WO2005082792A1 - アンモニア性窒素含有水の硝化方法及び処理方法 - Google Patents

アンモニア性窒素含有水の硝化方法及び処理方法 Download PDF

Info

Publication number
WO2005082792A1
WO2005082792A1 PCT/JP2005/001889 JP2005001889W WO2005082792A1 WO 2005082792 A1 WO2005082792 A1 WO 2005082792A1 JP 2005001889 W JP2005001889 W JP 2005001889W WO 2005082792 A1 WO2005082792 A1 WO 2005082792A1
Authority
WO
WIPO (PCT)
Prior art keywords
nitrogen
nitrification
concentration
ammonia
containing water
Prior art date
Application number
PCT/JP2005/001889
Other languages
English (en)
French (fr)
Inventor
Takaaki Tokutomi
Original Assignee
Kurita Water Industries Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd. filed Critical Kurita Water Industries Ltd.
Priority to EP05709941.8A priority Critical patent/EP1721870B1/en
Priority to CN2005800065236A priority patent/CN1926072B/zh
Priority to KR1020067019340A priority patent/KR101188480B1/ko
Priority to AU2005217249A priority patent/AU2005217249B2/en
Publication of WO2005082792A1 publication Critical patent/WO2005082792A1/ja
Priority to US11/496,408 priority patent/US7329352B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/34Biological treatment of water, waste water, or sewage characterised by the microorganisms used
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/30Aerobic and anaerobic processes
    • C02F3/302Nitrification and denitrification treatment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/006Regulation methods for biological treatment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/30Aerobic and anaerobic processes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/14NH3-N
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/16Total nitrogen (tkN-N)
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/38Gas flow rate
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Definitions

