に合わせて制御される。
[0201] ここで、「多重信号再生装置」(特開平 7— 336325公報)に記載されている方式との 違いを述べることにより、この実施の形態の復調方式の特徴を説明する。
[0202] 特開平 7— 336325公報に記載されている方式は、移動体通信に関するものではな ぐこの実施の形態の復調方式は、移動体通信に関するものであり、技術分野が異 なる。
[0203] 特開平 7—336325公報に記載されている方式は周波数変調方式であり、この実施 の形態の復調方式は、 PSK変調(ディジタル位相変調)方式の復調であるため、復 調部の方式が異なる。従って、復調部の構成が異なる。特開平 7-336325公報に記 載されている方式は、この実施の形態の復調方式の図 3,図 4,図 10の構成をとるこ とはない。例えば、特開平 7-336325公報に記載されている方式では、搬送波再生 の精度を高めるための周波数偏差補正部 24は存在ない。周波数偏差は移動体通 信に特有のものである。この実施の形態の復調方式は、移動体通信に特有の周波 数偏差の補正の精度を改善するものである。搬送波を再生する同期検波方式にお レ、て周波数偏差の補正の精度を改善することは重要である。
[0204] 特開平 7 - 336325公報に記載されている方式は、無線通信に用いられる位相変 調されたバースト信号を受信する受信装置に関するものではない。従って、バースト 信号を同期検波方式 (または準同期検波方式)で復調する場合に生じるジッタの問 題解決にはならなレ、。この実施の形態の復調方式は、無線通信に用いられる PSK変 調 (ディジタル位相変調)方式で位相変調されたバースト信号を受信する受信装置に 関するものであり、バースト信号を同期検波方式ほたは準同期検波方式)で復調す る場合に生じるジッタの問題を解決し、無線通信の受信感度を改善する目的と効果 とを持つものである。この実施の形態の復調方式は、 PSK変調(ディジタル位相変調 )方式で位相変調されたバースト信号を受信し、同期検波方式 (または準同期検波 方式)で復調する復調部のループフィルタの時定数の切替えに関するものであり、 τ
DMA— TDDシステムを採用した場合の位相変調されたバースト信号を同期検波す る(または準同期検波する)復調処理において、ループフィルタの時定数の切替えを するものは従来には存在なレ、。このような構成にしたため、この実施の形態の復調方 式は、雑音の影響によるジッタを小さく抑え、かつ、早く引き込めるという効果を奏す ること力 Sできる。
産業上の利用可能性
[0205] 本実施の形態によれば、同期検波方式 (または準同期検波方式)を採用し、周波 数偏差や再生クロックのジッタを小さく抑えることが必要な復調器に、周波数偏差補 正やビットクロック(シンボルクロック)を再生する機能ブロック内のループフィルタに乗 算する時定数の大きさを 2種類以上 (望ましくは、 3種以上)用意し、同期'非同期状 態などを元に切替えることができるようにし、早い引き込みと、引き込み後のジッタを 小さく抑えることができる。その結果、非同期から同期状態へ早く遷移することができ 、同期から非同期状態へ遷移しにくくなるという効果がある。
[0206] また、時定数ごとにループフィルタを用意する必要がないので、回路規模の増大を 抑えることができる効果がある。
図面の簡単な説明
[0207] [図 1]本発明の実施の形態 1における時定数を切替えて変更することができるループ フィルタを持った復調部と復調制御部の構成図である。
[図 2]バースト信号の説明図である。
[図 3]本発明の実施の形態 1における復調部のうち、ループフィルタを持つた機能ブ ロックの例をカ卩えた図 1より詳細な復調部と復調制御部の構成図である。
[図 4]本発明の実施の形態 1における図 3の周波数偏差補正部(回路)の構成図であ る。
[図 5]非同期状態が 1通り、同期状態力 S2通りある場合の状態遷移図である。
[図 6]非同期状態が 1通り、同期状態力 ¾通りある場合の状態遷移図である。
[図 7]非同期状態が 3通り、同期状態力 ^通りある場合の状態遷移図である。 園 8]本発明の実施の形態 1における復調制御部の構成図である。
園 9]同期状態から非同期状態へ遷移する場合の時定数の大きさを判定するフロー チャートを示す図である。
[図 10]非同期状態になって、フレーム(スロット)の経過が 2フレーム(スロット)以下で ある場合の時定数の大きさを判定するフローチャートを示す図である。
園 11]本発明の実施の形態 1における時定数を 3段階とした場合における収束の様 子を示す図である。
園 12]本発明の実施の形態 1における時定数を 2段階とした場合における収束の様 子を示す図である。

