WO2005010398A1 - 衝撃吸収部材 - Google Patents

衝撃吸収部材 Download PDF

Info

Publication number
WO2005010398A1
WO2005010398A1 PCT/JP2004/011118 JP2004011118W WO2005010398A1 WO 2005010398 A1 WO2005010398 A1 WO 2005010398A1 JP 2004011118 W JP2004011118 W JP 2004011118W WO 2005010398 A1 WO2005010398 A1 WO 2005010398A1
Authority
WO
WIPO (PCT)
Prior art keywords
absorbing member
shock absorbing
groove
cross
shape
Prior art date
Application number
PCT/JP2004/011118
Other languages
English (en)
French (fr)
Inventor
Kenji Tamura
Yoshiaki Nakazawa
Michitaka Yoshida
Katsutoshi Takagi
Mitsutoshi Kano
Original Assignee
Sumitomo Metal Industries, Ltd.
Toyoda Iron Works Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=34100908&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2005010398(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Sumitomo Metal Industries, Ltd., Toyoda Iron Works Co., Ltd. filed Critical Sumitomo Metal Industries, Ltd.
Priority to DE602004025247T priority Critical patent/DE602004025247D1/de
Priority to EP04748224.5A priority patent/EP1653114B2/en
Priority to JP2005512120A priority patent/JP3912422B2/ja
Publication of WO2005010398A1 publication Critical patent/WO2005010398A1/ja
Priority to US11/340,663 priority patent/US7252314B2/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F7/00Vibration-dampers; Shock-absorbers
    • F16F7/12Vibration-dampers; Shock-absorbers using plastic deformation of members
    • F16F7/123Deformation involving a bending action, e.g. strap moving through multiple rollers, folding of members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F7/00Vibration-dampers; Shock-absorbers
    • F16F7/12Vibration-dampers; Shock-absorbers using plastic deformation of members