  • the present invention relates to a method for aerating ammonia-nitrogen-containing water in the presence of ammonium nitrate bacteria for nitrification, and more particularly to a method for nitrifying ammonia-nitrogen-containing water for nitrite-type nitrification.
  • the present invention relates to a method for treating ammoniacal nitrogen-containing water, wherein the nitrite-type nitrification is followed by a denitrification treatment by autotrophic bacteria.
  • Ammoniacal nitrogen contained in wastewater is one of the causative substances of eutrophication in rivers, lakes and oceans, and needs to be sufficiently removed.
  • ammonia nitrogen in wastewater is converted from ammonium nitrogen to nitrite nitrogen by ammonium nitrite bacteria, and a part of this nitrite nitrogen is converted to nitrite nitrite bacteria by nitrite nitrite bacteria.
  • ANAMMOX bacteria autotrophic microorganisms (hereinafter sometimes referred to as "ANAMMOX bacteria") using ammonia nitrogen as an electron donor and nitrite nitrogen as an electron acceptor have been used to reduce ammonia nitrogen.
  • a method of denitrification by reacting with nitrite nitrogen has been proposed. This method does not require the addition of organic matter, so that the cost can be reduced as compared with the method using heterotrophic denitrifying bacteria.
  • the amount of sludge with low yield of autotrophic microorganisms is much smaller than that of heterotrophic microorganisms, the amount of surplus sludge can be suppressed. Furthermore, it is suitable for the environment where generation of NO observed by the conventional nitrification
  • the ammonia nitrogen in the wastewater is treated by the ammonium acid-riding bacterium without oxidizing it to nitric acid. It is necessary to perform nitrite-type nitrification in which the dani is stopped with nitrous acid.
  • nitrification reaction of ammoniacal nitrogen becomes a nitrite type by controlling the concentration of DO (dissolved oxygen) to be low. That is, nitrite-type nitrification is performed by supplying oxygen in an amount necessary for converting ammoniacal nitrogen to nitrite nitrogen and suppressing the oxidation reaction from nitrite nitrogen to nitrate nitrogen.
  • DO dissolved oxygen
  • Japanese Patent Application Laid-Open No. 2003-10883 discloses that the amount of aerated air is adjusted so that the concentration of residual ammonia nitrogen in the nitrification liquid in the nitrification tank or the nitrification liquid flowing out of the nitrification tank becomes 20 mgZL or more. It describes that nitrite-type nitrification is performed stably and reliably.
  • the nitrification of ammoniacal nitrogen-containing water is performed by introducing ammoniacal nitrogen-containing water into a nitrification tank and aerating in the presence of ammonium nitrite bacteria for nitrification.
  • the ratio AZB of the molar concentration A of nitrite and the molar concentration B of ammonia in the nitrification liquid flowing out of the nitrification tank is set to 1.1 or more.
  • the denitrification by autotrophic bacteria can be performed with high efficiency by setting the ratio AZB of the nitrite concentration and the ammonia concentration in the nitrification solution from the nitrification tank to 1.1 or more. It becomes possible.
  • the method for treating ammoniacal nitrogen-containing water of the present invention comprises nitrifying ammoniacal nitrogen-containing water by the vigorous nitrification method of the present invention, followed by denitrification by autotrophic bacteria.
  • FIG. 1 is a system diagram showing an embodiment of a method for nitrifying ammoniacal nitrogen-containing water of the present invention.
  • FIG. 2 is a system diagram of a denitrification treatment step.
  • FIG. 3 is a graph showing the change over time in the NH—N concentration of raw water and the quality of treated water in Example 1.
  • FIG. 4 Processes of NH—N concentration, NO—N concentration and NO—N concentration of treated water in Example 2
  • FIG. 5 is a graph showing the change over time of the NH—N concentration of raw water and the quality of treated water in Comparative Example 1.
  • FIG. 6 Process of NH—N concentration, NO—N concentration and NO—N concentration of treated water in Comparative Example 2. It is a graph which shows a time change.
  • the operation factors (aeration amount, hydraulic residence time, and It is preferable to control at least one of the inflow water volume).
  • At least one of the ammoniacal nitrogen concentration and the Kjeldahl nitrogen concentration in the influent water is measured, and based on these measured values, the ammonia concentration in the nitrification solution or the nitrite concentration so that the AZB ratio in the nitrification solution becomes 1.1 or more. Calculate the target value of density.
  • the concentration of ammonia nitrogen and nitrite nitrogen in the nitrification liquid is measured, and the AZB ratio in this nitrification liquid is calculated.
  • the operating factors are controlled so that the AZB ratio in the nitrification liquid is 1.1 or more.
  • At least one of the ammonia concentration and Kjeldahl nitrogen concentration in the inflow water into the nitrification tank is measured, and the target ammonia concentration or nitrite concentration of the treated water is calculated therefrom.
  • at least one concentration of Kjeldahl nitrogen, ammonia nitrogen and nitrite nitrogen in the nitrification liquid is measured, and the AZB ratio in the nitrification liquid is calculated.
  • the operating factors are controlled so that the AZB ratio in the nitrification liquid becomes 1.1 or more.
  • the AZB ratio in the nitrification liquid is compared with the target AZB value calculated from the inflow water quality, and the amount of aeration is controlled so that the AZB ratio of the nitrification liquid approaches the target value.
  • the ratio AZB between the nitrite concentration and the ammonia concentration in the nitrification solution is preferably 1.1 to 2.0, particularly preferably 1.2 to 1.5, and particularly preferably 1.2 to 1.5. 1. Control the operating factors so that they become 3—1.4. [0025] The relationship between the concentrations of ammonia and nitrite in the nitrification solution and the operating factors for controlling them is as follows.
  • the biological nitrification reaction is a reaction in which nitrifying bacteria oxidize ammonia using oxygen
  • the amount of oxygen supplied to the reactor by controlling the amount of oxygen supplied to the reactor by changing the amount of aeration air is controlled.
  • the amount of nitrous acid contained in the nitrification solution can be adjusted.
  • the amount of aeration When the amount of aeration is fixed, the amount of nitrite contained in the nitrification liquid can be adjusted by changing the hydraulic residence time. In order to change the residence time, the amount of incoming water may be changed, or a plurality of reaction tanks may be installed in parallel, and the number of reaction tanks used for the treatment may be changed.
  • the nitrification method for ammoniacal nitrogen-containing water includes a measuring device for measuring the concentration of ammoniacal nitrogen in at least one of the influent water and the nitrifying solution, an arithmetic device for calculating a target value from the measurement result, and a nitrifying solution. It is preferable to use a control device for bringing the nitrous acid Z-ammonia ratio AZB close to the target. When controlling the AZB ratio using the residence time in the nitrification tank, it is preferable to install a device for measuring the flow rate of raw water. The Kjeldahl nitrogen concentration may be measured instead of directly measuring the ammonia nitrogen concentration.
  • the measuring device for ammonia or Kjeldahl nitrogen concentration can be used based on any measurement principle as long as it can grasp the ammonia nitrogen concentration or Kjeldahl nitrogen concentration.
  • the arithmetic unit calculates the target ammonia and nitrite concentrations in the nitrification solution from the measured ammonia nitrogen concentration or Kjeldahl nitrogen concentration, and generates the operation amount determined in advance. From the relationship of nitrite concentration, the one that calculates the required manipulated variable is preferred.
  • the control device controls the aeration amount, residence time, or inflow water amount based on the calculation result.
  • the denitrification treatment method of the present invention in which nitrification liquid obtained by nitrifying ammonia-nitrogen-containing water is denitrified by autotrophic bacteria, the nitrite concentration and the ammonia nitrogen concentration are present at an appropriate ratio. Therefore, the denitrification reaction proceeds efficiently.
  • ammonia does not substantially remain in the treatment water of the autotrophic bacteria.
  • concentration of ammonia in the denitrified water treated by autotrophic bacteria be 50 mg / L or less, particularly 10 mg / L or less.
  • the AZB ratio in the nitrification solution after nitrification treatment of the ammoniacal nitrogen-containing water is as described above.
  • FIG. 1 is a system diagram showing an embodiment of a method for nitrifying ammoniacal nitrogen-containing water of the present invention.
  • reference numeral 1 denotes a nitrification tank (aeration tank) provided with an air diffusion pipe 2 for aerating air supplied from a blower 3.
  • NH-N concentration measuring devices 4 and 5 for measuring the raw water introduced into the nitrification tank 1 and the ammonia nitrogen concentration of the nitrification liquid from the nitrification tank 1 are provided. N concentration measurement
  • the aeration air volume of the blower 3 is controlled by the blower controller 6.
  • a diaphragm ion electrode or the like can be used as the NH—N concentration measuring devices 4 and 5 as the NH—N concentration measuring devices 4 and 5.
  • the nitrification is performed based on the difference between the NH—N concentration in the raw water and the NH—N concentration in the nitrification solution from the nitrification tank 1.
  • the nitrite concentration A in the solution is obtained, and the ratio AZB to the NH—N concentration B of the nitrification solution is calculated.
  • the aeration air volume of the nitrification tank 1 by the blower 3 is adjusted so that the ZB value is 1.1 or more, preferably 1.1-2.0, particularly preferably 1.2-1.5, and particularly preferably 1.3-1.4. Adjust.
  • the type of the nitrification tank is not particularly limited, and a sludge suspension type, a fixed bed, Any type, such as a bed, a dala-yur method, and a kneading method with a carrier such as a sponge, can be adopted.
  • nitrite-type nitrification can be performed stably and reliably.
  • the pH of the liquid in the nitrification tank 1 is 5—9, especially 7—. 8, concentration of nitrous acid 50-lOOOOmg N /: L, especially 200-3 OOOmg-NZL, temperature 10-40 ° C, especially 20-35 ° C, nitrogen load 0.1-3kg—N / m 3 'day, preferably 0.2-lkg-NZm 3 ' day.
  • the alkaline agent aqueous solution (eg, caustic soda aqueous solution) in the alkaline agent tank 8 is supplied via the pump 9 so that the pH in the nitrification tank 1 detected by the pH meter 7 falls within the above range. Added to 1.
  • the alkaline agent aqueous solution eg, caustic soda aqueous solution
  • nitrification liquid from the nitrification tank 1 is subjected to biological denitrification treatment by ANAMMOX bacteria (autotrophic bacteria).
  • FIG. 2 is a schematic diagram of a reaction apparatus suitable for the denitrification treatment by this autotrophic bacterium.
  • the nitrification liquid from the nitrification step is passed through a pipe 10 into a vertical reaction tank 11 in an upward flow. Floc of autotrophic bacteria are present in the reaction vessel 11, and denitrification water denitrified by the autotrophic bacteria is taken out via a pipe 12.
  • a part of the denitrification treatment water is returned to the reaction tower 10 again by the circulation pipe 13 with the circulation pump 14 branched from the pipe 12, and the denitrification treatment is performed again.
  • a pH adjuster is added to the circulation pipe 13 from an adding means 15.
  • FIG. 1 90 L of sponge carrier was placed in a nitrification tank 1 having a volume of 300 L. Activated sludge derived from sewage sludge is introduced into this nitrification tank 1 and the desorbed liquid (pH 7.5, NH 3 N).
  • the target NH—N concentration is set, and the actual detected nitric acid NH—N concentration is
  • the air flow from the blower 3 was controlled so that the HN concentration was reached.
  • Aeration air volume is about 6-9.6m
  • FIG. 3 shows the change over time of the 4234N concentration. As shown in Fig. 3, almost no NO-N exists in the nitrification solution.
  • the ratio AZB of the molar concentration A of NO—N and the molar concentration B of NH—N is approximately 1.3–1.4.
  • the nitrification solution from the nitrification tank 1 of Example 1 was passed through a denitrification reaction tank 11 shown in FIG. 2 to be denitrified.
  • the volume of this reaction tank 11 was 300 L, and 180 L of granules of ANAMMOX bacteria were filled.
  • An aqueous solution of hydrochloric acid (concentration: 10%) was added to the reaction vessel 11 by adding 15 foss of water so that the pH in the reaction vessel 11 became 7.3.
  • inflow water amount of nitrification liquid and 2m 3 Zd, HRT of the reactor 11 was about 3.6 hours.
  • the NH—N concentration, the NO—N concentration, and the NO—N concentration in the denitrification-treated water As shown in FIG. 4, the NH—N concentration, the NO—N concentration, and the NO—N concentration in the denitrification-treated water
  • Example 1 the same treatment was applied to the same raw water except that the amount of aerated air was fixed at 6 m 3 ZHr.
  • NH—N concentration in raw water NH—N concentration in nitrifying solution, NO
  • FIG. 5 shows changes over time in the -N concentration and the NO-N concentration.
  • the AZB ratio fluctuated in the range of 0.8 to 1.4, and almost always fell below 1.3.
  • FIG. 6 shows the changes over time in the N concentration, the NO—N concentration, and the NO—N concentration. As shown in FIG. 6, according to Comparative Example 2, the NH—N concentration and the NO—N concentration

