WO2005080473A1 - 高分子化合物、該高分子化合物を含有するフォトレジスト組成物、およびレジストパターン形成方法 - Google Patents

高分子化合物、該高分子化合物を含有するフォトレジスト組成物、およびレジストパターン形成方法 Download PDF

Info

Publication number
WO2005080473A1
WO2005080473A1 PCT/JP2005/001228 JP2005001228W WO2005080473A1 WO 2005080473 A1 WO2005080473 A1 WO 2005080473A1 JP 2005001228 W JP2005001228 W JP 2005001228W WO 2005080473 A1 WO2005080473 A1 WO 2005080473A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
structural unit
acid
polymer compound
resin
Prior art date
Application number
PCT/JP2005/001228
Other languages
English (en)
French (fr)
Inventor
Toshiyuki Ogata
Syogo Matsumaru
Yohei Kinoshita
Hideo Hada
Daiju Shiono
Hiroaki Shimizu
Naotaka Kubota
Original Assignee
Tokyo Ohka Kogyo Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Ohka Kogyo Co., Ltd. filed Critical Tokyo Ohka Kogyo Co., Ltd.
Priority to EP05709454.2A priority Critical patent/EP1717261B1/en
Priority to CNB2005800049642A priority patent/CN100572422C/zh
Priority to US10/589,681 priority patent/US7723007B2/en
Priority to KR1020097017403A priority patent/KR100935569B1/ko
Publication of WO2005080473A1 publication Critical patent/WO2005080473A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/26Esters containing oxygen in addition to the carboxy oxygen
    • C08F220/28Esters containing oxygen in addition to the carboxy oxygen containing no aromatic rings in the alcohol moiety
    • C08F220/281Esters containing oxygen in addition to the carboxy oxygen containing no aromatic rings in the alcohol moiety and containing only one oxygen, e.g. furfuryl (meth)acrylate or 2-methoxyethyl (meth)acrylate
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/039Macromolecular compounds which are photodegradable, e.g. positive electron resists
    • G03F7/0392Macromolecular compounds which are photodegradable, e.g. positive electron resists the macromolecular compound being present in a chemically amplified positive photoresist composition
    • G03F7/0397Macromolecular compounds which are photodegradable, e.g. positive electron resists the macromolecular compound being present in a chemically amplified positive photoresist composition the macromolecular compound having an alicyclic moiety in a side chain
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C69/00Esters of carboxylic acids; Esters of carbonic or haloformic acids
    • C07C69/52Esters of acyclic unsaturated carboxylic acids having the esterified carboxyl group bound to an acyclic carbon atom
    • C07C69/533Monocarboxylic acid esters having only one carbon-to-carbon double bond
    • C07C69/54Acrylic acid esters; Methacrylic acid esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/22Esters containing halogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/26Esters containing oxygen in addition to the carboxy oxygen
    • C08F220/28Esters containing oxygen in addition to the carboxy oxygen containing no aromatic rings in the alcohol moiety
    • C08F220/282Esters containing oxygen in addition to the carboxy oxygen containing no aromatic rings in the alcohol moiety and containing two or more oxygen atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/26Esters containing oxygen in addition to the carboxy oxygen
    • C08F220/28Esters containing oxygen in addition to the carboxy oxygen containing no aromatic rings in the alcohol moiety
    • C08F220/283Esters containing oxygen in addition to the carboxy oxygen containing no aromatic rings in the alcohol moiety and containing one or more carboxylic moiety in the chain, e.g. acetoacetoxyethyl(meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/02Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated end groups
    • C08F290/06Polymers provided for in subclass C08G
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/02Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated end groups
    • C08F290/06Polymers provided for in subclass C08G
    • C08F290/061Polyesters; Polycarbonates
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D133/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Coating compositions based on derivatives of such polymers
    • C09D133/04Homopolymers or copolymers of esters
    • C09D133/14Homopolymers or copolymers of esters of esters containing halogen, nitrogen, sulfur or oxygen atoms in addition to the carboxy oxygen
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/0046Photosensitive materials with perfluoro compounds, e.g. for dry lithography
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2603/00Systems containing at least three condensed rings
    • C07C2603/56Ring systems containing bridged rings
    • C07C2603/58Ring systems containing bridged rings containing three rings
    • C07C2603/70Ring systems containing bridged rings containing three rings containing only six-membered rings
    • C07C2603/74Adamantanes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S430/00Radiation imagery chemistry: process, composition, or product thereof
    • Y10S430/1053Imaging affecting physical property or radiation sensitive material, or producing nonplanar or printing surface - process, composition, or product: radiation sensitive composition or product or process of making binder containing
    • Y10S430/1055Radiation sensitive composition or product or process of making
    • Y10S430/106Binder containing
    • Y10S430/108Polyolefin or halogen containing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S430/00Radiation imagery chemistry: process, composition, or product thereof
    • Y10S430/1053Imaging affecting physical property or radiation sensitive material, or producing nonplanar or printing surface - process, composition, or product: radiation sensitive composition or product or process of making binder containing
    • Y10S430/1055Radiation sensitive composition or product or process of making
    • Y10S430/106Binder containing
    • Y10S430/111Polymer of unsaturated acid or ester