Claims

請求の範囲
[1] 位相変調されたバースト信号を受信して同期検波方式と準同期検波方式とのいず れかにより復調する復調部と、
復調部のバースト信号の受信状態に基づいて、復調部のバースト信号の復調を制 御する制御信号を生成する復調制御部とを備え、
復調部は、
バースト信号に基づく信号を、設定された時定数を用いてフィルタリングするフィノレ タと、
制御信号により、フィルタの時定数を切替える時定数切替え部とを備えたこと特徴と する無線通信装置。
[2] 上記フィルタは、バースト信号の周波数の偏差を補正する周波数偏差補正部に用 レ、られたループフィルタであることを特徴とする請求項 1記載の無線通信装置。
[3] 上記フィルタは、バースト信号の搬送波を再生する搬送波再生部に用いられたル ープフィルタであることを特徴とする請求項 1記載の無線通信装置。
[4] 上記フィルタは、バースト信号のビットタイミングを再生するビットタイミング再生部に 用いられたループフィルタであることを特徴とする請求項 1記載の無線通信装置。
[5] 上記フィルタは、バースト信号の受信レベルを変換する受信レベル変換部に用いら れたループフィルタであることを特徴とする請求項 1記載の無線通信装置。
[6] 上記復調部は、時分割多重方式によりディジタル位相変調されたバースト信号を復 調することを特徴とする請求項 1記載の無線通信装置。
[7] 上記復調制御部は、復調部におけるバースト信号の受信状態が、同期状態と、非 同期状態と、同期状態と非同期状態との中間に位置する中間状態との 3種の状態の いずれかであるかを検出して、検出した受信状態を示す制御信号を出力し、 上記切替え部は、同期状態に用いる大きい値の時定数と、中間状態に用いる中間 の値の時定数と、非同期状態に用いる小さい値の時定数を有し、制御信号の示す受 信状態に対応した時定数に切替えることを特徴とする請求項 1記載の無線通信装置
[8] 上記復調制御部は、復調部におけるバースト信号の受信状態が非同期状態力 同 期状態へ変化するときの所定数のフレームまたはスロットの受信状態を、中間状態と することを特徴とする請求項 7記載の無線通信装置。
[9] 上記復調制御部は、復調部におけるバースト信号の受信状態が同期状態から非同 期状態へ変化するときの所定数のフレームまたはスロットの受信状態を、中間状態と することを特徴とする請求項 7記載の無線通信装置。
[10] 上記復調制御部は、復調部におけるバースト信号の受信状態を、信号雑音比で検 出して、検出した受信状態を示す制御信号を出力し、
上記切替え部は、制御信号の示す受信状態に対応した時定数に切替えることを特 徴とする請求項 1記載の無線通信装置。
[11] バースト信号を受信してフィルタを用いた同期検波方式により復調する復調部と、 復調部を制御する復調制御部とを備えた無線通信装置の復調方法において、 復調部が、時分割多重方式によりディジタル位相変調されたバースト信号を受信し 復調制御部が、復調部のバースト信号の受信状態に基づいて、復調部のフィルタ の時定数を制御する制御信号を生成し、
復調部が、制御信号によりフィルタの時定数を切替え、バースト信号に基づく信号 をフィルタリングすること特徴とする復調方法。
[12] 上記復調方法は、