Definitions

  • the present invention relates to a shock absorbing member. Specifically, the present invention relates to a shock absorbing member capable of absorbing shock energy generated at the time of collision of a vehicle such as an automobile.
  • the body of many modern automobiles consists of a monocoque body that supports the load with the entire body integrated with the frame in order to achieve both light weight and high rigidity.
  • the vehicle body must have the function of preventing damage to the functions of the vehicle and protecting the lives of the occupants in the cabin in the event of a vehicle collision.
  • priority should be given to crushing spaces other than the cabin, such as the engine room and trunk room. Is valid. Due to such safety requirements, appropriate parts such as the front, rear and sides of the vehicle body are subject to impact to actively absorb the collision energy by crushing when subjected to the impact load at the time of the collision.
  • An absorbing member is provided. Until now, front side members, side sills, and rear side members have been known as such shock absorbing members.
  • a shock absorbing member called a crash box has been attached to the tip of the front side member by appropriate means, such as fastening or welding, to improve vehicle safety and substantially eliminate vehicle damage caused by light collisions. It is becoming more common to reduce the cost of repairs.
  • a crash box is a shock box that is preferentially buckled in a bellows shape (accordion shape) in the axial direction by an impact load applied in the axial direction (in this specification, the longitudinal direction of the shock absorbing member). It is a member that absorbs impact energy.
  • Various materials and shapes for improving the shock absorbing performance of the shock absorbing member have been developed so far.
  • the shock absorbing performance required of the shock absorbing member is, specifically, that when an impact load is applied in the axial direction, it repeatedly and stably buckles in the axial direction, thereby deforming in a bellows-like manner.
  • the average load at the time of crushing of the shock absorbing member is high, and the maximum reaction force generated when the shock absorbing member is crushed is within a range that does not destroy other members arranged near this shock absorbing member. .
  • An impact absorbing member generally used so far is a flange provided on a hat-shaped cross-sectional member as disclosed in, for example, Japanese Patent Application Laid-Open No. 8-128487. And the back plate is welded to form a box-shaped member.
  • the term “flange” refers to an edge provided to protrude outward from a contour in a cross section.
  • Japanese Patent Application Laid-Open No. 9-277953 discloses that a polygon whose cross section from one end to the other end is a quadrangle or more has a larger number of sides than this polygon.
  • an invention relating to a shock absorbing member having a closed cross-sectional structure that continuously changes to a rectangular shape, thereby reducing the initial load of a collision and improving the amount of shock absorption.
  • Japanese Patent Application Laid-Open No. 2003-48569 discloses an invention relating to a shock absorbing member having a polygonal closed cross-sectional shape having a partition wall therein.
  • Japanese Patent Application Laid-Open No. 2002-2844003 discloses that a substantially right-angled triangular groove portion facing inward is formed in a region including four vertices of a material having a rectangular cross section.
  • an invention relating to a shock absorbing member which ensures strength.
  • Japanese Patent Application Laid-Open No. Hei 08-10863 describes that a bead extending in the axial direction is formed on the side surface of a hat-shaped cross-sectional front side frame having a flange to provide an impact.
  • An invention is disclosed that suppresses bending of the front side frame when a load is applied.
  • any of these conventional inventions it is possible to secure a predetermined amount of impact absorption by stably buckling in the axial direction without increasing the weight due to the addition of a partition wall or an increase in the plate thickness. It is not possible to provide a shock-absorbing member that can perform the above. That is, in most cases, the cross-sectional shape of the shock absorbing member used for the body of the automobile is flat. For this reason, it has been disclosed in Japanese Patent Application Laid-Open No. It is difficult to use a shock absorbing member having a polygonal cross-sectional shape such as a simple regular polygon. Further, in the invention disclosed in Japanese Patent Application Laid-Open No.
  • the cross-sectional shape of the impact absorbing member gradually changes over substantially the entire length. For this reason, depending on the position in the axial direction, the cross-sectional shape of the shock absorbing member may be inevitably unsuitable for stable buckling. Therefore, when an impact load is applied in the axial direction, the impact absorbing member cannot repeatedly and stably buckle in the axial direction, and may not be deformed in a bellows shape.
  • a notch portion is provided by further processing a corner portion which is originally high in strength, so that the strength of the notch portion is excessive. To buckle stably. Therefore, in the present invention, similarly to the invention disclosed in Japanese Patent Application Laid-Open No. 2003-48569, the amount of shock absorption may be insufficient, and the shock absorbing member may be crushed before it is crushed. There is a possibility that other members may be crushed first.
  • the shock absorbing member has a hat-shaped cross section having a flange. For this reason, according to the present invention, it is considered that it is certainly possible to suppress the bending due to the applied impact load. However, according to the present invention, even when an impact load is applied, it is not possible to stably collapse in the bellows shape in the axial direction.
  • An object of the present invention is to stably buckle in the axial direction when an impact load is applied without increasing the weight due to the addition of a partition wall or increasing the plate thickness, and without causing bending in the axial direction.
  • the cross-sectional shape of the shock absorbing member must be (a) a closed cross section having a plurality of vertices, (b) no outward flange, and (c) some of the vertices must be straightened.
  • To (c) even in the case of a flat cross-sectional shape often used in an actual shock absorbing member, an increase in weight and shaft
  • a predetermined shock absorption performance can be secured by stably buckling in a bellows shape in the axial direction without causing bending deformation in the direction. as well as
  • the present invention relates to a shock absorbing member comprising a cylindrical body for absorbing impact energy by applying an impact load from one end in the axial direction toward the axial direction and buckling the impact absorbing member.
  • Both of the cross-sectional shapes are closed cross-sections having a plurality of vertices, do not have a flange on the outside of the closed cross-section, and are the largest obtained by connecting some of the vertices with straight lines.
  • An impact-absorbing member having a shape having a groove depressed inward of a contour at a position excluding an end point of a bracket in at least a partial region of at least one side of a basic cross section formed of the contour.
  • the remaining area of the side excluding the part of the side having the groove is formed in a straight line or a curved line.
  • the width of the side having the groove is a
  • the opening width of one groove is Wi
  • the plate thickness of the shock absorbing member is t
  • the groove is provided on the side.
  • shock absorbing members when the total length in the axial direction of the shock absorbing member is T, (a) the groove is axially separated from one end by a distance (TX 0.3). (B) the cross-sectional area of the shock-absorbing member must be within a distance (T x O.3) away from one end in the axial direction. It is desirable that at least a part of each is smaller than other parts. In these shock absorbing members according to the present invention, it is desirable that the interior angle (h) of the intersection of the side of the width a having the groove and the contour of the groove is not less than the interior angle (?) Of the end point of the side. In the shock absorbing member according to the present invention, it is desirable that the cross-sectional shape of the groove is trapezoidal, curved, triangular or square, or a combination of two or more of these shapes.
  • shock absorbing members according to the present invention are deformed into bellows by buckling under an impact load.
  • Fig. 1 is an explanatory view showing the state of crushing of a shock absorbing member having a square cross section by FEM numerical analysis
  • Fig. 1 (a) shows the case with a flange
  • Fig. 1 (b) The case where it is not provided is shown.
  • FIG. 2 is an explanatory view showing the state of crushing of a flat octagon in which the lengths of two opposing sides are gradually increased from a regular octagon.
  • FIG. 3 is an explanatory diagram showing a situation in which a trapezoidal groove is provided in a part of the long side of the shock absorbing member having a flat octagonal cross section.
  • FIG. 4 is a graph showing the results of FEM analysis.
  • FIG. 5 is an explanatory diagram showing a case where three grooves are provided on a side having a length a.
  • FIGS. 6A to 6D are explanatory diagrams collectively showing some examples of the cross-sectional shape of the groove.
  • FIG. 7 is an explanatory view showing an example of the shape of a groove provided on a part of a long side of the shock absorbing member having a flat octagonal cross section.
  • FIG. 8 is an explanatory diagram showing an example of the shape of the longitudinal end of the shock absorbing member.
  • FIG. 9 is a graph showing the result of the first embodiment.
  • FIG. 10 is an explanatory diagram showing an example of the shape of the end in the longitudinal direction of the shock absorbing member.
  • FIG. 11 is an explanatory diagram showing a cross section of the shock absorbing member according to the second embodiment.
  • FIG. 12 is a graph showing the result of the second embodiment.
  • FIG. 13 is an explanatory view schematically showing the state of deflection due to elastic buckling of the vertices and the surface in the cross section when the surface of the shock absorbing member having the groove is given a curvature. ) Shows the case where the convex curvature is given to the outside, and Fig. 13 (b) shows the case where the concave curvature is given to the inside.
  • FIG. 14 is an explanatory diagram illustrating an example of a cross-sectional shape of the shock absorbing member of the first embodiment. DESCRIPTION OF THE EMBODIMENTS OF THE INVENTION
  • the best mode for carrying out the shock absorbing member according to the present invention will be described in detail with reference to the accompanying drawings.
  • the basic cross section which is the largest contour obtained by connecting some of the vertices with a straight line in the cross section, Is formed in a shape having a groove recessed inward of the largest contour at a position excluding the end point of this side, and the remaining region excluding this region from one side is formed linearly. Is taken as an example.
  • the shock absorbing member of the present embodiment is a shock absorbing member that absorbs collision energy by buckling in a bellows shape under an impact load applied in the axial direction.
  • At least a part of the cross-sectional shape in the axial direction is a closed cross-section having a plurality of vertices, and does not include a flange directed outward from the closed cross-section.
  • at least a part of the cross-sectional shape in the axial direction is formed in at least a part of at least one side of the basic cross-section, which is the largest contour obtained by connecting some of the vertices with straight lines. End of parenthesis
  • the shape has a groove recessed inward of the contour at a position except for the point.
  • the cross-sectional shape of the shock absorbing member is (i) a closed cross section having a plurality of vertices, (ii) no flange is provided outside the closed cross section, and (Iii) At least a part of one side of the basic cross-section consisting of the largest contour obtained by connecting some of the vertices with a straight line to the inside of the contour at a position excluding the end point of the bracket side
  • the shape has all three elements (i) to (iii): a shape having a concave groove.
  • the shock absorbing member has a flat cross-sectional shape
  • the shock load is applied without increasing the weight or bending in the axial direction due to the addition of the partition walls or the increase in the plate thickness.
  • it stably buckles in a bellows-like fashion in the axial direction to ensure the required shock absorption performance. Therefore, the principle of the shock absorbing member of the present embodiment will be described.
  • a shock absorbing member made of 5901 ⁇ 1 bun & grade 1.6 mm thick steel plate and 200 mm in length was used.
  • the cross-sectional shape of this shock-absorbing member is as follows: (a) a rectangle with a long side of 80 mm and a short side of 60 mm or a regular octagon with a side length of 35 mm; (C) The shape of the octagon was changed in various ways by extending the length of the two opposing sides of the polygonal shape with a trapezoidal groove. The effect of the groove shape on buckling stability was investigated by performing FEM numerical analysis on these shock absorbing members. As a result, the following principles (principles 1) to (principles 3) of the shock absorbing member of the present embodiment are obtained.
  • Fig. 1 is an explanatory view showing the state of crushing of a shock absorbing member having a square cross section by FEM numerical analysis
  • Fig. 1 (a) shows the case with a flange
  • Fig. 1 (b) The case where it is not provided is shown.
  • the shock absorbing member As shown in Fig. 1 (a), if the shock absorbing member has a flange, the buckling of the shock absorbing member to which the shock load is applied becomes extremely unstable, and the shock absorbing member is compressed. It bends in the longitudinal direction during breaking. On the other hand, as shown in FIG. 1 (b), if the shock absorbing member does not have a flange, the shock absorbing member stably buckles in a bellows shape without bending in the longitudinal direction.
  • Figure 2 shows how a flat octagon with a octagonal cross-sectional shape and a flat octagon in which the lengths of the two opposing sides are gradually increased from the octagon is crushed.
  • buckling during crushing becomes unstable and the shape becomes complicated, and buckling during crushing becomes increasingly unstable.
  • FIG. 3 is an explanatory view showing a situation in which a trapezoidal groove 14 is provided in a part of the long side 12 of the shock absorbing member 10 having a flat octagonal cross section.
  • two groove portions 14 are provided at symmetrical positions with dimensions of width W and depth d.
  • the cross-sectional shape of the shock absorbing member 10 is as shown in FIG. 3, specifically, (i) a closed cross-section having a plurality of vertices A to P, (ii) outward of the closed cross-section. (Iii) a basic cross-section consisting of the largest contour obtained by connecting a part of the vertices A to P with a straight line ( Figure A—B-CD-I- in FIG. 3). (J-KLA), the indented groove 14 is formed at the vertices A and D in a part of each of the side 12 (AL) and side 12 (D-I) constituting the basic cross section.
  • the shock absorbing member 10 buckles in a bellows shape. That is, the impact absorbing member 10 buckles in response to an impact load, and alternately deforms the groove portion 14 and the straight line portion divided by the groove portion 14 to buckle in a bellows shape.
  • the mechanism by which the shock absorbing member 10 of the present embodiment exerts such excellent operational effects can be considered as follows when comprehensively determined in consideration of the results of the above-described FEM numerical analysis and the like.
  • the groove portion 14 provided on the side 12 is recessed inside the above-described basic cross section (the figure A—B—C—D—I—J—KLA in FIG. 3). Therefore, the impact load is When the grooves 14 and 14 are displaced, the displacement of the grooves 14 and 14 is directed inward of the figure A-B-C-D-I-J-K-L-A.
  • the shock absorbing member 10 will be largely collapsed such as being bent in one direction during buckling. Further, the time when buckling occurs in the groove 14 and the time when buckling occurs at each of the vertices A to P are different. Therefore, the buckling behavior is stabilized.
  • Fig. 4 shows the results of the FEM analysis graphically.
  • the horizontal axis represents 1 (length of side) / t (plate thickness), and the vertical axis S represents the average load (kN / mm) per unit cross-sectional circumference at 70% crush.
  • the range in which the average load increases significantly is as follows:
  • the depth d of the groove 14 is too small, ie, less than 0.3 of the opening width W i of the groove 14, the strength of the groove 14 is less than the strength of the other vertices that do not constitute the groove 14.
  • buckling tends to be unstable and buckling becomes unstable. For this reason, it is desirable that the depth d of the groove portion 14 is at least 0.3 times the opening width Wi of the groove portion 14.
  • the opening width Wi of one groove 14 satisfies 4 t ⁇ Wi ⁇ 65 t, where t is the plate thickness of the shock absorbing member 10.
  • t is the plate thickness of the shock absorbing member 10.
  • Wi is 4 t or less
  • the strength against buckling of the groove portion 14 becomes excessively high at the other vertices A, B, C, D, I, J, K, and the polygon, and crushing occurs. Buckling instability such as bending may occur.
  • Wi is 65 t or more, the effect of providing the groove 14 may be weakened. Such a relationship is satisfied for any of the n numbers.
  • the groove portion 14 in the present embodiment may exist on any side of the polygon, and the number of the groove portion 14 may be two or more on one side.
  • the groove portion 14 is provided at a position including any of the vertices A, B, C, D, I, J, K, and L of the basic cross section, it is described in Japanese Patent Application Laid-Open No. 2002-2844033 described above.
  • the intensity at the top increases excessively.
  • the buckling becomes unstable, and the amount of shock absorption may be insufficient.