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Microbiology (AREA)
  • Engineering & Computer Science (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Molecular Biology (AREA)
  • Health & Medical Sciences (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
  • Activated Sludge Processes (AREA)

Abstract

 硝化工程と独立栄養性脱窒細菌を組み合わせてアンモニア性窒素含有水を処理するに際し、硝化工程流出水中の亜硝酸とアンモニアとの比が適正とされ、脱窒処理が高効率に行われる。硝化槽1に導入される原水と、硝化槽1からの硝化液のアンモニア性窒素濃度がNH4−N濃度測定装置4,5で測定され、この測定結果に基づいて、ブロワ3の曝気風量がブロワ制御器6により制御される。原水中及び硝化槽1からの硝化液中のNH4−N濃度の差から、硝化液中の亜硝酸濃度Aを求め、制御器6において硝化液のアンモニア濃度Bとの比A/Bを演算し、このA/B値が1.1以上好ましくは1.1~2.0特に好ましくは1.2~1.5とりわけ好ましくは1.3~1.4となるようにブロワ3による硝化槽1の曝気風量を調節する。

Description

アンモニア性窒素含有水の硝化方法及び処理方法
発明の分野
[0001] 本発明は、アンモニア性窒素含有水をアンモニア酸ィ匕細菌の存在下に曝気して硝 化する方法に係り、特に、亜硝酸型硝化を行うアンモニア性窒素含有水の硝化方法 に関する。また、本発明は、この亜硝酸型硝化後、独立栄養性細菌による脱窒処理 を行うアンモニア性窒素含有水の処理方法に関する。
発明の背景
[0002] 排液中に含まれるアンモニア性窒素は河川、湖沼及び海洋などにおける富栄養化 の原因物質の一つであり、十分に除去する必要がある。一般に、排水中のアンモニ ァ性窒素は、アンモニア性窒素をアンモニア酸ィ匕細菌により亜硝酸性窒素に酸ィ匕し 、更にこの亜硝酸性窒素の一部を亜硝酸酸ィヒ細菌により硝酸性窒素に酸ィヒする硝 化工程と、これらの亜硝酸性窒素及び硝酸性窒素を従属栄養性細菌である脱窒菌 により、有機物を電子供与体として利用して窒素ガスにまで分解する脱窒工程との 2 段階の生物反応を経て窒素ガスにまで分解される。
[0003] しかし、このような従来の硝化脱窒法では、脱窒工程にお!、て電子供与体としてメ タノールなどの有機物を多量に必要とし、また硝化工程では多量の酸素が必要であ るため、ランニングコストが高 、と 、う欠点がある。
[0004] 近年、アンモニア性窒素を電子供与体とし、亜硝酸性窒素を電子受容体とする独 立栄養性微生物(以下「ANAMMOX菌」と称す場合がある。 )を利用し、アンモニア 性窒素と亜硝酸性窒素とを反応させて脱窒する方法が提案された。この方法であれ ば、有機物の添カ卩は不要であるため、従属栄養性の脱窒菌を利用する方法と比べて 、コストを低減することができる。また、独立栄養性の微生物は収率が低ぐ汚泥の発 生量が従属栄養性微生物と比較すると著しく少ないので、余剰汚泥の発生量を抑え ることができる。更に、従来の硝化脱窒法で観察される N Oの発生がなぐ環境に対
2
する負荷を低減できると!、つた特長もある。
[0005] この ANAMMOX菌を利用する生物脱窒プロセスは、 Strous, M, et al., Appl. Microbiol. BiotecnoL, 50, p.589-596 (1998)に報告されており、以下のような反応 でアンモニア性窒素と亜硝酸性窒素が反応して窒素ガスに分解されると考えられて いる。
[0006] [化 1]
1.0NH4++1.32NO2"+0.066HCO3"+0.13H+
→1.02N2+0.26NO3"+0.066CH2O05N0 15+2.03H2O … ( 1 )
[0007] この ANAMMOX菌を利用した生物脱窒処理を行うためには、排水中のアンモ- ァ性窒素をアンモニア酸ィ匕細菌により処理するにあたり、硝酸にまで酸ィ匕することなく 、酸ィ匕を亜硝酸で止める亜硝酸型硝化を行う必要がある。
[0008] 一般に、アンモニア性窒素の硝化反応は、 DO (溶存酸素)濃度を低く制御すること により亜硝酸型となることが知られている。すなわち、アンモニア性窒素を亜硝酸性 窒素にするのに必要な量だけの酸素を供給し、亜硝酸性窒素から硝酸性窒素への 酸化反応を抑制することにより亜硝酸型硝化が行われる。 DO濃度を低く保つには、 例えば DOセンサにより反応槽内の DO濃度を計測しつつ、この値に基いて曝気風 量を制御することが行われる。
[0009] しかし、容積の小さな実験装置では、 DO濃度の正確な制御が可能であり、亜硝酸 型硝化を実現することができるが、実際の水処理装置では曝気が行われている反応 槽内において DO濃度に分布が生じ、また、 DOセンサは一般に精密な連続計測が 困難である。このため実装置における DO濃度の制御では、反応槽内の DO濃度を 長期にわたり、例えば 0. lmgZL単位で低濃度にむらなく制御して、亜硝酸型硝化 を確実に行うことはできず、過剰曝気により亜硝酸の一部が硝酸にまで酸ィ匕されてし まつ。
[0010] 特開 2003-10883号公報には、硝化槽内の硝化液又は硝化槽カも流出する硝化 液中の残留アンモニア性窒素濃度が 20mgZL以上となるように曝気風量を調節す ることにより、亜硝酸型硝化を安定かつ確実に行うことが記載されている。
[0011] 上記特開 2003— 10883号公報のように硝化工程力もの硝化液中のアンモニア性 窒素濃度のみを制御する場合、硝化液中のアンモニアと亜硝酸の濃度比率は制御 されない。
発明の概要
[0012] 本発明は、硝化工程と前述の独立栄養性脱窒細菌を組み合わせてアンモニア性 窒素含有水を処理するに際し、硝化工程流出水中の亜硝酸とアンモニアとの比を適 正とし、脱窒処理を高効率に行うことができるようにすることを目的とする。
[0013] 本発明のアンモニア性窒素含有水の硝化方法は、アンモニア性窒素含有水を硝 化槽に導入し、アンモニア酸ィ匕細菌の存在下に曝気して硝化するアンモニア性窒素 含有水の硝化方法において、該硝化槽力 流出する硝化液中の亜硝酸のモル濃度 Aとアンモニアのモル濃度 Bとの比 AZBを 1. 1以上とすることを特徴とするものであ る。