Definitions

  • the present invention relates to a polymer compound, a low-molecular compound suitable for preparing the polymer compound, a photoresist composition containing at least the polymer compound, and a method for forming a resist pattern.
  • This F excimer is attracting attention as a future fine pattern processing technology.
  • Positive chemically amplified resists mainly use resins having an acid dissociable, dissolution inhibiting group.
  • Examples of the acid dissociable, dissolution inhibiting group used in the chemically amplified resist include an acetal group as an acid dissociable, dissolution inhibiting group for a fluorinated alcohol, as shown in the following Non-Patent Documents 13 to 13.
  • Tertiary alkyl groups such as tert-butyl group, tert-butoxycarbonyl group, tert-butoxycarbonylmethyl group and the like are known.
  • a tertiary ester compound of (meth) acrylic acid is used as a structural unit having an acid dissociable, dissolution inhibiting group in a resin component of a conventional ArF resist composition.
  • a structural unit derived from, for example, 2_alkyl-12-adamantyl (meth) acrylate is generally used.
  • “acrylic acid” and “methacrylic acid” are used.
  • (Rylic acid) is collectively referred to as (meth) acrylic acid and resin
  • “acrylic acid derivative” and “methacrylic acid derivative” are collectively referred to as (meth) acrylic acid derivative.
  • (meta) atalilate are collectively called (meta) atalilate.
  • the acid dissociable, dissolution inhibiting group used in the chemically amplified resist described in Non-Patent Documents 13 to 13 has an insufficient alkali dissolution inhibiting property in an unexposed portion (resist).
  • resist there is a problem in improving resolution and forming a fine pattern having good rectangularity.
  • Patent Document 1 As a compound forming an acid dissociable, dissolution inhibiting group, for example, a cyclic or chain tertiary alkyl ester is formed with a carboxy group of (meth) acrylic acid.
  • acid generators that can be used in resist compositions using them are limited. That is, unless the generated acid is strong and an acid generator, for example, an ionic salt having a fluorinated alkyl sulfonate ion in the anion portion, is not applied, the acid dissociable, dissolution inhibiting group is not eliminated.
  • an acid generator for example, an ionic salt having a fluorinated alkyl sulfonate ion in the anion portion
  • Non-Patent Document 1 ⁇ ⁇ Hagiwara, S. Irie, T. Itani, Y. Kawaguchi, O. Yokokoji, S
  • Non-Patent Document 2 F. Houlihan, A. Romano, D. Rentkiewicz, R. Sakamuri, R.
  • Non-Patent Document 3 Y. Kawaguchi, J. Irie, S. Kodama, S. Okada, Y. Takebe, I.
  • Patent Document 1 JP-A-10-161313
  • the present invention has been made in view of the above, and has an excellent resolution, can form a fine pattern with good rectangularity, and has a weak acid generated from an acid generator. It is an object of the present invention to provide a polymer compound which can form a photoresist composition which can obtain a photoresist composition having good sensitivity and excellent sensitivity. Further, the present invention provides a compound which is suitable for preparing a polymer compound, a photoresist composition containing the polymer compound, and a method for forming a resist pattern using the photoresist composition. The purpose is to: Means for solving the problem
  • the present inventors have introduced various acid dissociable, dissolution inhibiting groups as protecting groups for alkali-soluble groups in a polymer compound for a photoresist composition.
  • the acid dissociable, dissolution inhibiting group having a specific aliphatic cyclic group was used, the resist pattern had a good shape, and the fine pattern with improved resolution was obtained. It was found for the first time that a pattern could be formed, and based on this knowledge, the present invention was completed.
  • the acid dissociable, dissolution inhibiting group having a specific alicyclic group When the acid dissociable, dissolution inhibiting group having a specific alicyclic group is used, a compound or the like which forms a cyclic or chain tertiary alkyl ester with a carboxyl group of conventional (meth) acrylic acid can be used. It has also been found that, compared to the case where an acid dissociable, dissolution inhibiting group is formed, the selectivity of the acid generator is broadened and a highly sensitive resist composition can be obtained.
  • the polymer compound of the present invention is a polymer compound whose alkali solubility changes by the action of an acid, has an alkali-soluble group (i), and has one of hydrogen atoms in the alkali-soluble group (i).
  • the polymer compound of the present invention is a polymer compound whose alkali solubility changes by the action of an acid, has an alkali-soluble group (i), and has one of hydrogen atoms in the alkali-soluble group (i).
  • R is an oxygen, nitrogen, sulfur, or halogen atom (hereinafter, these are collectively referred to as “hetero
  • atom Represents an aliphatic cyclic group having 20 or less carbon atoms which may have n is 0 or Represents an integer of 1 to 5.
  • This alkali-soluble group (i) is preferably at least one selected from an alcoholic hydroxyl group, a phenolic hydroxyl group, and a carboxyl group, and when the alkali-soluble group (i) is an alcoholic hydroxyl group, More preferably, at least one fluorine atom is bonded to a carbon atom adjacent to the carbon atom bonded to the alcoholic hydroxyl group.
  • R is an aliphatic cyclic group having 20 or less carbon atoms which may have a hetero atom.
  • R has one or more hydrophilic groups.
  • the hydrophilic group which is preferably an aliphatic cyclic group having, is at least one selected from the group consisting of a carbonyl group, an ester group, an alcoholic hydroxyl group, an ether, an imino group, and an amino group. Is preferred.
  • the novel compound of the present invention has the following general formula (2)
  • R is a hydrogen atom, a fluorine atom or a carbon atom of 20 or less.
  • the polymer compound containing a structural unit (al) derived from the compound (2) is included in the polymer compound of the present invention.
  • the photoresist composition of the present invention comprises at least a base resin component (A) whose alkali solubility changes by the action of an acid (hereinafter sometimes referred to as a component (A)), and irradiation with radiation.
  • An acid generator component (B) (hereinafter sometimes referred to as component (B)) that generates an acid
  • the base resin component (A) is a polymer compound of the present invention.
  • the method of forming a resist pattern according to the present invention includes a step of forming a photoresist film on a substrate using such a photoresist composition, a step of exposing the photoresist film, and a step of exposing the exposed photoresist film. Developing the resist film to form a resist pattern.
  • the present invention it is possible to provide a fine pattern having a good resist pattern shape (rectangularity) and high resolution. Further, even an acid generator having a weak acid generated can dissociate the acid-dissociable, dissolution-inhibiting group, and provide good sensitivity.
  • FIG. 1 is a view showing a sensitivity curve by ArF exposure in Example 4.
  • “Structural unit” in the claims and the specification means a monomer unit (monomer unit) constituting a polymer compound.
  • an alkyl group, an alkoxy group, and an alkylene group may be linear or branched, or may be shifted.
  • R represents an aliphatic cyclic group which may have a hetero atom and has 20 or less carbon atoms.
  • N is 0
  • an acid dissociable, dissolution inhibiting group (ii) When the polymer compound of the present invention is used in a chemically amplified positive resist system, the polymer compound has an aliphatic cyclic group represented by the above general formula (1) (or general formula (3)). Having an acid-dissociable, dissolution-inhibiting group (ii) has an inhibitory effect on dissolution in alkali development before exposure, and enhances alkali-dissolvability by deprotection after exposure and PEB (post-exposure bake) processes. Show.
  • the chemically amplified positive resist significantly changes the solubility before and after exposure, so that it is possible to provide a fine pattern with excellent resolution.
  • the polymer compound of the present invention improves the etching resistance of the resist pattern.
  • the alkali-soluble group (i) has a hydrogen atom, and the acid dissociable, dissolution inhibiting group ( ⁇ ) replaces this hydrogen atom. That is, when an alkali-soluble group (i) is an alcoholic hydroxyl group, a carboxyl group, or a phenolic hydroxyl group, the acid-dissociable, dissolution-inhibiting group ( ⁇ ) is obtained by removing a hydrogen atom of the alkali-soluble group (i) and removing an oxygen atom Is bound to.
  • the acid dissociable, dissolution inhibiting group (ii) is represented by the above general formula (1). Where R is heterogenous
  • An aliphatic cyclic group which may have 1 carbon atom and has 20 or less carbon atoms, and the aliphatic cyclic group preferably has 2 to 20 carbon atoms, more preferably 3 to 20 carbon atoms, Preferably it is 5-12.
  • the aliphatic cyclic group may have a substituent.
  • the value of n is preferably 0 or 1.
  • aliphatic in the claims and the specification is a relative concept with respect to aromaticity, and is defined to mean a group, compound or the like having no aromaticity.
  • the “aliphatic cyclic group” means a monocyclic group or a polycyclic group (alicyclic group) having no aromaticity.
  • the “aliphatic cyclic group” is not limited to a group consisting of carbon and hydrogen, but is preferably a hydrocarbon group.
  • the “hydrocarbon group” may be either saturated or unsaturated, but is usually preferably saturated.
  • Examples of such an aliphatic cyclic group include, for example, cyclohexane, cyclopentane, adamantane, norbornane, norbornene, methylnorbornane, ethylnorbornane, methylenolenorevonolenene, ethylnorbornene, isobornane, tricyclodecane And monovalent groups which also induce power such as tetracyclododecane.
  • the aliphatic cyclic group can be appropriately selected from a large number of proposed aliphatic cyclic groups for use in an ArF resist.
  • cyclohexyl group, cyclopentyl group, adamantyl group, norbornyl group, norbornenyl group, methylnorbornyl group, ethylnorbornyl group , A methyl norbornenyl group, an ethyl norbornenyl group, and a tetracyclododecanyl group are more preferably adamantyl groups, which are industrially preferred.
  • R in the general formula (1) representing the acid dissociable, dissolution inhibiting group (ii) is at least
  • an aliphatic cyclic group having at least one hydrophilic group having at least one hydrophilic group.
  • the hydrophilic group include a carbonyl group (preferably a ketone carbonyl group), an ester group (_C ⁇ OR), and an alcoholic group.
  • a hydroxyl group, an ether (1-R), an imino group, and an amino group are most preferred, and a carbonyl group is most preferred because of easy availability.
  • the acid dissociable, dissolution inhibiting group ( ⁇ ) include, for example, groups represented by the following chemical formulas (4)-(15).
  • the alkali-soluble group (i) in the polymer compound of the present invention is exemplified by the above-mentioned non-patent literature, and the KrF resist, ArF resist, and F resist which have been proposed so far.
  • alkali-soluble group (i) examples include an alcoholic hydroxyl group, a phenolic hydroxyl group, and a carboxyl group, and are not particularly limited.
  • the alkali-soluble group (i) is preferably at least one selected from an alcoholic hydroxyl group, a phenolic hydroxyl group, and a carboxyl group.
  • the alkali-soluble group (i) is preferably at least one selected from an alcoholic hydroxyl group, a phenolic hydroxyl group, and a carboxyl group.
  • an alcoholic hydroxyl group in which the carbon atom adjacent to the carbon atom bonded to the alcoholic hydroxyl group has at least one fluorine atom is more preferable.
  • the alcoholic hydroxyl group may be simply a hydroxyl group, or may be an alcoholic hydroxyl group-containing alkyloxy group, an alcoholic hydroxyl group-containing alkyloxyalkyl group, or an alcoholic hydroxyl group-containing alkyl group.
  • Examples of the alkyloxy group, the alkyloxyalkyl group or the alkyl group include a lower alkyloxy group, a lower alkyloxy lower alkyl group, and a lower alkyl group.
  • the term "lower” as used herein refers to a carbon number of 1-4.
  • Specific examples of the lower alkyloxy group include a methyloxy group, an ethyloxy group, a propyloxy group, and a butyloxy group.
  • Specific examples of the lower alkyloxy lower alkyl group include a methyloxymethyl group, an ethyloxymethyl group, a propyloxymethyl group, and a butyloxymethyl group.
  • Specific examples of the lower alkyl group include a methyl group, an ethyl group, a propyl group, and a butyl group.
  • the alcoholic hydroxyl group-containing alkyloxy group the alcoholic hydroxyl group-containing alkyloxyalkyl group or the alcoholic hydroxyl group-containing alkyl group, one of the alkyloxy group, the alkyloxyalkyl group, or a hydrogen atom of the alkyl group is included. Part or all may be substituted with a fluorine atom.
  • the alcoholic hydroxyl group-containing alkyloxy group or the alcoholic hydroxyl group-containing alkyloxyalkyl group those in which some of the hydrogen atoms of the alkyloxy portion are substituted with fluorine atoms, and those in the alcoholic hydroxyl group-containing alkyl group.
  • the alkyl group in which part of the hydrogen atoms has been replaced with a fluorine atom that is, an alcoholic hydroxyl group-containing fluoroalkyloxy group, an alcoholic hydroxyl group-containing fluoroalkyloxyalkyl group or an alcoholic hydroxyl group-containing one. Fluoroalkyl groups.
  • the alcoholic hydroxyl group-containing fluoroalkyloxy group includes (H ⁇ ) C (CF)
  • the alcoholic hydroxyl group-containing fluoroalkyl group includes (HO) C (CF) CH—
  • phenolic hydroxyl group examples include a phenolic hydroxyl group contained in novolak resin, poly (hydroxymethyl) hydroxystyrene, and the like. Of these, the phenolic hydroxyl group of poly ((methyl) hydroxystyrene) is preferred because it is inexpensive and easily available.
  • Examples of the carboxyl group include a carboxyl group in a structural unit derived from an ethylenically unsaturated carboxylic acid.
  • Examples of the ethylenically unsaturated carboxylic acid include unsaturated carboxylic acids such as acrylic acid, methacrylic acid, maleic acid, and fumaric acid. Of these, acrylic acid and methacrylic acid are preferred because they are inexpensive and easily available.
  • novel compound of the present invention (sometimes referred to as “low molecular compound” with respect to the polymer compound of the present invention) is represented by the following general formula (16)
  • R is a hydrogen atom, a fluorine atom, a lower alkyl group having 120 carbon atoms or a fluorine atom
  • R represents an aliphatic ring having 3-20 carbon atoms which may have a hetero atom
  • n represents an integer of 0 or 115.
  • a polymer compound containing at least a structural unit (al) derived from this compound as a monomer unit thereof is included in the polymer compound of the present invention.
  • the structural unit (al) is a structural unit derived from the novel compound of the present invention, and is an alkali-soluble group (i) an acrylic acid power optionally having an I substituent (R).
  • R is a hydrogen atom, a fluorine atom or a carbon atom
  • a lower alkyl group having 120 carbon atoms or a fluorinated lower alkyl group having 120 carbon atoms preferably a lower alkyl group having 114 carbon atoms or a fluorinated lower alkyl group having 114 carbon atoms
  • Specific examples include a methyl group, an ethyl group, a propyl group, a butyl group and a trifluoromethyl group.
  • a hydrogen atom and a methyl group are most preferred because they are inexpensive and easily available.
  • n is an integer of 0 or 1 to 5, preferably 0 or 1.
  • R is the same as described above, and X represents two hydrogen atoms or one oxygen atom.
  • the polystyrene equivalent mass average molecular weight (Mw) of the polymer compound of the present invention by gel permeation chromatography (GPC) is not particularly limited, but it is 5,000 to 80,000 force for use in a photoresist composition. S is preferred, and more preferably 8000-50000.
  • the degree of dispersion (Mw / Mn) is about 1.0-5.0, preferably 1.0-2.5. Mn is the number average molecular weight.
  • the precursor of the polymer compound of the present invention before introducing the acid dissociable, dissolution inhibiting group (ii) should be composed of one or more structural units having an alkali-soluble group (i). Can be.
  • precursors those before the introduction of the acid dissociable, dissolution inhibiting group (ii) may be referred to as “precursors” and those after the introduction may be referred to as “polymer compounds”.
  • the structural unit having the alkali-soluble group (i) preferably at least one or two or more structural units selected from the above-mentioned monomer units having an alcoholic hydroxyl group, a phenolic hydroxyl group, and a carboxy group. Used.
  • the structural unit having an alkali-soluble group (i) may include a structural unit used in a conventionally known polymer for a photoresist composition.
  • the structural unit having the alkali-soluble group (i) for example, the following chemical formula (21) (30)-() a structural unit in which a carbon atom adjacent to a carbon atom bonded to an alcoholic hydroxyl group has an alcoholic hydroxyl group having at least one fluorine atom as shown in (29).
  • Structural units having a phenolic hydroxyl group as shown in 31), and structural units having a carboxyl group as shown in the case where R 7 in (32)-(35) or (45) is a hydrogen atom, etc. Can be mentioned.
  • the structural unit represented by the chemical formula (22) is preferably used in combination with a structural unit derived from ethylene tetrafluoride, as represented by the chemical formula (23).
  • the polymer compound is synthesized by a known method or a method described in the non-patent document.
  • an acid dissociable, dissolution inhibiting group (ii) by substituting a hydrogen atom of an alkali-soluble group (i) in a precursor, for example, an alcohol compound containing a halogen atom such as chlorine or bromine is used.
  • a halogenated methyl ether compound is synthesized, and this is A method of reacting with an alkali-soluble group to introduce an acid dissociable, dissolution inhibiting group (ii).
  • a chloromethyl ether compound is used as a starting material and reacted with one of an alkali-soluble group (i) selected from an alcohol hydroxyl group, a carboxyl group, and a phenolic hydroxyl group of a precursor, whereby, the alkali-soluble group (i) can be protected by the acid dissociable, dissolution inhibiting group represented by the formula (1).
  • the chloromethyl ether compound is synthesized by a known method as shown in the following reaction formula. That is, paraformaldehyde is added to the alcohol compound, 2.03.0 equivalents of hydrogen chloride gas are blown into the alcohol compound, and the mixture is reacted under acidic conditions of hydrochloric acid at 40100 ° C. After completion of the reaction, the desired chloromethyl ether compound can be obtained by subjecting the product to distillation under reduced pressure.
  • R corresponds to the group represented by “— (CH 2) —R” in the target compound.
  • chloromethyl ether compound for example, 4-oxo-2-adamantyl chloromethyl ether represented by the following chemical formula (36) and 2-adamantyl chloromethyl represented by the following chemical formula (37) Ether and 1-adamantyl methyl chloromethyl ether represented by the following chemical formula (38).
  • the polymer compound of the present invention derived from a precursor having a phenolic hydroxyl group as the alkali-soluble group (i) may be, for example, a poly ( ⁇ -methyl) hydroxystyrene resin, It is obtained by reacting a genoated methyl ether compound.
  • the precursor compound having a carboxy group as the alkali-soluble group (i) is derived from the polymer compound of the present invention. It is obtained by polymerizing the unsaturated carboxylic acid ester obtained by the reaction.
  • the halogenated methyl ether compound or other compound having an aliphatic cyclic group may be, for example, a compound having an alkali-soluble group (i) represented by the above chemical formulas (21) to (35).
  • the acid-dissociable, dissolution-inhibiting group ( ⁇ ) can be introduced into the alkali-soluble group (i) by reacting with the unit or a compound that derives the structural unit. If necessary, the polymer compound of the present invention can be obtained by further polymerizing.
  • novel compound (low molecular weight compound) of the present invention may have a substituent (R).
  • the photoresist composition of the present invention contains at least a base resin component (A) whose alkali solubility changes by the action of an acid and an acid generator component (B) that generates an acid upon irradiation with radiation. I do.
  • the base resin component (A) is the above-described polymer compound according to the present invention.
  • the photoresist composition of the present invention may be either a positive type or a negative type as long as it has the above characteristics. Preferably it is a positive type.
  • an alkali-soluble resin is used as the component (A), and a crosslinking agent is blended with the alkali-soluble resin. Then, when an acid is generated from the component (B) by exposure during the formation of the resist pattern, a strong acid acts to cause cross-linking between the alkali-soluble resin and the cross-linking agent, and the alkali-soluble resin becomes alkali-insoluble. Change.
  • a crosslinking agent for example, an amino-based crosslinking agent having a methylol group or an alkoxymethyl group, such as melamine, urea, or glycolperyl, is used.
  • the component (A) contains an alkali-insoluble structural unit having an acid-dissociable, dissolution-inhibiting group (ii).
  • the dissolution inhibiting group (ii) dissociates, whereby the entire component (A) changes from alkali-insoluble to alkali-soluble. Therefore, when exposure is performed through a mask pattern in the formation of a resist pattern, or when post-exposure bake (PEB) is performed in addition to exposure, the exposed part changes to alkali-soluble, while the unexposed part changes while remaining alkali-insoluble. Therefore, a positive resist pattern can be formed by alkali development.
  • the polymer compound of the present invention is used as the component (A).
  • alkali-soluble fraction of the structural unit having a group (i) is preferably 50 to 95 molar 0 / o, more preferably 55 90 Monore 0/0, and most preferably at 65- 90 mole 0/0 is there.
  • the proportion of protected with acid dissociable, dissolution inhibiting group (ii) les, Ru structural units, preferably 3 50 Mo Honoré 0/0, more preferably 7 to 30 mole 0/0, most preferably it is a 10- 25 mol 0/0.
  • alkali-soluble fraction of the structural unit having a group (i) is preferably 50 to 95 molar 0/0, more preferably 55- 90 mole 0/0, most preferably 55- 85 mole 0/0 It is.
  • the proportion of protected Rereru structural units with acid dissociable, dissolution inhibiting group (ii) is preferably a 3-50 mode Honoré 0/0, more preferably 5- 35 mole 0/0, most preferably it is a 7-25 mol 0/0.
  • the base resin component (A) is obtained by copolymerizing the structural unit (al) with another known structural unit conventionally used for a chemically amplified photoresist composition.
  • the other structural units include structural units shown in the following (a2) and (a6).
  • As other powerful structural units for example, those forming a cyclic or linear tertiary alkyl ester with a carboxyl group of (meth) acrylic acid are widely known.
  • the structural unit (al) a structural unit derived from at least one compound selected from the following general formula (39) can be used.
  • R ′ represents a group represented by the chemical formula (4)-(15), and R is the same as described above.
  • One type is preferred.
  • the exposure allowance and the exposure area allowance are improved.
  • the exposure area allowance is defined as the mask coverage and the coordinates within the cell (either at the periphery or the center in the cell of the exposure tool). The problem is that the resist shape and dimensions change depending on the difference between the two.
  • the acetal-type protecting group of the present invention is less susceptible to the diffusion and deactivation of acids due to the fact that the deprotection reaction proceeds only with exposure energy having a very low deprotection energy. Therefore, it is considered that the exposure area margin is improved.
  • the structural unit (al) of the present invention exhibits a higher thermal decomposition point than a tertiary ester compound of (meth) acrylic acid such as the structural unit (a2) described later, and thus has improved thermal stability. Therefore, storage stability is also improved. Furthermore, the structural unit (al) of the present invention has a lower Tg (glass transition point) than the structural unit (a2) described below and dissociates the protective group upon exposure ((a2) is composed of PEB). PEB can be performed at low temperatures, sometimes dissociating the protecting groups). In other words, it is possible to easily control the diffusion of the acid generator, thereby facilitating the control of the resist pattern shape. Also, the PEB margin is good. Further, the present invention provides good resolution and a resist pattern shape even on an inorganic substrate such as a Si ⁇ N substrate.
  • the acid dissociable, dissolution inhibiting group (ii) in the photoresist composition of the present invention may contain the component (a2) described below, but the ratio of the unit (al) in the component (A) is as follows. , Preferably at least 50% by mass, more preferably at least 80% by mass, most preferably 100% by mass.
  • a (meth) acrylic acid ester containing a monocyclic group or a polycyclic group-containing acid-dissociable, dissolution-inhibiting group is also derived, and the acid-dissociable units other than the structural unit (al) Structural units having a dissolution inhibiting group can be exemplified. These can be used within the scope and range that do not impair the effects of the present invention.
  • Examples of the monocyclic group include groups in which one hydrogen atom has been removed from cycloalkane, for example, aliphatic monocyclic groups such as cyclohexyl and cyclopentyl.
  • aliphatic monocyclic groups such as cyclohexyl and cyclopentyl.
  • the polycyclic group bicycloalkane, tricycloanolecan, tetracycloalkane, etc., adamantane, norbornane, isobornane, tricyclodecane, a group obtained by removing one hydrogen atom from polycycloalkane such as tetracyclododecane, that is, And aliphatic polycyclic groups.
  • these monocyclic or polycyclic groups have been proposed for ArF resists, and in the present invention, these monocyclic or polycyclic groups may be arbitrarily selected and used. Of which adamantyl, norbornyl, tetracyclododecanyl, etc. It is preferable to use an aliphatic polycyclic group from the viewpoint of industrial availability.
  • adamantyl norbornyl
  • tetracyclododecanyl etc.
  • an aliphatic polycyclic group from the viewpoint of industrial availability.
  • At least one structural unit selected from the following general formulas (43), (44) and (45) is preferable in terms of excellent resolution and dry etching resistance, and the like.
  • R 3 is a hydrogen atom or a lower alkyl group, and R 4 is a lower alkyl group
  • R 3 is a hydrogen atom or a lower alkyl group, and R 7 is a tertiary alkyl group
  • the structural unit represented by the general formula (43) is composed of an oxygen atom (one
  • the carbon atom adjacent to 0-) is a tertiary alkyl group on a ring skeleton such as an adamantyl group.
  • R 3 is a hydrogen atom or a methyl group, and further a lower alkyl group having about 25 carbon atoms, specifically, ethyl, propyl, isopropyl, n-butyl, isobutyl, tert_butyl, pentyl And lower linear or branched alkyl groups such as a group, isopentyl group and neopentyl group.
  • R 4 is a lower alkyl group having about 15 carbon atoms, specifically, a methyl group, an ethyl group, a propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a tert_butyl group, And lower linear or branched alkyl groups such as an ethyl group, an isopentyl group, and a neopentyl group.
  • R 4 is preferably an alkyl group having 2 or more carbon atoms, since the acid dissociation tends to be higher than that of a methyl group. However, industrially, a methyl group or an ethyl group is most preferable.
  • the carbon atom adjacent to the oxygen atom (1-O-) in the ester portion of (meth) acrylic acid is a tertiary alkyl group, and And a ring skeleton such as an adamantyl group.
  • R 3 has the same definition as in the above formula (43), and R 5 and R 6 are each independently a lower alkyl group, that is, the above-mentioned linear or branched alkyl group having about 115 carbon atoms. It is. Such groups tend to be more acid dissociable than the 2-methyl-2-adamantyl group. It is industrially preferable that both R 5 and R 6 be methyl groups.
  • the carbon atom adjacent to the oxygen atom (-O-) of another ester moiety instead of the (meth) acrylate ester moiety is a tertiary alkyl group.
  • the ester portion and the (meth) acrylate portion are linked by a ring skeleton such as a tetracyclododecanyl group.
  • R 3 has the same definition as in the case of the general formula (43)
  • R 7 is a tertiary alkyl group such as a tert-butyl group or a tert-amyl group. And is preferably a tertiary alkyl group having about 415 carbon atoms. It is industrially preferable that R 7 be a tert-butyl group.
  • a structural unit represented by the general formulas (43) to (45) particularly, a structural unit represented by the general formula (43) and an R 4 group represented by an S methyl group or an ethyl group. It is preferred because of its power S and excellent resolution.
  • the structural unit (a3) is a structural unit derived from a (meth) acrylate ester containing a rataton-containing monocyclic or polycyclic group.
  • the rataton functional group is effective in increasing the adhesion of a photoresist film formed from the composition of the present invention to a substrate and in increasing the affinity with a developing solution.
  • the rataton ring here indicates one ring including a - ⁇ -c ( ⁇ )-structure, which is counted as the first ring. Therefore, here, when only a rataton ring is used, it is called a monocyclic group, and when it has another ring structure, it is called a polycyclic group regardless of its structure.
  • the structural unit (a3) is not particularly limited as long as it has both the rataton functional group and the cyclic group, and any unit can be used.
  • examples of the ratatone-containing monocyclic group include groups excluding one ⁇ -petit mouth rataton force hydrogen atom
  • examples of the rataton-containing polycyclic group include a bicycloalkane having a rataton group.
  • a group obtained by removing one hydrogen atom from a rataton-containing tricycloalkane having the following structural formula (46) or (47) is advantageous from the viewpoint of industrial availability.
  • the structural unit (a3) include a structural unit that also induces a (meth) acrylate ester power including a rataton-containing monocycloalkyl group or a tricycloalkyl group, and more specifically.
  • R is a hydrogen atom or a lower alkyl group
  • R 3 is a hydrogen atom or a lower alkyl group
  • R 3 is a hydrogen atom or a lower alkyl group
  • R 3 a hydrogen atom or a methyl group, further the lower alkyl group having about the number of 2-5 carbon atoms, specifically Echiru group, a propyl group, an isopropyl group, n- butyl group, isobutyl group, tert- Examples include lower linear or branched alkyl groups such as butyl group, pentyl group, isopentyl group, and neopentyl group.
  • the norbornane ratatotone ester of (meth) acrylic acid represented by the general formulas (48) and (49), that is, the structural units derived from the (meth) acrylic acid ester of norbornane ratatone are obtained from the obtained resist. This is preferable because the shape of the pattern, for example, the rectangularity is even better.
  • the structural unit represented by the general formula (49) is highly effective, and is therefore preferred.
  • the unit (a3) may be a single type or a combination of two or more types different from each other. Introducing two or more different rataton skeletons into the resin skeleton further improves the adhesion of the photoresist film to the substrate, the affinity for the alkali developing solution, and the etching resistance.