  • the maximum reaction force generated in the shock absorbing member 10 in the initial stage of crushing exceeds the strength of other members, and The member may be damaged.
  • FIG. 5 shows a case where three grooves 14 are provided on the side 12 having the width a.
  • Each of the opening widths W1, W2, and W3 of the groove portions 14 is larger than four times the plate thickness t and smaller than 65 times the plate thickness t.
  • the sides 1 2 of width a are divided and the remaining four straight line widths X 1, X 2, X 3, and X 4 are all greater than 4 times the thickness t and 65 times the thickness t. Less than.
  • the cross-sectional shape of the groove 14 is trapezoidal is taken as an example.
  • the present invention is not limited to this mode.
  • the cross-sectional shape of the groove may be a shape having a curve, a triangle or a square, or a combination of two or more of these shapes.
  • the shape of the bottom of the groove 14 may not be a flat surface.
  • FIGS. 6 (a) to 6 (d) Some examples of the cross-sectional shape of the groove 14 are shown in FIGS. 6 (a) to 6 (d).
  • Fig. 6 (a) shows the case where it is formed in a shape having an arc
  • Fig. 6 (b) shows the case where it is formed in a square shape
  • Fig. 6 (c) shows the case where it is formed in a triangular shape
  • FIG. 6 (d) shows a case where the shape is formed by combining a part of a triangle and a shape having an arc.
  • FIG. 7 is a drawing similar to FIG. 3, and the same reference numerals indicate the same members.
  • the inner angle of the intersection M between the contour of the groove portion 14 and the side is equal to or more than the inner angle of the end point L of the side, that is, in FIG. It is preferred that If it is less than the length, the strength of the grooves 14 exceeds the strength of the vertices A, D, I, and L of the basic section, and buckling tends to be unstable. Although the shock absorbing member 10 of the present embodiment can secure sufficient absorbed energy, the initial load at the start of the crushing may increase, which may cause a problem. Therefore, depending on the relationship with other members, the high initial maximum load may damage other members.
  • the cross-sectional area of the shock absorbing member is equal to the distance ( ⁇ ⁇ 3. ) Provided so that it is smaller than other parts in the range up to the distant position. For example, in at least a part of the range from one end to the position axially (TX 0.3) away from one end, one end 15 from the position away from the distance (TX 0.3) It is provided so that the cross-sectional area gradually decreases as going toward.
  • FIG. 8 is an explanatory diagram showing the shock absorbing member 10 of the present embodiment.
  • a shock absorbing member was formed by providing a groove 14 having an opening width W of 37.5 t in a cylinder having an octagonal cross section having a flatness of 2.0 and a total length of T.
  • the cross-sectional area at one end 15 to which an impact load is applied is 60% of the cross-sectional area at the other end 16.
  • this cross-sectional area is gradually increased from one end 15 to a length of (TX0.3) or less, and the cross-sectional area at a position out of this range is calculated at the other end 16.
  • TX0.3 length of (TX0.3) or less
  • the results of the study are shown graphically in FIG.
  • the horizontal axis U in the graph of FIG. 9 indicates the length of the portion where the cross-sectional area is reduced / the member length T.
  • the vertical axis V on the left shows the initial maximum load ratio (1 when the cross-sectional area is not reduced is 1), and the vertical axis Z on the right shows the absorbed energy ratio at the time of 70% crushing (the cross-sectional area is not reduced). Case is 1).
  • a black square indicates the initial maximum load ratio
  • a black circle indicates the absorbed energy ratio.
  • the range from the one end 15 to the position away from the one end 15 in the axial direction (TX 0.3) is reduced.
  • the cross-sectional area is gradually reduced from a predetermined position toward one end, so that the effect of reducing the initial maximum load is obtained, and a large decrease in the amount of impact energy absorbed is suppressed. it can.
  • in this range at least the range from one end 15 to a position away from the one end 15 by a distance (T x 0.3) in the axial direction is set.
  • the groove 14 may not be provided in a part.
  • a distance (TX 0.3) is set in the axial direction from one end 15. (1) As shown in Fig. 10, by not providing a groove 14 for stable buckling, the members in this range were deliberately regarded as unstable buckling. Reducing the maximum load, or (2) as shown in Fig.
  • the cross-sectional area of one end 15 is set to 60% of the cross-sectional area of the other end 16 and from one end 15 ( TX 0.3) Gradually increase this cross-sectional area within the length of less than or equal to, and make the cross-sectional area at the position outside this range the same as the cross-sectional area at the other end 16 As a result, the effect of reducing the initial maximum load is obtained, and the impact energy is absorbed. A large decrease in the amount can be suppressed.
  • the cross-sectional area in the range exceeding the distance (T ⁇ O.3) is the same as the cross-sectional area at the other end, but does not necessarily have to have a constant cross-sectional area.
  • the groove 14 defined in the present invention is a region of 70% or more in the axial direction from the other end 16 opposite to the one end 15 where the impact load acts on the shock absorbing member 10. It is desirable to provide for
  • the groove 14 is provided continuously in the entire area of 70% or more in the axial direction from the other end 16, but the groove 14 is provided in the entire area of this area. It is not necessary to provide them continuously, and they may be provided intermittently in this area.
  • the means (2) shown in FIG. 8 indicates that when the total length of the shock absorbing member in the axial direction is ⁇ , the cross-sectional area of the shock absorbing member is the distance ( ⁇ X 0.3 )
  • the cross-sectional area may be configured to decrease rapidly or gradually as long as it is smaller than the other part in at least a part of the range up to the remote position.
  • a bead which is the starting point of continuous or intermittent collapse is provided at least in part of the range up to the distance (T x O.3). It may be formed.
  • the impact absorbing member 10 of the present embodiment may be manufactured by a well-known and appropriate means, and is not limited to a specific manufacturing method.
  • extrusion, hydroforming (liquid-sealing) or roll forming may be performed on one or more hollow materials, or press bending, drawing, winding, or roll forming may be performed on a steel plate having a predetermined thickness.
  • a cylindrical body having a polygonal cross-sectional shape may be formed and then a closed cross-sectional shape may be formed by joining appropriate portions.
  • intermittent joining such as spot, caulking or spot friction stir welding, or continuous joining such as arc (plasma), laser or friction stir welding may be used.
  • shock absorbing member 10 of the present embodiment is configured by using a tailored blank, and further, a material other than a thin steel plate or an aluminum alloy for weight reduction, a high load can be achieved.
  • the shock absorbing member 10 according to the present embodiment can be stably formed in a bellows shape in the axial direction without increasing the weight or bending in the axial direction due to the increase in the partition walls and the plate thickness. It can buckle, thereby ensuring a predetermined shock absorbing performance. For this reason, if this shock absorbing member 10 is applied to the above-mentioned crash box and attached to the tip of the front side member by appropriate means such as fastening or welding, the weight of the vehicle body is hardly increased. The safety of the car can be improved, and the repair cost can be reduced by almost eliminating the damage to the vehicle body due to a light collision.
  • the present embodiment is characterized in that a groove having a concave portion inward of the contour is provided in a part of at least one side of the basic cross section having the largest contour and at a position not including an end point of the side. Common to the first embodiment.
  • the remaining area excluding this part of the area is not formed in a straight line as in the first embodiment, but is formed as a curve or a ring convex outside the contour.
  • the embodiment 1 described above is further developed and improved by forming it into a shape having a concave curve inside the contour.
  • the impact performance of a shock absorbing member is governed by the load (buckling load) at which the shock absorbing member buckles.
  • This buckling load is substantially governed by the load at which the stiff vertex in the cross section of the shock absorbing member undergoes buckling deformation.
  • the reason that the remaining area is formed to have a shape that is convex outside the contour or a shape that is concave inside the contour is that the rigidity of the surface portion is increased and the buckling is started before the buckling starts.
  • the purpose is to accumulate compressive strain also in this surface portion.
  • FIG. 11 is an explanatory diagram showing a cross section of the shock absorbing member 10-1 of the present embodiment. In the present embodiment, as shown in FIG.
  • grooves 14 and 14 are provided between the vertices (A-L, D-I) to achieve high performance and stable buckling, and the surface (D- E 1, H 1-E 2, H 2-I, L_M 1, PI-M2, P 2-A) Shock absorbing member having a cross-sectional shape with a curved shape having various curvatures ⁇ o. FEM analysis was performed for.
  • the material of the shock-absorbing member 10-1 was a 590MPa class steel sheet with a thickness of 1.0mm, and the strain rate dependence was taken into account using the Cowper-Symmonds law.
  • the conditions for imparting the curvature are as follows.
  • the surface portions (D—El, Hl—E2, H2— For I, L-Ml, Pl-M2, P2-A), define the curvature so that the height h forms a curved shape with a height of 0.5 to 15.0 mm toward the outside or inside.
  • the collision performance was analyzed for the case where the surfaces (D-E1, H1-E2, H2-I, L-M1, PI-M2, P2-A) were formed linearly.
  • the performance was compared by the absorbed energy ratio up to 70% crushing displacement of the member length with respect to the unit weight of the member.
  • the member length T used in the analysis is 20 Omm.
  • the comparison between each condition is relative to the case where the surface (D-El, HI-E2, H2-I, L-Ml, PI-M2, P2-A) is formed linearly. I went.
  • the results are summarized in a graph in FIG.
  • the horizontal axis represents h / X
  • the vertical axis Y represents the collision performance (%) per unit weight, which is 100% when the surface is formed in a straight line.
  • a black circle indicates a case where a convex shape is provided toward the outside of the surface portion
  • a white circle indicates that a concave shape is provided toward the inside of the surface portion.
  • a concave shape is provided inside the region where (h / X) is 0.075 or less, and the region where (h / X) is 0.075 to 0.375.
  • FIG. 13 is an explanatory diagram schematically showing the state of deflection due to elastic buckling of the vertices and the surface when the surface of the impact absorbing member 10-1 having the groove 14 is given a curvature.
  • (a) shows the case where a convex curvature is applied to the outside
  • FIG. 13 (b) shows the case where a concave curvature is applied to the inside.
  • the curvature given to the surface part (D-El, HI-E2, H2-I, L_M1, PI-M2, P2-A) increases to some extent, the surface part (D-E1, HI-E 2, H2—I, L-Ml, PI—M2, P2-A) Increased rigidity of the surface itself (D—El, HI—E2, H2—I, L—Ml, PI — For M2, P2-A), the compressive strain increases and the buckling load increases. Also, the convex height given to the surface part (D-E1, H1-E2, H2-I, L-Ml, PI-M2, P2-A) is 0.075 in h / X.
  • the entire shock absorbing member 10-1 The buckling mode that occurs repeatedly becomes unstable, and the collision performance decreases. This is because the heights of the dents given to the vertices (A to P 2) and the faces (D-El, HI-E2, H2-I, L-Ml, PI-M2, P2_A) are By increasing the h / X to about 0.075 to 0.26, the buckling progresses by involving the growing buckling wrinkles. As a result, the collision performance of the entire absorbing member 101 will be deteriorated.
  • the surface portion (D-E l, HI-E2, H2-I, L_M1, PI-M2, P2-A) promote plastic deformation, increase buckling load until buckling occurs, and grow buckling wrinkles Since the deformation resistance at the time of buckling increases, the load drop after buckling can be suppressed, and the surface area (D-El, HI-E2, H2-I, L-Ml, PI-M2, P2-A) The collision performance is better than when is a straight line.
  • the buckling strength of the vertices (A to P 2) is controlled, and the surface portions (D—El, HI—E2, H2—I, L—Ml, P 1 _M 2, By giving an appropriate curvature to P 2 -A), the collision performance can be further improved.
  • the optimal value of the curvature given to the surface (D-El, HI-E2, H2-I, L-Ml, PI-M2, P2-A) is determined by the value of the shock absorbing member 10-1.
  • the overall section stiffness and the stiffness of the faces are considered to vary depending on the length.
  • the impact absorbing member 10-1 for the body of the automobile targeted by the impact absorbing member 10-1 of the present embodiment is a cross-sectional area that can be applied due to the dimensional conflict with other members. Has an upper limit. It is also necessary to consider forming a reference plane when joining other members.
  • the height h is desirably 50 mm or less.
  • a 1.6 mm thick 59 OMPa class high-strength steel sheet is bent to form a polygonal cross section, and the butted surfaces are welded to form a cylinder consisting of a cylinder having the cross-sectional shape shown in Fig. 14.
  • the absorbing member 10 was configured. As shown in Fig. 14, one of the sides divided into two by the formed groove 14 is X5, the other is X6, and the depth of the groove 14 is d. And
  • a 200-kgf weight was dropped freely from the height of 11.9 m onto the shock absorbing member 10 and collided axially with the shock absorbing member 10 at a speed of 55 km / h.
  • the deformation resistance of the shock absorbing member 10 at the time of crushing in the axial direction was measured with a piezoelectric load cell.
  • the length T of each member was set to 180 mm, and the absorbed energy up to 130 mm crush was compared.
  • the shock absorbing member 10 In a collision test in which the shock absorbing member 10 is disposed as a crash box at the front end of a front side member of an automobile body, the shock absorbing member 10 first collapses, and then the front side member collapses. Therefore, this test shows a good correlation with the first half phenomenon in the crash test.
  • the width a shown in Fig. 14 was set to 130 mm, the upper and lower sides were each provided with a groove, the interior angle was set to 135 °, and the interior angle was set to 106 °.
  • Example 4 the inner angle of the shape of Example 1 was set to 100 °, which was smaller than the inner angle /? (106 °).
  • Example 5 the width a was set to 130 mm, two grooves were provided on the upper and lower sides, and the interior angle was set to 107 °.
  • Example 6 the groove 14 was not provided in the range of 30 mm in the axial direction from one end to which the impact load was applied, in the shape of Example 1.
  • Example 7 in the shape of Example 1, each dimension of the cross-sectional shape was 0.77 so that the cross-sectional area on one end side to which an impact load was applied was 0.6 times the cross-sectional area of Example 1. The shape was reduced twice. The shape of this end and the cross-sectional shape of Example 1 were smoothly connected within a length of 30 mm in the axial direction, and the following portion 150 mm had the same shape as Example 1.
  • Example 8 one of the shapes from Example 1 is subjected to an impact load and The groove 14 was not provided in the 80 mm length range.
  • Example 9 In a regular octagon with a side length of 35 mm, the length of a pair of opposite sides is enlarged to 19.5 mm, and the flatness of the cross section is 2.0 Shaped. Table 1 summarizes the conditions and typical dimensions.
  • Example Groove Groove Side Side Side Interior angle Interior angle Groove (The unit of length is the field.)
  • Table 2 shows the initial maximum load and the amount of energy absorbed up to 70% crushing of the member length.
  • Example 2 In this example, the following collision test was performed to verify the effect of the shock absorbing member 10-1 of the second embodiment.
  • the shape of the shock-absorbing member used for the verification was as follows: It is a model of the shock absorbing member, and is located on the surface (D-E1, HI-E2, H2-I, L-M1, Pl-M2, P2-A) indicated by the arrow in Fig. The performance was compared with the curvature p.
  • the member length T of each model is 200 mm.
  • the thin steel plate used in this model has a tensile strength of 590 MPa class and a thickness of 1.0 mm.
  • the collision performance test was performed by freely dropping a 200 kgf weight from a height of 11.9 m and colliding at 55 km / h in the axial direction of the shock absorbing member. .
  • the deformation resistance of the shock absorbing member at the time of crushing in the axial direction was measured by installing a piezoelectric load cell, and the quality of the shock absorbing performance was determined by the amount of energy absorbed until 70% of the member length was crushed. was evaluated.
  • Table 3 summarizes the shape imparting conditions and the results of the absorbed energy up to the 70% crushing displacement obtained in the test.
  • the impact absorption performance is improved by imparting a curvature shape to the surface portion.
  • the invention example relates to a shock absorbing member that collapses in the axial direction at the time of a collision. By improving both the deformation stress and the shock absorption performance, excellent shock absorption performance can be obtained.
  • a shape may be given to the surface portion to improve the rigidity of the surface portion.
  • the shock absorbing member of the present invention is subjected to laser quenching, carburizing, and nitriding, and a tailored blank capable of arranging a suitable material, a thin steel plate for further weight reduction, and materials other than aluminum alloy are used. If the shock absorbing member of this example is configured in this way, it is possible to further increase the load.
  • a shock absorbing member that can be provided.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Vibration Dampers (AREA)
  • Body Structure For Vehicles (AREA)

