WO2005054400A1 - 不凍液 - Google Patents

不凍液 Download PDF

Info

Publication number
WO2005054400A1
WO2005054400A1 PCT/JP2004/018026 JP2004018026W WO2005054400A1 WO 2005054400 A1 WO2005054400 A1 WO 2005054400A1 JP 2004018026 W JP2004018026 W JP 2004018026W WO 2005054400 A1 WO2005054400 A1 WO 2005054400A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
group
antifreeze
sample
change
Prior art date
Application number
PCT/JP2004/018026
Other languages
English (en)
French (fr)
Inventor
Susumu Matsuoka
Isao Shinoda
Yasuhiro Kishimoto
Original Assignee
Honda Motor Co., Ltd.
Adeka Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co., Ltd., Adeka Corporation filed Critical Honda Motor Co., Ltd.
Priority to EP04819925.1A priority Critical patent/EP1707609B1/en
Priority to CN2004800362064A priority patent/CN1890344B/zh
Publication of WO2005054400A1 publication Critical patent/WO2005054400A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/20Antifreeze additives therefor, e.g. for radiator liquids
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/08Materials not undergoing a change of physical state when used
    • C09K5/10Liquid materials
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F11/00Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent
    • C23F11/08Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in other liquids
    • C23F11/10Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in other liquids using organic inhibitors
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F11/00Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent
    • C23F11/08Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in other liquids
    • C23F11/10Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in other liquids using organic inhibitors
    • C23F11/12Oxygen-containing compounds
    • C23F11/124Carboxylic acids
    • C23F11/126Aliphatic acids
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F11/00Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent
    • C23F11/08Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in other liquids
    • C23F11/10Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in other liquids using organic inhibitors
    • C23F11/14Nitrogen-containing compounds
    • C23F11/149Heterocyclic compounds containing nitrogen as hetero atom