  • Examples of the preferable rataton combination include a combination of a monocyclic rataton and a polycyclic rataton.
  • the structural unit ( a4 ) is a structural unit derived from a (meth) acrylic acid ester containing a polar group-containing polycyclic group, and has a polar group, so that the resin component (A) is compatible with the entire developer. It enhances the affinity and improves the alkali solubility in the exposed area, thereby contributing to the improvement in resolution.
  • the polycyclic group the same polycyclic group as in the case of the structural unit (al) can be used.
  • the polar group include a cyano group, a carboxyl group, and a hydroxyl group, and a hydroxyl group is preferable.
  • the structural unit (a4) is not particularly limited as long as it is a polar group-containing polycyclic group, and any unit can be used. Specifically, a hydroxyl-containing adamantyl group, particularly a structural unit represented by the following general formula (51), is preferable because it has an effect of increasing dry etching resistance and an effect of making a pattern cross section rectangular. [0104] [Formula 27]
  • the structural unit (a5) is derived from a (meth) acrylate ester containing a polycyclic group-containing non-acid dissociable, dissolution inhibiting group other than the structural units (al), (a2), (a3), and (a4). It is a structural unit.
  • Structural units derived from (meth) acrylates containing a polycyclic group-containing non-acid dissociable, dissolution inhibiting group are used to increase the hydrophobicity of the entire component (A) before and after exposure to suppress alkali solubility.
  • a structural unit having a function That is, while reducing the alkali solubility of the entire component (A) before exposure, the acid dissociation of the structural unit (al) or (a2) is not dissociated by the action of the acid generated from the component (B) after exposure.
  • a composition containing a dissolution inhibiting group that reduces the alkali solubility of the entire component (A) when the entire component (A) changes to alkali-soluble due to dissociation of the acidic dissolution inhibiting group. Is a unit
  • the structural unit (a5) does not overlap with the structural unit (al), the structural unit (a2), the structural unit (a3), and the structural unit (a4). That is, acid dissociable, dissolution inhibiting groups in structural units (al) and (a2), rataton groups in structural unit (a3), and polar groups in structural unit (a4).
  • Examples of the polycyclic group of the structural unit (a 5), can be used polycyclic group as in the case of the structural unit (a2).
  • a large number of conventionally known ArF positive resist materials can be used, in particular, tricyclodecanyl (meth) atalylate, ada Structural units derived from at least one selected from mantyl (meth) acrylate, tetracyclododecanyl (meth) acrylate, and isobornyl (meth) acrylate are preferred from the viewpoint of industrial availability.
  • These exemplified structural units are shown below as general formulas (52) and (54).
  • the structural unit represented by the general formula (52) is preferable because the shape of the obtained resist pattern, for example, rectangularity is particularly good.
  • R 3 is a hydrogen atom or a lower alkyl group.
  • R 3 a hydrogen atom or a methyl group, further the lower alkyl group having about the number of 2-5 carbon atoms, specifically Echiru group, a propyl group, an isopropyl group, n- butyl group, isobutyl group, tert- Examples include lower linear or branched alkyl groups such as butyl group, pentyl group, isopentyl group, and neopentyl group.
  • the structural unit (a6) does not overlap with the (al)-(a5) unit, is represented by the following general formula (55), and has a substituent. Derived from a compound consisting of a cyclic group X ′ bonded to and a fluorinated organic group bonded to the cyclic group X ′ It is a structural unit to be performed.
  • the fluorinated organic group is formed by substituting at least a part of the hydrogen atoms of the organic group with fluorine, and has an alcoholic hydroxyl group.
  • R is the same as described above.
  • X ′ is a divalent or trivalent cyclic group, and Y is a divalent C 1-6
  • It represents an alkylene group or an alkyleneoxy group.
  • p and q each independently represent an integer of 1 to 5, and s represents an integer of 1 or 2.
  • the divalent or trivalent cyclic group represented by X ' is not particularly limited as long as it is a cyclic group, and examples thereof include an aliphatic or aromatic cyclic group. be able to. Among them,
  • an aromatic cyclic group can be used in the photoresist composition for KrF exposure.
  • an aliphatic cyclic group it is preferable to use from the viewpoint of improving the transparency of the photoresist film.
  • aromatic cyclic group various monocyclic or polycyclic divalent or trivalent aromatic cyclic groups can be used without particular limitation. Examples thereof include groups obtained by removing two or three hydrogen atoms from aromatic hydrocarbons. Examples of such aromatic hydrocarbons include benzene, naphthalene, and anthracene.
  • aliphatic cyclic group various monocyclic or polycyclic divalent or trivalent aliphatic cyclic groups that are not particularly limited can be used. Examples thereof include groups obtained by removing two or three hydrogen atoms from an aliphatic cyclic hydrocarbon.Examples of such an aliphatic cyclic hydrocarbon include monocyclic groups such as cyclohexane and cyclopentane. Aliphatic hydrocarbons and polycyclic aliphatic cyclic hydrocarbons can be mentioned. Those obtained by removing two or three hydrogen atoms from these hydrocarbons are used as the aliphatic cyclic group.
  • polycyclic aliphatic hydrocarbons are more preferred, for example, adamantane, norbornorenan, norbornene, methyl norbornane, ethyl norbornane, methyl norbornene, ethyl norbornene, isobornane, tricyclodecane, tetracyclododecane, etc. That can be S.
  • Such polycyclic hydrocarbons can be appropriately selected from those proposed and used in ArF resists.
  • adamantane, norbornane, norbornene, methylnorbornane, ethylnorbornane, methinolenorenorbornene, ethylnorbornene, and tetracyclododecane are most preferably industrially preferred.
  • Y is a divalent alkylene group having 16 carbon atoms or an alkyleneoxy group, and is not particularly limited, but is preferably a methylene group.
  • p, q, and s are each preferably 1.
  • the monomer forming each of the structural units (al) and (a6) is conventionally known as a chemically amplified positive resist.
  • a copolymer composed of a carboxylic acid having a bond; or a structural unit derived from a known monomer or the like used in the production of an acrylic resin may be used in combination as needed.
  • acrylic acid derivative examples include carboxyl groups such as naphthyl acrylate, benzyl acrylate, 3-oxocyclohexyl acrylate, an ester of acrylic acid and terbineol, and an ester of atalylic acid and 3-bromoacetone.
  • carboxyl groups such as naphthyl acrylate, benzyl acrylate, 3-oxocyclohexyl acrylate, an ester of acrylic acid and terbineol, and an ester of atalylic acid and 3-bromoacetone.
  • An acrylate ester in which the hydroxyl group of the group is protected by a group for improving dry etching resistance or an acid non-dissociable substituent is exemplified.
  • methacrylic acid derivative examples include methacrylic acid derivatives corresponding to these acrylic acid derivatives.
  • Examples of the carboxylic acid having an ethylenic double bond include acrylic acid and Examples thereof includeucic acid, maleic acid, and fumaric acid.
  • acrylic resin examples include, for example, methyl acrylate, ethyl acrylate, propyl acrylate, isopropyl acrylate, n-butyl acrylate, isobutyl acrylate, n-xyl acrylate, acrylic acid Examples include octyl, 2-ethylhexyl atolinoleate, lauryl acrylate, 2-hydroxyethyl acrylate, and alkyl acrylate.
  • a copolymer containing the structural unit (al) and the structural unit (a3) is preferably a copolymer having resolution and resist pattern. It is preferable from the viewpoint that it becomes better.
  • a copolymer containing the structural unit (al), the structural unit (a3), and the structural unit (a4) is more preferable.
  • a copolymer having two mutually different structural units (a3) in the base resin component is also preferable.
  • the ratio of structural units (al) is determined by the sum of all structural units of component (A). respect, 20- 80 mol%, harm ij if ⁇ desirability rather ⁇ or 30- 60 Monore 0 structural unit (a3) or, 20 80 Monore 0 preferably ⁇ or 30- 60 mol 0/0.
  • the ratio of structural units (al) is based on the total of all structural units of component (A). 20-80 mol%, preferably 30-60 monoles 0 structural unit (a6), and 20-80 monoles 0 preferably 30-60 mol%.
  • the ratio of structural unit (al) is determined by summing the total of all structural units of component (A).
  • the proportion of 2 0 60 Monore 0 preferably 30 to 50 Monore 0 structural unit (a3) is 20-60 Monore 0/0, the ratio of preferably 20- 50 Monore 0 structural unit (a4), 10- 50 Monore 0 preferably 2 0 40 mol%.
  • the proportion of each structural unit in the component (A) is within these numerical ranges, a positive resist composition having excellent resolution and dry etching resistance can be obtained.
  • the polymer compound of the present invention is used in a quaternary system (a copolymer of (al) / (a3) / (a4) / (a5)). If you, the total of all the structural units within the component (A), the amount of the structural unit (al) is 25 5 0 Monore 0/0, preferably in the range of 30- 40 mol 0/0 configuration
  • the ratio of the unit (a3) is in the range of 25-50 mol 0 / o, preferably 30-40 mol%
  • the ratio of the constituent unit (a4) is in the range of 10-30 mol%, preferably 1020 mol%.
  • the ratio of the structural unit (a5) is preferably 325 mol%, more preferably 5 to 20 mol%.
  • Such a polymer compound containing (al) may be a known radical compound using a radical polymerization initiator such as azobisisobutyronitrile (AIBN) as a monomer for deriving each structural unit. It can be obtained by polymerizing by polymerization or the like.
  • a radical polymerization initiator such as azobisisobutyronitrile (AIBN)
  • the content of the base resin component (A) in the photoresist composition of the present invention may be adjusted according to the resist film thickness to be formed. For example, it is adjusted so as to have a preferable solid content concentration described later.
  • the polymer compound may be, for example, HS-CH 2 —CH 2 —CH 2 —
  • chain transfer agent such as C (CF) -OH in combination, -C (CF)-
  • An OH group may be introduced.
  • copolymers in which a hydroxyalkyl group in which some of the hydrogen atoms of the alkyl group have been replaced with fluorine atoms have been introduced to reduce development defects and reduce LER (line edge roughness: unevenness of line side walls). It is effective in reducing the amount of slag.
  • any known compound which generates an acid by irradiation with radiation can be appropriately selected and used.
  • acid generators there have hitherto been used, for example, potassium salt-based acid generators such as rhododium salts and sulfonium salts, oxime sulfonate-based acid generators, bisalkyl or bisarylsulfonyldiazomethanes, Poly (bissulfonyl) diazomethanes, nitrobenzene
  • diazomethane-based acid generators such as sulfonates, iminosulfonate-based acid generators, and disulfone-based acid generators are known.
  • onium salt-based acid generator examples include trifluoromethanesulfonate or nonafluorobutanesulfonate of diphenylodonium, and trifluoromethanesulfonate or nonafluoroform of bis (4-tert-butylphenylenol) odonium.
  • an onium salt having a weak acid and having camphor sulfonate ion in the anion portion can also be used.
  • Specific examples include compounds represented by the following chemical formula (57).
  • oxime sulfonate-based acid generator examples include ⁇ - (methylsulfonyloxyimino) -phenylacetonitrile,-(methylsulfonyloximinino) _p-methoxyphenylacetonitrile, and a- (trifluene).
  • bisalkyl or bisarylsulfonyldiazomethanes include bis (isopropylsulfonyl) diazomethane, bis (p-toluenesulfoninole) diazomethane, and bis (1,1). —Dimethylethylsulfoninole) diazomethane, bis (cyclohexylsulfoninole) diazomethane, bis (2,4-dimethylphenylsulfonyl) diazomethane and the like.
  • poly (bissulfonyl) diazomethanes examples include, for example, 1,3-bis (phenylsulfonyldiazomethylsulfonyl) propane having the structure shown below (disulfide compound A, decomposition point 135 ° C.), 1,4_bis (phenylsulfonyldiazomethylsulfonyl) butane (disulfide compound B, decomposition point 147 ° C), 1,6_bis (phenylsulfonyldiazomethylsulfonyl) hexane ( Compound C, melting point 132 ° C, decomposition point 145 ° C), 1,10-bis (phenylsulfonyldiazomethylsulfonyl) decane (Ichi compound D, decomposition point 147 ° C), 1,2- Bis (cyclohexylsulfonyldiazomethylsulfonyl) ethane (disulfide
  • one type of acid generator may be used alone, or two or more types may be used in combination.
  • the content of the component (B) is 0.5 to 30 parts by mass, preferably 115 to 15 parts by mass, and more preferably 3 to 10 parts by mass with respect to 100 parts by mass of the component (A).
  • the content of the component is When it is within the numerical range, a uniform solution is obtained, storage stability is improved, and pattern formation is sufficiently performed.
  • the photoresist composition may further contain a nitrogen-containing organic compound (D), if necessary. It is already known to incorporate a small amount of a nitrogen-containing compound into a chemically amplified resist composition as an acid diffusion inhibitor or the like. Also in the present invention, such a known nitrogen-containing organic compound can be added to the photoresist composition. Examples of such a nitrogen-containing organic compound include an amine ammonium salt.
  • amine examples include aliphatic secondary amines such as getylamine, dipropylamine, dibutylamine and dipentylamine, trimethylamine, triethylamine, tripropylamine, tributinoleamine, tripentinoleamine, N, N— Aliphatic tertiary compounds such as dimethylpropylamine, N-ethyl-N-methylbutylamine, trihexynoleamine, triheptinoleamine, trioctylamine, tridecaneylamine, tridodecylamine, and tritetradecanylamine Grade amines (trialkylamines, in which the three alkyl groups bonded to nitrogen may be the same or different), N, N-dimethylmonoethanolamine, triisopropanolamine, N , N-Jetyl monoethanolamine, triethanolamine, tributa Tertiary alkanolamines such as nolamine, N, N-dimethylaniline,
  • ammonium salt examples include quaternary alkyl ammonium ions such as ammonium ion, tetramethyl ammonium ion, tetraethyl ammonium ion, tetrapropyl ammonium ion, tetrabutyl ammonium ion, and tetrapentyl ammonium ion.
  • quaternary alkyl ammonium ions such as ammonium ion, tetramethyl ammonium ion, tetraethyl ammonium ion, tetrapropyl ammonium ion, tetrabutyl ammonium ion, and tetrapentyl ammonium ion.
  • a salt with an ion of an organic carboxylic acid having a hydroxyl group such as lactic acid.
  • lower tertiary anorecananolamines such as triethanolamine, triisopropanolamine, and tributanolamine, trihexynoleamine, triheptinoleamine, trioctylamine, tridecanylamine, and tridecanolamine Charcoal such as dodecylamine and tritetradecanylamine Trialkylamine force with a prime number of 6 or more and 15 or less It is preferable because it has an excellent effect of reducing the film loss at the top portion of a fine resist pattern.
  • the nitrogen-containing organic compound (D) is usually 0.01 to 15 parts by mass, preferably 0.05 to 3 parts by mass, more preferably 0.1 to 3 parts by mass, based on 100 parts by mass of the base resin component (A). Used in the range of 12 parts by mass. When the content of the component (D) is within these numerical ranges, an effect of suppressing the diffusion of the acid generated by exposure can be obtained, and the effect of improving the shape of the pattern can be obtained. No deterioration in exposure sensitivity occurs.
  • an organic carboxylic acid or an oxo acid of phosphorus or a derivative thereof is further added as an optional component to the photoresist composition for the purpose of preventing sensitivity deterioration due to the addition of the nitrogen-containing organic compound (D). It can be contained.
  • organic carboxylic acid for example, malonic acid, citric acid, malic acid, succinic acid, benzoic acid, salicylic acid and the like are suitable.
  • Examples of the oxo acid of phosphorus or a derivative thereof include phosphoric acid, a derivative such as phosphoric acid such as di-n-butyl ester phosphate, diphenyl phosphate or the like, phosphonic acid, and dimethyl phosphonate.
  • Phosphonic acids such as esters, phosphonic acid-di-n-butyl ester, phenylphosphonic acid, diphenylphosphonic acid ester, dibenzylphosphonic acid ester and derivatives thereof, phosphinic acids such as phosphinic acid, phenylphosphinic acid and the like.
  • Derivatives such as esters thereof are mentioned, and among them, phosphonic acid is particularly preferable.
  • the organic carboxylic acid or oxo acid of phosphorus or a derivative thereof is contained in an amount of 0.01 to 5.0 parts by mass, preferably 0.05 to 3 parts by mass, more preferably 0.1 to 3 parts by mass, per 100 parts by mass of the resin component (A). Used in a proportion of 12 parts by mass.
  • the photoresist composition of the present invention comprises the base resin component (A), the acid generator (B), and the nitrogen-containing organic compound (D), and optionally, an optional component added to an organic solvent ( It is obtained by dissolving in E) to form a homogeneous solution.
  • an organic solvent one or two or more neutral solvents which are conventionally known as solvents for chemically amplified resists can be appropriately selected and used.
  • the organic solvent (E) include ketones such as ⁇ -petit mouth ratataton, acetone, methylethylketone, cyclohexanone, methylisoamylketone, and 2_heptanone; and ethylene glycol and ethylene glycol monoacetate.
  • organic solvents may be used alone or as a mixed solvent of two or more.
  • a mixed solvent of propylene glycol monomethyl ether acetate (PGMEA) and a polar solvent is preferred.
  • the mixing ratio of these may be determined as appropriate in consideration of the compatibility between PGMEA and the polar solvent. , Preferably in the range of 1: 9 to 9: 1, more preferably in the range of 2: 8 to 8: 2.
  • the mass ratio of PGMEA: ⁇ L is preferably 2: 8-8: 2, more preferably 3: 7-7: 3
  • the organic solvent (E) a mixed solvent of at least one selected from neutral PGMEA and EL and ⁇ -butyrate is also preferable.
  • the mixing ratio of the former and the latter is preferably 70:30 to 95: 5.
  • the amount of the component (II) is not particularly limited, and is a concentration that can be applied to a substrate or the like and is appropriately set according to the coating film pressure.
  • the solid content of the photoresist composition is generally used. It is in the range of 2-20% by weight, preferably 5-15% by weight, more preferably 512 parts by weight.
  • the photoresist composition of the present invention may further contain additives that are optionally miscible, for example, a known dissolution inhibitor, an additional resin for improving the performance of the photoresist film, and a coating agent for improving coatability.
  • additives that are optionally miscible, for example, a known dissolution inhibitor, an additional resin for improving the performance of the photoresist film, and a coating agent for improving coatability.
  • an alcoholic hydroxyl group protected with the acid dissociable, dissolution inhibiting group ( ⁇ ) of the present invention is also provided.
  • a compound having a phenolic hydroxyl group or a phenolic hydroxyl group is also used as a dissolution inhibitor.
  • the dissolution inhibitor include an alkali-soluble group (i), particularly an alcoholic hydroxyl group, a phenolic hydroxyl group, and a carboxyl group in the monomer component corresponding to each of the structural units of the chemical formulas (21) to (35).
  • Compounds protected using the acid-dissociable, dissolution-inhibiting group (ii) that can be used in the invention are preferably used.
  • a photoresist composition containing such a compound together with a base resin component (A) as an acid dissociable dissolution inhibitor (C) exhibits an action of inhibiting dissolution in alkali development before exposure and removes the compound after the exposure process. Shows alkaline solubility due to protection. Thereby, the resist film can be prevented from pattern film loss and a fine pattern with high resolution can be provided.
  • the compound of the present invention has an acid-dissociable, dissolution-inhibiting group having an aliphatic cyclic group in the molecule, and its alkali solubility is significantly changed by the action of an acid. Therefore, according to the polymer compound of the present invention having a structural unit derived from the compound, the rectangularity, resolution, and sensitivity are good in a chemically amplified photoresist system, and the compound is generated from an acid generator. Even if the acid is weak, the acid dissociable, dissolution inhibiting group is sufficiently dissociated to obtain a photoresist composition exhibiting good photoresist performance.
  • the etching resistance is improved, and in particular, when a hydrophilic group is further introduced, the adhesion of the resist pattern to the substrate is improved, and the alkaline developer It is possible to obtain an effect of reducing development defects by improving the affinity for the compound.
  • the photoresist composition of the present invention is suitably used for patterning a semiconductor integrated circuit by lithography.
  • light sources with a wavelength of 300 nm or less especially KrF, ArF, F
  • the photoresist composition of the present invention is also effective for electron beams.
  • the resist pattern forming method of the present invention includes a step of forming a photoresist film on a substrate using such a photoresist composition, a step of exposing the photoresist film, and a step of exposing the exposed photoresist film. Developing the photoresist film to form a resist pattern.
  • the photoresist composition of the present invention can be prepared by a resist patterning method using a usual lithography process. To form Such a method is described below. First, a photoresist composition is applied on a substrate by spin coating or the like, and dried to form a photoresist film. Next, the photoresist film is selectively exposed through a mask pattern, and is heated after exposure (PEB). Finally, the exposed photoresist film is developed with an aqueous alkaline solution to form a resist pattern. In addition, post-beta processing may be performed if necessary.
  • Examples of light sources include, but are not limited to, deep ultraviolet light of 200 nm or less, such as ArF excimer laser, F excimer laser, EUV (extreme ultraviolet light), electron beam, soft X-ray, and X-ray. Etc. can be used. Particularly, a KrF excimer laser, an ArF excimer laser, and an F excimer laser are preferable. In particular, when a polymer compound (copolymer) using the novel compound of the present invention is used, an ArF excimer laser is preferred. Furthermore, the photoresist composition of the present invention is also effective for electron beams.
  • the conditions for forming the resist pattern that is, the number of rotations of the resist coating, the pre-beta temperature, the exposure condition, the post-exposure baking (PEB) condition, and the alkali developing condition are also the conditions conventionally used conventionally. Is fine. Specifically, the rotational speed is about 1200-3500 rpm, more specifically about 2000 rpm, and the pre-beta (PB) temperature is in the range of 70-130 ° C. As a result, a resist film thickness of 80 to 300 nm is formed.
  • the exposure may be performed through a mask. An ordinary binary mask is used as a mask in the selective exposure. As such a mask, a phase shift mask may be used.
  • the post-exposure bake (PE B) temperature is in the range of 90-140 ° C.
  • Alkaline development conditions include developing with 15% by mass TMAH (tetramethylammonium hydroxide) developer at 23 ° C for 15-90 seconds, followed by water rinsing. .
  • TMAH tetramethylammonium hydroxide
  • Resins 6-9 are represented by the following chemical formulas (69)-(72), respectively. Table 1 shows the physical properties of these resins.
  • Resin 6 represented by chemical formula (69) was synthesized using a known metal catalyst and an addition polymerization reaction.
  • X in the formula is 100.
  • the molecular weight (Mw) of this resin 10 was 12,400, and the degree of dispersion (MwZMn) was 1.28.
  • the thermal decomposition point was measured with a thermal analyzer DSC6200 (manufactured by Seiko Instmment) at a temperature rise rate of 10 ° C./min.
  • Tg glass transition point
  • the heat distribution angle is up to 215.7 ° C, and Tgf up to 133.3. C.
  • Comparative resin 3 This resin is referred to as Comparative resin 3 and represented by the chemical formula (83).
  • the mass average molecular weight (Mw) of this comparative resin 3 was 14000, the degree of dispersion (Mw / Mn) was 2.14, and the protection ratio of the hydroxyl group was 40.7%.
  • Comparative Synthesis Example 4 Synthesis of comparative resin 4 (83) The protection rate was changed in Comparative Synthesis Example 3. That is, the reaction was carried out using the same method except that the amount of chloromethyl methyl ether was adjusted.
  • the weight average molecular weight (Mw) of the obtained resin was 13,900, the dispersity (Mw / Mn) was 2.23, and the protection ratio of the hydroxyl group was 20.8%. This is designated as Comparative Resin 4 and represented by the chemical formula (83).
  • a positive photoresist composition was prepared by mixing each of Resins 7 to 9 with the following acid generator, nitrogen-containing organic compound, and solvent.
  • Resin 7 9 100 parts by mass
  • Nitrogen-containing organic compound triisopropanolamine 0.2 parts by mass
  • TPS_PFBS represents triphenylsulfonidymonafluorobutanesulfonate.
  • PGMEAJ represents propylene glycol monomethyl ether acetate.
  • a positive photoresist composition was prepared by mixing Resin 1 with the following acid generator, nitrogen-containing organic compound, and solvent. The resist film thickness was adjusted to 200 nm.
  • FIG. 1 shows the obtained sensitivity curve representing the change in the resist film thickness with respect to the change in the exposure amount.
  • Resin 1 100 parts by mass
  • Nitrogen-containing organic compound triisopropanolamine 0.2 parts by mass
  • a positive photoresist composition was prepared by mixing the following acid generator, nitrogen-containing organic compound, and solvent with Resin 2-5.
  • Resin 2-5 100 parts by mass
  • Nitrogen-containing organic compound 0.35 parts by mass of triisopropanolamine
  • the exposure resolution of the positive photoresist was confirmed under the conditions shown in Table 4 below.
  • Table 5 shows the evaluations of the exposure resolution described above.
  • the positive photoresist composition (Examples 5-8) containing the resins 2-5, which are specific examples of the polymer compound of the present invention, a 120 nm line and space pattern was obtained in a 1: 1 ratio. It was clarified that the pattern shape showed rectangularity.
  • Table 5 shows the exposure (sensitivity) at that time.
  • PAG1 Triphenylsulfonidum nonafluorobutanesulfonate
  • PAG2 Bis (2,4-dimethylphenylsulfonyl) diazomethane represented by the following chemical formula (84) [0222] [Formula 56]
  • PAG3 camphorsulfonic acid of triphenylsulfonium represented by the following chemical formula (85):
  • Comparative Examples 7 and 8 were the same as those of Table 2 except that the resist film pressure was changed to 200 nm.
  • a line-and-space pattern having a line width of 120 nm and a pitch of 240 nm was formed, and LER (Line Edge Roughness: Line Edge Roughness was defined as line side wall roughness) for each of Example 9, Example 12, Example 15, Comparative Example 1, and Comparative Example 4. Is the unevenness of the surface.) 3 sigma, which is the scale shown, was obtained. In the present example, 3 ⁇ was measured by a lateral SEM (trade name “S-9220”, manufactured by Hitachi, Ltd.). This 3 ⁇ force ⁇ means that a resist pattern having a uniform width with a small roughness is obtained. As a result, it was 6.4 nm in Example 9, 5.4 nm in Example 12, 6.9 nm in Example 15, 9. Onm in Comparative Example 1, and 6.9 nm in Comparative Example 4. These facts also indicate that the use of the structural unit (al) of the present invention reduces LER.
  • a resist composition having the composition shown in Table 9 below was prepared, and a resist pattern was formed under the mounting conditions shown in Table 10 below.
  • the statue of the statue of the statue MMD— 3 2% (Kan ⁇ ka: E made by Shasha) 233 ⁇ 4 S0 sec ⁇
  • Sensitivity For Examples 20-21, the sensitivity was measured when the size of the 100 nm line and space pattern was 1: 1. For Comparative Example 9, the sensitivity was measured when the size of the 160 nm line and space pattern was 1: 1.
  • LER For Examples 20-21, the LER of the size power of the 100 nm line and space pattern was measured. For Comparative Example 9, the LER was measured when the size of the 160 nm line and space pattern was 1: 1.
  • the resist composition of the present invention was excellent in resolution, sensitivity, and LER even when an electron beam was used as the exposure light source.
  • Comparative resin 5 had a mass average molecular weight (Mw) of 10,000 and a degree of dispersion (MwZMn) of 2.0.
  • Mw mass average molecular weight
  • MwZMn degree of dispersion
  • Comparative Resin 6 was synthesized in the same manner as in Comparative Synthesis Example 1.
  • the mass average molecular weight (Mw) of Comparative Resin 6 was 9200, and the degree of dispersion (Mw / Mn) was 1.96.
  • a positive resist composition having the composition shown in Table 13 below was prepared.
  • a material for an organic anti-reflective coating (Break Science Inc., trade name: ARC-29) is applied on an 8-inch silicon wafer and baked at 225 ° C for 60 seconds to form an anti-reflective coating, and the substrate is formed.
  • PAG2 4-Methylphenyl I-nildiphenyls.Rufonidium nonaful E3 butanesulfonate
  • XR-104 product name: manufactured by Dainippon Ink and Chemicals, Inc.
  • Exposure allowance (126 1 1111)-£ (15411111)] 100 / £ 0?
  • a positive resist composition having the composition shown in Table 13 was prepared.
  • an organic anti-reflective coating material (ARC-29, manufactured by Blue Science) is applied on an 8-inch silicon wafer and baked at 225 ° C for 60 seconds to form an anti-reflective coating.
  • ARC-29 manufactured by Blue Science
  • the positive resist composition obtained above was uniformly coated on the substrate by using a spinner, pre-betaed under the conditions shown in Table 14, and dried to form a resist layer.
  • a spinner pre-betaed under the conditions shown in Table 14, and dried to form a resist layer.
  • 3 ⁇ which is a measure of LER, was determined.
  • the value of 3 ⁇ is the standard deviation ( ⁇ ) calculated by measuring the width of the resist pattern of the sample at 32 locations using a lateral SEM (trade name “S-9220”, manufactured by Hitachi, Ltd.). It is a double value (3 ⁇ ). The smaller the value of 3 ⁇ , the lower the roughness and the more uniform the width of the resist pattern.
  • Example 28 had extremely excellent LER.
  • the weight average molecular weight (Mw) of this resin 22 was 10200, and the degree of dispersion (Mw / Mn) was 1.72.
  • a positive resist composition having the following composition was prepared.
  • a material for an organic anti-reflection film (trade name: ARC-29, manufactured by Blue Science) was applied on an 8-inch silicon wafer, and baked at 205 ° C for 60 seconds to form a film having a thickness of 38 nm. Anti An anti-irradiation film was formed.
  • the substrate was subjected to PEB treatment at 105 ° C for 90 seconds, and further subjected to paddle development at 23 ° C with a 2.38% by mass aqueous solution of tetramethylammonium hydroxide for 30 seconds. Thereafter, the resultant was rinsed with pure water for 30 seconds, shaken off, and dried to form a 140 nm line-and-space (1: 1) resist pattern. At that time, the sensitivity was 23 mjZcm 2 and the exposure margin was 15.4. / 0 .
  • Example 29 Comparing Example 29 with Comparative Example 10, it was found that the resist composition in Example 29 was excellent in exposure latitude.
  • the polymer compound and the low-molecular compound according to the present invention are useful for forming a fine resist pattern having high rectangularity, and particularly, for forming a fine pattern for KrF, ArF, and F exposure. Suitable for