Abstract

軸方向の一方の端部から該軸方向へ向けて衝撃荷重を負荷されて座屈することにより衝突エネルギを吸収するための筒体からなる衝撃吸収部材である。軸方向の少なくとも一部の横断面形状が、複数の頂点を有する閉断面であり、この閉断面の外側にフランジを具備しないとともに、複数の頂点のうちの一部を直線で連結して得られる最大の輪郭からなる基本断面の少なくとも一の辺の一部の領域でかつこの辺の端点を除く位置に輪郭の内側へ凹んだ溝部を有する形状である。これにより、隔壁の追加や板厚の増加による重量増加を招かずに、軸方向へ屈曲することなく安定して座屈することにより所定の衝撃吸収量を確保できる。

Description

衝撃吸収部材 技術分野
本発明は、 衝撃吸収部材に関する。 具体的には、 本発明は、 例えば自動車等の 車両の衝突時に発生する衝撃エネルギを吸収することができる衝撃吸収部材に関 する。
' 背景技術
周知のように、 現在の多くの自動車の車体は、 軽量化と高剛性とを両立するた めに、 フレームと一体化したボディ全体により荷重を支えるモノコックボディに よって構成される。 自動車の車体は、 車両の衝突時には、 車両の機能の損傷を抑 制し、 かつキャビン内の乗員の生命を守る機能を有さなければならない。 車両の 衝突時の衝突エネルギを吸収してキャビンへの衝撃力を緩和することによってキ ャビンの損傷をできるだけ低減するためには、 例えばエンジンルームやトランク ルームといったキヤビン以外のスペースを優先的に潰すことが有効である。 このような安全上の要請から、 車体の前部、 後部あるいは側部等の適宜箇所に は、 衝突時の衝撃荷重が負荷されると圧壊することによって衝突エネルギを積極 的に吸収するための衝撃吸収部材が設けられている。 これまでにも、 このような 衝撃吸収部材として、 フロン トサイ ドメンバ、 サイ ドシルさらにはリアサイ ドメ ンバ等が知られている。
近年には、 クラッシュボックスといわれる衝撃吸収部材をフロントサイ ドメン バの先端に例えば締結や溶接等の適宜手段によって装着することによって、 車体 の安全性の向上と、 軽衝突による車体の損傷を略解消することによる修理費の低 減とをともに図ることが、行われるようになつてきた。クラッシュボックスとは、 軸方向 (本明細書では衝撃吸収部材の長手方向を意味する) へ負荷される衝撃荷 重によって軸方向へ蛇腹状 (アコ一デオン状) に優先的に座屈することにより衝 突エネルギを吸収する部材である。 この衝撃吸収部材の衝撃吸収性能を向上させるための材質や形状がこれまでに も種々開発されている。 衝撃吸収部材に要求される衝撃吸収性能とは、 具体的に は、 衝撃荷重が軸方向へ負荷されると軸方向へ繰り返し安定して座屈することに より蛇腹状に変形すること、 衝撃吸収部材の圧壊時の平均荷重が高いこと、 さら には、 衝撃吸収部材の圧壊の際に発生する最大反力がこの衝撃吸収部材の近傍に 配置された他の部材を破壊しない範囲にあることである。
これまでに一般的に用いられてきた衝撃吸収部材は、 例えば特開平 8— 1 2 8 4 8 7号公報に開示されるような、 ハツ ト形の横断面形状の部材に設けられたフ ランジを介して裏板を溶接して箱状部材としたものである。 なお、 本明細書にお いて 「フランジ」 とは、 横断面における輪郭から外部へ向けて突出して設けられ た縁部を意味する。
これに対し、 特開平 9— 2 7 7 9 5 3号公報には、 一端から他端へ向けての横 断面形状が四角形以上の多角形からこの多角形よりも辺の数が多い他の多角形へ と連続的に変化する閉断面構造を有することによって、 衝突の初期の荷重を低減 しながら衝撃吸収量を向上させた衝撃吸収部材に係る発明が開示されている。 特開 2 0 0 3— 4 8 5 6 9号公報には、 内部に隔壁を有する多角形の閉断面形 状を有する衝撃吸収部材に係る発明が開示されている。
特開 2 0 0 2— 2 8 4 0 3 3号公報には、 四角形の横断面を有する素材の 4つ の頂点を含む領域に、 内部へ向けた略直角三角形状の溝部を形成することによつ て強度を確保した衝撃吸収部材に係る発明が開示されている。
さらに、 特開平 8 - 1 0 8 8 6 3号公報には、 フランジを有するハツ ト形の断 面形状のフロントサイ ドフレームの側面に軸方向へ延在するビードを形成するこ とにより、 衝撃荷重が負荷された際のフロントサイ ドフレームの折れ曲がりを抑 制する発明が開示されている。
しかし、 これらの従来のいずれの発明によっても、 隔壁の追加や板厚の増加に よる重量の増加を招くことなく、 安定して軸方向へ座屈することにより所定の衝 撃吸収量を確保することができる衝撃吸収部材を提供することはできない。 すなわち、 自動車の車体に用いられる衝撃吸収部材の横断面形状は、 殆どの場 合、 扁平である。 このため、 特開平 9一 2 7 7 9 5 3号公報により開示されたよ うな単純な正多角形等の多角形の横断面形状を有する衝撃吸収部材を用いること は難しい。 また、 特開平 9一 2 7 7 9 5 3号公報により開示された発明では、 衝 撃吸収部材の横断面形状が略全長に渡って徐々に変化する。 このため、 軸方向の 位置によっては、 衝撃吸収部材の横断面形状が不可避的に安定した座屈には適さ ない形状になるおそれがある。 したがって、 この衝撃吸収部材は、 衝撃荷重が軸 方向へ負荷されると、 軸方向へ繰り返し安定して座屈することができず、 蛇腹状 に変形しないおそれがある。
特開 2 0 0 3— 4 8 5 6 9号公報により開示された発明では、 隔壁を設けられ た部分の強度が過剰に上昇するおそれがある。 このため、 この発明では、 座屈が 不安定となってかえって衝撃吸収量が不足するおそれがあるとともに、 圧壊の特 に初期に衝撃吸収部材に生じる最大反力が他の部材の強度を超え、 衝撃吸収部材 が圧壊される前に他の部材が先に圧壊されるおそれもある。 さらに、 この発明で は、 内部に隔壁を設ける分だけ衝撃吸収部材の重量が不可避的に増加する。 この ため、 この発明は近年特に強く要請されている車体の軽量化に逆行する。
特開 2 0 0 2— 2 8 4 0 3 3号公報により開示された発明では、 もともと強度 が高いコーナ部にさらに加工を行って切欠き部を設けるため、 この切欠き部の強 度が過剰に上昇し、安定して座屈することができないおそれがある。したがって、 この発明では、特開 2 0 0 3 - 4 8 5 6 9号公報により開示された発明と同様に、 衝撃吸収量が不足するおそれがあるとともに、 この衝撃吸収部材が圧壊される前 に他の部材が先に圧壊してしまうおそれがある。
さらに、 特開平 8— 1 0 8 8 6 3号公報により開示された発明では、 衝撃吸収 部材がフランジを有するハツ 卜形の横断面形状を有する。 このため、 この発明に よれば、 負荷された衝撃荷重による折れ曲がりを抑制することは確かに可能にな ると考えられる。 しかし、 この発明によっては、 衝撃荷重を負荷されても、 軸方 向へ蛇腹状に安定して圧壊することはできない。
本発明の目的は、 隔壁の追加や板厚の増加による重量の増加や、 軸方向での屈 曲を招くことなく、 衝撃荷重を負荷されると、 軸方向へ安定して蛇腹状に座屈す ることによって所定の衝撃吸収量を確保できる衝撃吸収部材を提供することであ 発明の開示
本発明者らは、 上述した従来の技術が有する課題に鑑みて種々検討を重ねた結 果、 以下に列記する新規かつ重要な知見 ( I ) 及び ( I I ) を得て、 本発明を完 成した。
( I ) 衝撃吸収部材の横断面形状を、 (a ) 複数の頂点を有する閉断面をなし、 ( b ) 外向きのフランジを有さないとともに ( c ) 複数の頂点のうちの一部を直 線で連結して得られる最大の輪郭からなる基本断面の少なくとも一の辺の一部の 領域であってこの辺の端点を除く位置に、 この輪郭の内側へ凹んだ溝部を有する という 3要素 (a ) 〜 ( c ) を全て備える形状とすることにより、 実際の衝撃吸 収部材では多用される扁平な横断面形状の場合であっても、 隔壁の追加や板厚の 増加による重量の増加や軸方向での屈曲変形を招くことなく、 軸方向へ安定して 蛇腹状に座屈することにより所定の衝撃吸収性能を確保できること。 及び
( I I ) F E M解析を鋭意行って検討した結果、 この溝部の形状には座屈の安定 化を図るために選択すべき好適な条件が存在し、 この条件を逸脱してしまうと座 屈の挙動が不安定となって、 衝撃吸収性能が低下するおそれがあること。
本発明は、 軸方向の一方の端部からこの軸方向へ向けて衝撃荷重を負荷されて 座屈することにより衝突エネルギを吸収するための筒体からなる衝撃吸収部材で あって、 軸方向の少なく とも一部の横断面形状が、 複数の頂点を有する閉断面で あり、 この閉断面の外側にフランジを具備しないとともに、 これら複数の頂点の うちの一部を直線で連結して得られる最大の輪郭からなる基本断面の少なくとも 一の辺の一部の領域でかっこの辺の端点を除く位置に輪郭の内側へ凹んだ溝部を 有する形状であることを特徴とする衝撃吸収部材である。
この本発明に係る衝撃吸収部材では、 溝部を有する辺の前記一部の領域を除い た辺の残余の領域が、 直線状に又は曲線状に、 形成されることが望ましい。 これらの本発明に係る衝撃吸収部材では、 溝部が、 この溝部を有する辺の幅を aとし、 一つの溝部の開口幅を W iとし、 衝撃吸収部材の板厚を tとし、 辺に設 けられた溝部の個数を nとし、 辺に設けられた n個の溝部によって分割されて残 つた (n + 1 ) 個の残余の領域のそれぞれの幅を X j とした場合に、 下記 ( 1 ) 式及び (2 ) 式を満足するように、 設けられることが望ましい。
4 t <Wi < 65 t i = l、 n ( 1 )
4 t <X j < 65 t j = K n+ 1 ( 2) ただし、 ∑W i +∑X j = aであり、 かつ∑Wiは、 幅 aの辺に形成された溝 部の開口幅 W iの総和であり、 溝部の開口幅は、 幅 aの辺と溝部の輪郭線との 2 つの交点の間の距離であり、 ∑ X jは前記幅 X jの総和である。
これらの本発明に係る衝撃吸収部材では、 衝撃吸収部材の軸方向の全長を Tと した場合に (a) 溝部を、 一方の端部から軸方向へ距離 (T X 0. 3 ) 離れた位 置までの範囲の全部又は一部には、 設けないこと、 又は (b) 衝撃吸収部材の横 断面積が、 一方の端部から軸方向へ距離 (T x O . 3 ) 離れた位置までの範囲の 少なく とも一部において、 他の部位よりも小さいことが、 それぞれ望ましい。 これらの本発明に係る衝撃吸収部材は、 溝部を有する幅 aの辺と溝部の輪郭線 との交点の内角 (ひ) が、 辺の端点の内角 ( ?) 以上であることが望ましい。 また、 これらの本発明に係る衝撃吸収部材では、 溝部の断面形状が、 台形状、 曲線を有する形状、 三角形状若しくは四角形状又はこれらの形状を二つ以上組み 合わせた形状であることが望ましい。
さらに、 これらの本発明に係る衝撃吸収部材は、 衝撃荷重を受けて座屈するこ とにより蛇腹状に変形するものである。 図面の簡単な説明
図 1は、 FEM数値解析による四角形の横断面を有する衝撃吸収部材の圧壊の 様子を示す説明図であり、図 1 (a)はフランジを具備する場合を示し、図 1 (b) はフランジを具備しない場合を示す。
図 2は、 正八角形から対向する 2辺の長さを徐々に大きく した扁平な形状の八 角形の圧壊の様子を示す説明図である。
図 3は、 扁平な八角形の横断面を有する衝撃吸収部材の長辺部の一部に、 台形 状に溝部を設けた状況を示す説明図である。
図 4は、 F EM解析の結果を示すグラフである。
図 5は、 長さ aを有する辺上に、 溝部を 3つ設けた場合を示す説明図である。 図 6 ( a ) 〜図 6 ( d ) は、 溝部の断面形状の幾つかの例をまとめて示す説明 図である。
図 7は、 扁平な八角形の横断面を有する衝撃吸収部材の長辺部の一部に設けら れた溝部の形状例を示す説明図である。
図 8は、 衝撃吸収部材の長手方向の端部の形状例を示す説明図である。
図 9は、 実施の形態 1の結果を示すグラフである。
図 1 0は、 衝撃吸収部材の長手方向の端部の形状例を示す説明図である。 図 1 1は、 実施の形態 2の衝撃吸収部材の横断面を示す説明図である。
図 1 2は、 実施の形態 2の結果を示すグラフである。
図 1 3は、 溝部を有する衝撃吸収部材の面部に曲率を付与した際の断面内での 頂点及び面部の弾性座屈によるたわみの状況を模式的に示す説明図であり、 図 1 3 ( a ) は外側に凸となる曲率を付与した場合を示し、 図 1 3 ( b ) は内側に 凹となる曲率を付与した場合を示す。
図 1 4は、 実施例 1の衝撃吸収部材の横断面形状の一例を示す説明図である。 発明の実施形態の説明
(実施の形態 1 )
次に、 本発明に係る衝撃吸収部材を実施するための最良の形態を、 添付図面を 参照しながら詳述する。 なお、 この実施の形態 1の説明では、 溝部が、 横断面に おいて、 複数の頂点のうちの一部を直線で連結して得られる最大の輪郭からなる 基本断面の少なくとも一の辺の一部の領域であってこの辺の端点を除く位置に、 最大の輪郭の内側へ凹んだ溝部を有する形状に設けられ、 かつ、 一の辺からこの 領域を除いた残余の領域が直線状に形成される場合を例にとる。
本実施の形態の衝撃吸収部材は、 軸方向へ負荷される衝撃荷重を受けて蛇腹状 に座屈することにより衝突エネルギを吸収する衝撃吸収部材である。 そして、 軸 方向の少なくとも一部の横断面形状が、複数の頂点を有する閉断面であり、かつ、 閉断面の外側へ向けたフランジを具備しない形状である。 さらに、 軸方向の少な くとも一部の横断面形状が、 複数の頂点のうちの一部を直線で連結して得られる 最大の輪郭からなる基本断面の少なくとも一の辺の一部の領域でかっこの辺の端 点を除く位置に輪郭の内側へ凹んだ溝部を有する形状である。
つまり、 本実施の形態では、 衝撃吸収部材の横断面形状を、 ( i) 複数の頂点 を有する閉断面とすること、 ( i i ) 閉断面の外側へ向けたフランジを具備しな いこと、 及び ( i i i ) 複数の頂点のうちの一部を直線で連結して得られる最大 の輪郭からなる基本断面の少なく とも一の辺の一部の領域でかっこの辺の端点を 除く位置に輪郭の内側へ凹んだ溝部を有する形状であること、 という 3要素( i) 〜 ( i i i ) を全て備える形状とする。
これにより、 衝撃吸収部材が扁平な横断面形状を有する場合であっても、 隔壁 の追加や板厚の増加による重量の増加や軸方向での屈曲を招くことなく、 衝撃荷 重を負荷されると、 軸方向へ蛇腹状に安定して座屈することにより所定の衝撃吸 収性能を確保する。 そこで、 本実施の形態の衝撃吸収部材の原理を説明する。 説明を行うための対象材料として、 5901^1卩 &級の 1. 6 mm厚の鋼板から なり、 長さが 2 00 mmである衝撃吸収部材を用いた。 この衝撃吸収部材の横断 面形状は、 (a) 長辺の長さが 80mm、 短辺の長さが 60 mmの四角形又は一 辺の長さが 35 mmの正八角形をなし、 (b ) 外向きのフランジを有さないとと もに (c) 台形形状の溝部を有する多角形形状とし、 そのうちの対向する 2辺の 長さを延ばすことによって八角形の扁平度を様々に変更した。 これらの衝撃吸収 部材について F EM数値解析を行うことにより、 座屈安定性に対する溝部の形状 の効果を調査した。 その結果、 以下に列記する本実施の形態の衝撃吸収部材の原 理 (原理 1 ) 〜 (原理 3 ) を得た。
(原理 1 ) 例えばプレス成形等によって成形された 2つ以上の部材を、 例えばス ポッ ト溶接等により接合する際の接合代となるフランジを具備する衝撃吸収部材 と、 このフランジを具備しない衝撃吸収部材とのそれぞれに衝撃荷重を負荷した ときの圧壊の挙動を、 F EM数値解析によって分析した。
図 1は、 FEM数値解析による四角形の横断面を有する衝撃吸収部材の圧壊の 様子を示す説明図であり、図 1 (a)はフランジを具備する場合を示し、図 1 (b) はフランジを具備しない場合を示す。
図 1 (a) に示すように、 衝撃吸収部材がフランジを具備すると、 衝撃荷重を 負荷された衝撃吸収部材に生じる座屈が極めて不安定になり、 衝撃吸収部材は圧 壊の途中で長手方向で折れ曲がる。 これに対し、 図 1 (b) に示すように、 衝撃 吸収部材がフランジを具備しないと、 衝撃吸収部材は長手方向で折れ曲がること なく安定して蛇腹状に座屈する。
(原理 2 ) 正八角形の横断面形状を有する衝撃吸収部材を用い、 正八角形から対 向する 2辺の長さを徐々に大きく した扁平な形状の八角形の圧壊の様子を図 2に 示す。 扁平度を増していくと、 圧壊時の座屈が安定しなくなって複雑な形状とな り、 次第に圧壊時の座屈が不安定になる。