復調制御部が、復調部におけるバースト信号の受信状態が、同期状態と、非同期 状態と、同期状態と非同期状態との中間に位置する中間状態との 3種の状態のいず れかであるかを検出して、検出した受信状態を示す制御信号を出力し、
上記復調部が、同期状態に用いる大きい値の時定数と、中間状態に用いる中間の 値の時定数と、非同期状態に用いる小さい値の時定数のうち、制御信号の示す受信 状態に対応した時定数に切替えることを特徴とする請求項 11記載の復調方法。
[13] 上記復調方法は、
復調部におけるバースト信号の受信状態が非同期状態から同期状態へ変化すると き中間状態とし、
復調部におけるバースト信号の受信状態が同期状態から非同期状態へ変化すると き中間状態とすることを特徴とする請求項 12記載の復調方法。
バースト信号の位相情報と振幅情報とを入力して乗算し、複素信号を生成する乗 算器と、
乗算器が生成した複素信号を遅延検波して位相差情報を求める遅延検波回路と、 遅延検波回路にて求めた位相差情報力 角度情報を抽出する角度情報抽出回路 と、
角度情報抽出回路で求めた角度情報から、周波数偏差の角度量を減算する減算 器と、
減算器において減算された角度情報が、 I, Q平面の I軸及び Q軸の両方から 45度 の角度にある点からの差分を求め、その角度の差が、 I軸からの変動量となるように角 度の偏差量を出力する変調成分除去回路と、
変調成分除去回路からの角度の偏差量が、許容される偏差量を超えた場合に、超 えた偏差量を制限するリミタ回路と、
複数存在する時定数の中から、 1つの時定数を選択する切替えスィッチと、 切替えスィッチにより選択された時定数を、リミタ回路から出力された角度の偏差量 に乗算する乗算器と、
乗算器により時定数が乗算された角度の偏差量を加算して周波数偏差の角度量と して出力する第 1積分器と、
第 1積分器で求めた周波数偏差の角度量を加算することで、遅延検波回路による 位相差を元に戻す第 2積分器と、
第 2積分器にて求めた角度情報を、複素信号に変換する角度情報複素情報変換 回路と、
乗算器にて求めた複素データに、角度情報複素情報変換回路にて求めた角度情 報の複素信号を乗算し、位相角の偏差分を無くすようにする周波数偏差補正器と を備えたことを特徴とする周波数偏差補正回路。
PCT/JP2004/006638 2004-05-17 2004-05-17 無線通信装置及び復調方法及び周波数偏差補正回路 WO2005112381A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US11/578,150 US8018914B2 (en) 2004-05-17 2004-05-17 Radio communication device, demodulation method, and frequency deflection correction circuit
CN2004800430413A CN1961554B (zh) 2004-05-17 2004-05-17 无线通信装置、解调方法及频率偏差修正电路
PCT/JP2004/006638 WO2005112381A1 (ja) 2004-05-17 2004-05-17 無線通信装置及び復調方法及び周波数偏差補正回路
JP2006513477A JP4286287B2 (ja) 2004-05-17 2004-05-17 無線通信装置及び復調方法及び周波数偏差補正回路