Definitions

  • the present invention relates to an antifreeze, and more particularly, to an antifreeze used as a coolant.
  • An internal combustion engine applied to an automobile or the like is cooled by a coolant.
  • a coolant antifreeze is used to prevent freezing in the cold season.
  • antifreeze generally used is a mixture of daricols used as a freezing point depressant with a rust inhibitor and diluted with water.
  • ethylene glycol is particularly often used. It is desired that the antifreeze use propylene glycol, which has a lower environmental load than ethylene glycol, as a freezing point depressant.
  • Japanese Patent Application Laid-Open No. 8-85782 discloses an antifreeze composition which is inexpensive and has an excellent corrosion inhibiting action.
  • Japanese Patent Publication No. Hei 9-504812 discloses a propylene glycol-based coolant that does not use water.
  • JP-T-2003-504453 discloses a coolant composition exhibiting a significantly improved metal corrosion protection effect.
  • Japanese Patent Application Laid-Open No. 1-315481 discloses an antifreeze having a significantly improved effect of preventing corrosion of aluminum.
  • Japanese Patent Application Laid-Open No. 59589/1993 discloses a coolant composition which is particularly effective in automobiles and the like in which an aluminum alloy tends to be used in an engine cooling system.
  • An object of the present invention is to provide an antifreeze having a smaller environmental load and less corrosive to metal.
  • the antifreeze according to the present invention preferably contains propylene glycol, a first substance, and a second substance.
  • the first substance includes a linear aliphatic dicarboxylic acid having 10 to 12 carbon atoms, a linear aliphatic dicarboxylic acid salt which is a salt of the linear aliphatic dicarboxylic acid, and a linear aliphatic dicarboxylic acid.
  • a collective force consisting of an acid and a mixture of its linear aliphatic dicarboxylic acid salt.
  • the second substance is a benzimidazole skeleton compound having a benzimidazole skeleton, a benzoimidazole skeleton compound salt which is a salt of the benzoimidazole skeleton compound, and a mercapto group having a triazine skeleton.
  • Collective force composed of triazine skeleton compound and salt of triazine skeleton compound A collective force composed of a mixture of a plurality of selected substances.
  • Such an antifreeze has a smaller environmental load S than an antifreeze containing ethylene glycol, and is less likely to corrode metals.
  • the substituents include a hydrocarbon group, a group in which some hydrogen atoms of a hydrocarbon group are substituted with a hydroxyl group, a group in which some hydrogen atoms of a hydrocarbon group are substituted with a carboxyl group, and a hydrocarbon group.
  • the first group R 1 and the second group R 2 and the third group R 3 may be different dates be coincident with each other.
  • Toriajin skeleton I ⁇ comprises a fifth group R 5 is selected from the group consisting of a group containing a group and sulfur and nitrogen containing groups and nitrogen containing hydrogen and a hydrocarbon group and sulfur, hydrogen
  • a sixth group R 6 selected from the group consisting of a hydrocarbon group, a group containing sulfur, a group containing nitrogen, and a group containing sulfur and nitrogen, using the following chemical formula:
  • the benzoimidazole skeleton compound is thiabendazole, and the triazine skeleton compound is trimercapto s triazine.
  • the first substance preferably contains 0.1 to 5.0 parts by mass of propylene glycol with respect to 100 parts by mass.
  • the second substance preferably contains propylene glycol at a ratio of 0.01 to 2.0 parts by mass with respect to 100 parts by mass.
  • a seventh group R 7 is selected from the group consisting of hydrogen and hydroxyl and Amino groups and hydrocarbon groups having a carbon number of one 6, hydrogen and hydroxyl groups and Amino groups and the carbon atoms number 1 one 6 and the 8 group R 8 is selected from the group consisting of a hydrocarbon group, ninth set force consisting of hydrogen and hydroxyl and Amino groups and hydrocarbon groups having a carbon number of one 6 also selected Using the group R 9
  • the composition further contains a third substance selected from the group consisting of an aromatic carboxylic acid and a salt of an aromatic carboxylic acid represented by the following formula:
  • a third substance selected from the group consisting of an aromatic carboxylic acid and a salt of an aromatic carboxylic acid represented by the following formula:
  • the third substance preferably contains propylene glycol at a ratio of 0.02 to 4.0 parts by mass with respect to 100 parts by mass.
  • the antifreeze according to the present invention preferably further contains a fourth substance selected from the group consisting of nitric acid, nitrate, and a mixture of nitric acid and nitrate.
  • the fourth substance preferably contains propylene glycol at a ratio of 0.02 to 1.0 part by mass with respect to 100 parts by mass.
  • the antifreeze according to the present invention further contains water.
  • the pH of the antifreeze is preferably 7.0 to 9.0.
  • the internal combustion engine according to the present invention is cooled using such antifreeze.
  • Such an internal combustion engine is suitable for generating power to propel an automobile.
  • the antifreeze according to the present invention has a smaller environmental load and is less likely to corrode metals.
  • FIG. 1 is a table showing the composition of Comparative Example 115 and the result of a metal corrosion test of Comparative Example 115.
  • FIG. 2 is a table showing a composition of Example 19 and a result of a metal corrosion test of Example 19;
  • FIG. 3 is a table showing the compositions of Examples 10-19 and the results of metal corrosion tests of Examples 10-19.
  • FIG. 4 is a table showing the compositions of Examples 20-29 and the results of the metal corrosion test of Examples 20-29.
  • FIG. 5 is a table showing the compositions of Examples 30-35 and the results of metal corrosion tests of Examples 30-35.
  • FIG. 6 is a table showing the compositions of Examples 36-42 and the results of the metal corrosion test of Examples 36-42.
  • FIG. 7 is a table showing the compositions of Examples 43-50 and the results of the metal corrosion test of Examples 43-50.
  • the antifreeze contains propylene glycol, the i-th substance, the second substance, the third substance, the fourth substance, and water.
  • the antifreeze contains propylene glycol, the first substance, and the second substance as essential components, and the third substance, the fourth substance, and water may not be added.
  • Propylene glycol that is, 1,2-propanediol
  • Propylene recall is a substance that has a lower environmental impact than ethylene glycol, and is also used as a food additive.
  • a propylene glycol obtained by any production method can be used.
  • a commercially available propylene glycol is used.
  • the antifreeze according to the present invention preferably has a propylene glycol concentration of 25% by mass or more.
  • the first substance is a straight-chain aliphatic dicarboxylic acid having 10 to 12 carbon atoms or a salt of the straight-chain aliphatic dicarboxylic acid, and is added in order to improve the anticorrosion effect of the antifreeze on metals.
  • a linear aliphatic dicarboxylic acid include sebacic acid, pendecanedioic acid, and dodecandioic acid.
  • the salt of a linear aliphatic dicarboxylic acid include an alkali metal salt, an ammonium salt, and an organic ammonium salt.
  • the alkali metal include lithium, sodium, and potassium.
  • organic ammonium salt examples include an alkyl ammonium salt and an alkanol ammonium salt.
  • the straight-chain aliphatic dicarboxylic acid salt further includes an acid salt in which hydrogen is left in one of the two carboxyl groups of the straight-chain aliphatic dicarboxylic acid.
  • the carboxyl group may be ionic bonded to two different cations to form a salt.
  • the first substance may be one of a plurality of substances exemplified as the first substance or a mixture of a plurality of substances selected from the plurality of substances.
  • the first substance when being a mixture thereof, can also contain three or more cations.
  • the antifreeze according to the present invention contains 0.1-5.0 parts by mass of the first substance with respect to 100 parts by mass of propylene glycol, so that the corrosion inhibiting effect becomes sufficient, and turbidity and sediment are prevented. Is preferred in that ⁇ occurs.
  • the antifreeze according to the present invention more preferably contains the first substance in an amount of 0.3 to 3.0 parts by mass based on 100 parts by mass of propylene glycol.
  • the second substance is a benzimidazole skeleton compound, a benzimidazole skeleton compound salt, a triazine skeleton compound, a triazine skeleton conjugate compound salt, and a plurality of compounds selected from these compounds. It is a mixture of compounds.
  • the second substance is added to improve the anti-freezing effect of metal on corrosion! Puru.
  • the benzimidazole skeleton conjugate is a compound having a benzimidazole skeleton.
  • the benzimidazole skeleton compound has the following chemical formula:
  • the first group R 1 is a hydrogen atom, a hydroxyl group, a carboxyl group, or a hydrocarbon group.
  • the hydrocarbon group include a linear or branched alkyl group, an alkyl group, a cyclic cycloalkyl group, a cycloalkyl group, and an aryl group.
  • the hydrocarbon group preferably has 118 carbon atoms, more preferably 118 carbon atoms.
  • a hydrogen atom may be substituted with a carboxyl group or a hydroxyl group.
  • the first group R 1 is a group in which some hydrogen atoms of a hydrocarbon group are substituted with a hydroxyl group, a group in which some hydrogen atoms of a hydrocarbon group are substituted with a carboxyl group, or a hydrocarbon group. It may be a group in which some hydrogen atoms are substituted by hydroxyl groups and other hydrogen atoms are substituted by carboxyl groups.
  • the second group R 2 is designed like the first group R 1. That is, the second group R 2 is a hydrogen atom, a hydroxyl group, a carboxyl group, or a hydrocarbon group.
  • the hydrocarbon group include a linear or branched alkyl group, an alkyl group, a cyclic cycloalkyl group, a cycloalkyl group, and an aryl group.
  • the hydrocarbon group preferably has 118 carbon atoms, more preferably 118 carbon atoms.
  • a hydrogen atom may be substituted with a carboxyl group or a hydroxyl group.
  • the second group R 2 is a group in which some hydrogen atoms of a hydrocarbon group are substituted with a hydroxyl group, a group in which some hydrogen atoms of a hydrocarbon group are substituted with a carboxyl group, or a hydrocarbon group. It may be a group in which some hydrogen atoms are substituted by hydroxyl groups and other hydrogen atoms are substituted by carboxyl groups.
  • Third group R 3 is designed like the first group R 1. That is, the third group R 3 is a hydrogen atom, water It is an acid group, a carboxyl group, or a hydrocarbon group.
  • the hydrocarbon group include a linear or branched alkyl group, an alkyl group, a cyclic cycloalkyl group, a cycloalkyl group, and an aryl group.
  • the hydrocarbon group preferably has 118 carbon atoms, more preferably 118 carbon atoms.
  • a hydrogen atom may be substituted with a carboxyl group or a hydroxyl group.
  • the third group R 3 is a group in which some hydrogen atoms of a hydrocarbon group are substituted with a hydroxyl group, a group in which some hydrogen atoms of a hydrocarbon group are substituted with a carboxyl group, or a hydrocarbon group. It may be a group in which some hydrogen atoms are substituted by hydroxyl groups and other hydrogen atoms are substituted by carboxyl groups.
  • Fourth group R 4 is a hydrogen atom, a hydrocarbon group, group including sulfur, group including nitrogen, or a group containing sulfur and nitrogen.
  • the hydrocarbon group include a linear or branched alkyl group, an alkyl group, a cyclic cycloalkyl group, a cycloalkyl group, and an aryl group.
  • the hydrocarbon group preferably has 1-20 carbon atoms, more preferably 1-20 carbon atoms.
  • the sulfur containing group has the following chemical formula:
  • the tenth group R 1C> is a hydrogen atom or a linear, branched or cyclic alkyl group.
  • the eleventh group R 11 is a hydrogen atom or a hydrocarbon group.
  • the hydrocarbon group include a linear or branched alkyl group, alkenyl group, cyclic cycloalkyl group, cycloalkyl group, and aryl group.
  • the twelfth group R 12 is a hydrogen atom or a hydrocarbon group.
  • the hydrocarbon group include a linear or branched alkyl group, an alkyl group, a cyclic cycloalkyl group, a cycloalkyl group, and an aryl group.
  • the eleventh group R 11 and the twelfth group R 12 may be different from one be coincident with each other.
  • R 13 a group having a 5- or 6-membered heterocyclic ring having sulfur and nitrogen on the ring.
  • the thirteenth group R 13 is a nitrogen-containing heterocyclic moiety, has 3 to 6 carbon atoms, and may have oxygen or nitrogen in the main chain. That is, the following chemical formula:
  • the fourth group R 4 is a hydrogen atom, a methyl group, an ethyl group, a mercapto group, a dibutylamino group, a phenylamino group, a thiazolyl group, a group represented by the formula 5, or a group represented by the formula 6 Is preferred.
  • the benzoimidazole skeleton compound is particularly preferably thiabendazole.
  • Thiabendazole is a compound represented by CAS Registry Number 148-79-8
  • the benzoimidazole skeleton compound salt is a salt of the aforementioned benzimidazole skeleton compound.
  • the salt include an alkali metal salt, an alkaline earth metal salt, an ammonium salt, and an organic ammonium salt.
  • the alkali metal include lithium, sodium, and potassium.
  • Organic ammonium salts include alkyl ammonium salts and ammonia salts. An example is lucanol ammonium salt.
  • the benzoimidazole skeleton compound salt is particularly preferably an alkali metal salt of a benzimidazole skeleton compound, and particularly preferably a sodium salt of a benzoimidazole skeleton compound or a potassium salt of a benzoimidazole skeleton compound.
  • the triazine skeleton has a mercapto group.
  • Such a triazine skeleton compound has the following chemical formula:
  • the fifth group R 5 is designed similarly to the fourth group R 4. That is, the fifth group R 5 is a hydrogen atom, a hydrocarbon group, group including sulfur, group including nitrogen, or a group containing sulfur and nitrogen.
  • the hydrocarbon group include a linear or branched alkyl group, alkenyl group, cyclic cycloalkyl group, cycloalkyl group, and aryl group.
  • the hydrocarbon group preferably has 118 carbon atoms, more preferably 118 carbon atoms.
  • the sulfur or nitrogen containing groups are straight, branched or cyclic groups.
  • the sulfur-containing group has the following chemical formula:
  • the group represented by is exemplified.
  • the tenth group R 1C> is a hydrogen atom or a linear, branched or cyclic alkyl group.
  • the nitrogen-containing group has the following chemical formula: -NR R 12
  • the eleventh group R 11 is a hydrogen atom or a hydrocarbon group.
  • the hydrocarbon group a linear or branched alkyl group, alkenyl Groups, cyclic cycloalkyl groups, cycloalkyl groups, and aryl groups.
  • the twelfth group R 12 is a hydrogen atom or a hydrocarbon group. Examples of the hydrocarbon group include a linear or branched alkyl group, an alkyl group, a cyclic cycloalkyl group, a cycloalkyl group, and an aryl group.
  • the eleventh group R 11 and the twelfth group R 12 may be different from one be coincident with each other.
  • the group containing sulfur and nitrogen has the following chemical formula:
  • the thirteenth group R 13 is a nitrogen-containing heterocyclic moiety, has 3 to 6 carbon atoms, and has oxygen or nitrogen in the main chain! /, Or! /.
  • the fifth group R 5 a hydrogen atom, a methyl group, Echiru group, a mercapto group, Jibuchiruamino group, Hue - Ruamino group, a thiazolyl group, the following formula:
  • the group represented by is more preferable.
  • Sixth group R 6 is designed similarly to the fifth group R 5. That is, the sixth group R 6 is a hydrogen atom, a hydrocarbon group, a group containing sulfur, a group containing nitrogen, or a group containing sulfur and nitrogen.
  • the hydrocarbon group include a linear or branched alkyl group, an alkyl group, a cyclic cycloalkyl group, a cycloalkyl group, and an aryl group.
  • the hydrocarbon group is It is more preferable that the number of carbon atoms is 1 to 20, more preferably 1 to 20 carbon atoms.
  • the sulfur or nitrogen containing group is a straight, branched or cyclic group.
  • the sulfur containing group has the following chemical formula:
  • the tenth group R 1C> is a hydrogen atom or a linear, branched or cyclic alkyl group.
  • the eleventh group R 11 is a hydrogen atom or a hydrocarbon group.
  • the hydrocarbon group include a linear or branched alkyl group, alkenyl group, cyclic cycloalkyl group, cycloalkyl group, and aryl group.
  • the twelfth group R 12 is a hydrogen atom or a hydrocarbon group.
  • the hydrocarbon group include a linear or branched alkyl group, an alkyl group, a cyclic cycloalkyl group, a cycloalkyl group, and an aryl group.
  • the eleventh group R 11 and the twelfth group R 12 may be different from one be coincident with each other.
  • the thirteenth group R 13 is a nitrogen-containing heterocyclic moiety, has 3 to 6 carbon atoms, and has oxygen or nitrogen in the main chain! /, Or! /.
  • a hydrogen atom, a methyl group, an ethyl group, a mercapto group, a dibutylamino group, a phenylamino group, a thiazolyl group, a group represented by the following formula, and a group represented by the following formula 9 are more preferable. Better ,.
  • the triazine skeleton conjugate is dimercapto s triazine or trimercapto s-triazine.
  • Trimercapto-s-triazine is a compound represented by CAS Registry Number 638-16-4.
  • the salt of the triazine skeleton is a salt of the triazine skeleton described above.
  • the salt include an alkali metal salt, an alkaline earth metal salt, an ammonium salt, and an organic ammonium salt.
  • the alkali metals include lithium, sodium, and potassium. It is.
  • the organic ammonium salt include an alkyl ammonium salt and an alkanol ammonium salt.
  • the triazine skeleton compound salt is preferably a sodium salt of the triazine skeleton compound, and is preferably a sodium salt of the triazine skeleton compound or a potassium salt of the triazine skeleton compound. Especially preferred.
  • the second substance may be one of a plurality of substances exemplified as the second substance, or a mixture of a plurality of substances selected from the plurality of substances.
  • the second substance when being a mixture thereof, may also contain three or more cations.
  • the antifreeze according to the present invention preferably contains 0.01 to 5.0 parts by mass of the second substance with respect to 100 parts by mass of propylene glycol in that the corrosion inhibitory effect is sufficient.
  • the mass T of the benzimidazole skeleton compound and the benzoimidazole skeleton compound salt with respect to the mass 100 of propylene glycol and the mass of the triazine skeleton compound and the triazine skeleton compound salt with respect to the propylene glycol mass 100.
  • the antifreeze according to the invention preferably has a value X of 0.06-1.2, more preferably 0.08-0.9. At this time, either the mass S or the mass T may be zero.
  • the third substance is an aromatic carboxylic acid, a salt of the aromatic carboxylic acid, or a mixture of these compounds, and is added in order to improve the anticorrosion effect of the antifreeze on the metal.
  • the aromatic carboxylic acid has the following chemical formula:
  • the seventh group R 7 is a hydrogen atom, a hydroxyl group, an amino group, or a hydrocarbon group having 16 to 16 carbon atoms.
  • the eighth group R 8 is a hydrogen atom, a hydroxyl group, an amino group, or a hydrocarbon group having 16 to 16 carbon atoms.
  • the ninth group R 9 is a hydrogen atom, a hydroxyl group, an amino group. Or a hydrocarbon group having 1 to 6 carbon atoms.
  • the seventh group R 7 and the 8 group R 8 and the ninth group may be different be coincident with each other.
  • aromatic carboxylic acid examples include benzoic acid, toluic acid, p-tert-butylbenzoic acid, p-hydroxybenzoic acid, 3,4,5-trihydroxybenzoic acid, p-aminobenzoic acid, and anthranil Acids are exemplified.
  • the aromatic carboxylic acids are p-tertiarybutylbenzoic acid, p-hydroxybenzoic acid, 3,4,5-trihydroxybenzoic acid, p-aminobenzoic acid, and anthronic acid. It is preferable in that it is smaller and improves the effect of inhibiting corrosion. More preferably, the aromatic carboxylic acid is p-hydroxybenzoic acid or p-aminobenzoic acid.
  • a salt that can be dissolved in the antifreeze according to the present invention is applied.
  • such salts include alkali metal salts, ammonium salts, and organic ammonium salts.
  • alkali metal salt include a lithium salt, a sodium salt and a potassium salt.
  • organic ammonium salt include an alkyl ammonium salt and an alkanol ammonium salt.
  • the third substance may be one of a plurality of substances exemplified as the third substance, or may be a mixture of a plurality of substances selected from the plurality of substances.
  • the third substance when it is a mixture thereof, can also contain three or more cations.
  • the antifreeze according to the present invention more preferably contains 0.03 to 4.0 parts by mass of the third substance with respect to 100 parts by mass of propylene glycol from the viewpoint of improving the corrosion inhibiting effect.
  • the antifreeze according to the present invention more preferably contains 0.07-2.0 parts by mass of the third substance with respect to 100 parts by mass of propylene glycol.
  • the fourth substance is nitric acid or a nitrate, and is added to improve the anticorrosion effect of the antifreeze on metals.
  • nitric acid one obtained by any production method can be used, and commercially available nitric acid can also be used.