(原理 3 ) この際に、 座屈が不安定となる扁平な八角形の長辺部に溝部を設ける ことにより、 座屈を安定にすることができる。
図 3は、 扁平な八角形の横断面を有する衝撃吸収部材 1 0の長辺部 1 2の一部 に、 台形状に溝部 14を設けた状況を示す説明図である。 この例では、 溝部 14 は、 幅 W及び深さ dの寸法で対称な位置に二つ設けられている。
衝撃吸収部材 1 0の横断面形状を図 3に示す形状とすること、具体的には( i) 複数の頂点 A〜Pを有する閉断面とすること、 ( i i ) この閉断面の外側へ向け たフランジを具備しないこと、 及び ( i i i ) 複数の頂点 A〜 Pのうちの一部を 直線で連結して得られる最大の輪郭からなる基本断面 (図 3における図形 A— B -C-D- I - J -K-L-A) の内側へ凹んだ溝部 1 4を、 この基本断面を構 成する辺 1 2 ( A- L )及び辺 1 2 (D— I )のそれぞれの一部の領域で頂点 A、 D、 I、 Lをいずれも含まない位置に一つ有する形状であることという 3要素( i ) 〜 ( i i i ) を全て備える形状とすることにより、 衝撃吸収性能を発揮でき、 安 定して座屈が起こり、 衝撃吸収部材 10は蛇腹状に座屈する。 すなわち、 この衝 撃吸収部材 1 0は、 衝撃荷重を受けて座屈することにより、 溝部 14とこの溝部 14によって分割されて残った直線部分とが交互に変形することにより、 蛇腹状 に座屈する。
本実施の形態の衝撃吸収部材 1 0がこのような優れた作用効果を奏する機構は、 前述の F EM数値解析の結果等を勘案して総合的に判断すると、 以下のように考 えられる。
辺 1 2に設ける溝部 1 4は、 上述した基本断面 (図 3における図形 A— B— C -D- I -J -K-L-A) の内側へ凹んでいる。 このため、 衝撃荷重が負荷さ れた際に溝部 1 4、 14の変位は、 図形 A— B— C— D— I— J— K一 L— Aの 内側を指向する方向となる。
これに対し、 基本断面 (図形 A_B— C_D— I— J— K— L—A) を構成す る頂点 A、 B、 C、 D、 I、 J、 K及び Lの変位は、 図形 A— B— C— D— I— J一 K— L— Aの外側を指向する方向となる。
このため、 溝部 1 4、 14の変位方向と、 頂点 A、 B、 C、 D、 I、 J、 K及 び Lの変位方向とは、 互いに反対向きとなり、 それぞれの変位が互いに打ち消さ れ合う。
このため、 衝撃吸収部材 1 0が座屈の途中で一方向へ折れ曲がるといった大き な崩れを生じ難い。 さらに、 溝部 14で座屈が発生する時期と、 各頂点 A〜Pで 座屈が発生する時期とが異なる。 このため、 座屈の挙動が安定する。
そして、 この溝部 14が形成される範囲についての好適条件を F EM解析によ り調査した。 この調査では、 正四角形、 正六角形、 正八角形、 正十角形の圧壊時 の F EM解析を行って、 各多角形を構成する辺の長さの好適な範囲を検討した。
F EM解析の結果を図 4にグラフで示す。 図 4のグラフにおける横軸は 1 (辺 の長さ) /t (板厚) を示し、 縦軸 Sは 70 %圧壊での単位断面周長当りの平均 荷重 (kN/mm) を示す。
図 4にグラフで示すように、 一つの辺の長さ 1が板厚 tに対して、 4 < ( 1 / t) < 6 5の範囲を満足すれば、 多角形の角数には関係なく安定した変形が得ら れ、衝撃吸収性能が安定して確保される。すなわち、図 4に示すグラフにおいて、 ( 1/t) が 4を僅かに下回る 3. 6であると、 衝撃吸収部材 1 0が蛇腹状に座 屈せずに折れ曲がりを生じ、吸収エネルギを確保できなくなることがある。一方、 ( 1/t) が 4を僅かに上回る 4. 7であると、 衝撃吸収部材 1 0は折れ曲がり を生じることなく蛇腹状の望ましい座屈が得られ、 吸収エネルギを十分に確保で きる。
一方、 同図に示すグラフにおいて、 ( 1 /t) が 65を僅かに下回る 64であ ると、 蛇腹状の座屈が得られ吸収エネルギを十分に確保できる。 一方、 ( 1/t) が 65以上であると衝撃吸収部材 1 0の全体の曲がりを生じるために吸収エネル ギ量は低下する。 以上の結果から、 溝部 14が、 この溝部 14を有する辺の幅を aとし、 一つの 溝部 1 4の開口幅を W iとし、 衝撃吸収部材 1 0の板厚を tとし、 上記辺に設け られた溝部 14の個数を nとし、 距離 aの辺が n個の溝部 1 4によって分割され て残った (n+ 1 ) 個の残余の領域の一つの領域の幅を X jとした場合に、 下記 ( 1 ) 式及び ( 2 ) 式を満足するように、 設けられることが望ましい。
4 t <Wi < 65 t i = l、 n ( 1 )
4 t <X j < 65 t j = K n+ 1 ( 2) ただし、 ∑W i +∑ X j二 aであり、 かつ∑Wiは、 幅 aの辺に形成された溝 部の開口幅 W iの総和であり、 溝部の開口幅は、 幅 aの辺と溝部の輪郭線との 2 つの交点の間の距離であり、 ∑ X jは前記幅 X jの総和である。
より好ましくは、 図 4のグラフにおいて、 顕著に平均荷重が増加する範囲とし て、
4 t <Wi < 35 t i = l、 n ( l a)
4 t <X j < 35 t j = l、 n+ l (2 a) である。
なお、 溝部 1 4の深さ dは、 この溝部 14の開口幅 W iの 0. 3未満と小さ過 ぎる場合には、 溝部 1 4の強度が溝部 1 4を構成しない他の頂点の強度に対して 弱くなり、 座屈が不安定となり易い。 このため、 溝部 1 4の深さ dは、 溝部 14 の開口幅 Wiの 0. 3倍以上であることが望ましい。
すなわち、 一つの溝部 14の開口幅 Wiは、 衝撃吸収部材 10の板厚を tとし たとき、 4 t <Wi < 65 tを満足する。 Wiが 4 t以下である場合には、 溝部 14の座屈に対する強度が、 多角形をなす他の頂点 A、 B、 C、 D、 I、 J、 K、 ょりも過剰に高くなり、圧壊中に曲がり等の座屈不安定を生じるおそれがある。 一方、 W iが 65 t以上である場合は、 逆に溝部 14を設けることの効果が弱ま るおそれがある。 このような関係は n個数のいずれについても満足される。
また、 本実施の形態における溝部 14は、 多角形のいずれの辺に存在しても良 いし、 溝部 14の個数は一の辺に 2以上であってもよい。 ただし、 溝部 1 4を、 基本断面の頂点 A、 B、 C、 D、 I、 J、 K及び Lのいずれかを含む位置に設け ると、 上述した特開 2 002 - 284033号公報に記載された発明と同様に、 その頂点の強度が過剰に上昇する。 このために座屈が不安定となって、 かえって 衝撃吸収量が不足するおそれがあるとともに、 圧壊の特に初期に衝撃吸収部材 1 0に生じる最大反力が他の部材の強度を超え、他の部材が損傷するおそれもある。 次に、溝部 1 4が形成された一部の領域を除いた残余の領域について説明する。 図 3において、 辺 1 2に n個の溝部 14を設けた場合、 この辺は溝部 14によ つて (n+ 1 ) 個の新たな直線部分に分割されることになる。 このとき、 (n + 1 ) 個の分割された各直線部分の幅を X jとすると、 ( 2 ) 式を満足する。
4 t < j < 65 t j = l、 n+ 1 ( 2 )
この幅 X j力 s、 4 t以下又は 65 t以上である場合には、 十分な吸収エネルギ が得られない。
これらの関係を図 5に具体的に示す。 図 5には幅 aを有する辺 1 2上に、 溝部 14を 3つ設けた場合を示す。 各溝部 1 4の開口幅 W 1、 W 2、 W3が、 いずれ も、 板厚 tの 4倍より大きいとともに板厚 tの 6 5倍よりも小さい。 同時に、 幅 aの辺 1 2が分割されて残存する 4つの直線部分の幅 X 1、 X 2、 X 3、 X4の いずれもが板厚 tの 4倍より大きいとともに板厚 tの 6 5倍よりも小さい。
以上の説明では、 溝部 14の横断面形状が台形である形態を例にとった。 しか し、 本発明はこの形態に限定されるものではない。 この形態以外に、 溝部の横断 面形状は、 曲線を有する形状、 三角形状若しくは四角形状又はこれらの形状を二 以上組み合わせた形状であってもよい。
また、 この溝部 1 4の底部の形状は平坦面でなくともよい。 溝部 14の断面形 状の幾つかの例を図 6 (a) 〜図 6 (d ) にまとめて示す。 図 6 (a) は円弧を 有する形状に形成された場合を示し、 図 6 (b) は四角形状に形成された場合を 示し、 図 6 ( c ) は三角形状に形成された場合を示し、 さらに、 図 6 (d) は三 角形の一部と円弧を有する形状とを組み合わせた形状に形成された場合を示す。 図 7は、 図 3と同様の図面であって、 同一符号は同一部材を示す。
本実施の形態では、 図 7に示すように、 溝部 1 4の輪郭線と辺との交点 Mの内 角ひが、 辺の端点 Lの内角/?以上であること、 すなわち図 7においてひ ?であ ることが好ましい。 ひが ?未満では、 溝部 1 4の強度が基本断面の頂点 A、 D、 I、 Lの強度を上回り、 座屈が不安定になり易い。 本実施の形態の衝撃吸収部材 1 0は、 十分な吸収エネルギを確保できるが、 圧 壊開始時の初期荷重が高くなり問題となることがある。 このため、 他の部材との 関係によっては、 高い初期最大荷重により他の部材を損傷するおそれがある。 そ こで、 本実施の形態では、 初期最大荷重を低減するために、 衝撃吸収部材 1 0の 軸方向の全長を Tとした場合に、 衝撃吸収部材の横断面積が距離 (Τ χ θ . 3 ) 離れた位置までの範囲において他の部位よりも小さいように設ける。 例えば、 一 方の端部から軸方向へ距離 (T X 0 . 3 ) 離れた位置までの範囲の少なく とも一 部の領域において、 距離 (T X 0 . 3 ) 離れた位置から一方の端部 1 5へ向かう につれて横断面積が徐々に減少するように、 設ける。
次に、 横断面積を減少させる軸方向の長さと、 初期最大荷重の低減効果との関 係を説明する。
図 8は、 本実施の形態の衝撃吸収部材 1 0を示す説明図である。 同図に示すよ うに、 扁平度 2 . 0で全長が Tである八角形断面の筒体に、 開口幅 Wが 3 7 . 5 tである溝部 1 4を設けて、 衝撃吸収部材とした。 本例では、 衝撃荷重が負荷さ れる一方の端部 1 5における横断面積を、 他方の端部 1 6における横断面積の 6 0 %とした。 そして、 一方の端部 1 5から ( T X 0 . 3 ) 以下の長さの範囲でこ の横断面積を徐々に増加させ、 この範囲を脱する位置の横断面積を、 他方の端部 1 6における横断面積と同じとした。 そして、 軸方向へ部材長の 7 0 %を圧壊す る条件で解析を行って、 初期最大荷重の大小を検討した。
検討結果を図 9にグラフで示す。 図 9のグラフにおける横軸 Uは、 断面積を減 じる部位の長さ/部材長 Tを示す。 また、 左側の縦軸 Vは、 初期最大荷重比(断 面積を減じない場合を 1 とする)を示し、 右側の縦軸 Zは、 7 0 %圧壊時の吸収 エネルギ比 (断面積を減じない場合を 1 とする) を示す。 また、 図 9のグラフで は、 黒四角印は初期最大荷重比を示し、 黒丸印は吸収エネルギ比を示す。
図 9にグラフで示すように、 一方の端部 1 5の断面積を減少させない場合に比 較すると、 一方の端部 1 5から軸方向へ距離 (T X 0 . 3 ) 離れた位置までの範 囲の少なくとも一部において、 所定の位置から一方の端部に向かうにつれて横断 面積を徐々に減少させることにより、 初期最大荷重の低減効果が得られ、 かつ、 衝撃エネルギ吸収量の大幅な低下を抑制できる。 また、 図 8に示す例とは異なり、 図 1 0に示すように、 この範囲では、 一方の 端部 1 5から軸方向へ距離 (T x 0. 3 ) 離れた位置までの範囲の少なく とも一 部には、 溝部 14を設けないようにしてもよい。
このように、 本実施の形態では、 初期最大荷重を低減するとともに衝撃エネル ギ吸収量の大幅な低下を抑制するために、 一方の端部 1 5から軸方向へ距離 (T X 0. 3 )離れた位置までの範囲の全部又は一部において、 ( 1 ) 図 1 0に示す ように、 安定座屈のための溝部 1 4を設けないことによって、 この範囲の部材を あえて不安定座屈として初期最大荷重を低減すること、 または (2) 図 8に示す ように、 一方の端部 1 5の横断面積を他方の端部 1 6における横断面積の 60 % とし、一方の端部 1 5から ( T X 0. 3 )以下の長さの範囲でこの横断面積を徐々 に増加させ、 この範囲を脱する位置の横断面積を、 他方の端部 1 6における横断 面積と同じとすること、 のいずれかによつて、 初期最大荷重の低減効果が得られ るとともに、 衝撃エネルギ吸収量の大幅な低下を抑制できる。
なお、 図 8では、 距離 (T x O . 3) を超える範囲の横断面積は、 他方の端部 の横断面積と同じとしたが、 必ずしも一定の断面積でなくてもよい。
これら ( 1 ) 又は (2 ) の手段を部材長 Τの 30 %を超える範囲にまで施して しまうと、 初期座屈以後の座屈にまで影響し、 安定座屈が得られなくなる。 換言 すれば、 本発明で規定する溝部 1 4は、 衝撃吸収部材 1 0に衝撃荷重が作用する 一方の端部 1 5の反対の他方の端部 1 6から軸方向の 7 0 %以上の領域にわたつ て設けられることが望ましい。
なお、 図 8、 10に示す例では、 他方の端部 1 6から軸方向へ 70 %以上の領 域の全域において溝部 1 4を連続して設けたが、 溝部 1 4はこの領域の全域に連 続して設ける必要はなく、 この領域内に断続的に設けるようにしてもよい。
なお、 図 8に示す (2 ) の手段は、 図 8からも分かるように、 衝撃吸収部材の 軸方向の全長を Τとした場合にこの衝撃吸収部材の横断面積が距離(Τ X 0. 3 ) 離れた位置までの範囲の少なくとも一部において他の部位よりも小さい限り、 横 断面積を急激に又は徐々に減じるように構成してもよい。 また、 これら ( 1 ) 又 は ( 2 ) の手段の他に、 距離 (T x O . 3) 離れた位置までの範囲の少なくとも 一部に、 連続的又は断続的につぶれの起点となるビードを形成してもよい。 本実施の形態の衝撃吸収部材 1 0は、 周知慣用の適宜手段により製造すればよ く、 特定の製造法には限定されない。 例えば、 中空材に押出、 ハイ ドロフォーム (液封成形)若しくはロールフォーミング等の加工をいずれか一つあるいは複数 行うことや、 所定厚さの鋼板にプレス曲げ、 絞り、 巻き若しくはロールフォーミ ング等の加工をいずれか一つあるいは複数行うことにより、 多角形の横断面形状 を有する筒体としてから適宜箇所を接合することにより閉断面形状としてもよい。 この際の接合方法としては、 例えばスポッ ト、 カシメ若しくはスポッ ト摩擦攪拌 接合等の断続接合や、 アーク (プラズマ) 、 レーザー若しくは摩擦攪拌接合等の 連続接合等を用いればよい。
また、 成形された後の衝撃吸収部材 1 0に高周波焼き入れ、 レーザ焼き入れ、 浸炭、 窒化等の後処理を行えば、 衝撃吸収部材 1 0の強度をさらに高めることが できるため、 望ましい。 なお、 テーラードブランク、 さらには軽量化のために薄 鋼板、 アルミニウム合金以外の素材等を利用して本例の衝撃吸収部材 1 0を構成 すれば高荷重化を図ることもできる。
このように、 本実施の形態の衝撃吸収部材 1 0は、 隔壁の増加や板厚の増加に 起因した重量の増加や軸方向での屈曲を招くことなく、 軸方向へ安定して蛇腹状 に座屈することができ、 これにより、 所定の衝撃吸収性能を確保することができ る。 このため、 この衝撃吸収部材 1 0を、 上述したクラッシュボックスに適用し てフロントサイ ドメンバの先端に、 例えば締結や溶接等の適宜手段によって装着 すれば、 車体の重量増加を殆ど伴うことなく、 車体の安全性の向上と、 軽衝突に よる車体の損傷を略解消することによる修理費の低減とを、 ともに図ることがで きる。
[実施の形態 2 ]
次に、 実施の形態 2に係る衝撃吸収部材 1 0— 1を説明する。
本実施の形態は、 最大の輪郭からなる基本断面の少なくとも一の辺の一部の領 域で、 かつ該辺の端点を含まない位置に、 輪郭の内側へ凹んだ溝部を有する点で は、 実施の形態 1と共通する。
しかし、 本実施の形態では、 この一部の領域を除いた残余の領域を、 実施の形 態 1のように直線状に形成するのではなく、 輪郭の外側に凸となる曲線、 又は輪 郭の内側に凹となる曲線を有する形状に形成することにより、 上述した実施の形 態 1をさらに発展 ·改良するものである。