[0014] 本発明方法に従って、硝化槽からの硝化液中の亜硝酸濃度とアンモニア濃度との 比 AZBを 1. 1以上とすることにより、独立栄養性細菌による脱窒を高効率にて行うこ とが可能となる。
[0015] 本発明のアンモニア性窒素含有水の処理方法は、力かる本発明の硝化方法によつ てアンモニア性窒素含有水を硝化した後、独立栄養性細菌により脱窒処理するもの である。
図面の簡単な説明
[0016] [図 1]本発明のアンモニア性窒素含有水の硝化方法の実施の形態を示す系統図で ある。
[図 2]脱窒処理工程の系統図である。
[図 3]実施例 1における原水の NH— N濃度と処理水水質の経時変化を示すグラフで
4
ある。
[図 4]実施例 2における処理水の NH— N濃度、 NO— N濃度及び NO— N濃度の経
4 2 3
時変化を示すグラフである。
[図 5]比較例 1における原水の NH— N濃度と処理水水質の経時変化を示すグラフで
4
ある。
[図 6]比較例 2における処理水の NH— N濃度、 NO— N濃度及び NO— N濃度の経 時変化を示すグラフである。
発明の好ましレ、形態の詳細な説明
[0017] 本発明では、硝化槽からの硝化液中のアンモニアと亜硝酸の比率を調節するため に以下の 1一 3のいずれかの方法で操作因子(曝気量、水理学的滞留時間、及び流 入水量の少なくとも 1つ)の制御を行うのが好ましい。
[0018] 方法 1
流入水中のアンモニア性窒素濃度及びケルダール窒素濃度の少なくとも一方を測 定し、この測定値に基づき、硝化液中の AZB比が 1. 1以上となるための硝化液中 のアンモニア濃度、または亜硝酸濃度の目標値を演算する。
[0019] 生物学的に有機態窒素あるいはアンモニア性窒素を亜硝酸まで硝化する硝化工 程において、あらかじめ操作因子と得られる処理水水質の関係、例えば、曝気風量と 処理水中の亜硝酸濃度の関係を求めておく。そして、目標とするアンモニア濃度又 は亜硝酸濃度を有した硝化液が得られるように操作因子を制御する。
[0020] 方法 2
硝化液中のアンモニア性窒素及び亜硝酸性窒素の濃度を測定し、この硝化液中 の AZB比を演算する。
[0021] この硝化液中の AZB比が 1. 1以上となるように操作因子を制御する。
[0022] 方法 3
硝化槽への流入水中のアンモニア濃度及びケルダール窒素濃度の少なくとも一方 を測定し、そこから目標とする処理水のアンモニア濃度、または亜硝酸濃度を演算す る。また、硝化液中のケルダール窒素、アンモニア性窒素、亜硝酸性窒素の少なくと も 1つの濃度を測定し、硝化液中の AZB比を演算する。
[0023] これらに基づいて、硝化液中の AZB比が 1. 1以上となるように操作因子を制御す る。例えば、硝化液中の AZB比と、流入水水質から計算した目標 AZB値との比較 を行い、硝化液の AZB比が目標値に近づくように曝気量等を制御する。
[0024] 上記方法 1一 3のいずれにおいても、硝化液中の亜硝酸濃度とアンモニア濃度との 比 AZBが好ましくは 1. 1-2. 0特に好ましくは 1. 2-1. 5とりわけ好ましくは 1. 3— 1. 4になるように操作因子を制御する。 [0025] 硝化液中のアンモニアと亜硝酸の濃度と、それを制御するための操作因子との関 係は次の通りである。
[0026] 生物学的な硝化反応は、硝化細菌が酸素を用いてアンモニアを酸ィ匕する反応であ るため、曝気風量を変化させて反応装置に供給する酸素の量を制御することにより、 硝化液に含まれる亜硝酸の量を調節することができる。
[0027] 曝気量を一定とした場合には、水理学的滞留時間を変化させることによって硝化液 に含まれる亜硝酸の量を調節することができる。この滞留時間を変化させるには、流 入水量を変化させても良いし、反応槽を複数個並列設置しておき、処理に使用する 反応槽の数を変化させても良 、。
[0028] 本発明のアンモニア性窒素含有水の硝化方法は、流入水及び硝化液の少なくとも 一方のアンモニア性窒素濃度を測定する測定装置と、測定結果から目標値を演算 する演算装置と、硝化液中の亜硝酸 Zアンモニア比 AZBを目標に近づけるための 制御装置とを用いて実施するのが好ましい。硝化槽の滞留時間を用いて AZB比の 制御を行う場合には、さらに、原水の流量を測定する装置を設置するのが好ましい。 なお、アンモニア性窒素濃度を直接に測定する代りにケルダール窒素濃度を測定し てもよい。
[0029] アンモニア又はケルダール窒素濃度の測定装置は、アンモニア性窒素濃度、また はケルダール窒素濃度が把握できるものであればどの様な測定原理に基づくもので も使用可能である。
[0030] 演算装置は、測定したアンモニア性窒素濃度あるいはケルダール窒素濃度から、 硝化液中の目標とするアンモニア、亜硝酸濃度を演算し、あら力じめ求めておいた操 作量と生成される亜硝酸濃度の関係から、必要な操作量を演算するのものが好まし い。この演算結果に基づいて、制御装置が曝気量、滞留時間、又は流入水量を制御 する。
[0031] アンモニア性窒素含有水を硝化処理した硝化液を独立栄養性細菌により脱窒処理 する本発明の脱窒処理方法では、亜硝酸濃度とアンモニア性窒素濃度とが適正比 率にて存在するので、効率よく脱窒反応が進行する。
[0032] 前記反応式(1)に示される通り、この独立栄養性細菌による脱窒反応では、副生成 物として硝酸が生成する。そのため、この独立栄養性細菌による脱窒工程後に、さら に硝酸を除去するための後脱窒工程を設置してもよ 、。
[0033] この場合、独立栄養細菌による脱窒工程の処理水中にアンモニアが残留した場合 には、後脱窒工程ではこれを除去することができず、アンモニアが系外に流出するこ とになる。そのため、独立栄養細菌の処理水中にはアンモニアが実質的に残留しな いようにするのが好ましい。具体的には、独立栄養性細菌による脱窒処理水中のァ ンモ-ァ濃度は 50mg/L以下、特に 10mg/L以下であることが望ましい。なお、こ の後脱窒工程では、硝酸だけでなく亜硝酸も除去されるので、独立栄養性細菌によ る脱窒処理水中に亜硝酸が残留することは構わな 、。
[0034] アンモニア性窒素含有水を硝化処理した後の硝化液中の AZB比を前記の通り 1.