  • a salt soluble in the antifreeze according to the present invention is applied.
  • such salts include alkali metal salts, ammonium salts, and organic ammonium salts.
  • the alkali metal salt include a lithium salt, a sodium salt, and a potassium salt.
  • the organic ammonium salt include an alkyl ammonium salt and an alkanol ammonium salt.
  • the fourth substance may be one of a plurality of substances exemplified as the fourth substance or a mixture of a plurality of substances selected from the plurality of substances. Therefore, when the fourth substance is a mixture thereof, it may contain three or more cations.
  • the antifreeze according to the present invention preferably contains 0.04 to 1.0 parts by mass of the fourth substance with respect to 100 parts by mass of propylene glycol from the viewpoint of further improving the corrosion inhibiting effect. More preferably, the antifreeze according to the present invention contains 0.07-0.8 parts by mass of the fourth substance based on 100 parts by mass of propylene glycol.
  • Water has been added for economy, that is, to reduce the price per mass.
  • water water with few ions in which suspended particles are dissolved little is applied. Examples of such water include ion-exchanged water.
  • the antifreeze according to the present invention can be used as it is without adding water.
  • a hydroxide may be further added. Hydroxide is added to adjust the pH of the antifreeze.
  • the hydroxide include sodium hydroxide and lithium hydroxide. It is more preferable that the antifreeze has a pH of 7.4-8.4, since the pH is preferably 7.0-9.0 in order to surely exhibit the corrosion inhibiting effect.
  • the method of producing an antifreeze according to the present invention includes a step of preparing a first intermediate product, a step of preparing a second intermediate product, and a step of preparing an antifreeze.
  • the first substance, the second substance, the third substance, and the fourth substance are mixed with propylene glycol to prepare a first intermediate product.
  • a hydroxylamine compound can be mixed with propylene glycol.
  • propylene glycol may be mixed with water in such an amount that the concentration of propylene glycol does not become 25% by mass or less.
  • a hydroxide is added to the first intermediate product so that the pH is 7.0-9.0, and a second intermediate product is prepared.
  • a hydroxide is added to the first intermediate product so that the pH is 7.0-9.0, and a second intermediate product is prepared.
  • antifreeze concentration of propylene glycol is added ion exchange water to a 25 weight 0/0 over 65 mass 0/0 or less, antifreeze is prepared.
  • the antifreeze suppresses metal corrosion by a metal corrosion test specified in JIS K2234. Effect can be evaluated.
  • a metal corrosion test multiple specimens connected with different metals are immersed in antifreeze at 88 ⁇ 2 ° C for 336 hours, and the mass change per unit surface area of the multiple specimens is determined.
  • Each of the plurality of test pieces is formed of aluminum material, iron, steel, brass, solder, and copper. The smaller the absolute value of the amount of mass change of the antifreeze, the less the metal is corroded.
  • FIG. 1 shows the composition of Comparative Example 115 and the result of the metal corrosion test of Comparative Example 115.
  • Sample 1 described in the tables shown in FIGS. 1 to 7 represents propylene glycol.
  • Sample 2 shows sebacic acid.
  • Sample 3 shows pendecanedioic acid.
  • Sample 4 shows dodecanoic acid.
  • Sample 5 shows trimercapto-s-triazine.
  • Sample 6 shows thiabendazole.
  • Sample 7 shows p-hydroxybenzoic acid.
  • Sample 8 shows p-aminobenzoic acid.
  • Sample 9 shows p-tert-butylbenzoic acid.
  • Sample 10 shows toluic acid.
  • Sample 11 shows 60% nitric acid.
  • Sample 12 shows potassium hydroxide.
  • Sample 13 shows ion-exchanged water.
  • Sample 14 shows sodium sebacate.
  • Sample 15 shows potassium sebacate.
  • Sample 16 shows ammonium sebacate.
  • Sample 17 shows sodium perdecanoate.
  • Sample 18 shows sodium dodecanedioate.
  • Sample 19 shows sodium P-hydroxybenzoate.
  • Sample 20 shows potassium p-hydroxybenzoate.
  • Sample 21 shows ammonium p-hydroxybenzoate.
  • Sample 22 shows sodium p-aminobenzoate.
  • Sample 23 shows sodium p-tert-butylbenzoate.
  • Sample 24 shows sodium toluate.
  • Sample 25 shows sodium nitrate.
  • Sample 26 shows potassium nitrate.
  • Sample 27 shows ammonium nitrate.
  • the change is 9.94 mgZcm, and the mass change of brass is 0.09 mgZcm.
  • the mass change of the solder is 0.96 mgZcm, and the mass change of the copper is 0.09 mg / cm.
  • the antifreeze in Comparative Example 2 contains 0.1 part by mass of Sample 5 based on 100 parts by mass of propylene glycol. Sample 12 was further added to the antifreeze solution in Comparative Example 2 so that the pH became 7.8. Sample 13 was added so that the concentration of sample 1 was 30% by mass.
  • the antifreeze in Comparative Example 3 contains 1.2 parts by mass of Sample 2 based on 100 parts by mass of propylene glycol.
  • the antifreeze in Comparative Example 3 was further added with Sample 12 so that the pH became 7.8.
  • Sample 13 was added so that the concentration of Sample 1 was 30% by mass.
  • the antifreeze in Comparative Example 3 showed a change in mass of aluminum oxide of 1.23 mgZcm 2 , a change in iron mass of 0.52 mgZcm 2 , mass variation is 0. 31MgZcm 2, the change of the brass mass is 0. LOmgZcm are two der, a change of the solder mass is 0. 33MgZcm 2, the change of the copper mass 0. l lmg / cm It is.
  • the antifreeze in Comparative Example 4 contained 0.1 part by mass of Sample 5, 1.0 part by mass of Sample 7, and 0.5 part by mass of Sample 11 based on 100 parts by mass of propylene glycol.
  • Sample 12 was further added to the antifreeze in Comparative Example 4 so that the pH became 7.8.
  • Sample 13 was added so that the concentration of sample 1 was 30% by mass.
  • the antifreeze solution in Comparative Example 5 contains 1.2 parts by mass of Sample 2, 1.0 parts by mass of Sample 7, and 0.5 parts by mass of Sample 11 based on 100 parts by mass of propylene glycol.
  • Sample 12 was further added to the antifreeze in Comparative Example 5 so that the pH became 7.8.
  • Sample 13 was added so that the concentration of sample 1 was 30% by mass.
  • the mass change of the aluminum ⁇ is 0. 77mgZcm 2
  • the mass variation of ⁇ is 0. 36mgZcm 2
  • steel mass variation is 0. 25mgZcm 2
  • a change of the brass mass is 0. 05mgZcm 2
  • a change of the solder mass is 0. 15mgZcm 2
  • the change of the copper mass is 0. 08mg / cm .
  • FIG. 2 shows the composition of Example 19 and the result of the metal corrosion test of Example 19-19.
  • the antifreeze in Example 1 contains 0.2 parts by mass of Sample 2 and 0.1 parts by mass of Sample 5 based on 100 parts by mass of propylene glycol.
  • the antifreeze in Example 1 was further added with Sample 12 so that the pH became 7.8.
  • Sample 13 was added so that the concentration of sample 1 was 30% by mass.
  • Example 1 According to the metal corrosion test, the antifreeze in Example 1 had a mass change of aluminum oxide and a mass change of iron of eight.
  • the antifreeze in Example 2 contained 0.5 parts by mass of Sample 2 and 0.1 parts by mass of Sample 5 based on 100 parts by mass of propylene glycol. Sample 12 was further added to the antifreeze in Example 2 so that the pH became 7.8. Sample 13 was added so that the concentration of sample 1 was 30% by mass.
  • Example 2 According to the metal corrosion test, the antifreeze in Example 2 exhibited a mass change of aluminum oxide. Is 0.27 mgZcm, the mass change of iron is 0.14 mgZcm,
  • the mass variation is 0. 07MgZcm
  • the change of the brass mass is Ri 0. 04MgZcm der
  • a change of the solder mass is 0. 20mgZcm 2
  • the change of the copper mass with 0. 06mg Zcm 2 is there. That is, the test results show that the antifreeze according to Example 2 is less likely to corrode metals than the antifreeze according to Comparative Example 1 and Comparative Example 5.
  • the antifreeze in Example 3 contains 1.2 parts by mass of Sample 2 and 0.1 parts by mass of Sample 5 based on 100 parts by mass of propylene glycol. Sample 12 was further added to the antifreeze in Example 3 so that the pH became 7.8. Sample 13 was added so that the concentration of sample 1 was 30% by mass.
  • the antifreeze in Example 3 had a mass change amount of 0.23 mg / cm2 for aluminum and a 0.055 mgZcm / cm2 change for iron.
  • the mass variation is 0. 02MgZcm
  • the change of the brass mass is Ri 0. 04MgZcm der
  • a change of the solder mass is 0. 15mgZcm 2
  • the change of the copper mass with 0. 05MG ZCM 2 is there. That is, the test results show that the antifreeze according to Example 3 is less likely to corrode metals than the antifreeze according to Comparative Example 1-Comparative Example 5.
  • the antifreeze in Example 4 contained 2.0 parts by mass of Sample 2 and 0.1 parts by mass of Sample 5 based on 100 parts by mass of propylene glycol.
  • the antifreeze in Example 4 was further added with Sample 12 so that the pH became 7.8.
  • Sample 13 was added so that the concentration of sample 1 was 30% by mass.
  • Example 4 According to the metal corrosion test, the antifreeze in Example 4 had a mass change of aluminum oxide.
  • Example 5 The antifreeze in Example 5 contains 4.0 parts by mass of Sample 2 and 0.1 parts by mass of Sample 5 based on 100 parts by mass of propylene glycol. Sample 12 was further added to the antifreeze in Example 5 so that the pH became 7.8. Sample 13 was added so that the concentration of sample 1 was 30% by mass.
  • the antifreeze in Example 6 contained 1.2 parts by mass of Sample 2 and 0.023 parts by mass of Sample 5 based on 100 parts by mass of propylene glycol.
  • the antifreeze in Example 6 was further added with Sample 12 so that the pH became 7.8.
  • Sample 13 was added so that the concentration of sample 1 was 30% by mass.
  • Example 6 According to the metal corrosion test, the antifreeze in Example 6 had a mass change of 0.28 mgZcm for aluminum and a 0.10 mgOcmZcm for iron.
  • the mass variation is 0. 05MgZcm
  • the change of the brass mass is Ri 0. 09MgZcm der
  • a change of the solder mass is 0. 27mgZcm 2
  • the change of the copper mass with 0. 13 mg ZCM 2 is there. That is, the test results show that the antifreeze according to Example 6 is less likely to corrode metals than the antifreeze according to Comparative Example 1 to Comparative Example 5.
  • the antifreeze in Example 7 contained 1.2 parts by mass of Sample 2 and 0.05 parts by mass of Sample 5 based on 100 parts by mass of propylene glycol. Sample 12 was further added to the antifreeze in Example 7 so that the pH became 7.8. Sample 13 was added so that the concentration of sample 1 was 30% by mass.
  • the antifreeze in Example 8 contained 1.2 parts by mass of Sample 2 and 0.2 parts by mass of Sample 5 based on 100 parts by mass of propylene glycol.
  • the antifreeze in Example 8 was further added with Sample 12 so that the pH became 7.8.
  • Sample 13 was added so that the concentration of sample 1 was 30% by mass.
  • the antifreeze in Example 8 had a mass change of 0.25 mgZcm for aluminum and 0.08 mgZcm for iron, and a change in mass of steel.
  • the amount is the 0. 03MgZcm
  • the change of the brass mass is Ri 0. 05MgZcm der
  • a change of the solder mass is 0. 16mgZcm 2
  • the change of the copper mass is 0. 08mg Zcm 2.
  • the test results show that the antifreeze according to Example 8 is less likely to corrode metals than the antifreeze according to Comparative Example 1 and Comparative Example 5.
  • the antifreeze in Example 9 contained 1.2 parts by mass of Sample 2 and 0.35 parts by mass of Sample 5 based on 100 parts by mass of propylene glycol.
  • Sample 12 was added to the antifreeze in Example 9 so that the pH became 7.8.
  • Sample 13 was added so that the concentration of sample 1 was 30% by mass.
  • the antifreeze in Example 9 had a mass change of 0.18 mgZcm for aluminum, a mass change of 0.06 mgZcm for iron, and a mass change of steel.
  • the amount is the 0. 02MgZcm
  • the change of the brass mass is Ri 0. 02MgZcm der
  • a change of the solder mass is 0. 16mgZcm 2
  • the change of the copper mass is 0. 03mg Zcm 2. That is, the test results show that the antifreeze according to Example 9 is less likely to corrode metals than the antifreeze according to Comparative Example 1 and Comparative Example 5.
  • FIG. 3 shows the compositions of Examples 10-19 and the results of the metal corrosion test of Examples 10-19. ing.
  • the antifreeze in Example 10 contained 1.2 parts by mass of sample 3 and 0.1 part by mass of sample 5 based on 100 parts by mass of propylene glycol.
  • the antifreeze in Example 10 was further added with Sample 12 so that the pH became 7.8.
  • Sample 13 was added so that the concentration of Sample 1 was 30% by mass.
  • the antifreeze in Example 10 had a mass change of 0.24 mgZcm for aluminum, a mass change of 0.06 mgZcm for iron, and a mass change of steel. Is 0.02 mgZcm 2 , the mass change of brass is 0.05 mgZcm 2 , the mass change of solder is 0.19 mgZcm 2 , and the mass change of copper is 0.07 mgZcm 2 .
  • the test results show that the antifreeze according to Example 10 is less likely to corrode metals than the antifreeze according to Comparative Example 1 and Comparative Example 5.
  • the antifreeze in Example 11 contained 1.2 parts by mass of sample 4 and 0.1 parts by mass of sample 5 based on 100 parts by mass of propylene glycol.
  • the antifreeze in Example 11 was further added with Sample 12 so that the pH became 7.8.
  • Sample 13 was added so that the concentration of sample 1 was 30% by mass.
  • Example 11 According to the metal corrosion test, the antifreeze in Example 11 had a mass change of 0.28 mgZcm for aluminum, 0.08 mgZcm for iron, and a mass change of steel. Is ⁇ n
  • the antifreeze in Example 12 contained 0.6 parts by mass of Sample 2, 0.6 parts by mass of Sample 3, and 0.1 parts by mass of Sample 5 based on 100 parts by mass of propylene glycol.
  • the antifreeze in Example 12 was further added with Sample 12 so that the pH became 7.8.
  • Sample 13 was added so that the concentration of sample 1 was 30% by mass.
  • the antifreeze in Example 13 contained 0.6 parts by mass of Sample 3, 0.6 parts by mass of Sample 4, and 0.1 parts by mass of Sample 5 based on 100 parts by mass of propylene glycol.
  • the antifreeze in Example 13 was further added with Sample 12 so that ⁇ was 7.8.
  • Sample 13 was added so that the concentration of sample 1 was 30% by mass.
  • the antifreeze in Example 13 had a mass change of 0.26 mgZcm for aluminum, 0.08 mgZcm for iron, and a mass change of steel.
  • There is 0. 04mgZcnT a change of the brass mass is -0.
  • 05mgZcnT a change of the solder mass is 0. 18mgZcm 2
  • the change of the copper mass is 0. 09m gZcm 2. That is, the test results show that the antifreeze according to Example 13 is less likely to corrode metals than the antifreeze according to Comparative Example 1-Comparative Example 5.
  • the antifreeze in Example 14 contained 0.6 parts by mass of Sample 2, 0.6 parts by mass of Sample 4, and 0.1 parts by mass of Sample 5 based on 100 parts by mass of propylene glycol.
  • the antifreeze in Example 14 was further added with Sample 12 so that ⁇ was 7.8.
  • Sample 13 was added so that the concentration of sample 1 was 30% by mass.
  • the antifreeze in Example 14 had a mass change of 0.25 mgZcm for aluminum, 0.08 mgZcm for iron, and a mass change of steel There is 0. 04mgZcnT, a change of the brass mass is -0. 04mgZcnT, a change of the solder mass is 0. 19mgZcm 2, the change of the copper mass is 0. 08m gZcm 2.
  • the test results show that the antifreeze according to Example 14 is less likely to corrode metals than the antifreeze according to Comparative Example 1-Comparative Example 5.
  • the antifreeze in Example 15 was prepared by adding Sample 2 to 100 parts by mass of propylene glycol. It contains 0.4 parts by mass, 0.4 parts by mass of sample 3, 0.4 parts by mass of sample 4, and 0.1 parts by mass of sample 5.
  • the antifreeze in Example 15 is further supplemented with a sample 12 so that the pH becomes 7.8.
  • Sample 13 was added so that the concentration of Sample 1 was 30% by mass.
  • the antifreeze in Example 15 had a mass change of 0.25 mgZcm for aluminum, a mass change of 0.08 mgZcm for iron, and a mass change of steel. There is 0. 03mgZcnT, a change of the brass mass is 0. 04mgZcnT, a change of the solder mass is 0. 18mgZcm 2, the change of the copper mass is 0. 09m gZcm 2. That is, the test results show that the antifreeze according to Example 15 is less likely to corrode metals than the antifreeze according to Comparative Example 1 and Comparative Example 5.
  • the antifreeze in Example 16 contained 1.2 parts by mass of sample 2 and 0.07 parts by mass of sample 6 based on 100 parts by mass of propylene glycol.
  • the antifreeze in Example 16 was further added with Sample 12 so that the pH became 7.8.
  • Sample 13 was added so that the concentration of sample 1 was 30% by mass.
  • Example 16 In the antifreeze in Example 16, according to the metal corrosion test, the mass change of aluminum was 0.28 mgZcm, the mass change of iron was 0.12 mgZcm, and the mass change of steel was There is 0. 08mgZcnT, a change of the brass mass is -0. 12mgZcnT, a change of the solder mass is 0. 29mgZcm 2, the change of the copper mass is 0. 15m gZcm 2. In other words, the test results show that the antifreeze according to Example 16 is less likely to corrode metals than the antifreeze according to Comparative Example 1 and Comparative Example 5.
  • the antifreeze in Example 17 contained 1.2 parts by mass of Sample 2 and 0.5 parts by mass of Sample 6 based on 100 parts by mass of propylene glycol.
  • the antifreeze in Example 17 was further added with Sample 12 so that the pH became 7.8.
  • Sample 13 was added so that the concentration of sample 1 was 30% by mass.
  • Example 17 According to the metal corrosion test, the antifreeze in Example 17 had a mass change of 0.28 mgZcm for aluminum, a 0.055 mgZcm for iron, and a mass change of steel. And the quality of brass ⁇
  • the antifreeze in Example 18 contained 1.2 parts by mass of Sample 2 and 1.0 parts by mass of Sample 6 based on 100 parts by mass of propylene glycol.
  • the antifreeze in Example 18 was further added with Sample 12 so that the pH became 7.8.
  • Sample 13 was added so that the concentration of sample 1 was 30% by mass.
  • the antifreeze in Example 18 had a mass change of 0.21 mgZcm for aluminum and 0.08 mgZcm for iron, and a mass change of steel. Is 0.03 mgZcnT, the mass change of brass is 0.05 mgZcnT, the mass change of solder is 0.15 mgZcm 2 , and the mass change of copper 0.08 is mgZcm 2 . That is, the test results show that the antifreeze according to Example 18 is less likely to corrode metals than the antifreeze according to Comparative Example 1-Comparative Example 5.
  • the antifreeze in Example 19 contained 1.2 parts by mass of Sample 2, 0.08 parts by mass of Sample 5, and 0.3 parts by mass of Sample 6 based on 100 parts by mass of propylene glycol.
  • Sample 12 was further added so that ⁇ was 7.8.
  • Sample 13 was added so that the concentration of sample 1 was 30% by mass.
  • Example 19 According to the metal corrosion test, the antifreeze in Example 19 had a mass change of 0.19 mgZcm for aluminum, a mass change of 0.09 mgZcm for iron, and a mass change of steel. There is 0. 03mgZcnT, a change of the brass mass is 0. 04mgZcnT, a change of the solder mass is 0. 14mgZcm 2, the change of the copper mass is 0. 07m gZcm 2. That is, the test results show that the antifreeze according to Example 19 is less likely to corrode metals than the antifreeze according to Comparative Example 1-Comparative Example 5.
  • FIG. 4 shows the compositions of Examples 20-29 and the results of the metal corrosion test of Examples 20-29.
  • the antifreeze in Example 20 was used as a test with respect to 100 parts by mass of propylene glycol. It contains 1.2 parts by mass of sample 2, 0.1 part by mass of sample 5, and 0.05 part by mass of sample 7.
  • the antifreeze in Example 20 was further added with Sample 12 so that the pH became 7.8. Sample 13 so that the concentration of sample 1 will be 30 mass 0/0 is added, Ru.
  • the antifreeze in Example 20 had a mass change of 0.19 mgZcm for aluminum and 0.04 mgZcm for iron, and a mass change of steel. There is 0. OlmgZcnT, a change of the brass mass is 0. 04mgZcnT, a change of the solder mass is 0. 15mgZcm 2, the change of the copper mass is 0. 05m gZcm 2. That is, the test results show that the antifreeze according to Example 20 is less likely to corrode metals than the antifreeze according to Comparative Example 1 and Comparative Example 5.
  • the antifreeze in Example 21 contained 1.2 parts by mass of sample 2, 0.1 parts by mass of sample 5, and 1.0 parts by mass of sample 7 based on 100 parts by mass of propylene glycol.
  • the antifreeze in Example 21 was further added with Sample 12 so that ⁇ was 7.8.
  • Sample 13 was added so that the concentration of sample 1 was 30% by mass.
  • the antifreeze in Example 21 had a mass change of 0.10 mgZcm for aluminum, a mass change of 0.09 mgZcm for iron, and a mass change of steel.
  • the antifreeze in Example 22 contained 1.2 parts by mass of Sample 2, 0.1 parts by mass of Sample 5, and 3.0 parts by mass of Sample 7 based on 100 parts by mass of propylene glycol.
  • the antifreeze in Example 22 was further added with Sample 12 so that ⁇ was 7.8.
  • Sample 13 was added so that the concentration of sample 1 was 30% by mass.
  • the antifreeze in Example 22 had a mass change of 0.15 mgZcm for aluminum and 0.10 mgZcm for iron, and a mass change of steel Is 0.03 mgZcnT, and the mass change of brass is 0.04 mgZcnT.
  • the mass change of the solder is 0.14 mgZcm 2
  • the mass change of the copper is 0.05 mggZcm 2 . That is, the test results show that the antifreeze according to Example 22 is less likely to corrode metals than the antifreeze according to Comparative Example 1 and Comparative Example 5.
  • the antifreeze in Example 23 contained 1.2 parts by mass of Sample 2, 0.1 part by mass of Sample 5, and 1.0 part by mass of Sample 8 based on 100 parts by mass of propylene glycol.
  • the antifreeze in Example 23 was further added with Sample 12 so that ⁇ was 7.8.