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Materials For Photolithography (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

 優れた解像性を有し、矩形性が良好な微細パターンを形成できるとともに、酸発生剤から発生する酸が弱い場合も良好なレジスト特性が得られ、感度も良好なフォトレジスト組成物を構成できる高分子化合物、該高分子化合物を用いたフォトレジスト組成物、および該フォトレジスト組成物を用いたレジストパターン形成方法が提供される。これらフォトレジスト組成物、およびレジストパターン形成方法は、アルカリ可溶性基(i)を有し、このアルカリ可溶性基(i)がアルコール性水酸基、カルボキシル基、およびフェノール性水酸基から選択される少なくとも1種の置換基であり、これらの基が、下記一般式(1) 【化1】 (式中、R1は酸素、窒素、硫黄、又はハロゲン原子を有してもよい炭素数20以下の脂肪族環式基であり、nは0または1~5の整数を表す。)で示される酸解離性溶解抑止基(ii)で保護されている高分子化合物を用いる。

Description

明 細 書
高分子化合物、該高分子化合物を含有するフォトレジスト組成物、および レジストパターン形成方法
技術分野
[0001] 本発明は、高分子化合物、該高分子化合物の調製に好適な低分子化合物、少な くとも該高分子化合物を含有してなるフォトレジスト組成物、およびレジストパターン形 成方法に関する。
本願は、 曰本国特許庁に 2004年 2月 20曰に出願された特願 2004—045522号、 2004年 4月 28曰 ίこ出願された特願 2004—134585号、 2004年 6月 17曰 ίこ出願さ れた特願 2004-179475号、 2004年 8月 31日に出願された特願 2004—252474 号、及び 2004年 10月 29日に出願された特願 2004-316960号に基づく優先権を 主張し、その内容をここに援用する。
背景技術
[0002] 半導体集積回路パターンの微細化は、光リソグラフィーおよびその周辺技術の進 歩により達成されてきたといっても過言ではなレ、。この光リソグラフィ一は、周知のよう に、大きく分けて 2つの技術に支えられている。一つは、ステッパーやスキャナーと呼 ばれる縮小投影露光装置の露光波長や開口数であり、他の一つは、前記縮小投影 露光装置によってマスクパターンが転写されるフォトレジスト組成物の転写解像性を 主体としたレジスト特性である。これらが光リソグラフィ一による半導体集積回路パタ ーンの加工精度を向上させてきた。
[0003] 縮小投影露光装置に用いられる光源は、回路パターンの高解像度化の要請を受 けて、ますます短波長化されている。一般に、レジスト解像性が約 0. 5 / mである場 合、主要スペクトルが 436nmである水銀ランプの g線力 約 0. 5— 0· 30 /i mである 場合、主要スペクトルが 365nmである水銀ランプの i線が用いられる。また、レジスト 解像性が約 0· 30-0. 15 /i mである場合、 248nmの KrFエキシマレーザー力 約 0. 15 /i m以下である場合、 193nmの ArFエキシマレーザーが用いられる。そして、 さらなる微細化のために 157nmの Fエキシマレーザーや 126nmの Arエキシマレ 一ザ一、 EUV (極端紫外線 波長 13nm)の使用が検討されている。
[0004] 一方、フォトレジスト組成物について見てみると、現在では、有機または無機反射防 止膜との組み合わせや照明系の工夫により、 KrFエキシマレーザーを用いたリソダラ フィ一において、 KrF用フォトレジストの延命化がなされるとともに、 λ Ζ2以下の約 1 10nmを視野に入れたフォトレジスト組成物の開発が行われている。また、 ArFェキ シマレーザーを用いたリソグラフィ一において、ノードが約 90nm以下である将来の 微細パターンの量産に好適な ArF用フォトレジスト組成物の提供が望まれている。そ して、前記 Fエキシマレーザーを用いたリソグラフィ一は、ノードが 65nm以下である
2
将来の微細パターンの加工技術を担うものとして注目されており、この Fエキシマレ
2 一ザ一を用いたリソグラフィ一による微細加工にも十分に適用可能なフォトレジスト組 成物の開発が進められている。
[0005] このような微細パターンを得ることは、従来のアルカリ可溶性ノボラック樹脂とキノン ジアジド基含有化合物を基本成分としたポジ型フォトレジストでは困難であるため、よ り短波長の遠紫外線(200— 300nm)、 KrF, ArF、 Fなどのエキシマレーザー、電
2
子線及び X線を利用したフォトレジストの開発が要望されている。力かるフォトレジスト として高解像性が達成される上に、放射線の照射により発生した酸の触媒反応、連 鎖反応が利用でき、量子収率が 1以上で、し力も高感度が達成できる化学増幅型レ ジストが注目され、盛んに開発が行われている。
[0006] ポジ型の化学増幅型レジストにぉレ、ては、主に酸解離性溶解抑止基を有する樹脂 が用いられている。
上記化学増幅型レジストに用いられる酸解離性溶解抑止基としては、例えば、下記 非特許文献 1一 3に示されるように、フッ素化されたアルコールへの酸解離性溶解抑 止基としてァセタール基、 tert—ブチル基のような 3級アルキル基、 tert—ブトキシカル ボニル基、及び tert—ブトキシカルボニルメチル基などが知られてレ、る。
[0007] また、従来 ArFレジスト組成物の樹脂成分中の酸解離性溶解抑止基を有する構成 単位としては、下記特許文献 1に示されるように、(メタ)アクリル酸の 3級エステル化 合物、例えば 2_アルキル一 2—ァダマンチル (メタ)アタリレート等から誘導される構成 単位が一般的に用いられている。なお、本明細書においては、「アクリル酸」と「メタク リル酸」を総称して (メタ)アクリル酸とレヽレヽ、「アクリル酸誘導体」と「メタクリル酸誘導体 」を総称して (メタ)アクリル酸誘導体とレ、い、「アタリレート」と「メタタリレート」を総称し て (メタ)アタリレートという。
[0008] し力、しながら、非特許文献 1一 3に示された化学増幅型レジストに用いられている酸 解離性溶解抑止基は、未露光部でのアルカリ溶解抑止性が不十分(レジストパター ンが膜減る)であるため、解像性の向上および矩形性が良い微細パターンの形成と レ、う点において問題を有する。仮に酸解離性溶解抑止基の導入率を増やして未露 光部でのアルカリ溶解抑止性を向上させようとしても、ディフエタトのリスクが高まると レ、う問題がある。
[0009] また、特許文献 1に示されるように、酸解離性溶解抑止基を形成する化合物として、 例えば (メタ)アクリル酸のカルボキシノレ基と環状または鎖状の第 3級アルキルエステ ルを形成する化合物が広く知られている。し力 ながら、それらを用いたレジスト組成 物において、使用できる酸発生剤の種類に限りがある。すなわち、発生する酸の強 度が強レ、酸発生剤、例えばフッ素化アルキルスルホン酸イオンをァニオン部に有す るォニゥム塩等を適用しないと、該酸解離性溶解抑止基は脱離しない為、化学増幅 型のポジ型レジストとして機能しないという問題がある。また、発生する酸の強度が弱 い酸発生剤を使用すると感度が不十分であるという問題があり、改善が望まれている 非特許文献 1 : Τ· Hagiwara, S. Irie, T. Itani, Y. Kawaguchi, O. Yokokoji, S
. Kodama著, J. Photopolym. Sci. Technol.第 16卷, 557頁, 2003年.
非特許文献 2 : F. Houlihan, A. Romano, D. Rentkiewicz, R. Sakamuri, R.
R. Dammel, W. Conley, G. Rich, D. Miller, L. Rhodes, J. McDaniels, C.
Chang著, J. Photopolym. Sci. Technol.第 16卷, 581頁, 2003年.
非特許文献 3 : Y. Kawaguchi, J. Irie, S. Kodama, S. Okada, Y. Takebe, I.
Kaneko, O. Yokokoji, S. Is ikawa, S. Irie, T, Hagiwara, T. Itani著, Proc
. SPIE,第 5039卷, 43頁, 2003年.
特許文献 1 :特開平 10 - 161313号公報
発明の開示 発明が解決しょうとする課題
[0010] 本発明は、上記に鑑みてなされたものであって、優れた解像性を有し、矩形性が良 好な微細パターンを形成できるとともに、酸発生剤から発生する酸が弱い場合も良好 なレジスト特性が得られ、感度も良好なフォトレジスト組成物を構成できる高分子化合 物を提供することを目的とする。また力、かる高分子化合物を調製するのに好適なィ匕 合物、および該高分子化合物を含有してなるフォトレジスト組成物、ならびに該フォト レジスト組成物を用いたレジストパターン形成方法を提供することを目的とする。 課題を解決するための手段
[0011] 本発明者らは、上記課題を解決するために、フォトレジスト組成物用高分子化合物 におけるアルカリ可溶性基の保護基として様々な酸解離性溶解抑止基を導入して、 それら高分子化合物のレジスト特性にっレ、て鋭意研究を進めたところ、特定の脂肪 族環式基を有する酸解離性溶解抑止基を用いた場合にレジストパターンの形状が 良好で、解像性が向上した微細パターンを形成できることを初めて見いだし、この知 見に基づいて本発明を完成させるに至った。また、前記特定の脂環式基を有する酸 解離性溶解抑止基を用いると、従来の(メタ)アクリル酸のカルボキシル基と環状また は鎖状の第 3級アルキルエステルを形成する化合物等を用いて酸解離性溶解抑止 基を形成した場合と比べて、酸発生剤の選択性が広がって、かつ高感度なレジスト 組成物を得ることができることも見出した。
[0012] 本発明は、力かる知見に基づいてなされたものである。すなわち、本発明の高分子 化合物は、酸の作用によりアルカリ溶解性が変化する高分子化合物であって、アル カリ可溶性基 (i)を有し、このアルカリ可溶性基 (i)における水素原子の一部が、下記 一般式 (1)
[0013] [化 1]
Figure imgf000006_0001
m
[0014] (式中、 Rは酸素、窒素、硫黄、又はハロゲン原子(以下、これらを総称して「ヘテロ
1
原子」と略記する。)を有してもよい炭素数 20以下の脂肪族環式基を表す。 nは 0また は 1一 5の整数を表す。)で示される酸解離性溶解抑止基 (ii)で置換されている。この アルカリ可溶性基(i)は、アルコール性水酸基、フエノール性水酸基、およびカルボ キシル基から選ばれる 1種以上であることが好ましぐアルカリ可溶性基(i)がアルコ ール性水酸基である場合、該アルコール性水酸基に結合している炭素原子に隣接 する炭素原子に、少なくとも一つのフッ素原子が結合していることがさらに好ましい。 上記一般式中、 Rは、ヘテロ原子を有してもよい炭素数 20以下の脂肪族環式基で
1
あり、ァダマンタン骨格を有することが好ましい。さらに、 Rは、 1種以上の親水性基を
1
有する脂肪族環式基であることが好ましぐこの親水性基としては、カルボニル基、ェ ステル基、アルコール性水酸基、エーテル、イミノ基、およびァミノ基からなる群から 選ばれる少なくとも 1種であることが好ましい。
[0015] 本発明の新規化合物は、下記一般式(2)
[0016] [化 2]
Figure imgf000007_0001
[0017] (式中、 Rと nは前記と同じである。 Rは水素原子、フッ素原子又は炭素数 20以下の
1 2
低級アルキル基又はフッ素化アルキル基を表す。)で示され、この化合物(2)から誘 導される構成単位 (al)を含有する高分子化合物は本発明の高分子化合物に包含さ れる。
[0018] 本発明のフォトレジスト組成物は、少なくとも、酸の作用によりアルカリ溶解性が変化 する基材樹脂成分 (A) (以下、 (A)成分と記すことがある)と、放射線の照射により酸 を発生する酸発生剤成分 (B) (以下、(B)成分と記すことがある)とを含有してなり、こ の基材樹脂成分 (A)は、本発明の高分子化合物である。
[0019] 本発明のレジストパターン形成方法は、このようなフォトレジスト組成物を用いて基 板上にフォトレジスト膜を形成する工程と、前記フォトレジスト膜を露光する工程と、露 光された前記レジスト膜を現像しレジストパターンを形成する工程とを含む。 発明の効果
[0020] 本発明によれば、レジストパターン形状 (矩形性)が良好で、高解像性の微細パタ ーンを提供することができる。また、発生する酸の強度が弱い酸発生剤でも酸解離性 溶解抑止基を解離させることができ、良好な感度も得られる。
図面の簡単な説明
[0021] [図 1]実施例 4の、 ArF露光による感度曲線を示す図である。
発明を実施するための最良の形態
[0022] 以下に、本発明の実施形態について説明する。
本請求の範囲及び明細書における「構成単位」とは、高分子化合物を構成するモノ マー単位(単量体単位)を意味する。
本請求の範囲及び明細書において、特に断りがない限り、アルキル基、アルコキシ 基、アルキレン基は直鎖または分岐のレ、ずれでもよレ、。
本発明の高分子化合物は、それらの分子中のアルカリ可溶性基 (i)における水素 原子の一部が、下記一般式(3)
[0023] [化 3]
;» (8)
[0024] (式中、 Rはへテロ原子を有してもよい炭素数 20以下の脂肪族環式基を表す。 nは 0
1
または 1一 5の整数を表す。)で示される酸解離性溶解抑止基 (ii)で置換されている。 本発明の高分子化合物は、化学増幅型ポジ型レジストの系に用いられると、該高 分子化合物が上記一般式(1) (または一般式 (3) )で示される、脂肪族環式基を有す る酸解離性溶解抑止基 (ii)を有することにより、露光前ではアルカリ現像への溶解抑 止作用を示し、露光及び PEB (露光後加熱)プロセス後では脱保護によるアルカリ溶 解性を示す。そして、前記化学増幅型ポジ型レジストは、露光前と露光後でのアル力 リ溶解性が大きく変化するため、解像性に優れた微細パターンを提供することができ る。また、本発明の高分子化合物は、レジストパターンのエッチング耐性を向上させる
。特に酸解離性溶解抑止基 (ii)に親水性基がさらに導入された場合には、レジストパ ターンの基板への密着性が向上し、かつアルカリ現像液への親和性が向上すること により現像欠陥が低減する。またマスクリニアリティも良好となる。
[0025] <酸解離性溶解抑止基 (ii) >
アルカリ可溶性基 (i)の詳細は後述する。アルカリ可溶性基 (i)は水素原子を有して おり、酸解離性溶解抑止基 (Π)はこの水素原子を置換している。すなわち、アルカリ 可溶性基(i) アルコール性水酸基、カルボキシル基、およびフヱノール性水酸基 である場合、酸解離性溶解抑止基 (Π)は該アルカリ可溶性基 (i)の水素原子を除レ、 た酸素原子に結合している。
[0026] 前記酸解離性溶解抑止基 (ii)は、上記一般式(1)で表される。式中、 Rはへテロ原
1 子を有してもよい炭素数 20以下の脂肪族環式基であり、この脂肪族環式基の炭素 数は、好ましくは 2— 20であり、より好ましくは 3— 20であり、最も好ましくは 5— 12で ある。該脂肪族環式基は置換基を有していてもよい。 nの値は好ましくは 0又は 1であ る。
本請求の範囲及び明細書における「脂肪族」とは、芳香性に対する相対的な概念 であって、芳香性を持たない基、化合物等を意味するものと定義する。「脂肪族環式 基」は、芳香性を持たない単環式基または多環式基 (脂環式基)であることを意味す る。このとき「脂肪族環式基」は炭素、及び水素からなる基であることに限定されない 力 炭化水素基であることが好ましい。また、「炭化水素基」は飽和または不飽和のい ずれでもよいが、通常は飽和であることが好ましい。
このような脂肪族環式基としては、例えば、シクロへキサン、シクロペンタン、ァダマ ンタン、ノルボルナン、ノルボルネン、メチルノルボルナン、ェチルノルボルナン、メチ ノレノノレボノレネン、ェチルノルボルネン、イソボルナン、トリシクロデカン、テトラシクロド デカンなど力も誘導される 1価の基を挙げることができる。前記脂肪族環式基は、 Ar Fレジストにおいて、多数提案されている脂肪族環式基の中から適宜選択して用いる こと力 Sできる。これらの中でもシクロへキシル基、シクロペンチル基、ァダマンチル基、 ノルボルニル基、ノルボルネニル基、メチルノルボルニル基、ェチルノルボルニル基 、メチルノルボルネニル基、ェチルノルボルネニル基、テトラシクロドデカニル基がェ 業上好ましぐァダマンチル基がさらに好ましい。
前記酸解離性溶解抑止基 (ii)を示す上記一般式(1)における Rとしては、少なくと
1
も 1種以上の親水性基を有する脂肪族環式基であるとさらに好ましぐこの親水性基 としては、カルボニル基(好ましくはケトン性カルボニル基)、エステル基 (_C〇OR)、 アルコール性水酸基、エーテル (一〇R)、ィミノ基、アミノ基であることが好ましぐカル ボニル基であることが入手が容易であることから最も好ましい。 前記酸解離性溶解抑止基 (Π)としては、例えば、下記化学式 (4)一(15)で表され る基を挙げることがでさる。
[化 4]
Figure imgf000011_0001
(10) (I T) {12} {135
Figure imgf000011_0002
<アルカリ可溶性基 (i) >
本発明の高分子化合物におけるアルカリ可溶性基 (i)は、前述の非特許文献にお ける例示、および、これまで提案されている KrFレジスト、 ArFレジスト、 Fレジストか
2 ら公知であり、これら公知のものをアルカリ可溶性基(i)として使用することができる。 そのようなアルカリ可溶性基 (i)としては、アルコール性水酸基、フヱノール性水酸基 、およびカルボキシル基等が挙げられ、特に限定されない。
本発明においては、アルカリ可溶性基 (i)は、アルコール性水酸基、フエノール性 水酸基、およびカルボキシル基から選ばれる少なくとも 1種であることが好ましい。中 でもアルコール性水酸基力 S、透明性が高ぐまた適度なアルカリ可溶性を有するため 、好適である。また、アルコール性水酸基の中でも、アルコール性水酸基に結合して レ、る炭素原子に隣接する炭素原子が、少なくとも一つのフッ素原子を有するアルコー ル性水酸基がさらに好ましい。
[0030] 前記アルコール性水酸基は、単にヒドロキシル基であってもよいし、アルコール性 水酸基含有アルキルォキシ基、アルコール性水酸基含有アルキルォキシアルキル 基またはアルコール性水酸基含有アルキル基等であってもよレ、。該アルキルォキシ 基、該アルキルォキシアルキル基または該アルキル基としては、低級アルキルォキシ 基、低級アルキルォキシ低級アルキル基、低級アルキル基が挙げられる。ここでいう「 低級」とは炭素数 1一 4を示す。
[0031] 前記低級アルキルォキシ基としては、具体的には、メチルォキシ基、ェチルォキシ 基、プロピルォキシ基、ブチルォキシ基等が挙げられる。低級アルキルォキシ低級ァ ルキル基としては、具体的には、メチルォキシメチル基、ェチルォキシメチル基、プロ ピルォキシメチル基、ブチルォキシメチル基等が挙げられる。低級アルキル基として は、具体的には、メチル基、ェチル基、プロピル基、ブチル基等が挙げられる。
[0032] また、前記アルコール性水酸基含有アルキルォキシ基、アルコール性水酸基含有 アルキルォキシアルキル基またはアルコール性水酸基含有アルキル基における該ァ ルキルォキシ基、該アルキルォキシアルキル基または該アルキル基の水素原子の一 部または全部がフッ素原子で置換されていてもよい。好ましくは、前記アルコール性 水酸基含有アルキルォキシ基またはアルコール性水酸基含有アルキルォキシアル キル基におけるそれらのアルキルォキシ部の水素原子の一部がフッ素原子で置換さ れたもの、前記アルコール性水酸基含有アルキル基におけるそのアルキル基の水素 原子の一部がフッ素原子で置換されたもの、すなわち、アルコール性水酸基含有フ ルォロアルキルォキシ基、アルコール性水酸基含有フルォロアルキルォキシアルキ ル基またはアルコール性水酸基含有フルォロアルキル基が挙げられる。
[0033] 前記アルコール性水酸基含有フルォロアルキルォキシ基としては、(H〇)C (CF )
CH〇—基、 2—ビス(トリフルォロメチノレ)— 2—ヒドロキシ—ェチルォキシ基、(H〇)C (C
F ) CH CH〇_基、 3_ビス(トリフルォロメチノレ) _3—ヒドロキシプロピルォキシ基等 が挙げられ、アルコール性水酸基含有フルォロアルキルォキシアルキル基としては、 (HO) C (CF ) CH O-CH -基、(HO) C (CF ) CH CH O—CH -基等が挙げら
3 2 2 2 3 2 2 2 2
れ、アルコール性水酸基含有フルォロアルキル基としては、(HO) C (CF ) CH—基
3 2 2
、 2_ビス(トリフルォロメチル)_2—ヒドロキシ—ェチル基、(H〇)C (CF ) CH CH -
3 2 2 2 基、 3_ビス(トリフルォロメチル)一 3—ヒドロキシプロピル基、等が挙げられる。
[0034] 前記フヱノール性水酸基としては、例えば、ノボラック樹脂やポリ一(ひーメチル)ヒド ロキシスチレンなどに含まれるフヱノール性水酸基が挙げられる。これらの中で、安価 で容易に入手できることから、ポリ一(ひーメチル)ヒドロキシスチレンのフエノール性水 酸基が好ましい。
[0035] 前記カルボキシル基としては、例えば、エチレン性不飽和カルボン酸力 誘導され る構成単位におけるカルボキシル基が挙げられる。このエチレン性不飽和カルボン 酸としては、アクリル酸、メタクリル酸、マレイン酸、フマル酸などの不飽和カルボン酸 などが挙げられる。これらの中で、安価で容易に入手できることから、アクリル酸およ びメタクリル酸が好ましい。
[0036] <本発明の化合物および構成単位(al) >
本発明の新規化合物 (本発明の高分子化合物に対して「低分子化合物」と称するこ ともある)は、下記一般式(16)
[0037] [化 5]
Figure imgf000013_0001
[0038] (式中、 Rは水素原子、フッ素原子又は炭素数 1一 20の低級アルキル基又はフッ素
2
化低級アルキル基を表し、 Rはへテロ原子を有してもよい炭素数 3— 20の脂肪族環
1
式基であり、 nは 0または 1一 5の整数を表す。)で示される。また、この化合物から誘 導される構成単位 (al)を、少なくともその単量体単位として含有する高分子化合物 は本発明の高分子化合物に包含される。 該構成単位 (al)は、本発明の新規化合物から誘導される構成単位であって、前記 アルカリ可溶性基 (i) I 置換基 (R )を有していてもよいアクリル酸力 誘導される力
2
ルポキシル基からなり、該カルボキシル基の水素原子が酸解離性溶解抑止基 (ii)で 置換されてなる構成単位に該当する。
[0039] 上記一般式(16)中、 Rは水素原子、フッ素原子又は炭素数 1
2 一 20の低級アルキ ル基又は炭素数 1一 20のフッ素化低級アルキル基であり、好ましくは炭素数 1一 4の 低級アルキル基又は炭素数 1一 4のフッ素化低級アルキル基であり、具体的にはメチ ル基、ェチル基、プロピル基、ブチル基、トリフルォロメチル基等が挙げられる。これ らの中で、安価で容易に入手できることから、水素原子、メチル基であることが最も好 ましい。 nは 0または 1一 5の整数であり、 0または 1が好ましい。
[0040] 前記一般式(16)で表される化合物の中で好ましいものとして、下記一般式(17)で 表される化合物が挙げられる。
[0041] [化 6]
Figure imgf000014_0001
[0042] (式中、 Rは前記と同じであり、 Xは 2原子の水素原子または 1原子の酸素原子を表
2
す。 n'は 0又は 1を表す。)
すなわち、 Xは 2原子の水素原子のときはメチレン鎖 (一 CH -)を構成している。
2
[0043] 前記一般式(17)で表される化合物の中で、より好ましいものとして、下記一般式(1 8)— (20)で表される化合物が挙げられる。
Figure imgf000015_0001
[0045] (R2は前記と同じ)
[0046] [化 8]
Figure imgf000015_0002
[0047] (R2は前記と同じ) [0048] [化 9]
Figure imgf000016_0001
[0049] (R2は前記と同じ)
[0050] <高分子化合物 >
本発明の高分子化合物のゲル浸透クロマトグラフィー(GPC)によるポリスチレン換 算質量平均分子量 (Mw)は、特に限定されるものではないが、フォトレジスト組成物 用として用レヽる上で 5000— 80000力 S好ましく、さらに好ましくは 8000— 50000であ る。また、分散度(Mw/Mn)は、 1. 0-5. 0程度であり、好ましくは 1. 0— 2. 5であ る。 Mnは数平均分子量である。
[0051] 本発明の高分子化合物における、酸解離性溶解抑止基 (ii)を導入する前の前駆 体は、アルカリ可溶性基 (i)を有する 1種または 2種以上の構成単位から構成すること ができる。以下、説明の便宜上、酸解離性溶解抑止基 (ii)を導入する前のものを「前 駆体」、導入後のものを「高分子化合物」として区別することがある。
該アルカリ可溶性基 (i)を有する構成単位として、好ましくは前記アルコール性水酸 基、フエノール性水酸基、およびカルボキシノレ基を有する単量体単位から選ばれる 少なくとも 1種または 2種以上の構成単位が用いられる。これら以外にも、アルカリ可 溶性基 (i)を有する構成単位は、従来公知のフォトレジスト組成物用高分子に用いら れる構成単位を含むこともできる。
[0052] このアルカリ可溶性基 (i)を有する構成単位としては、例えば、下記化学式(21)か ら(29)で示されるような、アルコール性水酸基に結合してレ、る炭素原子に隣接する 炭素原子が、少なくとも一つのフッ素原子を有するアルコール性水酸基を有する構 成単位、(30)—(31)で示されるような、フエノール性水酸基を有する構成単位、お よび(32)— (35)又は(45)の R7が水素原子の場合で示されるような、カルボキシル 基を有する構成単位などを挙げることができる。
なお、化学式(22)で表される構成単位は、化学式(23)で示されるように、四フッ化 エチレン力 誘導される構成単位と併用されることも好ましい。
[化 10]
Figure imgf000017_0001
Figure imgf000017_0002
[0054] [化 11]
Figure imgf000018_0001
[0055] [化 12]
Figure imgf000018_0002
前記高分子化合物は、公知の方法、前記非特許文献に記載の方法によって合成 される。
前駆体におけるアルカリ可溶性基 (i)の水素原子を置換して酸解離性溶解抑止基 ( ii)を導入する方法としては、例えば、塩素、臭素などのハロゲン原子を含有したアル コール化合物を用いてハロゲン化メチルエーテル化合物を合成し、これを前駆体の アルカリ可溶性基と反応させて、酸解離性溶解抑止基 (ii)を導入する方法が挙げら れる。具体的には、クロロメチルエーテル化合物を出発物質とし、前駆体のアルコー ル水酸基、カルボキシル基、およびフエノール性水酸基から選択されるいずれか一 つのアルカリ可溶性基 (i)と反応させる方法が挙げられ、これにより、該アルカリ可溶 性基 (i)を式(1)で表される酸解離性溶解抑止基で保護することができる。
[0057] 前記クロロメチルエーテル化合物は、下記反応式に示すような公知の方法により合 成される。すなわち、アルコール化合物にパラホルムアルデヒドを加え、該アルコー ル化合物に対し、 2. 0 3. 0当量の塩ィ匕水素ガスを吹き込み、塩酸酸性下、 40 1 00°Cにて反応する。反応終了後、生成物を減圧蒸留することにより、 目的のクロロメ チルエーテル化合物を得ることができる。下記反応式において、 Rは目的とする化合 物における「- (CH ) -R」で表される基に対応する。
2 n 1
[0058] [化 13]
HCI CHap),, 蚤 HO— R -" «—
[0059] 前記クロロメチルエーテル化合物としては、例えば、下記化学式(36)で表される 4 ォキソ 2—ァダマンチルクロロメチルエーテル、下記化学式(37)で表される 2—ァダ マンチルクロロメチルエーテル、下記化学式(38)で表される 1ーァダマンチルメチル クロロメチルエーテルなどを挙げることができる。
[0060] [化 14]
Figure imgf000019_0001
(36) (37) (38)
[0061] アルカリ可溶性基 (i)としてフエノール性水酸基を有する前駆体から誘導される本発 明の高分子化合物は、例えば、ポリ一(α—メチル)ヒドロキシスチレン樹脂に前記ハロ ゲン化メチルエーテル化合物を反応させることにより得られる。