3以上とした場合、独立栄養性細菌による脱窒工程からの処理水中にはアンモニア は全く又は殆ど残留しないようになる。
[0035] 以下に図面を参照して本発明の具体的な形態を詳細に説明する。
[0036] 図 1は本発明のアンモニア性窒素含有水の硝化方法の実施の形態を示す系統図 である。
[0037] 図 1において、 1は硝化槽 (曝気槽)でありブロワ 3から供給される空気を曝気する散 気管 2が設けられている。
[0038] 図 1では、硝化槽 1に導入される原水と、硝化槽 1からの硝化液のアンモニア性窒 素濃度を測定するための NH - N濃度測定装置 4, 5が設けられ、 NH - N濃度測定
4 4
装置 4, 5の測定結果に基づいて、ブロワ 3の曝気風量がブロワ制御器 6により制御さ れるように構成されている。
[0039] この NH— N濃度測定装置 4, 5としては、隔膜型イオン電極等を用いることができる
4
[0040] この制御器 6では、原水と硝化槽 1からの硝化液中の NH— N濃度の差から、硝化
4
液中の亜硝酸濃度 Aを求め、硝化液の NH— N濃度 Bとの比 AZBを演算し、この A
4
ZB値が 1. 1以上好ましくは 1. 1-2. 0特に好ましくは 1. 2-1. 5とりわけ好ましく は 1. 3-1. 4となるようにブロワ 3による硝化槽 1の曝気風量を調節する。
[0041] 本発明において、硝化槽の形式には特に制限はなぐ汚泥懸濁式、固定床、流動 床、ダラ-ユール法、スポンジなどの担体添カ卩法など、いずれの形式のものも採用す ることがでさる。
[0042] アンモニア性窒素濃度に基づいて曝気風量を調節することにより、亜硝酸型硝化を 安定かつ確実に行うことができる。硝化槽 1におけるアンモニア酸ィ匕細菌の活性を高 く維持し、かつ亜硝酸酸ィ匕細菌の活性が低くなるようにするために、硝化槽 1内の液 pH力 5— 9、特に 7— 8、亜 酸ィ才ン濃度力 50— lOOOOmg N/:L、特に 200— 3 OOOmg— NZL、温度が 10— 40°C、特に 20— 35°C、窒素負荷が 0. 1— 3kg— N/ m3'day、特に 0. 2— lkg— NZm3' dayになるように制御するのが好ましい。
[0043] 図 1では、 pH計 7で検出される硝化槽 1内の pHが上記範囲となるように、アルカリ 剤タンク 8内のアルカリ剤水溶液 (例えば苛性ソーダ水溶液)がポンプ 9を介して硝化 槽 1に添加される。
[0044] 硝化槽 1からの硝化液は、 ANAMMOX菌 (独立栄養性細菌)による生物脱窒処 理を行う。
[0045] 図 2はこの独立栄養性細菌による脱窒処理に好適な反応装置の概略図である。硝 化工程からの硝化液は、配管 10を介して縦型の反応槽 11内に上向流にて通水され る。この反応槽 11内には独立栄養性細菌のフロックが存在しており、独立栄養性細 菌により脱窒処理された脱窒処理水が配管 12を介して取り出される。
[0046] 配管 12から分岐した、循環ポンプ 14付きの循環配管 13により、脱窒処理水の一部 が再度反応塔 10に戻されて再度脱窒処理される。この循環配管 13には、 pH調整剤 が添加手段 15から添加される。
実施例及び比較例
[0047] 以下に実施例及び比較例を挙げて本発明をより具体的に説明する。
[0048] 実施例 1
図 1において、容積 300Lの硝化槽 1にスポンジ担体 90Lを収容した。この硝化槽 1 に、下水汚泥由来の活性汚泥を投入し、嫌気性硝化槽の脱離液 (pH7. 5、 NH N
4 濃度約 400— 500mg NZL)を原水として 2m3Zdにて供給した。水理学的槽内滞 留時間(HRT)は約 3. 6時間である。 NH N濃度の測定装置 4, 5としては隔膜型
4
イオン電極を用いた。 [0049] 原水及び硝化液のアンモニア濃度を測定し、原水中の NH— N濃度から硝化液の
4
目標 NH— N濃度を設定し、検出される実際の硝化液の NH— N濃度がこの目標 N
4 4
H N濃度となるようにブロワ 3からの曝気風量を制御した。曝気風量は約 6— 9. 6m
4
3ZHrの範囲で変動した。なお、 pH計 7で検出される硝化槽 1内の pHが 7. 5となる ように苛性ソーダ水溶液 (濃度 25%)をポンプ 9により注入した。
[0050] 硝化液中の NH— N濃度、 NO— N濃度、及び NO— N濃度並びに原水中の NH
4 2 3 4 N濃度の経時変化を図 3に示す。図 3の通り、硝化液中には NO— Nは殆ど存在せ
3
ず、 NO— Nのモル濃度 Aと NH— Nのモル濃度 Bとの比 AZBが概ね 1. 3—1. 4の
2 4
範囲にて推移している。
[0051] 実施例 2
実施例 1の硝化槽 1からの硝化液を図 2に示す脱窒反応槽 11に通水して脱窒処理 した。この反応槽 11の容積は 300Lであり、 ANAMMOX菌のグラニュールを 180L 充填した。反応槽 11内の pHが 7. 3となるように塩酸水溶液 (濃度 10%)を添加手段 15力ら添カロした。
[0052] 硝化液の流入水量は 2m3Zdとし、反応槽 11の HRTは約 3. 6時間とした。
[0053] この脱窒処理水の NH— N濃度、 NO— N濃度、及び NO— N濃度の経時変化を
4 2 3
図 4に示す。
[0054] 図 4の通り、この脱窒処理水中の NH— N濃度、 NO— N濃度、及び NO— N濃度
4 2 3 は極めて低い。
[0055] 比較例 1
実施例 1にお 、て、曝気風量を 6m3ZHrと一定としたこと以外は同一の原水につ いて同一の処理を施した。原水中の NH— N濃度と、硝化液中の NH— N濃度、 NO
4 4
- N濃度、及び NO - N濃度の経時変化を図 5に示す。
2 3
[0056] 図 5の通り、 AZB比は 0. 8-1. 4の範囲で変動し、 1. 3を下回ることが殆どであつ た。
[0057] 比較例 2
比較例 1の硝化液を実施例 2と同様にして脱窒処理した。この脱窒処理水の NH -
4
N濃度、 NO - N濃度、及び NO - N濃度の経時変化を図 6に示す。 図 6の通り、この比較例 2によると、原水中の NH— N濃度及び NO— N濃度は図 4
4 3
の実施例 2に比べて著しく高ぐまた NH— N濃度の変動幅が著しく大きいことが認め
4
られる。