  • Sample 13 was added so that the concentration of sample 1 was 30% by mass.
  • the antifreeze in Example 23 had a mass change of 0.07 mgZcm for aluminum and 0.02 mgZcm for iron, and a mass change of steel.
  • There is 0. OlmgZcnT a change of the brass mass is 0. 03mgZcnT, a change of the solder mass is 0. l lmgZcm 2, the change of the copper mass is 0. 04m gZcm 2. That is, the test results show that the antifreeze according to Example 23 is less likely to corrode metals than the antifreeze according to Comparative Example 1 and Comparative Example 5.
  • the antifreeze in Example 24 contained 1.2 parts by mass of Sample 2, 0.1 part by mass of Sample 5, and 1.0 part by mass of Sample 9 based on 100 parts by mass of propylene glycol.
  • the antifreeze in Example 24 was further added with Sample 12 so that ⁇ was 7.8.
  • Sample 13 was added so that the concentration of sample 1 was 30% by mass.
  • the antifreeze in Example 24 had a mass change of 0.09 mgZcm for aluminum and 0.07 mgZcm for iron, and a mass change of steel.
  • There is 0. 02mgZcnT a change of the brass mass is 0. 02mgZcnT, a change of the solder mass is 0. lOmgZcm 2, the change of the copper mass is 0. 04m gZcm 2.
  • the test results show that the antifreeze according to Example 24 is less likely to corrode metals than the antifreeze according to Comparative Example 1 and Comparative Example 5.
  • Example 25 contained 1.2 parts by mass of Sample 2, 0.1 parts by mass of Sample 5, and 1.0 parts by mass of Sample 10 based on 100 parts by mass of propylene glycol.
  • Example 25 In the antifreeze solution, sample 12 was further added so that ⁇ became 7.8. Sample 13 was added so that the concentration of sample 1 was 30% by mass.
  • the antifreeze in Example 25 had a mass change of 0.09 mgZcm for aluminum, 0.07 mgZcm for iron, and a mass change of steel. There is 0. OOmgZcnT, the change of the brass mass is Ri 0. 02MgZcnT der, a change of the solder mass is 0. lOmgZcm 2, weight variation 0.04 of copper is mg ZCM 2. That is, the test results show that the antifreeze according to Example 25 is less likely to corrode metals than the antifreeze according to Comparative Example 1 and Comparative Example 5.
  • the antifreeze in Example 26 contained 1.2 parts by mass of Sample 2, 0.1 parts by mass of Sample 5, and 0.05 parts by mass of Sample 11 based on 100 parts by mass of propylene glycol.
  • the antifreeze in Example 26 was further added with Sample 12 so that the pH became 7.8.
  • Sample 13 so that the concentration of sample 1 will be 30 mass 0/0 is added, Ru.
  • Example 26 In the antifreeze in Example 26, according to the metal corrosion test, the change in mass of aluminum oxide was 0.07 mgZcm, and the change in mass of iron was 0.05 mgZcm.
  • a quantity of mass change is 0. 02mgZcnT
  • a change of the brass mass is 0. 02mgZcnT
  • a change of the solder mass is 0. 08mgZcm 2
  • the change of the copper mass is 0. 03m gZcm 2. That is, the test results show that the antifreeze according to Example 26 is less likely to corrode metals than the antifreeze according to Comparative Example 1 and Comparative Example 5.
  • the antifreeze in Example 27 contained 1.2 parts by mass of Sample 2, 0.1 parts by mass of Sample 5, and 0.5 parts by mass of Sample 11 based on 100 parts by mass of propylene glycol.
  • the antifreeze in Example 27 was further added with Sample 12 so that ⁇ was 7.8.
  • Sample 13 was added so that the concentration of sample 1 was 30% by mass.
  • Example 27 According to the metal corrosion test, the antifreeze in Example 27 had a mass change of 0.09 mgZcm for aluminum and 0.03 mgZcm for iron, and a mass change of steel. a There 0. OOmgZcm, the change of the brass mass is Ri 0. 02MgZcm der, a change of the solder mass is 0. 08mgZcm 2, the change of the copper mass 0. 03Mg Is a Zcm 2.
  • the test results show that the antifreeze according to Example 27 is less likely to corrode metals than the antifreeze according to Comparative Example 1-Comparative Example 5.
  • the antifreeze in Example 28 contained 1.2 parts by mass of Sample 2, 0.1 parts by mass of Sample 5, and 0.9 parts by mass of Sample 11 based on 100 parts by mass of propylene glycol.
  • the antifreeze in Example 28 was further added with Sample 12 so that ⁇ was 7.8.
  • Sample 13 was added so that the concentration of sample 1 was 30% by mass.
  • the antifreeze in Example 28 had a mass change of 0.12 mgZcm for aluminum and 0.10 mgZcm for iron, and a mass change of steel of 0.18 mgZcm.
  • a mass change of the brass mass is 0. OlmgZcnT
  • a change of the solder mass is 0. 08mgZcm 2
  • the change of the copper mass is 0. 02m gZcm 2. That is, the test results show that the antifreeze according to Example 28 is less likely to corrode metals than the antifreeze according to Comparative Example 1 and Comparative Example 5.
  • the antifreeze in Example 29 contained 1.2 parts by mass of Sample 2, 0.1 parts by mass of Sample 5, 1.0 parts by mass of Sample 7, and 0 parts by mass of Sample 11, based on 100 parts by mass of propylene glycol. Contains 5 parts by mass.
  • the antifreeze in Example 29 was further added with Sample 12 so that the pH became 7.8.
  • Sample 13 was added so that the concentration of Sample 1 was 30% by mass.
  • Example 29 According to the metal corrosion test, the antifreeze in Example 29 had a mass change of 0.04 mgZcm for aluminum, 0.03 mgZcm for iron, and a mass change of steel. There is 0. OOmgZcm, the change of the brass mass is Ri 0. OlmgZcnT der, a change of the solder mass is 0. 08mgZcm 2, the change of the copper mass is 0. 02mg Zcm 2. That is, the test results show that the antifreeze according to Example 29 is less likely to corrode metals than the antifreeze according to Comparative Example 1-Comparative Example 5.
  • FIG. 5 shows the compositions of Examples 30-35 and the results of the metal corrosion test of Examples 30-35.
  • the antifreeze in Example 30 contained 1.2 parts by mass of sample 14 and 0.1 parts by mass of sample 5 based on 100 parts by mass of propylene glycol. Antifreeze in Example 30 In addition, sample 12 was added so that the pH became 7.8. Sample 13 is added so that the concentration of sample 1 is 30% by mass.
  • the antifreeze in Example 30 had a change in the quality of aluminum material of 0.26 mgZcm, a change in the mass of iron of 0.07 mgZcm, and a change in the mass of steel.
  • the amount is the 0. 03mgZcnT
  • a change of the brass mass is 0. 06mgZcnT
  • a change of the solder mass is 0. 21mgZcm 2
  • the change of the copper mass is 0. 09m gZcm 2. That is, the test results show that the antifreeze according to Example 30 is less likely to corrode metals than the antifreeze according to Comparative Example 1 and Comparative Example 5.
  • the antifreeze in Example 31 contained 1.2 parts by mass of Sample 15 and 0.1 parts by mass of Sample 5 based on 100 parts by mass of propylene glycol.
  • the antifreeze in Example 31 was further added with Sample 12 so that the pH became 7.8.
  • Sample 13 was added so that the concentration of sample 1 was 30% by mass.
  • the antifreeze in Example 31 had a mass change of 0.25 mgZcm for aluminum and 0.08 mgZcm for iron, and a mass change of steel. There is 0. 05mgZcnT, a change of the brass mass is 0. 04mgZcnT, a change of the solder mass is 0. 17mgZcm 2, the change of the copper mass is 0. 08m gZcm 2. That is, the test results show that the antifreeze according to Example 31 is less likely to corrode metals than the antifreeze according to Comparative Example 1 and Comparative Example 5.
  • the antifreeze in Example 32 contained 1.2 parts by mass of Sample 16 and 0.1 parts by mass of Sample 5 based on 100 parts by mass of propylene glycol.
  • Sample 12 was further added so that the pH became 7.8.
  • Sample 13 was added so that the concentration of sample 1 was 30% by mass.
  • Example 32 In the antifreeze in Example 32, according to the metal corrosion test, the mass change of aluminum was 0.25 mgZcm, the mass change of iron was 0.14 mgZcm, and the mass change of steel was There is a 0. l lmgZcm, the mass variation mosquito 0. 02MgZcm brass, a change of the solder mass is 0. lOmgZcm 2, the change of the copper mass 0. 04M is a gZcm 2. That is, the test results show that the antifreeze according to Example 32 is less likely to corrode metals than the antifreeze according to Comparative Example 1 and Comparative Example 5.
  • the antifreeze in Example 33 contained 1.2 parts by mass of Sample 17 and 0.1 parts by mass of Sample 5 based on 100 parts by mass of propylene glycol.
  • the antifreeze in Example 33 was further added with Sample 12 so that the pH became 7.8.
  • Sample 13 was added so that the concentration of sample 1 was 30% by mass.
  • the antifreeze in Example 33 had a mass change of 0.28 mgZcm for aluminum and 0.07 mgZcm for iron, and a mass change of steel. There is 0. 03mgZcnT, a change of the brass mass is 0. 04mgZcnT, a change of the solder mass is 0. 15mgZcm 2, the change of the copper mass is 0. 09m gZcm 2. That is, the test results show that the antifreeze according to Example 33 is less likely to corrode metals than the antifreeze according to Comparative Example 1-Comparative Example 5.
  • the antifreeze in Example 34 contained 1.2 parts by mass of sample 18 and 0.1 part by mass of sample 5 with respect to 100 parts by mass of propylene glycol.
  • the antifreeze in Example 34 was further added with Sample 12 so that the pH became 7.8.
  • Sample 13 was added so that the concentration of sample 1 was 30% by mass.
  • Example 34 In the antifreeze in Example 34, according to the metal corrosion test, the mass change of aluminum was 0.28 mgZcm, the mass change of iron was 0.09 mgZcm, and the mass change of steel was There is 0. 05mgZcnT, a change of the brass mass is 0. 05mgZcnT, a change of the solder mass is 0. 17mgZcm 2, the change of the copper mass is 0. 11m gZcm 2.
  • the test results show that the antifreeze according to Example 34 is less likely to corrode metals than the antifreeze according to Comparative Example 1 and Comparative Example 5.
  • the antifreeze in Example 35 contains 0.6 parts by mass of Sample 2, 0.6 parts by mass of Sample 14, and 0.1 parts by mass of Sample 5 based on 100 parts by mass of propylene glycol.
  • the antifreeze in Example 35 was further added with Sample 12 so that the pH became 7.8.
  • Sample 1 Sample 13 was added to a concentration of 30% by mass.
  • Example 35 In the antifreeze in Example 35, according to the metal corrosion test, the change in quality of aluminum was 0.21 mgZcm, the change in iron mass was 0.10 mgZcm, and the change in steel mass was 0.20 mgZcm. the amount is the 0. 04mgZcnT, a change of the brass mass is 0. 05mgZcm, a change of the solder mass is 0. 14mgZcm 2, the change of the copper mass is 0. 10m gZcm 2. That is, the test results show that the antifreeze according to Example 35 is less likely to corrode metals than the antifreeze according to Comparative Example 1 and Comparative Example 5.
  • FIG. 6 shows the composition of Example 3642 and the results of the metal corrosion test of Example 3642.
  • the antifreeze in Example 36 contained 1.2 parts by mass of sample 2, 0.1 parts by mass of sample 5, and 1.0 parts by mass of sample 19 based on 100 parts by mass of propylene glycol.
  • the antifreeze in Example 36 was further added with Sample 12 so that the pH became 7.8.
  • Sample 13 so that the concentration of sample 1 will be 30 mass 0/0 is added, Ru.
  • Example 36 is less likely to corrode metals than the antifreeze according to Comparative Example 1 and Comparative Example 5.
  • the antifreeze in Example 37 contained 1.2 parts by mass of Sample 2, 0.1 parts by mass of Sample 5, and 1.0 parts by mass of Sample 20 based on 100 parts by mass of propylene glycol.
  • Sample 12 was further added so that ⁇ was 7.8.
  • Sample 13 was added so that the concentration of sample 1 was 30% by mass.
  • the antifreeze in Example 37 had a mass change of 0.09 mgZcm for aluminum and 0.07 mgZcm for iron, and a mass change of steel.
  • the antifreeze in Example 38 contained 1.2 parts by mass of Sample 2, 0.1 part by mass of Sample 5, and 1.0 part by mass of Sample 21 based on 100 parts by mass of propylene glycol.
  • the antifreeze in Example 38 was further added with Sample 12 so that ⁇ was 7.8.
  • Sample 13 was added so that the concentration of sample 1 was 30% by mass.
  • the antifreeze in Example 38 had a mass change of 0.10 mgZcm for aluminum, a mass change of 0.09 mgZcm for iron, and a mass change of steel.
  • There is 0. 04MgZcm 2 the change of the brass mass is 0. OOmgZcm are two der, a change of the solder mass is 0. LOmgZcm 2, the change of the copper mass is 0. 02mg Zcm 2. That is, the test results show that the antifreeze according to Example 38 is less likely to corrode metals than the antifreeze according to Comparative Example 1 and Comparative Example 5.
  • the antifreeze in Example 39 contained 1.2 parts by mass of Sample 2, 0.1 parts by mass of Sample 5, and 1.0 parts by mass of Sample 22 based on 100 parts by mass of propylene glycol.
  • the antifreeze in Example 39 was further added with Sample 12 so that ⁇ was 7.8.
  • Sample 13 was added so that the concentration of sample 1 was 30% by mass.
  • Example 39 According to the metal corrosion test, the antifreeze in Example 39 had a mass change of 0.12 mgZcm for aluminum, a mass change of 0.08 mgZcm for iron, and a mass change of steel. Is Mass change of brass and brass>
  • Example 39 is less likely to corrode metals than the antifreeze according to Comparative Example 1-Comparative Example 5.
  • the antifreeze in Example 40 contained 1.2 parts by mass of Sample 2, 0.1 parts by mass of Sample 5, and 1.0 parts by mass of Sample 23 based on 100 parts by mass of propylene glycol.
  • the antifreeze in Example 40 was further added with Sample 12 so that ⁇ was 7.8.
  • Sample 1 Sample 13 was added to a concentration of 30% by mass.
  • the antifreeze in Example 40 had a change in aluminum material quality of 0.1 lOmgZcm, a change in iron mass of 0.07mgZcm, and a change in steel mass.
  • the amount is the 0. 03mgZcnT
  • a change of the brass mass is 0. 03mgZcm
  • a change of the solder mass is 0. 09mgZcm 2
  • the change of the copper mass is 0. 05m gZcm 2. That is, the test results show that the antifreeze according to Example 40 is less likely to corrode metals than the antifreeze according to Comparative Example 1 and Comparative Example 5.
  • the antifreeze in Example 41 contains 1.2 parts by mass of Sample 2, 0.1 part by mass of Sample 5, and 1.0 part by mass of Sample 24 based on 100 parts by mass of propylene glycol.
  • the antifreeze in Example 41 was further added with Sample 12 so that ⁇ was 7.8.
  • Sample 13 was added so that the concentration of sample 1 was 30% by mass.
  • Example 41 According to the metal corrosion test, the antifreeze in Example 41 had a mass change of 0.09 mgZcm for aluminum, 0.06 mgZcm for iron, and a mass change of steel. And the change in the quantity of brass
  • the antifreeze in Example 42 contained 1.2 parts by mass of sample 2, 0.1 parts by mass of sample 5, 0.05 parts by mass of sample 7, and 0 parts by mass of sample 19 based on 100 parts by mass of propylene glycol. .05 parts by mass.
  • the antifreeze in Example 42 was further added with Sample 12 so that the pH became 7.8.
  • Sample 13 was added so that the concentration of Sample 1 was 30% by mass.
  • the antifreeze in Example 42 had a mass change of 0.09 mgZcm for aluminum, 0.08 mgZcm for iron, and a mass change of steel Is ⁇ ⁇ ⁇ ⁇ ⁇ 2,
  • FIG. 7 shows the compositions of Examples 43-50 and the results of the metal corrosion test of Examples 43-50.
  • the antifreeze in Example 43 contained 1.2 parts by mass of sample 2, 0.1 part by mass of sample 5, and 0.5 part by mass of sample 25 based on 100 parts by mass of propylene glycol.
  • the antifreeze in Example 43 was further added with Sample 12 so that the pH became 7.8.
  • Sample 13 so that the concentration of sample 1 will be 30 mass 0/0 is added, Ru.
  • the antifreeze in Example 43 had a mass change of aluminum oxide of 0.1 mg / cm2, a mass change of iron of 0.04 mg / cm2, and a mass change of steel.
  • There is 0. OlmgZcnT a change of the brass mass is 0. 02mgZcnT, a change of the solder mass is 0. 07mgZcm 2, the change of the copper mass is 0. 04m gZcm 2. That is, the test results show that the antifreeze according to Example 43 is less likely to corrode metals than the antifreeze according to Comparative Example 1 and Comparative Example 5.
  • the antifreeze in Example 44 contained 1.2 parts by mass of sample 2, 0.1 part by mass of sample 5, and 0.5 part by mass of sample 26 with respect to 100 parts by mass of propylene glycol.
  • the antifreeze in Example 44 was further added with Sample 12 so that ⁇ was 7.8.
  • Sample 13 was added so that the concentration of sample 1 was 30% by mass.
  • the antifreeze in Example 44 had a mass change of 0.09 mgZcm for aluminum and a 0.055 mgZcm for iron, and a mass change of steel.
  • There is 0. 03mgZcnT a change of the brass mass is 0. 03mgZcnT, a change of the solder mass is 0. 06mgZcm 2, the change of the copper mass is 0. 05m gZcm 2. That is, the test results show that the antifreeze according to Example 44 is less likely to corrode metals than the antifreeze according to Comparative Example 1 and Comparative Example 5.
  • the antifreeze in Example 45 contained 1.2 parts by mass of Sample 2, 0.1 parts by mass of Sample 5, and 0.5 parts by mass of Sample 27 based on 100 parts by mass of propylene glycol.
  • the antifreeze in Example 45 was further added with Sample 12 so that ⁇ was 7.8.
  • Sample 1 Sample 13 was added to a concentration of 30% by mass.
  • the antifreeze in Example 45 had a change of 0.08 mgZcm in the quality of aluminum, a change in the mass of iron of 0.07 mgZcm, and a change in the mass of steel.
  • the amount is the 0. 06mgZcnT
  • a change of the brass mass is 0. 03mgZcm
  • a change of the solder mass is 0. 09mgZcm 2
  • the change of the copper mass is 0. 04m gZcm 2. That is, the test results show that the antifreeze according to Example 45 is less likely to corrode metals than the antifreeze according to Comparative Example 1 and Comparative Example 5.
  • Example 46 The antifreeze in Example 46 was prepared such that 1.2 parts by mass of Sample 2, 0.1 part by mass of Sample 5, 0.25 parts by mass of Sample 11, and 0.25 parts by mass of Sample 25 were added to 100 parts by mass of propylene glycol. Contains 25 parts by mass. The antifreeze in Example 46 was further added with Sample 12 so that the pH became 7.8. Sample 13 so that the concentration of sample 1 will be 30 mass 0/0 is added, Ru
  • Example 46 According to the metal corrosion test, the antifreeze in Example 46 had a mass change of 0.09 mgZcm for aluminum and 0.03 mgZcm for iron, and a mass change of steel. , And the change in the quantity of brass copper ⁇ is 2 ⁇
  • the antifreeze in Example 47 was prepared by adding 1.2 parts by mass of Sample 2, 0.1 parts by mass of Sample 5, 1.0 parts by mass of Sample 7, and 0 parts by mass of Sample 25 to 100 parts by mass of propylene glycol. Contains 5 parts by mass.
  • the antifreeze in Example 47 was further added with Sample 12 so that the pH became 7.8.
  • Sample 13 was added so that the concentration of Sample 1 was 30% by mass.
  • Example 47 In the antifreeze in Example 47, according to the metal corrosion test, the mass change of aluminum was 0.0 OlmgZcm, the mass change of iron was 0.04 mgZcm, and the mass change of steel was Is ⁇ n
  • Example 48 The antifreeze in Example 48 was prepared such that, with respect to 100 parts by mass of propylene glycol, 1.2 parts by mass of Sample 2, 0.1 parts by mass of Sample 5, 1.0 parts by mass of Sample 7, and 0 parts by mass of Sample 26. Contains 5 parts by mass.
  • the antifreeze in Example 48 was further supplemented with Sample 12 so that the pH became 7.8.
  • Sample 13 was added so that the concentration of Sample 1 was 30% by mass.
  • the antifreeze in Example 48 had a mass change of 0.02 mgZcm for aluminum and 0.02 mgZcm for iron, and a mass change of steel.
  • the change of the brass mass is 0. OOmgZcm are two der
  • a change of the solder mass is 0. 06MgZcm 2
  • the change of the copper mass is 0. 02mg Zcm 2. That is, the test results show that the antifreeze according to Example 48 is less likely to corrode metals than the antifreeze according to Comparative Example 1 and Comparative Example 5.
  • Example 49 The antifreeze in Example 49 was prepared as follows: 1.2 parts by mass of Sample 2, 0.1 parts by mass of Sample 5, 1.0 parts by mass of Sample 7, and 0 parts by mass of Sample 27 with respect to 100 parts by mass of propylene glycol. Contains 5 parts by mass.
  • the antifreeze in Example 49 is further supplemented with Sample 12 so that the pH becomes 7.8.
  • Sample 13 was added so that the concentration of Sample 1 was 30% by mass.
  • the antifreeze in Example 49 had a mass change of 0.02mgZcm for aluminum and 0.06mgZcm for iron, and a mass change of steel. There is 0. 03mgZcnT, a change of the brass mass is 0. OlmgZcnT, a change of the solder mass is 0. 08mgZcm 2, the change of the copper mass is 0. 02m gZcm 2. That is, the test results show that the antifreeze according to Example 49 is less likely to corrode metals than the antifreeze according to Comparative Example 1-Comparative Example 5.
  • the antifreeze in Example 50 was prepared as follows: 1.2 parts by mass of Sample 2, 0.1 parts by mass of Sample 5, 1.0 parts by mass of Sample 7, and 0 parts by mass of Sample 11, based on 100 parts by mass of propylene glycol. It contains 25 parts by mass and 0.25 parts by mass of sample 25.
  • the antifreeze in Example 50 further has a pH of 7.8 Sample 12 is added so that Sample 13 was added so that the concentration of Sample 1 was 30 mass 0 / 0 %.
  • Example 50 In the antifreeze in Example 50, according to the metal corrosion test, the mass change of aluminum oxide was 0.02 mgZcm, the mass change of iron was 0.03 mgZcm,
  • a quantity of mass change is 0. 02mgZcnT
  • a change of the brass mass is 0. OlmgZcnT
  • a change of the solder mass is 0. 06mgZcm 2
  • the change of the copper mass is 0. 02m gZcm 2. That is, the test results show that the antifreeze according to Example 50 is less likely to corrode metals than the antifreeze according to Comparative Example 1 and Comparative Example 5.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Thermal Sciences (AREA)
  • Preventing Corrosion Or Incrustation Of Metals (AREA)