[0062] アルカリ可溶性基 (i)としてカルボキシノレ基を有する前駆体力 誘導される本発明 の高分子化合物は、例えば、前記ハロゲン化メチルエーテル化合物をアクリル酸又 はメタクリル酸などの不飽和カルボン酸と反応させて得た不飽和カルボン酸エステル を重合することにより得られる。
[0063] 前記ハロゲン化メチルエーテル化合物、またはそれ以外の脂肪族環式基を有する 化合物を、例えば、上記の化学式(21)から(35)で示されるようなアルカリ可溶性基( i)を有する構成単位または該構成単位を誘導する化合物と反応させることにより、ァ ルカリ可溶性基 (i)に酸解離性溶解抑止基 (Π)を導入することができる。そして必要 であれば、さらに重合させることによって本発明の高分子化合物を得ることができる。
[0064] また、本発明の新規化合物 (低分子化合物)は、置換基 (R )を有していてもよいァ
2
クリル酸と前記ハロゲン化メチルエーテル化合物を反応させることにより製造される。 置換基 (R )の導入は任意の手順で行うことができる。
2
[0065] <フォトレジスト組成物 >
本発明に力かるフォトレジスト組成物は、少なくとも、酸の作用によりアルカリ溶解性 が変化する基材樹脂成分 (A)と、放射線の照射により酸を発生する酸発生剤成分( B)とを含有する。そして、この基材樹脂成分 (A)が、前述の本発明にかかる高分子 化合物である。
[0066] 本発明のフォトレジスト組成物は、上記特徴を備えるものであれば、ポジ型であって もネガ型であってもよレ、。好ましくはポジ型である。
ネガ型の場合、(A)成分としてアルカリ可溶性樹脂が用いられると共に、このアル力 リ可溶性樹脂に架橋剤が配合される。そして、レジストパターン形成時に、露光により (B)成分から酸が発生すると、力かる酸が作用することにより、アルカリ可溶性樹脂と 架橋剤との間で架橋が起こり、アルカリ可溶性樹脂がアルカリ不溶性へと変化する。 前記架橋剤としては、例えば、メチロール基又はアルコキシメチル基を有するメラミン 、尿素又はグリコールゥリルなどのアミノ系架橋剤が用いられる。
ポジ型の場合、 (A)成分は、酸解離性溶解抑止基 (ii)を有するアルカリ不溶性の 構成単位を含み、露光により前記 (B)成分力 発生した酸が作用すると、酸解離性 溶解抑止基 (ii)が解離し、これによつて (A)成分全体がアルカリ不溶性からアルカリ 可溶性に変化する。そのため、レジストパターンの形成においてマスクパターンを介 して露光すると、または露光に加えて露光後加熱 (PEB)を行うと、露光部はアルカリ 可溶性へ転じる一方で、未露光部はアルカリ不溶性のまま変化しないので、アルカリ 現像することによりポジ型のレジストパターンが形成できる。ポジ型の場合、(A)成分 としては、本願発明の高分子化合物が用いられる。
[0067] 前記基材樹脂成分 (A)におレ、て、アルカリ可溶性基 (i)としてフエノール性水酸基 を有する高分子化合物を前駆体として用いる場合、該 (A)成分を構成する全構成単 位に対して、アルカリ可溶性基 (i)を有する構成単位の割合は好ましくは 50— 95モ ル0 /o、更に好ましくは 55 90モノレ0 /0、最も好ましくは 65— 90モル0 /0である。一方、 酸解離性溶解抑止基 (ii)で保護されてレ、る構成単位の割合は、好ましくは 3— 50モ ノレ0 /0であり、さらに好ましくは 7 30モル0 /0、最も好ましくは 10— 25モル0 /0である。
[0068] 前記基材樹脂成分 (A)におレ、て、アルカリ可溶性基 (i)としてアルコール性水酸基 を有する高分子化合物を前駆体として用いる場合、該 (A)成分を構成する全構成単 位に対して、アルカリ可溶性基 (i)を有する構成単位の割合は好ましくは 50— 95モ ル0 /0、更に好ましくは 55— 90モル0 /0、最も好ましくは 55— 85モル0 /0である。一方、 酸解離性溶解抑止基 (ii)で保護されてレヽる構成単位の割合は、好ましくは 3— 50モ ノレ0 /0であり、さらに好ましくは 5— 35モル0 /0、最も好ましくは 7— 25モル0 /0である。
[0069] <構成単位(al) >
前記基材樹脂成分 (A)において、アルカリ可溶性基 (i)としてカルボキシル基を有 する高分子化合物を前駆体として用いる場合、酸解離性溶解抑止基 Gi)で保護され てレ、る構成単位として前記一般式(2)で表される化合物から誘導される構成単位(a 1)を用いることが好ましい。
この場合、該構成単位 (al)と、従来、化学増幅型フォトレジスト組成物に用レ、られ ている公知の他の構成単位とを共重合させたものを、基材樹脂成分 (A)として用いる こと力 Sできる。該他の構成単位として、例えば、以下の(a2) (a6)に示すような構成 単位が挙げられる。力かる他の構成単位としては、例えば (メタ)アクリル酸のカルボ キシル基と環状または鎖状の第 3級アルキルエステルを形成するものが広く知られて 構成単位 (al)としては、下記一般式 (39)から選択される少なくとも 1種の化合物か ら誘導される構成単位を用いることができる。これらは、ァセタール基 (-R-O-R';ァ ルコキシアルキル基)を有しているため、例えば、後述する構成単位(a2)と比べて酸 の作用により解離しやすい傾向にある。従って、発生する酸の強度が弱い酸発生剤( 後述するジァゾメタン系酸発生剤やォキシムスルホネート系酸発生剤ゃァニオン部 にカンファースルホン酸を有するォニゥム塩等)でも十分に酸解離性溶解抑止基 (ii) を解離させることができる。
[0070] [化 15]
Figure imgf000022_0001
[0071] (式中、 R'は前記化学式 (4)一(15)で示される基を表し、 Rは前記に同じ)
2
[0072] その中でも、下記化学式 (40)—(42)で表される構成単位から選ばれる少なくとも
1種であることが好ましい。
[0073] [化 16]
Figure imgf000022_0002
[0074] (Rは前記に同じ) [0075] [化 17]
Figure imgf000023_0001
[0076] (Rは前記に同じ)
[0077] [化 18]
Figure imgf000023_0002
[0078] (Rは前記に同じ)
[0079] 上記 (40)— (42)で表される構成単位 (al)を酸解離性溶解抑止基 (ii)を有する構 成単位として用いることによりラインエッジラフネスが低減する。また、弱い酸でも解離 させることができる為、様々な酸発生剤を使用することができる。
また、露光余裕度および露光面積余裕度が向上する。露光面積余裕度とは、マス クの被覆率やセル内座標(露光装置のセル内の周辺部または中心部のいずれに位 置するか)の異なりによって、レジスト形状や寸法が変化してしまう問題である。
本発明のァセタールタイプの保護基は、脱保護エネルギーが非常に低ぐ露光ェ ネルギーのみで脱保護反応が進行することにより、酸の拡散や失活の影響を受け難 レ、。従って、露光面積余裕度を向上させると考えられる。
また、本発明の構成単位(al)は、後述する構成単位(a2)のような (メタ)アクリル酸 の 3級エステル化合物に比べ、高い熱分解点を示すため、熱安定性が向上する。従 つて、保存安定性も向上する。更には、本発明の構成単位(al)は、後述する構成単 位(a2)と比べ、低い Tg (ガラス転移点)を示しかつ露光時に保護基を解離させるた め((a2)単位は PEB時に保護基を解離させる)、低温で PEBを行うことができる。す なわち酸発生剤の拡散のコントロールを容易にすることができ、これによつて、レジス トパターン形状の制御を容易にする。また、 PEBマージンも良好となる。また、 Si〇N 基板のような無機基板上でも、良好な解像性及びレジストパターン形状を提供する。
[0080] 本発明のフォトレジスト組成物中の酸解離性溶解抑止基 (ii)は、後述する(a2)を含 んでいても良いが、前記(al)単位の (A)成分中における割合は、好ましくは 50質量 %以上、さらに好ましくは 80質量%以上、最も好ましくは 100質量%である。
[0081] <構成単位(a2) >
構成単位(a2)としては、単環式基又は多環式基含有酸解離性溶解抑止基を含む (メタ)アクリル酸エステル力も誘導される単位であり、構成単位(al)以外の酸解離性 溶解抑止基を有する構成単位を挙げることができる。これらは本発明の効果を損な わなレ、範囲で用いることができる。
前記単環式基としては、シクロアルカンから 1個の水素原子を除いた基、例えばシク 口へキシル、シクロペンチル基等の脂肪族単環式基が挙げられる。多環式基としては 、ビシクロアルカン、トリシクロアノレカン、テトラシクロアルカンなどとして、ァダマンタン 、ノルボルナン、イソボルナン、トリシクロデカン、テトラシクロドデカンなどのポリシクロ アルカンから 1個の水素原子を除いた基、すなわち脂肪族多環式基が挙げられる。こ こで、これらの単環式基又は多環式基は、 ArFレジストにおいて多く提案されたもの で、本発明においてもこれらの単環式基又は多環式基を任意に選択し使用すること ができるが、中でもァダマンチル基、ノルボルニル基、テトラシクロドデカニル基等の 脂肪族多環式基を用いるのが、工業上入手し易いなどの点で好ましい。具体的には
、下記一般式 (43)、(44)または (45)から選択される少なくとも 1種の構成単位が、 解像性、耐ドライエッチング性に優れてレ、る等の点から好ましレ、。
[化 19]
Figure imgf000025_0001
[0083] (式中、 R3は水素原子または低級アルキル基、 R4は低級アルキル基である)
[0084] [化 20]
Figure imgf000025_0002
(式中、 R3は水素原子または低級アルキル基、 R5および R6はそれぞれ独立して低級 ァノレキノレ基である) [0086] [化 21]
Figure imgf000026_0001
[0087] (式中、 R3は水素原子または低級アルキル基、 R7は第 3級アルキル基である)
[0088] 一般式 (43)で表される構成単位は、(メタ)アクリル酸のエステル部の酸素原子 (一
0-)に隣接する炭素原子が、ァダマンチル基のような環骨格上の第 3級アルキル基 となるものである。
R3としては、水素原子またはメチル基、さらには炭素数 2 5程度の低級アルキル 基、具体的にはェチル基、プロピル基、イソプロピル基、 n—ブチル基、イソブチル基 、 tert_ブチル基、ペンチル基、イソペンチル基、ネオペンチル基などの低級の直鎖 状または分岐状のアルキル基が挙げられる。
また、 R4としては、炭素数 1一 5程度の低級アルキル基、具体的にはメチル基、ェチ ル基、プロピル基、イソプロピル基、 n—ブチル基、イソブチル基、 tert_ブチル基、ぺ ンチル基、イソペンチル基、ネオペンチル基などの低級の直鎖状または分岐状のァ ルキル基が挙げられる。ここで、 R4を炭素数 2以上のアルキル基とするの力 メチル基 の場合に比べて酸解離性が高くなる傾向にあるため、好ましい。ただし、工業的には メチル基、ェチル基とするのが最も好ましい。
[0089] 一般式 (44)で表される構成単位は、(メタ)アクリル酸のエステル部の酸素原子 (一 O—)に隣接する炭素原子が第 3級アルキル基であり、該アルキル基中にさらにァダ マンチル基のような環骨格が存在するものである。 R3は、前記一般式 (43)の場合と 同じ定義であり、 R5および R6はそれぞれ独立した低級アルキル基、すなわち前記し た炭素数 1一 5程度の直鎖状または分岐状アルキル基である。このような基は、 2—メ チルー 2—ァダマンチル基より酸解離性が高くなる傾向がある。なお、前記の R5および R6につレ、ては、共にメチル基とするのが工業的に好ましレ、。 [0090] 一般式 (45)で表される構成単位は、(メタ)アクリル酸エステル部ではなぐ別のェ ステル部の酸素原子 (一 O—)に隣接する炭素原子が第 3級アルキル基であり、該エス テル部と(メタ)アクリル酸エステル部とをテトラシクロドデカニル基のような環骨格で連 結するものである。一般式 (45)で表される単位において、 R3は前記一般式 (43)の 場合と同じ定義であり、 R7は tert—ブチル基や tert—ァミル基のような第 3級アルキル 基であり、好ましくは炭素数 4一 5程度の第 3級アルキル基である。なお、 R7について は、 tert—ブチル基とするのが工業的に好ましい。
また、このような一般式 (43)—(45)で表される構成単位の中では、特に一般式 (4 3)で表される構成単位で、かつ R4力 Sメチル基またはェチル基であるもの力 S、解像性 に優れる等の点から好ましレ、。
[0091] <構成単位(a3) >
構成単位(a3)は、ラタトン含有単環または多環式基を含む (メタ)アクリル酸エステ ルから誘導される構成単位である。ラタトン官能基は、本発明の組成物から形成され るフォトレジスト膜の基板への密着性を高めたり、現像液との親和性を高めたりする上 で有効なものである。
なお、ここでのラタトン環とは、 -〇-c(〇)-構造を含むひとつの環を示し、これを一 つ目の環として数える。したがって、ここではラタトン環のみの場合は単環式基、さら に他の環構造を有する場合は、その構造に関わらず多環式基と称する。
構成単位(a3)としては、このようなラタトン官能基と環基とを共に持つものであれば 、特に限定されることなく任意のものが使用可能である。具体的には、ラタトン含有単 環式基としては、 γ _プチ口ラタトン力 水素原子 1つを除いた基が挙げられ、また、ラ タトン含有多環式基としては、ラタトン基を有するビシクロアルカン、トリシクロアルカン 、テトラシクロアルカンから水素原子一つを除いた基が挙げられる。特に、以下のよう な構造式 (46)、または構造式 (47)を有するラタトン含有トリシクロアルカンから水素 原子を 1つを除いた基が、工業上入手し易いなどの点から有利である。 [0092] [化 22]
Figure imgf000028_0001
[0093] [化 23]
Figure imgf000028_0002
[0094] また、構成単位(a3)として具体的には、ラタトン含有モノシクロアルキル基またはトリ シクロアルキル基を含む (メタ)アクリル酸エステル力も誘導される構成単位が挙げら れ、より具体的には、下記一般式 (48)—(50)で表される構成単位が挙げられる。
[0095] [化 24]
Figure imgf000028_0003
[0096] (式中、 Rは水素原子または低級アルキル基である)
[0097] [化 25]
Figure imgf000029_0001
(式中、 R3は水素原子または低級アルキル基である)
[化 26]
Figure imgf000029_0002
[0099] (式中、 R3は水素原子または低級アルキル基である)
[0100] R3としては、水素原子またはメチル基、さらには炭素数 2— 5程度の低級アルキル 基、具体的にはェチル基、プロピル基、イソプロピル基、 n—ブチル基、イソブチル基 、 tert—ブチル基、ペンチル基、イソペンチル基、ネオペンチル基などの低級の直鎖 状または分岐状のアルキル基が挙げられる。
[0101] また、このような一般式 (48)— (50)で表される構成単位の中では、近接効果の抑 制 ·低減についての効果が優れる等の点から、 α炭素にエステル結合を有する一般 式(50)で表される(メタ)アクリル酸の γ—ブチロラタトンエステル、すなわち γ—プチ 口ラタトンの(メタ)アクリル酸エステル力 誘導される構成単位が好ましレ、。
また、一般式(48)、(49)で表される(メタ)アクリル酸のノルボルナンラタトンエステ ノレ、すなわちノルボルナンラタトンの(メタ)アクリル酸エステルから誘導される構成単 位は、得られるレジストパターンの形状、例えば矩形性がさらに良好であるため、好ま しい。特に、一般式 (49)で表される構成単位はその効果が極めて高いため、好まし レ、。
[0102] 前記(a3)単位は、 1種でも良いし、相互に異なる 2種以上を組み合わせて用いても 良い。樹脂骨格中に相互に異なる 2種以上のラタトン骨格を導入することによりフォト レジスト膜の基板への密着性、アルカリ現像液親和性、及びエッチング耐性が更に 向上する。前記好ましいラタトンの組合せとして、単環式のラタトンと多環式のラタトン との組み合わせが挙げられる。また、一般式(50)で示される γ -プチ口ラタトンの(メ タ)アクリル酸エステル力 誘導される構成単位と一般式 (48)又は(49)で表されるノ ルポルナンラタトンの(メタ)アクリル酸エステル力 誘導される構成単位との組み合わ せ力 エッチング耐性や基板密着性が向上するため最も好ましレ、。
[0103] <構成単位(a4) >
構成単位(a4)は、極性基含有多環式基を含む (メタ)アクリル酸エステルから誘導 される構成単位であり、極性基を有することにより、樹脂成分 (A)全体の現像液との 親和性を高め、露光部のアルカリ溶解性を向上し、これにより解像性の向上に寄与 するものである。ここで、多環式基としては、前記の構成単位(al)の場合と同様の多 環式基を用いることができる。該極性基としては、シァノ基、カルボキシル基、水酸基 などが挙げられ、水酸基であることが好ましい。
このような構成単位(a4)としては、極性基含有多環式基であれば特に限定されるこ となく任意のものが使用可能である。具体的には、水酸基含有ァダマンチル基、特に 下記一般式(51)で表される構成単位が、耐ドライエッチング性を上昇させる効果と、 パターン断面を矩形状にする効果とを有する点から好ましい。 [0104] [化 27]
Figure imgf000031_0001
[0105] (式中、 R3は前記と同じであり、 hは 1一 3の整数である。 )
[0106] これらの中でも、 hが 1であり、水酸基がァダマンチル基の 3位に結合しているものが 好ましい。
[0107] <構成単位(a5) >
構成単位 (a5)は、前記構成単位 (al) (a2)、(a3)、(a4)以外の多環式基含有非 酸解離性溶解抑止基を含む (メタ)アクリル酸エステルから誘導される構成単位であ る。
多環式基含有非酸解離性溶解抑止基を含む (メタ)アクリル酸エステルから誘導さ れる構成単位とは、露光前後の (A)成分全体の疎水性を高めてアルカリ溶解性を抑 制する機能を有する構成単位である。すなわち、露光前の (A)成分全体のアルカリ 溶解性を低減させるとともに、露光後に、(B)成分から発生する酸の作用により解離 することなぐ前記構成単位 (al)又は (a2)の酸解離性溶解抑止基の解離により (A) 成分全体がアルカリ可溶性へと変化した際の(A)成分全体のアルカリ溶解性を、ァ ルカリ不溶とならない範囲で低減する溶解抑制性を有する基を含む構成単位である
[0108] 前記構成単位 (a5)は、前記構成単位 (al)、構成単位 (a2)、構成単位 (a3)、およ び構成単位(a4)とは重複しなレ、。すなわち、構成単位(al)及び(a2)における酸解 離性溶解抑止基、構成単位(a3)におけるラタトン基、構成単位(a4)における極性基 とレ、つた基をレ、ずれも保持しなレ、。
構成単位(a5)の多環式基としては、前記構成単位(a2)の場合と同様の多環式基 を用いることができる。
[0109] このような構成単位(a5)としては、 ArFポジ型レジスト材料として従来から知られて レ、る多数のものが使用可能である力 特にトリシクロデカニル (メタ)アタリレート、ァダ マンチル (メタ)アタリレート、テトラシクロドデカニル (メタ)アタリレート、イソボル二ル( メタ)アタリレートから選ばれる少なくとも 1種より誘導される構成単位が、工業上入手 し易いなどの点から好ましい。例示したこれらの構成単位を、以下に一般式(52) ( 54)として示す。これらの中でも、一般式(52)で表される構成単位は、得られるレジ ストパターンの形状、例えば矩形性が特に良好であるため、好ましい。
[0110] [化 28]
Figure imgf000032_0001
[0111] (式中、 は水素原子または低級アルキル基である)
[0112] [化 29]
Figure imgf000033_0001
[0115] (式中、 R3は水素原子または低級アルキル基である)
[0116] R3としては、水素原子またはメチル基、さらには炭素数 2— 5程度の低級アルキル 基、具体的にはェチル基、プロピル基、イソプロピル基、 n—ブチル基、イソブチル基 、 tert—ブチル基、ペンチル基、イソペンチル基、ネオペンチル基などの低級の直鎖 状または分岐状のアルキル基が挙げられる。
[0117] <構成単位(a6) >
構成単位(a6)は、前記(al)—(a5)単位とは重複しないものであり、 下記一般式 ( 55)で表され、置換基を有してレ、てもよレ、アクリル酸エステルに結合した環式基 X'と 、該環式基 X'に結合しているフッ素化有機基とから構成されている化合物から誘導 される構成単位である。このフッ素化有機基は、有機基の水素原子の少なくとも一部 がフッ素により置換されて形成され、かつ、アルコール性水酸基を有する。基材樹脂 成分 (A)は前記(a6)単位を有することにより、アルカリ溶解性が向上する。また、この ことによる溶解コントラストの増加により、解像性が向上する。
[0118] [化 31]
Figure imgf000034_0001
[0119] Rは前記に同じである。 X'は 2価または 3価の環式基を、 Yは 2価の炭素数 1一 6の
2
アルキレン基またはアルキレンォキシ基を示す。 p及び qはそれぞれ独立に 1から 5の 整数を、 sは 1または 2の整数を示す。
[0120] 前記一般式中、 X'で表される 2価または 3価の環式基としては、環式基であれば特 に限定されず、例えば脂肪族や芳香族の環式基を挙げることができる。この中でも、
KrF露光用のフォトレジスト組成物では芳香族環式基を使用することができる。また、 特に ArF露光用のフォトレジスト組成物では、フォトレジスト膜の透明性が向上する点 から、脂肪族環式基を用いることが好ましい。
X'が 2価のとき s = lである。 X,が 3価のとき s = 2である。つまり X,が 3価のとき X,に は 2つのフッ素化有機基が結合している。
[0121] 前記芳香族環式基としては、様々な単環式または多環式の 2価または 3価の芳香 族環式基を、特に限定することなく用いることができる。例えば芳香族炭化水素から 2 個または 3個の水素原子を除いた基が挙げられ、力、かる芳香族炭化水素としては、 ベンゼン、ナフタレン、アントラセン等を挙げることができる。 [0122] 前記脂肪族環式基としては、特に限定なぐ様々な単環式または多環式の 2価また は 3価の脂肪族環式基を用いることができる。例えば脂肪族環式炭化水素から 2個ま たは 3個の水素原子を除いた基が挙げられ、かかる脂肪族環式炭化水素としては、 例えば、シクロへキサン、シクロペンタンなどの単環式の脂肪族環式炭化水素、およ び多環式の脂肪族環式炭化水素を挙げることができる。これらの炭化水素から 2つ又 は 3つの水素原子を除いたものが、脂肪族環式基として用いられる。
この中でも、多環式脂肪族炭化水素がより好ましぐ例えば、ァダマンタン、ノルボ ノレナン、ノルボルネン、メチルノルボルナン、ェチルノルボルナン、メチルノルボルネ ン、ェチルノルボルネン、イソボルナン、トリシクロデカン、テトラシクロドデカンなどを 挙げること力 Sできる。この様な多環式炭化水素は、 ArFレジストにおいて、多数提案さ れてレ、るものの中から適宜選択して用いることができる。これらの中でもァダマンタン 、ノルボルナン、ノルボルネン、メチルノルボルナン、ェチルノルボルナン、メチノレノノレ ボルネン、ェチルノルボルネン、テトラシクロドデカンが工業上好ましぐノルボルナン が最も好ましい。
Yは 2価の炭素数 1一 6のアルキレン基またはアルキレンォキシ基であり、特に限定 されないがメチレン基が好ましい。 p、 q、 sはそれぞれ 1であることが好ましい。
[0123] その中でも、下記一般式(56)で表される化合物が最も好ましい。
[0124] [化 32]
Figure imgf000036_0001
[0125] (Rは前記に同じ。 )
2
[0126] <他の構成単位 >
また、本発明のポジ型フォトレジスト組成物においては、(A)成分として、前記の各 構成単位(al) (a6)を形成するモノマーに、従来化学増幅型のポジ型レジストとし て公知である、耐ドライエッチング性向上基、酸非解離性の溶解抑止基を有する(メ タ)アクリル酸誘導体、; (メタ)アクリル酸、マレイン酸、フマル酸などのアルカリ可溶性 とするためのエチレン性二重結合を有するカルボン酸;またはアクリル樹脂の製造に 用いられる公知のモノマーなどから誘導される構成単位を必要に応じて適宜組み合 わせて構成される共重合体を用いることができる。
[0127] 前記アクリル酸誘導体としては、例えばアクリル酸ナフチル、アクリル酸ベンジル、 アクリル酸 3—ォキソシクロへキシル、アクリル酸とテルビネオールとのエステル、アタリ ル酸と 3—ブロモアセトンとのエステルなどの、カルボキシル基の水酸基を耐ドライエツ チング性向上基や酸非解離性置換基で保護したアクリル酸エステルなどが挙げられ る。また、メタクリル酸誘導体としては、これらのアクリル酸誘導体に対応するメタクリル 酸の誘導体を挙げることができる。
[0128] また、エチレン性二重結合を有するカルボン酸としては、例えばアクリル酸、メタタリ ル酸、マレイン酸、フマル酸などが挙げられる。
アクリル樹脂の製造に用いられる公知のモノマーの例としては、例えばアクリル酸メ チル、アクリル酸ェチル、アクリル酸プロピル、アクリル酸イソプロピル、アクリル酸 n— ブチル、アクリル酸イソブチル、アクリル酸 n キシル、アクリル酸ォクチル、アタリノレ 酸 2—ェチルへキシル、アクリル酸ラウリル、アクリル酸 2—ヒドロキシェチル、アクリル酸 アルキルエステルなどを挙げることができる。
[0129] < (al)を含有する高分子化合物 >
本発明のポジ型レジスト組成物に用いる基材樹脂成分 (A)として好ましい高分子 化合物は構成単位 (al)と構成単位(a3)とを含む共重合体が解像性やレジストバタ ーン形状が良好になる点から好ましい。特には構成単位(al)と構成単位(a3)と構 成単位 (a4)とを含む共重合体が更に好ましい。また、基材樹脂成分中に、相互に異 なる構成単位 (a3)を 2つ有する共重合体も好ましレ、。
[0130] 本発明の高分子化合物を 2元系((al) / (a3)の共重合体)で用いる場合、構成単 位(al)の割合は、(A)成分の全構成単位の合計に対して、 20— 80モル%、好まし く ίま 30— 60モノレ0 構成単位(a3)の害 ij合 ίま、 20— 80モノレ0 好ましく ίま 30— 60 モル0 /0である。
本発明の高分子化合物を 2元系( (al) / (a6)の共重合体)で用いる場合、構成単 位(al)の割合は、(A)成分の全構成単位の合計に対して、 20— 80モル%、好まし く ίま 30— 60モノレ0 構成単位(a6)の害 ij合 ίま、 20— 80モノレ0 好ましく ίま 30— 60 モル%である。本発明の高分子化合物を 3元系((al) / (a3) / (a4)の共重合体) で用いる場合、構成単位 (al)の割合は、(A)成分の全構成単位の合計に対して、 2 0— 60モノレ0 好ましくは 30— 50モノレ0 構成単位(a3)の割合は、 20— 60モノレ0 /0 、好ましくは 20— 50モノレ0 構成単位(a4)の割合は、 10— 50モノレ0 好ましくは 2 0— 40モル%である。 (A)成分中における各構成単位の割合がこれらの数値範囲内 である場合、解像性やドライエッチング耐性に優れたポジ型レジスト組成物が得られ る。
[0131] 本発明の高分子化合物を 4元系((al) / (a3) / (a4) / (a5)の共重合体)で用い る場合、(A)成分中の全構成単位の合計に対して、構成単位 (al)の割合が 25— 5 0モノレ0 /0、好ましくは 30— 40モル0 /0の範囲であり、構成単位(a3)の割合が 25— 50 モル0 /o、好ましくは 30— 40モル%の範囲であり、構成単位(a4)の割合が 10— 30モ ル%、好ましくは 10 20モル%の範囲であり、構成単位(a5)の割合が 3 25モル %、好ましくは 5— 20モル%の範囲であるのが好適とされる。 (A)成分中における各 構成単位の割合がこれらの数値範囲内である場合、得られるポジ型レジスト組成物 から形成される孤立パターンの焦点深度幅を大きく向上させ、かつ近接効果も十分 に抑制してこれを大きく低減することができ、これにより、解像性が向上する。
[0132] 前記、(al) / (a3)の共重合体、 (al) Z (a6)の共重合体、 (al) Z (a3) / (a4)の 共重合体及び (al) Z (a3) / (a4) / (a5)の共重合体には、本発明の効果を損なわ ない範囲で、更に構成単位(a2)や他の構成単位を共重合させて用いてもよい。
[0133] かかる(al)を含有する高分子化合物は、各構成単位を誘導するモノマーを、例え ばァゾビスイソブチロニトリル (AIBN)のようなラジカル重合開始剤を用いた公知のラ ジカル重合等によって重合させることによって得ることができる。