Claims

請求の範囲
[1] アンモニア性窒素含有水を硝化槽に導入し、アンモニア酸化細菌の存在下に曝気 して硝化するアンモニア性窒素含有水の硝化方法において、
該硝化槽力 流出する硝化液中の亜硝酸のモル濃度 Aとアンモニアのモル濃度 B との比 AZBを 1. 1以上とすることを特徴とするアンモニア性窒素含有水の硝化方法
[2] 請求項 1において、前記比 AZBを 1. 1-2. 0とすることを特徴とするアンモニア性 窒素含有水の硝化方法。
[3] 請求項 2において、前記比 AZBを 1. 2-1. 5とすることを特徴とするアンモニア性 窒素含有水の硝化方法。
[4] 請求項 3において、前記比 AZBを 1. 3-1. 4とすることを特徴とするアンモニア性 窒素含有水の硝化方法。
[5] 請求項 1において、曝気量、硝化槽滞留時間及び硝化槽への流入量の少なくとも 1 つを制御することにより前記比 AZBを制御することを特徴とするアンモニア性窒素含 有水の硝化方法。
[6] 請求項 1にお!、て、硝化槽への流入水及び硝化液中のケルダール窒素濃度を測 定し、両者の差異力 硝化液中の亜硝酸濃度 Aを演算することを特徴とするアンモ- ァ性窒素含有水の硝化方法。
[7] 請求項 1にお 、て、硝化槽への流入水及び硝化液中のアンモニア性窒素濃度を 測定し、両者の差異力 硝化液中の亜硝酸濃度 Aを演算することを特徴とするアン モ-ァ性窒素含有水の硝化方法。
[8] 請求項 1において、硝化槽への流入水中のアンモニア性窒素濃度及びケルダール 窒素濃度の少なくとも一方を測定し、この測定値に基づき、硝化液中の AZB比が 1 . 1以上となるための硝化液中のアンモニア濃度、又は亜硝酸濃度の目標値を演算 し、目標とするアンモニア濃度又は亜硝酸濃度を有した硝化液が得られるように曝気 量、硝化槽滞留時間及び硝化槽への流入量の少なくとも 1つを制御することを特徴と するアンモニア性窒素含有水の硝化方法。
[9] 請求項 1において、硝化液中のアンモニア性窒素及び亜硝酸性窒素の濃度を測 定し、この硝化液中の AZB比を演算し、この AZB比が 1. 1以上となるように曝気量
、硝化槽滞留時間及び硝化槽への流入量の少なくとも 1つを制御することを特徴とす るアンモニア性窒素含有水の硝化方法。
[10] 請求項 1において、硝化槽内の液 pHが 5— 9、亜硝酸イオン濃度が 50— lOOOOm g-N/ 温度が 10— 40°C、窒素負荷が 0. 1— 3kg— NZm3' dayとなるように制御 することを特徴とするアンモニア性窒素含有水の硝化方法。
[11] 請求項 10において、硝化槽内の液 pHが 7— 8、亜硝酸イオン濃度が 200— 3000 mg— NZL、温度が 20— 35°C、窒素負荷が 0. 2— lkg— ΝΖπι3· dayになるように制 御することを特徴とするアンモニア性窒素含有水の硝化方法。
[12] アンモニア性窒素含有水を請求項 1の硝化方法により硝化した後、独立栄養性細 菌により脱窒処理することを特徴とするアンモニア性窒素含有水の処理方法。
[13] 請求項 12において、独立栄養性細菌により脱窒処理された水を従属栄養性細菌 により脱窒処理することを特徴とするアンモニア性窒素含有水の処理方法。
PCT/JP2005/001889 2004-03-01 2005-02-09 アンモニア性窒素含有水の硝化方法及び処理方法 WO2005082792A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP05709941.8A EP1721870B1 (en) 2004-03-01 2005-02-09 Method of nitrifying ammonium-nitrogen-containing water and method of treating the same
CN2005800065236A CN1926072B (zh) 2004-03-01 2005-02-09 含有氨性氮的水的硝化方法及处理方法
KR1020067019340A KR101188480B1 (ko) 2004-03-01 2005-02-09 암모니아성 질소 함유수의 질화 방법 및 처리 방법
AU2005217249A AU2005217249B2 (en) 2004-03-01 2005-02-09 Method of nitrifying ammonium-nitrogen-containing water and method of treating the same
US11/496,408 US7329352B2 (en) 2004-03-01 2006-08-01 Nitrifying method of treating water containing ammonium-nitrogen

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004056399A JP4910266B2 (ja) 2004-03-01 2004-03-01 アンモニア性窒素含有水の硝化方法及び処理方法
JP2004-056399 2004-03-01

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/496,408 Continuation US7329352B2 (en) 2004-03-01 2006-08-01 Nitrifying method of treating water containing ammonium-nitrogen

Publications (1)

Publication Number Publication Date
WO2005082792A1 true WO2005082792A1 (ja) 2005-09-09

Family

ID=34908916

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/001889 WO2005082792A1 (ja) 2004-03-01 2005-02-09 アンモニア性窒素含有水の硝化方法及び処理方法

Country Status (8)

Country Link
US (1) US7329352B2 (ja)
EP (1) EP1721870B1 (ja)
JP (1) JP4910266B2 (ja)
KR (1) KR101188480B1 (ja)
CN (1) CN1926072B (ja)
AU (1) AU2005217249B2 (ja)
TW (1) TWI402221B (ja)
WO (1) WO2005082792A1 (ja)