Abstract

 環境負荷が小さく、かつ、金属を腐食させにくい不凍液を提供することを目的とする。プロピレングリコールと、第1物質と、第2物質とを含有している。その第1物質は、炭素原子数が10~12である直鎖脂肪族ジカルボン酸、その直鎖脂肪族ジカルボン酸の塩である直鎖脂肪族ジカルボン酸塩、または、それらの混合物である。その第2物質は、ベンゾイミダゾール骨格を有するベンゾイミダゾール骨格化合物、そのベンゾイミダゾール骨格化合物の塩であるベンゾイミダゾール骨格化合物塩、トリアジン骨格を有してメルカプト基を有するトリアジン骨格化合物、そのトリアジン骨格化合物の塩であるトリアジン骨格化合物塩、または、これらの化合物の混合物である。このような不凍液は、エチレングリコールを含有する不凍液より環境負荷が小さく、かつ、金属をより腐食させにくい。

Description

明 細 書
不凍液
技術分野
[0001] 本発明は、不凍液に関し、特に、クーラントとして利用される不凍液に関する。
背景技術
[0002] 自動車などに適用される内燃機関は、クーラントにより冷却されている。そのクーラ ントとしては、寒期に凍結することを防止するために、不凍液が用いられている。その 不凍液としては、一般には、凝固点降下剤として用いられているダリコール類にさび 止め剤をカ卩えて、水で希釈したものが利用されている。そのダリコール類としては、特 にエチレングリコールが多く適用されている。その不凍液は、エチレングリコールより 環境負荷が小さいプロピレングリコールを凝固点降下剤として用いることが望まれて いる。
[0003] 内燃機関のクーラント経路にはアルミニウム、铸鉄、鋼、黄銅、はんだ、銅などの材 料が存在する。このため、クーラントには、これら材料に対する腐食抑制効果が要求 され、種々の腐食抑制剤が使用されている。特に、自動車の軽量ィ匕の観点力もアル ミニゥムの使用量が増大してきており、特に、アルミニウムに対する腐食抑制効果が 要求されている。このため、環境負荷が小さいプロピレングリコールを凝固点降下剤 として用い、かつ、金属が腐食しにくい不凍液が望まれている。
[0004] 特開平 8-85782号公報には、安価で、優れた腐食抑制作用をもつ不凍液組成物 が開示されている。特表平 9— 504812号公報には、水を使用しないプロピレングリコ ール系冷却液が開示されている。特表 2003— 504453号公報には、有意に向上さ れた金属の腐食保護効果を示す冷却材組成物が開示されている。特開平 1 - 3154 81号公報には、アルミニウムに対する腐食防止効果が著しく改善される不凍液が開 示されている。特開平 4 59885号公報には、エンジン冷却系統にアルミニウム合金 が採用される傾向にある自動車等において、特に有効なものと成る冷却液組成物が 開示されている。
発明の開示 [0005] 本発明の課題は、環境負荷がより小さぐかつ、金属をより腐食させにくい不凍液を 提供することにある。
[0006] 本発明による不凍液は、プロピレングリコールと、第 1物質と、第 2物質とを含有して いることが好ましい。その第 1物質は、炭素原子数が 10— 12である直鎖脂肪族ジカ ルボン酸と、その直鎖脂肪族ジカルボン酸の塩である直鎖脂肪族ジカルボン酸塩と 、その直鎖脂肪族ジカルボン酸とその直鎖脂肪族ジカルボン酸塩との混合物とから なる集合力 選択される物質である。その第 2物質は、ベンゾイミダゾール骨格を有 するベンゾイミダゾール骨格化合物と、そのべンゾイミダゾール骨格化合物の塩であ るべンゾイミダゾール骨格ィ匕合物塩と、トリァジン骨格を有してメルカプト基を有するト リアジン骨格ィ匕合物と、そのトリァジン骨格ィ匕合物の塩であるトリァジン骨格ィ匕合物塩 と、そのべンゾイミダゾール骨格化合物とそのべンゾイミダゾール骨格化合物塩とそ のトリァジン骨格ィ匕合物とそのトリァジン骨格ィ匕合物塩とからなる集合力 選択される 複数の物質の混合物とからなる集合力 選択される物質である。このような不凍液は 、エチレングリコールを含有する不凍液より環境負荷力 S小さぐかつ、金属をより腐食 させにくい。
[0007] そのべンゾイミダゾール骨格ィ匕合物は、水素原子と水酸基とカルボキシル基と置換 基からなる集合から選択される第 1基 R1と、水素原子と水酸基とカルボキシル基とそ の置換基からなる集合から選択される第 2基 R2と、水素原子と水酸基とカルボキシル 基とその置換基力 なる集合力 選択される第 3基 R3と、水素原子と炭化水素基と硫 黄を含む基と窒素を含む基と硫黄及び窒素を含む基とからなる集合から選択される 第 4基 R4とを用いて、次化学式:
[化 1]
Figure imgf000004_0001
により表現されることが好ましい。その置換基は、炭化水素基と、炭化水素基の一 部の水素原子が水酸基に置換された基と、炭化水素基の一部の水素原子がカルボ キシル基に置換された基と、炭化水素基の一部の水素原子が水酸基に置換され、他 の一部の水素原子がカルボキシル基に置換された基とからなる集合力 選択される 基である。このとき、第 1基 R1と第 2基 R2と第 3基 R3とは、互いに一致していても異なつ ていてもよい。
[0008] そのトリァジン骨格ィ匕合物は、水素と炭化水素基と硫黄を含む基と窒素を含む基と 硫黄及び窒素を含む基とからなる集合から選択される第 5基 R5と、水素と炭化水素 基と硫黄を含む基と窒素を含む基と硫黄及び窒素を含む基とからなる集合から選択 される第 6基 R6とを用いて、次化学式:
[化 2]
Figure imgf000005_0001
により表現されることが好ましい。このとき、第 5基 R5と第 6基 R6とは、互いに一致し て ヽても異なって!/、てもよ!/、。
[0009] そのべンゾイミダゾール骨格化合物は、チアベンダゾールであり、トリァジン骨格化 合物は、トリメルカプト s トリァジンであることが好まし 、。
[0010] その第 1物質は、プロピレングリコールが 100質量部に対して、 0. 1-5. 0質量部 の割合で含有されていることが好ましい。その第 2物質は、プロピレングリコールが 10 0質量部に対して、 0. 01-2. 0質量部の割合で含有されていることが好ましい。
[0011] 本発明による不凍液は、水素と水酸基とァミノ基と炭素原子数 1一 6の炭化水素基 とからなる集合から選択される第 7基 R7と、水素と水酸基とァミノ基と炭素原子数 1一 6の炭化水素基とからなる集合から選択される第 8基 R8と、水素と水酸基とァミノ基と 炭素原子数 1一 6の炭化水素基とからなる集合力も選択される第 9基 R9とを用いて、 次化学式:
[化 3]
Figure imgf000006_0001
により表現される芳香族カルボン酸と芳香族カルボン酸の塩とからなる集合力 選 択される第 3物質を更に含有していることが好ましい。このとき、第 7基 R7と第 8基 と 第 9基 R9とは、互いに一致して 、ても異なって 、てもよ 、。
[0012] その第 3物質は、プロピレングリコールが 100質量部に対して、 0. 02-4. 0質量部 の割合で含有されて ヽることが好ま 、。
[0013] 本発明による不凍液は、硝酸と、硝酸塩と、硝酸と硝酸塩との混合物とからなる集 合から選択される第 4物質を更に含有して 、ることが好ま 、。
[0014] その第 4物質は、プロピレングリコールが 100質量部に対して、 0. 02-1. 0質量部 の割合で含有されて ヽることが好ま 、。
[0015] 本発明による不凍液は、水を更に含有している。このとき、不凍液の pHは、 7. 0— 9. 0であることが好ましい。
[0016] プロピレングリコールの濃度は、 25質量0 /0— 65質量0 /0であることが好まし!/、。
[0017] プロピレングリコールの質量 100に対するベンゾイミダゾール骨格化合物とベンゾィ ミダゾール骨格化合物塩との質量 Tと、プロピレングリコールの質量 100に対するトリ ァジン骨格ィ匕合物とトリァジン骨格ィ匕合物塩との質量 Sとを用いて、次数式:
X=T+S X 3
により表現される値 Xは、 0. 06-1. 2であることが好ましい。その値 Xは、 0. 08— 0. 9であることがさらに好ましい。
[0018] 本発明による内燃機関は、このような不凍液を用いて冷却される。このような内燃機 関は、自動車を推進させる動力を生成することに好適である。
[0019] 本発明による不凍液は、環境負荷がより小さぐかつ、金属をより腐食させにくい。 図面の簡単な説明
[0020] [図 1]図 1は、比較例 1一 5の組成と比較例 1一 5の金属腐食性試験の結果とを示す 表である。
[図 2]図 2は、実施例 1一 9の組成と実施例 1一 9の金属腐食性試験の結果とを示す 表である。
[図 3]図 3は、実施例 10— 19の組成と実施例 10— 19の金属腐食性試験の結果とを 示す表である。
[図 4]図 4は、実施例 20— 29の組成と実施例 20— 29の金属腐食性試験の結果とを 示す表である。
[図 5]図 5は、実施例 30— 35の組成と実施例 30— 35の金属腐食性試験の結果とを 示す表である。
[図 6]図 6は、実施例 36— 42の組成と実施例 36— 42の金属腐食性試験の結果とを 示す表である。
[図 7]図 7は、実施例 43— 50の組成と実施例 43— 50の金属腐食性試験の結果とを 示す表である。
発明を実施するための最良の形態
[0021] 以下に、本発明による不凍液の実施の形態を記載する。その不凍液は、プロピレン グリコールと第 i物質と第 2物質と第 3物質と第 4物質と水とを含有している。その不凍 液は、プロピレングリコールとその第 1物質とその第 2物質とが必須の成分であり、そ の第 3物質とその第 4物質と水とが添加されなくてもょ 、。
[0022] プロピレングリコールすなわち 1, 2—プロパンジオールは、本発明による不凍液の 主成分であり、本発明による不凍液の凝固点を降下させるために添加されている。プ ロピレンダリコールは、エチレングリコールより環境負荷が小さい物質であり、食品添 加物としても利用されている。添加されるプロピレングリコールは、任意の製法によつ て得られたものを使用することができ、たとえば、市販のプロピレングリコールを使用 することちでさる。
[0023] 不凍液は、プロピレングリコールの濃度が極端に少ないときに、不凍液性が不十分 となる。プロピレングリコールの下限の濃度は、不凍液を使用する環境温度に依存す る。このため、この下限の濃度は、適宜設定される。本発明による不凍液は、プロピレ ングリコールの濃度を 25質量%以上とすることが好ましい。
[0024] 第 1物質は、炭素原子数 10— 12の直鎖脂肪族ジカルボン酸またはその直鎖脂肪 族ジカルボン酸の塩であり、不凍液の金属に対する腐食抑制効果を向上させるため に添加されている。このような直鎖脂肪族ジカルボン酸としては、セバシン酸、ゥンデ カン二酸、ドデカン二酸が例示される。直鎖脂肪族ジカルボン酸の塩としては、アル カリ金属の塩、アンモニゥム塩、有機アンモニゥム塩が例示される。そのアルカリ金属 としては、リチウム、ナトリウム、カリウムが例示される。有機アンモ-ゥム塩としては、ァ ルキルアンモ-ゥム塩、アルカノールアンモ -ゥム塩が例示される。直鎖脂肪族ジカ ルボン酸の塩としては、さらに、直鎖脂肪族ジカルボン酸が有する 2つのカルボキシ ル基のうちの一方の酸に水素が残っている酸性塩であってもよぐその 2つのカルボ キシル基が 2つの異なるカチオンにイオン結合して 、る塩であってもよ 、。
[0025] 第 1物質は、第 1物質として例示された複数の物質のうちの 1つの物質であっても、 その複数の物質のうちから選択された複数の物質の混合物であってもよい。第 1物質 は、その混合物であるときに、 3種以上のカチオンを含有することもできる。
[0026] さらに、本発明による不凍液は、プロピレングリコール 100質量部に対して、第 1物 質を 0. 1-5. 0質量部含有することが、腐食抑制効果が十分となり、濁りや沈殿物 が発生しに《なる点で好ましい。本発明による不凍液は、プロピレングリコール 100 質量部に対して、第 1物質を 0. 3-3. 0質量部含有することがより好ましい。
[0027] 第 2物質は、ベンゾイミダゾール骨格ィヒ合物と、ベンゾイミダゾール骨格ィヒ合物塩と 、トリアジン骨格化合物と、トリァジン骨格ィ匕合物塩と、これらの化合物から選択される 複数の化合物の混合物である。第 2物質は、不凍液の金属に対する腐食抑制効果 を向上させるために添加されて!ヽる。
[0028] ベンゾイミダゾール骨格ィ匕合物は、ベンゾイミダゾール骨格を有する化合物である。
ベンゾイミダゾール骨格ィ匕合物としては、次化学式:
[化 4]
Figure imgf000009_0001
により表現される化合物が例示される。このようなベンゾイミダゾール骨格ィ匕合物は 、環境負荷をより小さくし、かつ、腐食抑制効果を向上させる点で好ましい。
[0029] このとき、第 1基 R1は、水素原子、水酸基、カルボキシル基、または、炭化水素基で ある。その炭化水素基としては、直鎖もしくは分岐のアルキル基、ァルケ-ル基、環 状のシクロアルキル基、シクロアルケ-ル基、ァリール基が例示される。その炭化水 素基は、炭素原子数が 1一 20であることが好ましぐ炭素原子数が 1一 8であることが より好ましい。その炭化水素基は、水素原子がカルボキシル基または水酸基で置換 されていても良い。すなわち、第 1基 R1は、炭化水素基の一部の水素原子が水酸基 に置換された基、炭化水素基の一部の水素原子がカルボキシル基に置換された基、 または、炭化水素基の一部の水素原子が水酸基に置換され、他の一部の水素原子 がカルボキシル基に置換された基であってもよい。
[0030] 第 2基 R2は、第 1基 R1と同様に設計される。すなわち、第 2基 R2は、水素原子、水 酸基、カルボキシル基、または、炭化水素基である。その炭化水素基としては、直鎖 もしくは分岐のアルキル基、ァルケ-ル基、環状のシクロアルキル基、シクロアルケ- ル基、ァリール基が例示される。その炭化水素基は、炭素原子数が 1一 20であること が好ましぐ炭素原子数が 1一 8であることがより好ましい。その炭化水素基は、水素 原子がカルボキシル基または水酸基で置換されていても良い。すなわち、第 2基 R2 は、炭化水素基の一部の水素原子が水酸基に置換された基、炭化水素基の一部の 水素原子がカルボキシル基に置換された基、または、炭化水素基の一部の水素原 子が水酸基に置換され、他の一部の水素原子がカルボキシル基に置換された基で あってもよい。
[0031] 第 3基 R3は、第 1基 R1と同様に設計される。すなわち、第 3基 R3は、水素原子、水 酸基、カルボキシル基、または、炭化水素基である。その炭化水素基としては、直鎖 もしくは分岐のアルキル基、ァルケ-ル基、環状のシクロアルキル基、シクロアルケ- ル基、ァリール基が例示される。その炭化水素基は、炭素原子数が 1一 20であること が好ましぐ炭素原子数が 1一 8であることがより好ましい。その炭化水素基は、水素 原子がカルボキシル基または水酸基で置換されていても良い。すなわち、第 3基 R3 は、炭化水素基の一部の水素原子が水酸基に置換された基、炭化水素基の一部の 水素原子がカルボキシル基に置換された基、または、炭化水素基の一部の水素原 子が水酸基に置換され、他の一部の水素原子がカルボキシル基に置換された基で あってもよい。
[0032] 第 1基 R1と第 2基 R2と第 3基 R3とは、互いに一致して 、ても異なって 、てもよ 、。
[0033] 第 4基 R4は、水素原子、炭化水素基、硫黄を含む基、窒素を含む基、または、硫黄 と窒素とを含む基である。その炭化水素基としては、直鎖もしくは分岐のアルキル基、 ァルケ-ル基、環状のシクロアルキル基、シクロアルケ-ル基、ァリール基が例示さ れる。その炭化水素基は、炭素原子数カ^ー 20であることが好ましぐ炭素原子数が 1一 8であることがより好ましい。その硫黄を含む基としては、次化学式:
-SR10
により表現される基が例示される。このとき、第 10基 R1C>は、水素原子、または、直鎖 、分岐鎖もしくは環状のアルキル基である。その窒素を含む基としては、次化学式: - 12
により表現される基が例示される。このとき、第 11基 R11は、水素原子または炭化水 素基である。その炭化水素基としては、直鎖もしくは分岐のアルキル基、アルケニル 基、環状のシクロアルキル基、シクロアルケ-ル基、ァリール基が例示される。第 12 基 R12は、水素原子または炭化水素基である。その炭化水素基としては、直鎖もしく は分岐のアルキル基、ァルケ-ル基、環状のシクロアルキル基、シクロアルケ-ル基 、ァリール基が例示される。第 11基 R11と第 12基 R12とは、互いに一致していても異な つていてもよい。
[0034] その硫黄と窒素とを含む基としては、次化学式:
— S— N=R13 により表現される基、環上に硫黄および窒素を有する 5員複素環または 6員複素環 を有する基が例示される。このとき、第 13基 R13は、窒素を含む複素環の部分であり、 炭素原子数が 3— 6であり、主鎖に酸素または窒素を有していてもよい。すなわち、次 化学式:
-S-N=R13
により表現される基としては、次化学式:
[化 5]
Figure imgf000011_0001
により表現される基、次化学式:
[化 6]
一 S -/ M
により表現される基が例示される。
[0035] 第 4基 R4としては、水素原子、メチル基、ェチル基、メルカプト基、ジブチルァミノ基 、フエニルァミノ基、チアゾリル基、化 5により表現される基、化 6により表現される基で あることが好ましい。
[0036] そのべンゾイミダゾール骨格化合物は、チアベンダゾールであることが特に好まし い。チアベンダゾールは、 CAS登録番号 148— 79— 8により表現される化合物である
[0037] そのべンゾイミダゾール骨格化合物塩は、既述のベンゾイミダゾール骨格化合物の 塩である。その塩としては、アルカリ金属の塩、アルカリ土類金属の塩、アンモ-ゥム 塩、有機アンモニゥム塩が例示される。そのアルカリ金属としては、リチウム、ナトリウ ム、カリウムが例示される。有機アンモ-ゥム塩としては、アルキルアンモ-ゥム塩、ァ ルカノールアンモ-ゥム塩が例示される。そのべンゾイミダゾール骨格化合物塩は、 ベンゾイミダゾール骨格化合物のアルカリ金属の塩であることが好ましぐベンゾイミ ダゾール骨格化合物のナトリウム塩、ベンゾイミダゾール骨格化合物のカリウム塩で あることが特に好ましい。
そのトリァジン骨格ィ匕合物は、メルカプト基を有して 、る。このようなトリァジン骨格ィ匕 合物としては、次化学式:
[化 7]
Figure imgf000012_0001
により表現される化合物が例示される。このようなトリァジン骨格ィ匕合物は、環境負 荷をより小さくし、かつ、腐食抑制効果を向上させる点で好ましい。このとき、第 5基 R5 は、第 4基 R4と同様に設計される。すなわち、第 5基 R5は、水素原子、炭化水素基、 硫黄を含む基、窒素を含む基、または、硫黄と窒素とを含む基である。その炭化水素 基としては、直鎖もしくは分岐のアルキル基、アルケニル基、環状のシクロアルキル基 、シクロアルケ-ル基、ァリール基が例示される。その炭化水素基は、炭素原子数が 1一 20であることが好ましぐ炭素原子数が 1一 8であることがより好ましい。その硫黄 もしくは窒素を含有する基は、直鎖、分岐鎖または環状の基である。その硫黄を含む 基としては、次化学式:
-SR10
により表現される基が例示される。このとき、第 10基 R1C>は、水素原子、または、直鎖 、分岐鎖もしくは環状のアルキル基である。その窒素を含む基としては、次化学式: -NR R12
により表現される基が例示される。このとき、第 11基 R11は、水素原子または炭化水 素基である。その炭化水素基としては、直鎖もしくは分岐のアルキル基、アルケニル 基、環状のシクロアルキル基、シクロアルケ-ル基、ァリール基が例示される。第 12 基 R12は、水素原子または炭化水素基である。その炭化水素基としては、直鎖もしく は分岐のアルキル基、ァルケ-ル基、環状のシクロアルキル基、シクロアルケ-ル基 、ァリール基が例示される。第 11基 R11と第 12基 R12とは、互いに一致していても異な つていてもよい。
[0039] その硫黄と窒素とを含む基としては、次化学式:
— S— N=R13
により表現される基、環上に硫黄および窒素を有する 5員複素環または 6員複素環 を有する基が例示される。このとき、第 13基 R13は、窒素を含む複素環の部分であり、 炭素原子数が 3— 6であり、主鎖に酸素または窒素を有して!/、てもよ!/、。
[0040] 第 5基 R5としては、水素原子、メチル基、ェチル基、メルカプト基、ジブチルァミノ基 、フエ-ルァミノ基、チアゾリル基、次化学式:
[化 8]
Figure imgf000013_0001
により表現される基、次化学式:
[化 9]
Figure imgf000013_0002
により表現される基がより好ま 、。
[0041] 第 6基 R6は、第 5基 R5と同様に設計される。すなわち、第 6基 R6は、水素原子、炭 化水素基、硫黄を含む基、窒素を含む基、または、硫黄と窒素とを含む基である。そ の炭化水素基としては、直鎖もしくは分岐のアルキル基、ァルケ-ル基、環状のシク 口アルキル基、シクロアルケ-ル基、ァリール基が例示される。その炭化水素基は、 炭素原子数が 1一 20であることが好ましぐ炭素原子数カ^ー 8であることがより好ま しい。その硫黄もしくは窒素を含有する基は、直鎖、分岐鎖または環状の基である。 その硫黄を含む基としては、次化学式:
-SR10
により表現される基が例示される。このとき、第 10基 R1C>は、水素原子、または、直鎖 、分岐鎖もしくは環状のアルキル基である。その窒素を含む基としては、次化学式: - 12
により表現される基が例示される。このとき、第 11基 R11は、水素原子または炭化水 素基である。その炭化水素基としては、直鎖もしくは分岐のアルキル基、アルケニル 基、環状のシクロアルキル基、シクロアルケ-ル基、ァリール基が例示される。第 12 基 R12は、水素原子または炭化水素基である。その炭化水素基としては、直鎖もしく は分岐のアルキル基、ァルケ-ル基、環状のシクロアルキル基、シクロアルケ-ル基 、ァリール基が例示される。第 11基 R11と第 12基 R12とは、互いに一致していても異な つていてもよい。
[0042] その硫黄と窒素とを含む基としては、次化学式:
— S— N=R13
により表現される基、環上に硫黄および窒素を有する 5員複素環または 6員複素環 を有する基が例示される。このとき、第 13基 R13は、窒素を含む複素環の部分であり、 炭素原子数が 3— 6であり、主鎖に酸素または窒素を有して!/、てもよ!/、。
[0043] 第 6基 R6としては、水素原子、メチル基、ェチル基、メルカプト基、ジブチルァミノ基 、フエニルァミノ基、チアゾリル基、化 8により表現される基、化 9により表現される基が より好まし 、。
[0044] そのトリァジン骨格ィ匕合物は、ジメルカプト s トリァジンまたはトリメルカプト s—トリ ァジンであることが特に好ましい。トリメルカプト- s-トリアジンは、 CAS登録番号 638 —16-4により表される化合物である。
[0045] そのトリァジン骨格ィ匕合物塩は、既述のトリァジン骨格ィ匕合物の塩である。その塩と しては、アルカリ金属の塩、アルカリ土類金属の塩、アンモニゥム塩、有機アンモ-ゥ ム塩が例示される。そのアルカリ金属としては、リチウム、ナトリウム、カリウムが例示さ れる。有機アンモ-ゥム塩としては、アルキルアンモ-ゥム塩、アルカノールアンモ- ゥム塩が例示される。そのトリァジン骨格ィ匕合物塩は、トリァジン骨格ィ匕合物のアル力 リ金属の塩であることが好ましぐトリァジン骨格ィ匕合物のナトリウム塩、トリァジン骨格 化合物のカリウム塩であることが特に好まし 、。
[0046] 第 2物質は、第 2物質として例示された複数の物質のうちの 1つの物質であっても、 その複数の物質のうちから選択された複数の物質の混合物であってもよい。第 2物質 は、その混合物であるときに、 3種以上のカチオンを含有することもできる。
[0047] さらに、本発明による不凍液は、プロピレングリコール 100質量部に対して、第 2物 質を 0. 01-5. 0質量部含有することが腐食抑制効果が十分となる点で好ましい。こ こで、プロピレングリコールの質量 100に対するベンゾイミダゾール骨格化合物とベン ゾイミダゾール骨格化合物塩との質量 Tと、プロピレングリコールの質量 100に対する トリァジン骨格ィ匕合物とトリァジン骨格ィ匕合物塩との質量 Sとを用いて、値 Xを、次数 式:
X=T+S X 3
により定義する。本発明による不凍液は、値 Xが 0. 06-1. 2であることが好ましぐ 0. 08-0. 9であることがさらに好ましい。このとき、質量 Sと質量 Tとは、いずれかが 0 であってもよい。
[0048] 第 3物質は、芳香族カルボン酸、その芳香族カルボン酸の塩、または、これらの化 合物の混合物であり、不凍液の金属に対する腐食抑制効果を向上させるために添 カロされている。その芳香族カルボン酸は、次化学式:
[化 10]
Figure imgf000015_0001
により表現される。このとき、第 7基 R7は、水素原子、水酸基、アミノ基、または、炭 素原子数 1一 6の炭化水素基である。第 8基 R8は、水素原子、水酸基、アミノ基、また は、炭素原子数 1一 6の炭化水素基である。第 9基 R9は、水素原子、水酸基、ァミノ 基、または、炭素原子数 1一 6の炭化水素基である。第 7基 R7と第 8基 R8と第 9基 と は、互いに一致していても異なっていてもよい。
[0049] その芳香族カルボン酸としては、安息香酸、トルィル酸、 p—ターシヤリブチル安息 香酸、 p—ヒドロキシ安息香酸、 3, 4, 5—トリヒドロキシ安息香酸、 p—ァミノ安息香酸、 アントラニル酸が例示される。その芳香族カルボン酸は、 p—ターシヤリブチル安息香 酸、 p—ヒドロキシ安息香酸、 3, 4, 5—トリヒドロキシ安息香酸、 p—ァミノ安息香酸、ァ ントラ-ル酸であることが環境負荷をより小さくし、かつ、腐食抑制効果を向上させる 点で好ましい。その芳香族カルボン酸は、特に、 p—ヒドロキシ安息香酸、 p—ァミノ安 息香酸であることがさらに好ましい。
[0050] その芳香族カルボン酸の塩としては、本発明による不凍液に対して溶解することが できる塩が適用される。このような塩としては、アルカリ金属塩、アンモニゥム塩、有機 アンモニゥム塩が例示される。そのアルカリ金属塩としては、リチウム塩、ナトリウム塩 、カリウム塩が例示される。その有機アンモ-ゥム塩としては、アルキルアンモ-ゥム 塩、アルカノールアンモニゥム塩が例示される。
[0051] 第 3物質は、第 3物質として例示された複数の物質のうちの 1つの物質であっても、 その複数の物質のうちから選択された複数の物質の混合物であってもよい。第 3物質 は、その混合物であるときに、 3種以上のカチオンを含有することもできる。
[0052] さらに、本発明による不凍液は、プロピレングリコール 100質量部に対して、第 3物 質を 0. 02-4. 0質量部含有することが腐食抑制効果を向上させる点でより好ましい 。本発明による不凍液は、プロピレングリコール 100質量部に対して、第 3物質を 0. 0 7-2. 0質量部含有することがより好ましい。
[0053] 第 4物質は、硝酸または硝酸塩であり、不凍液の金属に対する腐食抑制効果を向 上させるために添加されている。その硝酸は、任意の製法によって得られたものを使 用することができ、市販の硝酸を使用することもできる。その硝酸塩としては、本発明 による不凍液に対して可溶性の塩が適用される。このような塩としては、アルカリ金属 塩、アンモニゥム塩、有機アンモ-ゥム塩が例示される。そのアルカリ金属塩としては 、リチウム塩、ナトリウム塩、カリウム塩が例示される。その有機アンモ-ゥム塩としては 、アルキルアンモ-ゥム塩、アルカノールアンモ -ゥム塩が例示される。 [0054] 第 4物質は、第 4物質として例示された複数の物質のうちの 1つの物質であっても、 その複数の物質のうちから選択された複数の物質の混合物であってもよい。このため 、第 4物質は、その混合物であるときに、 3種以上のカチオンを含有することもできる。
[0055] さらに、本発明による不凍液は、プロピレングリコール 100質量部に対して、第 4物 質を 0. 02-1. 0質量部含有することが腐食抑制効果をより向上させる点で好ましい 。本発明による不凍液は、プロピレングリコール 100質量部に対して、第 4物質を 0. 0 7-0. 8質量部含有することがより好ましい。