本発明のフォトレジスト組成物における基材樹脂成分 (A)の含有量は、形成しようと するレジスト膜厚に応じて調整すればよい。例えば、後述の好ましい固形分濃度とな るように調整される。
また、前記高分子化合物には、上記重合の際に、たとえば HS-CH -CH -CH -
2 2 2
C (CF ) -OHのような連鎖移動剤を併用して用いることにより、末端に- C (CF ) -
3 2 3 2
OH基を導入してもよい。このように、アルキル基の水素原子の一部がフッ素原子で 置換されたヒドロキシアルキル基が導入された共重合体は、現像欠陥の低減や LER (ラインエッジラフネス:ライン側壁の不均一な凹凸)の低減に有効である。
[0134] < (B)成分 >
本発明のフォトレジスト組成物に用いる酸発生剤成分 (B)としては、公知の放射線 の照射により酸を発生する化合物中力 任意のものを適宜選択して用いることができ る。このような酸発生剤としては、これまで、ョードニゥム塩やスルホニゥム塩などのォ 二ゥム塩系酸発生剤、ォキシムスルホネート系酸発生剤、ビスアルキルまたはビスァリ 一ルスルホニルジァゾメタン類、ポリ(ビススルホニル)ジァゾメタン類、ニトロべンジノレ スルホネート類などのジァゾメタン系酸発生剤、イミノスルホネート系酸発生剤、ジス ルホン系酸発生剤など多種のものが知られている。
[0135] 前記ォニゥム塩系酸発生剤の具体例としては、ジフエ二ルョードニゥムのトリフルォ ロメタンスルホネートまたはノナフルォロブタンスルホネート、ビス(4一 tert—ブチルフ ェニノレ)ョードニゥムのトリフルォロメタンスルホネートまたはノナフルォロブタンスルホ ネート、トリフエニルスルホニゥムのトリフルォロメタンスルホネート、そのヘプタフルォ 口プロパンスルホネートまたはそのノナフルォロブタンスルホネート、トリ(4ーメチルフ ェニノレ)スルホ二ゥムのトリフルォロメタンスルホネート、そのヘプタフルォロプロパンス ルホネートまたはそのノナフルォロブタンスルホネート、ジメチル(4—ヒドロキシナフチ ノレ)スルホ二ゥムのトリフルォロメタンスルホネート、そのヘプタフルォロプロパンスル ホネートまたはそのノナフルォロブタンスルホネート、モノフエニルジメチルスルホユウ ムのトリフルォロンメタンスルホネート、そのヘプタフルォロプロパンスルホネートまた はそのノナフルォロブタンスルホネート、ジフエニルモノメチルスルホニゥムのトリフル ォロメタンスルホネート、そのヘプタフルォロプロパンスルホネートまたはそのノナフル ォロブタンスルホネートなどが挙げられる。これらのなかでもフッ素化アルキルスルホ ン酸イオンをァニオンとするォニゥム塩が好ましレ、。
[0136] 前記ォニゥム塩系酸発生剤の中でも、酸の強度が弱い、ァニオン部にカンファース ルホン酸イオンを有するォニゥム塩も用いることができる。具体的には下記化学式(5 7)で表される化合物等を例示できる。
Figure imgf000040_0001
[0138] 前記ォキシムスルホネート系酸発生剤の具体例としては、 α— (メチルスルホニルォ キシィミノ)一フエ二ルァセトニトリル、 - (メチルスルホニルォキシィミノ) _p—メトキシ フエ二ルァセトニトリル、 a一(トリフルォロメチルスルホニルォキシィミノ)一フエニルァ セトニトリル、 a—(トリフルォロメチルスルホニルォキシィミノ)一 p—メトキシフエニルァ セトニトリル、 α _ (ェチルスルホニルォキシィミノ) _p—メトキシフエ二ルァセトニトリル、 a - (プロピルスルホニルォキシィミノ) _p_メチルフエ二ルァセトニトリル、 a - (メチル スルホニルォキシィミノ) _p_ブロモフエ二ルァセトニトリル等が挙げられる。これらの 中で、 ひ—(メチルスルホニルォキシィミノ) _p—メトキシフヱ二ルァセトニトリルが好まし レ、。
[0139] 前記ジァゾメタン系酸発生剤のうち、ビスアルキルまたはビスァリールスルホニルジ ァゾメタン類の具体例としては、ビス(イソプロピルスルホニル)ジァゾメタン、ビス(p— トルエンスルホニノレ)ジァゾメタン、ビス(1, 1_ジメチルェチルスルホニノレ)ジァゾメタ ン、ビス(シクロへキシルスルホニノレ)ジァゾメタン、ビス(2, 4—ジメチルフエニルスル ホニル)ジァゾメタン等が挙げられる。
また、ポリ(ビススルホニル)ジァゾメタン類としては、例えば、以下に示す構造をもつ 1 , 3—ビス(フエニルスルホニルジァゾメチルスルホニル)プロパン(ィ匕合物 A、分解点 135°C)、 1 , 4_ビス(フエニルスルホニルジァゾメチルスルホニル)ブタン(ィ匕合物 B、 分解点 147°C)、 1 , 6_ビス(フエニルスルホニルジァゾメチルスルホニル)へキサン( 化合物 C、融点 132°C、分解点 145°C)、 1, 10—ビス(フエニルスルホニルジァゾメチ ルスルホニル)デカン(ィヒ合物 D、分解点 147°C)、 1, 2—ビス(シクロへキシルスルホ 二ルジァゾメチルスルホニル)ェタン(ィ匕合物 E、分解点 149°C)、 1, 3_ビス(シクロへ キシルスルホニルジァゾメチルスルホニル)プロパン(ィ匕合物 F、分解点 153。C)、 1, 6—ビス(シクロへキシルスルホニルジァゾメチルスルホニノレ)へキサン(化合物 G、融 点 109。C、分解点 122°C)、 1, 10—ビス(シクロへキシルスルホニルジァゾメチルスル ホニル)デカン (ィ匕合物 H、分解点 116°C)などを挙げることができる。
化 34」
Figure imgf000042_0001
前記(B)成分としては、 1種の酸発生剤を単独で用いてもよいし、 2種以上を組み 合わせて用いてもよい。
(B)成分の含有量は、 (A)成分 100質量部に対し、 0· 5— 30質量部、好ましくは 1 一 15質量部、さらに好ましくは 3— 10質量部とされる。 (B)成分の含有量がこれらの 数値範囲内である場合、均一な溶液が得られ、保存安定性が向上し、かつパターン 形成が十分に行われる。
[0142] く(D)成分〉
前記フォトレジスト組成物は、必要に応じ、さらに含窒素有機化合物(D)を含有す ること力 Sできる。化学増幅型レジスト組成物に含窒素化合物を酸拡散防止剤などとし て少量配合することはすでに公知である。本発明においても、このような公知の含窒 素有機化合物を前記フォトレジスト組成物に添加することができる。そのような含窒素 有機化合物としては、アミンゃアンモニゥム塩が挙げられる。
[0143] 前記ァミンとしては、ジェチルァミン、ジプロピルァミン、ジブチルァミン、ジペンチル ァミンなどの脂肪族第二級ァミン、トリメチルァミン、トリェチルァミン、トリプロピルアミ ン、トリブチノレアミン、トリペンチノレアミン、 N, N—ジメチルプロピルァミン、 N—ェチル— N—メチルブチルァミン、トリへキシノレアミン、トリヘプチノレアミン、トリオクチルァミン、ト リデカニルァミン、トリドデシルァミン、トリテトラデカニルァミンなどの脂肪族第三級ァ ミン(トリアルキルァミン、なお、上記における窒素に結合する 3つのアルキル基は、同 一でも異なってもよレ、。)、 N, N—ジメチルモノエタノールァミン、トリイソプロパノール ァミン、 N, N—ジェチルモノエタノールァミン、トリエタノールァミン、トリブタノールアミ ンなどの第三級アルカノールァミン、 N, N—ジメチルァニリン、 N, N—ジェチルァニリ ン、 N—ェチルー N—メチルァニリン、 N, N—ジメチルトルイジン、 N—メチルジフヱニル ァミン、 N-ェチルジフエニルァミン、トリフエニルァミンなどの芳香族第三級ァミンなど を挙げることができる。
[0144] 前記アンモニゥム塩としては、アンモニゥムイオン、テトラメチルアンモニゥムイオン、 テトラエチルアンモニゥムイオン、テトラプロピルアンモニゥムイオン、テトラプチルアン モニゥムイオン、テトラペンチルアンモニゥムイオン等の第 4級アルキルアンモニゥム イオンと乳酸のような水酸基を有する有機カルボン酸のイオンとの塩を挙げることが できる。
これらの中でも、トリエタノールァミン、トリイソプロパノールァミン、トリブタノールアミ ンなどの低級の第 3級ァノレカノーノレァミン、トリへキシノレアミン、トリヘプチノレアミン、トリ ォクチルァミン、トリデカニルァミン、トリドデシルァミン、トリテトラデカニルァミンなど炭 素数 6以上 15以下のトリアルキルアミン力 微細なレジストパターンのトップ部分の膜 減りの低減効果に優れることから、好ましい。
[0145] 前記含窒素有機化合物 (D)は、基材樹脂成分 (A) 100質量部に対して通常 0. 01 一 5質量部、好ましくは 0. 05— 3質量部、さらに好ましくは 0. 1 2質量部の範囲で 用いられる。 (D)成分の含有量がこれらの数値範囲内である場合、露光により発生し た酸の拡散抑止作用によるパターンの形状改善効果が得られ、かつ酸の拡散を過 剰に抑止することによるいわゆる露光感度の劣化が生じない。
[0146] ぐ酸成分 >
また、本発明においては、前記含窒素有機化合物(D)の添加による感度劣化防止 等の目的で、さらに任意の成分として、有機カルボン酸またはリンのォキソ酸若しくは その誘導体を前記フォトレジスト組成物に含有させることができる。
[0147] 前記有機カルボン酸としては、例えば、マロン酸、クェン酸、リンゴ酸、コハク酸、安 息香酸、サリチル酸などが好適である。
[0148] 前記リンのォキソ酸もしくはその誘導体としては、リン酸、リン酸ジー n—ブチルエステ ノレ、リン酸ジフエ二ルエステルなどのリン酸またはそれらのエステルのような誘導体、 ホスホン酸、ホスホン酸ジメチルエステル、ホスホン酸—ジー n—ブチルエステル、フエ ニルホスホン酸、ホスホン酸ジフエニルエステル、ホスホン酸ジベンジルエステルなど のホスホン酸およびそれらのエステルのような誘導体、ホスフィン酸、フエニルホスフィ ン酸などのホスフィン酸およびそれらのエステルのような誘導体が挙げられ、これらの 中で特にホスホン酸が好ましい。該有機カルボン酸またはリンのォキソ酸若しくはそ の誘導体成分は、樹脂成分 (A) 100質量部当り 0. 01-5. 0質量部、好ましくは 0. 05— 3質量部、さらに好ましくは 0. 1 2質量部の割合で用いられる。
[0149] <有機溶剤(E) >
本発明のフォトレジスト組成物は、前記基材樹脂成分 (A)、前記酸発生剤(B)、お よび含窒素有機化合物 (D)、さらに必要に応じて添加される任意成分を有機溶剤 (E )に溶解し、均一な溶液とすることにより得られる。この有機溶剤 (E)としては、従来、 化学増幅型レジストの溶剤として公知のものの中力 任意のものを 1種または 2種以 上適宜選択して用いることができる。 [0150] 前記有機溶剤 (E)としては、例えば、 γ—プチ口ラタトン、アセトン、メチルェチルケト ン、シクロへキサノン、メチルイソアミルケトン、 2_ヘプタノンなどのケトン類や、ェチレ ングリコール、エチレングリコールモノアセテート、ジエチレングリコール、ジエチレン グリコーノレモノアセテート、プロピレングリコーノレ、プロピレングリコーノレモノアセテート 、ジプロピレングリコール、またはジプロピレングリコールモノアセテートのモノメチル エーテル、モノェチルエーテル、モノプロピルエーテル、モノブチルエーテルまたは モノフエニルエーテルなどの多価アルコール類およびその誘導体や、ジォキサンのよ うな環式エーテル類や、乳酸メチル、乳酸ェチル、酢酸メチル、酢酸ェチル、酢酸ブ チル、ピルビン酸メチル、ピルビン酸ェチル、メトキシプロピオン酸メチル、エトキシプ ロピオン酸ェチルなどのエステル類などを挙げることができる。これらの有機溶剤は 単独で用いてもよぐ 2種以上の混合溶剤として用いてもよい。特に、プロピレングリコ ールモノメチルエーテルアセテート(PGMEA)と極性溶剤との混合溶剤が好ましぐ これらの配合比は、 PGMEAと極性溶剤との相溶性等を考慮して適宜決定すればよ レ、が、好ましくは 1 : 9一 9 : 1、より好ましくは 2 : 8— 8 : 2の範囲内である。
[0151] より具体的には、極性溶剤として乳酸ェチル (EL)を配合する場合は、 PGMEA : Ε Lの質量比が好ましくは 2 : 8— 8 : 2、より好ましくは 3 : 7— 7 : 3である。また、有機溶剤 (E)として、その他には、 PGMEA及び ELの中力 選ばれる少なくとも 1種と γ -ブチ 口ラ外ンとの混合溶剤も好ましい。この場合、混合割合は、前者と後者の質量比が 好ましくは 70 : 30— 95 : 5である。 (Ε)成分の使用量は特に限定されず、基板等に塗 布可能な濃度で、塗布膜圧に応じて適宜設定されるものであるが、一般的にはフォト レジスト組成物の固形分濃度 2— 20質量%、好ましくは 5— 15質量%、さらに好まし くは 5 12質量部の範囲内とされる。
[0152] <その他の成分 >
また、本発明のフォトレジスト組成物には、さらに所望により混和性のある添加剤、 例えば、公知の溶解抑制剤、フォトレジスト膜の性能を改良するための付加的樹脂、 塗布性を向上させるための界面活性剤、可塑剤、安定剤、着色剤、ハレーション防 止剤などを含有させることができる。
[0153] また、本発明の酸解離性溶解抑止基 (Π)を用いて保護された、アルコール性水酸 基、フエノール性水酸基、またはカルボキシノレ基を有する化合物は、溶解抑制剤とし ても用いられる。この溶解抑制剤としては、化学式(21)—(35)の各構成単位に対応 するモノマー成分におけるアルカリ可溶性基 (i)、特にはアルコール性水酸基、フエノ ール性水酸基、およびカルボキシル基を、本発明に力、かる酸解離性溶解抑止基 (ii) を用いて、保護した化合物が、好適に用いられる。このような化合物を酸解離性溶解 抑制剤(C)として基材樹脂成分 (A)と共に含有させたフォトレジスト組成物は、露光 前ではアルカリ現像への溶解抑止作用を示し、露光プロセス後では脱保護によるァ ルカリ溶解性を示す。これにより、レジストパターンのパターン膜べりを防止でき、高 解像性の微細パターンを提供することができる。
[0154] 特に本発明の化合物は、分子内に脂肪族環式基を有する酸解離性溶解抑止基を 有し、酸の作用によりアルカリ溶解性が大きく変化する。従って、該化合物から誘導さ れる構成単位を有する本発明の高分子化合物によれば、化学増幅型フォトレジスト の系において矩形性、解像性、および感度が良好で、かつ酸発生剤より発生する酸 が弱いものでも十分に酸解離性溶解抑止基が解離されて良好なフォトレジスト性能 が発現するフォトレジスト組成物を得ることができる。
[0155] 併せて、本発明のフォトレジスト組成物においては、エッチング耐性が向上し、とく に親水性基がさらに導入された場合にはレジストパターンの基板への密着性が向上 し、アルカリ現像液への親和性向上により現像欠陥が低減するという効果を得ること ができる。
本発明のフォトレジスト組成物はリソグラフィ一による半導体集積回路のパターニン グ等に好適に用いられる。特に、波長 300nm以下の光源、中でも KrF、 ArF、 Fェ
2 キシマレーザーを用いた微細パターユングにおいて優れた解像特性が達成される。 その中でも、 ArFエキシマレーザーが最も好ましい。更には電子線に対しても本発明 のフォトレジスト組成物は有効である。
[0156] 本発明のレジストパターン形成方法は、このようなフォトレジスト組成物を用いて基 板上にフォトレジスト膜を形成する工程と、前記フォトレジスト膜を露光する工程と、露 光された前記フォトレジスト膜を現像しレジストパターンを形成する工程とを含む。
[0157] 本発明のフォトレジスト組成物は、通常のリソグラフィープロセスによりレジストパター ンを形成する。そのような方法を以下に説明する。先ず、基板上にフォトレジスト組成 物を回転塗布などにより塗布して、乾燥させることにより、フォトレジスト膜を形成する 。次いで、このフォトレジスト膜をマスクパターンを介して選択的に露光し、露光後加 熱 (PEB)する。最後に露光された前記フォトレジスト膜をアルカリ水溶液にて現像し 、レジストパターンを形成する。なお、さらにポストベータ処理を必要に応じて行っても よレ、。光源としては、限定されるものではなレ、が、 200nm以下の遠紫外光、具体的に は ArFエキシマレーザー、 Fエキシマレーザー、 EUV (極端紫外光)など、電子線、 軟 X線、 X線などを使用することができる。特には、 KrFエキシマレーザー、 ArFェキ シマレーザー、および Fエキシマレーザーが好ましい。特に本発明の新規化合物を 用いた高分子化合物(共重合体)を用いる場合には、 ArFエキシマレーザーが好まし レ、。更には電子線に対しても本発明のフォトレジスト組成物は有効である。
[0158] レジストパターン形成の際の条件、すなわち、レジスト塗布の回転数、プレベータ温 度、露光条件、露光後加熱 (PEB)条件、アルカリ現像条件も、これまで慣用的に行 なわれている条件でよい。具体的には、回転数は 1200— 3500rpm程度、より具体 的には約 2000rpm程度であり、プレベータ(PB)温度は 70— 130°Cの範囲である。 これによつて、レジスト膜厚 80— 300nmが形成される。露光は、マスクを介して行わ れてもよい。選択的露光におけるマスクとしては、通常のバイナリ-マスクが用いられ る。このようなマスクとしては、位相シフトマスクが用いられてもよい。露光後加熱(PE B)温度は 90— 140°Cの範囲である。アルカリ現像条件は、 1一 5質量%TMAH (テト ラメチルアンモニゥムヒドロキシド)現像液により、 23°Cにて、 15— 90秒間現像し、そ の後、水リンスを行うという条件でよい。
実施例
[0159] [合成例 1] 4一ォキソ _2—ァダマンチルクロロメチルエーテル (後記化学式(58)で表 される化合物。以下、単に化合物名の後に(58)等と式番号のみを記載することがあ る。 )の合成
4_ォキソ _2—ヒドロキシァダマンタンにパラホルムアルデヒドを加え、 4_ォキソ _2_ ヒドロキシァダマンタンに対し 2. 5当量の塩化水素ガスを吹き込み、 50°Cにて 12時 間反応させた。反応終了後、生成物を減圧蒸留し、下記化学式 (58)で示される 4一 ォキソ一 2—ァダマンチルクロロメチルエーテル (化合物 1 )を得た。
[0160] [合成例 2] 2—ァダマンチルクロロメチルエーテル(59)の合成
2—ヒドロキシァダマンタンにパラホルムアルデヒドを加え、 2—ヒドロキシァダマンタン に対し 2. 5当量の塩化水素ガスを吹き込み、 50°Cにて 12時間反応させた。反応終 了後、生成物を減圧蒸留し、下記化学式 (59)で示される 2—ァダマンチルクロロメチ ルエーテル (化合物 2)を得た。
[0161] [合成例 3] 1_ァダマンチルメチルクロロメチルエーテル(60)の合成
ァダマンタン一 1一メタノールにパラホルムアルデヒドを加え、ァダマンタン一 1ーメタノ ールに対し 2. 5当量の塩化水素ガスを吹き込み、 50°Cにて 12時間反応させた。 反応終了後、生成物を減圧蒸留し、下記化学式 (60)で示される 1ーァダマンチルメチ ルクロロメチルエーテル(ィ匕合物 3)を得た。
[0162] [化 35]
Figure imgf000048_0001
(58} (59) (605
[0163] [合成例 4] 2—ァダマンチルォキシメチル メタタリレート(61)の合成
6. 9gのメタクリル酸を 200mLのテトラヒドロフランに溶解し、トリエチノレアミン 8. Og をカロえた。室温で攪拌した後、 15gの化合物 2 (59)を溶解させたテトラヒドロフラン 10 OmLを滴下した。室温で 12時間攪拌した後、析出した塩を濾別した。得られた濾液 を溶媒留去し、酢酸ェチルに 200mLに溶解させた後、純粋(100mL X 3)で洗浄し 、溶媒留去した。氷冷下放置後、白色固体を得た。この化合物を化合物 4とし、化学 式(61)で表す。 この化合物 4の赤外吸収スペクトル(IR)、プロトン核磁気共鳴スぺ クトノレ( — NMR)を測定した結果を以下に示す。 IR (cm— :2907、 2854( C- H伸 縮)、 1725( C=0伸縮)、 1638( C=C伸縮)1 H_NMR (CDC1、内部標準:テトラメチ ノレシラン) ppm: l . 45—2. 1 (m、 17H)、 3. 75 (s、 1H)、 5. 45 (s、 2H)、 5. 6 (s、 1H)、 6. 12 (s、 1H) [0164] [化 36]
Figure imgf000049_0001
[0165] [合成例 5] 4—ォキソ一 2—ァダマンチルォキシメチル メタタリレート(62)の合成
2. 2gのメタクリル酸を 50mLのテトラヒドロフランに溶解し、トリェチルァミン 2. 5gを カロえた。室温で攪拌した後、 4. 3gの化合物 1 (58)を溶解させたテトラヒドロフラン 50 mLを滴下した。室温で 12時間攪拌した後、析出した塩を濾別した。
得られた濾液を溶媒留去し、酢酸ェチルに lOOmLに溶解させた後、純水(50mL X 3)で洗浄し、溶媒留去した。氷冷下放置後、白色固体を得た。この化合物を化合物 5とし、化学式(62)で表す。この化合物 5の赤外吸収スペクトル(IR)、プロトン核磁気 共鳴スペクトル H—NMR)を測定した結果を以下に示す。 IR (cm— :2926、 2861 (C-H伸縮》、 1725(C=0伸縮)、 1636(C=C伸縮)1 H— NMR (CDC1、内部標準:テ
3
トラメチノレシラン) ppm : l . 62—3. 85 (m、 15H)、 4. 2 (s、 1H)、 5. 4 (s、 2H) , 5. 65 (s、 1H)、 6. 15 (s、 1H)
[0166] [化 37]
Figure imgf000049_0002
[合成例 6] 1—ァダマンチルメチルォキシメチルメタタリレート(63)の合成
5. 5gのメタクリル酸を 200mLのテトラヒドロフランに溶解し、トリェチルァミン 6. 5g をカ卩えた。室温で攪拌した後、 12. 9gの化合物 3 (60)を溶解させたテトラヒドロフラン lOOmLを滴下した。室温で 12時間攪拌した後、析出した塩を濾別した。得られた濾 液を溶媒留去し、酢酸ェチルに lOOmLに溶解させた後、純粋(100mL X 3)で洗浄 し、溶媒留去し、無色油状物を得た。この化合物を化合物 6とし、化学式 (63)で表す 。この化合物 6の赤外吸収スペクトル、プロトン核磁気共鳴スペクトル H—NMR)を 測定した結果を以下に示す。 IR (cm— :2904、 2850 (C-H伸縮))、 1727 (C=0伸 縮)、 1638 (C=C伸縮)1 H_NMR (CDC1、内部標準:テトラメチルシラン) ppm: 1. 4
3
6— 1. 96 (m、 18H)、 3. 22 (s、 2H)、 5. 34 (s、 2H)、 5. 6 (s、 1H)、 6. 15 (s、 1H
)
[化 38]
Figure imgf000050_0001
<構成単位(al)を有する樹脂 1一 5の合成 >
[合成例 7] 樹脂 1 (化学式 (64)で表される高分子化合物。以下、単に樹脂番号の 後に(64)等と式番号のみを記載することがある。 )の合成
8. 0gの化合物 4と γ—ブチロラタトンメタクリル酸エステル 5. 4gを 50mLのテトラヒド 口フランに溶解し、ァゾビスイソブチロニトリル 0. 52gをカ卩えた。 24時間還流した後、 反応溶液を 1Lの n-ヘプタンに滴下した。析出した樹脂を濾別、減圧乾燥を行い白 色な粉体樹脂を得た。この樹脂を樹脂 1とし、化学式 (64)で表す。樹脂 1の分子量( Mw)は 21100であった。また、カーボン 13 (質量数 13のカーボンの意、以下同様。 )核磁気共鳴スペクトル (13C-NMR)を測定した結果、式中の組成比(モル%、以下同 様。)は m : n=0. 49 : 0. 51であった。 [化 39]
Figure imgf000051_0001
[合成例 8] 樹脂 2 (65)の合成
1. Ogの化合物 4と γ—ブチロラタトンメタクリル酸エステル 0.68g、 3—ヒドロキシ _1 —ァダマンチルメタクリル酸エステル 0.47gを 20mLのテトラヒドロフランに溶解し、ァ ゾビスイソブチロニトリル 0.08gを加えた。 24時間還流した後、反応溶液を 2Lの n— ヘプタンに滴下した。析出した樹脂を濾別、減圧乾燥を行い白色な粉体樹脂を得た 。この樹脂を樹脂 2とし、化学式(65)で表す。この樹脂 2の分子量 (Mw)は 11500で あった。また、カーボン 13核磁気共鳴スぺクトノレ(13C— NMR)を測定した結果、式中 の組成比は m:n:l = 0.34:0.42:0.24であった。
[化 40]
Figure imgf000052_0001
[合成例 9] 樹脂 3 (66)の合成
1. Ogの化合物 4と γ_ブチロラタトンメタクリル酸エステル 0· 68g 3—ヒドロキシー 1 —ァダマンチルアクリル酸エステル 0· 44gを 20mLのテトラヒドロフランに溶解し、ァゾ ビスイソプチロニトリル 0.08gをカ卩えた。 24時間還流した後、反応溶液を 2Lの n ブタンに滴下した。析出した樹脂を濾別、減圧乾燥を行い白色な粉体樹脂を得た。 この樹脂を樹脂 3とし、化学式(66)で表す。この樹脂 3の分子量 (Mw)は 10800で あった。また、カーボン 13核磁気共鳴スぺクトノレ(13C— NMR)を測定した結果、組成 itiま m:n:l = 0.29:0.45:0.26であった。
[0174] [化 41]
Figure imgf000053_0001
[0175] [合成例 10] 樹脂 4 (67)の合成
1. Ogの化合物 4と γ _ブチロラタトンメタクリル酸エステル 0. 68g、ノルボルナンラタ トンメタクリル酸エステル(一般式 (49)の R3力 Sメチル基である構成単位に対応するモ ノマー) 0· 47gを 20mLのテトラヒドロフランに溶解し、ァゾビスイソブチロニトリル 0· 0 8gをカ卩えた。 24時間還流した後、反応溶液を 2Lの n—ヘプタンに滴下した。析出し た樹脂を濾別、減圧乾燥を行い白色な粉体樹脂を得た。この樹脂を樹脂 4とし、化学 式(67)で表す。この樹脂 4の分子量(Mw)は 12000であった。また、カーボン 13核 磁気共鳴スペクトル(13C_NMR)を測定した結果、組成比は m : n : l = 0. 37 : 0. 42 : 0. 21であった。
[0176] [化 42]
Figure imgf000054_0001
[0177] [合成例 11] 樹脂 5 (68)の合成
1. Ogの化合物 4と γ _ブチロラタトンメタクリル酸エステル 0. 68g、ノルボルナンラタ トンメタクリル酸エステル(一般式 (48)の R3力 Sメチル基である構成単位に対応するモ ノマー) 0. 44gを 20mLのテトラヒドロフランに溶解し、ァゾビスイソブチロニトリル 0. 0 8gをカ卩えた。 24時間還流した後、反応溶液を 2Lの n ブタンに滴下した。析出し た樹脂を濾別、減圧乾燥を行い白色な粉体樹脂を得た。この樹脂を樹脂 5とし、化学 式(68)で表す。この樹脂 5の分子量(Mw)は 12900であった。また、カーボン 13核 磁気共鳴スぺクトノレ(13C_NMR)を測定した結果、組成比は m : n : l = 0. 36 : 0. 42 : 0. 22であった。
[化 43]
Figure imgf000055_0001
<アルカリ可溶性基がアルコール性水酸基である樹脂 7— 9の合成 >
付加重合により合成した下記樹脂 6を用い、これに前記化合物 1一 3をそれぞれ導 入した樹脂 7— 9が得られた。樹脂 6— 9は、それぞれ下記化学式 (69)—(72)で表 される。これらの樹脂の物性値を表 1に示す。
Figure imgf000056_0001
[0181] [樹脂 6 (69)の合成]
公知の金属触媒を用い、付加重合反応を用いて、化学式(69)で表される樹脂 6を 合成した。式中の Xは 100である。
[0182] [合成例 12]樹脂 7 (70)の合成 5. Ogの樹脂 6を 70mLのテトラヒドロフランに溶解し、水素化ナトリウム 0. 15gをカロ えた。室温で溶液系が均一になるまで攪拌した後、 0. 8gの化合物 1を滴下した。室 温で 12時間攪拌した後、析出した塩を濾別した。得られた濾液を 1Lの水に滴下した 。析出した樹脂を濾別、減圧乾燥後、テトラヒドロフランに溶解させ 1Lのメタノール: 純水(80 : 20)の混合物に滴下した。析出した樹脂を濾別、減圧乾燥を行い白色な 粉体樹脂を得た。この樹脂を樹脂 7とする。
[0183] [合成例 13]樹脂 8 (71)の合成
5. Ogの樹月旨 6を 70mLのテトラヒドロフランに溶角军し、水素ィ匕ナトリウム 0. 15gをカロ えた。室温で溶液系が均一になるまで攪拌した後、 0. 7gの化合物 2を滴下した。室 温で 12時間攪拌した後、析出した塩を濾別した。得られた濾液を 1Lの水に滴下した 。析出した樹脂を濾別、減圧乾燥後、テトラヒドロフランに溶解させ 1Lのメタノール: 純水(80 : 20)の混合物に滴下した。析出した樹脂を濾別、減圧乾燥を行い白色な 粉体樹脂を得た。この樹脂を樹脂 8とする。