そこで、 以降の説明では、 上述した第 1の実施の形態に対する相違点を中心に 説明し、 共通する部分については、 重複する説明を適宜省略する。
一般的に、 衝撃吸収部材の衝突性能は、 衝撃吸収部材が座屈する荷重(座屈荷 重)によって支配される。 この座屈荷重は、 衝撃吸収部材の横断面において剛性 が高い頂点が座屈変形する際の荷重によって、 略支配される。
一方、 荷重が上昇するときは頂点に圧縮のひずみが蓄積され、 座屈するまでに 頂点には圧縮変形が進行する。 その後、 この頂点の座屈が発生すると荷重は急激 に低下する。 この荷重の低下を抑制するためには、 頂点の座屈をより局所的に小 さいエリアに限定して発生させること、 及び、 頂点の間に形成される面部に座屈 しわが発生及び成長する際に発生する曲げ変形の変形応力を増大させることが、 ともに重要である。
そこで、 座屈時の荷重を上昇させるためには、 頂点以外の面部を、 容易に座屈 せずに圧縮変形を促進することができる形状とし、 圧縮変形が発生している領域 を拡大することが望ましい。 また、 曲げ変形時の変形応力を高めるために、 座屈 しわが発生及び成長する面部に加工硬化を生じさせておけば、 座屈開始までに圧 縮変形を促進して曲げ変形時の変形応力を高めることができ、 これにより、 座屈 時における上述した荷重の急激な低下を抑制できる。
つまり、 本実施の形態において、 残余の領域を、 輪郭の外側に凸となる形状、 又は輪郭の内側に凹となる形状に形成する理由は、 面部の剛性を高め、 座屈の開 始までにこの面部にも圧縮ひずみを蓄積させることである。 これにより、 座屈荷 重を高めて圧縮ひずみを蓄積すること (加工硬化) により座屈しわの発生及び成 長時の変形抵抗を高めて、 座屈時における荷重の低下を抑制することができる。
しかし、 衝撃吸収部材の横断面形状によっては、 残余の領域を曲線状に形成す ることにより、 面部の剛性が高まり、 これにより、 面部と頂点との間の剛性バラ ンスが崩れ、 頂点の座屈が不安定となる場合がある。 したがって、 残余の領域に 曲線状の形状を形成して面部の剛性を高める場合には、 頂点の剛性がもともと高 い横断面形状を有する衝撃吸収部材に適用することが望ましい。 図 1 1は、本実施の形態の衝撃吸収部材 1 0— 1の横断面を示す説明図である。 本実施の形態では、 図 1 1に示すように、 頂点 (A— L、 D- I ) 間に高性能 かつ安定した座屈を図るために溝部 14、 1 4を設け、 かつ面部 (D— E 1、 H 1一 E 2、 H 2— I、 L_M 1、 P I— M2、 P 2 - A) に各種曲率 <oを有する 曲線形状を付与した横断面形状を有する衝撃吸収部材 1 0— 1について、 F EM 解析を行った。
この F EM解析では、 衝撃吸収部材 1 0— 1の材料を 590 MP a級の 1. 0 mm厚の鋼板とし、 ひずみ速度依存性は C owp e r— S ymo nd s則により 考慮した。 また、 曲率の付与条件は、 図 1 1に示した対象部位において頂点 (A 一 L、 D— I ) 間の幅 2 8 mmの面部 (D— E l、 H l—E 2、 H 2— I、 L一 M l、 P l—M2、 P 2 - A) に対して、 外側又は内側に向けて高さ hが 0. 5 〜 1 5. 0 mmの曲線形状を形成するように曲率を付与し、 面部 (D— E 1、 H 1一 E 2、 H 2 _ I、 L一 M l、 P I— M2、 P 2 - A) が直線状に形成された 場合に対する衝突性能を解析した。
性能は、 部材の単位重量に対し、 部材長の 70 %圧壊変位までの吸収エネルギ 比で比較した。 解析に用いた部材長 Tは 20 Ommである。 各条件間の比較は、 面部 (D— E l、 H I— E 2、 H 2— I、 L— M l、 P I— M2、 P 2— A) が 直線状に形成された場合に対して相対的に行った。 結果を図 1 2にグラフでまと めて示す。
図 12のグラフにおける横軸は h/Xを示し、 縦軸 Yは単位重量当たりの衝突 性能(%)を示しており、 面部が直線状に形成された場合には 1 00 %である。 ま た、 このグラフでは、 黒丸印は面部の外側へ向けて凸形状を設けた場合を示し、 白丸印は面部の内側へ向けて凹形状を設けたことを示す。
図 1 2のグラフから理解されるように、 (h/X) が 0. 07 5以下の領域で は内側に凹形状を設け、 (h/X) が 0. 075〜0. 3 75の領域では外側に 凸形状を設け、 さらに、 (h/X) が 0. 26以上の領域では内側に凹形状を設 けることにより、 単位重量当たりの衝突性能を向上できる。
このように、 面部 (D— E l、 H l—E 2、 H 2— I、 L一 M l、 P I— M2、 P 2 - A) に曲率を付与することにより、 衝突性能をさらに向上させることがで きる。
図 13は、 溝部 1 4を有する衝擊吸収部材 1 0— 1の面部に曲率を付与した場 合の頂点及び面部の弾性座屈によるたわみの状況を模式的に示す説明図であり、 図 1 3 (a) は外側に凸となる曲率を付与した場合を示し、 図 1 3 (b) は内側 に凹となる曲率を付与した場合を示す。
図 13 (a) に示すように、 外側に凸となる曲率を付与すると、 付与した曲率 が小さい場合は衝突の初期における断面の広がりが大きくなる。 このため、 面部 (D— E l、 H I— E 2、 H 2— I、 L一 M l、 P I— M 2、 P 2 - A) が直線 である場合に比較すると、 断面が外側へ広がる弾性座屈を生じて頂点( A〜 P 2 ) において軸方向へ作用する圧縮ひずみ量が小さくなり、 座屈荷重が低下する。 しかし、 面部 (D— E l、 H I— E 2、 H 2— I、 L_M 1、 P I— M2、 P 2 - A)に付与した曲率がある程度大きくなると、 面部(D— E 1、 H I— E 2、 H 2— I、 L一 M l、 P I— M2、 P 2 - A) 自体の剛性が高まり、 面部 (D— E l、 H I— E 2、 H 2— I、 L— M l、 P I— M2、 P 2 - A) においても圧 縮のひずみが高まり、 座屈荷重が上昇する。 また、 面部(D— E 1、 H 1— E 2、 H 2— I、 L— M l、 P I— M2、 P 2 - A) に付与する凸の高さを、 h/Xで 0. 075〜0. 37 5程度と大きくすることにより、 面部 (D— E l、 H I— E 2、 H 2— I、 L一 M l、 P I— M2、 P 2 - A) の塑性変形も促進されるこ とから、 座屈しわの成長時の変形抵抗が高まって座屈発生後の荷重低下が抑制さ れる。 これにより、 面部 (D— E l、 H I— E 2、 H 2— I、 L一 M l、 P I— M2、 P 2 - A) が直線である場合よりも衝突性能が向上する。
一方、 図 1 3 (b) に示すように、 内側に凹となる曲率を付与すると、 付与し た曲率が小さい場合は衝突の初期における頂点(A〜P 2 )及び面部(D— E 1、 H I— E 2、 H 2— I、 L一 M l、 P I— M2、 P 2 - A) それそれにおける弾 性座屈の方向が異なる。 これにより、 頂点 (A〜P 2 ) の広がりが抑制され、 よ り大きい圧縮のひずみが蓄積される。 これによつて、 座屈荷重が大きくなり、 面 部 (D— E l、 H I— E 2、 H 2— I、 L— M l、 P 1 _M2、 P 2— A) が直 線である場合よりも衝突性能が向上する。
しかし、 付与する曲率がさらに大きくなると、 衝撃吸収部材 1 0— 1の全体に おいて繰り返し発生する座屈モードが不安定となり、 衝突性能は低下する。 これ は、 頂点 (A〜P 2 ) 及び面部 (D— E l、 H I— E 2、 H 2— I、 L一 M l、 P I— M2、 P 2 _A) へ付与する凹の高さが、 h/Xで 0. 075〜0. 2 6 程度と大きくなることにより、 成長する座屈しわを巻き込んで座屈が進行するよ うな形態となるため、 繰り返し発生する座屈が不安定となり、 衝撃吸収部材 1 0 一 1の全体での衝突性能の悪化を招くことになる。
しかしながら、 付与する凹の高さを、 h/Xで 0. 2 6〜0. 55程度とさら に大きくすると、 外側へ向けて凸となる曲率を付与した場合と同様に、 面部 (D — E l、 H I— E 2、 H 2— I、 L_M 1、 P I— M 2、 P 2 - A) の塑性変形 が促進され、 座屈発生までの座屈荷重を上昇させるとともに、 座屈しわの成長時 の変形抵抗も高まるため、 座屈発生後の荷重低下も抑制でき、 面部 (D— E l、 H I— E 2、 H 2— I、 L— M l、 P I— M2、 P 2— A) が直線である場合よ りも衝突性能が向上する。
本実施の形態のように、 頂点 (A〜P 2 ) の座屈強度を制御するとともに面部 (D— E l、 H I— E 2、 H 2— I、 L— M l、 P 1 _M 2、 P 2 - A) に対し ても適度な曲率を付与することにより、衝突性能をさらに向上することができる。 なお、 面部 (D— E l、 H I— E 2、 H 2— I、 L— M l、 P I— M2、 P 2 — A) に付与する曲率の最適値は、 衝撃吸収部材 1 0— 1の全体の断面剛性と、 面部 (D— E l、 H I— E 2、 H 2— I、 L— M l、 P I— M2、 P 2— A) の 剛性、 すなわち面部 (D— E l、 H I— E 2、 H 2 _ I、 L_M 1、 P I— M2、 P 2 - A) の長さによって、 変化すると考えられる。
一方、 本実施の形態の衝撃吸収部材 1 0— 1が対象とする自動車の車体用の衝 撃吸収部材 1 0— 1は、 他の部材との寸法の取り合いの関係で、 適用でき得る断 面積には上限がある。 また、 他の部材を接合する際の基準平面を形成することも 考慮する必要がある。
このため、 高さ hは 5 0 mm以下とすることが望ましい。 実施例 1
次に、 本発明を実施例を参照しながらさらに具体的に説明する。 本例では、 上述した実施の形態 1 の衝撃吸収部材の効果をさらに説明するため、 下記の要領で衝突試験を行った。
板厚 1. 6 mmの 59 OMP a級の高張力鋼板を素材として折り曲げ加工を行 つて多角形断面とし、 突き合わせ面を溶接することによって、 図 14に示す横断 面形状を有する筒体から成る衝撃吸収部材 1 0を構成した。図 1 4に示すように、 形成した溝部 1 4によって 2つに分割された辺の一方の長さを X 5とし、 他方の 長さを X 6とし、 さらに、 溝部 1 4の深さを dとした。
そして、 200 k g f の重量の錘体を 1 1. 9 mの高さからこの衝撃吸収部材 1 0に対して自由落下させ、 55 km/hの速度で衝撃吸収部材 1 0に軸方向へ 衝突させ、 衝撃吸収部材 1 0の軸方向への圧壊時の変形抵抗を、 圧電式のロード セルで測定した。 なお、 部材長 Tはいずれも 1 80 mmとし、 1 30mm圧壊ま での吸収エネルギを比較した。
なお、 この衝撃吸収部材 1 0をクラッシュボックスとして自動車車体のフロン トサイ ドメンバの前端部に配置した場合の衝突試験では、 この衝撃吸収部材 1 0 がまず圧壊し、 次にフロントサイ ドメンバが圧壊する。 したがって、 この試験は 前記衝突試験における前半の現象とよい相関を示す。
例 1から例 3では、 図 14に示す幅 aを 1 30 mmとし、 上下の辺に溝部を一 つずつ具備する形状とするとともに、 内角ひを 1 35 ° とし、 内角/?を 1 06° とした。
例 4では、 例 1の形状のうち内角ひを 1 00° とし、 内角/? ( 1 06° ) より も小さく した。 また、 例 5では、 幅 aを 1 30mmとし、 上下の辺に溝部を二つ ずつ具備することとし、 内角ひは 1 07 ° とした。
例 6では、 例 1の形状のうち、 衝撃荷重を負荷される一方の端部から軸方向へ 30 mmの長さの範囲には、 溝部 1 4を設けないこととした。
例 7では、 例 1の形状のうち、 衝撃荷重を負荷される一方の端部の側の断面積 が例 1の断面積の 0. 6倍となるように断面形状の各寸法を 0. 77倍に縮小さ せた形状とした。 この端部の形状と例 1の断面形状を軸方向への長さ 30 mmの 範囲で滑らかにつなぎ、 以下の部分 1 5 0 mmは例 1と同一の形状とした。
例 8では、 例 1の形状のうち、 衝撃荷重を負荷される一方の端部から軸方向へ 80 mmの長さの範囲には溝部 1 4を設けないこととした。
例 9としては、 一辺の長さが 35 mmの正八角形のうち、 対向する一組の 2辺 の長さを 1 1 9. 5 mmに拡大して、 断面の扁平率が 2. 0である形状とした。 各条件及び代表寸法を表 1にまとめて示す。
(長さの単位は圃) 例 溝部 溝部 辺 辺 辺 内角 内角 溝部. 面減 内 容 幅 深さ X5 X6 X7 β /、\\ 断
Να W d (。) (°)
1 扁平八角に適 TF溝都一つ 60 1 1.5 35 35 135 106
2 扁平八角に幅大溝部一つ 1 18 1 1.5 6.0 6.0 135 106
3 扁平八角に幅小溝部一つ 6.0 6.0 62 62 135 106
4 扁平八角に溝部一つ 60 1 1.5 35 35 100 106
5 扁平八角に適 IF溝部二つ 各 25 各 15 26.6 26.6 26.6 107 106
6 例 1に溝部なし部付力□ 60 1 1.5 35 35 135 106 30
7 例 1の端部断面積を減少. 60 1 1.5 35 35 135 106 30
8 例 6の溝部なし部長さ大 60 1 1.5 35 35 135 106 80
9 扁平八角に溝部なし 135
また、 初期最大荷重および部材長の 7 0 %圧壊までの吸収エネルギ量を表 2に 示す。
表 2
Figure imgf000024_0001
表 2に示す結果から、 適正な溝部を設けることにより、 従来は利用することが できなかった扁平な多角形の横断面形状を有する衝撃吸収部材を用いることがで き、 さらに、 衝撃荷重を負荷される一方の端部の側を適正な範囲で形状変更する ことにより、 初期最大荷重の低減も可能となることが確認された。 実施例 2 本例では、 実施の形態 2の衝撃吸収部材 1 0— 1の効果を検証するため、 下記 の衝突試験を行った。
検証に用いた衝撃吸収部材の部材形状は、 図 1 1に示す横断面形状を有する衝 撃吸収部材のモデルであり、 図 1 1に示す矢印位置の面部 (D— E 1、 H I— E 2、 H 2— I、 L—M 1、 P l—M 2、 P 2 - A ) に曲率 pを付与して性能を比 較した。 このモデルの部材長 Tはいずれも 2 0 0 m mである。 また、 このモデル に用いた薄鋼板は、引張強度が 5 9 0 M P a級であり、板厚が 1 . 0 m mである。 衝突性能の試験は、 2 0 0 k g f の重量の錘体を 1 1 . 9 mの高さから自由落 下させ、 5 5 k m/ hで衝撃吸収部材の軸方向へ衝突させることにより、行った。 そして、 衝撃吸収部材の軸方向の圧壊時の変形抵抗を圧電式のロードセルを装着 することにより測定し、 部材長の 7 0 %が圧壊するまでに吸収したエネルギ量の 大小により衝撃吸収性能の良否を評価した。
形状付与の条件と、 試験にて得られた 7 0 %圧壊変位までの吸収エネルギの結 果とを表 3にまとめて示す。
表 3
Figure imgf000025_0001
表 3にまとめて示すように、 比較例である直線形状のものに比較すると、 発明 例では、 面部に曲率形状を付与することにより、 衝撃吸収性能が向上する。 発明例は、 衝突時に軸方向へ圧壊する衝撃吸収部材に関して、 その圧壊過程で の頂点以外の部位である面部においても、 軸方向の圧縮ひずみの蓄積と、 その部 位において座屈しわの形成時における変形応力とをともに高めることによって、 優れた衝撃吸収性能を得るものである。
このためには、 面部においても形状 (曲率) を付与し、 この面部の剛性を向上 させるとよい。 また、 本発明例の衝撃吸収部材にレーザ焼き入れ、 浸炭さらには窒化を行った り、適材配置を可能とするテーラードブランク、さらなる軽量化のために薄鋼板、 アルミニゥム合金以外の素材等を利用して本例の衝撃吸収部材を構成すれば、 さ らなる高荷重化を図ることができる。 産業上の利用可能性
本発明により、 隔壁の追加や板厚の増加による重量の増加や軸方向での屈曲を 招くことなく、 軸方向へ安定して蛇腹状に座屈することによって所定の衝撃吸収 量を確保することができる衝撃吸収部材を提供することができた。