[0056] 水は、経済性のために、すなわち、質量当たりの価格を低減するために添加されて いる。その水は、浮遊した粒子が少なぐ溶解しているイオンが少ない水が適用され る。このような水としては、イオン交換水が例示される。本発明による不凍液は、水を 添加しないでそのまま使用することもできる。本発明による不凍液は、水で希釈して 使用するときに、水酸ィ匕物がさらに添加されることもできる。水酸化物は、不凍液の p Hを調整するために添加される。水酸化物としては、水酸化ナトリウム、水酸化力リウ ムが例示される。不凍液は、 pHが 7. 0-9. 0であることが確実に腐食抑制効果を発 現させる点で好ましぐ pHが 7. 4-8. 4であることがより好ましい。本発明による不凍 液は、水で希釈して使用するときに、さらに、プロピレングリコールの濃度が 65質量% 以下となるように希釈することが経済性の点で好ましい。
[0057] 本発明による不凍液の製造方法は、第 1中間生成物を調製するステップと第 2中間 生成物を調製するステップと不凍液を調製するステップとを備えて 、る。その第 1中 間生成物を調製するステップでは、プロピレングリコールに第 1物質と第 2物質と第 3 物質と第 4物質とが混合されて、第 1中間生成物が調製される。このとき、プロピレン グリコールに水酸ィ匕物を混合することもできる。さらに、プロピレングリコールにプロピ レンダリコールの濃度が 25質量%以下にならない量の水を混合することもできる。そ の第 2中間生成物を調製するステップでは、 pHが 7. 0-9. 0になるように、その第 1 中間生成物に水酸化物が添加されて、第 2中間生成物が調製される。その不凍液を 調製するステップでは、プロピレングリコールの濃度が 25質量0 /0以上 65質量0 /0以下 になるようにイオン交換水が添加されて、不凍液が調製される。
[0058] 不凍液は、 JIS K2234に規定される金属腐食性試験により、金属の腐食を抑制 する効果を評価することができる。その金属腐食性試験では、異種金属接続された 複数の試験片を 88 ± 2°Cの不凍液に 336時間浸漬し、その複数の試験片の単位表 面積当たりの質量変化量が求められる。その複数の試験片は、それぞれ、アルミニゥ ム铸物、铸鉄、鋼、黄銅、はんだ、銅から形成されている。不凍液は、その質量変化 量の絶対値が小さ 、ほど、金属を腐食させにくいと評価される。
[0059] 図面を参照して、本発明による不凍液の実施例に関して記載する。図 1は、比較例 1一 5の組成と比較例 1一 5の金属腐食性試験の結果とを示している。なお、図 1一図 7に記載される表に記載される試料 1は、プロピレングリコールを示している。試料 2は 、セバシン酸を示している。試料 3は、ゥンデカン二酸を示している。試料 4は、ドデカ ンニ酸を示している。試料 5は、トリメルカプト— s-トリアジンを示している。試料 6は、 チアベンダゾールを示している。試料 7は、 p—ヒドロキシ安息香酸を示している。試料 8は、 p—ァミノ安息香酸を示している。試料 9は、 p— tert ブチル安息香酸を示して いる。試料 10は、トルィル酸を示している。試料 11は、 60%硝酸を示している。試料 12は、水酸ィ匕カリウムを示している。試料 13は、イオン交換水を示している。試料 14 は、セバシン酸ナトリウムを示している。試料 15は、セバシン酸カリウムを示している。 試料 16は、セバシン酸アンモニゥムを示している。試料 17は、ゥンデカンニ酸ナトリ ゥムを示している。試料 18は、ドデカン二酸ナトリウムを示している。試料 19は、 P-ヒ ドロキシ安息香酸ナトリウムを示している。試料 20は、 p—ヒドロキシ安息香酸カリウム を示している。試料 21は、 p—ヒドロキシ安息香酸アンモ-ゥムを示している。試料 22 は、 p—ァミノ安息香酸ナトリウムを示している。試料 23は、 p— tert ブチル安息香酸 ナトリウムを示している。試料 24は、トルィル酸ナトリウムを示している。試料 25は、硝 酸ナトリウムを示している。試料 26は、硝酸カリウムを示している。試料 27は、硝酸ァ ンモ-ゥムを示している。
[0060] 比較例 1における不凍液は、プロピレングリコールに、 pHが 7. 8になるように試料 1 2が添加され、試料 1の濃度が 30質量%になるように試料 13が添加されている。
[0061] 比較例 1における不凍液は、金属腐食性試験によれば、アルミニウム铸物の質量変 化量が 1. 66mgZcmであり、铸鉄の質量変化量が 3. 12mgZcmであり、鋼の 八 >、 八 八ハ
ί変化量が 9. 94mgZcmであり、黄銅の質量変化量が 0. 09mgZcmであ り、はんだの質量変化量が 0. 96mgZcmであり、銅の質量変化量が 0. 09mg / cmである。
[0062] 比較例 2における不凍液は、プロピレングリコール 100質量部に対して、試料 5を 0 . 1質量部を含有している。比較例 2における不凍液は、さらに、 pHが 7. 8になるよう に試料 12が添加されている。試料 1の濃度が 30質量%になるように試料 13が添加さ れている。
[0063] 比較例 2における不凍液は、金属腐食性試験によれば、アルミニウム铸物の質量変 化量が 0. 64mgZcm2であり、铸鉄の質量変化量が 0. 68mgZcm2であり、鋼の 質量変化量が 1. 74mgZcm2であり、黄銅の質量変化量が 0. 07mgZcm2であ り、はんだの質量変化量が 0. 48mgZcm2であり、銅の質量変化量が 0. 05mg / cmである。
[0064] 比較例 3における不凍液は、プロピレングリコール 100質量部に対して、試料 2を 1 . 2質量部含有している。比較例 3における不凍液は、さらに、 pHが 7. 8になるように 試料 12が添加されている。試料 1の濃度が 30質量%になるように試料 13が添加され ている。
[0065] 比較例 3における不凍液は、金属腐食性試験によれば、アルミニウム铸物の質量変 化量が 1. 23mgZcm2であり、铸鉄の質量変化量が 0. 52mgZcm2であり、鋼の 質量変化量が 0. 31mgZcm2であり、黄銅の質量変化量が 0. lOmgZcm2であ り、はんだの質量変化量が 0. 33mgZcm2であり、銅の質量変化量が 0. l lmg / cmである。
[0066] 比較例 4における不凍液は、プロピレングリコール 100質量部に対して、試料 5を 0 . 1質量部、試料 7を 1. 0質量部、試料 11を 0. 5質量部含有している。比較例 4にお ける不凍液は、さらに、 pHが 7. 8になるように試料 12が添加されている。試料 1の濃 度が 30質量%になるように試料 13が添加されて 、る。
[0067] 比較例 4における不凍液は、金属腐食性試験によれば、アルミニウム铸物の質量変 化量が 0. 51mgZcm2であり、铸鉄の質量変化量が 0. 61mgZcm2であり、鋼の 質量変化量が 0. 42mgZcm2であり、黄銅の質量変化量が 0. 05mgZcm2であり 、はんだの質量変化量が 0. 53mgZcm2であり、銅の質量変化量が 0. 03mg/c m ;である。
[0068] 比較例 5における不凍液は、プロピレングリコール 100質量部に対して、試料 2を 1 . 2質量部、試料 7を 1. 0質量部、試料 11を 0. 5質量部含有している。比較例 5にお ける不凍液は、さらに、 pHが 7. 8になるように試料 12が添加されている。試料 1の濃 度が 30質量%になるように試料 13が添加されて 、る。
[0069] 比較例 5における不凍液は、金属腐食性試験によれば、アルミニウム铸物の質量変 化量が 0. 77mgZcm2であり、铸鉄の質量変化量が 0. 36mgZcm2であり、鋼の 質量変化量が 0. 25mgZcm2であり、黄銅の質量変化量が 0. 05mgZcm2であり 、はんだの質量変化量が 0. 15mgZcm2であり、銅の質量変化量が 0. 08mg/ cmである。
実施例 1
[0070] 図 2は、実施例 1一 9の組成と実施例 1一 9の金属腐食性試験の結果とを示している 。実施例 1における不凍液は、プロピレングリコール 100質量部に対して、試料 2を 0 . 2質量部、試料 5を 0. 1質量部含有している。実施例 1における不凍液は、さらに、 pHが 7. 8になるように試料 12が添加されている。試料 1の濃度が 30質量%になるよ うに試料 13が添加されて!、る。
[0071] 実施例 1における不凍液は、金属腐食性試験によれば、アルミニウム铸物の質量変 化量が 铸鉄の質量変化量ユが 八
0. 29mgZcmであり、 0. 15mgZcmであり、鋼の 質量変化量が 0. 09mgZcmであり、黄銅の質量変化量が 0. 03mgZcmであ り、はんだの質量変化量が 0. 27mgZcm2であり、銅の質量変化量が 0. 06mg Zcm2である。すなわち、試験結果は、実施例 1による不凍液が比較例 1一比較例 5 による不凍液より金属を腐食させにく 、ことを示して 、る。
実施例 2
[0072] 実施例 2における不凍液は、プロピレングリコール 100質量部に対して、試料 2を 0 . 5質量部、試料 5を 0. 1質量部含有している。実施例 2における不凍液は、さらに、 pHが 7. 8になるように試料 12が添加されている。試料 1の濃度が 30質量%になるよ うに試料 13が添加されて!、る。
[0073] 実施例 2における不凍液は、金属腐食性試験によれば、アルミニウム铸物の質量変 化量が 0. 27mgZcmであり、铸鉄の質量変化量が 0. 14mgZcmであり、鋼の
2. 質量変化量が 0. 07mgZcmであり、黄銅の質量変化量が 0. 04mgZcmであ り、はんだの質量変化量が 0. 20mgZcm2であり、銅の質量変化量が 0. 06mg Zcm2である。すなわち、試験結果は、実施例 2による不凍液が比較例 1一比較例 5 による不凍液より金属を腐食させにく 、ことを示して 、る。
実施例 3
[0074] 実施例 3における不凍液は、プロピレングリコール 100質量部に対して、試料 2を 1 . 2質量部、試料 5を 0. 1質量部含有している。実施例 3における不凍液は、さらに、 pHが 7. 8になるように試料 12が添加されている。試料 1の濃度が 30質量%になるよ うに試料 13が添加されて!、る。
[0075] 実施例 3における不凍液は、金属腐食性試験によれば、アルミニウム铸物の質量変 ィ匕量 0. 23が mgZcmであり、铸鉄の質量変化量が 0. 05mgZcmであり、鋼の
2. 質量変化量が 0. 02mgZcmであり、黄銅の質量変化量が 0. 04mgZcmであ り、はんだの質量変化量が 0. 15mgZcm2であり、銅の質量変化量が 0. 05mg Zcm2である。すなわち、試験結果は、実施例 3による不凍液が比較例 1一比較例 5 による不凍液より金属を腐食させにく 、ことを示して 、る。
実施例 4
[0076] 実施例 4における不凍液は、プロピレングリコール 100質量部に対して、試料 2を 2 . 0質量部、試料 5を 0. 1質量部含有している。実施例 4における不凍液は、さらに、 pHが 7. 8になるように試料 12が添加されている。試料 1の濃度が 30質量%になるよ うに試料 13が添加されて!、る。
[0077] 実施例 4における不凍液は、金属腐食性試験によれば、アルミニウム铸物の質量変
ハ >、 八 八!" 2— 化量が 0. 25mgZcmであり、铸鉄の質量変化量が 0. 05mgZcmであり、鋼の 質量変化量が 0. 02mgZcmであり、黄銅の質量変化量が 0. 03mgZcmであ り、はんだの質量変化量が 0. 17mgZcm2であり、銅の質量変化量が 0. 05mg Zcm2である。すなわち、試験結果は、実施例 4による不凍液が比較例 1一比較例 5 による不凍液より金属を腐食させにく 、ことを示して 、る。
実施例 5 [0078] 実施例 5における不凍液は、プロピレングリコール 100質量部に対して、試料 2を 4 . 0質量部、試料 5を 0. 1質量部含有している。実施例 5における不凍液は、さらに、 pHが 7. 8になるように試料 12が添加されている。試料 1の濃度が 30質量%になるよ うに試料 13が添加されて!、る。
[0079] 実施例 5における不凍液は、金属腐食性試験によれば、アルミニウム铸物の質量変 化量が 0. 20mgZcm2であり、铸鉄の質量変化量が 0. 04mgZcm2であり、鋼の 質量変化量が 0. 02mgZcm2であり、黄銅の質量変化量が 0. 05mgZcm2であ り、はんだの質量変化量が 0. 17mgZcm2であり、銅の質量変化量が 0. 05mg Zcm2である。すなわち、試験結果は、実施例 5による不凍液が比較例 1一比較例 5 による不凍液より金属を腐食させにく 、ことを示して 、る。
実施例 6
[0080] 実施例 6における不凍液は、プロピレングリコール 100質量部に対して、試料 2を 1 . 2質量部、試料 5を 0. 023質量部含有している。実施例 6における不凍液は、さら に、 pHが 7. 8になるように試料 12が添加されている。試料 1の濃度が 30質量%にな るように試料 13が添加されて 、る。
[0081] 実施例 6における不凍液は、金属腐食性試験によれば、アルミニウム铸物の質量変 化量が 0. 28mgZcmであり、铸鉄の質量変化量が 0. lOmgZcmであり、鋼の
2. 質量変化量が 0. 05mgZcmであり、黄銅の質量変化量が 0. 09mgZcmであ り、はんだの質量変化量が 0. 27mgZcm2であり、銅の質量変化量が 0. 13mg Zcm2である。すなわち、試験結果は、実施例 6による不凍液が比較例 1一比較例 5 による不凍液より金属を腐食させにく 、ことを示して 、る。
実施例 7
[0082] 実施例 7における不凍液は、プロピレングリコール 100質量部に対して、試料 2を 1 . 2質量部、試料 5を 0. 05質量部含有している。実施例 7における不凍液は、さらに 、 pHが 7. 8になるように試料 12が添加されている。試料 1の濃度が 30質量%になる ように試料 13が添加されて!、る。
[0083] 実施例 7における不凍液は、金属腐食性試験によれば、アルミニウム铸物の質量変 化量が 0. 25mgZcm2であり、铸鉄の質量変化量が 0. 08mgZcm2であり、鋼の 質量変化量が 0. 03mgZcmであり、黄銅の質量変化量が 0. 07mgZcmであ り、はんだの質量変化量が 0. 24mgZcmであり、銅の質量変化量が 0. 12mg Zcm2である。すなわち、試験結果は、実施例 7による不凍液が比較例 1 比較例 5 による不凍液より金属を腐食させにく 、ことを示して 、る。
実施例 8
[0084] 実施例 8における不凍液は、プロピレングリコール 100質量部に対して、試料 2を 1 . 2質量部、試料 5を 0. 2質量部含有している。実施例 8における不凍液は、さらに、 pHが 7. 8になるように試料 12が添加されている。試料 1の濃度が 30質量%になるよ うに試料 13が添加されて!、る。
[0085] 実施例 8における不凍液は、金属腐食性試験によれば、アルミニウム铸物の質量変 化量が 0. 22mgZcmであり、铸鉄の質量変化量が 0. 08mgZcmであり、鋼の 質量変化量が 0. 03mgZcmであり、黄銅の質量変化量が 0. 05mgZcmであ り、はんだの質量変化量が 0. 16mgZcm2であり、銅の質量変化量が 0. 08mg Zcm2である。すなわち、試験結果は、実施例 8による不凍液が比較例 1 比較例 5 による不凍液より金属を腐食させにく 、ことを示して 、る。
実施例 9
[0086] 実施例 9における不凍液は、プロピレングリコール 100質量部に対して、試料 2を 1 . 2質量部、試料 5を 0. 35質量部含有している。実施例 9における不凍液は、さらに pHが 7. 8になるように試料 12が添加されている。試料 1の濃度が 30質量%になる ように試料 13が添加されて!、る。
[0087] 実施例 9における不凍液は、金属腐食性試験によれば、アルミニウム铸物の質量変 化量が 0. 18mgZcmであり、铸鉄の質量変化量が 0. 06mgZcmであり、鋼の 質量変化量が 0. 02mgZcmであり、黄銅の質量変化量が 0. 02mgZcmであ り、はんだの質量変化量が 0. 16mgZcm2であり、銅の質量変化量が 0. 03mg Zcm2である。すなわち、試験結果は、実施例 9による不凍液が比較例 1 比較例 5 による不凍液より金属を腐食させにく 、ことを示して 、る。
実施例 10
[0088] 図 3は、実施例 10— 19の組成と実施例 10— 19の金属腐食性試験の結果とを示し ている。実施例 10における不凍液は、プロピレングリコール 100質量部に対して、試 料 3を 1. 2質量部、試料 5を 0. 1質量部含有している。実施例 10における不凍液は 、さらに、 pHが 7. 8になるように試料 12が添加されている。試料 1の濃度が 30質量 %になるように試料 13が添加されて!、る。
[0089] 実施例 10における不凍液は、金属腐食性試験によれば、アルミニウム铸物の質量 変化量が 0. 24mgZcmであり、铸鉄の質量変化量が 0. 06mgZcmであり、鋼 の質量変化量が 0. 02mgZcm2であり、黄銅の質量変化量が 0. 05mgZcm2で あり、はんだの質量変化量が 0. 19mgZcm2であり、銅の質量変化量が 0. 07m gZcm2である。すなわち、試験結果は、実施例 10による不凍液が比較例 1 比較 例 5による不凍液より金属を腐食させにく 、ことを示して 、る。
実施例 11
[0090] 実施例 11における不凍液は、プロピレングリコール 100質量部に対して、試料 4を 1. 2質量部、試料 5を 0. 1質量部含有している。実施例 11における不凍液は、さら に、 pHが 7. 8になるように試料 12が添加されている。試料 1の濃度が 30質量%にな るように試料 13が添加されて 、る。
[0091] 実施例 11における不凍液は、金属腐食性試験によれば、アルミニウム铸物の質量 変化量が 0. 28mgZcmであり、铸鉄の質量変化量が 0. 08mgZcmであり、鋼 の質量変化量が ^n
0. 03mgZcnTであり、黄銅の質量変化量が 0. 04mgZcnTで あり、はんだの質量変化量が 0. 18mgZcm2であり、銅の質量変化量が 0. 09m gZcm2である。すなわち、試験結果は、実施例 11による不凍液が比較例 1 比較 例 5による不凍液より金属を腐食させにく 、ことを示して 、る。
実施例 12
[0092] 実施例 12における不凍液は、プロピレングリコール 100質量部に対して、試料 2を 0. 6質量部、試料 3を 0. 6質量部、試料 5を 0. 1質量部含有している。実施例 12に おける不凍液は、さらに、 pHが 7. 8になるように試料 12が添加されている。試料 1の 濃度が 30質量%になるように試料 13が添加されて 、る。
[0093] 実施例 12における不凍液は、金属腐食性試験によれば、アルミニウム铸物の質量 変化量が 0. 24mgZcm2であり、铸鉄の質量変化量が 0. 07mgZcm2であり、鋼 の質量変化量が 0. 04mgZcmであり、黄銅の質量変化量が 0. 04mgZcmで あり、はんだの質量変化量が 0. 17mgZcmであり、銅の質量変化量が 0. 05m gZcm2である。すなわち、試験結果は、実施例 12による不凍液が比較例 1一比較 例 5による不凍液より金属を腐食させにく 、ことを示して 、る。
実施例 13
[0094] 実施例 13における不凍液は、プロピレングリコール 100質量部に対して、試料 3を 0. 6質量部、試料 4を 0. 6質量部、試料 5を 0. 1質量部含有している。実施例 13に おける不凍液は、さらに、 ρΗが 7. 8になるように試料 12が添加されている。試料 1の 濃度が 30質量%になるように試料 13が添加されて 、る。
[0095] 実施例 13における不凍液は、金属腐食性試験によれば、アルミニウム铸物の質量 変化量が 0. 26mgZcmであり、铸鉄の質量変化量が 0. 08mgZcmであり、鋼 の質量変化量が 0. 04mgZcnTであり、黄銅の質量変化量が—0. 05mgZcnTで あり、はんだの質量変化量が 0. 18mgZcm2であり、銅の質量変化量が 0. 09m gZcm2である。すなわち、試験結果は、実施例 13による不凍液が比較例 1一比較 例 5による不凍液より金属を腐食させにく 、ことを示して 、る。
実施例 14
[0096] 実施例 14における不凍液は、プロピレングリコール 100質量部に対して、試料 2を 0. 6質量部、試料 4を 0. 6質量部、試料 5を 0. 1質量部含有している。実施例 14に おける不凍液は、さらに、 ρΗが 7. 8になるように試料 12が添加されている。試料 1の 濃度が 30質量%になるように試料 13が添加されて 、る。
[0097] 実施例 14における不凍液は、金属腐食性試験によれば、アルミニウム铸物の質量 変化量が 0. 25mgZcmであり、铸鉄の質量変化量が 0. 08mgZcmであり、鋼 の質量変化量が 0. 04mgZcnTであり、黄銅の質量変化量が—0. 04mgZcnTで あり、はんだの質量変化量が 0. 19mgZcm2であり、銅の質量変化量が 0. 08m gZcm2である。すなわち、試験結果は、実施例 14による不凍液が比較例 1一比較 例 5による不凍液より金属を腐食させにく 、ことを示して 、る。
実施例 15
[0098] 実施例 15における不凍液は、プロピレングリコール 100質量部に対して、試料 2を 0. 4質量部、試料 3を 0. 4質量部、試料 4を 0. 4質量部、試料 5を 0. 1質量部含有し ている。実施例 15における不凍液は、さらに、 pHが 7. 8になるように試料 12が添カロ されている。試料 1の濃度が 30質量%になるように試料 13が添加されている。
[0099] 実施例 15における不凍液は、金属腐食性試験によれば、アルミニウム铸物の質量 変化量が 0. 25mgZcmであり、铸鉄の質量変化量が 0. 08mgZcmであり、鋼 の質量変化量が 0. 03mgZcnTであり、黄銅の質量変化量が 0. 04mgZcnTで あり、はんだの質量変化量が 0. 18mgZcm2であり、銅の質量変化量が 0. 09m gZcm2である。すなわち、試験結果は、実施例 15による不凍液が比較例 1 比較 例 5による不凍液より金属を腐食させにく 、ことを示して 、る。
実施例 16
[0100] 実施例 16における不凍液は、プロピレングリコール 100質量部に対して、試料 2を 1. 2質量部、試料 6を 0. 07質量部含有している。実施例 16における不凍液は、さら に、 pHが 7. 8になるように試料 12が添加されている。試料 1の濃度が 30質量%にな るように試料 13が添加されて 、る。
[0101] 実施例 16における不凍液は、金属腐食性試験によれば、アルミニウム铸物の質量 変化量が 0. 28mgZcmであり、铸鉄の質量変化量が 0. 12mgZcmであり、鋼 の質量変化量が 0. 08mgZcnTであり、黄銅の質量変化量が—0. 12mgZcnTで あり、はんだの質量変化量が 0. 29mgZcm2であり、銅の質量変化量が 0. 15m gZcm2である。すなわち、試験結果は、実施例 16による不凍液が比較例 1 比較 例 5による不凍液より金属を腐食させにく 、ことを示して 、る。
実施例 17
[0102] 実施例 17における不凍液は、プロピレングリコール 100質量部に対して、試料 2を 1. 2質量部、試料 6を 0. 5質量部含有している。実施例 17における不凍液は、さら に、 pHが 7. 8になるように試料 12が添加されている。試料 1の濃度が 30質量%にな るように試料 13が添加されて 、る。
[0103] 実施例 17における不凍液は、金属腐食性試験によれば、アルミニウム铸物の質量 変化量が 0. 28mgZcmであり、铸鉄の質量変化量が 0. 05mgZcmであり、鋼 の質量変化量が り、黄^銅Δηの^質κ^
0. 05mgZcnTであ 量変化量が 0. 09mgZcnTで あり、はんだの質量変化量が 0. 27mgZcm2であり、銅の質量変化量が 0. 12m gZcm2である。すなわち、試験結果は、実施例 17による不凍液が比較例 1一比較 例 5による不凍液より金属を腐食させにく 、ことを示して 、る。
実施例 18
[0104] 実施例 18における不凍液は、プロピレングリコール 100質量部に対して、試料 2を 1. 2質量部、試料 6を 1. 0質量部含有している。実施例 18における不凍液は、さら に、 pHが 7. 8になるように試料 12が添加されている。試料 1の濃度が 30質量%にな るように試料 13が添加されて 、る。
[0105] 実施例 18における不凍液は、金属腐食性試験によれば、アルミニウム铸物の質量 変化量が 0. 21mgZcmであり、铸鉄の質量変化量が 0. 08mgZcmであり、鋼 の質量変化量が 0. 03mgZcnTであり、黄銅の質量変化量が 0. 05mgZcnTで あり、はんだの質量変化量が 0. 15mgZcm2であり、銅の質量変化量 0. 08が m gZcm2である。すなわち、試験結果は、実施例 18による不凍液が比較例 1一比較 例 5による不凍液より金属を腐食させにく 、ことを示して 、る。
実施例 19
[0106] 実施例 19における不凍液は、プロピレングリコール 100質量部に対して、試料 2を 1. 2質量部、試料 5を 0. 08質量部、試料 6を 0. 3質量部含有している。実施例 19に おける不凍液は、さらに、 ρΗが 7. 8になるように試料 12が添加されている。試料 1の 濃度が 30質量%になるように試料 13が添加されて 、る。
[0107] 実施例 19における不凍液は、金属腐食性試験によれば、アルミニウム铸物の質量 変化量が 0. 19mgZcmであり、铸鉄の質量変化量が 0. 09mgZcmであり、鋼 の質量変化量が 0. 03mgZcnTであり、黄銅の質量変化量が 0. 04mgZcnTで あり、はんだの質量変化量が 0. 14mgZcm2であり、銅の質量変化量が 0. 07m gZcm2である。すなわち、試験結果は、実施例 19による不凍液が比較例 1一比較 例 5による不凍液より金属を腐食させにく 、ことを示して 、る。
実施例 20
[0108] 図 4は、実施例 20— 29の組成と実施例 20— 29の金属腐食性試験の結果とを示し ている。実施例 20における不凍液は、プロピレングリコール 100質量部に対して、試 料 2を 1. 2質量部、試料 5を 0. 1質量部、試料 7を 0. 05質量部含有している。実施 例 20における不凍液は、さらに、 pHが 7. 8になるように試料 12が添加されている。 試料 1の濃度が 30質量0 /0になるように試料 13が添加されて 、る。
[0109] 実施例 20における不凍液は、金属腐食性試験によれば、アルミニウム铸物の質量 変化量が 0. 19mgZcmであり、铸鉄の質量変化量が 0. 04mgZcmであり、鋼 の質量変化量が 0. OlmgZcnTであり、黄銅の質量変化量が 0. 04mgZcnTで あり、はんだの質量変化量が 0. 15mgZcm2であり、銅の質量変化量が 0. 05m gZcm2である。すなわち、試験結果は、実施例 20による不凍液が比較例 1 比較 例 5による不凍液より金属を腐食させにく 、ことを示して 、る。
実施例 21
[0110] 実施例 21における不凍液は、プロピレングリコール 100質量部に対して、試料 2を 1. 2質量部、試料 5を 0. 1質量部、試料 7を 1. 0質量部含有している。実施例 21に おける不凍液は、さらに、 ρΗが 7. 8になるように試料 12が添加されている。試料 1の 濃度が 30質量%になるように試料 13が添加されて 、る。
[0111] 実施例 21における不凍液は、金属腐食性試験によれば、アルミニウム铸物の質量 変化量が 0. lOmgZcmであり、铸鉄の質量変化量が 0. 09mgZcmであり、鋼 の質量変化量が 0. 02mgZcmであり、黄銅の質量変化量カ 0. 02mgZcmであ り、はんだの質量変化量が 0. 12mgZcm2であり、銅の質量変化量が 0. 03mg Zcm2である。すなわち、試験結果は、実施例 21による不凍液が比較例 1 比較例 5による不凍液より金属を腐食させにく 、ことを示して 、る。
実施例 22
[0112] 実施例 22における不凍液は、プロピレングリコール 100質量部に対して、試料 2を 1. 2質量部、試料 5を 0. 1質量部、試料 7を 3. 0質量部含有している。実施例 22に おける不凍液は、さらに、 ρΗが 7. 8になるように試料 12が添加されている。試料 1の 濃度が 30質量%になるように試料 13が添加されて 、る。