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2871153B1 (fr) 2004-06-02 2006-08-11 Otv Sa Procede de traitement d'eaux a l'aide d'un reacteur biologique, dans lequel la vitesse d'air injecte dans le reacteur est regulee, et dispositif correspondant
JP4645157B2 (ja) * 2004-11-01 2011-03-09 株式会社日立プラントテクノロジー アンモニア含有液の処理方法及び装置
JP4428317B2 (ja) 2005-08-26 2010-03-10 富士ゼロックス株式会社 静電荷像現像用トナー用結着樹脂、静電荷像現像用トナー用結着樹脂分散液及び、静電荷像現像用トナー並びにそれらの製造方法
JP4788645B2 (ja) * 2007-04-25 2011-10-05 株式会社日立プラントテクノロジー 亜硝酸型硝化担体とする方法、廃水処理方法及び廃水処理装置
KR100828669B1 (ko) 2008-03-03 2008-05-09 주식회사 아쿠아테크 동시탈질생물반응조와 막분리 기술을 결합한 고농도오폐수의 처리장치 및 이를 이용한 처리방법
KR101088105B1 (ko) * 2008-04-28 2011-11-30 포항공과대학교 산학협력단 나선형 구조물이 구비된 생물막 반응기 및 이를 이용한수처리장치
CN101357806B (zh) * 2008-09-05 2011-03-30 华南理工大学 禽畜养殖废水亚硝化-厌氧氨氧化处理方法及设备
JP4985628B2 (ja) * 2008-12-10 2012-07-25 株式会社日立プラントテクノロジー 廃水の処理方法および処理装置
US20120097606A1 (en) * 2009-06-22 2012-04-26 Sumitomo Heavy Industries, Ltd. Method for treating wastewater containing ammonia nitrogen
FR2952932B1 (fr) * 2009-11-20 2012-11-09 Otv Sa Procede de traitement d'eau au sein d'un reacteur biologique sequentiel comprenant une mesure en ligne de la concentration en nitrites a l'interieur dudit reacteur
FR2966146A1 (fr) * 2010-10-18 2012-04-20 Veolia Water Solutions & Tech Procede de traitement d'eau au sein d'un reacteur biologique sequentiel comprenant une mesure en ligne de la concentration en nitrites
FR2969596B1 (fr) * 2010-12-24 2013-05-24 Veolia Water Solutions & Tech Procede de traitement d'eau comprenant au moins une etape aeree et une etape de controle de l'apport en oxygene au cours de l'etape aeree
JP5316553B2 (ja) * 2011-01-24 2013-10-16 株式会社明電舎 廃水処理装置及び廃水処理方法
US9346694B2 (en) * 2012-09-13 2016-05-24 D.C. Water & Sewer Authority Method and apparatus for nitrogen removal in wastewater treatment
US9469558B2 (en) * 2012-10-01 2016-10-18 D.C. Water & Sewer Authority Method and apparatus for maximizing nitrogen removal from wastewater
KR20230037696A (ko) * 2013-03-14 2023-03-16 디.시. 워터 앤 수어 오쏘러티 폐수로부터 질소 제거를 최대화하기 위한 방법 및 장치
JP6209388B2 (ja) * 2013-08-07 2017-10-04 新日鐵住金株式会社 アンモニア性窒素含有廃水の亜硝酸型硝化方法
WO2015052279A1 (en) * 2013-10-10 2015-04-16 Universitat Autonoma De Barcelona A method and a system for wastewater nitrogen removal
US9902635B2 (en) * 2014-07-23 2018-02-27 Hampton Roads Sanitation District Method for deammonification process control using pH, specific conductivity, or ammonia
KR101565329B1 (ko) * 2015-04-17 2015-11-03 주식회사 부강테크 산소농도 조절이 가능한 오폐수 처리장치용 산소공급장치
CN106348440B (zh) * 2016-09-21 2019-07-12 武汉理工大学 一种测定全程自养脱氮工艺菌群脱氮贡献率及活性的方法
JP6974795B2 (ja) * 2018-03-06 2021-12-01 Jfeエンジニアリング株式会社 下水処理設備における好気槽の曝気風量制御方法と設備
JP7133339B2 (ja) * 2018-04-11 2022-09-08 株式会社日立製作所 窒素処理方法
FR3085688B1 (fr) * 2018-09-06 2023-01-13 Mec Procede biologique de production d'azote mineral et/ou de dihydrogene a partir de diazote atmospherique
CN109231697A (zh) * 2018-10-25 2019-01-18 华南理工大学 一种稳定实现低浓度氨氮废水亚硝化的方法
EP4217320A4 (en) * 2020-09-24 2024-04-24 Fluence Water Products And Innovation Ltd WASTE WATER TREATMENT PROCESS AND SYSTEM
CN112777736A (zh) * 2020-12-16 2021-05-11 中海油天津化工研究设计院有限公司 一种厌氧硝化的方法
EP4304994A1 (en) 2021-03-12 2024-01-17 Hampton Roads Sanitation District Method and apparatus for multi-deselection in wastewater treatment
WO2023181276A1 (ja) * 2022-03-24 2023-09-28 三菱電機株式会社 水処理制御システムおよび水処理装置の制御方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003010883A (ja) * 2001-07-04 2003-01-14 Kurita Water Ind Ltd アンモニア性窒素含有水の硝化方法
JP2003053387A (ja) * 2001-08-10 2003-02-25 Kurita Water Ind Ltd 生物学的窒素除去方法
JP2003245689A (ja) * 2002-02-21 2003-09-02 Kurita Water Ind Ltd 排水の処理方法及び処理装置