Claims

請 求 の 範 囲
1. 軸方向の一方の端部から該軸方向へ向けて衝撃荷重を負荷されて座屈するこ とにより衝突エネルギを吸収するための筒体からなる衝撃吸収部材であって、 前 記軸方向の少なくとも一部の横断面形状は、 複数の頂点を有する閉断面であり、 該閉断面の外側にフランジを具備しないとともに、 前記複数の頂点のうちの一部 を直線で連結して得られる最大の輪郭からなる基本断面の少なく とも一の辺の一 部の領域でかつ該辺の端点を除く位置に前記輪郭の内側へ凹んだ溝部を有する形 状であることを特徴とする衝撃吸収部材。
2. 前記溝部を有する前記辺の前記一部の領域を除いた前記辺の残余の領域は、 直線状に形成される請求項 1に記載された衝撃吸収部材。
3. 前記溝部を有する前記辺の前記一部の領域を除いた前記辺の残余の領域は、 曲線状に形成される請求項 1に記載された衝撃吸収部材。
4.前記溝部は、 該溝部を有する前記辺の幅を aとし、 一つの前記溝部の開口幅 を Wiとし、 前記衝撃吸収部材の板厚を tとし、 前記辺に設けられた前記溝部の 個数を nとし、前記辺に設けられた n個の前記溝部によって分割されて残った(n + 1 )個の残余の領域のそれぞれの幅を X j とした場合に、下記( 1 )式及び( 2 ) 式を満足するように、 設けられる請求項 1から請求項 3までのいずれか 1項に記 載された衝撃吸収部材。
4 t <W i < 6 5 t i = l、 n ( 1 )
4 t <X j < 6 5 t j = l、 n+ l ( 2 ) ただし、 ∑W i +∑ X j = aであり、 かつ∑W iは、 幅 aの辺に形成された溝 部の開口幅 W iの総和であり、 溝部の開口幅は、 幅 aの辺と溝部の輪郭線との 2 つの交点の間の距離であり、 ∑ X jは前記幅 X jの総和である。
5.前記衝撃吸収部材の軸方向の全長を Tとした場合、 前記溝部を、 前記一方の 端部から前記軸方向へ距離 (T x O . 3 ) 離れた位置までの範囲の全部又は一部 には、 設けない請求項 1又は請求項 4に記載された衝撃吸収部材。
6.前記衝撃吸収部材の軸方向の全長を Τとした場合、 該衝撃吸収部材の横断面 積は、 前記一方の端部から前記軸方向へ距離 (T x O . 3 ) 離れた位置までの範 囲の少なくとも一部において、 他の部位よりも小さい請求項 1又は請求項 4に記 載された衝撃吸収部材。
7 . 前記溝部を有する幅 aの辺と前記溝部の輪郭線との交点の内角 (ひ) は、 前記辺の端点の内角 ( ? ) 以上である請求項 1又は請求項 4に記載された衝撃吸 収部材。
8 . 前記溝部の断面形状は、 台形状、 曲線を有する形状、 三角形状若しくは四角 形状又はこれらの形状を二つ以上組み合わせた形状である請求項 1に記載された 衝撃吸収部材。
9 .前記衝撃荷重を受けて座屈することにより蛇腹状に変形する請求項 1又は請 求項 4に記載された衝撃吸収部材。
PCT/JP2004/011118 2003-07-28 2004-07-28 衝撃吸収部材 WO2005010398A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE602004025247T DE602004025247D1 (de) 2003-07-28 2004-07-28 Stossabsorbierendes glied
EP04748224.5A EP1653114B2 (en) 2003-07-28 2004-07-28 Impact-absorbing member
JP2005512120A JP3912422B2 (ja) 2003-07-28 2004-07-28 クラッシュボックス
US11/340,663 US7252314B2 (en) 2003-07-28 2006-01-27 Crash energy absorption member

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003-280949 2003-07-28
JP2003280949 2003-07-28

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/340,663 Continuation US7252314B2 (en) 2003-07-28 2006-01-27 Crash energy absorption member

Publications (1)

Publication Number Publication Date
WO2005010398A1 true WO2005010398A1 (ja) 2005-02-03

Family

ID=34100908

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/011118 WO2005010398A1 (ja) 2003-07-28 2004-07-28 衝撃吸収部材

Country Status (6)

Country Link
US (1) US7252314B2 (ja)
EP (1) EP1653114B2 (ja)
JP (1) JP3912422B2 (ja)
CN (1) CN100476233C (ja)
DE (1) DE602004025247D1 (ja)
WO (1) WO2005010398A1 (ja)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008044635A (ja) * 2006-08-11 2008-02-28 Toyoda Iron Works Co Ltd 押し潰し可能な容器
EP2045142A2 (en) 2007-10-01 2009-04-08 Mazda Motor Corporation Vehicle structure for automobile
EP2055983A2 (en) 2007-11-05 2009-05-06 Toyoda Iron Works Co., Ltd. Impact absorbing member for vehicle
EP2202118A1 (en) * 2008-12-26 2010-06-30 Toyoda Iron Works Co., Ltd. Impact absorbing member for vehicle
US7926868B2 (en) * 2005-06-24 2011-04-19 GM Global Technology Operations LLC Energy absorbing element and motor vehicle body using the same
JP4792036B2 (ja) * 2005-09-09 2011-10-12 豊田鉄工株式会社 車両用衝撃吸収部材
US8287013B2 (en) 2007-11-05 2012-10-16 Toyoda Iron Works Co., Ltd. Impact absorbing member for vehicle
WO2013154071A1 (ja) 2012-04-10 2013-10-17 新日鐵住金株式会社 衝撃吸収部材に適した鋼板とその製造方法
WO2014014120A1 (ja) 2012-07-20 2014-01-23 新日鐵住金株式会社 鋼材
WO2014030663A1 (ja) 2012-08-21 2014-02-27 新日鐵住金株式会社 鋼材
WO2014083926A1 (ja) * 2012-11-30 2014-06-05 アイシン精機株式会社 クラッシュボックス
WO2014087511A1 (ja) 2012-12-06 2014-06-12 新日鐵住金株式会社 鋼材および衝撃吸収部材
US9902435B2 (en) 2013-10-09 2018-02-27 Nippon Steel & Sumitomo Metal Corporation Structural member for automotive body
WO2022085575A1 (ja) 2020-10-20 2022-04-28 日本製鉄株式会社 衝撃吸収部材