[0113] 実施例 22における不凍液は、金属腐食性試験によれば、アルミニウム铸物の質量 変化量が 0. 15mgZcmであり、铸鉄の質量変化量が 0. lOmgZcmであり、鋼 の質量変化量が 0. 03mgZcnTであり、黄銅の質量変化量が 0. 04mgZcnTで あり、はんだの質量変化量が 0. 14mgZcm2であり、銅の質量変化量が 0. 05m gZcm2である。すなわち、試験結果は、実施例 22による不凍液が比較例 1 比較 例 5による不凍液より金属を腐食させにく 、ことを示して 、る。
実施例 23
[0114] 実施例 23における不凍液は、プロピレングリコール 100質量部に対して、試料 2を 1. 2質量部、試料 5を 0. 1質量部、試料 8を 1. 0質量部含有している。実施例 23に おける不凍液は、さらに、 ρΗが 7. 8になるように試料 12が添加されている。試料 1の 濃度が 30質量%になるように試料 13が添加されて 、る。
[0115] 実施例 23における不凍液は、金属腐食性試験によれば、アルミニウム铸物の質量 変化量が 0. 07mgZcmであり、铸鉄の質量変化量が 0. 02mgZcmであり、鋼 の質量変化量が 0. OlmgZcnTであり、黄銅の質量変化量が 0. 03mgZcnTで あり、はんだの質量変化量が 0. l lmgZcm2であり、銅の質量変化量が 0. 04m gZcm2である。すなわち、試験結果は、実施例 23による不凍液が比較例 1 比較 例 5による不凍液より金属を腐食させにく 、ことを示して 、る。
実施例 24
[0116] 実施例 24における不凍液は、プロピレングリコール 100質量部に対して、試料 2を 1. 2質量部、試料 5を 0. 1質量部、試料 9を 1. 0質量部含有している。実施例 24に おける不凍液は、さらに、 ρΗが 7. 8になるように試料 12が添加されている。試料 1の 濃度が 30質量%になるように試料 13が添加されて 、る。
[0117] 実施例 24における不凍液は、金属腐食性試験によれば、アルミニウム铸物の質量 変化量が 0. 09mgZcmであり、铸鉄の質量変化量が 0. 07mgZcmであり、鋼 の質量変化量が 0. 02mgZcnTであり、黄銅の質量変化量が 0. 02mgZcnTで あり、はんだの質量変化量が 0. lOmgZcm2であり、銅の質量変化量が 0. 04m gZcm2である。すなわち、試験結果は、実施例 24による不凍液が比較例 1 比較 例 5による不凍液より金属を腐食させにく 、ことを示して 、る。
実施例 25
[0118] 実施例 25における不凍液は、プロピレングリコール 100質量部に対して、試料 2を 1. 2質量部、試料 5を 0. 1質量部、試料 10を 1. 0質量部含有している。実施例 25に おける不凍液は、さらに、 ρΗが 7. 8になるように試料 12が添加されている。試料 1の 濃度が 30質量%になるように試料 13が添加されて 、る。
[0119] 実施例 25における不凍液は、金属腐食性試験によれば、アルミニウム铸物の質量 変化量が 0. 09mgZcmであり、铸鉄の質量変化量が 0. 07mgZcmであり、鋼 の質量変化量が 0. OOmgZcnTであり、黄銅の質量変化量が 0. 02mgZcnTであ り、はんだの質量変化量が 0. lOmgZcm2であり、銅の質量変化量 0. 04が mg Zcm2である。すなわち、試験結果は、実施例 25による不凍液が比較例 1 比較例 5による不凍液より金属を腐食させにく 、ことを示して 、る。
実施例 26
[0120] 実施例 26における不凍液は、プロピレングリコール 100質量部に対して、試料 2を 1. 2質量部、試料 5を 0. 1質量部、試料 11を 0. 05質量部含有している。実施例 26 における不凍液は、さらに、 pHが 7. 8になるように試料 12が添加されている。試料 1 の濃度が 30質量0 /0になるように試料 13が添加されて 、る。
[0121] 実施例 26における不凍液は、金属腐食性試験によれば、アルミニウム铸物の質量 変化量が 0. 07mgZcmであり、铸鉄の質量変化量が 0. 05mgZcmであり、鋼
^Δη ^ κ^
の質量変化量が 0. 02mgZcnTであり、黄銅の質量変化量が 0. 02mgZcnTで あり、はんだの質量変化量が 0. 08mgZcm2であり、銅の質量変化量が 0. 03m gZcm2である。すなわち、試験結果は、実施例 26による不凍液が比較例 1 比較 例 5による不凍液より金属を腐食させにく 、ことを示して 、る。
実施例 27
[0122] 実施例 27における不凍液は、プロピレングリコール 100質量部に対して、試料 2を 1. 2質量部、試料 5を 0. 1質量部、試料 11を 0. 5質量部含有している。実施例 27に おける不凍液は、さらに、 ρΗが 7. 8になるように試料 12が添加されている。試料 1の 濃度が 30質量%になるように試料 13が添加されて 、る。
[0123] 実施例 27における不凍液は、金属腐食性試験によれば、アルミニウム铸物の質量 変化量が 0. 09mgZcmであり、铸鉄の質量変化量が 0. 03mgZcmであり、鋼 の質量変化量が 0. OOmgZcmであり、黄銅の質量変化量が 0. 02mgZcmであ り、はんだの質量変化量が 0. 08mgZcm2であり、銅の質量変化量が 0. 03mg Zcm2である。すなわち、試験結果は、実施例 27による不凍液が比較例 1一比較例 5による不凍液より金属を腐食させにく 、ことを示して 、る。
実施例 28
[0124] 実施例 28における不凍液は、プロピレングリコール 100質量部に対して、試料 2を 1. 2質量部、試料 5を 0. 1質量部、試料 11を 0. 9質量部含有している。実施例 28に おける不凍液は、さらに、 ρΗが 7. 8になるように試料 12が添加されている。試料 1の 濃度が 30質量%になるように試料 13が添加されて 、る。
[0125] 実施例 28における不凍液は、金属腐食性試験によれば、アルミニウム铸物の質量 変化量が 0. 12mgZcmであり、铸鉄の質量変化量が 0. lOmgZcmであり、鋼 の質量変化量が 0. 02mgZcnTであり、黄銅の質量変化量が 0. OlmgZcnTで あり、はんだの質量変化量が 0. 08mgZcm2であり、銅の質量変化量が 0. 02m gZcm2である。すなわち、試験結果は、実施例 28による不凍液が比較例 1一比較 例 5による不凍液より金属を腐食させにく 、ことを示して 、る。
実施例 29
[0126] 実施例 29における不凍液は、プロピレングリコール 100質量部に対して、試料 2を 1. 2質量部、試料 5を 0. 1質量部、試料 7を 1. 0質量部、試料 11を 0. 5質量部含有 している。実施例 29における不凍液は、さらに、 pHが 7. 8になるように試料 12が添 カロされている。試料 1の濃度が 30質量%になるように試料 13が添加されている。
[0127] 実施例 29における不凍液は、金属腐食性試験によれば、アルミニウム铸物の質量 変化量が 0. OlmgZcmであり、铸鉄の質量変化量が 0. 03mgZcmであり、鋼 の質量変化量が 0. OOmgZcmであり、黄銅の質量変化量が 0. OlmgZcnTであ り、はんだの質量変化量が 0. 08mgZcm2であり、銅の質量変化量が 0. 02mg Zcm2である。すなわち、試験結果は、実施例 29による不凍液が比較例 1一比較例 5による不凍液より金属を腐食させにく 、ことを示して 、る。
実施例 30
[0128] 図 5は、実施例 30— 35の組成と実施例 30— 35の金属腐食性試験の結果とを示し ている。実施例 30における不凍液は、プロピレングリコール 100質量部に対して、試 料 14を 1. 2質量部、試料 5を 0. 1質量部含有している。実施例 30における不凍液 は、さらに、 pHが 7. 8になるように試料 12が添加されている。試料 1の濃度が 30質 量%になるように試料 13が添加されて!、る。
[0129] 実施例 30における不凍液は、金属腐食性試験によれば、アルミニウム铸物の質舅 変化量が 0. 26mgZcmであり、铸鉄の質量変化量が 0. 07mgZcmであり、鋼 の質量変化量が 0. 03mgZcnTであり、黄銅の質量変化量が 0. 06mgZcnTで あり、はんだの質量変化量が 0. 21mgZcm2であり、銅の質量変化量が 0. 09m gZcm2である。すなわち、試験結果は、実施例 30による不凍液が比較例 1 比較 例 5による不凍液より金属を腐食させにく 、ことを示して 、る。
実施例 31
[0130] 実施例 31における不凍液は、プロピレングリコール 100質量部に対して、試料 15 を 1. 2質量部、試料 5を 0. 1質量部含有している。実施例 31における不凍液は、さら に、 pHが 7. 8になるように試料 12が添加されている。試料 1の濃度が 30質量%にな るように試料 13が添加されて 、る。
[0131] 実施例 31における不凍液は、金属腐食性試験によれば、アルミニウム铸物の質量 変化量が 0. 25mgZcmであり、铸鉄の質量変化量が 0. 08mgZcmであり、鋼 の質量変化量が 0. 05mgZcnTであり、黄銅の質量変化量が 0. 04mgZcnTで あり、はんだの質量変化量が 0. 17mgZcm2であり、銅の質量変化量が 0. 08m gZcm2である。すなわち、試験結果は、実施例 31による不凍液が比較例 1 比較 例 5による不凍液より金属を腐食させにく 、ことを示して 、る。
実施例 32
[0132] 実施例 32における不凍液は、プロピレングリコール 100質量部に対して、試料 16 を 1. 2質量部、試料 5を 0. 1質量部含有している。実施例 32における不凍液は、さら に、 pHが 7. 8になるように試料 12が添加されている。試料 1の濃度が 30質量%にな るように試料 13が添加されて 、る。
[0133] 実施例 32における不凍液は、金属腐食性試験によれば、アルミニウム铸物の質量 変化量が 0. 25mgZcmであり、铸鉄の質量変化量が 0. 14mgZcmであり、鋼 の質量変化量が 0. l lmgZcmであり、黄銅の質量変化量カ 0. 02mgZcmで あり、はんだの質量変化量が 0. lOmgZcm2であり、銅の質量変化量が 0. 04m gZcm2である。すなわち、試験結果は、実施例 32による不凍液が比較例 1一比較 例 5による不凍液より金属を腐食させにく 、ことを示して 、る。
実施例 33
[0134] 実施例 33における不凍液は、プロピレングリコール 100質量部に対して、試料 17 を 1. 2質量部、試料 5を 0. 1質量部含有している。実施例 33における不凍液は、さら に、 pHが 7. 8になるように試料 12が添加されている。試料 1の濃度が 30質量%にな るように試料 13が添加されて 、る。
[0135] 実施例 33における不凍液は、金属腐食性試験によれば、アルミニウム铸物の質量 変化量が 0. 28mgZcmであり、铸鉄の質量変化量が 0. 07mgZcmであり、鋼 の質量変化量が 0. 03mgZcnTであり、黄銅の質量変化量が 0. 04mgZcnTで あり、はんだの質量変化量が 0. 15mgZcm2であり、銅の質量変化量が 0. 09m gZcm2である。すなわち、試験結果は、実施例 33による不凍液が比較例 1一比較 例 5による不凍液より金属を腐食させにく 、ことを示して 、る。
実施例 34
[0136] 実施例 34における不凍液は、プロピレングリコール 100質量部に対して、試料 18 を 1. 2質量部、試料 5を 0. 1質量部含有している。実施例 34における不凍液は、さら に、 pHが 7. 8になるように試料 12が添加されている。試料 1の濃度が 30質量%にな るように試料 13が添加されて 、る。
[0137] 実施例 34における不凍液は、金属腐食性試験によれば、アルミニウム铸物の質量 変化量が 0. 28mgZcmであり、铸鉄の質量変化量が 0. 09mgZcmであり、鋼 の質量変化量が 0. 05mgZcnTであり、黄銅の質量変化量が 0. 05mgZcnTで あり、はんだの質量変化量が 0. 17mgZcm2であり、銅の質量変化量が 0. 11m gZcm2である。すなわち、試験結果は、実施例 34による不凍液が比較例 1一比較 例 5による不凍液より金属を腐食させにく 、ことを示して 、る。
実施例 35
[0138] 実施例 35における不凍液は、プロピレングリコール 100質量部に対して、試料 2を 0. 6質量部、試料 14を 0. 6質量部、試料 5を 0. 1質量部含有している。実施例 35に おける不凍液は、さらに、 pHが 7. 8になるように試料 12が添加されている。試料 1の 濃度が 30質量%になるように試料 13が添加されて 、る。
[0139] 実施例 35における不凍液は、金属腐食性試験によれば、アルミニウム铸物の質』 変化量が 0. 21mgZcmであり、铸鉄の質量変化量が 0. lOmgZcmであり、鋼 の質量変化量が 0. 04mgZcnTであり、黄銅の質量変化量が 0. 05mgZcmで あり、はんだの質量変化量が 0. 14mgZcm2であり、銅の質量変化量が 0. 10m gZcm2である。すなわち、試験結果は、実施例 35による不凍液が比較例 1 比較 例 5による不凍液より金属を腐食させにく 、ことを示して 、る。
実施例 36
[0140] 図 6は、実施例 36 42の組成と実施例 36 42の金属腐食性試験の結果とを示し ている。実施例 36における不凍液は、プロピレングリコール 100質量部に対して、試 料 2を 1. 2質量部、試料 5を 0. 1質量部、試料 19を 1. 0質量部含有している。実施 例 36における不凍液は、さらに、 pHが 7. 8になるように試料 12が添加されている。 試料 1の濃度が 30質量0 /0になるように試料 13が添加されて 、る。
[0141] 実施例 36における不凍液は、金属腐食性試験によれば、アルミニウム铸物の質量 変化量が 0. lOmgZcmであり、铸鉄の質量変化量が 0. 07mgZcmであり、鋼 の質量変化量が ^銅Δηの^質κ^量変化量が 2,
0. 02mgZcnTであり、黄 0. 03mgZcmで あり、はんだの質量変化量が 0. 15mgZcm2であり、銅の質量変化量が 0. 05m gZcm2である。すなわち、試験結果は、実施例 36による不凍液が比較例 1 比較 例 5による不凍液より金属を腐食させにく 、ことを示して 、る。
実施例 37
[0142] 実施例 37における不凍液は、プロピレングリコール 100質量部に対して、試料 2を 1. 2質量部、試料 5を 0. 1質量部、試料 20を 1. 0質量部含有している。実施例 37に おける不凍液は、さらに、 ρΗが 7. 8になるように試料 12が添加されている。試料 1の 濃度が 30質量%になるように試料 13が添加されて 、る。
[0143] 実施例 37における不凍液は、金属腐食性試験によれば、アルミニウム铸物の質量 変化量が 0. 09mgZcmであり、铸鉄の質量変化量が 0. 07mgZcmであり、鋼 の質量変化量が であり、黄銅^n
0. 03mgZcnT の質量変化量が 0. 02mgZcnTで あり、はんだの質量変化量が 0. lOmgZcm2であり、銅の質量変化量が 0. 04m gZcm2である。すなわち、試験結果は、実施例 37による不凍液が比較例 1一比較 例 5による不凍液より金属を腐食させにく 、ことを示して 、る。
実施例 38
[0144] 実施例 38における不凍液は、プロピレングリコール 100質量部に対して、試料 2を 1. 2質量部、試料 5を 0. 1質量部、試料 21を 1. 0質量部含有している。実施例 38に おける不凍液は、さらに、 ρΗが 7. 8になるように試料 12が添加されている。試料 1の 濃度が 30質量%になるように試料 13が添加されて 、る。
[0145] 実施例 38における不凍液は、金属腐食性試験によれば、アルミニウム铸物の質量 変化量が 0. lOmgZcmであり、铸鉄の質量変化量が 0. 09mgZcmであり、鋼 の質量変化量が 0. 04mgZcm2であり、黄銅の質量変化量が 0. OOmgZcm2であ り、はんだの質量変化量が 0. lOmgZcm2であり、銅の質量変化量が 0. 02mg Zcm2である。すなわち、試験結果は、実施例 38による不凍液が比較例 1一比較例 5による不凍液より金属を腐食させにく 、ことを示して 、る。
実施例 39
[0146] 実施例 39における不凍液は、プロピレングリコール 100質量部に対して、試料 2を 1. 2質量部、試料 5を 0. 1質量部、試料 22を 1. 0質量部含有している。実施例 39に おける不凍液は、さらに、 ρΗが 7. 8になるように試料 12が添加されている。試料 1の 濃度が 30質量%になるように試料 13が添加されて 、る。
[0147] 実施例 39における不凍液は、金属腐食性試験によれば、アルミニウム铸物の質量 変化量が 0. 12mgZcmであり、铸鉄の質量変化量が 0. 08mgZcmであり、鋼 の質量変化量が であ?りハ、黄銅の質量変化量が>、 八 八
0. 02mgZcnT 0. 03mgZcnTで あり、はんだの質量変化量が 0. 16mgZcm2であり、銅の質量変化量が 0. 05m gZcm2である。すなわち、試験結果は、実施例 39による不凍液が比較例 1一比較 例 5による不凍液より金属を腐食させにく 、ことを示して 、る。
実施例 40
[0148] 実施例 40における不凍液は、プロピレングリコール 100質量部に対して、試料 2を 1. 2質量部、試料 5を 0. 1質量部、試料 23を 1. 0質量部含有している。実施例 40に おける不凍液は、さらに、 ρΗが 7. 8になるように試料 12が添加されている。試料 1の 濃度が 30質量%になるように試料 13が添加されて 、る。
[0149] 実施例 40における不凍液は、金属腐食性試験によれば、アルミニウム铸物の質』 変化量が 0. lOmgZcmであり、铸鉄の質量変化量が 0. 07mgZcmであり、鋼 の質量変化量が 0. 03mgZcnTであり、黄銅の質量変化量が 0. 03mgZcmで あり、はんだの質量変化量が 0. 09mgZcm2であり、銅の質量変化量が 0. 05m gZcm2である。すなわち、試験結果は、実施例 40による不凍液が比較例 1 比較 例 5による不凍液より金属を腐食させにく 、ことを示して 、る。
実施例 41
[0150] 実施例 41における不凍液は、プロピレングリコール 100質量部に対して、試料 2を 1. 2質量部、試料 5を 0. 1質量部、試料 24を 1. 0質量部含有している。実施例 41に おける不凍液は、さらに、 ρΗが 7. 8になるように試料 12が添加されている。試料 1の 濃度が 30質量%になるように試料 13が添加されて 、る。
[0151] 実施例 41における不凍液は、金属腐食性試験によれば、アルミニウム铸物の質量 変化量が 0. 09mgZcmであり、铸鉄の質量変化量が 0. 06mgZcmであり、鋼 の質量変化量が あり、黄^銅Δηの^質κ^量変化量が 2,
0. OlmgZcnTで 0. 03mgZcnTで あり、はんだの質量変化量が 0. l lmgZcm2であり、銅の質量変化量が 0. 05m gZcm2である。すなわち、試験結果は、実施例 41による不凍液が比較例 1 比較 例 5による不凍液より金属を腐食させにく 、ことを示して 、る。
実施例 42
[0152] 実施例 42における不凍液は、プロピレングリコール 100質量部に対して、試料 2を 1. 2質量部、試料 5を 0. 1質量部、試料 7を 0. 05質量部、試料 19を 0. 05質量部含 有している。実施例 42における不凍液は、さらに、 pHが 7. 8になるように試料 12が 添加されている。試料 1の濃度が 30質量%になるように試料 13が添加されている。
[0153] 実施例 42における不凍液は、金属腐食性試験によれば、アルミニウム铸物の質量 変化量が 0. 09mgZcmであり、铸鉄の質量変化量が 0. 08mgZcmであり、鋼 の質量変化量が ^Δη ^ κ^ 2,
0. 03mgZcnTであり、黄銅の質量変化量が 0. 03mgZcnTで あり、はんだの質量変化量が 0. 16mgZcm2であり、銅の質量変化量が 0. 06m gZcm2である。すなわち、試験結果は、実施例 42による不凍液が比較例 1 比較 例 5による不凍液より金属を腐食させにく 、ことを示して 、る。
実施例 43
[0154] 図 7は、実施例 43— 50の組成と実施例 43— 50の金属腐食性試験の結果とを示し ている。実施例 43における不凍液は、プロピレングリコール 100質量部に対して、試 料 2を 1. 2質量部、試料 5を 0. 1質量部、試料 25を 0. 5質量部含有している。実施 例 43における不凍液は、さらに、 pHが 7. 8になるように試料 12が添加されている。 試料 1の濃度が 30質量0 /0になるように試料 13が添加されて 、る。
[0155] 実施例 43における不凍液は、金属腐食性試験によれば、アルミニウム铸物の質量 変化量が 0. lOmgZcmであり、铸鉄の質量変化量が 0. 04mgZcmであり、鋼 の質量変化量が 0. OlmgZcnTであり、黄銅の質量変化量が 0. 02mgZcnTで あり、はんだの質量変化量が 0. 07mgZcm2であり、銅の質量変化量が 0. 04m gZcm2である。すなわち、試験結果は、実施例 43による不凍液が比較例 1 比較 例 5による不凍液より金属を腐食させにく 、ことを示して 、る。
実施例 44
[0156] 実施例 44における不凍液は、プロピレングリコール 100質量部に対して、試料 2を 1. 2質量部、試料 5を 0. 1質量部、試料 26を 0. 5質量部含有している。実施例 44に おける不凍液は、さらに、 ρΗが 7. 8になるように試料 12が添加されている。試料 1の 濃度が 30質量%になるように試料 13が添加されて 、る。
[0157] 実施例 44における不凍液は、金属腐食性試験によれば、アルミニウム铸物の質量 変化量が 0. 09mgZcmであり、铸鉄の質量変化量が 0. 05mgZcmであり、鋼 の質量変化量が 0. 03mgZcnTであり、黄銅の質量変化量が 0. 03mgZcnTで あり、はんだの質量変化量が 0. 06mgZcm2であり、銅の質量変化量が 0. 05m gZcm2である。すなわち、試験結果は、実施例 44による不凍液が比較例 1 比較 例 5による不凍液より金属を腐食させにく 、ことを示して 、る。
実施例 45
[0158] 実施例 45における不凍液は、プロピレングリコール 100質量部に対して、試料 2を 1. 2質量部、試料 5を 0. 1質量部、試料 27を 0. 5質量部含有している。実施例 45に おける不凍液は、さらに、 ρΗが 7. 8になるように試料 12が添加されている。試料 1の 濃度が 30質量%になるように試料 13が添加されて 、る。
[0159] 実施例 45における不凍液は、金属腐食性試験によれば、アルミニウム铸物の質』 変化量が 0. 08mgZcmであり、铸鉄の質量変化量が 0. 07mgZcmであり、鋼 の質量変化量が 0. 06mgZcnTであり、黄銅の質量変化量が 0. 03mgZcmで あり、はんだの質量変化量が 0. 09mgZcm2であり、銅の質量変化量が 0. 04m gZcm2である。すなわち、試験結果は、実施例 45による不凍液が比較例 1 比較 例 5による不凍液より金属を腐食させにく 、ことを示して 、る。
実施例 46
[0160] 実施例 46における不凍液は、プロピレングリコール 100質量部に対して、試料 2を 1. 2質量部、試料 5を 0. 1質量部、試料 11を 0. 25質量部、試料 25を 0. 25質量部 含有している。実施例 46における不凍液は、さらに、 pHが 7. 8になるように試料 12 が添加されて 、る。試料 1の濃度が 30質量0 /0になるように試料 13が添加されて 、る
[0161] 実施例 46における不凍液は、金属腐食性試験によれば、アルミニウム铸物の質量 変化量が 0. 09mgZcmであり、铸鉄の質量変化量が 0. 03mgZcmであり、鋼 の質量変化量が であり、黄^銅Δηの^質κ^量変化量が 2—
0. OlmgZcnT 0. 02mgZcmで あり、はんだの質量変化量が 0. 07mgZcm2であり、銅の質量変化量が 0. 03m gZcm2である。すなわち、試験結果は、実施例 46による不凍液が比較例 1 比較 例 5による不凍液より金属を腐食させにく 、ことを示して 、る。
実施例 47
[0162] 実施例 47における不凍液は、プロピレングリコール 100質量部に対して、試料 2を 1. 2質量部、試料 5を 0. 1質量部、試料 7を 1. 0質量部、試料 25を 0. 5質量部含有 している。実施例 47における不凍液は、さらに、 pHが 7. 8になるように試料 12が添 カロされている。試料 1の濃度が 30質量%になるように試料 13が添加されている。
[0163] 実施例 47における不凍液は、金属腐食性試験によれば、アルミニウム铸物の質量 変化量が 0. OlmgZcmであり、铸鉄の質量変化量が 0. 04mgZcmであり、鋼 の質量変化量が ^n
0. 03mgZcnTであり、黄銅の質量変化量が 0. OlmgZcnTで あり、はんだの質量変化量が 0. 09mgZcm2であり、銅の質量変化量が 0. 02m gZcm2である。すなわち、試験結果は、実施例 47による不凍液が比較例 1一比較 例 5による不凍液より金属を腐食させにく 、ことを示して 、る。
実施例 48
[0164] 実施例 48における不凍液は、プロピレングリコール 100質量部に対して、試料 2を 1. 2質量部、試料 5を 0. 1質量部、試料 7を 1. 0質量部、試料 26を 0. 5質量部含有 している。実施例 48における不凍液は、さらに、 pHが 7. 8になるように試料 12が添 カロされている。試料 1の濃度が 30質量%になるように試料 13が添加されている。
[0165] 実施例 48における不凍液は、金属腐食性試験によれば、アルミニウム铸物の質量 変化量が 0. OlmgZcmであり、铸鉄の質量変化量が 0. 02mgZcmであり、鋼 の質量変化量が 0. OlmgZcm2であり、黄銅の質量変化量が 0. OOmgZcm2であ り、はんだの質量変化量が 0. 06mgZcm2であり、銅の質量変化量が 0. 02mg Zcm2である。すなわち、試験結果は、実施例 48による不凍液が比較例 1一比較例 5による不凍液より金属を腐食させにく 、ことを示して 、る。
実施例 49
[0166] 実施例 49における不凍液は、プロピレングリコール 100質量部に対して、試料 2を 1. 2質量部、試料 5を 0. 1質量部、試料 7を 1. 0質量部、試料 27を 0. 5質量部含有 している。実施例 49における不凍液は、さらに、 pHが 7. 8になるように試料 12が添 カロされている。試料 1の濃度が 30質量%になるように試料 13が添加されている。
[0167] 実施例 49における不凍液は、金属腐食性試験によれば、アルミニウム铸物の質量 変化量が 0. 02mgZcmであり、铸鉄の質量変化量が 0. 06mgZcmであり、鋼 の質量変化量が 0. 03mgZcnTであり、黄銅の質量変化量が 0. OlmgZcnTで あり、はんだの質量変化量が 0. 08mgZcm2であり、銅の質量変化量が 0. 02m gZcm2である。すなわち、試験結果は、実施例 49による不凍液が比較例 1一比較 例 5による不凍液より金属を腐食させにく 、ことを示して 、る。
実施例 50
[0168] 実施例 50における不凍液は、プロピレングリコール 100質量部に対して、試料 2を 1. 2質量部、試料 5を 0. 1質量部、試料 7を 1. 0質量部、試料 11を 0. 25質量部、試 料 25を 0. 25質量部含有している。実施例 50における不凍液は、さらに、 pHが 7. 8 になるように試料 12が添加されて 、る。試料 1の濃度が 30質量0 /0〖こなるように試料 1 3が添加されている。
実施例 50における不凍液は、金属腐食性試験によれば、アルミニウム铸物の質量 変化量が 0. 02mgZcmであり、铸鉄の質量変化量が 0. 03mgZcmであり、鋼
^n
の質量変化量が 0. 02mgZcnTであり、黄銅の質量変化量が 0. OlmgZcnTで あり、はんだの質量変化量が 0. 06mgZcm2であり、銅の質量変化量が 0. 02m gZcm2である。すなわち、試験結果は、実施例 50による不凍液が比較例 1 比較 例 5による不凍液より金属を腐食させにく 、ことを示して 、る。