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2004/006638 WO2005112381A1 (ja) 2004-05-17 2004-05-17 無線通信装置及び復調方法及び周波数偏差補正回路

Publications (1)

Publication Number Publication Date
WO2005112381A1 true WO2005112381A1 (ja) 2005-11-24

Family

ID=35394509

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/006638 WO2005112381A1 (ja) 2004-05-17 2004-05-17 無線通信装置及び復調方法及び周波数偏差補正回路

Country Status (4)

Country Link
US (1) US8018914B2 (ja)
JP (1) JP4286287B2 (ja)
CN (1) CN1961554B (ja)
WO (1) WO2005112381A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009081701A (ja) * 2007-09-26 2009-04-16 Kyocera Corp 受信制御方法および受信装置
JP2011166597A (ja) * 2010-02-12 2011-08-25 Mitsubishi Electric Corp 搬送波位相補正回路

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4506870B2 (ja) * 2008-04-30 2010-07-21 ソニー株式会社 受信装置および受信方法、並びにプログラム
GB2504057A (en) * 2012-05-11 2014-01-22 Neul Ltd Frequency error estimation
US10063306B2 (en) * 2016-10-24 2018-08-28 Mitsubishi Electric Research Laboratories, Inc. Method and systems using quasi-synchronous distributed CDD systems
CN112751634B (zh) * 2020-12-31 2022-05-31 清源智翔(重庆)科技有限公司 一种预测式猝发信号监测切频方法及***

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02222343A (ja) * 1989-02-23 1990-09-05 Japan Radio Co Ltd Afc方式
JPH05335945A (ja) * 1992-04-02 1993-12-17 Mitsubishi Electric Corp Pll回路装置および位相差検出回路装置
JPH06232926A (ja) * 1993-02-01 1994-08-19 Sanyo Electric Co Ltd 搬送波信号再生回路
JPH0746283A (ja) * 1993-07-30 1995-02-14 Nec Corp 搬送波再生同期装置
JPH0794984A (ja) * 1993-09-27 1995-04-07 Nec Eng Ltd 自動利得制御装置
JPH0856159A (ja) * 1994-08-10 1996-02-27 Kokusai Electric Co Ltd 周波数シンセサイザにおけるループフィルタ切替方式
JPH08288971A (ja) * 1995-04-17 1996-11-01 Hitachi Ltd ディジタル無線受信端末
JPH0918533A (ja) * 1995-06-30 1997-01-17 Anritsu Corp バースト信号用agc回路
JPH09307380A (ja) * 1996-05-13 1997-11-28 Toshiba Corp Agc機能を備えた無線通信装置

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2537363B1 (fr) * 1982-12-02 1988-09-02 Nippon Telegraph & Telephone Dispositif de retablissement de signal d'horloge pour un systeme de telecommunication par satellite a acces multiple par repartition dans le temps
CA2018855C (en) * 1989-06-14 1993-09-21 Shousei Yoshida Burst demodulator for establishing carrier and clock timing from a sequence of alternating symbols
US5612977A (en) * 1993-12-28 1997-03-18 Nec Corporation Automatic frequency control circuit for a receiver of phase shift keying modulated signals
JPH07336325A (ja) 1994-06-06 1995-12-22 Hitachi Ltd 多重信号再生装置
JP2591487B2 (ja) * 1994-06-30 1997-03-19 日本電気株式会社 Pllシンセサイザ無線選択呼出受信機
JPH0870291A (ja) * 1994-08-29 1996-03-12 Nec Corp 時分割多方向多重通信方式
JPH0918532A (ja) * 1995-06-30 1997-01-17 Nec Corp バーストモード通信システムにおける無線通信装置及び受信方法
US5822011A (en) * 1995-09-15 1998-10-13 Thomson Consumer Electronics, Inc. Apparatus for detecting noise in a color video signal
JPH11340933A (ja) 1998-05-27 1999-12-10 Nec Corp Tdma受信装置および無線基地局と中継局
JP2000151318A (ja) * 1998-11-10 2000-05-30 Fujitsu Ltd 無線携帯端末の周辺レベル検出装置
JP2000174744A (ja) 1998-12-04 2000-06-23 Nec Corp フレーム同期回路
JP2001127728A (ja) * 1999-10-29 2001-05-11 Oki Electric Ind Co Ltd 受信回路
US7272361B2 (en) * 1999-12-24 2007-09-18 Ntt Docomo, Inc. Method and device for transmitting burst signal in mobile communication system, information distribution method, and information distribution controller
JP2003018229A (ja) 2001-07-03 2003-01-17 Nec Eng Ltd クロック再生回路
JP2003087116A (ja) * 2001-09-14 2003-03-20 Nec Saitama Ltd Pllシンセサイザ
JP2003209485A (ja) 2002-01-15 2003-07-25 Toshiba Corp 無線通信装置の制御方法および無線通信装置
US6906500B2 (en) * 2002-11-14 2005-06-14 Fyre Storm, Inc. Method of operating a switching power converter
US20060067453A1 (en) * 2004-09-30 2006-03-30 Lucent Technologies Inc. Timing circuit for data packet receiver