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5845913B2 (ja) * 1980-03-19 1983-10-13 修嗣 加藤 活性汚泥法における微生物反応速度制御方法
JPS5992096A (ja) * 1982-11-19 1984-05-28 Fuji Electric Co Ltd 廃水の生物学的硝化法
JPS62286598A (ja) * 1986-06-04 1987-12-12 Ebara Infilco Co Ltd 高水温のアンモニア含有廃水の生物学的硝化脱窒法
JPS6316100A (ja) * 1986-07-07 1988-01-23 Ebara Infilco Co Ltd アンモニア含有排水の生物学的硝化脱窒法
JPS6339698A (ja) * 1986-08-01 1988-02-20 Fuji Electric Co Ltd 生物学的硝化プロセスの制御方法
EP0326975B1 (de) * 1988-02-05 1991-07-31 Mineralölwerke Wenzel und Weidmann Zweigniederlassung der Fuchs Mineralölwerke GmbH, Mannheim Schmiermittel für Getriebe mit stufenloser Kraftübertragung
JPH01242198A (ja) * 1988-03-25 1989-09-27 Toshiba Corp ステップ硝化脱窒プロセス制御装置
JPH02198695A (ja) * 1989-01-25 1990-08-07 Kurita Water Ind Ltd 亜硝酸型硝化方法
JPH0773714B2 (ja) * 1989-01-30 1995-08-09 栗田工業株式会社 廃水の硝化方法
JP3023921B2 (ja) * 1990-09-12 2000-03-21 株式会社明電舎 活性汚泥処理装置
JPH08108195A (ja) * 1994-10-14 1996-04-30 Meidensha Corp 水中の窒素除去方法及び装置
JP3823357B2 (ja) * 1996-02-06 2006-09-20 栗田工業株式会社 硝化活性測定装置および硝化方法
JP3525006B2 (ja) * 1996-03-15 2004-05-10 株式会社東芝 下水処理場の水質制御装置
JP4229999B2 (ja) * 1998-02-27 2009-02-25 三菱電機株式会社 生物学的窒素除去装置
JP3937664B2 (ja) * 1999-10-12 2007-06-27 栗田工業株式会社 生物学的窒素除去方法および装置
JP2001170681A (ja) * 1999-12-14 2001-06-26 Meidensha Corp アンモニア、リン含有廃水処理方法及びその装置
JP4365512B2 (ja) * 2000-06-12 2009-11-18 株式会社東芝 下水処理システムおよび計測システム
CN1116235C (zh) * 2000-11-23 2003-07-30 中国冶金建设集团鞍山焦化耐火材料设计研究总院 焦化污水中氨氮脱除方法
JP5150993B2 (ja) * 2000-11-28 2013-02-27 栗田工業株式会社 脱窒方法および装置
JP4224951B2 (ja) * 2001-05-22 2009-02-18 栗田工業株式会社 脱窒方法
JP5055667B2 (ja) * 2001-07-16 2012-10-24 栗田工業株式会社 生物脱窒方法及び生物脱窒装置
JP4882175B2 (ja) * 2001-07-17 2012-02-22 栗田工業株式会社 硝化処理方法
JP4872171B2 (ja) * 2001-08-02 2012-02-08 栗田工業株式会社 生物脱窒装置
JP2003053385A (ja) * 2001-08-09 2003-02-25 Kurita Water Ind Ltd 生物脱窒装置
CN1207216C (zh) * 2002-01-25 2005-06-22 浙江大学 污水生物脱氮方法
JP4003177B2 (ja) * 2003-01-29 2007-11-07 株式会社日立プラントテクノロジー 生物処理装置
KR101018772B1 (ko) * 2003-02-21 2011-03-07 쿠리타 고교 가부시키가이샤 암모니아성 질소 함유수의 처리 방법
JP3968781B2 (ja) * 2003-03-19 2007-08-29 株式会社日立プラントテクノロジー 窒素除去方法及び装置
JP4336947B2 (ja) * 2003-04-02 2009-09-30 株式会社日立プラントテクノロジー 廃水処理装置
JP2004337775A (ja) * 2003-05-16 2004-12-02 Fuji Photo Film Co Ltd アンモニウムイオン含有廃水の処理方法及び写真廃液の処理方法
JP4453397B2 (ja) * 2004-03-01 2010-04-21 栗田工業株式会社 生物学的窒素除去方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003010883A (ja) * 2001-07-04 2003-01-14 Kurita Water Ind Ltd アンモニア性窒素含有水の硝化方法
JP2003053387A (ja) * 2001-08-10 2003-02-25 Kurita Water Ind Ltd 生物学的窒素除去方法
JP2003245689A (ja) * 2002-02-21 2003-09-02 Kurita Water Ind Ltd 排水の処理方法及び処理装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1721870A4 *

Also Published As

Publication number Publication date
AU2005217249B2 (en) 2009-04-30
JP4910266B2 (ja) 2012-04-04
TWI402221B (zh) 2013-07-21
EP1721870A4 (en) 2010-09-08
KR20060131909A (ko) 2006-12-20
CN1926072A (zh) 2007-03-07
EP1721870A1 (en) 2006-11-15
TW200533612A (en) 2005-10-16
AU2005217249A1 (en) 2005-09-09
US20060283796A1 (en) 2006-12-21
KR101188480B1 (ko) 2012-10-05
CN1926072B (zh) 2010-04-14
EP1721870B1 (en) 2019-06-19
JP2005246136A (ja) 2005-09-15
US7329352B2 (en) 2008-02-12

Similar Documents

Publication Publication Date Title
WO2005082792A1 (ja) アンモニア性窒素含有水の硝化方法及び処理方法
JP4951826B2 (ja) 生物学的窒素除去方法
KR101831900B1 (ko) 폐수 내 질소 제거 방법
JP5347221B2 (ja) 窒素含有液の処理方法および装置
KR101018772B1 (ko) 암모니아성 질소 함유수의 처리 방법
JP2016512169A5 (ja)
JP6720100B2 (ja) 水処理方法及び水処理装置
JP4882175B2 (ja) 硝化処理方法
JP4453397B2 (ja) 生物学的窒素除去方法
Wang et al. Control of partial nitrification using pulse aeration for treating digested effluent of swine wastewater
JP4872171B2 (ja) 生物脱窒装置
JP5292658B2 (ja) アンモニア性窒素含有水の硝化方法
JP4848144B2 (ja) 廃水処理装置
JP5055670B2 (ja) 脱窒方法及び脱窒装置
JP4867099B2 (ja) 生物脱窒処理方法
CN212476266U (zh) 基于脉冲曝气下的厌氧氨氧化污水自养脱氮装置
JPH08141597A (ja) 窒素及びフッ素含有排水の処理装置
KR101186845B1 (ko) 암모니아 및 유기물의 동시제거 공정장치 및 폐수처리 방법
KR102250418B1 (ko) 아나목스 반응조 및 이를 이용한 수처리 방법
WO2019244964A1 (ja) 水処理方法および水処理装置
CN107459146B (zh) 一种控制亚硝化工艺出水中亚氮与氨氮比值的方法
JP2006088057A (ja) アンモニア含有水の処理方法
JP3677811B2 (ja) 生物的脱窒方法
JP3134145B2 (ja) 排水の生物学的脱窒方法
CN111732195A (zh) 基于脉冲曝气下的厌氧氨氧化污水自养脱氮装置及方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 11496408

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2005217249

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2005709941

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2005217249

Country of ref document: AU

Date of ref document: 20050209

Kind code of ref document: A

WWP Wipo information: published in national office

Ref document number: 2005217249

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 200580006523.6

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

WWE Wipo information: entry into national phase

Ref document number: 1020067019340

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2005709941

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020067019340

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 11496408

Country of ref document: US