[0184] [合成例 14]樹脂 9 (72)の合成
5. Ogの樹脂 6を 70mLのテトラヒドロフランに溶解し、水素化ナトリウム 0. 15gをカロ えた。室温で溶液系が均一になるまで攪拌した後、 0. 8gの化合物 3を滴下した。室 温で 12時間攪拌した後、析出した塩を濾別した。得られた濾液を 1Lの水に滴下した 。析出した樹脂を濾別、減圧乾燥後、テトラヒドロフランに溶解させ 1Lのメタノール: 純水(80 : 20)の混合物に滴下した。析出した樹脂を濾別、減圧乾燥を行い白色な 粉体樹脂を得た。この樹脂を樹脂 9とする。
[0185] [表 1] 榭騮 6備榭騰 9ぬ物性儎
Figure imgf000057_0001
[0186] <アルカリ可溶性基がフエノール性水酸基である樹脂 10 (74)の合成 > [合成例 15]樹脂 10 ( 74)の合成
24. Ogの下記化学式(73)で示されるポリ一 4ーヒドロキシスチレン樹脂(73)を 200 mLのテトラヒドロフランに溶解し、水素化ナトリウム 2. 4gをカ卩えた。室温で溶液系が 均一になるまで攪拌した後、 12gの化合物 2を滴下した。室温で 12時間攪拌した後、 析出した塩を濾別した。得られた濾液を 1Lの水に滴下した。析出した樹脂を濾別、 減圧乾燥後、テトラヒドロフランに溶解させ 3Lの n ブタンノレに滴下した。析出した 樹脂を濾別、減圧乾燥を行い、白色な粉体樹脂を得た。この樹脂を樹脂 10とする。 この樹脂 10の分子量(Mw)は 12400、分散度(MwZMn)は 1. 28であった。また、 プロトン核磁気共鳴スペクトル ( Η— NMR)を測定した結果、化学式(74)における組 成比は m : n=0. 87 : 0. 13であった。
[0187] [化 45]
Figure imgf000058_0001
[0188] [化 46]
Figure imgf000059_0001
[0189] く構成単位(al)を有する樹脂 11一 14の合成〉
[合成例 16]樹脂 11 (75)の合成
3. Ogの化合物 4と γ—ブチロラタトンメタクリル酸エステル 2. Ogを 45mLのテトラヒド 口フランに溶解し、ァゾビスイソブチロニトリル 0. 20gをカ卩えた。 12時間還流した後、 反応溶液を 2Lの n—へブタンに滴下した。析出した樹脂を濾別、減圧乾燥を行い白 色な粉体樹脂を得た。この樹脂を樹脂 11とし、化学式 (75)で表す。この樹脂 11の 分子量(Mw)は 12300、分散度(Mw/Mn)は 1. 96であった。また、カーボン 13核 磁気共鳴スペクトル(13C— NMR)を測定した結果、式中の組成比は m : n=0. 47 : 0 . 53であった。また、熱分解点は 257. l°C、Tgは 147. 9°Cであった。尚、本合成例 及び比較合成例にぉレ、て、熱分解点は熱分析装置 DSC6200 (Seiko Instmmen t社製)にて 10°C/minの昇温条件で測定を行った。また、 Tg (ガラス転移点)は熱 分析装置 TG/DTA6200 (Seiko Instrument社製)にて 10°C/minの昇温条件 で測定を行った。 [化 47]
Figure imgf000060_0001
[合成例 17]樹脂 12 (77)の合成
3. Ogの化合物 4と下記化学式(76)で表される化合物 7を 4. Ogとを 60mLのテトラ ヒドロフランに溶解し、ァゾビスイソブチロニトリル 0. 20gをカ卩えた。 12時間還流した 後、反応溶液を 2Lの n—ヘプタンに滴下した。析出した樹脂を濾別、減圧乾燥を行い 白色な粉体樹脂を得た。この樹脂を樹脂 12とし、化学式 (77)で表す。この樹脂 12 の分子量(Mw)は 9800、分散度(Mw/Mn)は 1. 61であった。また、カーボン 13 核磁気共鳴スペクトル(13C— NMR)を測定した結果、式中の組成比は m : n=0. 57 : 0. 43であった。また、熱分解点は 234. 5。C、 Tgは 114. 1。Cであった。
Figure imgf000061_0001
Figure imgf000061_0002
[合成例 18]樹脂 13 (78)の合成
6· 0gの化合物 6と γ-プチロラ外ンメタクリル酸エステノレ 3.9g90mLのテトラヒド 口フランに溶解し、ァゾビスイソブチロニトリル 0.37gをカ卩えた。 12時間還流した後、 反応溶液を 2Lの n—ヘプタンに滴下した。析出した樹脂を濾別、減圧乾燥を行い白 色な粉体樹脂を得た。この樹脂を樹脂 13とし、化学式 (78)で表す。この樹脂 13の 分子量(Mw)は 12800、分散度(Mw/Mn)は 1.87であった。また、カーボン 13核 磁気共鳴スペクトル(13C— NMR)を測定した結果、式中の組成比は m:n=0.43:0 .57であった。また、熱分解点は 240.0C Tgは 142.2Cであった。
[化 50]
Figure imgf000062_0001
[合成例 19]樹脂 14(79)の合成
6.0gのィ匕合物 6と 7.6gのィ匕合物 7とを 120mLのテトラヒドロフランに溶角军し、ァゾ ビスイソプチロニトリル 0.37gを加えた。 12時間還流した後、反応溶液を 2Lの n ブタンに滴下した。析出した樹脂を濾別、減圧乾燥を行い白色な粉体樹脂を得た。 この樹脂を樹脂 14とし、化学式(79)で表す。この樹脂 14の分子量 (Mw)は 11600 、分散度(Mw/Mn)は 1.60であった。また、カーボン 13核磁気共鳴スペクトル(13 C—NMR)を測定した結果、式中の組成比は m:n=0.56:0.44であった。また、熱 分解点は 233· 6C Tgは 109· 4Cであった。 [0197] [化 51]
Figure imgf000063_0001
[0198] <比較例としての比較樹脂 1一 4の合成 >
[比較合成例 1]比較樹脂 1 (80)の合成
9. 9gの 2-メチル -2-ァダマンチルメタタリレートと 6. Ogの γ _ブチロラタトンメタタリ ル酸エステルを 140mLのテトラヒドロフランに溶解し、ァゾビスイソブチロニトリル 0. 6 3gをカ卩えた。 12時間還流した後、反応溶液を 2Lの n—へブタンに滴下した。析出し た樹脂を濾別、減圧乾燥を行い白色な粉体樹脂を得た。この樹脂を比較樹脂 1とし、 化学式(80)で表す。この比較樹脂 1の分子量 (Mw)は 8700、分散度(MwZMn) は 1. 83であった。また、カーボン 13核磁気共鳴スぺクトノレ(13C—NMR)を測定した 結果、式中の組成比は m: n = 0. 41 : 0. 59であった。また、熱分解点は 222. 5°C、 Tgは 158. 9°Cであった。
[0199] [化 52]
Figure imgf000064_0001
[0200] [比較合成例 2]比較樹脂 2 (81)の合成
10. 6gの 2—メチノレ _2—ァダマンチノレメタタリレートと 15. Ogのィ匕合物 7を 230mLの テトラヒドロフランに溶解し、ァゾビスイソブチロニトリル 0. 74gをカ卩えた。 12時間還流 した後、反応溶液を 2Lの n—へブタンに滴下した。析出した樹脂を濾別、減圧乾燥を 行い白色な粉体樹脂を得た。この樹脂を比較樹脂 2とし、化学式 (81)で表す。この 比較樹脂 2の分子量(Mw)は 8780、分散度(Mw/Mn)は 1. 42であった。また、力 一ボン 13核磁気共鳴スぺクトノレ(13C— NMR)を測定した結果、式中の組成比は m : n =0. 64 : 0. 36であった。また、熱分角牟^ Uま 215. 7°C、Tgfま 133. 3。Cであった。
[0201] [化 53]
Figure imgf000064_0002
[比較合成例 3]比較樹脂 3 (83)の合成
下記化学式 (82)で表される比較樹脂 3 ' (Promerus社製) 15g (質量平均分子量 = 7640、分散度 = 1. 93)を lOOmLのテトラヒドロフランに溶解し、水素化ナトリウム 0. 88gを加えた。室温で溶液系が均一になるまで攪拌した後、 1. 76gのクロロメチ ルメチルエーテル (東京化成工業株式会社製)を滴下した。室温で 12時間攪拌した 後、析出した塩を濾別した。得られた濾液を 1Lの水に滴下した。析出した樹脂を濾 別、減圧乾燥後、テトラヒドロフランに溶解させ、 1Lの n ブタンに滴下した。析出し た樹脂を濾別、減圧乾燥を行い白色な粉体樹脂を得た。収量は 5. Ogであった。この 樹脂を比較樹脂 3とし、化学式 (83)で表す。この比較樹脂 3における質量平均分子 量(Mw)は 14000、分散度(Mw/Mn)は 2. 14であり、水酸基の保護率は 40. 7 %であった。
[0203] [化 54]
Figure imgf000065_0001
[0204] [化 55]
Figure imgf000065_0002
( g 3
[0205] [比較合成例 4]比較樹脂 4 (83)の合成 比較合成例 3において保護率を変えた。すなわち、クロメチルメチルエーテルの量 を調節したこと以外は同様な方法を用いて反応を行った。得られた樹脂の質量平均 分子量(Mw)は 13900、分散度(Mw/Mn)は 2· 23であり、水酸基の保護率は 20 . 8%であった。これを比較樹脂 4とし、化学式 (83)で表す。
[0206] [実施例 1一 3]ポジ型フォトレジストの露光解像性の確認
樹脂 7から 9を用いて、ポジ型フォトレジストの解像性を確認した。露光には、 ArFェ キシマレーザーを用いた。樹脂 7から 9のそれぞれに、以下に示す酸発生剤、含窒素 有機化合物、および溶剤を混合することにより、ポジ型フォトレジスト用組成物を調製 した。
樹脂 7 9 100質量部
酸発生剤: TPS— PFBS 2. 0質量部
含窒素有機化合物:トリイソプロパノールァミン 0. 2質量部
溶剤: PGMEA 1250質量咅 B
[0207] 「TPS_PFBS」はトリフエニルスルホニゥムノナフルォロブタンスルホネートを表す。 「
PGMEAJはプロピレングリコールモノメチルエーテルアセテートを表す。
[0208] ポジ型フォトレジストの露光解像性を下記の表 2に示す条件で確認した。
[0209] [表 2] ポジ聖フオトレジスト©露光解像性評価条件 基糠 有機反射防ま鹏: AR»ie《シプレー社瓤)
レジスト纖 JE 纖
露鍾 Nikon NSR-S302 (NA 0J0, 2/3 annular)
ベ一ク条件 PB: 110¾の 90耖
PEB: 90°Cの 60秒
現像条件 NMD-3 2.38%《東窠 ¾化工菜社製.)の 30秒
「現像条件: NMD-3 2· 38% (東京応化工業製)の 30秒」とは、 NMD - 3 2. 38
% (製品名、東京応化工業製)を用い、現像時間 30秒の条件で現像したことを示す。 以上の露光解像性評価を下記の表 3に示す。本発明の高分子化合物の具体例で ある樹脂 7— 9をそれぞれ含有するポジ型フォトレジスト用組成物(実施例 1から 3)に より、 120nmのラインアンドスペースパターンが 1: 1で得られ、パターン形状は矩形 性を示すことが明らかとなった。このときの露光量は 14一 15mj/cm2であり、良好な 感度が得られた。
[表 3] 解像力 ff鑼晨ぴ露光量
Figure imgf000067_0001
[0212] [実施例 4]
樹脂 1を用いて、ポジ型フォトレジスト性能を ArFエキシマレーザーの露光量を変化 させた際のレジスト膜厚の変化力 確認した。樹脂 1に、以下に示す酸発生剤、含窒 素有機化合物、および溶剤を混合することにより、ポジ型フォトレジスト用組成物を調 製した。レジスト膜厚は 200nmに調整した。得られた露光量変化に対するレジスト膜 厚変化を表す感度曲線を図 1に示す。
樹脂 1 100質量部
酸発生剤: TPS—PFBS 2. 0質量部
含窒素有機化合物:トリイソプロパノールァミン 0. 2質量部
溶剤: PGMEA 1250質量部
[0213] 図 1の ArF露光による感度曲線から明ら力なように、ポジ型フォトレジストの性能を 確認することができた。また、感度は良好であった。
[0214] [実施例 5 8]
樹脂 2— 5を用いて、ポジ型フォトレジストの解像性を確認した。露光には、 ArFェキ シマレーザーを用いた。樹脂 2— 5に、以下に示す酸発生剤、含窒素有機化合物、 および溶剤を混合することにより、ポジ型フォトレジスト用組成物を調製した。
樹脂 2— 5 100質量部
酸発生剤: TPS— PFBS 3. 0質量部
含窒素有機化合物:トリイソプロパノールァミン 0. 35質量部
溶剤: PGMEA 1250質量部
GBL 125質量部
[0215] 「08し」は7—ブチロラタトンを表す。
ポジ型フォトレジストの露光解像性を下記の表 4に示す条件で確認した。
[0216] [表 4]
基槿 有機膽險 Jt膜: (Brewer Scierwelt製》 レ スト膜厚 300nm
露光機 Nfen NSR-S302 ( NA 0.60, 2/3 annular)
ベーク条件 ΡΒ: ΐ10 の 90秒
ΡΕ8: 110¾細秒
現像条件 2,38%〖東京応 ftェ雞被製 ©80秒
[0217] 以上の露光解像性評価を下記の表 5に示す。本発明の高分子化合物の具体例で ある樹脂 2— 5をそれぞれ含有するポジ型フォトレジスト用組成物(実施例 5— 8)によ り、 120nmのラインアンドスペースパターンが 1: 1で得られ、パターン形状は矩形性 を示すことが明らかとなった。その時の露光量 (感度)を表 5に示す。
[0218] [表 5] 解像力及び靄光量
Figure imgf000069_0001
[0219] [実施例 9一 19、比較例 1一 8]
下記表 6に示す組成のポジ型レジスト組成物を調製した後、表 7の条件でレジスト パターンを形成して評価した。その結果を表 8に示す。
[0220] [表 6]
W
Figure imgf000070_0001
表 6中の略語を次に示す。
PAG1:トリフエニルスルホニゥムノナフルォロブタンスルホネート
PAG2:下記化学式(84)で表されるビス(2, 4—ジメチルフヱ-ルスルホニル)ジァゾ メタン [0222] [化 56」
Figure imgf000071_0001
[0223] PAG3 :下記化学式 (85)で表されるトリフエニルスルホニゥムのカンファースルホン酸 [0224] [化 57]
Figure imgf000071_0002
[0225] PGMEA:プロピレングリコー エー ート
EL :乳酸ェチル
[0226] [表 7]
Figure imgf000071_0003
[0227] 比較例 7及び 8の条件は、レジスト膜圧を 200nmに変更したことを除いては、表 2の 条件と同じであった。
[0228] [表 8]
Figure imgf000072_0001
[0229] PAG2を用いた場合、比較例 2, 5では解像しなかったのに対して、実施例 10, 13
18ではラインアンドスペースのレジストパターンが得られた。
PAG3を用いた場合、比較例 3では解像せず、比較例 6では 170nmのラインアンド スペースパターンが得られたが、これらに比べて実施例 11, 14, 19では、解像性、 感度がともに向上した。
ライン幅 120nm、ピッチ 240nmのラインアンドスペースパターンを形成し、実施例 9、実施例 12、実施例 15、比較例 1、及び比較例 4についてそれぞれ LER (ラインェ ッジラフネス:ラインエッジラフネスとは、ライン側壁の不均一な凹凸のことである。)を 示す尺度である 3 σを求めた。なお、本実施例において、 3 σを、側長 SEM (日立製 作所社製,商品名「S— 9220」)により測定した。この 3 σ力 Μ、さレ、ほど、ラフネスが小 さぐ均一幅のレジストパターンが得られたことを意味する。その結果、実施例 9では 6 . 4nm、実施例 12では 5. 4nm、実施例 15では 6. 9nm、比較例 1では 9. Onm、比 較例 4では 6. 9nmであった。このこと力らも、本発明の構成単位(al)を用いることで LERが低減されることがわ力つた。
PAG1を用いた場合は、解像性は略同等であつたが、実施例 9, 12, 15,及び 17 において感度の向上が認められた。
[0230] [実施例 20— 21、比較例9]
下記表 9に示す組成のレジスト組成物を調整し、下記表 10に示す実装条件でレジ ストパターンを形成した後、評価した結果を表 11にまとめた。
[0231] [表 9]
Figure imgf000073_0001
フエ スル ニゥ厶ノ フルォ Ο タンスルホネ一ト
[0232] [表 10] 基板: 8インチシリコンゥ X—/ V
レジスト膜厚: 200rwi
懿光機:日直製 HL 800D (無速電圧 ¾ )
ベ一ク条件: ί¾ 120¾/铺秒
FEB 120¾/60f
羅像条像: MMD— 3 2 % (康裒 化: E鬟社製)で 23¾ S0秒钃
[0233] [表 11」 鰾像カ (麵)
獻 ( C/cm2)
ラインアン スペース LERCnm)
実施倒 20 90 70
実麵 21 90 59 8,2
比較細 160 1 14 8
[0234] 表 11中、感度、 LERについては以下の通りである。
感度:実施例 20— 21については lOOnmのラインアンドスペースパターンのサイズが 1: 1となるときの感度を測定した。比較例 9については 160nmのラインアンドスぺー スパターンのサイズが 1: 1となるときの感度を測定した。
LER :実施例 20— 21については、 lOOnmのラインアンドスペースパターンのサイズ 力 の LERを測定した。比較例 9については、 160nmのラインアンドスペースパタ ーンのサイズが 1: 1となるときの LERを測定した。
[0235] 上記の結果より、露光光源として電子線を用いても、本願発明のレジスト組成物は 解像性、感度、 LERにおいて優れていることが明ら力、となった。
[0236] [合成例 20— 25]
合成例 8と同様な方法で、下記に示す構造式が共通で、組成比等が異なる樹脂 15 一 20を合成した。その結果を表 12に示す。
[化 58]
Figure imgf000075_0001
[合成例 26]
38. 8gの(4—ォキソ _2—ァダマンチルォキシ)メチルメタタリレート(合成例 5の化合 物 5に相当)と 25. Ogの ブチロラタトンメタタリレートを 640mLのテトラヒドロフラン に溶解し、ァゾビスイソプチロニトリル 2. 41gを加えた。 6時間還流した後、反応溶液 を 2Lのメタノールに滴下した。析出した樹脂を濾別、減圧乾燥を行い白色な粉体樹 脂を得た。この樹脂を樹脂 21とし、その構造式を下記に示す。樹脂 21の分子量 (M w)は 12400、分散度(Mw/Mn)は 2. 01であった。また、カーボン 13核磁気共鳴 スぺクトノレ(13C— NMR)を測定した結果、組成比は m: n = 0. 48 : 0. 52であった。そ の結果を表 12に示す。
[0239] [化 59]
Figure imgf000076_0001
[0240] [比較合成例 5]
18. 7gの 2_メチノレ一 2—ァダマンチルメタタリレート、 13. 6gの γ _ブチロラタトンメタ タリレート、及び 9. 5gの 3—ヒドロキシ— 1—ァダマンチルメタタリレートを 200mlのテトラ ヒドロフランに溶解し、ァゾビスイソブチロニトリル 1. 64gをカ卩えた。 6時間還流した後 、反応溶液を 1Lの n ブタンに滴下した。析出した樹脂を濾別、減圧乾燥を行い白 色な粉体樹脂を得た。この樹脂を比較樹脂 5とし、その構造式を下記に示す。比較 樹脂 5の質量平均分子量(Mw)は 10000、分散度(MwZMn)は 2. 0であった。ま た、カーボン 13核磁気共鳴スペクトル (13C— NMR)を測定した結果、下記構造式に 示す各構成単位の組成比は m : n : l = 0. 4 : 0. 4 : 0. 2であった。
[0241] [化 60]
Figure imgf000076_0002
[0242] [比較合成例 6]
比較合成例 1と同様な方法で比較樹脂 6を合成した。比較樹脂 6の質量平均分子 量(Mw)は 9200、分散度(Mw/Mn)は 1 · 96であった。また、カーボン 13核磁気 共鳴スペクトル(13C— NMR)を測定した結果、下記構造式に示す各構成単位の組成 比は m : n = 0. 44 : 0. 56であった。
[0243] [化 61]
Figure imgf000077_0001
[0244] [表 12]
Figure imgf000077_0002
[実施例 22— 27、比較例 10]
下記表 13に示す組成のポジ型レジスト組成物を調製した。
次いで、 8インチのシリコンゥヱーハ上に有機反射防止膜用材料 (ブリューヮーサイ エンス社製、商品名 ARC-29)を塗布し、 225°Cで 60秒間焼成して反射防止膜を形 成して基板とした。 該基板上に、上記で得られたポジ型レジスト組成物をスピンナーを用いて均一に塗 布し、表 14に示す条件でプレベータ(PAB)して、乾燥させることにより、レジスト層を 形成した。ついで、 ArF露光装置(波長 193nm) NSR-S302 (Nikon社製、 NA (開 口数) =0. 60, 2/3輪帯照明)を用レ、、マスクを介して選択的に露光した。
そして、表 14に示す条件で PEB処理し、さらに 23°Cにて 2. 38質量%テトラメチル アンモニゥムヒドロキシド水溶液で 30秒間パドル現像した。その後 30秒間、純水を用 いて水リンスし、振り切り乾燥を行って、 140nmのラインアンドスペース(1 : 1)のレジ ストパターン (以下、 Lノ Sパターンという)を形成した。
[表 13]
Figure imgf000078_0001
PAG2: 4一メチルフ Iニルジフエ ルス.ルホニゥムノナフル才 E3ブタンスルホネート
トリ(4— tert—ブチル: χニル》スルホ二ゥムトリフル: E3メタンスルホネート
XR- 104(商品名):大日本インキ化学德製
PQM E:プ Qピレングリコールモノメチル I-"于ル
[表 14]
Figure imgf000079_0001
[0248] 下記の評価を行い、その結果を表 15に示す。
[0249] [露光余裕度]
140nmL/Sパターンを正確に 1:1で解像する露光量 (感度)(EOP)と、 140nm の ±10%の LZSパターンを解像する露光量変動幅 (感度の変動幅)から得られた 露光余裕度を下記式より算出した。
露光余裕度= (12611111)-£(15411111)〕 100/£0?
EOP: 140nmの L/Sを正確に 1: 1で得る際の感度(mjZcm2)
E(154nm): 154nmの LZSを得る際の感度(mjZcm2)
E(126nm) :126nmの L/Sを得る際の感度(mj/cm2)
[0250] [表 15] 靄 纏%)
実施維 2 鶴
実施倒 23 15.9
実施俩 24 鶴
実施倒 25 13,1
饔施倒 26 15.5
実施鋼 27 13.4
比糠倒 10 12.7
[0251] [実施例 28、比較例 11]
表 13に示す組成のポジ型レジスト組成物を調製した。
次いで、 8インチのシリコンゥエーハ上に有機反射防止膜用材料 (ブリューヮーサイ エンス社製、商品名 ARC— 29)を塗布し、 225°Cで 60秒間焼成して反射防止膜を形 成して基板とした。
該基板上に、上記で得られたポジ型レジスト組成物をスピンナーを用いて均一に塗 布し、表 14の条件でプレベータして、乾燥させることにより、レジスト層を形成した。つ レ、で、 ArF露光装置(波長 193nm) NSR-S302 (Nikon社製、 NA (開口数) = 0. 6 0, 2/3輪帯照明)を用い、マスクを介して選択的に露光した。
そして、表 14の条件で PEB処理し、さらに 23。Cにて 2. 38質量0 /0テトラメチルアン モニゥムヒドロキシド水溶液で 30秒間パドル現像した。その後 30秒間、純水を用いて 水リンスし、振り切り乾燥を行って、 130nmのラインアンドスペース(1 : 1)のレジストパ ターン(以下、 L/Sパターンという)を形成した。
[0252] 下記の評価を行い、その結果を表 16に示す。
[0253] [LER]
1: 1の 130nmの L/Sパターンについて、 LERを示す尺度である 3 σを求めた。な お、 3 σは、側長 SEM (日立製作所社製,商品名「S-9220」)により、試料のレジスト パターンの幅を 32箇所測定し、その結果力 算出した標準偏差( σ )の 3倍値 (3 σ ) である。この 3 σの値が小さいほどラフネスが小さぐ均一幅のレジストパターンが得ら れたことを意味する。
[0254] [表 16] 実赫歸 4.8
比讓 11 δ.3
[0255] 実施例 22— 27と比較例 10との結果を比較すると、実施例 22— 27におけるレジス ト組成物は、本願発明の構成単位を有していることで、露光余裕度に優れていること がわかった。
また、実施例 28と比較例 11との結果を比較すると、実施例 28におけるレジスト組成 物は、 LERに非常に優れてレ、ることがわかった。
[0256] [合成例 27]
21. Ogの(4一ォキソ _2—ァダマンチルォキシ)メチルメタタリレート(合成例 5の化合 物 5に相当)、 13. 6gの γ _ブチロラタトンメタクリル酸エステル(GBLMA)、及び 9. 5gの 3—ヒドロキシー 1—ァダマンチルメタタリレートを 200mlのテトラヒドロフランに溶解 し、ァゾビスイソプチロニトリル 1. 64gをカ卩えた。 12時間還流した後、反応溶液を 1L の n—ヘプタンに滴下した。析出した樹脂を濾別、減圧乾燥を行い白色な粉体樹脂を 得た。この樹脂を樹脂 22とし、その構造式を下記に示す。この樹脂 22の質量平均分 子量(Mw)は 10200、分散度(Mw/Mn)は 1. 72であった。また、カーボン 13核磁 気共鳴スペクトル (13C - NMR)を測定した結果、下記構造式に示す各構成単位の組 成比は m : n: l = 0. 4 : 0. 4 : 0. 2 (モル%)であった。
[0257] [化 62]
Figure imgf000082_0001
[0258] [合成例 28]
15. 7gの(4一ォキソ _2—ァダマンチルォキシ)メチルメタタリレート(合成例 5の化合 物 5に相当)、 17. Ogの γ _ブチロラタトンメタクリル酸エステル(GBLMA)、及び 9. 5gの 3—ヒドロキシ一 1—ァダマンチルメタタリレートを 200mlのテトラヒドロフランに溶解 し、ァゾビスイソプチロニトリル 1. 64gをカ卩えた。 12時間還流した後、反応溶液を 1L の n—へブタンに滴下した。析出した樹脂を濾別、減圧乾燥を行い白色な粉体樹脂を 得た。この樹脂を樹脂 23とし、その構造式を下記に示す。この樹脂 23の質量平均分 子量(Mw)は 9800、分散度(Mw/Mn)は 1. 60であった。また、カーボン 13核磁 気共鳴スぺ外ル (13C - NMR)を測定した結果、前記 [化 62]に示す各構成単位の 組成比は m : n: l = 0. 3 : 0. 5 : 0. 2 (モル%)であった。
[0259] [実施例 29]
下記に示す組成でポジ型レジスト組成物を調製した。
(A)樹脂:樹脂 22 100質量部
(B)酸発生剤: TPS-PFBS 3. 5質量部
(D)含窒素有機化合物:トリエタノールァミン 0. 35質量部
有機溶剤: PGMEA: EL = 6 : 4 750質量部
[0260] 次いで、 8インチのシリコンゥエーハ上に有機反射防止膜用材料 (ブリューヮーサイ エンス社製、商品名 ARC— 29)を塗布し、 205°Cで 60秒間焼成して膜厚 38nmの反 射防止膜を形成した。
該基板上に、上記で得られたポジ型レジスト組成物をスピンナーを用いて均一に塗 布し、 95°Cで 90秒間でプレベータして、乾燥させることにより、膜厚 225nmのレジス ト層を形成した。ついで、 ArF露光装置(波長193nm) NSR_S302A(Nikon社製、 NA (開口数) =0. 60, 2Z3輪帯照明)を用レ、、バイナリーマスクを介して選択的に 露光した。
そして、 105°Cで 90秒間 PEB処理し、さらに 23°Cにて 2. 38質量%テトラメチルァ ンモニゥムヒドロキシド水溶液で 30秒間パドル現像した。その後 30秒間、純水を用い て水リンスし、振り切り乾燥を行って、 140nmのラインアンドスペース(1 : 1)のレジスト パターンを形成した。その際の感度は 23mjZcm2であり、露光余裕度は 15. 4。/0で あった。
[0261] 実施例 29と比較例 10とを比べると、実施例 29におけるレジスト組成物は、露光余 裕度に優れていることがわかった。
産業上の利用可能性
[0262] 以上のように、本発明にかかる高分子化合物および低分子化合物は、矩形性の高 い微細なレジストパターンの形成に有用であり、特に、 KrF、 ArFおよび F露光用の 微細パターン形成に適してレ、る。