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02222343A (ja) * 1989-02-23 1990-09-05 Japan Radio Co Ltd Afc方式
JPH05335945A (ja) * 1992-04-02 1993-12-17 Mitsubishi Electric Corp Pll回路装置および位相差検出回路装置
JPH06232926A (ja) * 1993-02-01 1994-08-19 Sanyo Electric Co Ltd 搬送波信号再生回路
JPH0746283A (ja) * 1993-07-30 1995-02-14 Nec Corp 搬送波再生同期装置
JPH0794984A (ja) * 1993-09-27 1995-04-07 Nec Eng Ltd 自動利得制御装置
JPH0856159A (ja) * 1994-08-10 1996-02-27 Kokusai Electric Co Ltd 周波数シンセサイザにおけるループフィルタ切替方式
JPH08288971A (ja) * 1995-04-17 1996-11-01 Hitachi Ltd ディジタル無線受信端末
JPH0918533A (ja) * 1995-06-30 1997-01-17 Anritsu Corp バースト信号用agc回路
JPH09307380A (ja) * 1996-05-13 1997-11-28 Toshiba Corp Agc機能を備えた無線通信装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009081701A (ja) * 2007-09-26 2009-04-16 Kyocera Corp 受信制御方法および受信装置
JP2011166597A (ja) * 2010-02-12 2011-08-25 Mitsubishi Electric Corp 搬送波位相補正回路

Also Published As

Publication number Publication date
JPWO2005112381A1 (ja) 2008-03-27
CN1961554A (zh) 2007-05-09
US8018914B2 (en) 2011-09-13
CN1961554B (zh) 2010-06-16
JP4286287B2 (ja) 2009-06-24
US20080279172A1 (en) 2008-11-13

Similar Documents

Publication Publication Date Title
US5875215A (en) Carrier synchronizing unit
EP1063824B1 (en) Symbol synchronisation in multicarrier receivers
EP0318685A2 (en) Phase coherent TDMA quadrature receiver for multipath fading channels
JP4366808B2 (ja) タイミングエラー検出回路および復調回路とその方法
JPH0787149A (ja) 復調装置
JP3168610B2 (ja) 受信機
JP3189138B2 (ja) 自動周波数制御方法及びその装置
JP2008530951A (ja) 予め符号化された部分応答信号用の復調器および受信器
JP3575883B2 (ja) ディジタル復調器
JP4286287B2 (ja) 無線通信装置及び復調方法及び周波数偏差補正回路
EP1245103A1 (en) Offset correction in a spread spectrum communication system
JP3792904B2 (ja) 受信装置、及び通信装置
JP4139814B2 (ja) 周波数誤差検出方法、受信方法、及び送受信方法
JPH09233134A (ja) 復調器
JP3968546B2 (ja) 情報処理装置および方法、並びに提供媒体
JP3971084B2 (ja) キャリア再生回路とデジタル信号受信装置
JP4967977B2 (ja) 受信装置及び受信方法
JPH07273823A (ja) 自動周波数制御装置
WO2003032543A1 (fr) Dispositif de commande de frequence automatique ofdm et procede associe
JP2019161502A (ja) 通信処理をコンピュータに実行させるためのプログラム、親機、子機、通信システム、及び、通信方法
JP3660930B2 (ja) 無線通信装置における自動周波数制御信号発生回路、受信装置、基地局装置、無線送受信システム、及び周波数誤差検出方法
JPH11103326A (ja) 復調器
KR100246619B1 (ko) 고속 디지털 가입자 선로의 상향 링크용 디지털 복조 장치
JP3394276B2 (ja) Afc回路
JP4445649B2 (ja) 復調方式

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200480043041.3

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006513477

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 11578150

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Ref document number: DE

122 Ep: pct application non-entry in european phase