Claims

請求の範囲
[1] プロピレングリコールと、
第 1物質と、
第 2物質とを含有し、
前記第 1物質は、
炭素原子数が 10— 12である直鎖脂肪族ジカルボン酸と、
前記直鎖脂肪族ジカルボン酸の塩である直鎖脂肪族ジカルボン酸塩と、 前記直鎖脂肪族ジカルボン酸と前記直鎖脂肪族ジカルボン酸塩との混合物とから なる集合力 選択される物質であり、
前記第 2物質は、
ベンゾイミダゾール骨格を有するベンゾイミダゾール骨格ィ匕合物と、
前記べンゾイミダゾール骨格ィヒ合物の塩であるべンゾイミダゾール骨格ィヒ合物塩と トリァジン骨格を有し、メルカプト基を有するトリァジン骨格ィ匕合物と、
前記トリァジン骨格ィ匕合物の塩であるトリァジン骨格ィ匕合物塩と、
前記べンゾイミダゾール骨格ィヒ合物と前記べンゾイミダゾール骨格ィヒ合物塩と前記 トリァジン骨格ィ匕合物と前記トリァジン骨格ィ匕合物塩とからなる集合力 選択される複 数の物質の混合物とからなる集合力 選択される物質である
不凍液。
[2] 請求項 1において、
前記べンゾイミダゾール骨格化合物は、
水素原子と水酸基とカルボキシル基と置換基力 なる集合力 選択される第 1基 R1 と、
水素原子と水酸基とカルボキシル基と前記置換基からなる集合から選択される第 2 基 R2と、
水素原子と水酸基とカルボキシル基と前記置換基からなる集合から選択される第 3 基 R3と、
水素原子と炭化水素基と硫黄を含む基と窒素を含む基と硫黄及び窒素を含む基と からなる集合力 選択される第 4基 R4とを用いて、次化学式:
[化 1]
Figure imgf000042_0001
により表現され、
前記置換基は、
炭化水素基と、
炭化水素基の一部の水素原子が水酸基に置換された基と、
炭化水素基の一部の水素原子がカルボキシル基に置換された基と、
炭化水素基の一部の水素原子が水酸基に置換され、他の一部の水素原子がカル ボキシル基に置換された基とからなる集合力 選択される基である
不凍液。
[3] 請求項 1または請求項 2の 、ずれかにお ヽて、
前記トリァジン骨格化合物は、
水素と炭化水素基と硫黄を含む基と窒素を含む基と硫黄及び窒素を含む基とから なる集合力 選択される第 5基 R5と、
水素と炭化水素基と硫黄を含む基と窒素を含む基と硫黄及び窒素を含む基とから なる集合力 選択される第 6基 R6とを用いて、次化学式:
[化 2]
Figure imgf000043_0001
により表現される
不凍液。
[4] 請求項 1において、
前記べンゾイミダゾール骨格ィヒ合物は、チアベンダゾールであり、
前記トリァジン骨格ィ匕合物は、トリメルカプト s トリァジンである
不凍液。
[5] 請求項 1一請求項 4のいずれかにおいて、
前記第 1物質は、前記プロピレングリコールが 100質』 ί部に対して、 0. 1-5. 0質 量部の割合で含有され、
前記第 2物質は、前記プロピレングリコールが 100質』 ί部に対して、 0. 01-2. 0 質量部の割合で含有される
不凍液。
[6] 請求項 1一請求項 5のいずれかにおいて、
水素と水酸基とァミノ基と炭素原子数 1一 6の炭化水素基とからなる集合力も選択さ れる第 7基 R7と、
水素と水酸基とァミノ基と炭素原子数 1一 6の炭化水素基とからなる集合力も選択さ れる第 8基 R8と、
水素と水酸基とァミノ基と炭素原子数 1一 6の炭化水素基とからなる集合力も選択さ れる第 9基 R9とを用いて、次化学式:
[化 3]
Figure imgf000044_0001
により表現される芳香族カルボン酸と前記芳香族カルボン酸の塩とからなる集合カ ら選択される第 3物質
を更に含有する不凍液。
[7] 請求項 6において、
前記第 3物質は、前記プロピレングリコールが 100質量部に対して、 0. 02-4. 0 質量部の割合で含有される
不凍液。
[8] 請求項 1一請求項 7のいずれかにおいて、
硝酸と、
硝酸塩と、
硝酸と硝酸塩との混合物とからなる集合から選択される第 4物質
を更に含有する不凍液。
[9] 請求項 8において、
前記第 4物質は、前記プロピレングリコールが 100質量部に対して、 0. 02-1. 0 質量部の割合で含有される
不凍液。
[10] 請求項 1一請求項 9の!、ずれかにお 、て、
水を更に含有し、
当該不凍液の ρΗは、 7. 0-9. 0である
不凍液。
[11] 請求項 10において、
前記プロピレングリコールの濃度は、 25— 65質量0 /0である
不凍液。
[12] 請求項 1一請求項 11の!、ずれかにお 、て、 前記プロピレングリコールの質量 100に対する前記べンゾイミダゾール骨格ィ匕合物 と前記べンゾイミダゾール骨格ィ匕合物塩との質量 τと、前記プロピレングリコールの質 量 100に対する前記トリァジン骨格ィ匕合物と前記トリァジン骨格ィ匕合物塩との質量 S とを用いて、次数式:
X=T+S X 3
により表現される値 Xは、 0. 06-1. 2である
不凍液。
[13] 請求項 12において、
前記値 Xは、 0. 08-0. 9である
不凍液。
[14] 請求項 1一請求項 13のいずれかに記載される不凍液を用いて冷却される内燃機
PCT/JP2004/018026 2003-12-04 2004-12-03 不凍液 WO2005054400A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP04819925.1A EP1707609B1 (en) 2003-12-04 2004-12-03 Antifreezing fluids
CN2004800362064A CN1890344B (zh) 2003-12-04 2004-12-03 防冻液

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003-406561 2003-12-04
JP2003406561A JP4737585B2 (ja) 2003-12-04 2003-12-04 不凍液

Publications (1)

Publication Number Publication Date
WO2005054400A1 true WO2005054400A1 (ja) 2005-06-16

Family

ID=34631734

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/018026 WO2005054400A1 (ja) 2003-12-04 2004-12-03 不凍液

Country Status (6)

Country Link
US (1) US7645394B2 (ja)
EP (1) EP1707609B1 (ja)
JP (1) JP4737585B2 (ja)
KR (1) KR100742551B1 (ja)
CN (1) CN1890344B (ja)
WO (1) WO2005054400A1 (ja)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7790054B2 (en) 2007-06-28 2010-09-07 Chevron U.S.A. Inc. Antifreeze concentrate and coolant compositions and preparation thereof
US7915643B2 (en) * 2007-09-17 2011-03-29 Transphorm Inc. Enhancement mode gallium nitride power devices
US8137145B2 (en) * 2009-05-29 2012-03-20 Leviton Manufacturing Co., Inc. Wiring termination mechanisms and use thereof
US8357310B2 (en) * 2010-11-10 2013-01-22 Hamilton Sundstrand Space Systems International, Inc. Aqueous based cooling of components having high surface area levels of aluminum or nickel
CN103059820B (zh) * 2011-10-19 2016-01-13 中国石油化工股份有限公司 一种发动机无水冷却液组合物
CN103059819B (zh) * 2011-10-19 2015-08-26 中国石油化工股份有限公司 一种发动机无水冷却液组合物
CN102732232B (zh) * 2012-07-19 2014-03-05 张家港迪克汽车化学品有限公司 一种1,2-丙二醇防冻冷却液
US10086364B2 (en) 2014-06-26 2018-10-02 University Of Wyoming Methods of catalytic hydrogenation for ethylene glycol formation
US10800987B2 (en) 2014-06-27 2020-10-13 University Of Wyoming Composite iron-sodium catalyst for coal gasification
CN105368407A (zh) * 2015-11-11 2016-03-02 安徽孟凌精密电子有限公司 一种用于数控机床的防冻液
CN105419738A (zh) * 2015-11-25 2016-03-23 铜陵市金利电子有限公司 一种用于机械加工设备的防冻液
JP3212790U (ja) * 2017-04-27 2017-10-05 三志 濱田 流動型保冷剤
JP7213629B2 (ja) * 2017-07-10 2023-01-27 Eneos株式会社 熱媒体液、及び工作機械の温度を制御する方法

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6111984A (ja) * 1984-06-28 1986-01-20 Nippon Soken Inc カラオケテ−プ編集装置
US4587028A (en) 1984-10-15 1986-05-06 Texaco Inc. Non-silicate antifreeze formulations
JPH01315481A (ja) * 1988-06-15 1989-12-20 Nippon Shokubai Kagaku Kogyo Co Ltd 不凍液
US5342548A (en) 1993-09-23 1994-08-30 Betz Laboratories, Inc. Methods for inhibiting the corrosion and deposition of iron and iron-containing metals in aqueous systems
WO1995007323A1 (en) 1993-09-10 1995-03-16 Evans Cooling Systems, Inc. Nonaqueous heat transfer fluid
JPH07268316A (ja) 1994-03-29 1995-10-17 Otsuka Chem Co Ltd 熱媒体
JPH0885782A (ja) * 1994-09-16 1996-04-02 Nippon Chem Kogyo Kk 不凍液組成物
EP0739966A1 (en) 1995-04-28 1996-10-30 BP Chemicals Limited Antifreeze composition and aqueous fluid containing said composition
EP0739965A1 (en) 1995-04-28 1996-10-30 BP Chemicals Limited Antifreeze composition and aqueous fluid containing said composition
US6045719A (en) 1996-02-15 2000-04-04 Basf Aktiengesellschaft Use of quaternized imidazoles as corrosion inhibitors for non-ferrous metals, and coolant compositions and antifreeze concentrates comprising them
WO2001002511A1 (de) 1999-07-02 2001-01-11 Clariant Gmbh Silikat-, borat- und phosphatfreie kühlflüssigkeiten auf basisis von glykolen mit verbessertem korrosionsverhalten
WO2002008354A1 (de) * 2000-07-24 2002-01-31 Basf Aktiengesellschaft Gefrierschutzmittelkonzentrate auf basis von amiden und diese umfassende kühlmittelzusammensetzungen zum schutz von magnesium und magnesiumlegierungen
JP2004238643A (ja) * 2003-02-03 2004-08-26 Shoowa Kk 冷却液組成物

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR930004145B1 (ko) * 1989-12-28 1993-05-21 주식회사 선경인더스트리 부동액 조성물
JPH0459885A (ja) 1990-06-29 1992-02-26 C C I Kk 冷却液組成物
KR19980037435A (ko) 1996-11-21 1998-08-05 박병재 냉각부동액 조성물
JP2001240977A (ja) * 2000-02-29 2001-09-04 Nippon Paint Co Ltd 金属表面処理方法
DE10122769A1 (de) * 2001-05-10 2002-11-14 Basf Ag Gefrierschutzmittelkonzentrate enthaltend den Farbstoff C.I. Reactive Violet 5

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6111984A (ja) * 1984-06-28 1986-01-20 Nippon Soken Inc カラオケテ−プ編集装置
US4587028A (en) 1984-10-15 1986-05-06 Texaco Inc. Non-silicate antifreeze formulations
JPH01315481A (ja) * 1988-06-15 1989-12-20 Nippon Shokubai Kagaku Kogyo Co Ltd 不凍液
WO1995007323A1 (en) 1993-09-10 1995-03-16 Evans Cooling Systems, Inc. Nonaqueous heat transfer fluid
US5342548A (en) 1993-09-23 1994-08-30 Betz Laboratories, Inc. Methods for inhibiting the corrosion and deposition of iron and iron-containing metals in aqueous systems
JPH07268316A (ja) 1994-03-29 1995-10-17 Otsuka Chem Co Ltd 熱媒体
JPH0885782A (ja) * 1994-09-16 1996-04-02 Nippon Chem Kogyo Kk 不凍液組成物
EP0739965A1 (en) 1995-04-28 1996-10-30 BP Chemicals Limited Antifreeze composition and aqueous fluid containing said composition
EP0739966A1 (en) 1995-04-28 1996-10-30 BP Chemicals Limited Antifreeze composition and aqueous fluid containing said composition
JPH08311670A (ja) * 1995-04-28 1996-11-26 Bp Chem Internatl Ltd 不凍液組成物およびこの組成物を含有する水性液
US6045719A (en) 1996-02-15 2000-04-04 Basf Aktiengesellschaft Use of quaternized imidazoles as corrosion inhibitors for non-ferrous metals, and coolant compositions and antifreeze concentrates comprising them
WO2001002511A1 (de) 1999-07-02 2001-01-11 Clariant Gmbh Silikat-, borat- und phosphatfreie kühlflüssigkeiten auf basisis von glykolen mit verbessertem korrosionsverhalten
US6309559B1 (en) 1999-07-02 2001-10-30 Clariant Gmbh Silicate-, borate-and phosphate-free cooling fluids based on glycols and having improved corrosion behavior
JP2003504453A (ja) * 1999-07-02 2003-02-04 クラリアント・ゲゼルシヤフト・ミト・ベシユレンクテル・ハフツング 向上した腐食防止性を有する、グリコールに基づきかつケイ酸塩、ホウ酸塩及びリン酸塩を含まない冷却液
WO2002008354A1 (de) * 2000-07-24 2002-01-31 Basf Aktiengesellschaft Gefrierschutzmittelkonzentrate auf basis von amiden und diese umfassende kühlmittelzusammensetzungen zum schutz von magnesium und magnesiumlegierungen
JP2004238643A (ja) * 2003-02-03 2004-08-26 Shoowa Kk 冷却液組成物

Also Published As

Publication number Publication date
CN1890344B (zh) 2013-01-02
JP2005162951A (ja) 2005-06-23
US20050121646A1 (en) 2005-06-09
CN1890344A (zh) 2007-01-03
EP1707609A4 (en) 2009-11-25
KR100742551B1 (ko) 2007-07-25
EP1707609A1 (en) 2006-10-04
JP4737585B2 (ja) 2011-08-03
US7645394B2 (en) 2010-01-12
KR20060103325A (ko) 2006-09-28
EP1707609B1 (en) 2013-06-05

Similar Documents

Publication Publication Date Title
US4759864A (en) Corrosion-inhibited antifreeze formulation
EP0816467B1 (de) Silikat-, borat- und nitratfreie Gefrierschutzmittelkonzentrate und diese umfassende Kühlmittelzusammensetzungen
EP0251480B1 (en) Corrosion-inhibited antifreeze/coolant composition
CN100526413C (zh) 单羧酸基的防冻组合物
WO2005054400A1 (ja) 不凍液
EP1598407B1 (en) Coolant composition
CN1213125C (zh) 在传热液中用作冰点降低剂和腐蚀抑制剂的羧酸盐增效组合物
JPS62158778A (ja) 一塩基−二塩基酸塩不凍液/腐食防止剤及びその製造方法
JPH06116764A (ja) 不凍液組成物
JPH0885782A (ja) 不凍液組成物
CA2422012A1 (en) Non-aqueous heat transfer fluid and use thereof
CN1284984A (zh) 不含硅酸盐的防冻剂组合物
EP3008147A1 (en) Extended operation engine coolant composition
CN112501619A (zh) 一种轻负荷乙二醇型冷却液用全有机型添加剂配方
JP3686120B2 (ja) 不凍液用組成物
CN103890235A (zh) 包含蒸气相抑制的热试验液
EP1386952A2 (de) Gefrierschutzmittel
JPS59208082A (ja) 冷却水系の金属の防食法
CN107629764A (zh) 一种用于四季的防冻液组合物
JPS61149489A (ja) 内燃機関の冷却水用防錆剤組成物
JPH1046134A (ja) 不凍液組成物
JPH07157886A (ja) アルミニウムエンジン用非アミン系不凍液
JP4492873B2 (ja) 不凍液
KR100855687B1 (ko) 유기산염 부동액 조성물과 그의 제조방법
JP2000303062A (ja) 冷却液組成物

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200480036206.4

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

WWE Wipo information: entry into national phase

Ref document number: 2004819925

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020067010961

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 1020067010961

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2004819925

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: JP