Families Citing this family (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7380830B2 (en) * 2005-02-03 2008-06-03 Honda Motor Co., Ltd. Vehicle front body structure
DE102005029726B4 (de) * 2005-06-24 2007-08-02 Benteler Automobiltechnik Gmbh Stoßfänger für ein Kraftfahrzeug
SE529533C2 (sv) * 2006-01-24 2007-09-04 Gestamp Hardtech Ab Krockbox för fordon
DE102006015876A1 (de) * 2006-04-05 2007-10-11 GM Global Technology Operations, Inc., Detroit Crashbox und Dämpfungsanordnung mit Crasbox
US20080098601A1 (en) * 2006-10-30 2008-05-01 Shape Corporation Tubular tapered crushable structures and manufacturing methods
US7617916B2 (en) * 2007-10-17 2009-11-17 Shape Corp. Tapered crushable polygonal structure
JP5167823B2 (ja) * 2008-01-15 2013-03-21 トヨタ自動車株式会社 衝撃吸収部材
US9533710B2 (en) * 2008-09-19 2017-01-03 Ford Global Technologies, Llc Twelve-cornered strengthening member
US8539737B2 (en) 2008-09-19 2013-09-24 Ford Global Technologies, Llc Twelve-cornered strengthening member
US8641129B2 (en) * 2008-09-19 2014-02-04 Ford Global Technologies, Llc Twelve-cornered strengthening member
US9187127B2 (en) 2008-09-19 2015-11-17 Ford Global Technologies, Llc Twelve-cornered strengthening member, assemblies including a twelve-cornered strengthening member, and methods of manufacturing and joining the same
DE102009013322A1 (de) * 2009-03-18 2010-09-30 Benteler Automobiltechnik Gmbh Stoßfängeranordnung
FR2943595B1 (fr) * 2009-03-26 2011-06-03 Faurecia Bloc Avant Ensemble avant de vehicule automobile comprenant un bouclier pare-chocs avant
JP5632147B2 (ja) * 2009-10-13 2014-11-26 新日鐵住金株式会社 クラッシュボックス
US8210583B2 (en) * 2010-05-12 2012-07-03 GM Global Technology Operations LLC Energy absorber device and method of forming same
WO2012026578A1 (ja) * 2010-08-26 2012-03-01 新日本製鐵株式会社 衝撃吸収部材
US8424960B2 (en) * 2011-01-07 2013-04-23 Tesla Motors, Inc. Front rail configuration for the front structure of a vehicle
US8459726B2 (en) 2011-04-15 2013-06-11 Ford Global Technologies, Llc. Multi-cornered strengthening members
US8668247B2 (en) * 2012-04-23 2014-03-11 GM Global Technology Operations LLC Magnesium-composite structures with enhanced design
IN2015DN01802A (ja) 2012-08-21 2015-05-29 Nippon Steel & Sumitomo Metal Corp
JP5988893B2 (ja) * 2013-02-25 2016-09-07 豊田鉄工株式会社 車両用衝撃吸収部材
FR3004157B1 (fr) 2013-04-08 2016-02-19 Peugeot Citroen Automobiles Sa Deflecteur aerodynamique pour partie arriere d’un vehicule
CN103223910B (zh) * 2013-04-28 2016-08-03 长城汽车股份有限公司 用于车架的前置吸能装置和具有其的车架、汽车
CN103192782A (zh) * 2013-04-28 2013-07-10 长城汽车股份有限公司 吸能盒以及具有其的车架和汽车
ES2682041T3 (es) 2013-10-09 2018-09-18 Nippon Steel & Sumitomo Metal Corporation Caja de absorción de impactos y método para fabricar la misma
WO2015119206A1 (ja) * 2014-02-06 2015-08-13 帝人株式会社 樹脂製衝撃吸収部材及び車両用部品
KR101510039B1 (ko) * 2014-02-06 2015-04-07 현대자동차주식회사 차량용 크래시박스
JP6039600B2 (ja) * 2014-03-28 2016-12-07 富士重工業株式会社 衝撃吸収構造
KR101601428B1 (ko) * 2014-06-03 2016-03-09 현대자동차주식회사 차량용 크래쉬박스
US10315698B2 (en) 2015-06-24 2019-06-11 Ford Global Technologies, Llc Sixteen-cornered strengthening member for vehicles
US9944323B2 (en) 2015-10-27 2018-04-17 Ford Global Technologies, Llc Twenty-four-cornered strengthening member for vehicles
US10513236B2 (en) * 2015-12-24 2019-12-24 Uacj Corporation Energy absorbing member
US9889887B2 (en) 2016-01-20 2018-02-13 Ford Global Technologies, Llc Twelve-cornered strengthening member for a vehicle with straight and curved sides and an optimized straight side length to curved side radius ratio
US9789906B1 (en) 2016-03-23 2017-10-17 Ford Global Technologies, Llc Twenty-eight-cornered strengthening member for vehicles
US10393315B2 (en) 2016-04-26 2019-08-27 Ford Global Technologies, Llc Cellular structures with twelve-cornered cells
US10704638B2 (en) 2016-04-26 2020-07-07 Ford Global Technologies, Llc Cellular structures with twelve-cornered cells
US10473177B2 (en) * 2016-08-23 2019-11-12 Ford Global Technologies, Llc Cellular structures with sixteen-cornered cells
US10220881B2 (en) 2016-08-26 2019-03-05 Ford Global Technologies, Llc Cellular structures with fourteen-cornered cells
US10300947B2 (en) 2016-08-30 2019-05-28 Ford Global Technologies, Llc Twenty-eight-cornered strengthening member for vehicles
US10279842B2 (en) 2016-08-30 2019-05-07 Ford Global Technologies, Llc Twenty-eight-cornered strengthening member for vehicles
US10429006B2 (en) 2016-10-12 2019-10-01 Ford Global Technologies, Llc Cellular structures with twelve-cornered cells
JP6516716B2 (ja) * 2016-11-17 2019-05-22 本田技研工業株式会社 車体フレーム
US10695817B2 (en) 2017-04-24 2020-06-30 Ford Global Technologies, Llc Thirty-six-cornered strengthening member
US10065682B1 (en) 2017-04-24 2018-09-04 Ford Global Technologies, Llc Thirty-two-cornered strengthening member
CN107606019B (zh) * 2017-08-09 2019-06-21 西北工业大学 一种具有高效缓冲吸能特性的双层端封双翻转吸能结构
US10618483B2 (en) * 2018-01-31 2020-04-14 GM Global Technology Operations LLC Multi-component composite energy-absorbing structure having a corrugated joint
US10829070B2 (en) * 2018-02-23 2020-11-10 Ford Global Technologies, Llc Strengthening structure of a vehicle
US10562478B2 (en) * 2018-02-23 2020-02-18 Ford Global Technologies, Llc Strengthening structure of a vehicle
US11167797B2 (en) * 2019-10-21 2021-11-09 Ford Global Technologies, Llc Multi-cell energy absorbing structures
US11292522B2 (en) 2019-12-04 2022-04-05 Ford Global Technologies, Llc Splayed front horns for vehicle frames
CN113090694B (zh) * 2021-04-16 2022-02-18 中山大学 一种可灵活拆装、快速拓展的吸能防护装置

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS606674U (ja) * 1983-06-23 1985-01-18 トヨタ自動車株式会社 自動車車体の緩衝構造
JPH06123323A (ja) * 1992-10-09 1994-05-06 Toyota Autom Loom Works Ltd エネルギー吸収部材
JPH0725353A (ja) * 1993-07-09 1995-01-27 Toyota Motor Corp 車両の前部車体構造
JPH08108863A (ja) 1994-10-12 1996-04-30 Honda Motor Co Ltd 自動車のフロントサイドフレーム構造
JPH0960676A (ja) * 1995-08-25 1997-03-04 Yokohama Rubber Co Ltd:The 衝撃緩和材及びその製造方法
JPH09288953A (ja) * 1996-04-19 1997-11-04 Omron Corp 無接点リレー
EP0856681A1 (fr) 1997-01-20 1998-08-05 RECHERCHE ET DEVELOPPEMENT DU GROUPE COCKERILL SAMBRE, en abrégé: RD-CS Dispositif d'absorption d'énergie
EP1149756A2 (en) 2000-04-25 2001-10-31 Nissan Motor Company, Limited Body structure of vehicle
JP2002284033A (ja) 2001-03-27 2002-10-03 Nippon Steel Corp 自動車用強度部材
JP2003048569A (ja) 2001-08-02 2003-02-18 Kawasaki Steel Corp 衝突エネルギー吸収部材

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0717624B2 (ja) 1983-06-27 1995-03-01 株式会社エス・ディー・エスバイオテック ジチアジノン誘導体及び農園芸用殺菌剤
US5306058A (en) 1990-03-26 1994-04-26 Shape Corporation Tubular roll-formed automotive bumper
US5080410A (en) 1991-04-22 1992-01-14 Chrysler Corporation Vehicle bumper beam
JPH05116645A (ja) 1991-10-29 1993-05-14 Toyota Motor Corp 自動車のフロントボデー構造
JPH08128487A (ja) 1994-11-02 1996-05-21 Nissan Motor Co Ltd エネルギ吸収材およびその製造方法
JP3676491B2 (ja) 1996-04-12 2005-07-27 新日本製鐵株式会社 衝撃吸収部材
JP2003284033A (ja) 2002-03-27 2003-10-03 Yokogawa Electric Corp ニアビデオオンデマンド装置
CN1849234B (zh) * 2003-07-03 2011-07-27 沙普公司 结合有热成形能量吸收体的保险杠装置
JP3852445B2 (ja) * 2004-01-13 2006-11-29 日産自動車株式会社 メンバー部材の衝撃エネルギー吸収構造
DE102004039592C5 (de) * 2004-08-13 2008-05-21 Benteler Automobiltechnik Gmbh Crashbox

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS606674U (ja) * 1983-06-23 1985-01-18 トヨタ自動車株式会社 自動車車体の緩衝構造
JPH06123323A (ja) * 1992-10-09 1994-05-06 Toyota Autom Loom Works Ltd エネルギー吸収部材
JPH0725353A (ja) * 1993-07-09 1995-01-27 Toyota Motor Corp 車両の前部車体構造
JPH08108863A (ja) 1994-10-12 1996-04-30 Honda Motor Co Ltd 自動車のフロントサイドフレーム構造
JPH0960676A (ja) * 1995-08-25 1997-03-04 Yokohama Rubber Co Ltd:The 衝撃緩和材及びその製造方法
JPH09288953A (ja) * 1996-04-19 1997-11-04 Omron Corp 無接点リレー
EP0856681A1 (fr) 1997-01-20 1998-08-05 RECHERCHE ET DEVELOPPEMENT DU GROUPE COCKERILL SAMBRE, en abrégé: RD-CS Dispositif d'absorption d'énergie
EP1149756A2 (en) 2000-04-25 2001-10-31 Nissan Motor Company, Limited Body structure of vehicle
JP2002284033A (ja) 2001-03-27 2002-10-03 Nippon Steel Corp 自動車用強度部材
JP2003048569A (ja) 2001-08-02 2003-02-18 Kawasaki Steel Corp 衝突エネルギー吸収部材

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1653114A4 *

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7926868B2 (en) * 2005-06-24 2011-04-19 GM Global Technology Operations LLC Energy absorbing element and motor vehicle body using the same
US8177269B2 (en) 2005-06-24 2012-05-15 GM Global Technology Operations LLC Energy absorbing element and motor vehicle body using the same
JP4792036B2 (ja) * 2005-09-09 2011-10-12 豊田鉄工株式会社 車両用衝撃吸収部材
JP2008044635A (ja) * 2006-08-11 2008-02-28 Toyoda Iron Works Co Ltd 押し潰し可能な容器
EP2045142A2 (en) 2007-10-01 2009-04-08 Mazda Motor Corporation Vehicle structure for automobile
JP2009083686A (ja) * 2007-10-01 2009-04-23 Mazda Motor Corp 自動車の車体構造
US7926865B2 (en) 2007-10-01 2011-04-19 Mazda Motor Corporation Vehicle structure for automobile
US8287013B2 (en) 2007-11-05 2012-10-16 Toyoda Iron Works Co., Ltd. Impact absorbing member for vehicle
EP2055983A2 (en) 2007-11-05 2009-05-06 Toyoda Iron Works Co., Ltd. Impact absorbing member for vehicle
JP2009113596A (ja) * 2007-11-05 2009-05-28 Toyoda Iron Works Co Ltd 車両用衝撃吸収部材
US7896411B2 (en) 2007-11-05 2011-03-01 Toyoda Iron Works Co., Ltd. Impact absorbing member for vehicle
EP2202118A1 (en) * 2008-12-26 2010-06-30 Toyoda Iron Works Co., Ltd. Impact absorbing member for vehicle
US8297668B2 (en) 2008-12-26 2012-10-30 Toyoda Iron Works Co., Ltd. Impact absorbing member for vehicle
WO2013154071A1 (ja) 2012-04-10 2013-10-17 新日鐵住金株式会社 衝撃吸収部材に適した鋼板とその製造方法
WO2014014120A1 (ja) 2012-07-20 2014-01-23 新日鐵住金株式会社 鋼材
WO2014030663A1 (ja) 2012-08-21 2014-02-27 新日鐵住金株式会社 鋼材
WO2014083926A1 (ja) * 2012-11-30 2014-06-05 アイシン精機株式会社 クラッシュボックス
WO2014087511A1 (ja) 2012-12-06 2014-06-12 新日鐵住金株式会社 鋼材および衝撃吸収部材
US9902435B2 (en) 2013-10-09 2018-02-27 Nippon Steel & Sumitomo Metal Corporation Structural member for automotive body
WO2022085575A1 (ja) 2020-10-20 2022-04-28 日本製鉄株式会社 衝撃吸収部材

Also Published As

Publication number Publication date
US7252314B2 (en) 2007-08-07
EP1653114A4 (en) 2007-08-01
US20060202493A1 (en) 2006-09-14
DE602004025247D1 (de) 2010-03-11
JPWO2005010398A1 (ja) 2006-10-05
EP1653114B1 (en) 2010-01-20
CN100476233C (zh) 2009-04-08
CN1856672A (zh) 2006-11-01
EP1653114B2 (en) 2015-06-03
EP1653114A1 (en) 2006-05-03
JP3912422B2 (ja) 2007-05-09

Similar Documents

Publication Publication Date Title
WO2005010398A1 (ja) 衝撃吸収部材
JP4371059B2 (ja) 衝撃吸収部材
JP5949925B2 (ja) クラッシュボックス及び自動車車体
JP4386036B2 (ja) クラッシュボックス
JP4375239B2 (ja) 衝撃吸収部材および衝撃エネルギの吸収方法
JP5488069B2 (ja) クラッシュボックス及び自動車車体
KR20130126716A (ko) 금속제 중공 기둥 형상 부재
JP5147003B2 (ja) サイドメンバー
JP4604740B2 (ja) 衝撃吸収部材
JP5034793B2 (ja) 衝撃吸収方法
KR101779568B1 (ko) 충격 흡수 부재
JP3676491B2 (ja) 衝撃吸収部材
JP4036234B2 (ja) クラッシュボックス
JP6565291B2 (ja) 衝撃吸収部材、車体および衝撃吸収方法
JP5056198B2 (ja) 自動車車体の衝撃吸収構造
JP4543778B2 (ja) 衝撃吸収部材
JP4706656B2 (ja) バンパステイ
JP4572674B2 (ja) 衝撃吸収部材
JP2005186776A (ja) 車体構造用部材

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200480027877.4

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005512120

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 11340663

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2004748224

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2004748224

Country of ref document: EP

DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
WWP Wipo information: published in national office

Ref document number: 11340663

Country of ref document: US