Claims

請求の範囲
[1] 酸の作用によりアルカリ溶解性が変化する高分子化合物であって、
アルカリ可溶性基 (i)を有し、このアルカリ可溶性基 (i)における水素原子の一部が
、下記一般式 (1)
[化 1]
Figure imgf000084_0001
CD
(式中、 Rは酸素、窒素、硫黄、又はハロゲン原子を有してもよい炭素数 20以下の脂
1
肪族環式基であり、 nは 0または 1一 5の整数を表す。)で示される酸解離性溶解抑止 基 (Π)で置換されてレ、る高分子化合物。
[2] 前記アルカリ可溶性基 (i)力 アルコール性水酸基、フエノール性水酸基、および力 ルポキシル基から選ばれる少なくとも 1種である請求項 1に記載の高分子化合物。
[3] 前記アルコール性水酸基に結合している炭素原子に隣接する炭素原子に、少なく とも一つのフッ素原子が結合している請求項 2に記載の高分子化合物。
[4] 前記一般式(1)中、前記脂肪族環式基がァダマンタン骨格を有する請求項 1に記 載の高分子化合物。
[5] 前記一般式(1)中、 R力 S1種以上の親水性基を有する脂肪族環式基である請求項
1
1に記載の高分子化合物。
[6] 前記親水性基が、カルボニル基、エステル基、アルコール性水酸基、エーテル、ィ ミノ基、およびァミノ基からなる群から選ばれる少なくとも 1種である請求項 5に記載の 高分子化合物。
[7] 下記一般式 (2)
[化 2]
Figure imgf000084_0002
(式中、 Rは酸素、窒素、硫黄、又はハロゲン原子を有してもよい炭素数 20以下の
1
脂肪族環式基であり、 nは 0または 1一 5の整数を表す。 Rは水素原子、フッ素原子、
2
炭素数 1一 20の低級アルキル基又は炭素数 1一 20のフッ素化低級アルキル基を表 す。)で示される化合物。
下記一般式 (3)
[化 3]
Figure imgf000085_0001
(式中、 Rは前記と同じである。 Xは 2原子の水素原子または 1原子の酸素原子を表
2
す。 n は 0又は 1を表す。)で示される請求項 7記載の化合物。
[9] 少なくとも請求項 7に記載の化合物から誘導される構成単位 (al)を含有する請求 項 1に記載の高分子化合物。
[10] 少なくとも請求項 8に記載の化合物から誘導される構成単位 (al)を含有する請求 項 1に記載の高分子化合物。
[11] 前記構成単位 (al)と、ラ外ン含有単環または多環式基を含む (メタ)アクリル酸ェ ステルから誘導される構成単位(a3)とを含む請求項 9記載の高分子化合物。
[12] 前記構成単位(a3)として、相互に異なる 2種類以上のラタトン含有単環または多環 式基を含む (メタ)アクリル酸エステルから誘導される構成単位を含む請求項 11記載 の高分子化合物。
[13] 前記構成単位 (al)と、ラ外ン含有単環または多環式基を含む (メタ)アクリル酸ェ ステルから誘導される構成単位(a3)と、極性基含有多環式基を含む (メタ)アタリノレ 酸エステルから誘導される構成単位(a4)とを含む請求項 11記載の高分子化合物。
[14] 前記構成単位 (al)と、下記一般式 (4)
[化 4]
Figure imgf000086_0001
(式中、 Rは前記と同じである。 X'は 2価または 3価の環式基を、 Yは 2価の炭素数 1
2
一 6のアルキレン基またはアルキレンォキシ基を示す。 p及び qはそれぞれ独立に 1か ら 5の整数を、 sは 1または 2の整数を示す。)で示される構成単位(a6)とを含む請求 項 9記載の高分子化合物。
[15] 酸の作用によりアルカリ溶解性が変化する基材樹脂成分 (A)と、放射線の照射によ り酸を発生する酸発生剤(B)とを含有してなるフォトレジスト組成物であって、 前記基材樹脂成分 (A)が、請求項 1、 9又は 10のいずれか 1項に記載の高分子化 合物であるフォトレジスト組成物。
[16] 含窒素有機化合物(D)を含有する請求項 15記載のフォトレジスト組成物。
[17] 請求項 15に記載のフォトレジスト組成物を用いて基板上にフォトレジスト膜を形成 する工程と、
前記フォトレジスト膜を露光する工程と、
露光された前記フォトレジスト膜を現像しレジストパターンを形成する工程とを含む レジストパターン形成方法。
PCT/JP2005/001228 2004-02-20 2005-01-28 高分子化合物、該高分子化合物を含有するフォトレジスト組成物、およびレジストパターン形成方法 WO2005080473A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP05709454.2A EP1717261B1 (en) 2004-02-20 2005-01-28 Polymer compound, photoresist composition containing such polymer compound, and method for forming resist pattern
CNB2005800049642A CN100572422C (zh) 2004-02-20 2005-01-28 高分子化合物、含有该高分子化合物的光致抗蚀剂组合物以及抗蚀图案形成方法
US10/589,681 US7723007B2 (en) 2004-02-20 2005-01-28 Polymer compound, photoresist composition including the polymer compound, and resist pattern formation method
KR1020097017403A KR100935569B1 (ko) 2004-02-20 2005-01-28 지방족 환식기를 갖는 산해리성 용해 억지기를 갖는 화합물

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
JP2004045522 2004-02-20
JP2004-045522 2004-02-20
JP2004-134585 2004-04-28
JP2004134585 2004-04-28
JP2004-179475 2004-06-17
JP2004179475 2004-06-17
JP2004252474 2004-08-31
JP2004-252474 2004-08-31
JP2004-316960 2004-10-29
JP2004316960A JP2006096965A (ja) 2004-02-20 2004-10-29 高分子化合物、該高分子化合物を含有するフォトレジスト組成物、およびレジストパターン形成方法

Publications (1)

Publication Number Publication Date
WO2005080473A1 true WO2005080473A1 (ja) 2005-09-01

Family

ID=34891373

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/001228 WO2005080473A1 (ja) 2004-02-20 2005-01-28 高分子化合物、該高分子化合物を含有するフォトレジスト組成物、およびレジストパターン形成方法

Country Status (7)

Country Link
US (1) US7723007B2 (ja)
EP (2) EP2433972B1 (ja)
JP (1) JP2006096965A (ja)
KR (3) KR100960846B1 (ja)
CN (1) CN100572422C (ja)
TW (1) TWI331157B (ja)
WO (1) WO2005080473A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006123487A1 (ja) * 2005-05-19 2006-11-23 Tokyo Ohka Kogyo Co., Ltd. ポジ型レジスト組成物およびレジストパターン形成方法
WO2006126329A1 (ja) * 2005-05-24 2006-11-30 Tokyo Ohka Kogyo Co., Ltd. ポジ型ホトレジスト組成物、厚膜ホトレジスト積層体、厚膜レジストパターンの製造方法および接続端子の製造方法
JP2007177016A (ja) * 2005-12-27 2007-07-12 Shin Etsu Chem Co Ltd 高分子化合物、レジスト材料、及びパターン形成方法
WO2007083458A1 (ja) * 2006-01-17 2007-07-26 Tokyo Ohka Kogyo Co., Ltd. 液浸露光用ポジ型レジスト組成物およびレジストパターン形成方法
US20080248420A1 (en) * 2007-03-28 2008-10-09 Fujifilm Corporation Positive resist composition and pattern-forming method
EP1947510B1 (en) * 2005-11-11 2014-03-12 Tokyo Ohka Kogyo Co., Ltd. Positive resist composition and method for forming resist pattern

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4355591B2 (ja) * 2004-02-23 2009-11-04 富士フイルム株式会社 ポジ型レジスト組成物及びそれを用いたパターン形成方法
US7799507B2 (en) * 2006-05-18 2010-09-21 Tokyo Ohka Co., Ltd. Positive resist composition for immersion lithography and method for forming resist pattern
US7723009B2 (en) * 2006-06-02 2010-05-25 Micron Technology, Inc. Topography based patterning
JP4717732B2 (ja) 2006-06-22 2011-07-06 東京応化工業株式会社 ポジ型レジスト組成物およびレジストパターン形成方法
TWI397771B (zh) 2006-07-06 2013-06-01 Shinetsu Chemical Co 正型光阻組成物及圖型之形成方法
TWI399616B (zh) * 2006-07-06 2013-06-21 Shinetsu Chemical Co 正型光阻組成物及圖型之形成方法
US7691561B2 (en) 2006-07-06 2010-04-06 Shin-Etsu Chemical Co., Ltd. Positive resist compositions and patterning process
JP2008033287A (ja) * 2006-07-06 2008-02-14 Shin Etsu Chem Co Ltd ポジ型レジスト組成物及びパターン形成方法
JP5398966B2 (ja) * 2006-07-24 2014-01-29 信越化学工業株式会社 高分子化合物及びポジ型レジスト材料並びにこれを用いたパターン形成方法
TWI432408B (zh) * 2007-01-09 2014-04-01 Jsr Corp 化合物及敏輻射線性組成物
JP5151586B2 (ja) * 2007-03-23 2013-02-27 住友化学株式会社 フォトレジスト組成物
US7923373B2 (en) * 2007-06-04 2011-04-12 Micron Technology, Inc. Pitch multiplication using self-assembling materials
JP5303122B2 (ja) * 2007-06-12 2013-10-02 東京応化工業株式会社 高分子化合物、ポジ型レジスト組成物およびレジストパターン形成方法
JP5349765B2 (ja) 2007-06-13 2013-11-20 東京応化工業株式会社 高分子化合物、ポジ型レジスト組成物およびレジストパターン形成方法
KR101524571B1 (ko) * 2007-08-10 2015-06-01 후지필름 가부시키가이샤 포지티브형 레지스트 조성물, 그 조성물을 사용한 패턴 형성 방법 및 그 조성물에 사용되는 화합물
US8252503B2 (en) 2007-08-24 2012-08-28 Az Electronic Materials Usa Corp. Photoresist compositions
JP5237173B2 (ja) 2008-06-03 2013-07-17 信越化学工業株式会社 重合性化合物、高分子化合物及びポジ型レジスト材料並びにこれを用いたパターン形成方法
JP5655352B2 (ja) * 2010-03-31 2015-01-21 Jsr株式会社 感放射線性樹脂組成物及びそれに用いる重合体
CN102789129A (zh) * 2011-05-14 2012-11-21 张海清 彩色滤光片用光固化着色组合物
WO2013146356A1 (ja) * 2012-03-28 2013-10-03 株式会社クラレ アクリル酸エステル系誘導体の製造方法並びに中間体およびその製造方法
JP2013227269A (ja) * 2012-03-28 2013-11-07 Kuraray Co Ltd アクリル酸エステル系誘導体
JP6484055B2 (ja) 2014-03-25 2019-03-13 東京応化工業株式会社 感光性樹脂組成物
JP6484056B2 (ja) 2014-03-25 2019-03-13 東京応化工業株式会社 パターン形成方法
JP6604001B2 (ja) 2015-02-24 2019-11-13 セイコーエプソン株式会社 インクジェットインク組成物及びインクジェット記録方法、インクセット
JP6604000B2 (ja) 2015-02-24 2019-11-13 セイコーエプソン株式会社 インクジェットインク組成物及びインクジェット記録方法
TWI696891B (zh) * 2015-12-09 2020-06-21 日商住友化學股份有限公司 光阻組成物及光阻圖案之製造方法
US10800162B2 (en) 2016-01-27 2020-10-13 Seiko Epson Corporation Non-aqueous ink jet composition
US10208219B2 (en) * 2016-01-27 2019-02-19 Seiko Epson Corporation Non-aqueous ink jet composition
TWI745445B (zh) * 2016-10-05 2021-11-11 日商東京應化工業股份有限公司 光阻組成物及光阻圖型形成方法、高分子化合物,及共聚物

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001318465A (ja) * 2000-05-11 2001-11-16 Fuji Photo Film Co Ltd ポジ型フォトレジスト組成物
JP2002363225A (ja) * 2001-05-28 2002-12-18 Korea Kumho Petrochem Co Ltd 化学増幅型レジスト用重合体及びこれを含有した化学増幅型レジスト組成物
JP2003021839A (ja) * 2001-03-31 2003-01-24 Adms Technology Co Ltd 液晶表示素子のカラムスペーサ用レジスト組成物
JP2005017729A (ja) * 2003-06-26 2005-01-20 Fuji Photo Film Co Ltd ポジ型レジスト組成物

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE470019B (sv) * 1993-01-20 1993-10-25 Perstorp Ab Monofunktionell akrylatmonomer
JP3380128B2 (ja) 1996-11-29 2003-02-24 富士通株式会社 レジスト材料及びレジストパターンの形成方法
US6200725B1 (en) * 1995-06-28 2001-03-13 Fujitsu Limited Chemically amplified resist compositions and process for the formation of resist patterns
KR100220953B1 (ko) 1996-12-31 1999-10-01 김영환 아미드 또는 이미드를 도입한 ArF 감광막 수지
US6042991A (en) * 1997-02-18 2000-03-28 Fuji Photo Film Co., Ltd. Positive working photosensitive composition
JP3851440B2 (ja) 1998-04-22 2006-11-29 富士写真フイルム株式会社 ポジ型感光性組成物
JP3859353B2 (ja) 1998-04-28 2006-12-20 富士通株式会社 ネガ型レジスト組成物およびレジストパターンの形成方法
CN1210623C (zh) * 2000-04-04 2005-07-13 住友化学工业株式会社 化学放大型正光刻胶组合物
JP3850657B2 (ja) * 2000-11-30 2006-11-29 株式会社日本触媒 プロトンによる脱離性基を有する共重合体及びその製造方法
JP2002351079A (ja) * 2001-05-24 2002-12-04 Fuji Photo Film Co Ltd ポジ型レジスト組成物
JP3991191B2 (ja) * 2001-06-14 2007-10-17 信越化学工業株式会社 ラクトン構造を有する新規(メタ)アクリレート化合物、重合体、フォトレジスト材料、及びパターン形成法
JP4522628B2 (ja) * 2001-11-28 2010-08-11 信越化学工業株式会社 新規なエステル化合物
JP2003221420A (ja) 2002-01-30 2003-08-05 Mitsubishi Rayon Co Ltd 活性エネルギー線硬化性組成物および硬化被膜
TWI265376B (en) 2002-03-20 2006-11-01 Sumitomo Chemical Co Positive resist composition
KR20030090213A (ko) * 2002-05-21 2003-11-28 삼성전자주식회사 감광성 폴리머 및 이를 포함하는 레지스트 조성물
US6830871B2 (en) * 2002-08-19 2004-12-14 Fuji Photo Film Co., Ltd. Chemical amplification type resist composition
JP2004220009A (ja) * 2002-12-28 2004-08-05 Jsr Corp 感放射線性樹脂組成物
EP1486480A1 (en) * 2003-06-09 2004-12-15 Idemitsu Petrochemical Co., Ltd. Adamantyl vinyl ether compound and production process for the same
US7232641B2 (en) * 2003-10-08 2007-06-19 Shin-Etsu Chemical Co., Ltd. Polymerizable compound, polymer, positive-resist composition, and patterning process using the same
US7189493B2 (en) * 2003-10-08 2007-03-13 Shin-Etsu Chemical Co., Ltd. Polymer, positive resist composition, and patterning process using the same
JP4258645B2 (ja) * 2003-10-23 2009-04-30 信越化学工業株式会社 高分子化合物、レジスト材料及びパターン形成方法
JP4525912B2 (ja) * 2004-01-30 2010-08-18 信越化学工業株式会社 高分子化合物、レジスト材料及びパターン形成方法
JP4651283B2 (ja) * 2004-02-04 2011-03-16 ダイセル化学工業株式会社 不飽和カルボン酸ヘミアセタールエステル、高分子化合物及びフォトレジスト用樹脂組成物
US20060160247A1 (en) * 2005-01-17 2006-07-20 Hiroshi Koyama Unsaturated carboxylic acid hemicacetal ester, polymeric compound and photoresist resin composition
JP4716016B2 (ja) * 2005-12-27 2011-07-06 信越化学工業株式会社 高分子化合物、レジスト材料、及びパターン形成方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001318465A (ja) * 2000-05-11 2001-11-16 Fuji Photo Film Co Ltd ポジ型フォトレジスト組成物
JP2003021839A (ja) * 2001-03-31 2003-01-24 Adms Technology Co Ltd 液晶表示素子のカラムスペーサ用レジスト組成物
JP2002363225A (ja) * 2001-05-28 2002-12-18 Korea Kumho Petrochem Co Ltd 化学増幅型レジスト用重合体及びこれを含有した化学増幅型レジスト組成物
JP2005017729A (ja) * 2003-06-26 2005-01-20 Fuji Photo Film Co Ltd ポジ型レジスト組成物

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006123487A1 (ja) * 2005-05-19 2006-11-23 Tokyo Ohka Kogyo Co., Ltd. ポジ型レジスト組成物およびレジストパターン形成方法
US7858286B2 (en) * 2005-05-19 2010-12-28 Tokyo Ohka Kogyo Co., Ltd. Positive resist composition and method for forming resist pattern
WO2006126329A1 (ja) * 2005-05-24 2006-11-30 Tokyo Ohka Kogyo Co., Ltd. ポジ型ホトレジスト組成物、厚膜ホトレジスト積層体、厚膜レジストパターンの製造方法および接続端子の製造方法
EP1947510B1 (en) * 2005-11-11 2014-03-12 Tokyo Ohka Kogyo Co., Ltd. Positive resist composition and method for forming resist pattern
JP2007177016A (ja) * 2005-12-27 2007-07-12 Shin Etsu Chem Co Ltd 高分子化合物、レジスト材料、及びパターン形成方法
US7718342B2 (en) 2005-12-27 2010-05-18 Shin-Etsu Chemical Co., Ltd. Polymers, resist compositions and patterning process
JP4716016B2 (ja) * 2005-12-27 2011-07-06 信越化学工業株式会社 高分子化合物、レジスト材料、及びパターン形成方法
WO2007083458A1 (ja) * 2006-01-17 2007-07-26 Tokyo Ohka Kogyo Co., Ltd. 液浸露光用ポジ型レジスト組成物およびレジストパターン形成方法
JP2007192876A (ja) * 2006-01-17 2007-08-02 Tokyo Ohka Kogyo Co Ltd 液浸露光用ポジ型レジスト組成物およびレジストパターン形成方法
US7968269B2 (en) 2006-01-17 2011-06-28 Tokyo Ohka Kogyo Co., Ltd. Positive resist composition for immersion exposure and method of forming resist pattern
US20080248420A1 (en) * 2007-03-28 2008-10-09 Fujifilm Corporation Positive resist composition and pattern-forming method
US8877421B2 (en) * 2007-03-28 2014-11-04 Fujifilm Corporation Positive resist composition and pattern-forming method

Also Published As

Publication number Publication date
JP2006096965A (ja) 2006-04-13
EP1717261A1 (en) 2006-11-02
KR20060113773A (ko) 2006-11-02
KR100944924B1 (ko) 2010-03-03
US20080166655A1 (en) 2008-07-10
US7723007B2 (en) 2010-05-25
CN1918217A (zh) 2007-02-21
CN100572422C (zh) 2009-12-23
KR20090031956A (ko) 2009-03-30
EP1717261B1 (en) 2014-01-01
KR20100033422A (ko) 2010-03-29
EP2433972B1 (en) 2014-11-12
EP1717261A4 (en) 2010-02-24
TWI331157B (en) 2010-10-01
EP2433972A1 (en) 2012-03-28
KR100968100B1 (ko) 2010-07-06
KR100960846B1 (ko) 2010-06-07
TW200600529A (en) 2006-01-01

Similar Documents

Publication Publication Date Title
WO2005080473A1 (ja) 高分子化合物、該高分子化合物を含有するフォトレジスト組成物、およびレジストパターン形成方法
KR100848031B1 (ko) 고분자 화합물, 이 고분자 화합물을 함유하는 포토레지스트조성물, 및 레지스트 패턴 형성 방법
JP4828204B2 (ja) ポジ型レジスト組成物およびレジストパターン形成方法、並びに高分子化合物
WO2005123795A1 (ja) 高分子化合物、ポジ型レジスト組成物及びレジストパターン形成方法
TWI287175B (en) Positive resist composition for immersion lithography and process for forming resist pattern
JP4668042B2 (ja) ポジ型レジスト組成物およびレジストパターン形成方法
TWI305201B (en) Compound, polymer compound, positive resist composition, and method for forming resist pattern
KR100902535B1 (ko) 포지티브형 레지스트 조성물 및 레지스트 패턴 형성 방법
JP4694153B2 (ja) 高分子化合物、該高分子化合物を含有するフォトレジスト組成物、およびレジストパターン形成方法
JP5461503B2 (ja) 新規化合物
JP2009020185A (ja) ポジ型レジスト組成物およびレジストパターン形成方法
JP4409366B2 (ja) ポジ型レジスト組成物およびレジストパターン形成方法
JP4951395B2 (ja) ポジ型レジスト組成物およびレジストパターン形成方法
JP4657883B2 (ja) レジストパターン形成方法
JP2007240718A (ja) ポジ型レジスト組成物およびレジストパターン形成方法
JP2006003844A (ja) ポジ型レジスト組成物およびレジストパターン形成方法
KR100935569B1 (ko) 지방족 환식기를 갖는 산해리성 용해 억지기를 갖는 화합물
JP4762821B2 (ja) ポジ型レジスト組成物およびレジストパターン形成方法
JP2007114261A (ja) レジスト組成物およびレジストパターン形成方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 200580004964.2

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 10589681

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1020067016486

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Ref document number: DE

WWE Wipo information: entry into national phase

Ref document number: 2005709454

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2005709454

Country of ref document: EP

Ref document number: 1020067016486

Country of ref document: KR